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“If you never try, you’ll never know what you are capable of.”

John Barrow

“They always say time changes things, but you actually have to change them yourself.”

Andy Warhol
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Almost everyone had suffered from sickness on occasion when travelling as a passenger

in an auto, ship, or aircraft. Motion sickness has a significant incidence in military and

space operations, and is common in otologic disease. More than a century ago, Irwin

(1881) noted that vestibular and visual sensory systems can play an important role in

producing this disorder. However, despite the ubiquity of motion sickness in modern

society, and extensive research efforts, the physiology underlying how the syndrome

may function in the Central Nervous System (CNS), has not yet been particularly well

defined. As it consequence, the cause of motion sickness is still explained primarily in

psychophysical terms.

The objective of the present effort is to analyse some mathematical models for conflict

generation in motion sickness and to implement them in an efficient way that can allow

their use in nowadays practical applications, such as driving simulators. The resulting

model described here in detail, has been presented earlier in preliminary form (Merfeld,

1993; Newman, 2009). The development of a mathematical representation of the conflict

theory for motion sickness may lay some useful qualitative considerations to the motion

sickness problem.
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â estimated linear acceleration ms−2

v̂ estimated linear velocity ms−1

p̂ estimated linear position m
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Chapter 1

Introduction

Daily human activity includes complex orientation, postural control, and movement

coordination, as explained also by Selva [1]. All these tasks depend upon the human

perception of motion. The non-auditory section of the inner ear, the vestibular system,

is recognized as the prime motion sensing center. It represents an inertial measuring

device which allows us to sense, in the absence of external sensory cues (vision, etc)

self-motion with respect to the six degrees of freedom in space (three rotational and

three translational).

The information from the vestibular apparatus is used in three ways:

• to provide a subjective sensation of movement in three-dimensional space

• to maintain upright body posture (balance)

• to control the muscles that move the eyes direction, so that in spite of the changes

in head position which occur during normal activities such as walking or running,

the eyes remain stabilized on a point in space.

Several scenarios illustrate these points. For instance, if a cat is dropped upside down,

it will land right side up on all four paws. If a newborn infant is tilted backward, its eyes

will roll downward so that its gaze remains fixed on the same point. If you, as you read

this introduction, shake your head rapidly from side to side, the print nonetheless will

stand still. Each of these scenarios is an example of how a healthy balance (vestibular)

system compensates for daily changes in our spatial orientation.

The vestibular system is comprised of two primary sense organs:

• the semicircular canals (SCCs), which detect angular accelerations of the head

1



Chapter 1. Introduction 2

• the otolith organs (OTOs), which respond to linear accelerations of the head and

to gravity.

Thus, vestibular sensors provide information to the brain regarding our body’s position

and acceleration in space, with sensing capabilities that are compatible with everyday

movements relative to the surroundings, and hence play central role in spatial orienta-

tion.

Spatial orientation can be defined as one’s perception of body position with respect to a

reference frame. This process involves two main sensory modalities, the vestibular sys-

tem and vision, but proprioceptive and auditory inputs also come into play. The control

of spatial orientation during navigational and locomotion tasks requires a dynamic up-

dating of the representation of the relations between the body and the environment, i.e.

spatial orientation normally entails both the subconscious integration of multisensory

cues and the conscious interpretation of external information. Therefore, the Central

Nervous System (CNS) uses information coming from multiple sensors to come up with

a representation of how the body is moving and is oriented in space.

The results of this “spatial orientation” process are usually satisfactory in most of every-

day life situations. However, when technology achievements began to expose humans to

new and artificial situations such as sustained accelerations in fighter airplanes, micro-

gravity environment in spacecrafts or motion cueing in driving simulators, our ability

to correctly estimate our position and motion became limited. As a matter of fact, as

the number of fighter airplane accidents due to technical failure keeps decreasing, hu-

man errors have been proven to be a limiting factor to safety. That is, the advent of

aeronautics flight has not only involved a new demand on human organism but also the

ability for pilots to deal with a high workload environment and a complex instrument

panel. Furthermore, in some circumstances, e.g. when flying in clouds or at night, pilots

may not have the possibility of seeing external references. As a result, they are con-

stantly liable to introduce conflict between their internal feeling of orientation and the

real one, and hence to experience a case of spatial disorientation which is a phenomenon

attributed to 15 to 30% of all aircraft fatalities in flight [2]. All these considerations

have lead number of researchers to model human spatial orientation.

Mathematical models for three-dimensional human spatial orientation have continued

to evolve over the past four decades. Several models exist and have been developed

using multiple computational approaches such as linear systems analysis, the concept of

internal models, observer theory, Bayesian theory, Kalman filtering and particle filtering.

A review of these approaches has recently been written by MacNeilage [3]. Different



Chapter 1. Introduction 3

features can be distinguished among these models: some of them are restricted to one-

dimensional space, others take into account motions in three-dimensional space; some

incorporate visual cues, while others only model vestibular response in the dark; and

some work for large head tilts whereas others do not.

1.1 The purpose

The aim of this work is to test a different and more sophisticated approach to the motion

cueing problem, with particular interest on driving simulators applications. Most of the

work focuses on obtaining as final model a non-linear one with complex dynamics, that

could allow to get good results in the motion perception and spatial orientation of the

driver during a driving session.

Another important aspect of this thesis is the computational cost of the tests: it has

to managed in a smart way. The idea is to work in real-time, so it is not used only

Matlab code, but a more efficient toolkit, the ACADO toolkit, that allows for better

computational performances converting the code in faster programming languages. So

first of all it is necessary to take confidence with this new tool.

In the end, a comparison with previous works is shown. In particular, it is taken into

consideration the implementation of a motion cueing algorithm through a linear Model

Predictive Control (MPC) that uses some linear filters to simulate the platform and the

vestibular system. In this way, it is possible to sum up some qualitative considerations

about the complex non-linear model presented in this thesis work.





Chapter 2

Motion Cueing Algorithms

Linear and rotational accelerations, which exert forces on the driver’s body, are called

motion cues. In the automotive field, such as in dynamic driving simulators, these should

convince the driver that he is driving a real car. The algorithms, which are responsible

for generating these cues, are named Motion Cueing Algorithms, (MCAs) [4].

Strategies are required to take into account restrictions on platform movements and, at

the same time, to consider the human perception of motion. The limited workspace, for

example, makes it impossible to generate long lasting acceleration cues. To avoid this

problem, most algorithms are based on three phases.

The first one is the discrimination of the frequency content of the input acceleration

signal in a high frequency part and in a low frequency part. In the second phase, the

high frequency signal is filtered by the washout action (a cascade of filters, see Section

2.1), which adds a drift to the executed motion, so that the platform is always pulled

back to the centre of the work space. In the last phase, the low frequency signal is

transformed by the tilt-coordination (see Section 4.2) into an angle that slowly tilts the

platform and the visual scene, so that gravitational vector differs from the body z-axis.

The part of the vector that is aligned with the platform axis in the longitudinal (x) and

lateral (y) direction creates the illusion of sustained accelerations.

However, these methods to obtain a good motion cueing are subject to false cues such

as wrong platform movements, which disagree with the experience of real car driving.

These contradictory motion cues could cause simulator sickness. If the simulated plat-

form movement does not in agree with the visual car movement, then a sensory conflict

emerges. The body responds, among others, with dizziness and disorientation. There-

fore, it is important to set up the algorithms accurately, in order to avoid these harmful

effects.

5
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2.1 Different approaches to Motion Cueing

To make the simulator move in an intelligent way it is used a Motion Cueing System

(MCS), which aims to transform the input acceleration references r(t), to possible signals

to be provided to the actuators of the simulator platform. The algorithms of a MCS

have therefore constrained objectives that have to be met:

• it has to make the driver perceive a feeling of motion that is as close as possible

to the reality

• it has also to keep the platform within its limits,

as explained by D’Ambrosio and Baseggio [5] [6].

2.1.1 Classical Washout Algorithm

The first algorithm of this type was proposed in the early 70s by Schmidt and Conrad

who developed the classical strategy for Motion Cueing which was going to calculate

the acceleration of the simulator along all its degrees of freedom. The classical MCS

algorithm, made by frequency filters, is structured in the following way:

1. low frequencies have to be removed from longitudinal accelerations by an high-pass

filter, and then the result is integrated twice in order to obtain the position control

of the platform as an output of the algorithm;

2. low-frequency accelerations are extracted from the reference by a low-pass filter

and from these, the angle for tilt coordination is calculated, that will be added to

the output control for the angular positions;

3. the platform is ensured to its neutral position by filtering through an high-pass

filter the resulting control position.

The latter filtering, often called Motion Washout [7], is necessary to prevent the satura-

tion of the actuators which then could lead to make the driver perceive false dynamics of

the vehicle. Another type of filtering, called anti-backlash filter, can be added to reduce

some non-optimal responses following the high-pass filtering (Reymond, 2000) [8].

Using this type of algorithm and filtering out the low frequencies of the reference, cause

the resulting acceleration to be extremely limited. This is caused by the setting of

the filter parameters (such as gain and cut-off frequency) that will be set from session
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Figure 2.1: Classical washout algorithm.

to session, depending on the circuit and driving style, taking into consideration that

the cueing must ensure that the actuators will never saturate. When, for example, it

happens that the cockpit is near the limit of the platform position, the algorithm has two

solutions: either to stand still with the cab playing only with the angular accelerations,

waiting for an in-phase acceleration in order to come back to its neutral position, or

go in opposite-phase and make the pilot perceive an acceleration in contrast to the one

received by the visual system, thus causing him a feeling of sickness.

In both cases, the solutions do not meet the task of the motion cueing algorithm and

then it is necessary to set up the filter taking into account the worst case, thus to

make the maximum acceleration input remain within the thresholds of the platform’s

actuators. As a logical consequence, during a driving session where there are only “small”

accelerations, it will be used only a small portion of the possible motion workspace of

the simulator.

2.1.2 Adaptive washout algorithm

To overcome the problem of not exploiting all the space available to the simulator,

Parrish and Dieudonne [9] proposed an adaptive method, further developed in the next

years. Based on the classical MCS, instead of using only the strategy in the frequency

domain, they also considered the time domain: the filtering process remains the same

as in the classical approach, but in this case the parameters are not constant but are set

up again at each step.
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At each sampling instant, the gain and the cut-off frequency of the classic MCS approach

are derived from the minimization of a quadratic cost function:

Vk = (rk − ak)2 + ω1 · v2k + ω2 · p2k

The first term of Vk is the squared error between the acceleration of the real vehicle rk

and the one of the platform ak. The remaining two terms are related to the speed vk

and the position pk of the platform.

Compared with the previous version, this adaptive strategy try to exploit in a more

efficient way the work space during ”regular” driving conditions, i.e. with accelerations

smaller than the values on which the filters are set. The weights ω1 and ω2 define a trade-

off between the developed feeling of motion and the limits imposed by the actuators:

an increase of ω1 and ω2 will penalize displacements and high speeds while reducing

them will go into advantage of the square error minimization between the real and the

platform acceleration. In any case, the setting of these parameters must be done off-line

whereas the specific driving of the pilot and the type of circuit on which the driving

simulation is performed must be taken into consideration.

2.1.3 Optimal washout algorithm

In 1982 Sivan and Ish Shalom [10], developed an optimal algorithm which, combined

with linear low-pass and high-pass filtering as in the classic MCS, calculates the controls

to be given to the platform by minimizing a global cost function:

V [u(t)] =

∫ ∞
0

[(r̃(t)− ã(t))2 + ω1 · v2(t) + ω2 · p2(t)]dt

subject to

x(t) = Ax(t) +Bu(t)

with x = [p v a ã]T and where (A,B) are the matrices of the model of motion perception,

ã is the acceleration perceived by the driver inside the car and u(t) is then control input

of the system. To calculate the minimum of the cost function is necessary to know the

reference along an entire driving session for the time interval [0,∞].

In this last strategy, it can be found, in addiction to the model of the considered system,

the first use of a model of motion perception that was proposed in earlier years by

Zacharias (1978); this was necessary to reproduce the motion feeling in a structure with

well-known constraints, and so the purpose is to mislead the perception of the pilot

in order to follow the trajectory but not only using longitudinal accelerations but also

through the tilt-coordination.
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Model Predictive Control

In this chapter it is introduced the Model Predictive Control (MPC) and its fundamental

characteristics are described. There are a lot of works about MPC, as [5], [11], [12], [13],

[14], [6], but for a detailed analysis it is suggested to read Maciejowski and Wang’s books

[12] [11].

The predictive control is a technique born for industrial purposes at the end of 70s,

further developed by researchers, that found a lot of useful fields in which it could be

applied, thanks to its peculiarity to solve constrained control problems. This technique

provides the optimal inputs to a system, that minimize a particular cost function. The

fundamental idea is to compute the control (input) such that an open-loop and finite-

horizon optimal control problem is solved with respect to the constraints, within a fixed

time horizon. From the sequence of optimal inputs obtained, only the first one is applied

and then the optimal problem is iterated using the new state of the system as the initial

condition.

3.1 Pros & Cons

The great success of MPC is certainly due to the many advantages that its usage entails,

especially in the industrial sector applied to very complex problems, e.g. the ability to

handle constraints on the variables of the problem, namely the outputs, inputs and

changes of the inputs of the system. This fact is of crucial importance in practice,

because a lot of applications involve limited quantities. Constraints can also be divided

into hard and soft : the first are bounds that absolutely do not have to be violated, while

the others can be violated, despite losing in terms of cost. The predictive control is also

an extremely versatile tool: it adapts to SISO as well as complex MIMO problems or

9
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Figure 3.1: Model predictive control scheme.

non-minimum phase or even unstable. The MPC can be interpreted in different ways:

by its nature it is an open loop control, but in some cases can be thought as a component

of the feedback; it can also be used in a feedforward control to compensate for the input

disturbances of the system.

The method to obtain the optimal input, as already mentioned, occurs through the

choice of a functional cost, thus it is possible to choose this functional according to the

needs of the problem and give emphasis on the variables that require more attention.

The management of the constraints also allows, in some cases, to work close to the limits

but in safety, thus exploiting further the potential of the plant.

The predictive control obviously has some disadvantages. Until a few years ago, the

biggest difficulty was the computational cost. Since the MPC is an optimal control

problem with constraints to be solved at each sampling step after updating the system, in

the absence of appropriate calculation tools and dealing with computationally expensive

problems, it is easy to understand how the MPC had some intrinsic limitations in its

nature. However, with the improvements of the technology and with more and more

computing power, this defect is fading very quickly.

Another problematic aspect is the stability : it is difficult to ascertain in a problem with

constraints and therefore can not be rigorously formalized, but as long as it can, the

controller exerts its function and therefore behaves in a stable manner, even if a sharp

variation of the value of the involved variables could lead to undesired behaviours. A

final critical aspect is the fact that the MPC uses an internal model of the plant that

has to be controlled, on which it has to make the prediction. Obviously, this model may
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not be accurate or may change, so the evolution predicted by the controller may not be

consistent with the one actually followed by the plant.

3.2 The algorithm

In this section it is described, in a qualitative manner, the necessary steps to set up a

predictive control.

3.2.1 Model and prediction

First a model of the system is needed. Initially, the model predictive control was based on

FIR or step response models, which, however, are able to describe only stable implants,

and are often of a high order. An improvement is the use of transfer functions, which,

therefore, can also be applied to unstable systems, but they are difficult to manage in

the case of multi-variable problems. These defects have led over the years to affirm the

use of state space models, which allow to take advantage of linear systems theory and

efficiently manage multi-variable systems. They also permit to easily model errors and

noises and moreover to take advantage of the theory of statistical filtering for systems

where the state is not accessible. Once chosen the model of the system under analysis,

the prediction Hp and control Hc are fixed and the evolution of the system in this time

window is calculated, writing the future outputs y(t+ k|t), k = 1, . . . ,Hp as a function

of the future inputs u(t+ k|t), k = 0, . . . ,Hc − 1.

3.2.2 Cost function and control computation

The optimal input is calculated minimizing the cost function, or objective function,

chosen on the basis of contextual needs of the problem. The basic objective is to follow

a reference trajectory, while respecting of the constraints. A possible cost function is

the following:

J =

Hp∑
j=1

δ(j) [ỹ(t+ j|t)− r(t+ j)]2 +

Hc∑
j=1

λ(j) [∆u(t+ j − 1)]2

It minimizes the error ỹ(t+ j|t)− r(t+ j) and the cost in terms of change of the input

∆u(t+j−1), depending on the values of the weights δ(j) and λ(j). It is also emphasized

that the choice of the functional is not unique but can be arbitrary, the important thing

is that it must be quadratic, as explained in Section 7.4.1. Because of the constraints,

the minimization translates itself into a quadratic programming problem: in the case of
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absence of constraints the solution is obtained in an analytical way. Often the solution

to the quadratic programming problem is not so immediate because the complexity of

the problem is quite high; so, it is usually imposed Nc < Np and assumed that the input

signal does not undergo more changes after Nc steps: ∆u(t+j−1) = 0, j ∈ [Nc, Np]. In

this way the size of the problem is reduced with immediate impact on the computational

complexity.

Figure 3.2: An example about how a model predictive controller works.

3.2.3 Control application and receding horizon technique

Since the model of the plant which is used by the MPC may not be accurate or there

may be not measurable interferences, the whole sequence of the calculated control signal

is not applied, but only the first element, u(t|t), is given to the plant while the the rest

is discarded. At the following iteration of the algorithm there will be the new values of

the outputs and the system states and these variables will be used to repeat the whole

procedure. In the end this process produces a new sequence of inputs of which it will be

applied only the first element, u(t+ 1|t+ 1), which in general will be different from the

one that was calculated and discarded in the previous step, u(t+ 1|t). This technique is

called receding horizon, since the prediction horizon is always of the same length but it is

moved forward by one step at each iteration. The fact that the new output is available

to perform the optimization, implies that the model of the system under analysis is

strictly proper, or that the output y(k) depends only on the past inputs and not on the

current u(k).
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Human Perception System

The goal of a simulator is to provide the perception of what happens in a real driving

situation, even if the platform moves in a different way in comparison to how the car

would do on the road or on the track. Then it is necessary to model the human perception

system to understand the relationship between real and perceived linear accelerations

and angular velocities, [14]. In this way, it is possible to generate input signals that

trick the organism, making the pilot feel in the platform the same feelings that he would

perceive in a real situation. The sensors that perceive human motion belong to the

vestibular system, which acts in a coordinated way with the vision. In this chapter it is

described, therefore, the vestibular system and the key strategy, to make the perceptions

as much real as possible, is presented: the tilt coordination.

4.1 The vestibular system

As explained by Selva [1], the inner ear is divided into two parts: the cochlea serv-

ing auditory function, and the vestibular system which contains the sensors providing

information of body orientation and balance in three-dimensional space. The motion

of the body is thus detected by the vestibular system, encoded as an electrical signal,

and transmitted to the brain through the vestibular nerve. The brain then integrates

vestibular, visual, and somatosensory inputs to estimate the orientation and motion, and

consequently elicits eye, head, or body movements that will stabilize gaze and maintain

balance.

There is one vestibular system on each side of the head, in close approximation to the

cochlea. Due to its specific structure, this system is also called the labyrinth, see Figure

4.1. One distinguishes between the bony labyrinth and the membranous labyrinth.

13
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The bony labyrinth is a complex cavity tunnelled in the temporal bone of the skull.

Its structure forms three ducts, the semicircular canals, that converge toward a larger

central part called “the vestibule”. The membranous labyrinth is enclosed in this osseous

labyrinth, and is suspended in a fluid called “the perilymph” [15]. In birds and mammals,

fine connective tissue filaments suspend the membranous duct within the osseous canal.

The filaments serve to anchor the membranous labyrinth to the temporal bone such that

the gravito-inertial acceleration experienced by the sensory organs could be expected to

be nearly identical to that experienced by the temporal bone. To date, there are no

experimental data to suggest significant relative motion between the temporal bone and

the membranous labyrinth (Rabbitt, [16]). The membranous labyrinth is also filled with

fluid known as ”the endolymph”, physically a water-like liquid. Each side of this bilateral

system consists of two types of sensors: a set of three semicircular canals sensing rotation

movement, and two otolith organs (the saccule and utricle) which sense linear movement

and head tilt.

Figure 4.1: Visualization of the inner ear. 1) Anterior canal, 2) posterior canal,
3) lateral canal, 4) ampulla of each canal, 5) common crux, 6) utricle, 7) saccule, 8)

cochlea.

4.1.1 The semicircular canals

The semicircular canals are commonly referred to as the lateral canal, also called hori-

zontal canal, and the posterior and anterior canals, which constitutes the vertical canals.

These latter have a common duct called the common crux for about 15% of their length.

The canals are oriented in almost mutually orthogonal planes. The lateral canal lies in

a plane elevated about 30 degrees from the horizontal plane, while the two others are

arranged in diagonal planes which subtend roughly 45 degrees relative to the frontal

and saggital planes of the skull, see Figure 4.2. Thus, the anterior canal on one side

of the head is parallel to the posterior canal on the other and vice versa, whereas the
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horizontal canals of both inner ears lie in the same plane. Because most head movements

are not in a single SemiCircular Canal (SCC) plane, and also because of the imperfect

orthogonality of the three canals, the labyrinth usually resolves a given head rotation

into three components. That is, endolymph motion in each canal measures component

of the head’s rotational velocity in the plane of that canal. It has also been shown that

each canal admits a specific direction of stimulation, which maximizes the excitation:

the lateral, anterior and posterior canals primarily sense yaw, roll and pitch respectively

(Rabbitt, [17]).

Figure 4.2: Orientation of the semicircular canals.

The set of canals constitute a very small fluid-filled system the size of a pea. They

approximately form a circular path of 3.2mm radius and have a cross section radius along

their slender part of about 0.16mm (Curthoys et al., [18]). The study of Curthoys and

Oman probably constitutes the most thorough investigation concerning the dimensions

of the human semicircular canals. From micro dissected specimens, they were able to

provide measurements of the sizes, cross-sectional shapes and areas all around the path

of fluid flow through the horizontal semicircular duct, ampulla and utricle.

At one location in each canal, and more precisely near the utricle, the canal cavity swells

to form a bulbous expansion known as the ampulla that contains a transverse ridge of

sensory epithelium, the crista. The epithelial surface of the crista contains thousands of

sensory hair cells and surrounding supporting cells. Hair cells and supporting cells are

found not only atop the ridge (crest) of the crista, but also down its sloping flanks. Hair

cell sensory cilia project a short distance into tiny channels in the cupula, a gelatinous

structure that extend upward from the surface of the crista all the way to the vault (roof)

of the ampulla. The channels in the cupula material may be created as cupula material

is secreted upwards from the supporting cells surrounding the each hair cell. The cupula

effectively forms a thick diaphragm that completely occludes the canal lumen above the
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crista, and covers the entire sensory surface on the crest and both flanks. As detailed

later, it is now believed that the cupula appears attached to the ampulla around its

entire periphery.

When the head is subjected to an angular acceleration, endolymph inertia creates a

hydrostatic pressure that deforms the cupula. Bending of hair cell stereocilia then ini-

tiates a complex transduction process in hair cells and vestibular afferent neurons. The

nervous signal is finally transmitted to the brain and a sensation of motion results. At a

constant rotation rate, the endolymph in the canals tends to catch up with the rotation

of the head due to the viscosity, eliminating the relative movement. Eventually, as long

as the rotation rate remains constant, the cupula returns to a vertical position due to

its elastic properties and the sensation of motion eventually ceases.

4.1.2 The otolith organs

The otolith organs, the saccule and utricle, are situated between the semicircular canals

and the cochlea, and are approximately perpendicular to each other, see Figure 4.3 a.

They are the elements of the vestibular system that provide linear motion sensation

in human and mammals. They are sensitive to the direction of the Gravito-Inertial

Force (GIF) applied to the head, and consequently respond to both linear acceleration

and tilting of the head with respect to gravity. The saccule is dedicated to measuring

primarily the vertical component of the GIF with respect to the head, whereas the

utricle measures primarily the horizontal component. As stated by Einstein’s equivalent

principle, all linear accelerometers must measure both linear acceleration and gravity

(Einstein 1908). Therefore, the otolith organs cannot discriminate between acceleration

and tilt, requiring additional sensory information to resolve this ambiguity.

Both the saccule and utricle are flat layered structures. The top layer, which is in contact

with the endolymph, consists of calcium carbonate crystals called otoconia, the middle

layer consists of a gelatinous matrix called the otholitic membrane, and the bottom layer

consists of a bed of hair cells known as the macula that is rigidly attached to the skull

and therefore moves with the head. The hair cells are anchored in the macula whereas

their cilias extremities are embedded in the otolithic membrane.

The orientation of the hair cell bundles is organized relative to a region called the striola,

which demarcates the overlying layer of otoconia. The striola forms an axis of symmetry

such that hair cells on opposite sides of the striola have opposing morphological polar-

ization. Thus, a tilt along the axis of the striola will excite the hair cells on one side

while inhibiting the cells on the other side.
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Figure 4.3: Physiology of the utricular macula. (a) Location of the utricle and
saccule and orientation of the hair cells on the maculae of the otolith organs. (b) 3D

perspectives of a macula.

4.2 Tilt coordination

As Daniele D’Ambrosio has experienced in his thesis work [5], the simple translation of

the platform along the x and y axes is not able to reproduce the accelerations during a

normal driving simulation. However, thank to the fact that the human body is unable to

distinguish from translational and gravitational accelerations with the only contribute

of the maculae, it is possible to deceive the human perception system by tilting the

platform by an accurate angle. In this way, the simulator gives the driver a feeling of

acceleration that has to be added to the one provided by the longitudinal motion. This

technique is called tilt-coordination.

As shown in Figure 4.4, tilting the cockpit by a pitch angle makes the longitudinal and

gravitational forces be expressed by their respective components along the x and z axes.

In this way, the resulting perceived force is the sum of the their longitudinal components

(x axis). More in detail, giving an inclination of a pitch angle θ and a roll angle φ (the
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Figure 4.4: Tilt coordination explanation.

angle of yaw is indifferent to the tilt coordination), the gravitational acceleration vector

g, expressed in the platform frame through appropriate rotation matrices, is expressed

as:

gs = Rx(φ)Ry(θ)gi =


−g sinθ

g cosθ sinφ

g cosθ cosφ


where the subscripts s and i are used to indicate vectors related to the platform and to

the inertial frame respectively. Then, it is defined the specific force fs = as − gs, that

is the acceleration desired unless the gravity force, which is unrelated to the platform

and therefore it is not necessary to replicate. This specific force can be expressed by its

components as:

fs =


fx

fy

fz

 =


ax + g sinθ

ay − g cosθ sinφ
az − g cosθ cosφ

 ≈

ax + gθ

ay − gφ
az − g


where the last approximation has been made under the assumption of small angles. The

technique of the tilt coordination, as well as making possible to obtain perceived accel-

erations greater than those simulated only by the longitudinal shift, allows to simplify

the problem: the controller chases the high frequencies of the reference by longitudinally

shifting the platform and the low frequencies by tilting it. This solution to the problem

of motion cueing is pretty simple and basic. It does not fully exploit the potential of the

platform, however it is a good starting point and it is the technique upon which most

of the motion cueing algorithms on the market work.
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Sensory Conflict Model

“Velocity storage” is a concept which is used as a central component in almost all

classical control models of spatial orientation. This element was developed when it was

observed that per and post rotatory nystagmus1 last well beyond the activity of the

first order afferents from the semicircular canals. At nearly the same time, OptoKinetic

After-Nystagmus (OKAN) was noted as another response which lasted beyond the visual

stimulation. Furthermore, it seemed that the time course of these responses was similar.

The velocity storage hypothesis proposed that a single neural element was responsible

for the extension of vestibular nystagmus and for OKAN.

The approach which Merfeld presents in [20], [21], is analysed in the following pages.

Specifically, he developed the internal model approach suggested by Young [22], using the

observer theory approach used by Oman [23]. The developing of the model starts using

a very general non-mathematical description; then, a series of simplifying assumptions

reduce the model to a one-dimensional linear model. This simple version of the sensory

conflict model is investigated using two examples. It is then generalized until the model

includes again three dimensions and some inherent non-linearities.

Figure 5.1 shows a very general block diagram which presents the philosophy underlying

the development of the entire model. “Desired orientation”, the primary system input,

is compared to the “estimate of orientation” to yield an orientation error. A “control

strategy” is applied to the orientation error to yield a “motor command”. The motor

command is relayed to the muscles which are represented as part of “body dynamics” to

yield the “actual orientation”. The actual orientation is measured by the sensory organs

that produce the physiological output, the “sensory afference”. A copy of the efferent

signal (“efferent copy”) is sent to an internal model of body dynamics (including muscle

1condition of involuntary eye movement, acquired in infancy or later in life, that may result in reduced
or limited vision. Due to the involuntary movement of the eye, it is often called ”dancing eyes”. [19]

19
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Figure 5.1: Sensory conflict model by Merfeld.

dynamics) to yield the “estimated orientation”. This estimate of orientation is sent

to a model of sensory dynamics to give an “expected sensory afference”. A difference

between the sensory afference and the expected sensory afference indicates “sensory

conflict”. The sensory conflict returns to the internal model of body dynamics to drive

the estimated orientation toward the true orientation.

5.1 One-dimensional model

In Figure 5.2 the model is simplified by developing a one-dimensional (z axis) linear

observer. Moreover, the model takes into account only passive motion, so there is no

control strategy, such as the subject can only undergo external disturbances and forces.

The matrix transfer functions are reduced to scalar transfer functions. Furthermore, by

choosing the actual state (ωz) to be identical to the disturbance (also ωz), the body

dynamics and the internal model of body dynamics simplify to unity.

As an example, it is assumed that the sensory dynamics (SCC(s)) may be represented

by an high-pass filter with a cut-off frequency equal to the inverse of the dominant time

constant of the sensory afference:

SCC(s) =
τs

τs+ 1
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Figure 5.2: Simplified one-dimensional sensory conflict model.

It is also assumed that the internal model of sensory dynamics and the real sensory

dynamics have a similar form. Therefore:

ˆSCC(s) =
τ̂ s

τ̂ s+ 1

Using algebra, it is possible to find the transfer function between the internal estimate

of angular velocity (ω̂z) and the actual angular velocity (ωz). The transfer function has

the form:
ω̂z
ωz

=
k τs(τ̂ s+ 1)

((k + 1)τ̂ s+ 1)(τs+ 1)

Goldberg and Fernandez [24] estimated that the dominant time constant of the semicir-

cular canals is 5.7 seconds. If the afferent response is modelled with a time constant of

5.7 seconds and also the internal model has a time constant of 5.7 seconds, a pole zero

cancellation is obtained. This yields the transfer function

ω̂z
ωz

=
k τs

(k + 1)(τs+ 1)
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Figure 5.3: Merfeld’s observer model for a yaw rotation.

Figure 5.3 shows the response of this model to a trapezoidal step of yaw angular velocity.

The response is observed to have a dominant time constant of:

τ ′ = (k + 1)τs

5.2 Three-dimensional model

The one-dimensional model is going to be extended to a three-dimensional representation

by replacing all scalar values (ωz, ω̂z, y, ŷ and e) with vectors having three components

(−→ω , −̂→ω , −→y , −̂→y and −→e ), by replacing the unity operators of the scalar model with 3× 3

identity matrices (I), and by replacing the transfer function of the semicircular canal

with a 3× 3 matrix transfer function. For simplicity, let:

Sscc(s) =


scc(s) 0 0

0 scc(s) 0

0 0 scc(s)


Through the use of this diagonal matrix transfer function, it is implicitly assumed that

the semicircular canals are mutually orthogonal and that they are aligned with the

axes of the coordinate system. As a first approximation, the canals may be treated

as orthogonal, and the coordinate system may be chosen to align with that defined

by the semicircular canals. Anatomical accuracy may easily be provided by changing

the transfer function matrix from the diagonal form shown above to one which truly

represents the geometry of the semicircular canals. The feedback gain matrix (K) will

require analogous changes to represent the change in the sensory matrix. From an

input/output perspective, however, these additions are transparent, and therefore are
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avoided. Since simplicity is gained without any cost in terms of performance, the simplest

possible representation has been chosen.

Three-dimensional rotation will, in general, constantly change the orientation of the

gravitational force. If the current position of gravity (−→g 0) is known, and there is an

imposed angular disturbance (−→ω ), it is easy to keep track of the orientation of gravity.

This physical effect is represented as part of the body dynamics, shown in Figure 5.4.

Figure 5.4: Three-dimensional sensory conflict model.

The block labelled “rotate g” performs these calculations. The actual calculation are

implemented via a quaternion integration.

Analogously, if there is a current internal estimate of gravity, and there is an internal

estimate of angular velocity (−̂→ω ), it is possible to keep track of an estimate of the

orientation of gravity (−̂→g ) through the same calculations as discussed above. The block

“rotate g” is also used to perform these calculations.
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By arguments similar to those used when choosing the transfer function representing the

semicircular canals, the otolith organs are represented with a diagonal transfer function:

Soto(s) =


oto(s) 0 0

0 oto(s) 0

0 0 oto(s)


This representation of the otolith organs assumes that the sensory afference from the

two otolith organs, the utricle and the saccule, is integrated to yield a three-dimensional

representation of the gravito-inertial force.

Fernandez and Goldberg [25], investigated the dynamics response of first order otolith

afferents. They found that the frequency response of the regular units is approximately

constant to about 2Hz. Since the chosen inputs for the tests (see Section 8.1) are limited

to less than 1 Hz, the otolith transfer function may be approximated as unity:

oto(s) = 1.

Therefore:

Soto(s) =


1 0 0

0 1 0

0 0 1


Data at higher frequencies would be required to determine a more accurate transfer

function representation.

The quaternion integration which keeps track of the orientation of gravity is, obviously, a

non-linear calculation. Therefore, error estimation should not be limited to subtraction

as previously exhibited for linear systems.

Figure 5.5 shows the equations which determine the six-component error vector (−→e ).

The linear portion of the process is estimated using subtraction:

−→e ω = −→ω − −̂→ω

The estimation of the non-linear part of the error is more complicated. The magnitude of

the error equals the angle between the specific force vector (
−→
f ) and the current internal

estimate of the GIF (
−̂→
f ). Mathematically, this is written:

|−→e f | = arccos

 −→
f ·
−̂→
f

||
−→
f || ||

−̂→
f ||
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Figure 5.5: Three-dimensional error computation.

The direction of the gravitational error vector is given by the direction of the rotation

needed to align the total gravito-inertial force (
−→
f ) with the internal estimate of the

specific force (
−̂→
f ). Alternatively, this direction can be considered as the direction of

the rotation which could yield the discrepancy between the actual and the estimated

gravito-inertial force. With either interpretation, this direction may be written as

−→e f
|−→e f |

=

−→
f ×

−̂→
f

||
−→
f ×

−̂→
f ||

The total error vector (−→e ) is formed by summing the the error vectors such that the

angular velocity error (−→e ω) fills the first three components of the error vector, and the

gravitational error (−→e f ) completes the bottom three elements of the error vector. This

may be written:

−→e =

[−→e ω
0

]
+

[
0
−→e f

]

The 6×6 gain matrix (K) is chosen to have just nine non-zero elements as shown below:

K =



kωx 0 0

0 kωy 0 0

0 0 kωz

kfωx 0 0 kfx 0 0

0 kfωy 0 0 kfy 0

0 0 kfωz 0 0 kfz
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The angular velocity error feedback gains (kωx , kωy and kωz) are set such that the

appropriate velocity storage is obtained for each independent axis of rotation.

From physics it is known that gravito-inertial force is the difference vector formed by

subtracting acceleration from gravity or vice versa:

−→
f = −→g −−→a

If an animal (or human) has an internal representation of gravity and a sensory mea-

surement of gravito-inertial force, it is consistent that acceleration might be calculated

as the vector difference between these quantities:

−̂→a = −̂→g −
−̂→
f

It will be assumed that this is the case.

So, after all these considerations, the final three-dimensional model by Merfeld is repre-

sented in Figure 5.6.

Figure 5.6: Merfeld’s three-dimensional model representation.
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5.3 Results

The sensory conflict model appears to explain some experimental data. There are,

however, a number of obvious improvements which can be made.

This version of the model was developed to investigate and model spatial orientation

in the squirrel monkey. It is well known that humans and squirrel monkeys differ dra-

matically in some of their responses to gravito-inertial force. Changing this model to

represent more closely the human sense of spatial orientation is a trivial exercise. The

main changes will be in the values of the nine non-zero feedback gains.

Furthermore, more work, experimental and theoretical, needs to be done in order to

more accurately represent the sensation of linear motion. The process by which gravito-

inertial force is resolved into gravity and linear acceleration is not completely understood

and it is a problem which needs to be further investigated.

Vision was completely excluded from playing any role in this model. The importance

of vision is, however, very well known, and, therefore, represents an error in the model

which needs to be corrected.
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Multi-sensory Observer Model

The observer model developed so far is limited to SCC and otolith cue interaction. The

model presented in this chapter starts from the core of Merfeld’s sensory conflict model to

include additional state estimates together with static and dynamic visual cue inputs.

The previous model was able to predict orientation, linear acceleration and angular

velocity, but did not predict position in space. To do this, an additional (“limbic”)

coordinate frame, aligned with the perceived vertical DOF, is added, and velocity and

position “path” integration are assumed to take place in this frame. The sole vestibular

portion of the model is then tested, and results reproduce stimulus paradigms described

in papers by Merfeld & Zupan [26]. Newman et al. [27], [28] performed these tests and

then compared the extended model results with the KF model results and original data

considered by Borah [29] for the simple visual-vestibular motion paradigms.

6.1 Extended vestibular model

The vestibular core of the observer visual-vestibular interaction model (see Figure 6.1),

is a modified and extended version of the model proposed by Merfeld and Zupan [26].

The topology of the model, as shown in the figure, has been rearranged to resemble

the presentation format of Haslwanter et al. [30] and has been extended to include

the additional state estimates (position −̂→x and velocity −̂→v ) necessary for displacement

estimation and visual sensory interaction. To obtain these estimates, it is assumed that

the CNS integrates the perceived linear acceleration vector (−̂→a ) in an world reference

frame oriented to the local vertical.

This “limbic coordinate frame” is defined by the quaternion vector (−̂→q ) from the es-

timated gravity state (−̂→g ). At each time step of the simulation, the estimated linear

29
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acceleration vector is transformed to the limbic coordinate system and integrated twice

to obtain estimates of velocity and position. For a detailed description of the quater-

nion mathematics and of the transformation methods employed, it is possible to refer

to Appendix A.

Figure 6.1: Extended visual-vestibular model. Modifications to the original Merfeld &
Zupan [26] model are outlined in black and denoted A - F. (A) Head to limbic coordinate
frame transformation. (B) Leaky integrator for velocity estimate. (C) Integrator for

position estimate. (D) Estimated azimuth (E-F). Additional feedback gains.

The estimated quaternion vector (−̂→q ) also defines perceived azimuth (hat
−→
phi) within the

limbic coordinate frame. Azimuth is an important physical estimate with implications

in both laboratory and real world orientation/navigation simulations. Previous observer

model implementations neglected azimuth calculation. One interesting prediction is

the sustained progression of azimuthal angle in response to Off-Vertical Axis Rotation

(OVAR). The classic description of an OVAR simulation is a sensation of motion which

proceeds along a conical path while facing the same direction (e.g. constant perceived

azimuth). The model, however, predicts a sustained, although greatly reduced, sensation

of perceived rotation which continually alters the estimated heading, or azimuth angle.

The integration of acceleration to get velocity is accomplished with a leaky integrator

with individual time constants for motion around each limbic coordinate axes (τ ′ =

[16.66, 16.66, 1.0]T ).

Two additional weighting parameters are added to the model. The first (kωf ) is nom-

inally set to 1.0 and allows the user to control the influence of angular velocity on the

rate of change of gravity. The second parameter (kl) is a function of the angular velocity

residual weighting parameter (kl = (kω + 1)/kω) and is required to make the loop gain

of the angular velocity feedback loop unitary.
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6.2 Visual-vestibular interaction

The vestibular model extensions described in the previous section are essential prerequi-

sites for the addition of visual sensory information. With this modified vestibular model

in place, a visual-vestibular sensory interaction model is now proposed.

Figure 6.2: Representation for a generic visual model pathway.

To keep the structure and notation consistent with the original Merfeld et al. [21] model,

each visual pathway is constructed as shown in Figure 6.2. For a generic visual pathway

V, a visual input (
−̂→
V v) is processed by the visual sensor (V ISV ) to generate a visual

sensory estimate (−→a Vv). This estimate is compared (C) to an expected visual sensory

estimate (−̂→a Vv) from an internal model of the visual sensor ( ˆV ISV ). The comparative

difference (−→e Vv) (“sensory conflict”) is weighted with a residual weighting parameter

(KV ) and added to the rate of change of the estimated state (
−̂→
V v). In the end, the

weighted conflict vector is added to the derivative of the state. Since Merfeld did not

include an integrator in the forward loop of the angular velocity feedback pathway, it is

added the weighted visual angular velocity error directly to the state itself.

The visual system is assumed to be capable of extracting four visual cues from its

environment and these are in the final model represented in Figure 6.3. These are

position (−→x v), velocity (
−→̇
x v), angular velocity (−→ω v), and gravity (−→g v). The visual input

variables are represented by three-dimensional vectors in a right handed, orthogonal,

world-fixed, frame of reference (XW , YW , ZW ). To ensure congruency with the observer

model’s head and limbic coordinate frames, the visual cues are transformed through a

rotation matrix (T ) to their respective frames of interaction prior to sensory processing.

Visual gravity and visual angular velocity are transformed to the head-fixed coordinate

axes and visual position and velocity are transformed to the perceived limbic frame, see

Appendix A.
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Figure 6.3: Visual-vestibular interaction model. Vestibular and visual free parameters
are highlighted in gray.

For simplicity, it is assumed that the visual system sensory dynamics can be approx-

imated to identity for both static and dynamic visual inputs. This simplified visual

model allows for a baseline assessment of the usefulness and practicity of observer the-

ory for modelling multi-sensory interaction. In three-dimensional space it is possible to

represent each visual sensor as a 3 × 3 identity matrix. Since dynamic inputs illicit a

sensation of motion in the opposite direction of the visual field (e.g. linear vection and

circular vection), the dynamic sensors are modelled as negative 3× 3 identity matrices.

Each sensor transforms visual input (−→x v
−→̇
x v
−→ω v
−→g v) to visual sensory estimates (−→α xv

−→α ẋv
−→α gv

−→α ωv).
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•
−→α xv
−→x v

= V ISx =


1 0 0

0 1 0

0 0 1

 = I3×3 •
−→α ẋv
−→̇
x v

= V ISẋ =


−1 0 0

0 −1 0

0 0 −1

 = −I3×3

•
−→α gv
−→g v

= V ISg =


1 0 0

0 1 0

0 0 1

 = I3×3 •
−→α ωv

−→ω v
= V ISω =


−1 0 0

0 −1 0

0 0 −1

 = −I3×3

The next step is the assumption that the CNS has accurate internal models for each

visual sensor. Since the CNS already accounts for the proper direction of the visual

estimate, all internal models of visual sensory dynamics can be represented as positive

3× 3 identity matrices. The internal model of the visual sensors transforms the central

state estimates (−̂→x v
−̂→̇
x v
−̂→g v −̂→ω v) to expected visual sensory estimates (−̂→α xv

−̂→α ẋv
−̂→α gv

−̂→α ωv).

•
−̂→α xv

−̂→x v
= ˆV ISx =


1 0 0

0 1 0

0 0 1

 = I3×3 •
−̂→α ẋv

−̂→̇
x v

= ˆV ISẋ =


1 0 0

0 1 0

0 0 1

 = −I3×3

•
−̂→α gv

−̂→g v
= ˆV ISg =


1 0 0

0 1 0

0 0 1

 = I3×3 •
−̂→α ωv

−̂→ω v

= ˆV ISω =


1 0 0

0 1 0

0 0 1

 = I3×3

A sensory conflict vector is calculated for each visual input based on the relative error

between the actual and expected visual sensory estimates. The visual position, velocity

and angular velocity errors are calculated through vector subtraction. Each error is

represented as a vector containing an individual sensory conflict for each orthogonal

axis.
−→e xv = −→α xv − −̂→α xv
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−→e ẋv = −→α ẋv − −̂→α ẋv

−→e ωv = −→α ωv − −̂→α ωv

The gravitational error requires both a magnitude and directional component. The con-

flict vector between the actual and expected gravitational sensory estimates is calculated

by computing the rotation required to align both vectors. For the directional compo-

nent, it is used a cross product to calculate a unit vector perpendicular to the plane

formed by the two vectors.
−→e gv
|−→e gv |

=
−→α gv × −̂→α gv

||−→α gv × −̂→α gv ||

For the magnitude, it is used a dot product to calculate the angle required to align

both vectors within the previously calculated plane. Note that this implementation is

identical to Merfeld’s GIF rotational error.

|−→e gv | = arccos

( −→α gv · −̂→α gv

||−→α gv || ||−̂→α gv ||

)

Then, the error signals are individually weighted with residual weighting parameters that

can be adjusted by the user to fit data. The visual gravity residual weighting parameter

(kgv) determines the influence of the visual gravitational error (−→e gv) on the rate of

change of the internal estimate of gravity (−̂→g ). The visual angular velocity residual

weighting parameter (kωv) determines the influence of the visual angular velocity error

(−→e ωv) on the internal estimate of angular velocity (−̂→ω ). The visual position residual

weighting parameter (kxv) determines the influence of the visual position error (−→e xv)

on the rate of change of the internal estimate of position (−̂→x ). The visual velocity

residual weighting parameter (kẋv) determines the influence of the visual velocity error

(−→e ẋv) on the rate of change of the internal estimate of velocity (−̂→v ).

6.3 Results

With all these extensions in place, the modified vestibular model was validated by New-

man [27] [28] against a large set of classic vestibular motion paradigms:

• linear and angular acceleration steps

• post-rotatory tilt

• constant velocity Earth vertical yaw rotation

• forward linear acceleration on a sled
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• fixed and variable radius centrifugation

• static and dynamic roll tilt

• off-vertical-axis rotation (OVAR)

• large amplitude horizontal and vertical sinusoidal displacements.

The model predicts accurate perceptual responses for the experimental simulations con-

sidered and validated by Merfeld [20], [21], [26]. In contrast to the OVAR motion

characteristics described by Wood et al [31], the model predicts a sustained progression

of perceived azimuthal direction, or heading. The model is also able to take into ac-

count the large phase and magnitude estimation errors witnessed experimentally (Jones

et al [32]) for large amplitude, low frequency vertical motion. The model predicts a

sustained sensation of rotation in the light and a gradual onset of circular vection sensa-

tion in response to pure optokinetic drum rotation. The model predicts that the “pitch

up” illusion during forward linear acceleration in the light is suppressed due to visual

gravity/“down” cues and not visual linear vection information.





Chapter 7

The Final model

As seen in previous chapters, there are a lot of perception models that have been used

to describe human spatial orientation. However, the aim of this work is to obtain a good

Motion Cueing Algorithm, so it is necessary to analyse and to test existing models to

find out which one is better for this purpose. The chosen one will be the starting point

and it will be developed until reaching the final version on which will be based the MPC

Motion Cueing Algorithm.

7.1 Choice of the model

First of all, Merfeld’s model [21] can be considered a good starting point. In particular,

it was demonstrated that both the one-dimensional and the three-dimensional models

describe in a good way the experimental test done on squirrel monkeys. So, it is a good

idea to test if this model can be applied to humans. Clearly, the driving simulator prob-

lem needs the three-dimensional model because a realistic description of the 3D space

is needed to reproduce realistic feelings. Three dimensions imply a more complicated

model, thus the computational burden will be higher: the calculation of the direction

error −→ef , in fact, involves a cross product, an inverse cosine function and some euclidean

norms that clearly elevate the cost of the calculations. Performances and computational

cost are very important for the purpose of this thesis, so these aspects will be always

taken into consideration and will be discussed later.

The other model analysed in Chapter 6, is the multi-sensory observer model by Newman

[28]. It is based on an extended Merfeld model, see [26], that involves also the estima-

tion of linear position and linear velocity using visual cues and some leaky integrators.

37
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Figure 7.1: Final model chosen for this work.

The model is called “multi-sensory” because dynamic and static visual cues are intro-

duced. In particular, it is added visual information about angular velocity and gravity

perception, such that the driver can feel the rotations of the graphics.

It is clear that these models become more and more complicated. To simplify Newman’s

model, visual parts regarding linear position and linear velocity are excluded while an-

gular velocity and gravity perception are maintained. These approximations are made

to obtain a model as simple as possible to keep the computational cost limited, while ob-

taining results that are detailed enough to describe accurately realistic dynamics. There

is a clear trade-off between these two aspects. The model used in this thesis lays in

the middle point and tries to obtain good performances both in the results (i.e. good

tracking) and in the computational cost (fast simulation time).

The final model is represented in Figure 7.1, all its features will be presented in the next

sections.
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7.1.1 Motivations

First of all, we started from Merfeld’s model that showed it could well replicate mammals

(probably also humans) cues, but it lacks something. It presumes that the driver does not

have any visual information during the test, such as he is blind or the test is performed

into the darkness, and this is not a realistic situation for a driving simulation session.

More, one purpose of this thesis is to track references of linear acceleration and angular

velocity, not the ones of the car during the circuit lap, but the ones perceived by the

driver’s CNS. This task can not be achieved in a realistic way without using visual cues,

in fact, the natural way the model uses to follow a fast acceleration change is to apply

the tilt coordination by tilting the platform, but this behaviour modifies also the driver’s

gravity perception −̂→g . This behaviour is an implicit feature of the sensory conflict model

and it can not be avoided. But the driver must not feel tilted, so the model formulation

needs a revision that includes a new input (control) which can keep the estimated gravity

vector at acceptable values even if tilt coordination is applied.

This is done with the control of the visual angular velocity and visual gravity as described

in Figure 7.1. In this way, in fact, the estimated gravity is driven to the right value and

the controls of linear acceleration and angular velocity can do their best to track the

references.

7.2 Model implementation

Once chosen the final model that is going to be used in this work, another choice must

be done: how the model has to be implemented and how it can be tested, namely which

tool or programming language has to be used.

The ACADO toolkit seemed to be the best available choice to achieve these purposes. It

is an open-source tool that deals with a lot of control and optimization applications (see

Appendix B). In particular, it works using a set of differential equations that describes

the dynamics of the model, so the whole system must be expressed in this way. This

rearrangement process is experimental, in fact, this type of model was thought to work in

different simulation environment, such as Simulink, in which it is easy to replicate these

block schemes. Other approaches to the motion cueing problem (e.g. linear MPC, see

Chapter 9) used, for example, a state space representation to describe the dynamics of

the system, but this method does not look convenient in this case. So, using a new tool

that works in a different way, represents an undiscovered field that can take advantages

like disadvantages during the development phase.
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7.2.1 Dynamical systems

In the final model there are only two different transfer functions: one representing

the SCC dynamic and one for the OTO. Both of them have to be translated from

the frequency to the time domain, but fortunately, thank to some simplifications, the

transfer function of the otolith organs is simply the unity and it needs no work. It is

used a first order transfer function to represent the dynamic of the perceived angular

velocity through the SCC:

SCC(s) =
τs

τs+ 1
= 1− 1

τs+ 1

where τ is the time constant of the SCC (5.7s, the same as in Merfeld’s paper [21]). Then,

it is possible to write the dynamic of the perceived angular velocities in the frequency

domain as:
−→
Aω(s) = SCC(s)

−→
Ω (s) =

−→
Ω (s)− 1

τs+ 1

−→
Ω (s)

where
−→
Aω(s) and

−→
Ω (s) are respectively the Laplace transform of the perceived angular

velocity and of the effective angular velocity. Then, passing to the inverse Laplace

transform:

L−1{
−→
Aω(s)} = L−1{

−→
Ω (s)}+−→α ∗ω

where −→α ∗ω = L−1{ −1τs+1

−→
Ω (s)}. To obtain the inverse Laplace transform of

−→
Aω(s), it

is necessary to come back to the time domain and this process can simply be done by

transforming both its components singularly thank to the linearity of the inverse Laplace

transform. The first piece L−1{
−→
Ω (s)} is just composed by the effective angular velocity

(−→ω ), the second piece has a more complex dynamic that can be described through a

simple differential equation:

−̇→α
∗
ω = −

−→ω +−→α ∗ω
τ

In the end, it is possible to write the dynamic of the perceived angular velocity through

the SCCs with a sum, as:
−→α ω = −→ω +−→α ∗ω

Exactly the same deductions can be made for the estimated perceived angular velocity,

(−̂→α ω), obtaining:
−̂→α ω = −̂→ω + −̂→α

∗
ω

where −̂→ω is the estimated angular velocity and −̂→α
∗
ω is described by the differential equa-

tion: ̂̇−→α ∗ω = −
−̂→ω + −̂→α

∗
ω

τ
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7.2.2 Gravity vector orientation

A key feature of this work lays in the update of the gravity vector orientation −→g . When

the driver, sitting on the cockpit, is undergone some rotations, the gravity vector is no

more parallel to the z-axis of the driver coordinate frame. The angles that describe this

rotation have to be stored to update the orientation of the gravity vector because it has

an important role in the dynamics of the model. It is possible to replicate the same

reasoning also for the estimated gravity vector −̂→g .

In the previous works [21], [28], the update was made through rotation matrices, using

Euler angles or quaternion integration. These methods are equivalent but they both

have some lacks: especially, the computational cost is very high because they both need

some heavy calculus.

In this work a different implementation approach is used. It is thought principally to

achieve good performances that will be demonstrated to be way better than the methods

cited before. The problem is to find a good representation of the update of the gravity

vector without making the model too complex. So, the idea is to consider the gravity

direction as an effective vector that rotates due to an applied angular velocity that can

be described by a vector too. In particular, it is possible to describe the dynamic of a

rotating vector simply through a set of differential equations, in this way, the dynamic is

already expressed in the right way to work in the ACADO environment. So, the complexity

of the model does not increase, but there are only a few more differential equations to

solve.

Now, let see how this update works according to [33]. Consider Figure 7.2, where: A is

an arbitrary vector, A′ is vector A rotated to a new orientation an infinitesimally short

time later (∆t→ 0), ∆A is the difference between vector A′ and vector A (as ∆t→ 0),

w is the angular velocity which “rotates” vector A (this is also a vector).

The purpose is to find an expression for dA
dt at the given instant. Since the vector A is

physically “rotating” due to w, then (as a result) vector dA
dt is perpendicular to A and

w. So, it is possible to write:

d
−→
A

dt
= −→w ×

−→
A

Hence, using the vector cross product, a very useful formula relating the derivative

of a vector of fixed length to the angular velocity that “rotates” this vector in three-

dimensional space is obtained. Note that the above formula also applies if vector A

is translating as well as rotating. This means that only a rotation can change the

orientation of a vector of fixed length, instead, a translation does not have any influence

on its direction.
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Figure 7.2: Fixed length vector derivative.

In the particular case of the model in analysis, it is not really the gravity vector that

rotates due to an applied angular velocity, but it is the driver frame that rotates. In

fact, the effective gravity vector is fixed in the world coordinate frame and is always

parallel to its z axis. So the final relation that describes the update of the gravity vector

orientation in the head-fixed driver coordinate frame is:

d−→g
dt

= −−→ω ×−→g

And, exactly in the same way, for the estimated gravity vector:

d−̂→g
dt

= −−→ω g × −̂→g

7.3 Differential equations of the model

The final model deals with the dynamics of the platform in a three-dimensional space

and this representation needs 27 differential states and a lot of intermediate states to

be described in the simplest manner. The control needs 9 variables: three for the linear

acceleration, three for the angular velocity, three for the visual angular velocity. As in

previous models, all these controls are expressed in the driver coordinate frame, so, in

the end, it is necessary to perform a transformation (a quaternion integration is used)
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to obtain all the controls in the world coordinate frame. In this way, the rights values

of control can be given to the platform and to the graphics.

The differential states are defined as:

• x1:3 = −→α ∗ω, a part of the perceived angular velocity, see Section 7.2.1

• x4:6 = −̂→α
∗
ω, a part of the estimated perceived angular velocity, see Section 7.2.1

• x7:9 = −→g , gravity vector

• x10:12 = −̂→g , estimated gravity vector

• x13:15 =
−→
θ , platform pitch, roll and yaw rotation angles

• x16:18 = −→v , platform linear velocity

• x19:21 = −→p , platform position

• x22:23 =
−→
Φ , angles for the −→g v computation

• x24:27 = −→q , quaternion.

And the controls:

• u1:3 = −→ω , angular velocity in the driver coordinate frame

• u4:6 = −→a , linear acceleration in the driver coordinate frame

• u7:9 = −→ω v, visual angular velocity of the graphics in the driver coordinate frame.

7.3.1 Intermediate states

Intermediate states need to be defined, necessary to understand the dynamics and to

give the final representation of the model a clear formulation in which all the differential

equations are well written.

• the gravito-inertial force
−→
f , defined as the difference between the gravity vector

−→g and the linear acceleration −→a

−→
f = −→g −−→a
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• the estimated gravito-inertial force
−̂→
f , the estimated linear acceleration −̂→a and

the gravito-inertial magnitude error −→e a
−̂→
f = −̂→g − −̂→a
−̂→a = ka

−→e a
−→e a =

−→
f −

−̂→
f

Putting all these formulas together, it is possible to rewrite the estimated gravito-

inertial force in a closed-loop way:

=⇒
−̂→
f =

−̂→g − ka
−→
f

1− ka

• one of the most important state of the model, the gravito-inertial direction error
−→e f , that defines the direction error of the gravito-inertial force

−→e f =

π
2
− arcsin

 −→
f �
−̂→
f

||
−→
f || · ||

−̂→
f ||

 −→
f ×

−̂→
f

||
−→
f ×

−̂→
f ||

• the estimated angular velocity −̂→ω , the angular velocity magnitude error −→e ω and

the visual angular velocity magnitude error −→e ωv
−̂→ω = kω

−→e ω + kfω
−→e f + kωV

−→e ωV

−→e ω = −→α ω − −̂→α − ω = −→ω +−→α ∗ω − (−̂→ω + −̂→α
∗
ω)

−→e ωV = −(−→ω V + −̂→ω s)

Putting all these formulas together, it is possible to rewrite the estimated angular

velocity in a closed-loop way:

=⇒ −̂→ω =
kω(−→ω +−→α ∗ω − −̂→α

∗
ω) + kfω

−→e f − kωV

−→ω V

1 + kω + kωV

• the estimated gravity-weighting angular velocity −→ω g and the visual gravity direc-

tion error −→e g 
−→ω g = −̂→ω + kf

−→e f + kgV
−→e g

−→e g =

[
π
2 − arcsin

(
−→g v �
−̂→g

||−→g v ||·||−̂→g ||

)]
−→g v×−̂→g
||−→g v×−̂→g ||
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Putting all these formulas together, it is possible to rewrite the estimated gravity-

weighting angular velocity in a closed-loop way:

=⇒ −→ω g =
kω(−→ω +−→α ∗ω − −̂→α

∗
ω) + (kfω + kf (1 + kω + kωV ))−→e f − kωV

−→ω V + kgV (1 + kω + kωV )−→e g
1 + kω + kωV

• and last, the skew-symmetric angular velocity matrix that is necessary to define

the quaternion integration

W =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0



7.3.2 Equations

Now it possible to simply write down the equations that describe the dynamics of the

differential states as defined above. This set of equations is everything the model needs

to be described through the ACADO toolkit.

−̇→α
∗
ω = −

−→ω+−→α ∗
ω

τ

˙̂−→α ∗ω = −
−̂→ω+−̂→α

∗
ω

τ

−̇→g = −−→ω ×−→g
˙̂−→g = −−→ω g × −̂→g
−̇→
θ = −→ω
−̇→v = −→a
−̇→p = −→v
−̇→
Φ = −→ω v

−̇→q = 1
2W
−→q + λ(1− q20 − q21 − q22 − q23)−→q

where λ = 0.9. The quaternion −→q achieves the storage of all the rotations between the

world and the driver coordinate frame. In this way, it is possible to switch from one

frame to the other without problems. This mechanism is, in fact, necessary because

the control inputs of the model −→ω , −→a and −→ω v are fixed in the driver frame but the

platform movements must be controlled in the world frame, so this transformation must

take place. However, how the quaternion integration works, is better discussed in the

Appendix A.
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Solving iteratively this set of equations well describes the dynamics of the chosen model

and some simulations confirm that it fits the results previously obtained by Merfeld [21]

and then by Newman [27].

7.4 Control implementation

Now it is time to set up the MPC, in this case it is a Non-linear Model Predictive Control

(NMPC) due to the non-linearities introduced by the model. The purpose of a control

system is to generate the right input (control) that permits the output to track some

given references. To set up the NMPC the following items are needed:

• output references, in this case the control system wants to focus particularly on

the estimated angular velocity −̂→ω , on the estimated linear acceleration −̂→a and on

the estimated gravity vector −̂→g

• MPC, as said, is an open-loop optimal control, so it needs a cost function, like the

one in Section 7.4.1, to be defined

• at the same time, also the weighting matrices associated to the cost function have

to be chosen. The weights have a relevant role in optimal control applications and

they are going to be discussed later

• limits and bounds of the platform performances must be included, this aspect can

simply deal with the chosen MPC approach

Once everything is ready, the control can take place and then it is possible to analyse

how it controls the inputs trying to make the outputs track the references.

7.4.1 Cost function, weighting matrices and bounds

As said before, the NMPC solves an optimal control problem which needs a cost function.

Mathematically this problem is defined as:

min

x0, . . . , xN

u0, . . . , uN−1

N−1∑
k=0

||h(xk, uk)− ỹk||2W + ‖|hN (xN )− ỹN ||2WN

s.t. x0 = x̂0

xk+1 = F (xk, uk), for k = 0, . . . , N − 1
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where F (·) describes the discretized system dynamics, previously described.

To define the cost function and the weighting matrices, first it is necessary to decide

which variables must be weighted during the control computation. In this way, the

reference function is defined as follows:

h = [−̂→ω −̂→a −→e ω −→e a −→e f −→e gv −→e ωv
−→
θ −→p −→v −→ω −→a −→g v −→ω v

−̂→g ]T

hN = [−→x ]

where −→x is the vector of the states of the system.

The aim is to follow all the references defined in h, but the most important ones are the

estimated linear acceleration, the estimated angular velocity and the estimated gravity

vector orientation because the driver perception of motion is achieved with these three

estimates. In fact, only these variables will have time-varying references, obtained from

real sensors, all the other variables are weighted only to minimize their magnitude. For

example, the displacement of the platform −→p from its original/neutral position must be

controlled such as there will always be space enough to make the next move. Another

example can be done about the error vectors (i.e. −→e ω,−→e f ,. . . ), they could be driven to

zero, so the CNS estimation of the respective variable is the same as the actual variable

value. The controls (−→ω , −→a , −→ω v) are weighted too, clearly their weighting parameters

will be smaller than other variables to let the controller adjust their values, but it could

be useful, in some particular circumstances, to weight more some inputs.

Now, it remains to define the weighting matrices W and WN . Both the matrices are

diagonal, so it is only necessary to set up one value along each axis and for each variable.

In the function h totally there are 15 three-dimensional variables to consider, that is 45

values to choose and a 45× 45 W matrix to build up. Respectively, for the function hN

there are 27 states, so WN must be 27× 27.

In the end, there are 72 free weighting parameters and this can well give the idea of the

complexity of the problem in analysis.

7.4.2 ACADO settings

The model is implemented using the ACADO toolkit, namely through its Matlab inter-

face. This tool is well built for control and optimization problems (see Appendix B) and

has a lot of available settings, so it is interesting to sum up the ones used for the NMPC

formulation of this thesis, see Table 7.1, 7.2.
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Parameter Value

INTEGRATOR TYPE INT IRK RIIA3

NUM INTEGRATOR STEPS 1

Table 7.1: ACADO toolkit settings for the model integrator

Parameter Value

INTEGRATOR TYPE INT IRK RIIA1

NUM INTEGRATOR STEPS N

HESSIAN APPROXIMATION GAUSS NEWTON

DISCRETIZATION TYPE MULTIPLE SHOOTING

SPARSE QP SOLUTION FULL CONDENSING

Table 7.2: ACADO toolkit settings for the NMPC

These parameters are useful and have particular features:

• INTEGRATOR TYPE, set the integrator type, in particular, the INT IRK RIIA1 is a

Radau IIA integrator of order 1 (Continuous output Implicit Runge-Kutta)

• NUM INTEGRATOR STEPS, set the number of integration steps per call of the inte-

grator

• HESSIAN APPROXIMATION, set the used approximation for the hessian matrix, in

this case it is used the “Gauss-Newton” approximation

• DISCRETIZATION TYPE, set the way in which the non-linear programming prob-

lem is treated. The “MULTIPLE SHOOTING” option regards system equations as

an equality constraint without substituting explicitly, thing that is done by the

“SINGLE SHOOTING” option

• SPARSE QP SOLUTION, set the way the QP solver find the solution.



Chapter 8

Simulations and Controls

In this chapter some tests are presented and discussed. They confirm the good imple-

mentation of the model and the fact that it can well replicate all the features that its

previous versions ([20], [27]) have.

Every test is presented with all its specific features, parameters and simulation time.

The performances that are going to be described have been obtained with a commercial

desktop computer with Intel i3-4340 3.6GHz CPU and 8GB RAM.

8.1 Simulations

First of all, some simulations are presented. They test some classical experiments that

are very important to confirm that a perception model is working in the right way.

In this section, some results from Merfeld’s experience [21] are used; the purpose is to

build up the sensory conflict model by Merfeld and to verify that the final model, used

in this thesis, can replicate all the results that the sensory conflict model produces.

To build the Merfeld’s three-dimensional sensory conflict model Simulink is used, see

Figure 8.1, that is the nearest and simplest way to replicate his work [20]. In this way,

it is possible to perfectly replicate his tests and to compare the obtained results of the

Simulink model with the ACADO implementation ones.

8.1.1 Post-rotational tilt

OptoKinetic Nystagmus (OKN) is nystagmus induced by continuous movement of the

whole or a part of the visual field, [34]. In monkeys the eyes are powerfully driven by

49
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Figure 8.1: Simulink sensory conflict model implementation.

whole field rotation and the nystagmus lasts as long as the stimulus continues. When the

stimulus is terminated, if animals are in darkness, there is a persistent after-response,

OptoKinetic After-Nystagmus (OKAN). In the monkey, appreciable periods of OKAN

regularly follow OKN. There are generally two phases of OKAN. In the first phase the

nystagmus is in the same direction as during OKN. This is often followed by a second

phase which is oppositely directed. See Figure 8.2 for an example of OKN.

Figure 8.2: OKN video example.

The post-rotational tilt has to describe the OKAN just illustrated above. So the subject

is put into darkness and then he begins to rotate: first a constant yaw velocity of 100◦/s

is applied and then it is suddenly stopped and a roll rotation of 45◦ is applied.
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Simulink results In Figures 8.3, 8.4, 8.5, it is possible to see the original, Simulink

implemented, Merfeld’s sensory conflict model results. In these pictures some compar-

isons between real variables and the estimated ones are represented. Looking at the

differences between these two values, it is possible to analyse how the vestibular system

reacts to this test:

• only fast angular velocities changes are well perceived, such as they would be

filtered by an high-pass filter. Instead, if the velocity is almost constant, the

perception of rotation decays with the time constant of the system until the subject

feels no more rotation. The OKAN is clearly noticeable at about 50s, when the

yaw rotation (red) stops but the subject feels a strong rotation in the opposite

direction. Also the perceived pitch angular velocity (green) does not represent

faithfully what actually happens: there is a sensation of rotation about the y axis

due to the mixed contribute of the false perceived positive yaw velocity and the

actual roll rotation

Figure 8.3: Simulink OKAN angular velocities.

• the subject is not linearly accelerated in any way, but, near 50s, he feels to be

accelerated due to the post-rotational tilt effects. In particular small negative ac-

celerations are perceived along the y and z axes, while a bigger positive longitudinal

acceleration is felt
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Figure 8.4: Simulink OKAN accelerations.

Figure 8.5: Simulink OKAN gravity vector.
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• the estimated gravity direction vector does not replicate what the real gravity

vector does. Here, like in the angular velocities case, there is a feeling about

a pitch rotation, that is a post-rotational tilt effect too and, in fact, this false

sensation slowly decays with the time constant of the system.

Looking at these figures, it is possible to clearly recognize the OKAN and its conse-

quences. This behaviour can be explained by the physical structure of the vestibular

Figure 8.6: ACADO OKAN test results.
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organs, by the SCCs in particular, as said in Chapter 4.

ACADO results The final model has also visual cues that are not used in the sensory

conflict model by Merfeld, so, to satisfy the darkness hypothesis, the visual gains kgv

and kωv are set to zero during these tests. Then, it is possible to replicate the same

routine executed with the Simulink model by using the model implemented with the

ACADO toolkit.

Figure 8.6 shows the results of this simulation. It is clear that qualitatively the results

presented in Figures 8.3, 8.4, 8.5 are perfectly replicated, but also quantitatively they are

exactly the same as verified numerically by simply subtracting the two different signals

and obtaining a null vector.

8.1.2 Off-vertical axis rotation

Off-Vertical Axis Rotation (OVAR), in darkness conditions, induces, at small tilts of

the rotation axis (5 to 45 degrees), continuous horizontal nystagmus in humans, [35].

The horizontal slow eye velocity has two components: a mean velocity in the opposite

direction of head rotation and a sinusoidal modulation around the mean.

The subject is put into darkness, he is first rotated by a roll angular velocity till reaching

an inclination of about 45◦ and then a constant yaw velocity of 100◦/s is applied.

Figure 8.7: Simulink OVAR angular velocities.
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Simulink results In Figures 8.7, 8.8, 8.9, it is possible to see the original, Simulink

implemented, Merfeld’s model results of the OVAR test just introduced. In these figures

some comparisons between real variables and the estimated ones are represented. The

effects of this test on the perception system are summarized:

• as during the post-rotational tilt, fast angular velocity changes are well perceived

whereas the constant value of yaw rotation decays slowly but it seems to stabilize

about 70 degrees per second. In fact, thanks to the initial roll rotation, the subject

feels some sinusoidal roll and pitch angular velocities together with of the yaw

rotation and this phenomenon makes the perceived yaw rotation to stop decaying

• linear accelerations are heavily influenced by this test. Sinusoidal longitudinal and

lateral accelerations are perceived while the actual acceleration is always null. In

fact, the yaw rotation is around an axis that is no more parallel to the real gravity

vector and this causes a bad estimation of the gravity by the driver that influences

the perceived linear acceleration

• the estimated gravity vector orientation, in this case, is qualitatively well esti-

mated. But if it is analysed with more accuracy, it reveals that it has small mag-

nitude deviations against the actual gravity vector and also a small delay. These

facts are responsible for the wrong estimation of the linear acceleration stated

above.

Figure 8.8: Simulink OVAR accelerations.
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Figure 8.9: Simulink OVAR gravity vector.

ACADO results Also in this case, to satisfy the darkness hypothesis, the visual gains

kgv and kωv are set to zero during this test. Then the same routine of the Simulink OVAR

test is replicated in the ACADO model.

Figure 8.10, show this simulation results. It is clear that the results presented in Figure

8.7, 8.8, 8.9, are perfectly replicated like the ones of the post-rotational tilt test.

This last test finally demonstrates that the final model used in this thesis and im-

plemented with the ACADO toolkit can replicate the Merfeld’s sensory conflict model

dynamics even if it uses a different implementation approach. However, it is interesting

to compare some computation time performances of the Simulink and of the ACADO

model implementations.

Test Simulation time (s)

Simulink post-rotational tilt 1.4958

ACADO post-rotational tilt 0.0833

Simulink OVAR 1.7347

ACADO OVAR 0.0881

Table 8.1: Mean simulation time during the different tests.
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Figure 8.10: ACADO OVAR test results.

From Table 8.1, it is clear that, in the same conditions, the ACADO approach is at least

10× faster than Simulink one. This result has great importance in this work, and it is

going to be even more important during control tests.

8.2 Control

In this section some tests about the automatic control are presented, i.e. the NMPC is

set up and the control inputs are computed directly by the controller (Optimal Control
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Problem (OCP) solver) with a control/prediction horizon of twenty steps (0.2s) at 100Hz.

The purpose is to track the references for the system provided in the cost function defined

in Section 7.4.1, and to find the best set of weighting values to obtain the optimal

workspace exploitation.

These tests are done with the complete model, including the visual cues, that were

disabled during the simulations made in the previous section.

8.2.1 Tilt coordination

As briefly explained in Chapter 2, the tilt coordination has an important role in Motion

Cueing Algorithms because it allows to track some references that, using only platform

longitudinal translations, would be impossible to reproduce. So it is crucial for the

NMPC to achieve a good tilt coordination mechanism.

Regarding this aspect, the final model is deeply different from previous works. Usually,

tilt coordination has to be mathematically implemented into the model, namely the

system needs to know that it can use also the tilt coordination to track the references.

Instead, with this non-linear model, this procedure is no more necessary. In fact, the

system itself has implicit knowledge of the influence of the platform rotations on the

perceived linear acceleration and angular velocity, so it applies the tilt coordination in

a totally automatic way.

For example, in Figures 8.11, 8.12, 8.13, a constant longitudinal linear acceleration

reference is given to the NMPC. The tracking of a constant longitudinal acceleration in

a limited-space driving simulator is clearly an impossible task. However, it is interesting

to analyse how the controller behaves trying to solve the OCP and how it exploits the

tilt coordination:

• the platform clearly accelerate longitudinally but its acceleration magnitude must

be as small as possible because the simulator has a limited workspace. In fact, first

the platform accelerate rapidly, then the magnitude of the acceleration decreases

towards zero. During this movement the estimated acceleration tracks almost

perfectly its reference

• to compensate the limited acceleration of the platform, tilt coordination is per-

formed. A negative pitch angle is applied to the platform and this makes the driver

feel an augmented longitudinal acceleration (as explained in Section 4.2) for the

effect of gravity, so the constant reference is tracked very well even if the platform

acceleration is low than the requested one
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Figure 8.11: Estimated acceleration and platform acceleration in the tilt coordination
test. The black line represents the reference, the green one the output.

Figure 8.12: Platform position and pitch angle in the tilt coordination test.
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Figure 8.13: Estimated gravity vector and longitudinal visual gravity in the tilt
coordination test.

• when the platform reaches its edge, a negative acceleration must take place to

decelerate and then to stop. At this point the platform can only play with the

angular velocity to obtain a pitch angle that has to give the right contribution to

track the reference

• during all these movements the perception of gravity is almost always vertical,

thank to the visual cues. In fact, the negative pitch angle of the platform is

compensated by the graphics that simulates an opposite (positive) pitch rotation,

so the driver does not feel tilted.

The simulation time for this test is about 25s to compute 15 seconds of control. Clearly it

is not real-time but the performances are influenced by the “impossible” task requested

to the controller, so it is not unattended that the computation time grows up.

8.3 Real circuit lap

In this section a more realistic situation is analysed. From real data acquired during a

circuit lap, the references are generated and the NMPC is tested to understand how such
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a control strategy based on the final model behaves in a real driving simulator session,

see Chapter 7.

8.3.1 References generation

First of all, it must be clear that the references given to the NMPC are defined in the

driver coordinate frame, that is consistent with the acquired data of the circuit lap

because all the sensors were fixed to the car chassis. But the requested references are

not the real angular velocity, linear acceleration and gravity vector, but their respective

estimated values. So, before starting the simulation, the circuit lap data must run as

an input to the model. This process produces the outputs, namely the estimated linear

acceleration, the estimated angular velocity and the estimated gravity vector that are

the right references the NMPC has to track.

The data does not have visual cues, so, during the references generation process, the

visual angular velocity control of the model is always fixed to zero. This means that the

graphics follows the cockpit movements and gives no more information to the driver.

See Figures 8.14, 8.15, 8.16, to analyse the obtained results.

Figure 8.14: Linear acceleration reference generation.

A fast comparison between the actual and the perceived references makes clear that

there are a lot of differences between them. This is not unexpected, in fact, in Section
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Figure 8.15: Angular velocity reference generation.

Figure 8.16: Gravity vector reference generation.
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8.1, it has been illustrated that actual and estimated values of the same variable can be

quite different. Some considerations have to be done:

• estimated linear acceleration references is very similar to its respective real values.

The only noticeable thing is a bit smaller magnitude along the whole the lap

• estimated angular velocity references are much different from the real ones. The

trend is clearly the same, but the magnitude is greatly reduced thank to the

imposed condition on the visual angular velocity control, that, making the graphics

follow the driver, makes him feel smaller rotations

• similar consideration can be done about the estimated gravity vector. In fact, it

remains almost always equal to the initial vertical position, that means the driver

always feels to stand still, a clear consequence of the imposed visual cues.

Some interesting considerations can also be done if the model is taken into consideration

without the visual cues, such as the pilot would drive into the darkness and have only

the vestibular system information to understand what is happening.

In Figure 8.17, it is possible to point out that the references generated “into the darkness”

are quite different from the ones with visual cues, Figures 8.14, 8.15, 8.16:

• linear accelerations are a bit sharper, but the similarity to the respective reference

with the visual cues is evident

• angular velocities are quite different: they oscillate more and their magnitude is

almost twice of the respective reference with the visual cues. All these behaviours

are consequences of the absence of graphics, in fact a static graphics reduces the

feeling of rotation whereas its absence, like being into the darkness, produces a

spatial disorientation feeling

• gravity vector reference is completely different w.r.t. the previous case, the driver

feels to rotate continuously, which does not happen with enabled visual cues, sit-

uation when the pilot feels almost always in vertical position.

After these interesting considerations, it is possible to go on with the real circuit lap

simulation. The next step of the process is the reference scaling. The purpose is to find

a set of parameters that, together with the weights of the OCP, allow to fairly track the

references. These scaling factors are chosen to replicate the results of previous works, in

this way it is simply to make a comparison between different approaches (see Chapter

9). Used values are reported in Table 8.2.



Chapter 8. Simulations and Controls 64

Figure 8.17: References generation into darkness, without visual cues.

Variable Scaling factor

linear longitudinal acceleration 0.05

linear lateral acceleration 0.06

linear vertical acceleration 0.025

angular roll velocity 0.85

angular pitch velocity 0.75

angular yaw velocity 0.9

Table 8.2: Scaling factors for the NMPC references.
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8.3.2 NMPC

Now the final references are available and it is possible to initialize the NMPC. The values

of the weighting matrices must be adjusted until the results are good enough. Weighting

values are different for each application and for each simulation. These values are very

important to understand how the model works and, for this reason, they are going to

be analysed later on.

Fixed graphics The first performed test is a NMPC without the graphics control. In

other words, it is used a fixed graphics in the vertical position of the driver coordinate

frame, such as the pilot always has a sensation to stand still, as explained in the references

generation section. The aim of this hypothesis is to test the model with no information

given by the visual cues while trying to track the references with an appropriate accuracy.

Figure 8.18: NMPC perceived longitudinal acceleration and pitch angular velocity
output. The black line is the reference and the green line is the output.

In Figures 8.18, 8.19, 8.20, 8.21, it is possible to see the results of this simulation. Some

comments about them:

• the tracking of the accelerations is quite well achieved, it is almost perfect for the

longitudinal and lateral accelerations
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Figure 8.19: NMPC perceived lateral acceleration and roll angular velocity output.
The black line is the reference and the green line is the output.

Figure 8.20: NMPC perceived vertical acceleration and yaw angular velocity output.
The black line is the reference and the green line is the output.
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Figure 8.21: NMPC perceived gravity vector output. The black line is the reference
and the green line is the output.

• there are some fast changes in the pitch and roll angular velocities that could

create some problems. In general, the tracking of the angular velocities is worse

than the linear accelerations tracking

• the fixed graphics allows the driver to obtain an almost vertical feeling of gravity,

and that is a good thing. In fact, even if the gravity reference is not always vertical,

the estimated output has only small direction displacements that can be assumed

to be under the perception threshold (this point will be discussed later, in Section
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8.3.3), so the driver always feels to stand still, i.e. the driver does not perceive

that the platform is tilting.

As a last observation, the computation time is taken into account. The simulation lasts

about 180 seconds for a a hundred seconds of control, so the algorithm is running at

1.8×. Again it is not real-time, but in the next section it is going to show that if the

graphics is enabled (three more DOFs) the control is easier and so the computation time

is lower.

Graphics enabled Now, the graphics control is enabled, so there are three more

DOFs (rotations of the graphics, namely the visual angular velocity control −→ω v). With

only this change, the simulation is repeated and it is analysed how this improvement

influences the control strategy and the tracking of the references.

Figure 8.22: NMPC perceived longitudinal acceleration and pitch angular velocity
output. The black line is the reference and the green line is the output.

Looking at Figures 8.22, 8.23, 8.24, 8.25, it is possible to resume some considerations:

• the tracking of the linear accelerations is, as before, well achieved. There are no

significant peaks and the error between the output and the respective reference is

almost always near zero
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Figure 8.23: NMPC perceived lateral acceleration and roll angular velocity output.
The black line is the reference and the green line is the output.

Figure 8.24: NMPC perceived vertical acceleration and yaw angular velocity output.
The black line is the reference and the green line is the output.
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Figure 8.25: NMPC perceived gravity vector output. The black line is the reference
and the green line is the output.

• angular velocities are tracked very well with the graphics enabled, that is an im-

portant improvement from the previous simulation

• the gravity feeling is at least acceptable, the gravity direction is less constant than

before because the graphics rotates too. It has some differences from its reference,

but it always stays under the 0.2g value. This value can have an important role,

that is if it stays under the perception threshold or not; it will be discussed later

in Section 8.3.3.
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Figure 8.26: Visual angular velocity control ωv.

Looking at the visual control ωv (see Figure 8.26), it is possible to comprehend how it

works together with other inputs to achieve the references tracking.

The visual angular velocity behaviour tries to compensate for the perceived angular ve-

locities, in fact, if these two trends are compared, it is clear that one follows the opposite

of the other. This evidence demonstrates their clear correlation. This interesting fact

is represented in Figure 8.27, where perceived angular velocities are overlapped by the

opposite of the visual angular velocity control.
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Looking at the computation cost of this last simulation, it is find out that, even if the

problem is more complex (3 more DOFs), the simulation time is lower then before. In

fact, to compute the control and simulate the system for a hundred seconds it takes

about 120s, i.e. 1.2×. This is an encouraging result because the real-time goal is not

so far and, if some improvements will be brought into the code, it is realistic that a

real-time implementation could take place.

8.3.3 Considerations

Now it is possible to analyse the results obtained from these simulations. In particular,

it is interesting to take a look at the weighting matrices, see Tables 8.4, 8.3, for each

variable and to try to understand why a weighting value is bigger than another one.

Some considerations can be made:

• with both fixed or enabled graphics, weights of acceleration, velocity, position

and controls about the z axis are larger than the other ones, that means it is more

difficult to control and to track vertical acceleration. In fact the vertical workspace

limit is smaller than the one of the others axes, and so it has to be weighted more,

so the controller has to pay more attention on this dimension. This behaviour

is even more accentuated with the graphics enabled, where these weights assume

values even between ten to a thousand times bigger than values for the longitudinal

and later movements

• weights for angular velocities and angles are smaller than the ones for linear move-

ments. This can be explained by the different magnitude of these variables and

by the bigger difficulty of tracking accelerations instead of the angular velocities.

In fact, the limited translation workspace of the platform seems to be a tighter

limit than its maximum angles. However, with the graphics enabled, more atten-

tion must be paid on the pitch and roll angular velocities tracking: their weights

are five times bigger than the yaw velocity and than the angular velocities of the

simulation with fixed graphics

• weights about the estimated gravity vector direction are, in both cases, set to zero

because they seems not to heavily affect the tracking.

Gravity estimation takes an important role in these considerations. With fixed graphics

the estimated gravity vector is almost always in vertical position (Figure 8.21), so the

driver never feels rotated. With graphics enabled, the graphics is not in agreement

with the driver coordinate frame, but in this way the estimated gravity vector has some
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Figure 8.27: Estimated and visual angular velocities correlation. The perceived an-
gular velocity graph (black line) is overlapped by the opposite of the visual angular

velocity (red line).

oscillations that reach values up to 0.2g (Figure 8.25). It is not known if this value is

small enough to stay under the perception threshold of the driver because there are no

studies about this aspect. If heavier weight is put on −̂→g , the estimated gravity vector

will better track its reference and will avoid too high values.
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Variable Weight value [x,y,z]
−̂→ω 0.1, 0.1, 0.1
−̂→a 150, 200, 300
−→e ω 0, 0, 0
−→e a 0, 0, 0
−→e f 0, 0, 0
−→e gv 0, 0, 0
−→e ωv 0, 0, 0
−→
θ 0.001, 0.001, 0.001
−→p 50, 100, 200
−→v 10, 50, 200
−→ω 0.01, 0.01, 0.01
−→a 10, 10, 10
−→g v 0, 0, 0
−→ω v 0, 0, 0
−̂→g 0, 0, 0

Table 8.3: Weighting val-
ues for the control with fixed

graphics.

Variable Weight value [x,y,z]
−̂→ω 0.5, 0.5, 0.1
−̂→a 100, 100, 1000
−→e ω 0, 0, 0
−→e a 0, 0, 0
−→e f 0, 0, 0
−→e gv 0, 0, 0
−→e ωv 0, 0, 0
−→
θ 0.0001, 0.0001, 0.0001
−→p 50, 50, 5000
−→v 10, 10, 1000
−→ω 0.1, 0.1, 0.1
−→a 10, 10, 50
−→g v 0.1, 0.1
−→ω v 0, 0, 0
−̂→g 0, 0, 0

Table 8.4: Weighting values
for the control with graphics

enabled.

Figure 8.28: NMPC perceived longitudinal acceleration and pitch angular velocity
output with low g displacement. The black line is the reference and the green line is

the output.
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Figure 8.29: NMPC perceived lateral acceleration and roll angular velocity output
with low g displacement. The black line is the reference and the green line is the output.

Figure 8.30: NMPC perceived vertical acceleration and yaw angular velocity output
with low g displacement. The black line is the reference and the green line is the output.
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Figure 8.31: NMPC perceived gravity vector output with low g displacement. The
black line is the reference and the green line is the output.

A new test can be set up. The weighting values of the estimated gravity vector are

set to 25 (they were zero before), whereas all other variables weights do not change.

New outputs are represented in Figures 8.28, 8.29, 8.30, 8.31, where it is clear that

the estimated gravity vector, now follows quite well its reference and remains under

a smaller threshold of 0.05g. However, there is a trade-off between this achievement

and the tracking of the other references. In fact, both linear accelerations and angular

velocities are tracked in a worse way than the previous simulation did.



Chapter 9

Comparison with Previous Works

In previous works, [6] [14] [36], a linear MPC approach to the motion cueing problem is

proposed. In those cases, only linear filters and linear models were used, so the overall

problem remains linear and less complex than the model used in this thesis.

The aim of this chapter is to replicate the results obtained during the previous works

and then compare the results with the non-linear model ones, finally find out some

considerations.

9.1 Linear MPC

In previous works [6] [14] [36], it was decided to use the cascade of the platform model

and vestibular system model as the final model to use in a MPC based Motion Cueing

Algorithm. The inputs of the mechanical system are the longitudinal accelerations and

the angular velocities applied to the platform: they represent the exogenous inputs which

control the overall dynamics of the complete system. The outputs of the mechanical

system (which are the inputs to the vestibular model) are the longitudinal accelerations

and angular velocities the person sitting in the cockpit is subject to. The driver perceives

the movements of the platform through his vestibular system, so the initial inputs are

first filtered by the mechanical system, and then by the driver vestibular system. The

outputs of the overall model are therefore the longitudinal accelerations and angular

velocities that are perceived by the pilot. The objective of this motion cueing problem,

implemented by a linear MPC, is to determine the exogenous inputs that minimize

the error between the accelerations and angular velocities actually perceived and those

obtained by filtering through the vestibular system the reference telemetry .
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The models are expressed in a discrete-time state space representation: a discretization

process is used in this implementation whereas the ACADO toolkit can deal directly

with continuous-time models. The resulting matrices are the following:

• Aseries =

[
Am 0

BvestCm Avest

]
• Bseries =

[
Bm

BvestDm

]

• Cseries =
[
DvestCm Cvest

]
• Dseries =

[
Dvest Dm

]
where m and vest indicate respectively the matrices of the mechanical and vestibular

systems. These implementation yields the final model on which the MPC take place:

Σseries = (Aseries, Bseries, Cseries, Dseries)

The overall model just obtained has six degrees of freedom and is of considerable size,

therefore it can be problematic to apply the MPC directly on it due to the computation

time required by the predictive control. However, by carefully observing the structure of

the matrices related to the mechanical and vestibular system, it is immediate to find out

that the six degrees of freedom of the mechanical system are completely decoupled (the

matrix Am is diagonal), while the vestibular system can be divided into four subsystems,

each one independent by the others:

• Σ1, yaw rotations

• Σ2, vertical accelerations

• Σ3, the couple: longitudinal accelerations & pitch rotations

• Σ4, the couple: lateral accelerations & roll rotations

This split is possible thanks to the linearisation introduced for the tilt coordination

(same as Section 4.2) that reduce the overall system into the two independent couples:

longitudinal acceleration with pitch angular position and lateral acceleration with roll

angular position. In addition, it separates the dynamic of the vertical acceleration from

the pitch and roll rotations.

The four subsystems here identified can be set in series to the respective mechanical sub-

system and this procedure produces a total of four different systems, each one decoupled

from the others. This new representation of the problem brings a lot of advantages. For

example, each one of these subsystems can be implemented on a different computer thus

obtaining four different controllers operating in parallel and making more simple to find

the OCP solution, reducing the computation time.
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9.1.1 Linear results

The test is done on the same real circuit lap, as in Section 8.3. The used data are exactly

the same, so a comparison with previous simulations can be made. In particular, in Table

9.1, are reported the weighting values associated to this implementation.

Variable Weight value [x,y,z]
−̂→ω 1600, 1600, 4000
−̂→a 3000, 3000, 3000
−→
θ 2000, 2000, 3000
−→p 200, 200, 1000
−→v 750, 750, 800

Variable Weight value [x,y,z]
−→a 0.0001, 0.0001, 0.0001
−→ω 0.00001, 0.00001, 0.1
−→
J 10, 10, 10
−→α 0.0001, 0.0001, 0.01

Table 9.1: Weighting values for the linear MPC.

where
−→
J and −→α , indicate respectively the Jerk and the angular acceleration controls.

Figure 9.1: Linear MPC perceived longitudinal acceleration and pitch angular velocity
outputs. The black line is the reference and the green line is the output.

In Figure 9.1, 9.2, 9.3, it is possible to see the results of this simulation. Some consid-

erations that can be made about these results are:

• the accelerations are well tracked, even if the vertical acceleration presents some

peaks that have to be avoided
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Figure 9.2: Linear MPC perceived lateral acceleration and roll angular velocity out-
puts. The black line is the reference and the green line is the output.

Figure 9.3: Linear MPC perceived vertical acceleration and yaw angular velocity
outputs. The black line is the reference and the green line is the output.
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• the angular velocities have always an acceptable magnitude with no strange be-

haviours. However the outputs do not track very well their respective references

• there is no information about the gravity orientation felt by the driver, so it is

not possible to verify if the transmitted feelings create inadequate sensations or

motion sickness.

In the end, the computation time is taken into consideration: to control and simulate a

hundred seconds of data it takes about 21s. So, it is clear that the linear approach gives

a big advantage on the computation cost, as was expected.

9.2 NMPC Vs linear MPC

In this section, a comparison between the MPC based on the non-linear model presented

in this thesis and the linear MPC is presented. The first test is done with NMPC

with fixed graphics, in this way the only difference between the two approaches is the

perception model with no information given by visual cues, and then a second test with

the complete non-linear model takes place. In the end some considerations are made.

First of all, it is interesting to analyse the weighting parameters of the linear MPC and

to make a comparison with the respective ones of the NMPC. Weights assume subjective

values, in fact, they depend upon the simulation but also upon the decisions made by

the user. So, it has sense to do only some qualitative remarks looking at Tables 8.3, 8.4,

9.1: what stands out are the differences between the respective weights of the estimated

linear accelerations, the estimated angular velocities and the platform tilt angles. These

values are always bigger in the linear MPC than the ones applied to the NMPC, in

particular, the angles by which the platform is tilted have weighting parameters bigger

by almost 4 orders of size. That means the linear MPC has to pay a lot of attention

about not to tilt too much the platform, whereas this problem is completely absent in

the NMPC in which the non-linear model seems to have an implicit knowledge about

this problem (gravity vector tilt problem).

9.2.1 References comparison

The respective references for the linear MPC and the NMPC have been generated

through two totally different methods. So, it is interesting to analyse how a complex

perception model, like the one used in the NMPC, could affect the generation of the

references, instead of the simple filtering method used in the linear model.
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Figure 9.4: Comparison between the generated references for the accelerations. The
black line is the reference for the linear MPC and the red line is the one for the NMPC.

Looking at Figures 9.4, 9.5, it is easy to do a fast comparison between the two different

generated references and sum up some comments:

• linear accelerations are quite different, in particular, the references generated by

the complex non-linear model seems to be sharper and have a greater magnitude.

This behaviour can be imputed to the otolith transfer function used in this model,

in fact these organs are responsible for perceived accelerations. Initially, (see

Section 7.2.1), to simplify the non-linear model, the OTO transfer function is

approximated to unity, while in the linear MPC is a second order rational function.
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Figure 9.5: Comparison between the generated references for the angular velocities.
The black line is the reference for the linear MPC and the red line is the one for the

NMPC.

In this way, one reference is not filtered instead the other one is subject to an

high-pass filter that takes into account only fast changes (high frequencies) of the

acceleration. So the gap between the two references can be partially explained

• angular velocities are more similar, in fact the SCCs are modelled in both cases

with rational transfer functions. Their dynamic is not exactly the same, in fact

the linear MPC uses, also in this case, a second order rational function whereas

the non-linear model implements a simpler first order transfer function. This

inequality can partially explain the differences noticeable in the respective figure.
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Some reasons to explain the gap between the two different generated reference has been

proposed, but clearly the non-linear model has a complex dynamic and, in some cases, is

hard to understand why some behaviours come out. So, the complete different approach

is the best explanation for the different generated references. Obviously only one of the

two can be the best, the one which gives the driver the more realistic feelings during the

simulation. Then, only experimental tests on real driving simulators can give the final

response.

9.2.2 Results comparison

As seen in the previous section, the generated references of the two models are not

exactly the same. So, it is not consistent to do a comparison between their outputs

because they will track different references. Rather, it is interesting to do a comparison

of some particular behaviours, such as a strong braking or a turn, and to observe pe-

culiar characteristics of each different approach. Only linear accelerations and angular

velocities are taken into consideration because, as said before, no comparisons can be

made about the gravity orientation because only the complex non-linear model gives

information about that.

Fixed graphics The first comparison is done with the fixed graphics in the non-linear

model, in this way the visual cues do not give any more information to the driver and so

it is expected that the behaviour of the outputs could be similar to the respective ones

of the linear MPC.

The first test is about how the two different approaches deal with a longitudinal braking.

Clearly, the longitudinal acceleration and the pitch angular velocity are only taken into

consideration. The comparison is showed in Figure 9.6 and it is possible to find out

some interesting notes:

• the estimated longitudinal deceleration is almost the same during all the considered

time, so the driver feelings are comparable

• the estimated pitch angular velocity, instead, has some differences. In both cases

the tilt coordination is applied, in fact, the braking instant corresponds to a pos-

itive pitch angular velocity that produces a positive pitch angle. In this way, the

cockpit is tilted ”downward” to make the driver feel an augmented deceleration.

The difference between the two implementations is a faster tilt by the NMPC that

prefers to give the platform a faster acceleration trying not to move the platform

too far from its neutral position.
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Figure 9.6: Different approaches to a longitudinal braking. The black line is the the
linear MPC output and the red line is the one of the NMPC with fixed graphics.

This behaviour has pros & cons, in fact, as said, the platform has to do a smaller

displacement that goes in advantage to future movements, whereas a higher and

sharper angular velocity can cause problems like motion sickness.

The second test deals with the the first right turn of the lap that happens just after

the deceleration of the previous test. Here the estimated yaw angular velocity and the

platform yaw angle are taken into consideration. Figure 9.7 shows this test comparison.

• the estimated angular velocities are very similar in the first part, when the car is

going almost straight ahead, but when it comes the right turn (4-7s) the NMPC

estimated yaw angular velocity maintains a smoother trend

• the platform yaw angles, instead, are quite different. The NMPC commands the

platform to perform a bigger positive yaw angle that is not immediately recovered

by rotating back the platform to its neutral position, thing that the linear MPC

clearly does in advance.

Enabled graphics In this paragraph, all the tests done with the NMPC with fixed

graphics are repeated, but this time with the graphics control enabled. So it is possible
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Figure 9.7: Different approaches to a right turn. The black line is the the linear MPC
output and the red line is the one of the NMPC with fixed graphics.

to find out how these 3 more DOFs influence the feelings of the driver and the platform

movements.

The braking test comparison is showed in Figure 9.8 and it is possible to make some

comments:

• as in the previous tests, the estimated longitudinal accelerations are very similar,

the feelings of the driver are probably comparable

• looking at the angular velocities picture in Figure 9.8, a strange behaviour is clearly

reproduced. But it can be easily explained by the visual angular velocity control

(see Figure 9.9). In fact, the perception of a negative pitch angular velocity is

achieved by the false visual cues whereas the platform is performing a positive

pitch rotation to obtain the right tilt coordination to reproduce the deceleration.

Figure 9.9 clearly shows how the visual pitch angular velocity follows the platform

pitch rotation and even reaches an higher value, so the driver feels an opposite

angular velocity than what is really taking place.

The right turn test comparison is showed in Figure 9.10.
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Figure 9.8: Different approaches to a longitudinal braking. The black line is the the
linear MPC output and the red line is the one of the NMPC with enabled graphics.

Figure 9.9: Visual and platform pitch and yaw angular velocities during braking and
right turn.
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• yaw angular velocities have a similar trend but the NMPC output is always a bit

larger than the one produced by the linear MPC; it is not much relevant

• the computed platform yaw angles, instead, are very different. During the right

turn, the platform controlled by the NMPC even does not rotate along the z axis,

while, as before, the linear MPC imposes a significant yaw angle. Clearly the

feelings of the driver are very similar and this demonstrates that, in this case, the

non-linear controller has preferred to achieve the feeling of rotation using, again,

the visual control (see Figure 9.9). In fact, from the fourth second of simulation,

a negative yaw visual angular velocity is performed, as a consequence the driver

feels a positive yaw rotation even if the platform is not rotating. Then the visual

control becomes positive to recover the neutral position, that corresponds exactly

to the behaviour of the linear MPC.

Figure 9.10: Different approaches to a right turn. The black line is the the linear
MPC output and the red line is the one of the NMPC with enabled graphics.

So, it is clear that the visual control has a heavy impact in the overall behaviour of the

NMPC. However, the magnitude of the visual angular velocity was not limited during

these tests and it is not known if the values it reaches are too high and could cause some

problems like motion sickness. Anyway, it is always possible to set a bigger weight or a

bound on this control during the set-up of the OCP.
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Conclusions and future works

In this thesis was developed a multi-sensory observer model for human spatial orien-

tation perception. The model was successfully implemented and used to predict the

responses to a number of visual and visual-vestibular motion paradigms and, moreover,

it was used to simulate a driving session to test an actual application. The vestibular

aspects of the model derive from Merfeld’s 1993 multidimensional sensory conflict model

[21] and subsequent structural and parameter value refinements by Merfeld and Zupan

[26]. Further extensions were required to obtain the necessary state estimates for visual

sensory interaction and to capture the qualitative characteristics of large physical scale

integrated self motion.

Visual information is derived from Newman’s multi-sensory observer model [28]. It was

added to the extended vestibular model consistently with the Merfeld (1993) topology.

Two visual sensors were hypothesized to process both static (gravity/“down”) and dy-

namic (angular velocity) visual input. The visual gravity was supposed to depend on

the visual angular velocity, namely the angular velocity was integrated to obtain the

rotation angles of the graphics and these values were used to compute the visual gravity

input using spherical coordinates. In the complete model, every sensory output was com-

pared with the respective expected value from an internal CNS model and the resultant

sensory conflict signal was weighted and added to the rate of change of the respective

state.

As expected, the model predicted accurate perceptual responses for the experimental

simulations considered and validated by Merfeld and showed to have an implicit knowl-

edge about the tilt coordination, in fact it used this mechanism in a totally automatic

way. This quality is clearly shown in the real circuit lap tests, during which very good

results were presented.
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Although the model was successful in meeting the prefixed goals, several limitations

exist and require additional attention and refinement. For example, sensory noise could

be added and used to model perceptual thresholds of the semicircular canals and otolith

organs. These thresholds are very important because they establish the border between

what the driver does perceive or does not through his vestibular system. Thresholds

about the gravity perception must also be investigated and can deeply influence the

set up of the model. Additional visual system non-linearities and dynamics could be

incorporated to account for saturation limits, vection delays and other characteristics of

focal and periphery vision.

Then it comes the real-time implementation problem. In fact, the final purpose of these

tests is to set up the NMPC on a real driving simulator. Clearly this application requires

a real-time implementation, that has to work at 100Hz without problems. The presented

results did not respect this condition even if they gave interesting hints for the future

works. An idea, that will surely improve the computation time of the algorithm, is

to implement the code directly using the ACADO toolkit (C/C++ code) without taking

advantage of its Matlab interface.

Finally, several pertinent experiments are required to further validate the model struc-

ture and implementation, especially some driving simulator sessions would be very useful

to sum up the driver’s feelings and compare them with the different perceived sensations

that can be achieved with other available approaches to the motion cueing problem.



Appendix A

Coordinate systems and spatial

rotations

A.1 Coordinate systems

It is defined a right handed coordinate system relative to the world (Xw, Yw, Zw) and

the head (X, Y, Z), Figure A.1. It is assumed that the semicircular canals and otolith

organs are situated at the center of the head and aligned with the naso-occiptal X,

interaural Y, and dorsoventral Z, axes. For computational simplicity angular velocity

and linear acceleration inputs to the vestibular model are processed in the egocentric

head fixed frame. It is often necessary to transform quantities between reference frames.

Gravity, for instance, is inherently defined in world coordinates yet needed for the GIF

(”gravito-inertial force”) calculation performed in the head axes. As we rotate and

translate about in space a novel description of the relationship between these coordinate

frames is therefore required.

A.2 Quaternion representation

The quaternion provides a useful notation for representing spatial rotations. Quaternions

eliminate gimbal lock, reduce numerical storage from 9 to 4 digits (9 being the typical

representation of a rotation matrix), and increase computational stability. A quaternion

representation for the coordinate frames and vectorial rotations is therefore preferred to

rotation matrices.It is possible to define a unit quaternion in the following form:

−→q = q0 + q1i+ q2j + q3k
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Figure A.1: Head and World coordinate frame.

with i2 = j2 = k2 = −1

In order to update the quaternion vector as a rotation in the inertial space take place,

the initial quaternion −→q 0 must be integrated with respect to the angular velocity input,
−→ω (t) = [ωx(t), ωy(t), ωz(t)]

T . A stable algorithm to perform this integration was

developed by Fang & Zimmerman (1969).

q̇0 = −1

2
(q2ωx + q1ωy + q3ωz) + kλq0

q̇1 = −1

2
(q1ωx − q0ωy − q2ωz) + kλq1

q̇2 =
1

2
(q0ωx + q3ωy − q1ωz) + kλq2

q̇3 =
1

2
(q1ωx − q2ωy + q0ωz) + kλq3

λ = 1− (q20 + q21 + q22 + q23)

Integrating these equations yields a complete time history for the quaternion vector −→q .

This particular formulation uses an algebraic constraint to minimize the constraint error.

For alternate integration schemes using normalization or derivative constraints one is

referred to Fang & Zimmerman [37]. Constraint errors represent a non-orthonormality

in the transformation matrix and are thus extremely problematic for the decomposition

of vectors. The proportionality constant ”k” ensures stability such that k > 0 and the

product hk < 1, where h is defined as the integration time step.
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The integrated quaternion now provides all the necessary information to transform vec-

tors between the head and world coordinate frames. At each time step a rotation of the

gravity vector −→g w = [gxw, gyw, gzw]T is accomplished with the transformation matrix

T;

R =


q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) q20 − q21 − q22 + q23


such that the current direction of gravity in head coordinates can be expressed as the

premultiplication of −→g w with T.

−→g (t) = R(−→q )−→g w

Using this relationship and its inverse, it is possible to simply obtain the linear acceler-

ation −→a w and angular velocity −→ω w controls of the platform from the head-fixed driver

frame as:
−→a w = R−1−→a = RT−→a

−→ω w = R−1−→ω = RT−→ω





Appendix B

ACADO Toolkit

ACADO Toolkit is a software environment and algorithm collection for automatic control

and dynamic optimization. It provides a general framework for using a great variety

of algorithms for direct optimal control, including model predictive control, state and

parameter estimation and robust optimization. ACADO Toolkit is implemented as

self-contained C++ code and comes along with user-friendly MATLAB interface. The

object-oriented design allows for convenient coupling of existing optimization packages

and for extending it with user-written optimization routines.

Every useful information can be found at [38].

B.1 Features

ACADO Toolkit is designed to meet some key properties that are useful in this thesis

work.

Non-linear optimal control One of the basic problem classes which can be solved

with ACADO toolkit are standard optimal control problems [1]. These problems typ-

ically consist of a dynamic system with differential states and possibly also algebraic

states, the objective can usually be written as a sum of a Lagrange and a Mayer term.

Moreover, ACADO toolkit tackles several types of constraints, such as control and state

bounds, terminal constraints, general non-linear path constraints, periodic boundary

conditions, etc.

Model predictive control Another highlight of ACADO Toolkit are its model based

feedback control algorithms. The corresponding problems can be divided into two kinds
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of online dynamic optimization problems: the Model Predictive Control (MPC) prob-

lem of finding (approximately) optimal control actions to be fed back to the controlled

process, and the Moving Horizon Estimation (MHE) problem of estimating the current

process states using measurements of its outputs.

Code Generation for Fast NMPC and MHE The ACADO Code Generation

tool can automatically generate Gauss-Newton real-time iteration algorithms for fast

non-linear MPC and MHE applications. Based on the symbolic syntax of the ACADO

Toolkit, it allows the user to export highly efficient and self-contained C code that is

tailored to each respective MPC or MHE problem formulations. Computational speed is

increased by hard-coding all problem dimensions, avoiding dynamic memory allocations,

loop unrolling, symbolic simplifications and the use of a fixed-step integrator. This can

lead to significant speed-ups compared to generic implementations.

B.2 QP Problem

A linearly constrained optimization problem with a quadratic objective function is called

a quadratic program (QP). Because of its many applications, quadratic programming

is often viewed as a discipline in and of itself. More importantly, though, it forms the

basis of several general non-linear programming algorithms. We begin this section by

examining the Karush-Kuhn-Tucker conditions for the QP and see that they turn out

to be a set of linear equalities and complementarity constraints. Much like in separable

programming, a modified version of the simplex algorithm can be used to find solutions.

Problem statement The general quadratic program can be written as

Minimize f(x) = cx+
1

2
xTQx

subject to Ax ≤ b and x ≥ 0

where c is an n-dimensional row vector describing the coefficients of the linear terms in

the objective function, and Q is an n×n symmetric matrix describing the coefficients of

the quadratic terms. If a constant term exists it is dropped from the model. As in linear

programming, the decision variables are denoted by the n-dimensional column vector x,

and the constraints are defined by an m × n A matrix and an m-dimensional column

vector b of right-hand-side coefficients. We assume that a feasible solution exists and

that the constraint region is bounded.
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When the objective function f(x) is strictly convex for all feasible points the problem

has a unique local minimum which is also the global minimum. A sufficient condition

to guarantee strictly convexity is for Q to be positive definite

Karush-Khun-Tucker conditions We now specialize the general first-order neces-

sary conditions to the quadratic program. These conditions are sufficient for a global

minimum when Q is positive definite; otherwise, the most we can say is that they are

necessary.

Excluding the nonnegativity conditions, the Lagrangian function for the quadratic pro-

gram is

L(x, µ) = cx+
1

2
xTQx+ µ(Ax− b)

where µ is an m-dimensional row vector. The Karush-Kuhn-Tucker conditions for a

local minimum are given as follows.

∂L

∂xj
≥ 0, j = 1. . . . , n =⇒ c+ xTQ+ µA ≥ 0

∂L

∂µi
≤ 0, i = 1. . . . ,m =⇒ Ax− b ≤ 0

xj
∂L

∂xj
= 0, j = 1. . . . , n =⇒ xT (cT +Qx+ATµ) = 0

µigi(x) = 0, i = 1. . . . ,m =⇒ µ(Ax− b) = 0

xj ≥ 0, j = 1. . . . , n =⇒ x ≥ 0

µi ≥ 0, i = 1. . . . , n =⇒ µ ≥ 0
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Graphs

Here are shown some more graphs about all the tests done in this thesis and that were

not reported directly in their respective section due to space reasons.

NMPC with fixed graphic Some graphs about the platform linear position and

angular position during the NMPC test with fixed graphic.

Figure C.1: NMPC longitudinal position and pitch angular position output with fixed
graphic. The black line is the reference and the green line is the output.
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Figure C.2: NMPC lateral position and roll angular position output with fixed
graphic. The black line is the reference and the green line is the output.

Figure C.3: NMPC vertical position and yaw angular position output with fixed
graphic. The black line is the reference and the green line is the output.
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NMPC with enabled graphic Some graphs about the platform linear position and

angular position during the NMPC test with enabled graphic.

Figure C.4: NMPC longitudinal position and pitch angular position output with
enabled graphic. The black line is the reference and the green line is the output.

Figure C.5: NMPC lateral position and roll angular position output with enabled
graphic. The black line is the reference and the green line is the output.
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Figure C.6: NMPC vertical position and yaw angular position output with enabled
graphic. The black line is the reference and the green line is the output.

NMPC with enabled graphic and low g displacement Some graphs about

the platform linear position and angular position during the NMPC test with enabled

graphic and low g displacement.

Figure C.7: NMPC longitudinal position and pitch angular position output with low
g displacement. The black line is the reference and the green line is the output.
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Figure C.8: NMPC lateral position and roll angular position output with low g
displacement. The black line is the reference and the green line is the output.

Figure C.9: NMPC vertical position and yaw angular position output with low g
displacement. The black line is the reference and the green line is the output.
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Linear MPC Some graphs about the platform linear position and angular position

during the linear MPC test.

Figure C.10: Linear MPC longitudinal position and pitch angular position output.
The black line is the reference and the green line is the output.

Figure C.11: Linear MPC lateral position and roll angular position output. The
black line is the reference and the green line is the output.
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Figure C.12: Linear MPC vertical position and yaw angular position output. The
black line is the reference and the green line is the output.
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