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Abstract

High-definition mapping is one of the key technologies supporting self-driving vehicles.
Especially in urban scenarios, the field of view of sensors is often limited, and so HD
map data provides additional useful information about the road and its environment.
Maps used in this field are high resolution with centimetre-level accuracy and their
correctness is fundamental for decision making of autonomous-driving (AD) vehicles.
In this thesis we describe and compare different approaches for online map validation
(OMV) whose goal is to verify if reality and map data are inconsistent.
First of all, a probabilistic framework to perform the data sensor fusion is defined.
After that a spatial correlation concept is introduced to interpolate the information
and obtain a more reliable map validation. The result is a probabilistic representa-
tion of the map whose assumed values represent the probability with which the map
is valid in every single point. Since, in a normal situation, the invalidation of the
map will not allow an autonomous vehicle to continue driving, the problem of iden-
tifying which part of the map is valid (partially validate the map) becomes fundamental.

Keywords Autonomous driving, Sensor fusion, Bayesian network, Dempster-Shafer,
Map validation
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1. Introduction

Autonomous driving (AD) is an increasingly interesting area of research in both industry
and University during the last years. Recently, autonomous cars (also called driverless
cars, self-driving cars, or robotic cars) have become a concrete reality thanks to different
companies that are working hard to be competitive on the market [1]. Autonomous
driving vehicles (AVs) promise to provide numerous benefit to our society [2], ranging
from a higher standard of transportation to traffic reduction.
Fully autonomous driving cars will potentially avoid thousands of car accidents every
year since it could prevent many dangerous situations usually due to human mistakes.
Moreover, autonomous driving technology would also improve mobility independence
of those who cannot get a driver’s license, including elderly and disabled people. Still, a
critical point that has to be addressed is the trust in these vehicles. From a recent report
of Continental AG [3] it appears that leaving control to the car is the first preoccupation
of today’s driver. In this study, 62% of the interviewed people, answered that they
have concerns about automated driving; 57% do not believe in the reliability of AD
systems and, approximately a quarter believes, that AVs will reduce the joy of driving
a car. Otherwise, the same study also shows that the 53% of the people in Germany
thinks that Automated driving is a sensible advancement and 64% of them believes
that Automated driving could take over the task of driving in monotonous or stressful
situations. Moreover, Autonomous vehicle will be able to plan optimal routes to save
energy and so reduce polluting emission.
In industry, five distinct levels of automation have been defined [4], [5]. At each
level corresponds a precise interaction between car and driver beside the task that the
autonomous vehicle can provide. The autonomous driving levels go from 0 to 5: level
0, means “No Automation” and it is the simplest case where the driver controls the car
without any support from a driver assistance system [6]. Following are listed the six
levels of autonomous driving in details:

0. No automation: This is the fully human level. The driver has to accelerate, brake,
steer, and negotiate traffic without assistance from any technological device.

1. Driver Assistance: At this level are considered driver assistance systems that
support drivers on the road and help to ensure additional safety and comfort.
Some examples are: the Adaptive Cruise Control [7] with Stop & Go function,
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1. Introduction

which independently adjusts the distance to the car in front of you and the
Collision and Pedestrian Warning with City Brake Activation, which prevents
collisions via automatic braking.

2. Partly Automated Driving: Semi-autonomous driving assistance systems char-
acterize level two of driving automation. An example is Steering and Lane
Control Assistant [8] including Traffic Jam Assistant: they can brake automatically,
accelerate and take over steering.

3. Highly Automated Driving At this level, the car will be able to drive au-
tonomously under certain traffic situations, such as on highways, but when
those conditions are not valid anymore, the driver must be able to take over
control within a few seconds.

4. Fully Automated Driving The vehicle can handle highly complex urban driving
situations, such as the sudden appearance of construction sites, without any
driver intervention although a human driver can still request control: indeed the
car still has a cockpit. The driver, however, must remain fit to drive and capable
of taking over control if needed.

5. Full Automation At the last level, drivers don’t need to be fit to drive and don’t
even need to have a driving license. The car is completely autonomous and no
cockpit is present.

As soon as the level of automated driving is increased, it becomes more important the
availability of a high-resolution map for the area of interest since map information is
fundamental for multiple autonomous-driving applications such as the computation of
trajectories and path planning [9]. In the case of incorrectness, the safety of road users
may be compromised. In order to enforce its safety requirements, the vehicle must be
equipped with a software system that is able to recognize discrepancies between map
data and the real-world, and in case of anomalies, to act according to the situation.
In the ideal scenario, the vehicle should be able to drive simply keeping information
from the surrounding environment using the available sensors and a simple global
map necessary for navigation purposes. In particular, this map might be rather old and
without a very high resolution. Unfortunately, in order to reach the necessary precision
in the information, the latter approach, leads to a very complex algorithms that today
are hard to execute in a real-time framework. Furthermore, today’s sensors are not
able to provide the sufficient accuracy of measurements needed for guaranteeing the
safety of the road users. For these reasons, nowadays, the most practical solution to
approach the autonomous driving world is the use of HD maps and OMV algorithms.
Depending on the complexity of an OMV, we can recognize three major use cases:
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1. Introduction

1. Detect discrepancies between map and reality. In this case, the OMV does not
inform where the map is invalid. A simple boolean flag could be a reasonable
output of an OMV block.

2. Detect locally if the map is respectively valid or invalid. If the are discrepancies
in a certain area, invalidate the latter and provide information about how the map
matches reality in the other areas.

3. If it is possible, correct the map using the information coming from the sensors.

The role of OMV becomes increasingly important as soon the level of autonomous
driving increases. In some applications, the map can be directly obtained from sensors
using simultaneous localization and mapping (SLAM [10]) algorithm. With SLAM
is intended the process by which a mobile robot can build a map of an unknown
environment and at the same time use this map to compute its location. These methods
work quite well when the area of interest is limited, but as soon the scenario becomes
larger the computational cost increase and they become prohibitive.

In this thesis, we propose a framework for performing the validation (or invalidation)
of a map based on spatial and temporal correlations of sensor measurements. Prob-
abilities for Valid, Invalid, and Unknown states of a map are represented in a grid-like
structure and then interpolated exploiting the knowledge of correlated data.
The fusion of sensor measurements can be performed in different ways; one of them,
discussed in detail, is through the use of Bayesian Network [11]. The latter can repre-
sent a set of variables and their conditional dependencies via a directed acyclic graph
combining the information in a probabilistic framework. Using this approach, it is so
possible to model the relation between multiple sources of information, directly, in a
way, which is understandable for a human observer.

1.1. Thesis objectives

The work presented in this master’s thesis aims to describe steps necessary to implement
a model based approach to face the problem of map validation. More precisely, we
will try to extend the concept of grid for the characterization of the validity of a map.
In our case, the environment is discretized and the value of each cell represents the
probability that the cell is valid rather then the probability that the cell is occupied as
it happens in a normal occupancy grid. Commonly, for computational reasons, the
single cells in a grid are considered independent from the others. Indeed, with this
assumption, the probability distribution of the map is given by the product over the
cells probabilities greatly simplifying the calculations. This hypotheses results very
convenient in many situations but sometimes it is unrealistic and it can neglect some
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1. Introduction

useful information related to the reciprocal influence among cells. For this reason in
the Validity map developed in this thesis (a map used for OMV purpose), it is also
considered a spatial correlation among cells. In other words: a map can be considered
as a surface where there is a sort of continuity on its validity. Besides being more
realistic, this approach can be exploited to estimate the validity of the map in areas
where limited data are available. The latter information can come from multiple source
that, under certain assumptions, can be considered as nodes of a probabilistic network.
This specific solution is described in details in this thesis.

1.2. State-of-the-art

To the best of our knowledge, algorithms for OMV typically focus on SLAM approaches:
a real-time map is created from sensor data and then compared with the map to check.

Landsiedel and Wollherr [12] propose the integration of a 3D metric environment
representation with the semantic knowledge from open data. The rectangle-based
model idea used is a computational interesting and graphical-probabilistic model
approach. It appears that the road model approach seems relevant for OMV.

Tanzmeister (et al.) [13], [14] focus on estimating the drivable area using vehicle
motion in unknown environments. With this approach, using path planning algorithms
it is possible to obtain an interesting road course estimation.

In [15], the authors provide a method for coarse map localization which uses noisy
lane hypotheses from sensor inputs, noisy maps with lane-level accuracy and noisy
global positioning to simultaneously improve the accuracy of all three. The problem is
solved by applying Loopy Belief Propagation to a tailored factor graph which models
the dependencies between observed and hidden variables. The approach is interesting
but inapplicable to the OMV due to the high computational costs.

Hasberg and Hensel [16] describe an interesting approach for fusing noisy sensor
data in a parametric representation of the lane using a probabilistic approach. This
framework could be valid for modelling the geometry of the lanes and has to be tested
in the urban scenario.

A promising alternative for OMV is the use of the machine learning approach to
classify and estimate the road.
In [17], Fernandez (et al.) generates a model of the complex urban scenario using
the information provided by a digital navigation map and a vision-based sensing
module. In this approach, a road pixels segmentation is performed with the use
of a Convolutional Neural Network (CNN) and fused with information map data.
Interestingly, the simple model for describing the geometry of the intersection that this
paper proposes is based on six parameters only. Mayer et al. [18] use a deep neural
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1. Introduction

network (DNN) applied to RGB images to extract lane boundaries for the ego lane
including the semantic information about adjacent lanes. The evaluation results are
rather comprehensive and comparable to other state-of-the-art approaches.

1.3. Thesis outline

The rest of this thesis is organized as follow: in chapter 2 are introduced the common
characteristics of an HD map, the requirements that it has to satisfy and its standards.
Furthermore, in the same chapter, the concept of Occupancy grid is explained and
the sensors typically used in autonomous-driving vehicles, with their common fusion
algorithms are introduced.
In chapter 3 is provided a quick description of the Probabilistic graphical model with
the help of some example and in chapter 4 the concept of map validation with spatial
correlation is defined. This chapter compares different approaches to solve the problem
(Gaussian Approach, probabilistic approach and the use of Dempster-Shafer theory)
and for each of them the benefits and the disadvantages are discussed.
In chapter 5 a more practical example of map validation is explained. The characteristics
of some sensors usually used in the autonomous driving world are taken into account
in order to obtain a more meaningful example. In chapter 6 a possible way to validate a
map based on maneuvers of other traffic participants is mentioned and some examples
are provided. Closing, there is a summary of the thesis and an outlook to future
research topics.
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2. Background

This chapter introduces some key concepts related with maps for AV and with map
validation. Sections 2.1 describes the characteristics of the HD maps, more in detail, 2.1.1
defines their standards and 2.1.2 explains the requirements needed for an autonomous
driving application. Section 2.2 introduces the concept of grid map. Sections 2.3 and
2.4 respectively describe the type of sensors and their fusion use in the autonomous
driving framework .

2.1. HD maps

For a self-driving vehicle, the availability of sensor data combined with the maps
used by standard commercial navigation systems, is not enough to guarantee the
achievement of good performance. An autonomous vehicle needs multiple information
sources in order to understand its surroundings and to reach the desired destination
in a safe and efficient way. In complex scenarios like cities, it becomes necessary an
advanced map that provides an extended field of vision for path and strategy planning.
In general, an HD Map is a precise, reliable information resource. This support is a
deeply detailed map that autonomous vehicles need in order to perform tasks normally
provided by human memory and experience. The map contains a large variety of
information about road geometry, such as the width, the height of the galleries, the
curvature of the roads etc. with precision in centimetres. A sample of the visualized
HD map is shown in Figure 2.1.

Using this source of data, a vehicle can see and take action in a more informed way
respect to the one that could be possible by using only the range of its own sensors.
In Figure 2.2 is reported the typical pipeline that autonomous driving systems use.

Sensors information, HD map data, and localization technologies such as GNSS [19]
(Global Navigational Satellite System) and GPS [20] (Global Positioning System) are
combined in order to plan the optimal trajectory and ensure the satisfaction of all the
security requirements. Maps used for autonomous driving need to be much more
accurate and reliable that the ones available in a GPS navigator. In fact, besides being
high resolution maps, they contain other elements such as landmarks, street signs,
traffic-light positions. Moreover, the map for autonomous driving usually contains
semantic information like driving direction and right of way. The information typically
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2. Background

Figure 2.1.: HD Live Map Example. 1

available in this kind of map can be divided into two big groups:

• Geometric information[21]: List of characteristics regarding: the shape and size
of the road, the position of the lanes etc.

• Semantic information[22]: Set of information related to the behaviour that the
vehicle has to maintain on the road; for example: driving direction, right of way,
speed limits etc.

In order to evaluate the state of the map, it is necessary to consider both geometric
and semantic information. Indeed, the classification of the map as invalid does not
necessarily mean that it is unreliable and so useless for our goals. In practice, we need to
distinguish between inconsistencies that may lead to unsafe situations and discrepancies
which do not have safety-critical or functional implication. Each information element
must be weighted in a proper way in order to ensure a meaningful and usable result in
real application; so, for example, a missing street sign for touristic information, e.g.,
like the direction to reach a Hotel, will not invalidate the map if the road geometry and
the other information necessary for a safe driving experience are still correct, but it can
highlight the presence of an anomaly in the map that can become invalid in few meters
(the road to the Hotel is closed).
Even if it is not possible to define an exact order of importance for the different map

1Source: https://www.autofreaks.com/2017/139073/lg-partners-next-gen-telematics/ (visited on
11/20/2019)
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2. Background

content, since it depends on the specific use case, it is appropriate to define a list of
map elements that are common to most applications:

Figure 2.2.: Typical AD pipeline. 2

• Ego lane geometry

• Course lane geometry

• Traffic lights on course lanes

• Driving direction on course lanes

• Oncoming lane geometry

• Oncoming lane driving direction

• Branches at intersections, not covered by course lanes

• Right of way at intersections

• Pedestrian crossings

• Parking lanes

• Traffic signs

2Source: http://www.imaging.org/Site/PDFS/Conferences/ElectronicImaging/EI2017/Keynotes/
EI2017_AVM_Keynote_Justyna_Zander.pdf (visited on 11/20/2019).
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2. Background

2.1.1. NDS: A new data format for map

Since, in the future, the HD Map for AD vehicles should be globally applicable and
always updated, collaboration and data sharing among different automotive industry
have been recognized as critical. In order to make it possible, the standardized format
Navigation Data Standard (NDS) have been created. The main objectives of the NDS
standard are:

• the definition of a model that can be widely used in the automotive industry and
adopted by suppliers of navigation maps;

• the flexibility and the usability in many different platforms;

• the availability of always up-to-date maps;

• the global applicability.

Its structure is characterized by the division in building blocks. Distinct blocks are
defined for lane level data, localization data, obstacles data, and the routing building
block with the link network and road topology. The fusion of all these elements create
the ground truth for autonomous driving technology. One example is reported in
Figure 2.3 where the map is divided into Road Model, HD Lane Model, and HD
Localization Model. Each of them contains different geometrical and semantic clues
that can be used severely by the vehicle to solve different assignments or combined
together if the task requires it.

2.1.2. ASIL (Automotive Safety Integrity Level)

Two fundamental requirements that a safety-critical system such as an AV has to
guarantee are the ability to correctly avoid hazardous situations and the capacity
to detect and manage faults. These requirements are governed, for the automobile
industries, by the ISO 26262 functional safety standard, that defines the Automotive
Safety Integrity Levels (ASIL). The latter establishes safety requirements for automotive
component and can be distinguished in four different levels: A, B, C, D (Table 2.1).
Level A is the one with the lowest requirements in terms of integrity, this level is
required for example in the rear-light of the vehicle or in the vision ADAS (Advanced
Driver Assistance Systems) system. ASIL Level B could be used, in the rear-view
camera, headlights and break lights, but, as we move towards the more safety-critical
applications an ASIL C or D can be required. An application of ASIL C is the radar
cruise control and ASIL D, witch identify the highest standards, is used in Airbags,
Antilock breaking and Electric power steering.

9



2. Background

Figure 2.3.: Multiple layer HD Live Map. 3

In ASIL D, designers will need to add system redundancy, develop policies and
produce documentation strategies that meet the rigorous certification requirements
of ISO 26262 (Table 2.1). The difference among the different ASIL levels is quantified
using some minimum target metrics [23] as shown in Table 2.1.
The Single-Point Faults Metric (SPFM) indicates the percentage of faults that are not

Metric ASIL A ASIL B ASIL C ASIL D

SPFM N/A > 90% > 97% > 99%

LFM N/A > 60% > 80% > 90%

PMHF ≤ 10−6 ≤ 10−7 ≤ 10−7 ≤ 10−8

Table 2.1.: ASIL levels.

treated by a safety system and lead to a violation of the safety goal. Faults that which
are not directly violating the safety goal, are considered in the Latent Fault Metric
(LFM). This measure takes into account the possibility of a second fault which may be
elevated by the undetected first fault to violate the safety requirement. The Probabilistic

3Source: https://360.here.com/tag/hd-live-map
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2. Background

Metric for Random Hardware Faults (PMHF) gives the frequency of failures per hour.
The association to a certain ASIL level to a component follows a clear procedure defined
in the ISO 26262 norm. For each possible failure of a certain component, the procedure
considers the effect of the failure to the overall system and assess.

• Severity (the type of injuries to the driver and passengers)

• Exposure (how often the vehicle is exposed to the hazard)

• Controllability (how much the driver can do to prevent the injury)

by combining these values, the specific ASIL level is defined. In particular: severity
has four classes ranging from “no injuries” (S0) to “life-threatening/fatal injuries”
(S3); exposure has five classes covering the “incredibly unlikely” (E0) to the “highly
probable” (E4) and controllability has four classes ranging from “controllable in general”
(C0) to “uncontrollable” (C3). It is important to highlight that ASIL definitions are
informative rather than prescriptive: for example, if a device is S3 for the severity
and C3 for the controllability, it could still classify as ASIL A (low risk) because of the
hazard probability is extremely low (E0).

2.2. Space distribution: grid

In robotics and similar related fields, the robot workspace is represented using the so
called occupancy grids introduced by A. Elfes [24]. With this term, usually researcher
refers to a family of probabilistic algorithms which address the problem of generating a
map of the environment from noisy sensor measurements. These data come from Laser
range finders [25], bump sensors [26], cameras [27], and other sensors that are used to
identify obstacles in the robot’s neighborhood and build the environment map. The
world is so discretized in a finite number of cells whose size depends on the desired
precision and the computational load that the system is able to manage. Indeed, by
decreasing the size of the cells, their total number increases as well as the number of
variables to be taken into account in the system.
An occupancy map can be of two types:

• Binary occupancy map: It uses an alphabet of two symbols for defining a cell of
a map as either occupied or free. No information about the uncertainty of this
information is provided. An example is reported in figure Figure 2.4a.

• Probability occupancy map: Each cell in the occupancy grid is a binary random
variable and its value represent the probability that the cell is occupied. A cell
value close to 1 represent a high certainty that the cell is occupied, conversely, a

11



2. Background

(a) Binary occupancy grid (b) Probabilistic occupancy grid

Figure 2.4.: Comparison between binary and probabilistic occupancy grid in case of in
the presence of an object (black). The color of the cells, from red to blue,
represents with what probability the cell is occupied.

cell value close to 0 means that most likely the cell is empty. A cell value equal
to 0.5 imply no knowledge about that specific cell. An example is reported in
Figure 2.4b.

2.3. Sensors typically found in autonomous-driving vehicles.

The presence of different sensors is fundamental for reaching an high level of automa-
tion in the automotive field. Working together, the sensors provide the car visuals of its
surroundings and help it detect the speed and distance of nearby objects (Figure 2.5).
On the market, many type of sensors are available and each of them has its own
strengths and weaknesses in terms of range, detection capabilities, and reliability.

Discant et al. in [28] classifies the main types of sensors in two big categories: passive
and active. With the first class of sensors, they consider all the sensors that capture
energy from the environment and the most common example in the field of autonomous
driving are the cameras. Considering instead the active sensors, they are the ones which
emit some sort of waveform and measure the reflections from the possible targets. The
main member of this category of sensors in the field of autonomous driving are: Lidar,
Radar, Sonar.

Following the characteristics of the sensors are explained more in details:

• Cameras: they are the most available type of sensors. Monocular cameras do not

4Source: https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/ (visited on
12/10/2019).
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2. Background

Figure 2.5.: System overview.4

provide depth information, since they see in two dimensions anyways, for this
reason the stereo cameras also exist that solved the problem. Furthermore, they
can sense visible light or the infrared one; in this case they are called normal or
infrared cameras respectively.

• Lidar: a LIDAR (abbreviation of Light detection and Ranging), is a sensor that
uses laser light, usually in the infrared band (900nm), to measure distances in
all directions. This technology reaches an excellent angular resolution and range
accuracy and it allows to generate a precise 3D map of the vehicles’s surroundings.
The main drawbacks are the following:

– They generate huge amounts of data that can become expensive to process;

– They have problems to detect object characterized by specular reflection.

– They suffer from light scattering in case of bad weather conditions like rain
and snow.

– Usually they can not measure the object radial speed.

• Radar: a RADAR (abbreviation of Radio Detection and Ranging), is a device that
uses radio waves to determine the velocity, range and angle of objects. Radars
for automotive applications have many advantages respect to the other types of
sensors: one of them is for sure the all weather capability. For this reason and
many other, in literature it can be found many algorithm for the detection of road
and obstacles [29].
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Sensor Camera Lidar Radar Ultrasonic Fusion

Field of View Good Excellent Good Poor Excellent

Range Good Excellent Excellent Bad Excellent

Velocity Resolution Poor Good Excellent Bad Excellent

Angular Resolution Excellent Good Poor Bad Excellent

Adverse weather Poor Poor Good Poor Excellent

Light Disturbance Good Excellent Excellent Excellent Excellent

Object classification Excellent Good Poor Bad Excellent

Coverage of all surfaces Good Good Good Good Excellent

Table 2.2.: Comparisons of sensors vehicles

Radars in the automotive field usually use a millimeter-wave band around 77GHz,
they have an high range resolution and using the Doppler effect [30] they can
measure the radial speed of moving object. Unfortunately, they often have a
poor angular resolution but the latter can be usually compensated by using the
combination of phased-array receivers and high resolution algorithms with witch
can be achieved performances, up to ±1◦ [31].

• Sonar(ultrasonic): Sonar sensors are based on the same working principle of
Radars but the using ultrasonic sound-wave instead. They are really cheap but
their performances are strongly related with the environmental conditions, and for
this reason, sonars are not commonly used for autonomous driving application.

As it can be observed in Table 2.2, every technology has its own strengths and weak-
nesses so, in order to reach the required level of performance and safety, the combination
of multiple sensors become compulsory [32].

2.4. Algorithms for sensor fusion in automotive

Over time, a variety of fusion algorithms have been proposed in literature. In the
following we provide a possible classification based on the work of McKendall and
Mintz (1988) in [33] say: “...the problem of sensor fusion is the problem of combining multiple
measurements from sensors into a single measurement of the sensed object or attribute, called
the parameter”. The sensors can be combined in different ways:

14
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• Competitive fusion: This configuration is used to resolve the incompleteness of
sensor data. In this situation the sensors complete each other in order to give a
better overview of the phenomena. An example of this configuration could be
the use of multiple cameras, each observing disjunctive part of the room. The
multiple stream of images can be combined in order to obtain an overall vision of
the environment.

• Complementary fusion: In this case each sensor provides independent measure-
ments of the same property. The data to fuse can come from different sensors
or can be provided by the same device but in different time instance as explain
Visser and Groen in [34]. In this scenario the Kalman filter [35] and the Particle
Filter [36] have to be mentioned. Both of them are algorithms that uses a series of
measurements observed over time, containing statistical noise and other inaccura-
cies, to produces estimates of unknown variables. In case of a linear system with
Gaussian noise, the Kalman filter is optimal. In a system that is nonlinear, the
Kalman filter can still be used, but the particle filter may give better results at the
price of additional computational cost.

• Cooperative fusion: In this configuration, the system uses the data provided by
two (or more) independent sensor to obtain an information that would not be
available from the single sensors.

2.5. Summary

In this chapter a background to easily follow the thesis is introduced. The HD map that
has to be validated is described in details. Multiple elements can be used to evaluate the
validity of an HD map since it is very detailed and full of information. The validation
can be done using the different sensors available. Their data can be fused in multiple
ways depending on the type of measurement and the specific information we want to
extract from them. Different type of fusion algorithm can led to very different result
in terms of final performance. In the next paragraph we discuss in detail the use of
probabilistic graphical models for sensors fusion purpose.
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3. Probabilistic graphical model

In this chapter it is discussed the approach we are proposing for fusing sensor data
and to compare them against map data for the purpose of map validation. In order
to evaluate the quality of a map, the knowledge of the surrounding environment is
fundamental. Unfortunately, precise information can not be guaranteed for all the area
of interest because, very often, there are estimation errors due to sensor imprecision and
limited field of view. For this reason it is not possible to rely on one sensor only, and
it is necessary to fuse information from multiple of them [37], [38]. By combining the
input from various devices, individual systems complement each other and can achieve
enhanced performances (Table 2.2). One interesting way to perform sensor fusion is the
use of the so called Probabilistic graphical model (PGM) [39]. Formally, a PGM consists
of a graph structure. Each node of the graph is associated with a random variable,
and each edge that connect two nodes describes a conditioning relation between them.
Compared with logical reasoning, that is concerned with absolutely certain truths and
inferences the probabilistic reasoning used in PGM can arrive at rational descriptions of
the problem even when there is not enough deterministic information on the function-
ing of the system. The PGM can be divided in two main categories depending on their
structure. If the graph is direct the model become a Bayesian networks (BN) otherwise
if the graph is undirected we refer to Markov networks (MN). In this thesis we focus
only on Bayesian network; the idea of using them for map validaton purpose also led
to the writing of the patent Use of probabilistc graphical model for map filed at the German
Patent and Trademark Office on August 30, 2019 (Application number: 10 2019 123 353.4)

3.1. The Bayesian network in detail

Bayesian networks, are commonly used when an event occurs and it is necessary to
predict the likelihood that any one of possible known causes was a contributing factor.
An example of field of application is the medical one: BNs can be easily used to
represent the probabilistic relationships between diseases and symptoms. Once the
symptoms are visible, a BN can be used to compute the probabilities of the presence of
different diseases.
In general, a BN is a graph in which the following properties hold:
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• A set of random variables constitutes the nodes of the network;

• A set of oriented edges connects the pairs of nodes (an arrow from node A to
node B is that A has a direct influence on B);

• Each node has a conditional probabilities that quantifies the effects that the
"parents" have on the node, where "parents" means all those nodes that have
arrows pointing to the node;

• The graph has no direct cycles.

In a BN, the random variables identified by the single nodes of the net can be discrete,
continuous or both of them. If a node has relatives (i.e. one or more arrows pointing
towards it) then the node contains a table of conditional probabilities. In this way, a BN
allows a graphical representation of the probabilistic relation among random variables.
Consider the simple case of two random variables, one dependent from the other. The
relation between two events described by

P[A, B] = P[B|A] · P[A] (3.1)

becomes the following graph:

B

A

Figure 3.1.: Three events Bayesian network example.

In a BN, nodes whose values can be directly observed are called observable nodes (the
node B in this specific case), instead nodes whose values cannot be seen are called
hidden nodes (the node A in this framework).
At this stage, we do not need to specify anything further information about the
interested variables, such as whether they are discrete or continuous. Indeed, one of
the powerful aspects of graphical models is that a specific graph can make probabilistic
statements for a broad class of distributions. Consider now the joint distribution
P [A, B, C] over three variables A, B, C defined as

P [A, B, C] = P [C|A, B] · P [A, B] (3.2)
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A

B

C

Figure 3.2.: Three events Bayesian network example

and applying the chain rule on the last term of the right hand side, we obtain:

P [A, B, C] = P [C|A, B] · P [B|A] · P [A] (3.3)

The right hand side of Equation 3.3 is graphically represented in Figure 3.2. In the
latter we can see a node for each random variable considered and some directed links
(arrows) from the nodes corresponding to the variables on which their distribution
is conditioned. Thus, for the factor P [C|A, B], there are links from nodes A and B to
node C, whereas for the factor P [A] there are no incoming links. An interesting point
to note about Equation 3.3 is that the left hand side is symmetrical with respect to the
three variables A, B, C whereas the right end side it is not. Indeed, the decomposition
of Equation 3.3 has been done choosing a specific ordering. Changing the latter we
obtain a different decomposition and so a diverse graphical representation. Moreover,
notice that analogous considerations are also valid for Equation 3.1.

3.2. Proposed modeling approach

The sensors available in an autonomous vehicle are heterogeneous and produce different
types of measurements. We propose to connect observation in the vehicle such as the
geometry of the road, or the behavior of other vehicle with hidden nodes which models
the probability that the geometry of the road is valid, or that road rules are valid. In
this way it is possible to combine all measurement types into one consistent framework.
Figure 3.3 shows a possible example of this approach.

In the picture, the observable nodes are highlighted in blue and the hidden ones
have an empty background. There are also two external factors (Enforced traffic rules
and Valid sensor measurements) that affects the net and are represented without any
bounding box. As previously explained with some examples, an arrow from a certain
node A to a node B identify a dependence of the value of B from the value of A. The
"weight" of this dependence is described by the conditional probability P [B|A]. In
the case discussed in Figure 3.3 we can see that the node Map Valid affects all the
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Observed behaviours Observed sign Observed geometry

Valid traffic sign

Valid Map

Valid geometryValid traffic rules

Enforced traffic rules Valid sensor measurements

Figure 3.3.: Example of Bayesian network

nodes that represent a specific component of the map (semantic or geometric). The
latter level affects the observed variables placed on the bottom of the network. This
layer, also depends on other external factors such as the sensor characteristics and
the enforcement of the traffic rules. The main goal of using a Bayesian network like
the one reported in figure 3.3, is to exploit the value of the observed variables (that
can be captured from the environment), to ascend the net from the bottom using the
predefined dependence relations between nodes and to obtain as result a probabilistic
value os the note Valid Map. This approach is relatively very flexible, since it can
consider all possible observations vehicles make and can correlate them with relevant
properties of the map. The graph reported in figure 3.3 is a simple example and it can
easily modified (nodes considered and relation between them) in order to fit better
the characteristics of the system considered. Furthermore, exploiting the DBN time
evolution can also be included.

3.3. Example

This section discusses some results based on the probabilistic graphical network shown
in 3.3. By selecting the values of the observed nodes (which in this case can be only
Valid or Invalid), it is possible to infer the probability of the map being Valid or
Invalid(root of the graph). An example are reported in Figure 3.4.
In the picture the height of each bar represents the probability of Map Valid when the
observation written on the horizontal axis are Valid. With different color are underlined
the situations with: no Valid measurements available (red), one Valid measurement
(orange), two Valid measurements (light blue) and a three Valid measurements (blue).
The exact numerical values of Map Valid depend on the conditional probabilities used
in the network (which are reported in the app. D), but the trend is clear: increasing the
number of Valid observations, the probability of map Valid tends to rise. Conversely,
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Figure 3.4.: Map validity as a function of the observed variables

if the measurements suggest an invalid map, the probability of the node Map valid
assume a value close to zero.

3.4. Benefit of the proposed approach

The proposed approach is extremely flexible and it allows to neatly incorporate different
kind of observations from the vehicle along with map properties that we want to
validate. The problems provided by incorrect localization can also be included in
the model. Furthermore, different properties of the map can be included and, where
relevant, independently validated.

3.5. Drawback of the proposed approach

One of the main drawbacks of the proposed approach is the parameters that the model
needs to know. Every edge needs to represent a dependency between random variables
and the values of this dependency must be defined with a probability distribution. So
the number of parameters increases exponentially as soon the quantity of connections
among nodes rises. In case of complex models (which take into account many possible
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relations), the number of parameters to estimate might be so height that the proper
tuning of the net could become extremely difficult.
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4. Validation with temporal-spatial
correlation

The map validation problem can be divided into three main tasks:

1. detect the presence of discrepancies between available map and environment;

2. evaluate witch specific areas of the map are invalid.

3. update the map with the available information.

In order to allow the development of all these features, it is necessary to define a suitable
and flexible environment. The sensor measurements can not completely cover all the
relevant area, so an interpolation among sensor data is applied. Every infinitesimal
point pi is characterized by spatial/temporal coordinates and correlated with the rest
remaining map. The relation between two points pi and pj depends on their distance;
in particular:

• the condition
∥∥pi − pj

∥∥ → ∞ could occur if the spatial distance is big, if the
temporal distance is big (pi and pj could correspond to the same point in two
different temporal instants) or if these two situations occur simultaneously. In
this case the correlation between pi and pj has to be high.

• the condition
∥∥pi − pj

∥∥→ 0 occur when both the spatial and temporal distance
tends to 0. In this case the correlation between pi and pj has to be low.

Furthermore the following assumption are introduced:

• the discretization of the environment does not necessarily need to be uniform.
For example, we may consider a case where lane geometries are discretized along
their length, at relatively fine granularity, whereas areas around a road can have
relatively rough discretization blocks;

• we assume the presence of smart sensors, i.e. sensors that are able to provide
high level information on the map. The output of these advanced sensors takes
values from a finite set of discrete labels (e.g. Valid, Invalid, Unknown) and can be
directly used to determine the overall map validity.
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Three approaches have been considered:

• Gaussian approach: Every single cells is considered as a Gaussian random
variable and the update of the "probability" value of each cell is done using a
Kalman-like statistical filter.

• Probabilistic approach: The problem is studied in a completely probabilistic
framework and a ad-hoc correlation function among the single cells is used.

• Dempster Shafer approach: Using the framework described in the Dempster
Shafer theory, a spatial-temporal correlation among the single cells of the map is
defined.

In particular, the first approach is based on a published work [40] and is mainly
used as comparison for the second approach which has been completely developed
in this thesis. The third approach, instead, tries to replicate the second one using the
alternative Dempster-Shafer Theory.
Initially, in all the cases, the environment is divided into a two-dimensional lattice
where cells are treated as hidden variables to be estimated. Every cell can be only
Valid or Invalid and we want to estimate with which probability the single cell can be
considered Valid.

4.1. Continuous approach: Gaussian filtering

In this framework, every cell is associated to a continuous random variable, character-
ized by a specific mean and variance. By considering a spatial correlation between the
cells (Guassian for example) and by using a specific implementation of a Kalman Filter,
the validity of each single cell can be computed recursively.
The recursive approach has numerous computational benefit and lend itself easily to
a realtime implementation with stringent timing and memory constraints. This type
of approach has been used by Blaco, Monroy and Gonzales in [41]. They introduce a
probabilistic method to learn a gas distribution model of planar environments, given a
sequence of localized gas sensor readings. In this work, a simple sensor model, leads
to the derivation of an efficient implementation of a Kalman Filter. The estimated
model, also referred as the map of gas concentrations, keeps a density distribution
of the expected concentration at each cell, including its uncertainty. An alternative
approach is presented by Ke Sun et. al. in [40]. The focus of the latter is to provide a
model that captures the occupancy correlation of map elements, providing an efficient
approximation of Gaussian Process (GP) [42] classification with complexity that does
not scale with time. The latter approach, implemented by using a Kalman-filter-like
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structure, has been considered a starting point for this thesis and so, some simple
evaluation have been performed.
By defining a grid map m, abstracting each cell with its center position x ∈ χ and,
defining o(·) a function such that o(x) := −1, if x is unoccupied, o(x) := 1 if x is occupied
and, o(x) := 0 if the state of x is unknown, the problem treated by Ke Sun et. al. is
formalized as follow:

Given occupancy measurements Z0:t, construct an estimate ôt ∈ {−1, 0, 1}|χ|

of the true environment occupancy {o(x)|x ∈ χ}

Namely, the task is to build a geometric map of a static environment having a sequence
of occupancy measurements Z0:t available.
In the work of Ke Sun et. al., assuming the measurements within the pre-defined
tessellation χ, their binary model is represented as

yi = h(xi) ∈ {−1, 1} (4.1)

Assuming then that the distribution of the map follows m ∼ N (m̂t, Σt) at a time t, the
mean and the covariance estimation for the map at t + 1 is

m̂t+1 = m̂t + yi · Σtvi

φ

(
yi ·

vT
i mt√

vT
i Σvi+1

; 0, 1
)

ηt+1

√
vT

i Σvi + 1
(4.2)

Σt+1 = Σt − (m̂t+1 − m̂t)(m̂t+1 − m̂t)T − yi · ΣtvivT
i ΣT

t

φ

(
yi ·

vT
i mt√

vT
i Σvi+1

; 0, 1
) (

vT
i m̂t

)
ηt+1(vT

i Σvi + 1)3/2

(4.3)
where vi is a vector containing all 0s except for a single 1 corresponding to the ith cell,
and ηt+1 is the normalization factor,

ηt+1 = Φ

yi ·
vT

i mt√
vT

i Σvi + 1
; 0, 1

 . (4.4)

In 4.2, 4.3, and 4.4 we have that Φ(x; 0, 1) =
∫ x
−∞ φ(u; 0, 1)du, where φ(u; 0, 1) is the stan-

dard normal pdf. The occupancy of each cell is then recovered through the following:

o(x) =


1, Φ(mi; 0, 1) > r0

0, Φ(mi; 0, 1) < r f , ∀xi ∈ χ

−1, otherwise

(4.5)
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where ro and r f are the thresholds for determining occupied and free cells respectively.
The work of Ke Sun et. al. can be easily adapted to the purpose of this thesis by
assigning a different meaning to the state of the single cells. In this way the labels 1,
−1 and 0 will be respectively associated Valid, Invalid and Unknown states.

4.1.1. Example

In this subsection is reported and described an example of application of the approach
shown previously.
Consider the following assumptions:

• The map is described by squared lattice with 50x50 cells.

• The value (Valid = 1 or Invalid = −1) of n isolated points is available. The
points considered in this example are respectively placed in position [4, 2], [10, 40],
[12, 12], [25, 25], [36, 13], [44, 16], [21, 3]. Three of them are Invalid measurements
and the others are considered Valid.

The result of the application of the algorithm can be seen in Figure 4.1 where is reported
the value assumed by (4.2) as the measures are added to the system. Indeed, the (4.2)
is a recursive equation and the measurements have to be taken into account once at a
time.
In Figure 4.1a there is the initial mean value of the map. In each cell of the grid the
mean is equal to 0 (Unknown state). In Figure 4.1b one measurement (−1 in [4, 2]) has
been added and the map validity surface has been manipulated. The highest value of
the map is placed where the valid measurement is available and the rest of the map is
updated in a continuous way, exploiting the spatial correlation among different cells.
In Figure 4.1c and Figure 4.1d is reported the mean value of the map after that 5 and
7 measurements are respectively added to the system. As in the previous step, the
desired interpolation and propagation effect of the information can be clearly seen.

In [40], the authors recover the occupancy of each cell using the (4.5); in our applica-
tion, a similar function can be used for determining Valid and Invalid cell respectively,
indeed, the range of values can be normalized in the interval [0, 1] and the obtained
values can be interpreted as probabilities.
Using this kind of approach it is possible to estimate a value of probability also in areas
where no information is available. This is fundamental for Map Validation algorithm
since it allows not only to determine if there is any part of the map invalid but also
where this zone is.
This method is based on the conversion of probability values (which are limited in the
interval [0, 1]) into variables characterized by a certain mean and variance; subsequently
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it is also necessary the inverse conversion to be able to bring back everything in the
desired range. All these transformations lead to obvious approximations that can
affect the final performances; for this reason in the next section we propose a purely
probabilistic approach that does not need the conversions defined above.

(a) No measurements considered (b) Result after the first measurement

(c) Result after the first five measurements (d) Result after the seven measurements

Figure 4.1.: Example Gaussian Filtering
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4.2. Probabilistic approach

In this section we discuss a possible way to consider the spatial relations between the
cells of a grid used for OMV purpose. In this step the Gaussian hypothesis of the
random variables has been abandoned to leave space to a pure probabilistic approach.
First of all, we try an Ad hoc probabilistic law based on a gaussian-like spread of
information. After that we reproduce the same framework exploiting the Dempster
Shafer Theory and we compare the result with the previous one (section 4.3).

4.2.1. Bayesian approach with sparse knowledge about the map state

For the sake of an uncluttered discussion, we consider at first the following assumptions:

• Sparse measurement available: Map m is known to be Valid (or Invalid) only
on a limited number of points.

• Spatial correlation between points: The knowledge of the condition of one point
pi can provide some information regarding the surrounding points.

• 2 + 1 dimensional point coordinates: Each point pi is characterized by:

– 2 spatial coordinates (x and y position)

– a temporal dimension t that describe the age of the measure.

We further assume that:

• Point sensors: Sensor s(pi) provides knowledge about a single point pi of the
map m

• Sensor values: A sensor s(pi) assumes two different states:

– Valid

– Invalid

and its value corresponds exactly to the actual state of the correspondent map
point m(pi).

• Binary map: Each point of the map m(pi) assumes values:

– Valid

– Invalid
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Probability Framework

In order to fuse the information coming from sensors and to create the surface described
at the beginning, a probabilistic approach can be used. In particular, assuming the
knowledge of some measurements of the map (Valid, Invalid) we want to compute the
probability:

P
[
m(pi)|s(pj1), ...s(pjn)

]
(4.6)

Since, at this stage, we assumed that the value of each sensor s(pi) corresponds to the
state of the map point m(pi), the (4.6) can be rewritten as

P
[
m(pi)|m(pj1), ...m(pjn)

]
, (4.7)

that represents the probability (of validity) of a single point pi given the knowledge on
the points pj1...pjn. The (4.7) has to be characterized Ad-hoc in order to satisfy all the
desired properties.
In subsection 4.2.2 it is considered the case of only one measurement available that is
then generalized in subsection 4.2.3 where n measurements are used.

4.2.2. One measurement case

Let’s consider the simple case with only one measurement available; in this case we
want to determine

P
[
m(pi)|m(pj)

]
(4.8)

that represent the probability which the point i of the map is Valid, given the point the
knowledge of the single point state j.
This conditional probability must have the following two properties:

• lim
‖pi−pj‖→0

P
[
m(pi)|m(pj)

]
= γ

(
m(pi), m(pj)

)

• lim
‖pi−pj‖→+∞

P
[
m(pi)|m(pj)

]
= P [m(pi)]

where
∥∥pi − pj

∥∥ is distance between pi and pj, P [m(pi)] represent the prior knowledge
on the point pi and

γ(·, ·) : {Valid, Invalid}2 → {0, 1} (4.9)

is defined as
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m(pi) m(pj) γ
(
m(pi), m(mpj)

)
Valid Valid 1
Invalid Valid 0
Valid Invalid 0
Invalid Invalid 1

Table 4.1.: Conditional probability of the map.

The (4.8) directly depends on the considered points and their distance. The effect of
a measurement in pj on point pi will increase as soon the two points will be close to
each others. Conversely, if pi is further from pj, there will be no interaction between
them and (4.8) will collapse to the prior P [m(pi)]. The desired properties can not be
satisfied by any standard function and so an Ad-hoc one has to be defined.

A possible example is:

P
[
m(pi)|m(pj)

]
=
(
1− k(

∥∥pi − pj
∥∥)
)
· P [m(pi)] + k(

∥∥pi − pj
∥∥) · γ(·, ·) (4.10)

where k(·) is a monotonic function decreasing with the distance between pi and pj
limited between 0 and 1. The latter can have different shapes and intuitively the most
sensible idea is to choose a smooth function that varies continuously from 1 when its
argument is 0, and 0 when its argument is +∞ (in practice, after a certain value); an
example of this behaviour is reported in Fig. 4.2.
Further details about k(·) and its possible definition are available in app. B.
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Figure 4.2.: k(·) function behavior
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4.2.3. General case: n measurements available

Consider now the situation where n measurements are available. Since we suppose
that the sensors returns exactly the actual state of the map in the point of interest, the
probability to evaluate is (4.7).
Similarly to (4.8), the equation (4.7) has to take into account the different measurements
available, giving more weigh to those that are closer to the point of interest.
More probabilistic information has to be fused simultaneously with the guarantee of
respecting all the features of (4.8).
Multiple functions can be used to define (4.7): in case of prior probability of each point
equal to 0.5, the solution proposed in this thesis is

P
[
m(pi)|m(pj1), ...m(pjn)

]
= S

(
jn

∑
h=j1

L (P [m(pi)|m(ph)])

)
, (4.11)

where S(x) is the Sigmoid function

S(x) =
1

1 + e−x =
ex

ex + 1
with

S : R→ (0, 1)

(4.12)

and L(x) is its inverse in the interval (0, 1): the Logit function

L(x) = S(x)−1 = ln
(

x
1− x

)
with

S : (0, 1)→ R.

(4.13)

where ln(·) is the logarithm with base e.
These two functions are often used in the field of Machine Learning (ML) and their
behavior is reported in Figure 4.3.

Using this combination of functions, it is possible to fuse the effect of different
measurements (incorporated in P [m(pi)|m(ph)]), in a continuous way. Indeed, in case of
only one measurement available, the (4.11) will simplify in the Equation 4.8 as desired.
Furthermore, 4.11 strongly depends on the position of the measurements available:
when i ∈ {j1...jn}, its value has to collapse in the function γ(m(pi)|m(pi)) i.e.

P
[
m(pi)|m(pj1), . . . , m(pi), . . . , m(pjn)

] (1)
= P [m(pi)|m(pi)]

(2)
= γ(m(pi)|m(pi)) (4.14)

where the first equality derives from the the conditional independence of the variables
and the second equality comes from the (4.10). This property is correctly managed by
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Figure 4.3.: Sigmoid function and its inverse: the Logit function

4.11 as it is formally proven in app. C.

Consider now the situation where the prior probability value is not fixed and equal
to 0.5. The approach saw so far can still be used after small improvements; indeed,
calling P[mi] the prior probability of the considered point, it is sufficient to shift the
Logit function along the y axis and the Sigmoid function along the x axis in such a way
they across the point (P[mi], 0) and (0, P[mi]) respectively. This process is shown in fig.
4.3 where the value P[mi] = 0.8 is considered.
The final combination formula, that can manage any prior probability value in the
interval (0, 1), is reported in Equation 4.15.

P
[
m(pi)|m(pj1), ...m(pjn)

]
= S

(
jn

∑
h=j1

[
L (P [m(pi)|m(ph)])− L (P [m(pi)])

]
+ L (P [m(pi)])

)
(4.15)

It can be easily verified that in case of P[mi] = 0.5, (4.15) coincides with (4.11) since
L (P [m(pi)]) = 0.
Furthermore, the property 4.14 it is also valid for 4.15 and it can be proven by some
small modifications of the proof available in app. C.

4.2.4. Time effect

A possible extension of the approach involves the introduction of the aging temporal
effect of the available information and a subsequent return to the prior. The aging of
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the measurements can be easily interpreted as an additional distance to be taken into
account in the approach. Further information can be found in the appendix E.

4.2.5. Summarize

The probability relation among points can be summarized by the following two rela-
tions:

P
[
m(pi)|m(pj1), ...m(pjn)

]
= S

(
jn

∑
h=j1

[
L (P [m(pi)|m(ph)])− L (P [m(pi)])

]
+ L (P [m(pi)])

)
(4.16)

with:

P [m(pi)|m(ph)] = (1− k(‖pi − ph‖)) · P [m(pi)] + k(‖pi − ph‖) · γ(·) (4.17)

and:
P
[
m(pi)|m(pj1), ...m(pjn)

]
= γ(·) if i ∈ {j1, . . . jn} . (4.18)

Using (4.16), (4.17) and (4.18) it is possible to fuse multiple validity measurements
in a fully probabilistic way. This approach avoids many of the conversions and
approximations that would be necessary with other algorithms (an example is the
Kalman-like structure presented in section 4.1) and it allows to obtain a result in a more
direct way. In subsection 4.2.6, some examples that better describe the behaviour of the
developed algorithm are reported.

4.2.6. Examples

First example

Consider the following example:

• The map is discretized and described by squared lattice composed of 50 times 50
cells.

• For each cell is available no more than one measurement.

• Each cell assumes a single value of probability.

• The value (Valid or Invalid) of n isolated points is available and it is necessary
to update the remaining points of the map. In particular, the points considered
in this example are 7 and respectively placed in position [4, 2], [10, 40], [12, 12],
[25, 25], [36, 13], [44, 16], [21, 3]. Three of them are Invalid measurements and the
others are considered Valid.
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(a) Flat representation (b) 3D representation

Figure 4.4.: 50x50 grid with flat prior equal to 0.5

• The prior probability is considered completely flat on the surface analyzed and
equal to 0.5 for each cell. This assumption corresponds to a complete ignorance
of the map state (Valid or Invalid).

In Figure 4.4 is reported the initial conditions of the map (flat prior equal to 0.5) and
the position of the known point. A label 0 means that in that point the map is Invalid,
conversely, the label equal to 1 means map Valid. In Figure 4.5 is reported the validity
map of the example after the update with the approach described previously.

Observing Figure 4.5, the interpolation exerted by the implemented approach is
evident. We can see that the effect of the measurements is localized in a neighborhood
(as we want) and decrease with the distance.
Since, at this stage, we suppose that the sensor measurements coincide exactly with
the map states in the respective cells, the values assumed by these points can just be
0 (Invalid) or 1 (Valid) according with the function γ(·, ·) 4.1. If no data are available
on a certain cell, the other measurements are taken into account and their influence
will be as strong as the distance from the considered cell will be small. Furthermore, if
the points are far from any measurement, their validity probability will remains at the
prior value as it happen in the upper right corner of the picture. The transition from
the value of one cell to the value of another cell is smooth since the function 4.16 is a
combination of continuous functions.
In this case the value of βcorr used in Equation B.2 has been chosen equal to 0.4.
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(a) Flat representation (b) 3D representation

Figure 4.5.: 50x50 grid with flat prior after the spatial updating

Second example

Consider now the case with tilted surface prior (fig. (4.6)). The prior probability is
not equal to 0.5 in any cell and it varies from 0 to 1 depending on the location. The
discretization of the area of interest and the measurements available are the same of
the previous example.

The update with the measurements can be seen in Figure 4.7. Like in the previous
example it is evident the interpolation effect of the algorithm. As can be seen, the final
result is modulated according with the prior probability value. This is an important
desired behavior since the prior probability represent a starting knowledge that can be
exploited in order to have a better estimation of the state of the map.

4.2.7. Considering sensor uncertainties

Consider now an extension of the theory reported in subsection 4.2.1.
In this case the uncertainty of the sensors will be considered. Like in the previous case
some assumptions are made:

• We assume a spatial correlation between the points of the map.

• We suppose that the measurements came from sensors characterized by a proper
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(a) Flat representation (b) 3D representation

Figure 4.6.: 50x50 grid with tilted prior probability

(a) Flat representation (b) 3D representation

Figure 4.7.: 50x50 grid with flat prior after the spatial updating

uncertainty. The sensors can assume three different values: Valid, Invalid, Un-
known with a certain probability that depends from the sensor characteristics.

• Even if the map cells are correlated, the sensor measurements are considered
independent from each other.
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• The forward model of each sensor is considered known: this model, usually indi-
cated with p(z|m), specifies a probability distribution over sensor measurements
z given a map m. In this thesis we consider this value available and independent
from the position of the measurement.

In this framework, for every point of the map, we want to compute Equation 4.19

P
[
m(pi)|s(pj1) . . . s(pjn)

]
(4.19)

where m(pi) is the state of the map in the point i and s(pj1) . . . s(pjn) represent the
measurements available. In order to evaluate Equation 4.19

P
[
m(pi), s(pj1), . . . s(pjn)

]
(4.20)

and
P
[
s(pj1), . . . s(pjn)

]
(4.21)

have to be evaluated. Consider Equation 4.20. Conditioning the sensor joint probability
on the map value of the respective points we obtain:

(4.22)

P
[
s(pj1) . . . s(pjn)

] (1)
= ∑

m ={V,I}jn

[
P
[
s(pj1) . . . s(pjn)|m(pj1), . . . m(pjn)

]
· P
[
m(pj1), . . . m(pjn)

] ]
(2)
= ∑

m={V,I}jn

[
jn

∏
h=j1

P
[
s(ph) | m(ph)

]
· P
[
m(pj1) . . . m(pjn)

]]

where m = {V, I}jn represent all the possible combination of map validity values that
the vector m(pj1), . . . m(pjn) can assume; the total number of possibilities is equal to 2jn

where jn is the number of points considered. Still considering the Equation 4.22, in (2)
has been used the independence property of the sensors:

P
[
s(pj1) . . . s(pjn)|m(pj1), . . . m(pjn)

]
=

jn

∏
h=j1

P
[
s(ph) | m(pj1), . . . m(pjn)

]
(4.23)

with the conditional independence hypothesis of the sensors given the map:

P
[
s(ph) | m(pj1), . . . m(pjn)

]
= P[s(ph) | m(ph)] (4.24)

The problem is now to compute all the elements of the last term of (4.22).
Regarding P

[
s(pj) | m(pj)

]
, it is defined by the actual sensor
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With reference to the joint probability P
[
m(pj1) . . . m(pjn)

]
, by applying the chain

rule we have:

P
[
m(pj1) . . . m(pjn)

]
= P

[
m(pj1) | m(pj2), . . . m(pjn)

]
· P
[
m(pj2) . . . m(pjn)

]
= P

[
m(pj1) | m(pj2) . . . m(pjn)

]
· P
[
m(pj2) | m(pj3) . . . m(pjn)

]
·

· P
[
m(pj3), . . . m(pjn)

]
. . .

(4.25)

Recalling the simplified case discussed in subsection 4.2.1 we have:

(4.26)

P
[
m(pi)|m(p1), . . . m(pi−1), m(pi+1), . . . m(pn)

]
=

= S

 n

∑
j=1
i 6=j

[
L
(

P
[
m(pi)|m(pj)

])
− L

(
P
[
m(pi)

]) ]
+ L

(
P
[
m(pi)

])
With

P
[
m(pi)|m(pj)

]
= (1− k (·)) · P [m(pi)] + k (·) · γ (·) (4.27)

Where k (·) is a correlation function depending on the distance between points and
described in app. B. If k (·) = 0 then m(pi) and m(pj) are spatially independents and
P
[
m(pi)|m(pj)

]
= P [m(pi)].

Consider 4.20:

P
[
m(pi), s(pj1) . . . s(pjn)

] (1)
= ∑

m={V,I}jn

[
P
[
m(pi), s(pj1) . . . s(pjn) | m(pj1) . . . m(pjn)

]
·P
[
m(pj1) . . . m(pjn)

] ]
(2)
= ∑

m={V,I}jn

[
P
[
m(pi) | s(pj1) . . . s(pjn), m(pj1) . . . m(pjn)

]
·P
[
s(pj1) . . . s(pjn) | m(pj1) . . . m(pjn)

]
· P
[
m(pj1) . . . m(pjn)

] ]
(4.28)

Like for the denominator, the first equality comes from the conditioning of the joint
probability with the map states; the second equality comes from the use of the chain
rule. We can now notice that the last part of Equation 4.28 coincide with Equation 4.22
and so:
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(4.29)

P
[
m(pi), s(pj1) . . . s(pjn)

]
= ∑

m={V,I}jn

[
P
[
m(pi) | s(pj1) . . . s(pjn), m(pj1) . . . m(pjn)

]
·

jn

∏
h=j1

P
[
s(ph) | m(ph)

]
· P
[
m(pj1) . . . m(pjn)

]]

Furthermore the term P
[
m(pi) | s(pj1) . . . s(pjn), m(pj1) . . . m(pjn)

]
can be further simpli-

fied; consider the case with two points; we have:

P
[
m(pi) | s(pj), m(pj)

]
= P

[
m(pi) | m(pj)

]
(4.30)

namely we assume that a punctual sensor does not add any new information once we
know the map on the same point. This fact can be generalized with n points and (4.20)
become:

(4.31)

P
[
m(pi), s(pj1) . . . s(pjn)

]
= ∑

m={V,I}jn

[
P
[
m(pi) | m(pj1) . . . m(pjn)

]
·

·
jn

∏
h=j1

P
[
s(ph) | m(ph)

]
· P
[
m(pj1) . . . m(pjn)

]]

Finally, combining 4.28 and 4.22 the results become:

P
[
m(pi)|s(pj1) . . . s(pjn)

]
=

∑m={V,I}jn

[
P
[
m(pi) | m(pj1) . . . m(pjn)

]
·

∑m={V,I}N ∏
jn
i=1

[
P [s(pi) | m(pi)] ·

·∏hn
h=j1 P [s(ph) | m(ph)] · P

[
m(pj1) . . . m(pjn)

] ]
·P
[
m(pj1) . . . m(pjn)

] ] (4.32)

where:

P
[
m(pi)|m(pj1), ...m(pjn)

]
= S

(
jn

∑
h=j1

[
L (P [m(pi)|m(ph)])− L (P [m(pi)])

]
+ L (P [m(pi)])

)
(4.33)

In this subsection it has been extended the probabilistic map validation framework,
including the possible sensor uncertainties. The behaviour of the algorithm in presence
of these uncertainties, is strongly related with the characteristics of the sensors (forward
sensor model). In order to better understand the behaviour of the algorithm, some
examples are available in subsection 4.2.8.
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4.2.8. Examples

Here are reported some examples that better explain the approach just illustrated. In all
the three considered cases the framework is the same of the first example in section 4.2.6,
with the only difference that now the measurements can assume three possible values:
Valid, Invalid, Unknown. The prior knowledge considered is completely flat and equal
to 0.5, while βcorr = 0.3 (for more details about the parameter βcorr see app. B). For each

Figure 4.8.: 50x50 grid with flat prior and different measurements: green circle = Valid,
red square = Invalid, yellow diamonds = Unknown

example is reported the image of the updated result (Figure 4.9, Figure 4.10, Figure 4.11)
and a table that contain the values of P

[
s(pj) | m(pj)

]
used (forward sensor model:

Table 4.2, Table 4.3, Table 4.4).
As can be observed, the effect of the unknown measurements is strongly related with

the defined values of P
[
s(pj) = Unknown | m(pj)

]
, relative to the specific example.

Analyzing the result, we can see that, if P
[
s(pj) = Unknown | m(pj) = Valid

]
is higher

than P
[
s(pj) = Unknown | m(pj) = Invalid

]
, then, the effect of an Unknown measure-

ment is comparable to the one of a Valid one.
Instead, if P

[
s(pj) = Unknown | m(pj) = Valid

]
< P

[
s(pj) = Unknown | m(pj) = Invalid

]
,

the effect of Unknown measurements is similar to the case of the Invalid ones. In the
end, if P

[
s(pj) = Unknown | m(pj) = Valid

]
and P

[
s(pj) = Unknown | m(pj) = Invalid

]
are similar, the effect of Unknown data, is equivalent to the lack of information. This
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Figure 4.9.: First example

s(pi) m(pj) P
[
s(pj) | m(pj)

]
Valid Valid 0.8
Invalid Valid 0.05
Unknown Valid 0.15
Valid Invalid 0.1
Invalid Invalid 0.85
Unknown Invalid 0.05

Table 4.2.: Forward sensor model, first ex-
ample

Figure 4.10.: Second example

s(pi) m(pj) P
[
s(pj) | m(pj)

]
Valid Valid 0.85
Invalid Valid 0.1
Unknown Valid 0.05
Valid Invalid 0.05
Invalid Invalid 0.8
Unknown Invalid 0.15

Table 4.3.: Forward sensor model, second
example

behavior can be easily explained by the fact that an Unknown measure is substan-
tially different from the ignorance of the state of the map. In the first example, the
unknown measure behaves similarly to a valid one since the state of map valid is
more probable than map Invalid. Conversely, in the second example the state of
map invalid is more likely than map valid when an Unknown measure occurs: for
this reason Unknown and Invalid data behaves similarly. Finally, in the last exam-
ple P

[
s(pj) = Unknown | m(pj) = Valid

]
and P

[
s(pj) = Unknown | m(pj) = Invalid

]
are

comparable and so in that point the validity of the map tends to the prior. In general,
with the Bayesian approach it is difficult to represent the total ignorance of an event
since it is always necessary to define a proper value of probability to associate. In order
to exceed this problem, different theories have been developed during the years: one of
them is the so called Dempster Shafer Theory.

40



4. Validation with temporal-spatial correlation

Figure 4.11.: Third example

s(pi) m(pj) P
[
s(pj) | m(pj)

]
Valid Valid 0.85
Invalid Valid 0.1
Unknown Valid 0.05
Valid Invalid 0.1
Invalid Invalid 0.85
Unknown Invalid 0.05

Table 4.4.: Forward sensor model, third
example

4.3. Dempster-shafer approach

One of the main drawback of the Bayesian theory is its inability to represent the
ignorance of an event. In this section we will show how the DST (Dempester Shafer
Theory) is a generalization of the Bayesian probability, where the use of a Belief function
instead of the probability, lead to a greater flexibility in the representation of the
uncertainty. To exaplain better the problem, let’s introduce an example: consider a car
sensor designed to recognize the presence of objects and assume that the precision
of the sensor is 90%. In the Bayesian framework, if the sensor recognizes a car, this
implicitly means that with 90% of probability there is a car and with the 10% of
probability the area is free. With the DST instead, the 90% represents the Belief and
the remaining 10% can be assigned to any other state of the system: for example, to
another type of object (pedestrian, bycicle, dog, ecc), to a combination of them or to an
unknown state that represent the total ignorance.

4.3.1. Characteristics

In order to characterize the DST, first of all, it is necessary to introduce the so called
Frame of Discernment (DOF), Θ:

Θ = {X1, X2, . . . , XK} (4.34)

It is a finite set of all possible exlusive outcomes of a random variables.
In the case of a finite and discrete DOF, DST can be interpreted as a generalization of
the classical Probability Theory in which the probabilities are assigned to sets and not
to independent single events. In this way it assumes particular importance the power
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set of the system were this probability is assigned. When the evident data are sufficient
to assign the probabilities to the single events, then the DST collapses in the classical
probabilistic theory.
Let’s define now the functions that characterize the DST:

• Basic Probability Assignment (bpa)(m): This function describes a relation be-
tween power set and the interval [0, 1] in wich the bpa, usually indicated with m,
is defined. The value assigned to the empty set is 0 and the sum of the bpa in all
the different subsets must be equal to 1. The properties of the bpa are reported in
(4.35) and (4.36):

m : 2Θ → [0, 1] (4.35)

∑
A∈2Θ

m(A) = 1 m(∅) = 0 (4.36)

where 2Θ represent the power set of Θ, ∅ is the empty set and A is a generic set of
2Θ, i.e. A ∈ 2Θ. The values that the function m assumes are called basic probability
mass (this is the reason why the bpa is indicated with m).

The use of the DST leads to a greater flexibility compared with the classical Bayesian
theory thanks to the definition of a Lower bound and Upper bound on the probability.
These two bounds are respectively called Belief and Plausibility:

• Belief (Bel): it represents the intensity of all the measurements that support a
proper decision and the value that it assume is reported in Equation 4.37

Bel(X) = ∑
A⊆X

m(A). (4.37)

• Plausibility (Pl): it represent the intensity of all the tests that do not conflict with
the hypotheses, namely the intensity of the tests that are not in favor of other
hypotheses. The plausibility is usually indicated with Equation 4.38

Pl(X) = 1− ∑
A∩X=∅;A∈2Θ

m(A). (4.38)

The (4.37) and the (4.38) allow us to grasp the imprecision in attributing the probabilities
to the events of our system and approximately define the range in which the probability
values are defined (4.39):

Bel(X) ≤ P(X) ≤ Pl(X). (4.39)
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In case the range described by Bel(X) and Pl(X) collapses in a singleton, the DST
converges to the Bayesian theory. In Figure 4.12 is reported a graphical representation
of the relation between Belief, Plausibility and Probability.

Plausibility

Belief

m(X) Uncertainty m(¬X)

Figure 4.12.: Uncertainty interval

4.3.2. Combination rule

Another important aspect to define is the combination rule necessary to fuse information
coming from different sources. This fusion can be done using three possible approaches:

• Conjunctive Evidence: if both the source information are considered reliable,
they can be combined using an AND operation. The relation that provide this
computation is reported in Equation 4.40

(m1 ∩m2)(A) = ∑
B∩C=A

m1(B) ·m2(C) ∀A ⊆ Θ (4.40)

where Θ is the considered frame of discernment.

• Disjunctive Evidence: if at least one of the two source information is considered
reliable and we do not know exactly witch one is, it is reasonable to use an OR
operation. In this case the relation is reported in Equation 4.41

(m1 ∪m2)(A) = ∑
B∪C=A

m1(B) ·m2(C) ∀A ⊆ Θ (4.41)

• Trade off Evidence: it is an hybrid approach between the first two previously
described and it takes into account different combination of OR and AND among
the various input sources.
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Even if this last strategy is more flexibility compared to the Bayesian approach, these
additional degrees of freedom must be managed appropriately, since from their choice
depends the goodness of the solution found.
The criterion originally used by Dempster and Shafer is the the so called Dempster
Shafer Rule (DSR) and it is a generalization of the Bayes rule. This rule is based on
the Conjuction evidence approach and so it works properly only when the conflict
among sources is limited, otherwise it can bring to unexpected or, at least, difficult to
understand results. In (4.42) is reported the Dempster Shafer Rule.

(m12)(A) = ∑B∩C=A m1(B) ·m2(C)
K

∀A ⊆ Θ (4.42)

where K is
K = 1− ∑

B∩C=∅
m1(B) ·m2(C) = ∑

B∩C 6=∅
m1(B) ·m2(C) (4.43)

and it acts as normalization constant. It is important to notice that the numerator of the
DSR is normalized with respect to the mass of the consistent tests of the two sources
(B ∪ C 6= ∅) and the rule itself assigns all the existing conflict between the different
sources to the empty set, thus ignoring the contradiction present in the system. In
order to quantify the conflict of the system, the following specific measurement can be
defined:

Con(Bel1, Bel2) = log
(

1
K

)
(4.44)

= log
(

1
1−∑B∩C=∅ m1(B) ·m2 (C)

)
(4.45)

= − log

(
1− ∑

B∩C=∅
m1 (B) ·m2 (C)

)
. (4.46)

4.3.3. Decision

Once that the information fusion is performed, a decision rule must be defined (in our
case we want to determine if the cell state is (Valid or Invalid). A possible solution is
the use of the pignistic transformation [43]:

P (A) = ∑
X∈2Θ

m (X) · |A ∩ X|
|X| (4.47)

where |X| is the cardinal of the subset X. With the (4.47) it is also possible to compare
the DST with the classical Bayesian theory.
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4.3.4. Formalization of the map validation problem

As in the Bayesian case, we suppose that every map cell can assume only two opposed
state: Valid and Invalid. So, the frame of discernment is characterized by only two
symbols:

Θ = {V, I}, (4.48)

and the power set of the frame of discernment is:

2Θ = {∅, V, I, {V, I}}. (4.49)

Suppose that the sensors are reliable even if they can make mistakes. In this case the
simplest choice is to update the bpa with the Dempster rule.

Grid initialization

During the initialization, the total absence of knowledge is represented assigning a zero
mass distribution to both the Valid and Invalid states. This implicitly implies that the
mass of mi({V, I}) is equal to 1 for each cell:

mi(V) = mi(I) = 0 ∀i (4.50)

mi({V, I}) = 1. (4.51)

If, at the beginning, some prior information is available, the mass can be distributed in
a different way among the various states according with this prior knowledge.

Spatial propagate sensor information

We suppose that the available sensors, can provide information of a limited number of
isolated map points. In these cells the mass mh of the h− th point is directly updated
according with following:
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if sensor output = Valid
ms

h(V) = P [m(ph) = Valid|s(ph) = Valid]
ms

h(I) = 0

ms
h({V, I}) = 1−ms

h(V)−ms
h(I)

if sensor output = Invalid
ms

h(V) = 0

ms
h(I) = P [m(ph) = Invalid|s(ph) = Invalid]

ms
h({V, I}) = 1−ms

h(V)−ms
h(I)

if sensor output = Unknown
ms

h(V) = 0

ms
h(I) = 0

ms
h({V, I}) = 1−ms

h(V)−ms
h(I)

where P [m(ph) = Valid|s(ph) = Valid] represent the probaility that the map is Valid in
the point ph if the sensor in the same point measure Valid.
Instead, P [m(ph) = Invalid|s(ph) = Invalid] represent the probability that the map is
Invalid in the point ph if the sensor in the same point measure Invalid.
Since we want to spread this limited information on the whole considered area, a
spatial correlation among cells is introduced.
For each cell it is so created a dummy measurement obtained as a weighted sum of the
few data available. This step is performed with the following equation:

ms
i =

1

∑
jn
h=j1 k (‖pi − ph‖)

jn

∑
h=j1

k (‖pi − ph‖) ·ms
h (4.52)

where ms
i represent the dummy measurement of the i− th cell obtained as combination

of the few ms
h available, and k(·) is a continuous function that takes into account the

distance among points. A possible implementation of this function is described in app.
B.
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4. Validation with temporal-spatial correlation

Update

Once a sensor measurement (dummy or not) is available for each point, the Dempster
Shafer Rule can be applied:

mt+1(V) =
mt(V)ms(V) + mt(V)ms({V, I}) + mt({V, I})ms(V)

1−mt(I)ms(V)−mt(V)ms(I)
(4.53)

mt+1(I) =
mt(I)ms(I) + mt(I)ms({V, I}) + mt({V, I})ms(I)

1−mt(I)ms(V)−mt(V)ms(I)
(4.54)

Note that mt+1({V, I}) can be obtained as:

mt+1({V, I}) = 1−mt+1(V)−mt+1(I) (4.55)

4.3.5. Example

In this section it is reported an example of use of the DST.
The considered measurements are the same of the example reported in 4.2.8.
In this example in particular:

• P [m(ph) = Valid|s(ph) = Valid] = 0.85

• P [m(ph) = Invalid|s(ph) = Invalid] = 0.85

The results are reported in Figure 4.13.
Figure 4.13a, Figure 4.13b and Figure 4.13c represent respectively the distribution of

Valid mass, Invalid mass and Unknown mass after the application of the propagation of
the sensor information and the Dempster-Shafer rule. The mass transition from one cell
and another is smooth and the sum of the three masses it is always equal to 1.
In Figure 4.13d the three masses are combined together using the Pignistic transform
(4.47) in order to obtain the desired Validity map.
The result obtained with the DST can be compared with the third example in subsec-
tion 4.2.8. Indeed in both these example has been used similar parameters (same values
of P [m(ph) = Valid|s(ph) = Valid] and P [m(ph) = Invalid|s(ph) = Invalid]).
In Figure 4.14 is shown the two flat representation of the validity map obtained with
the two approaches are placed side by side in order to be compared. From a qualitative
point of view the results are very similar. Indeed, as can be seen in fig. 4.15, that
represent the difference between the two previous maps, their discrepancy never exceed
the value of 0.1.
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(a) Distribution of the Valid Mass
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(b) Distribution of the Invalid Mass
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(c) Distribution of the Unknown mass
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(d) Result of Pignistic transform

Figure 4.13.: Example of DST application

4.4. Summary

In this section we propose three different approaches to validate a Map using the
spatial and temporal correlation of sparse information. The first approach, based on a
Kalman-filter-like structure proposed in [40], allows a recursive solution of the problem
that does not scale with time. Even if this approach seems promising, and in certain
circumstances could be enough, this is approximated. So we have chosen to develop
a second approach, based on a fully probabilistic relation among random variables.
This was possible thanks to the definition of an ad-hoc function to combine the various
measures. From a qualitative point of view, the obtained result is similar to the one
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4. Validation with temporal-spatial correlation

(a) Probabilistic approach (b) Dempster shafer

Figure 4.14.: Comparisong between maps obtained with probabilistic approach and
dempster shafer

Figure 4.15.: Difference between the estimated map with probabilistic approach and
with the DST (scale range: from -0.10 to 0.10)

of the previous approach, but in this case the information are directly represented as
probability from the beginning and not with a certain mean ad variance that in this
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4. Validation with temporal-spatial correlation

framework can be difficult to understand. In the and, with the aim of introducing the
concept of lack of information the theory of Dempster-Shafer is considered, defining,
also in this case, a proper correlation among among variables. This last approach has
been compared with the previous one and we can say that the resulting difference is
negligible and dependent on the choice of the parameters.
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5. Practical example

In this section we consider a simple scenario were the effect of three sensors: Radar,
Lidar, and Camera is considered in the probabilistic framework described previously.

5.1. First example: planar space divided in multiple areas

As first example we consider the simple scenario defined by a car driving on a two-
lanes road and where it is present a traffic sign on the border of the road. The sensors
considered in this section are: Camera, Radar, and Lidar, characterized by different
performances and field of view (FOV).

5.1.1. Assumption

We consider the following assumption:

• The camera is placed inside the windscreen (Figure 5.1a) and it is able to provide
information about the position of road marking and traffic sign (red dot on the
picture) with a field of view of 120◦.

• The Lidar is placed in front of the vehicle (Figure 5.1b) and it is able to provide
information about the position of road marking and traffic sign with a field of
view of 120◦.

• The radar is placed in front of the vehicle (same position of the lidar, Figure 5.1c)
and it is able to provide information only about the position of the traffic sign
with a field of view of 100◦.

• the presence of detected lane marking or traffic sign is sure but their position can
contain some errors.

Other hypothesis regard the partition of the area of interest considered:

• The area of interest is divided in four zones, delimited by the intersection of the
different sensors FOVs (Figure 5.2a):

51



5. Practical example

(a) Camera Field of View (b) Lidar Field of View (c) Radar Field of view

Figure 5.1.: Field of view of the different sensors

– Area 1: it describes the common area where all the three sensors can provides
information.

– Area 2: it defines the zone where both Camera and Lidar can provide useful
data and correspond to the difference between the field of view of the Lidar
and the Radar.

– Area 3: it is the area where the information can come only from the camera.
It corresponds to the difference between the FOV of the camera and he FOV
of the Lidar.

– Area 4: it describes the zone were no measurements are available.

• The correlation among zones is evaluated with Equation B.2 where its argument
is the distance between the centroids of the respective zones.

• The prior knowledge of the map validity is equal to 0.5 that correspond to the
absence of prior information (Figure 5.2b)

5.1.2. Algorithm explanation

The main goal is to evaluate the reliability of the available map by comparing the latter
with the sensor data. The map is assumed to be valid and, in case of sensors discrepan-
cies, it is invalidated. The algorithm used in this section is the one proposed in 4.2.7.
For each line (or traffic sign) detected by the sensors, the distance to the nearest line
(or traffic sign) present in the map is calculated and used in the equation Equation B.2.
The value assumed by Equation B.2, is considered the P [sensor = Valid|map = Valid]
and the parameter β (in this situation is denoted with βdist) used in Equation B.2 acts as
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Figure 5.2.: Experimental setup

weigh parameter for the distance between area centroids. The sensor measurements are
always considered valid and their effect in the validating procedure is modulated by the
value that P [sensor = Valid|map] assumes. For the correct functioning of the algorithm
it is also necessary to define the probability of P [sensor = Valid|map = Invalid]. In this
case the value is fixed and denoted with invP.

5.1.3. Data

Figure 5.3 shows the lane detection in the four areas of interest from two different
sensors: the green lines represent the lane marking saved in the HD map, the blue and
red lines describe the lane markings respectively detected by the Camera and the Lidar.
From Figure 5.4 it can be seen the detection of a traffic sign represented by a triangle in
the image. The different colors mean respectively:

• Green triangle: Traffic sign present in the map

• Blue triangle: Traffic sign detected by the Camera

• Red triangle: Traffic sign detected by the Lidar

• Yellow triangle: Traffic sign detected by the Radar

In order to test the algorithm, the displacement between map data and detected
elements have been created adding a white Gaussian noise, zero mean and variance 0.5.
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(a) Area 1 (b) Area 2

(c) Area 3 (d) Area 4

Figure 5.3.: Lane detection on the different areas
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5. Practical example

Figure 5.4.: Sign detection

5.1.4. Test

It is now possible to test the behavior of the approach by analyzing the different result
obtained by varying the parameters that characterize the system. In order to better
evaluate the effect of each parameter, they are made to vary one at a time.

First test βdist = 2.5, invP = 0.4

In first test we try to fix Bdist = 2.5 and invP = 0.4 while βcorr can assume three different
values: 0.01, 0.85 and 50 as reported in Figure 5.5. As we have already discussed in
section 4.2, βcorr has the function to regulate the correlation between the different areas.
An high value of βcorr corresponds to a complete independence of zones (Figure 5.5c):
the measurements in one area do not affect the other and the probability transition
among them can be very sharp. Conversely, if βcorr become smaller the relation between
points increases (Figure 5.5b) to the point that all the cell assume the same probability
value (Figure 5.5a). The validity value that each area assume is strongly dependent from
their position in the space. In Figure 5.6 is shown the behavior of Validity probability
when βcorr is varied in a continuous way from 0 to 2. The framework is the same of the
previous example with βdist = 2.5 and invP = 0.4.
Observing Figure 5.6 can be seen the convergence to the same point when βcorr tends

to 0 and the fact that over a certain value of βcorr (approximately 1.75) the interaction
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(a) βcorr = 0.01 (b) βcorr = 0.85 (c) βcorr = 50

Figure 5.5.: Comparison of the algorithm with different values of βcorr

between areas becomes negligible. An interesting behavior is present when βcorr varies
in the interval [0, 1]. In that interval, the plot relative to Area 3 and Area 4 presents
some oscillations before reaching the settling point. The main reason for the latter is the
variation of the contribution of different terms as βcorr change: indeed with different
values of spatial correlation the predominant area in the neighborhood (the area in the
neighborhood that has more effect on the one under consideration) can be different.

Second test βcorr = 50, βdist = 2.5

In the second test βcorr and βdist are fixed equal to 50 and 2.5 respectively, instead invP
assume three different values: 0.12, 0.4 and 0.7. The various result are reported in
Figure 5.7. As previously seen, βcorr = 50 correspond to a complete independence of the
single areas; this choice permits to understand more easily the effect of varying other
parameters. Observing the plots, it results that increasing the value of invP (Figure 5.7c),
the average validity probability decrease. Conversely, as soon invP become smaller, the
probability of the map increase. This behavior could be expected, since invP represent
P [sensor = Valid|map = Invalid] and so the higher is the value the most unlikely the
map is corrected.

Third test βcorr = 50, βdist = 2.5

The last parameter to analyze is βdist when βcorr and are fixed and respectively equal to
50 and 0.4. The algorithm result with three different values of βdist (1, 2.5, 5) is reported
in Figure 5.8.

βdist is the parameter that weight the effect of the discrepancies between map and
measurements and it is fundamental for the definition of P[sensor = Valid|map = Valid].
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Figure 5.6.: Validity probability of individual areas as βcorr varies

(a) invP = 0.12 (b) invP = 0.4 (c) invP = 0.7

Figure 5.7.: Comparison of the algorithm with different values of invP

In particular, a relative high βdist (Figure 5.8c) will weight more the anomalies with
respect to a small value of the parameter (Figure 5.8a) with the result that the map will
be easier considered invalid.
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(a) βdist = 1 (b) βdist = 2.5 (c) βdist = 5

Figure 5.8.: Comparison of the algorithm with different values of βdist
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6. Validation based on maneuvers of other
traffic participants

As already mentioned, knowing the position and geometry of the road is essential
for safety systems: spatial knowledge about the road is necessary for motion control
systems, that need to know exactly were the ego-vehicle can move. Usually, the road
detection is entrusted to the combination of different sensors such as Lidars, Cameras
and Radars with a commercially available navigational road map. The accuracy of the
information provided by the sensors depends on the environmental condition (light,
presence of snow, rain, fog etc.) and on the availability of a free field of measurement.
Usually, the main obstacles are other traffic participants which can hide not only the
areas of the road under them, but also blocking large part of the FOV. However, in case
of occlusion by other vehicles, if moving vehicles occlude parts of the road, they can
still provide potentially significant information. For example, in [44], Casapietra et. al.,
use the observation and interpretation of other vehicles behavior to infer the presence
and location of occluded road surface in a 2D grid-based map. Hence, predicting other
traffic participants trajectories and understanding their maneuver can be particularly
useful to highlight any anomalies in the available map, namely it can be used for
OMV. In literature are available many possible approaches to recognize the driving
maneuvers, for example: Andreas Lawitzky et. al. in [45] predicts the motion of
vehicles on highways considering the interaction of the traffic participants. In this
section we present a simple approach to obtain map validity information by exploiting
the road characteristics observing the behavior of other vehicles.

6.1. Our approach

The vehicles moving on the road are subject to compliance with certain behaviors in
order to guarantee a proper traffic flow and avoid accidents. One of the principal rules
that affects all the vehicle on a road is the direction of travel to be respected, and if
the common flow of cars does not respect the direction defined in the available map,
an anomaly in the latter can be present. Hence, it is interesting to define a certain
measure of direction error that can be converted in a probability measure and then fused
with the other sensor information. This can be done by adding a proper layer on the

59



6. Validation based on maneuvers of other traffic participants

available map that describe the direction of travel as an oriented potential field. The
latter can find many possible application in robotics like Jan Vascak did in [46] where
the potential field framework is combined with neural networks for navigation purpose
in an environment full of obstacles. In our case, the potential field attached to the map
is defined according with the natural flow of cars allowed on the street. In Figure 6.1 is
reported an example of potential field on a straight road with three possible maneuvers:
to drive in accordance with the direction of travel of the lane, to overtake, to drive in
the opposite direction of travel of the lane.

These tree different behaviors should lead to three results of a specific error function
that characterize the behaviors themselves:

• in the first case the vehicle follows the rules of the road: this means that the error
function should return a value as close as possible to zero.

• in the second case the car is performing an overtaking maneuver. Here two
situations must be considered:

1. The overtaking is allowed: the error has to be close to zero;

2. The overtaking is prohibited: the error has to be high.

• in the third situation the user is driving in the wrong direction. This behavior
should be highly penalized by the error function.

One of the simplest approach to define a proper error function is to compare the direction
of the vehicle speed vector with the direction of the field in its position and accumulate
it over time; in this way, the more the vehicle drives in a direction different from the on
of the field, the higher the error will become. This simple error function is reported in
Equation 6.1:

e(t + 1) = e(t) + α · (θ f ield − θcar) (6.1)

where θ f ield and θcar represent respectively the angle of the vector field and the car
speed vector both refereed to the same global frame and α is a coefficient introduced
to weight the effect of the angle variation. This approach could actually works in the
situations where the overtaking maneuver is prohibited but can easily lead to a wrong
result (and so wrong behavior interpretation) when the latter is allowed since it will
create an error that will be propagated over time without ever being attenuated. Hence,
it is necessary to include in the Equation 6.1 a proper forgetting factor that takes into
account the needed flexibility of the rule and attenuate the effect of isolated wrong
behaviors. The error function becomes the one reported in Equation 6.2.

e(t + 1) = γ · e(t) + α · (θ f ield − θcar) (6.2)
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(a) Right behavior (b) Overtaking (c) Wrong behavior

Figure 6.1.: Comparison of different behaviors
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Figure 6.2.: Error function behaviour

where γ is the introduced forgetting factor. In Figure 6.2 is reported the output of
Equation 6.2 in the three different cases: right direction, overtaking and wrong direction.
In the first picture the error remains equal to zero for all the time, this is expected since
the speed vector direction of the car is always equal to the one of the field. In the second
case, the car direction is opposite to the field one during the overtaking maneuver. This
lead to an increasing error during the first part of the plot and a successive decreasing
when the car return back in its lane. In the latter, the shape of the curve is determined
by the forgetting factor. In the last plot the error continues to increasing for all the
time interval as expected (the car drives for all the time in the wrong direction). It
is interesting the asymptomatic behavior of the curve that seems to stabilize about a
specific value. This is due to the to the forgetting factor that compensates the increasing
error. In Figure 6.3 is reported the comparison among the errors in the three different
situations. In order to obtain a more understandable result, the error measurements
can be converted in a value limited between 0 (high presence of error) and 1 (limited
presence of error) using the normalized error function reported in Equation 6.1.

P = 1− |tanh(k · e(·))| (6.3)

where k is a multiplicative constant and e(·) is the error obtained from Equation 6.2.
In Figure 6.4 is reported the behavior of the errors relative to the situations described
previously after that Equation 6.1 is applied. The values obtained in this way can
be interpreted as probability measures that specify how much the behavior of the
vehicles is coherent with the traffic rules. Observing Figure 6.4, an unwanted result is
shown; even if the overtaking maneuver can be allowed, the normalized error function
return a value close to 0 in some instants; this is unavoidable since observing only the
position and the speed, it is not possible to distinguish an overtaking maneuver from
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Figure 6.3.: Comparison of errors functions

Figure 6.4.: Potential field on a straight road
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a lane change or other similar action until all the maneuver is concluded. Obviously,
the information so obtained is not enough to classify correctly the state of the map
(Valid or Invalid) in all the cases, but it can provide some clues that can improve the
performance of a map validation algorithm when they are fused with other information.
In particular, all the reasoning based on the drivers behaviors, can become a specific
node of the BN described in 3.2: the node Observed behaviour for example.
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7. Conclusion

In this master thesis the goal is to develop a proper way to perform an Online Map
Validation. This is needed for increasing driving comfort in AD system and mostly
guarantee the safety. In this section the overall result of this thesis is summarized and
briefly discussed.
Compared to other fields related with autonomous driving, the topic of map validation
currently still lacks focus in research. For this reason, an extensive outlook for future
work is given.

7.1. Summary

The two main ideas on which the work of this thesis is based are:

• a probabilistic representation of the information coming from the sensors to
determine the validity of the map;

• the spatial-temporal interpolation of the knowledge in order to evaluate the
probability of validity even in areas where no evidence is available.

The representation of experimental data in the form of probabilities allows us to com-
pletely detach ourselves from the physical characteristics of the sensors and combine the
information at a higher level of abstraction. In this way the information can come not
only from specific devices placed on the vehicle but also from semantic reasoning such
as the respect of the traffic signs by road users. The transformation of an experimental
measure into a probabilistic information is not always a direct process and therefore
this operation must be defined case by case; an example of this is reported in chapter 6
where a possible, but certainly not unique, way to obtain a Valid Map probability from
the behavior of the other vehicles is defined. In particular, in that specific example, the
behavior considered is the possibility of vehicles in wrong direction on a straight path,
but the used approach can be easily extended to other kind of roads. Indeed, the idea
on which the approach developed chapter 6 is based is to associate with the road a sort
of potential field that characterizes the admissible displacements of the vehicles. This
field can be easily adapted to different environment and road pattern. The probability
of a valid map will depend on the behavior of these vehicles and will be as close to
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zero as the behavior of road users will be inconsistent with the potential field defined
above. Furthermore, by introducing a forgetting factor, the duration of the incorrect
behavior also has a decisive effect.
Therefore this idea allows a probabilistic interpretation of the behavior of road users
based on a limited number of information; in our case we are supposed to know only
the velocity vector of the surrounding vehicles.
In any case, in order to have a sufficiently precise evaluation of the validity of the map,
it is necessary to consider different aspects of the surrounding environment. If multiple
probabilistic information are available, they must to be fused in order to obtain a better
result. In this thesis we have opted for the use of the Probabilistic Graphical Model
and in particular the Bayesian Networks. The latter are oriented graphs that allow us
to define dependency relationships between random variables that define our system.
These variables can may also not be directly observable. In this way, starting from the
observation of more general information (the validity of the road signs, the respect
of the right of way, etc.) it is possible to go up in the network using the Bayesian
inference and obtain a final probability measurement of validity. This value takes into
consideration all the available information. The single Bayesian network can be so
considered a sort of smart sensor that provides a final probability value based on the
total value of the map.
Besides understanding if the map is invalid in general, for the map validation al-
gorithms it is necessary to determine which precise part of the map is invalid and
which (if possible) part is still usable. Unfortunately, the measures that can be used to
determine the validity on the map are very often scattered and in very limited numbers.
To address this problem, in this thesis we have proposed and compared different ways
of interpolating this information using a correlation from the spatial and temporal
point of view of the measurements (in this case we specifically consider the measures
taken by the smart sensors defined above). More in detail, the first approach that was
evaluated uses an alternative implementation of a Kalman filter and therefore it is
based on the hypothesis of Gaussian random variables involved. Therefore, to use this
method, it is necessary to convert average values and variance values into probabilities.
This procedure can give rise to strong approximations. For these reasons, a purely
probabilistic approach has been created. All the equations and relations necessary to
face up to the problem, are developed step by step in this thesis and some Ad-Hoc
function has been defined in order to characterize the relationship between areas of the
map directly starting from probability values. The third approach developed, similar to
the previous one, instead of using the Bayes theory, it is based on the Dempster-Shafer
theory. Also in this case, some functions have been defined in order to spreed the
limited information on all the area of interest.
The end result of these three approaches is very similar: a probabilistic surface that
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specifies its probability of being valid at every point on the map. Even if from a
purely qualitative point of view the three approaches are comparable, the second
appears to have better characteristics than the others. First of all, the approach is purely
probabilistic, therefore it does not need approximations that are inevitable with the
Kalman-like structure. The probabilistic approach also turns out to be computationally
more efficient than that one based on the Dempester Shafer theory since this last one
requires the continuous updating of the masses of the Frame of Discernment.
Moreover the probabilistic approach allows to include in the algorithm a prior proba-
bility on the map validity that can be exploited to obtain better performances. For all
these reasons this approach has been preferred to the others for the examples proposed
in this thesis.
An interesting evolution of the algorithm has also been included in chapter chapter 5
where a more real example has been proposed. Three type of sensors have been taken
into account and an alternative way of segmentation of the area of interest has been
proposed. Indeed, the proposed approach is not fixed to the representation of the
environment as a regular grid and a more clever segmentation of the map can be used.
In the specific example proposed in the thesis, the area has been divided according to
the intersection with the visual fields of the various sensors, but in general the possible
segmentation are infinite. This allows in particular to reduce the computational com-
plexity that for large areas can be relevant.
Closing, in this thesis we have proposed the various steps necessary to deal with the
problem of map validation directly from a probabilistic point of view. This approach,
although it needs improvements and clarifications, can represent a valid solution to the
proposed problem as can be seen from the numerous examples proposed in this thesis.

7.2. Future Work

The idea developed in this thesis can undoubtedly be extended and improved. Possible
fields of future research could be the use of more detailed sensor models in order to
obtain more information from the surrounding environment and with better accuracy.
More precisely, this research can be approached to an in-depth study of the conversion
of measurable information directly from the sensors, in probability that can be used to
validate the high resolution map. Some examples and approaches have been described
in this thesis (in chapter 6 for example) but further developments must be made.
Another possible field of development can certainly concern the segmentation of the
environment in order to limit the computational complexity (segmentation less fine
than the surrounding area), while guaranteeing good performances. We have explained
that the probabilistic proposed approach con be used without any problems on a map
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segmented in an irregular way. By developing an algorithm capable of subdividing
the environment in an optimal manner (for example, by segment the road used by
the vehicle in a more refined way and the surrounding environment in a more coarse
manner ) could undoubtedly have improvements both in terms of performance and
computational complexity.
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Abbreviations

AD Autonomous-driving

ADAS Advanced Driver Assistance Systems

ASIL Automotive Safety Integrity Levels

BN Bayesian network

bpa basic probility assignement

CNN Convolutional neural network

DAG Directed acyclic graph

DOF Frame of Discernment

DS Dempster shafer

DSR Dempster shafer rule

DST Dempster shafer theory

FOV Field Of View

GPS Global Positioning System

ISO International Standard Organization

LFM Latent Fault Metric

LIDAR Light detection and Ranging

MDS Modified Dempster Shafer

ML Machine Learning

MN Markov Model

NDS Navigation Data Standard

OMV Online map validation

PGM Probabilistic Graphical Model

PMHF Probabilistic Metric for Random Hardware Faults
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RADAR Radio detection and Ranging

SLAM Simultaneous localization and mapping

SPFM Single-Point Faults
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A. Recall to Bayes Theory

Given two events A and B, if they are in some way correlated, it is reasonable to think
that the knowledge of one of them can give some information on the other one. A
formal way to deal with this conditional probability is the Bayes theorem [47].
First of all we recall the conditional probability.
Given a probability space (Ω, A, P(·)) where:

• Ω is a countable set and it contains all possible outcomes in classical sens.

• A event space that contains Ω

• P(·) probability function with domain A and codomain in [0, 1]

And, given two events A and B belonging to A we indicate with

P[A|B] (A.1)

the probability of A occurring knowing that B has already occurred, ie the probability
of A conditioned to B. Using the Bayes rule, Equation A.1 can be decomposed as:

P [A|B] =
P [A, B]

P [B]
with P [B] 6= 0 (A.2)

Moreover, for the chain rule we have:

P [A, B] = P [B|A] · P [A] (A.3)

And combining Equation A.2 with Equation A.3 we obtain the Bayes Theorem:

P [A|B] =
P [B|A] · P [A]

P [B]
with P [B] 6= 0 (A.4)

As it is shown, we can calculate P [A|B] as a function of the so called "inverse" proba-
bility P [B|A] and this property is the basis of the Bayesian inference.
The Bayes theorem can be easily generalized.

Given the probability space (Ω, A, P(·)) and be B1, B2,. . . Bn, elements of A with the
following property:
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A. Recall to Bayes Theory

• ∀P [Bi] > 0;

• Bi · Bj = 0 with i 6= j;

• Ω =
⋃
i

Bi so, for every A belonging to A

The Bayes theorem assumes the following form:

P [Bk|A] =
P [A|Bk] · P [Bk]

∑i P [A|Bi] · P[Bi]
(A.5)
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B. Local kernel correlation

B.1. The problem and the solution

There are multiple ways to define the correlation among different point of the map
and finding a "good" function that is able to guarantee high performances with low
computational cost can be challenging. The requested function must be smooth and
decreasing with the distance; in particular if the distance between two points tends to
infinity, the correlation should tend to zero. One possibility to solve this task is to use a
Gaussian kernel. in Equation B.1:

k(
∥∥pi − pj

∥∥) = e
−βcorr‖pi−pj‖2

2π (B.1)

Even if it satisfy the required behaviour with the increasing distance, it tends to have an
infinite range. This means that the value of the map at one point is (slightly) affected
by points which are a huge distance away leading to an high computational cost of
the algorithm. In order to minimize the latter it is important to define a correlation
function that has non-zero value only for a small portion of the space. One example, is
the following isotropic covariance function proposed by Storkey in [48]:

k(
∥∥pi − pj

∥∥) =



(
2π − ∆(

∥∥pi − pj
∥∥)
) (

1 +
(
cos ∆(

∥∥pi − pj
∥∥)) /2

3π
+

+
3
2 sin ∆(

∥∥pi − pj
∥∥)

3π

, if ∆ < 2π

0, otherwise

(B.2)

where ∆ = βcorr
∥∥pi − pj

∥∥
2, for βcorr > 0. This function closely resemble a Gaussian

kernel Equation B.1 but has zero value for distances larger than 2π/βcorr.
In Figure B.1 the isotropic covariance function and the Gaussian Kernel are compared:

Varying the value of βcorr is possible to vary the range of action of the available
measurements. In Figure B.2 are reported some examples with different values of β.
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B. Local kernel correlation

Figure B.1.: Isotropic covariance function with different values of β5

B.2. Benefit of truncated correlation

The main advantage in the use of a truncated correlation is the speeding up of the
calculation. Indeed this kind of correlation is equal to zero where other relation might
assume very small values (often negligible) and a lot of computations become trivial.
The final result is much faster implementation although not affecting significantly the
final results.
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B. Local kernel correlation

Figure B.2.: Isotropic covariance function with different values of βcorr
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C. Convergence of probabilistic approach

Consider the probability P
[
m(p)|m(pj1), ..., m(pjn)

]
and the function γ

(
m(pi), m(pj)

)
as

defined in subsection 4.2.3; then if i ∈ {j1...jn}:

lim
p→pi

P
[
m(p)|m(pj1), ..., m(pjn)

]
= lim

p→pi
S

(
jn

∑
h=j1

L (P [m(pi)|m(ph)])

)
= γ

(
m(pi), m(pj)

)
.

Proof. Since the Sigmoid function S is continuous in R, the operator limp→pi can be
moved in the argument of S:

lim
p→pi

S

(
jn

∑
h=j1

L (P [m(pi)|m(ph)])

)
= lim

p→pi
S

L (P [m(pi)|m(pi)]) +
jn

∑
h=j1
h 6=i

L (P [m(pi)|m(ph)])

 =

= S

 lim
p→pi

L (P [m(pi)|m(pi)]) +
jn

∑
h=j1
h 6=i

L (P [m(pi)|m(ph)])




Considering P
[
m(pi)|m(pj)

]
:

P
[
m(pi)|m(pj)

]
=

{
γ
(
m(pi), m(pj)

)
∈ {0, 1} if i = j

ξ(i, j) otherwise

where ξ represent a generic value in the interval (0, 1), and recalling the behavior of the
Logic function L

L
(

P
[
m(pi)|m(pj)

])
=

{
±∞ if i = j

f inite value otherwise

it results

lim
p→pi


L
(
γ
(
m(pi), m(pj)

))︸ ︷︷ ︸
+∞ or −∞

+
jn

∑
h=j1
h 6=i

L (ξ(h, j))

︸ ︷︷ ︸
f inite sum


= L

(
γ
(
m(pi), m(pj)

))
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C. Convergence of probabilistic approach

and then

lim
p→pi

S

(
jn

∑
h=j1

L (P [m(pi)|m(ph)])

)
= S

(
L
(
γ
(
m(pi), m(pj)

)))
= γ

(
m(pi), m(pj)

)
�
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D. Conditional probability for Bayesian
network

In this section are reported the conditional probabilities used for the example reported
in section section 3.3. For simplicity, these values were not extracted from experimental
data but were chosen simply based on common sense.

Valid Map

Value States

0.7 Valid

0.3 Invalid

Table D.1.: Probability of Valid Map

Enforced traffic Rules

Value States

0.8 Valid

0.2 Invalid

Table D.2.: Probability of Enforced traffic Rules
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D. Conditional probability for Bayesian network

Valid Sensor Measurements

Value States

0.95 Valid

0.05 Invalid

Table D.3.: Probability of Valid Sensor Measurements

Value States

Valid Traffic Rules Valid Traffic Rules Valid Map

0.9 Valid Valid

0.1 Valid Invalid

0.1 Invalid Valid

0.9 Invalid Invalid

Table D.4.: Conditional probability of Valid Traffic Rule

Value States

Valid Traffic Sign Valid Traffic Sign Valid Map

0.9 Valid Valid

0.1 Valid Invalid

0.1 Invalid Valid

0.9 Invalid Invalid

Table D.5.: Conditional probability of Valid Traffic Sign
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D. Conditional probability for Bayesian network

Value States

Valid Geometry Valid Geometry Valid Map

0.9 Valid Valid

0.1 Valid Invalid

0.1 Invalid Valid

0.9 Invalid Invalid

Table D.6.: Conditional probability of Valid Geometry

Value States

Good Behavior Good Behavior Valid Rules Enforced Rules Valid Traffic Sign

0.9 Valid Valid Valid Valid

0.1 Valid Valid Valid Invalid

0.8 Valid Valid Invalid Valid

0.2 Valid Valid Invalid Invalid

0.7 Valid Invalid Valid Valid

0.3 Valid Invalid Valid Invalid

0.7 Valid Invalid Invalid Valid

0.3 Valid Invalid Invalid Invalid

0.1 Inalid Valid Valid Valid

0.9 Inalid Valid Valid Invalid

0.2 Inalid Valid Invalid Valid

0.8 Inalid Valid Invalid Invalid

0.3 Inalid Invalid Valid Valid

0.7 Inalid Invalid Valid Invalid

0.3 Inalid Invalid Invalid Valid

0.7 Inalid Invalid Invalid Invalid

Table D.7.: Conditional probability of the Good People Behavior
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D. Conditional probability for Bayesian network

Value States

Observed Traffic Sign Observed Traffic Sign Valid Traffic Sign Valid Sensor Measurements

Valid Valid Valid 0.9

Valid Valid Invalid 0.919

Valid Invalid Valid 0.843

Valid Invalid Invalid 0.285

Invalid Valid Valid 0.895

Invalid Valid Invalid 0.468

Invalid Invalid Valid 0.381

Invalid Invalid Invalid 0.056

Table D.8.: Conditional probability of the map
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E. Time effect in the probabilistic approach

In this appendix we extend the concept of spatial correlation described in section
chapter 4 by adding an idea of time correlation. Intuitively, as the measurements
become old the information received from the sensors becomes unreliable. So, in this
case, if no new update arrives it is reasonable that the map will return to the prior. This
idea can be simply taken into account in this framework by adding one dimension to
the characteristic of the map points. Each cell will be identified by three variables: x
position, y position and time instance t and a new spatial/temporal distance between
points can be defined. The latter can be a simple 2− norm or, if there is the necessity to
weight the spatial and the temporal information in a different way, the following norm
can be used:

∥∥pi − pj
∥∥

Q = (pi − pj)T ·Q · (pi − pj) = εTQε = εT ·

a 0 0
0 b 0
0 0 c

 · ε (E.1)

where the values on the diagonal of Q determinate the effect of each single component
of p on the distance function. Using this approach, even if we have a measurement of
exactly the point we are trying to update, if the sensor information is old, it will be seen
as very far from the cell to update. The further the point will result, the less its effect
will affect the map updating. In Figure E.1 and Figure E.2 are reported the time effect
on the example Figure 4.5 and Figure 4.7 respectively.
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E. Time effect in the probabilistic approach

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5

Figure E.1.: Time effect on the first example
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E. Time effect in the probabilistic approach

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5

Figure E.2.: Time effect on the second example

85



List of Figures

2.1. HD Live Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Typical AD pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Multiple layer HD Live Map . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Comparison between binary and probabilistic occupancy grid in case of

in the presence of an object (black). The color of the cells, from red to
blue, represents with what probability the cell is occupied. . . . . . . . . 12

2.5. System overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1. Three events Bayesian network example. . . . . . . . . . . . . . . . . . . 17
3.2. Three events Bayesian network example . . . . . . . . . . . . . . . . . . . 18
3.3. Example of Bayesian network . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. Map validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1. Example Gaussian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2. k(·) function behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3. Sigmoid function and its inverse: the Logit function . . . . . . . . . . . . 31
4.4. 50x50 grid with flat prior equal to 0.5 . . . . . . . . . . . . . . . . . . . . 33
4.5. 50x50 grid with flat prior after the spatial updating . . . . . . . . . . . . 34
4.6. 50x50 grid with tilted prior probability . . . . . . . . . . . . . . . . . . . 35
4.7. 50x50 grid with flat prior after the spatial updating . . . . . . . . . . . . 35
4.8. 50x50 grid with flat prior and different measurements: green circle =

Valid, red square = Invalid, yellow diamonds = Unknown . . . . . . . . . 39
4.9. First example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.10. Second example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.11. Third example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.12. Uncertainty interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.13. Example of DST application . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.14. Comparisong between maps obtained with probabilistic approach and

dempster shafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.15. Difference between the estimated map with probabilistic approach and

with the DST (scale range: from -0.10 to 0.10) . . . . . . . . . . . . . . . . 49

5.1. Field of view of the different sensors . . . . . . . . . . . . . . . . . . . . . 52

86



List of Figures

5.2. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3. Lane detection on the different areas . . . . . . . . . . . . . . . . . . . . . 54
5.4. Sign detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5. Comparison of the algorithm with different values of βcorr . . . . . . . . 56
5.6. Validity probability of individual areas as βcorr varies . . . . . . . . . . 57
5.7. Comparison of the algorithm with different values of invP . . . . . . . . 57
5.8. Comparison of the algorithm with different values of βdist . . . . . . . . 58

6.1. Comparison of different behaviors . . . . . . . . . . . . . . . . . . . . . . 61
6.2. Error function behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3. Comparison of errors functions . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4. Potential field on a straight road . . . . . . . . . . . . . . . . . . . . . . . 63

B.1. Isotropic covariance function with different values of β5 . . . . . . . . . 75
B.2. Isotropic covariance function with different values of βcorr . . . . . . . . 76

E.1. Time effect on the first example . . . . . . . . . . . . . . . . . . . . . . . . 84
E.2. Time effect on the second example . . . . . . . . . . . . . . . . . . . . . . 85

87



List of Tables

2.1. ASIL levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Comparisons of sensors vehicles . . . . . . . . . . . . . . . . . . . . . . . 14

4.1. Conditional probability of the map. . . . . . . . . . . . . . . . . . . . . . 29
4.2. Forward sensor model, first example . . . . . . . . . . . . . . . . . . . . . 40
4.3. Forward sensor model, second example . . . . . . . . . . . . . . . . . . . 40
4.4. Forward sensor model, third example . . . . . . . . . . . . . . . . . . . . 41

D.1. Probability of Valid Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
D.2. Probability of Enforced traffic Rules . . . . . . . . . . . . . . . . . . . . . . 79
D.3. Probability of Valid Sensor Measurements . . . . . . . . . . . . . . . . . . . 80
D.4. Conditional probability of Valid Traffic Rule . . . . . . . . . . . . . . . . . 80
D.5. Conditional probability of Valid Traffic Sign . . . . . . . . . . . . . . . . . 80
D.6. Conditional probability of Valid Geometry . . . . . . . . . . . . . . . . . . 81
D.7. Conditional probability of the Good People Behavior . . . . . . . . . . . . . 81
D.8. Conditional probability of the map . . . . . . . . . . . . . . . . . . . . . . 82

88



Bibliography

[1] Keshav Bimbraw. “Autonomous Cars: Past, Present and Future - A Review of
the Developments in the Last Century, the Present Scenario and the Expected
Future of Autonomous Vehicle Technology”. In: ICINCO 2015 - 12th International
Conference on Informatics in Control, Automation and Robotics, Proceedings 1 (Jan.
2015), pp. 191–198. doi: 10.5220/0005540501910198.

[2] Todd Litman. “Autonomous Vehicle Implementation Predictions: Implications
for Transport Planning”. In: Transportation Research Board 94th Annual Meeting
Location: Washington DC, United States (2015).

[3] Continental Corporate Media Relations. Where are we heading? Paths to mobility of
tomorrow. The 2018 Continental Mobility Study. Dec. 2018.

[4] Corporate Partneship Board CPB. International Transport Forum. https://www.
itf-oecd.org/sites/default/files/docs/15cpb_autonomousdriving.pdf.
[Online; accessed 9-October-2019]. 2015.

[5] Publitek. The technological evolution of autonomous vehicles – separating hype from
reality. https://www.publitek.com/wp-content/uploads/2019/01/WhitePaper-
Publitek-Autonomous-Driving-RGB-V2FINAL.pdf. [Online; accessed 9-October-
2019]. 2018.

[6] L. Fridman et al. “MIT Advanced Vehicle Technology Study: Large-Scale Natu-
ralistic Driving Study of Driver Behavior and Interaction With Automation”. In:
IEEE Access 7 (2019), pp. 102021–102038. doi: 10.1109/ACCESS.2019.2926040.

[7] Arne Kesting, Martin Treiber, and Dirk Helbing. “Enhanced Intelligent Driver
Model to Access the Impact of Driving Strategies on Traffic Capacity”. In: Philo-
sophical transactions. Series A, Mathematical, physical, and engineering sciences 368
(Oct. 2010), pp. 4585–605. doi: 10.1098/rsta.2010.0084.

[8] Yougang Bian et al. “An Advanced Lane-Keeping Assistance System With Switch-
able Assistance Modes”. In: IEEE Transactions on Intelligent Transportation Systems
PP (Feb. 2019), pp. 1–12. doi: 10.1109/TITS.2019.2892533.

[9] Heiko Seif and Xiaolong Hu. “Autonomous Driving in the iCity—HD Maps
as a Key Challenge of the Automotive Industry”. In: Engineering 2 (June 2016),
pp. 159–162. doi: 10.1016/J.ENG.2016.02.010.

89

https://doi.org/10.5220/0005540501910198
https://www.itf-oecd.org/sites/default/files/docs/15cpb_autonomousdriving.pdf
https://www.itf-oecd.org/sites/default/files/docs/15cpb_autonomousdriving.pdf
https://www.publitek.com/wp-content/uploads/2019/01/WhitePaper-Publitek-Autonomous-Driving-RGB-V2FINAL.pdf
https://www.publitek.com/wp-content/uploads/2019/01/WhitePaper-Publitek-Autonomous-Driving-RGB-V2FINAL.pdf
https://doi.org/10.1109/ACCESS.2019.2926040
https://doi.org/10.1098/rsta.2010.0084
https://doi.org/10.1109/TITS.2019.2892533
https://doi.org/10.1016/J.ENG.2016.02.010


Bibliography

[10] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping: part
I”. In: IEEE Robotics Automation Magazine 13.2 (June 2006), pp. 99–110. doi: 10.
1109/MRA.2006.1638022.

[11] J. K. Wu and Y. F. Wong. “Bayesian Approach for Data Fusion in Sensor Net-
works”. In: 2006 9th International Conference on Information Fusion. July 2006, pp. 1–
5. doi: 10.1109/ICIF.2006.301810.

[12] Dirk Wollherr Christian Landsiedel. “Road Geometry Estimation for Urban
Semantic Maps using Open Data”. In: Advanced Robotics 0 (Mar. 2007), p. 14.

[13] Georg Tanzmeister, Dirk Wollherr, and Martin Buss. “Grid-Based Multi-Road-
Course Estimation Using Motion Planning”. In: IEEE Transactions on Vehicular
Technology 65 (Jan. 2015), pp. 1–1. doi: 10.1109/TVT.2015.2420752.

[14] G. Tanzmeister et al. “Road course estimation in unknown, structured environ-
ments”. In: 2013 IEEE Intelligent Vehicles Symposium (IV). June 2013, pp. 630–635.
doi: 10.1109/IVS.2013.6629537.

[15] T. Heidenreich, J. Spehr, and C. Stiller. “LaneSLAM – Simultaneous Pose and
Lane Estimation Using Maps with Lane-Level Accuracy”. In: 2015 IEEE 18th
International Conference on Intelligent Transportation Systems. Sept. 2015, pp. 2512–
2517. doi: 10.1109/ITSC.2015.404.

[16] C. Hasberg and S. Hensel. “Online-estimation of road map elements using spline
curves”. In: 2008 11th International Conference on Information Fusion. June 2008,
pp. 1–7.

[17] Carlos Fernández et al. “High-Level Interpretation of Urban Road Maps Fusing
Deep Learning-Based Pixelwise Scene Segmentation and Digital Navigation
Maps”. In: Journal of Advanced Transportation 2018 (2018), pp. 1–15. doi: 10.1155/
2018/2096970. url: https://app.dimensions.ai/details/publication/pub.
1107560849%20and%20http://downloads.hindawi.com/journals/jat/2018/
2096970.pdf.

[18] A. Meyer et al. “Deep Semantic Lane Segmentation for Mapless Driving”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Oct. 2018, pp. 869–875. doi: 10.1109/IROS.2018.8594450.

[19] Sarang Thombre et al. “GNSS Threat Monitoring and Reporting: Past, Present,
and a Proposed Future”. In: Journal of Navigation 71.3 (2018), pp. 513–529. doi:
10.1017/S0373463317000911.

90

https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/ICIF.2006.301810
https://doi.org/10.1109/TVT.2015.2420752
https://doi.org/10.1109/IVS.2013.6629537
https://doi.org/10.1109/ITSC.2015.404
https://doi.org/10.1155/2018/2096970
https://doi.org/10.1155/2018/2096970
https://app.dimensions.ai/details/publication/pub.1107560849%20and%20http://downloads.hindawi.com/journals/jat/2018/2096970.pdf
https://app.dimensions.ai/details/publication/pub.1107560849%20and%20http://downloads.hindawi.com/journals/jat/2018/2096970.pdf
https://app.dimensions.ai/details/publication/pub.1107560849%20and%20http://downloads.hindawi.com/journals/jat/2018/2096970.pdf
https://doi.org/10.1109/IROS.2018.8594450
https://doi.org/10.1017/S0373463317000911


Bibliography

[20] Sameer Kumar and Kevin B. Moore. “The Evolution of Global Positioning System
(GPS) Technology”. In: Journal of Science Education and Technology 11.1 (Mar. 2002),
pp. 59–80. issn: 1573-1839. doi: 10.1023/A:1013999415003. url: https://doi.
org/10.1023/A:1013999415003.

[21] Xiongwei Zheng et al. “Geometric Accuracy Evaluation of High-Resolution
Satellite Images Based on Xianning Test Field”. In: Sensors 18 (July 2018), p. 2121.
doi: 10.3390/s18072121.

[22] Wei-Chiu Ma et al. Exploiting Sparse Semantic HD Maps for Self-Driving Vehicle
Localization. Aug. 2019.

[23] Wolfgang Granig, Dirk Hammerschmidt, and Hubert Zangl. “Calculation of
Failure Detection Probability on Safety Mechanisms of Correlated Sensor Signals
According to ISO 26262”. In: SAE International Journal of Passenger Cars - Electronic
and Electrical Systems 10 (Mar. 2017). doi: 10.4271/2017-01-0015.

[24] A. Elfes. “Using occupancy grids for mobile robot perception and navigation”.
In: Computer 22.6 (June 1989), pp. 46–57. doi: 10.1109/2.30720.

[25] Zhao Liu, Daxue Liu, and Tongtong Chen. “Vehicle detection and tracking with
2D laser range finders”. In: vol. 2. Dec. 2013, pp. 1006–1013. isbn: 978-1-4799-
2764-7. doi: 10.1109/CISP.2013.6745203.

[26] H. Chen et al. “Vision-Based Road Bump Detection Using a Front-Mounted Car
Camcorder”. In: 2014 22nd International Conference on Pattern Recognition. Aug.
2014, pp. 4537–4542. doi: 10.1109/ICPR.2014.776.

[27] Mhafuzul Islam et al. Vision-based Navigation of Autonomous Vehicle in Roadway En-
vironments with Unexpected Hazards (Full paper: https://journals.sagepub.com/doi/10.1177/0361198119855606).
Nov. 2018. doi: 10.13140/RG.2.2.25293.28645.

[28] A. Discant et al. “Sensors for Obstacle Detection - A Survey”. In: 2007 30th
International Spring Seminar on Electronics Technology (ISSE). May 2007, pp. 100–
105. doi: 10.1109/ISSE.2007.4432828.

[29] K. Kaliyaperumal, S. Lakshmanan, and K. Kluge. “An algorithm for detecting
roads and obstacles in radar images”. In: IEEE Transactions on Vehicular Technology
50.1 (Jan. 2001), pp. 170–182. doi: 10.1109/25.917913.

[30] Z. A. Rahman et al. “Speed trap detection with Doppler effect”. In: Proceedings.
Student Conference on Research and Development, 2003. SCORED 2003. Aug. 2003,
pp. 202–206. doi: 10.1109/SCORED.2003.1459693.

[31] U. Nickel. “Applications of superresolution for radar: Examples, problems and
solutions”. In: 21st European Signal Processing Conference (EUSIPCO 2013). Sept.
2013, pp. 1–5.

91

https://doi.org/10.1023/A:1013999415003
https://doi.org/10.1023/A:1013999415003
https://doi.org/10.1023/A:1013999415003
https://doi.org/10.3390/s18072121
https://doi.org/10.4271/2017-01-0015
https://doi.org/10.1109/2.30720
https://doi.org/10.1109/CISP.2013.6745203
https://doi.org/10.1109/ICPR.2014.776
https://doi.org/10.13140/RG.2.2.25293.28645
https://doi.org/10.1109/ISSE.2007.4432828
https://doi.org/10.1109/25.917913
https://doi.org/10.1109/SCORED.2003.1459693


Bibliography

[32] Hugh F. Durrant-Whyte. “Sensor Models and Multisensor Integration”. In: The
International Journal of Robotics Research 7.6 (1988), pp. 97–113. doi: 10.1177/
027836498800700608. eprint: https://doi.org/10.1177/027836498800700608.
url: https://doi.org/10.1177/027836498800700608.

[33] Raymond McKendall and Max Mintz. “Robust fusion of location information”. In:
Proceedings. 1988 IEEE International Conference on Robotics and Automation (1988),
1239–1244 vol.2.

[34] A. Visser and F. C. A. Groen. Organisation and Design of Autonomous Systems.
Textbook, Faculty of Mathematics, ComputerScience, Physics and Astronomy,
University of Amsterdam, Kruis-laan 403, NL-1098 SJ Amsterdam, August 1999.

[35] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Prediction
Problems”. In: Transactions of the ASME–Journal of Basic Engineering 82.Series D
(1960), pp. 35–45.

[36] F. Gustafsson et al. “Particle Filters for Positioning, Navigation, and Tracking”.
In: Trans. Sig. Proc. 50.2 (Feb. 2002), pp. 425–437. issn: 1053-587X. doi: 10.1109/
78.978396. url: https://doi.org/10.1109/78.978396.

[37] Aakriti Singhal and Christopher Robert Brown. “Dynamic Bayes net approach to
multimodal sensor fusion”. In: Other Conferences. 1997.

[38] C. Coue et al. “Multi-sensor data fusion using Bayesian programming: An au-
tomotive application”. In: Intelligent Vehicle Symposium, 2002. IEEE. Vol. 2. June
2002, 442–447 vol.2. doi: 10.1109/IVS.2002.1187989.

[39] Anders L. Madsen et al. “Applications of Probabilistic Graphical Models to
Diagnosis and Control of Autonomous Vehicles”. In: UAI 2004. 2004.

[40] Ke Sun et al. “Dense 3-D Mapping with Spatial Correlation via Gaussian Filter-
ing”. In: CoRR abs/1801.07380 (2018). arXiv: 1801.07380. url: http://arxiv.
org/abs/1801.07380.

[41] Jose Luis Blanco et al. “A Kalman Filter Based Approach to Probabilistic Gas
Distribution Mapping”. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing. SAC ’13. Coimbra, Portugal: ACM, 2013, pp. 217–222. isbn:
978-1-4503-1656-9. doi: 10.1145/2480362.2480409. url: http://doi.acm.org/
10.1145/2480362.2480409.

[42] S. Bin and Y. Wenlai. “Application of Gaussian Process Regression to prediction
of thermal comfort index”. In: 2013 IEEE 11th International Conference on Electronic
Measurement Instruments. Vol. 2. Aug. 2013, pp. 958–961. doi: 10.1109/ICEMI.
2013.6743191.

92

https://doi.org/10.1177/027836498800700608
https://doi.org/10.1177/027836498800700608
https://doi.org/10.1177/027836498800700608
https://doi.org/10.1177/027836498800700608
https://doi.org/10.1109/78.978396
https://doi.org/10.1109/78.978396
https://doi.org/10.1109/78.978396
https://doi.org/10.1109/IVS.2002.1187989
https://arxiv.org/abs/1801.07380
http://arxiv.org/abs/1801.07380
http://arxiv.org/abs/1801.07380
https://doi.org/10.1145/2480362.2480409
http://doi.acm.org/10.1145/2480362.2480409
http://doi.acm.org/10.1145/2480362.2480409
https://doi.org/10.1109/ICEMI.2013.6743191
https://doi.org/10.1109/ICEMI.2013.6743191


Bibliography

[43] Philippe Smets. “Decision making in the TBM: the necessity of the pignistic trans-
formation”. In: International Journal of Approximate Reasoning 38.2 (2005), pp. 133–
147. issn: 0888-613X. doi: https://doi.org/10.1016/j.ijar.2004.05.003. url:
http://www.sciencedirect.com/science/article/pii/S0888613X04000593.

[44] E. Casapietra et al. “Building a probabilistic grid-based road representation from
direct and indirect visual cues”. In: 2015 IEEE Intelligent Vehicles Symposium (IV).
June 2015, pp. 273–279. doi: 10.1109/IVS.2015.7225698.

[45] A. Lawitzky et al. “Interactive scene prediction for automotive applications”.
In: 2013 IEEE Intelligent Vehicles Symposium (IV). June 2013, pp. 1028–1033. doi:
10.1109/IVS.2013.6629601.

[46] Jan Vascak. “Navigation of Mobile Robots Using Potential Fields and Computa-
tional Intelligence Means”. In: Acta Polytechnica Hungarica 4 (Mar. 2007).

[47] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs.
2nd. Springer Publishing Company, Incorporated, 2007. isbn: 9780387682815.

[48] Amos James Storkey. Efficient Covariance Matrix Methods for Bayesian Gaussian
Processes and Hopfield Neural Networks. 1999.

93

https://doi.org/https://doi.org/10.1016/j.ijar.2004.05.003
http://www.sciencedirect.com/science/article/pii/S0888613X04000593
https://doi.org/10.1109/IVS.2015.7225698
https://doi.org/10.1109/IVS.2013.6629601

	Acknowledgments
	Abstract
	Contents
	Introduction
	Thesis objectives
	State-of-the-art
	Thesis outline

	Background
	HD maps
	NDS: A new data format for map
	ASIL (Automotive Safety Integrity Level)

	Space distribution: grid
	Sensors typically found in autonomous-driving vehicles.
	Algorithms for sensor fusion in automotive
	Summary

	Probabilistic graphical model
	The Bayesian network in detail
	Proposed modeling approach
	Example
	Benefit of the proposed approach
	Drawback of the proposed approach

	Validation with temporal-spatial correlation
	Continuous approach: Gaussian filtering
	Example

	Probabilistic approach
	Bayesian approach with sparse knowledge about the map state
	One measurement case
	General case: n measurements available
	Time effect
	Summarize
	Examples
	Considering sensor uncertainties
	Examples

	Dempster-shafer approach
	Characteristics
	Combination rule
	Decision
	Formalization of the map validation problem
	Example

	Summary

	Practical example
	First example: planar space divided in multiple areas
	Assumption
	Algorithm explanation
	Data
	Test


	Validation based on maneuvers of other traffic participants
	Our approach

	Conclusion
	Summary
	Future Work

	Appendices
	Recall to Bayes Theory
	Local kernel correlation
	The problem and the solution
	Benefit of truncated correlation

	Convergence of probabilistic approach
	Conditional probability for Bayesian network
	Time effect in the probabilistic approach
	List of Figures
	List of Tables
	Bibliography

