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Abstract

Understanding the relation between brain architecture and function is one of the central
issues in neuroscience nowadays. In the last few years, important efforts have been devoted
to map the large-scale structure of the human cortex, the so-called “connectome”. An
example is the neuroanatomical connectivity matrix of the entire human brain obtained
through MR diffusion tractography. Recent studies proposed a stochastic model built on
top of this connectivity matrix that displays a phase-transition and is able to reproduce
several aspects of brain functioning when tuned to its critical point. This master thesis is
aimed to review recent results on this subject and to get a deeper insight into the model
by studying the distribution of the avalanches, the dynamical range and to investigate
how the use of simulated connectivity matrices affects the dynamics. Furthermore, a
theoretical description of the dynamics is proposed by introducing a master equation in
order to understand the nature of the phase transition and the role of stochasticity.
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Introduction

Today’s era is characterized by the rise of big data. This term was coined to describe
the exponential increase and availability of data far beyond the human scale. In the
early 2000s, industry analyst Doug Laney [1] articulated the now-mainstream definition
of big data as being characterize by the three Vs: the extreme volume, the velocity at
which the data must be processed, and the wide variety of data types. The Big Data
analytics is indeed a revolution in the industry because it leads to cost savings and time
reductions and has benefited society in many ways, making our lives healthier, safer,
greener and more efficient. The scientific world has certainly not been immune from this
radical change, thanks to the technological developments that have enabled the design
of increasingly precise and in-depth experiments. Just think of the petabytes of data
produced by particle collisions every year at LHC.

In recent years, big data has arrived in the neuroscientific scene. New empirical method-
ologies provide an increasing amount of data, spanning an astonishing range of scale of
both time and space. These range from the recordings of single cells thanks to patch-
clamp [2], to neural tissue analysis with optogenetics [3] and calcium imaging [2] to the
dynamic evolution of whole-brain activity with fMRI [4]. However, these large data
reservoirs are just a worthless raw material without the right tools and techniques to
manipulate them. As data sets grow and become more complex, they become more diffi-
cult to analyze and to extract some useful evidence. Statistics and machine learning help
to automatize this process by projecting the high dimensional space of data features to
a lower dimensional and hopefully more tractable description, sometimes with unsuper-
vised techniques. The design of this statistical analysis is a critical factor in insuring that
the dataset is usable by other researchers. In fact, it is argued that there needs to be
a cultural transition from many isolated studies to a common, distributed effort among
all laboratories to boost the research in such an important, but still largely unexplored
area [5]. A possible remedy could be the standardization of dataset collected with a single
methodology and the integration of cross-technical data from multiple domains of brain
and behaviour and across species. Some examples of this research infrastructures are the
Brain Initiative [6], the Human Brain Project [7] and the Human Connectome project [8].

A relevant effort of this technological challenge is devoted to map the intricate labyrinth
of interconnections in the human brain. These connections can be studied at different
scales, from synaptic links between couples of neurons to axonal pathways in microcir-
cuits to fiber bundles between larger systems like cortical areas, delivering a comprehensive
description of the structural connectivity, defined as human connectome. However, the
brain is also characterize by the collective dynamics of neurons that leads to a macro-
scopic neurophysiological activity and governs all the functioning of our body: vital tasks,
movements, emotions, thoughts. This functional connectivity even appears in spatially

1



CONTENTS

Figure 1: The spatiotemporal domain of neuroscience and of the main methods available for the study
of the nervous system in 2014. Each colored region represents the useful domain of spatial and temporal
resolution for one method available for the study of the brain. Open regions represent measurement
techniques; filled regions, perturbation techniques. Inset, a cartoon rendition of the methods available in
1988, notable for the large gaps where no useful method existed. From [5].

segregated areas and can be statistically extrapolated by analyzing the correlation be-
tween different regions or through more sophisticated measures of nonlinear coupling or
causal dependence.

Describing these types of networks with the language of graph theory and network science
is straightforward. Moreover, brain networks meet the definition of a complex systems
as an ensemble with collective properties that arise from the interactions among their
constituent units and are not directly attributable to the dynamic governing the single
component. The increasing interest in this area of research has led to a fundamental
insight: different complex systems share certain common properties despite profound
differences in the details of constitutive elements. Brain networks, both at the cellular
and whole-brain scale, shares some topological feature of these complex networks that are
not merely aesthetically, but are guided by some efficiency principles [9]. For instance,
small-world properties have been demonstrated in models of the nervous system of the
nematode Caenorhabditis elegans [10], in vertebrate brain-steam [11,12] and in the human
connectome [13]. Also many patterns of functional connections are consistent with a
small-world graph, implying a short network diameter, and it is associated with a high
global efficiency of information transfer [9]. These networks exhibit also a high clustering
coefficient, which is correlated with robustness to random failures of nodes or edges. Other
analysis identified a modular structure interconnected by hub regions with high betweeness
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centrality. The presence of specialized hubs is further supported by the scale-free degree
distribution [9].

Clearly, a deviation from this common topological organization could be a symptom of
the disruption or abnormal functioning of spatially distributed brain regions that would
ordinarily constitute a large-scale network, as it has already been demonstrated in many
neurological and psychiatric disorders, like schizophrenia [14] or Alzheimer’s disease [15].
Thanks to further developments in the field of network theory, in the future this geometric
properties could be hopefully used as a diagnostic marker to assess brain health or to
identify diseases at an early stage.

Another analogy with the world of complex system is the concept of criticality. The critical
brain hypothesis states that the brain may be poised near a critical point of a second-
order transition between an ordered, silent phase and a chaotic, overactive phase [16].
Indeed the collective neuronal dynamic resembles the scenario of critical phenomena,
which have already been documented in many natural processes like gene networks [17,
18], ecological dynamics [19], and flock formation [20]. In all these phenomena, such
different from each other, there is the presence of long-range spatiotemporal correlated
patterns which emerges in a wide variety of states [21]. The first, and probably the most
famous, convincing evidence of critical dynamics in brain cells was reported by Beggs
and Plentz [22]. They identified a new mode of spontaneous activity in cortical networks:
the neuronal avalanches. These cascades of synchronized bursting activity that spread
and distribute over the brain have a scale-free distribution well described by an inverse
power-law, both in spatial and temporal domain, with exponents that agrees with the
theoretical prediction for a critical branching process. Also, many other experimental and
theoretical studies have linked criticality with optimal computational properties [23, 24]
and flexibility to access the largest number of metastable states or, in other words, the
largest repertoire of behaviours [25,26]. From an evolutionary perspective, these benefits
may have prompted the brain to self-organize at the edge of a critical phase transition
which is not guided by any external inputs [16, 19]. Nevertheless, this hypothesis has
remained controversial and there is an open debate going on [27]. For instance, a relevant
counter-example is that many non-critical processes have also proven to be responsible
for scale-free neural avalanches [28].

How this rich patterns of coordinated electrochemical activities is related to our anatomi-
cal connectivity is still largely unexplored. The structural substrate acts as a constraint on
which dynamical interactions occur in the brain and partly determine the functionality of
each individual node. In many studies carried out over long time periods of measurements,
functional networks are robust and structural changes are relieved thanks to homeostatic
mechanisms. In fact most of the biological modifications to the neural tissue are asso-
ciated with aging, disease progression or experience-dependent plasticity. On the other
hand, at fast timescales functional networks undergo spontaneous fluctuations and are
highly responsive to external stimuli: how that is supported by the physical connectivity
is part of the unresolved structure-function relationship problem [29,30].

Computational models play a crucial and complementary role in this twisted road. Typ-
ically, such models are built on top of empirically derived brain structural networks that
specify the wiring between neuronal units. The dynamics is instead described by differ-
ential equations derived from biophysical mechanisms regulating the units activity. In
fact, the mathematical description of the origin of spikes in a single neuron is precise and
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predictive. During the 1950s from the recordings of the electrical activity in the squid
giant axon, Nobel-prize winners Hodgkin and Huxley unveiled that the gated ion channels
in neuronal membrane which generate fast depolarizing and slow hyperpolarizing currents
are responsible for the initiation and propagation of action potentials [31]. Because of the
considerable number of parameters, the Hogking-Huxley model cannot be generalized to
large populations of neurons, so the common approach is to introduce a rough approxi-
mation in the equations governing the dynamics. Probably the most widely used class of
models is the integrate-and-fire neuron model [32]. It describes the membrane potential of
a neuron in terms of the injected current that it receives. An action potential is generated
by the integrated effect of synaptic inputs when the membrane potential reaches a thresh-
old, regardless of membrane conductances and ion channels driving the actual changes in
membrane potential. ”The integrate-and-fire neuron model has become established as a
canonical model for the description of spiking neurons because it is capable of being ana-
lyzed mathematically while at the same time being sufficiently complex to capture many of
the essential features of neural processing” [32]. In presence of strong coherence inside a
population of cells in a small patch of cortex, it can be assumed that the dynamics of the
entire ensemble resembles the conductance-based model of each single neuron. With this
dimensionality reduction the description can be further generalized to interactions among
multiple local populations, such as excitatory and inhibitory units, as done in the family
of neural mass models. The scale of the whole-brain dynamics is then reached by coupling
an ensamble on these neural mass models into circuits and macroscopic networks whose
structure is obtained from empirical connectivity data [33].

Although many of these models were able to partly reproduce experimental findings at
the macroscopic scale, a broadly accepted mathematical theory for the collective activity
of neuronal populations is still missing. Moreover, the research in this field has largely
proceeded without formal biophysical models of the underlying large-scale neuronal activ-
ity, leading to more descriptive than explanatory theoretical models. The concerted effort
of new approaches for big data analysis with advancements in network theory and com-
putational modelling could deliver fundamentally new insights and knowledge in ”making
sense of brain network data” [34].

The purpose of this thesis is to present the state-of-the-arts techniques for extrapolating
structural and functional networks from brain imaging data and discuss their main prop-
erties from a network theory perspective (Chapter 1). Next we review the experimental
and theoretical evidence that supports the critical brain hypothesis (Chapter 2). In this
context, an interactive-particle stochastic model built on top of an empirically derived
neuroanatomical connectivity matrix was proposed few years ago [35]. This model is able
to reproduce some experimental findings from functional magnetic resonance imaging
when tuned at criticality. Our work sought to expand the study of this model by investi-
gating in more detail other evidence of criticality and the possible existence of avalanches
(Chapter 3). Then we explore the influence of topology on dynamics (Chapter 4). To
do that, we perform some simulations over graphs generated from classical ensembles of
network structure, like random and small-world graphs. Finally, we attempt to produce
a theoretical description of the model starting from a mean-field master equation.
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Chapter 1

Network Neuroscience

Biological and cognitive functionalities in the human brain are the manifestation of neural
interactions at multiple levels of organization. The modeling of the brain interactions
lends itself so well to be described with the language of network theory. A network is a
set of items, usually referred as vertices or nodes, with connections between them, called
edges [36] (see also Appendix A). Recent developments in neuroscience, that have led to
sophisticated empirical methods for mapping and recording neurobiological data, intersect
with theoretical and computational advances in data analysis and brain modelling. The
convergence of such improvements have given birth to the field of network neuroscience
[37].

How to define nodes and edges is a crucial issue and changes depending on the spatial
scale and the type of connections between units under analysis. Nodes may denote neural
elements, like neurons or brain regions, that are linked by edges representing physical
connections, like synapses or axonal projections, usually grouped under the name of white
matter. This family of networks describing the anatomical configuration of the encephalon
from inter-neuronal to inter-regional connectivity is gathered under the name of structural
networks. However, anatomical connectivity is merely an inanimate backbone on top of
which neurophysiological dynamics occurs. Indeed a network may also group the set of
even spatially distinct brain areas that contribute to the operation of a particular task
or control a specific sensory-motor system. In such types of networks the strength of the
links is a measure of the correlation and the co-activation between a particular pair of
regions, making up a functional network [9]. To what extent the functional operating of
the brain is constrained by the anatomical configuration is still largely unknown.

In this chapter we scratch the surface of the very wide world of structural and functional
brain networks, we briefly review their main topological properties within network the-
ory framework and the experimental techniques to obtain them. Moreover, we discuss
commonalities and differences between the two techniques, entering in the unresolved
structure-function relationship.

1.1 Structural Networks

Tracing the complete neuronal architecture of living beings has been one of the most
intriguing issue for many scientific branches and a long-standing technological challenges.
The first complete nervous system to be mapped was that of the nematode C. elegans
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CHAPTER 1. NETWORK NEUROSCIENCE

(Fig.1.1). In fact, thanks to electron microscopy recordings, researchers were able to de-
duced the complete connection matrix between its set of 302 neurons from reconstructions
of serial brain sections [10]. Until present, it is still the only nervous system to have been
comprehensively mapped at a cellular level, because in more evolved organism the number
of neurons and axonal pathways increases exponentially making it very hard to obtain a
complete description, if not nearly impossible.

Figure 1.1: The C. elegans wiring diagram. Red, sensory neurons; blue, interneurons; green, motorneurons.
Gray links, chemical and electrical synapses. From [38].

Although the C. elegans is one of the simplest organism with a nervous system, it has
provided interesting insights regarding organizational principles of the neural substrate.
Indeed it shows high levels of local clustering, combined with short paths that globally
link all nodes of the network, typical of a small-world graph (see Appendix A.5.2). This
means that all neurons are linked through relatively few intermediate steps, despite the
fact that most nodes maintain only a few direct connections, mostly within a clique of
neighbours. Such properties favour a rapid exchange of information through electrical
signals between neurons, thus leading to better performance of the nervous system. In
other words, these findings indicate that even the simplest nervous system has evolved to
a non-random architecture to achieve a more efficient neural processing [9].

Histological dissection and axonal tracing have been used to map cerebral white matter
connections, obtaining models of cortical sensory-motor system in vertebrates, like the
macaque visual cortex [11] and the cat thalamocortical system [12]. Network analysis of
such data reveals also in this cases small-world properties.

Human brain has around one hundred billion neurons and almost seven hundred trillion
synaptic connections. Building a complete human connectome is thus inconceivable with
existing technology. Nevertheless, scientists still manage to get a measure of global brain
connectivity at mesoscopic spatial scale. With diffusion tensor imaging (DTI) and trac-
tography methods, it is possible to track the diffusion of water in neural tissue to have
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1.2. FUNCTIONAL NETWORKS

an estimate of the real white matter axonal trajectories and a map of the internal struc-
tures of the brain [39]. DTI has difficulties in detecting crossing fiber bundles, which are
overcome by reconstructing multiple diffusion directions in each voxel thanks to diffusion
spectrum imaging (DSI), allowing a more accurate mapping of axonal trajectories [40].

In [13] a famous high resolution cortical connectome was derived from DSI analysis of 5
healthy participants. Connectivity matrices were obtained both at high spatial resolution,
as well as for regional connectivity (Fig.1.2). Cortical volume from MRI data was first
parcellated with segmentation algorithms into 66 anatomical sub-regions, which in turn
were partitioned into 998 regions of interest (ROI) with an average size of 1.5cm2. Each
entry in the overall symmetric weighted connectivity matrix (Fig.1.3-a) represents the
total number of axonal pathways between a pair of ROIs, normalized by their cortical
surface. In the regional connectivity matrix, the weights are averaged over fiber densities
for all pairs of ROIs belonging to the same region.

Having almost 1000 units in the derived network allowed to perform an extensive graph
analysis. Distributions of node degree and node strength were found exponential rather
than scale-free, with most of the connections linking nodes belonging to the same anatom-
ical sub-region or to functionally related areas [13]. Moreover, the study revealed highly
clustered structural modules interconnected by specialized and highly central hubs, en-
suring a short overall path lengths across the network. In addition, clusters identified
by network analysis map on to known functional subdivisions of the cortex [9]. Even if
only a small percentage of links connects the two hemispheres, ”the high degree of inter-
hemispheric coupling further suggests that it (the brain) acts as a single integrated system
from which processes in both cortical hemispheres are coordinated” [13].

1.2 Functional Networks

The brain is continuously active and generates electrical signals that communicate between
the various regions to coordinate the vital functions of every human being. Neuronal activ-
ity can be directly measured with electrophysiological methods, like magnetoencephalogra-
phy (MEG), electroencephalogram (EEG), and multi-electrode array (MEA), that record
electrical or magnetic potentials on the surface of sensors or electrodes, resulting in a
2-D projection of the overall neural dynamics. Despite a good temporal resolution, these
methods have a poor spatial resolution, on the order of millimeters or centimeters.

To obtain activity in anatomically localized regions of cortical volume, functional MRI
(fMRI) measures blood oxygen level dependent (BOLD) signals that is found to be related
to neuronal activity [9]. Indeed, ”when neuronal activity increases there is an increased
demand for oxygen and the local response is an increase in blood flow to regions of increased
neural activity. Oxygen is delivered to neurons by haemoglobin in capillary red blood cells.
Haemoglobin is diamagnetic when oxygenated but paramagnetic when deoxygenated. This
difference in magnetic properties leads to small differences in the MR signal of blood
depending on the degree of oxygenation. Since blood oxygenation varies according to the
levels of neural activity, these differences can be used to detect brain activity” [41].

fMRI signals are very susceptible to many sources of fluctuation, like the heartbeat,
breathing or head motion artifacts, and to interference with close brain areas, therefore it
requires a profound statistical analysis [42, 43] Typically, after detrending and regressing
out the experimental time-series, the ”real” time course of brain regional dynamics is
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CHAPTER 1. NETWORK NEUROSCIENCE

Figure 1.2: Pipeline for obtaining a structural connectivity matrix of the human brain. (1) High-resolution
T1 weighted and diffusion spectrum MRI (DSI) is acquired. (2) White and gray matter segmentation is
performed from the T1-weighted image. (3a) Cortical volume is parcellated into 66 cortical regions with
clear anatomical landmarks, (3b) subdivided into 998 small regions of interest (ROIs). (4) Whole brain
tractography is performed providing an estimate of axonal trajectories across the entire white matter.
(5) ROIs identified in step (3b) are combined with result of step (4) in order to compute the connection
weight between each pair of ROIs. From [13].

inferred thanks to dimensionality reduction or clustering algorithms. Independent com-
ponent analysis (ICA) is perhaps the most commonly used. Given some space-time mea-
surement, ICA searches for statistically independent sources that give rise to the observed
signals. In this case, each source reflects the time course of the neuronal dynamics from
a specific and spatially located region of the human brain [44].

Functional connectivity is defined as the ”temporal dependency of neuronal activation
patterns of anatomically separated brain regions” [45]. The weights of the functional
connectivity matrix are usually computed as a cross-correlation map between the result-
ing pairs of time-series from ICA, that reflects the level of co-activation and functional
communication between regions. fMRI measurements can be performed in task-related
experiments or in patient at rest. Interestingly, studies on resting-state fMRI BOLD time-
series reveal high correlations between the spontaneous neuronal dynamics of brain areas,
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1.2. FUNCTIONAL NETWORKS

Figure 1.3: High-resolution connectome. (a) Connectivity matrix between all pairs of 998 ROIs, plotted
by cerebral hemispheres. The color bars at the left and bottom of the matrix correspond to the colors
of the 66 anatomical subregions shown in Fig.1.2. (b) Force-spring layout of the connectivity backbone.
Nodes are coded according to strength and edges are coded according to connection weight. (c) Dorsal
and lateral views of the connectivity backbone. From [13].

suggesting ongoing information processing and ongoing functional connectivity during
rest. Most of the resting-state patterns tend to occur between brain regions that over-
lap in neuroanatomy and are known to be responsible for the functioning of a particular
neural system, like motor, visual or auditory circuits and were demonstrated to be highly
consistent across subjects: ”This observation suggests that brain regions that often have
to work together form a functional network during rest, with a high level of ongoing spon-
taneous neuronal activity that is strongly correlated between the anatomically separated
regions that form the network” and ”makes spontaneous resting-state fMRI oscillations a
robust measure to examine functional connections between brain regions on a whole-brain
scale” [45]. In addition, it was discovered that these resting-state networks (RSN) corre-
spond to the mayor systems in the brain: visual, auditory, sensory-motor, default mode,
executive control and dorsal attention [46].

Of special interest is the so-called default mode network (DMN). Such network is charac-
terized by ”elevated level of neuronal activity during rest, in comparison to when cognitive
tasks are performed, suggesting that activity of this network is reflecting a default state of
neuronal activity of the human brain, linked to core process of human cognition, including
the integration of cognitive and emotional processing, monitoring the world around us and
mind-wandering” [45].
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CHAPTER 1. NETWORK NEUROSCIENCE

Figure 1.4: Standard masks of resting state networks (RSNs). Blue regions show brain regions included
in the RSNs. From [15].

Again, graph analytical methods are used to examine the overall architecture of brain
functional networks in the brain. Many studies show an efficient small-world organiza-
tion, that combines a high level of local connectivity with a very short average distance
between the nodes, ensuring a high level of global efficiency. Moreover, the analysis of the
degree distribution suggested an exponential truncated power-law in some cases, while
scale-free in others. Both class of networks are known for their high level of heterogeneity
and resilience against random attack to nodes or edges, indicating a very robust func-
tional network organization. On the other hand, scale-free organization is vulnerable to
specialized attacks, especially on the highly connected hub nodes. Indeed, a failure of one
of these hubs blocks the communication of signal between distant regions in the brain. It
has been hypothesized that specialized hub nodes may be affected in neurological and psy-
chiatric brain disorders as Alzheimer’s desease, resulting in decreased functional efficiency
in these patients [45].

1.3 Structure-Function relationship

The relationship between structure and function is a central concept in natural sciences.
Indeed the architecture and the conformation of living systems mostly determine their
biological function. Analogously, the function of the nervous system is shaped by the
structure and arrangements of neurons and neuronal circuits. The emergence of network
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1.3. STRUCTURE-FUNCTION RELATIONSHIP

neuroscience offers growing opportunities to quantify the link between the organizational
features of neuronal networks and the spectrum of cortical functions. In particular, com-
bined studies of both structural and functional networks in the same subjects have allowed
direct comparison of the two. These studies suggest a direct association between func-
tional and structural connectivity in the human brain. Central hubs and clustered areas in
structural networks are reflected also at the functional level. Moreover, structural weights
are significantly correlated with functional weights [30]. However, the best-case estimates
place the correlation coefficient between structural and functional networks are around
R2 ≈ 0.5 [13], meaning that considerable variance, more than one half, in brain func-
tional behaviour is unexplained by a direct one-to-one correspondence with anatomical
structure. Such divergences emerge not only at local spatial scale but also globally. For
instance, structural networks display evidence of assortative mixing, indicating that nodes
with similar properties are more likely to be connected, in contrast to functional networks
(see Sec.A.4.3 for a formal definition of assortativity). The discrepancy is particularly
pronounced at the mesoscopic scale, at which clustering or community detection methods
applied to structural data fail to identify some of the resting state networks, mainly due
to missing anatomical interconnections [30].

Figure 1.5: Functional connectivity of human brain can be only partially infered from structural connec-
tivity. (a) Linear relation between structural and functional connections in the same subjects explains
only around 50% of the variance. From [13]. (b) Community detection alghoritms for structural and
functional networks typically yields different solutions. The matrices compare structural and functional
connections, arranged following respectively structural (left) or functional (right) communities. Each
community is enclosed in red squares and it is reported in the brain atlas around the matrices. From [30].

A plausible explanation of such discordance between structure and function in the brain
is the emergence of collective, higher-order interactions among neural elements that is
beyond the geometric and local clustered dependence of graph-modeled structures. Func-
tional interactions may result from indirect structural connections, also driven by the
common inputs from sensory organs and the entire organism [30]. So brain functioning
seems to be an emergent properties of the human brain. This topic will be dealt in more
detail in Chapter 2.

Many theoretical and computational models have been proposed to bridge the gap between
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CHAPTER 1. NETWORK NEUROSCIENCE

anatomy and brain dynamics, with a focus on their biological interpretation and predictive
utility. A set of these models with a more data-driven approach combine multiple networks
from various scale and from different experimental techniques to obtain more sophisticated
statistical measures. On the other hand, biologically inspired models generate detailed
neuronal dynamics to make inferences and to predict brain functionality from anatomical
configurations [29].

Among the other limitations, a relevant issue is the shortage of individual based analy-
sis. Most of the structural and functional description obtained from brain imaging are
based on group-average networks, that were demonstrated to be almost stable and repro-
ducible among different studies. However, there is less experimental evidence about the
structure-function relationship in individual due to the profound inter-subject variability.
Individual differences may provide a probe for investigating the effects of perturbations
and modifications as a result of cognitive tasks, development and aging, neurological and
psychiatric disease, lesions. How to reconstruct networks while accounting for differences
in individual topological organization remains a major question for future studies [30].
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Chapter 2

Emergent patterns and Criticality in
the Brain

The study of phase transitions is a topic well known by physicists. As you vary an external
control parameter, such as the temperature or the magnetic field, in some cases the
macroscopic properties of a system will abruptly change. Thermodynamics has formally
explained these phenomena as discontinuities in the derivatives of the free energy. If
this transition imply a divergence in the response functions, like the susceptibility or
the specific heat, we are in presence of a critical point. The interest in critical states is
related to some unique characteristics that physical systems exhibit in these particular
conditions. For instance, the dynamics is mostly governed by the fluctuations of the local
properties that govern the dynamics and the correlations extend to the macroscopic size
of the system. In addition, fractal structures and complex dynamical pattern appear
spontaneously and are self-similar when observed at different spatial scale [47].

Thus a hallmark of criticality is the absence of a typical scale, reflected by a scale-
invariance in the physical quantities of the system. The only class of functions that
satisfies such scale-free behaviour are power laws f(x) ∝ xα. A major achievement of sta-
tistical physics is the universality of such critical behaviour: interacting systems share the
same exponent α if they have the same dimensionality and if the order parameter belong
to the same symmetry class, independently of the details of the microscopic components.

Critical phenomena represent only a small portion of emergent properties. The term emer-
gent is used to evoke collective behaviour of a large number of microscopic constituents
that is qualitatively different than the behaviours of the individuals [48]. In other words,
these properties arise from the collaborative functioning of a group of items, whether in-
sects, atoms or buildings, and are not encoded in any single agent. In fact the definition
is fulfilled for instance by neutralization reactions of chemical systems, the construction
of hills and dams by ant colonies, the complex social organization of human beings, the
cohabitation of many species in ecosystems.

Like ants building up a colony or birds migrating in flocks, no single neuron hold the
information for high-level cognitive tasks, like reasoning, processing sensory inputs, feeling
emotions. Although the mechanisms of operation is not yet fully understood, cognitive
tasks are correlated with complex emergent neural patterns.
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2.1 Neuronal avalanches

These scaling patterns are also exhibited by networks of living neurons. Like avalanches
[49], earthquakes [50] and forest fires [51], also brain activity can organize into a critical
state in which event sizes show no characteristic scale. Back in 2003, Beggs and Plenz [22]
investigated the propagation of spontaneous activity in cultured and acute slices of rat
cortex on multi-electrode arrays by recording the local electric field generated by the
population of neurons, called local field potentials. These extracellular signals often display
a sharp negative peak, indicating a population spike [22]. So LFPs were binned in time
and a threshold was used to determine the events of interest. At a glance, LFPs appear
on many electrode in synchronized bursting interleaved by many seconds of quiescence
(Fig.2.1-a). Nonetheless, by analyzing the traces at a finer temporal resolution (Fig.2.1-b),
it becomes apparent that some LFPs occurred before others, forming a non-synchronous
activity that spread over space and time and not propagate only in spatially contiguous
electrodes as a wave.

A neuronal avalanche is defined as a sequence of consecutively active frames preceded
and ended by a blank frame. The variability of these spatio-temporal patterns suggests
to analyze the statistics of the size of the avalanches, which was defined in two ways: the
number of electrodes activated during the avalanche; the sum of LFP amplitudes above
threshold over all electrodes. In either, the distribution revealed a linear relationship in
log-log coordinates with a cutoff near the maximal number of electrodes (Fig.2.1-c).

Figure 2.1: Raster plot of spontaneous activity recorded with the multi-electrode array (a) conceals
an avalanche of three frames at a finer timescale (b). Distributions of avalanches size (c) and lifetime
(d) follows a linear trend in log-log scale with exponents consistent with a critical branching process.
From [22].
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Instead, the lifetime of an avalanche is simply defined as the count of the consecutive bins
in which it is present. By normalizing with respect to the temporal width of the bins, the
distribution of lifetimes is likewise scale-free, but with an exponential cutoff (Fig.2.1-d).

These scaling properties provide some critical exponents close to -3/2 and -2 respectively
and are shown to be very robust over the change of experimental parameters, like the
bin width or the threshold for binarizaring the LFP signals. Such exponents are the
same of any model belonging to the universality class of directed percolation in dimension
larger than or equal to its upper critical dimension dc = 4. What all these models have in
common is the presence of a continuous phase transition that occurs between an absorbing
and an active phase [52].

A simple toy model that belongs to this universality class and theoretically predict the
same slopes is the critical branching process [53]. The original purpose of the branching
process was the mathematical description of population growth in which each generation
produces some offsprings according to some random numbers. The branching parameter
σ generally indicates the expected number of children of each individual and this model
seems to be naturally extensible to a system of excitable units that induce activation in
neighbour sites, like a network of neurons. To investigate whether a branching process
might properly describe propagation of neuronal activity in cultured populations, the
branching parameter was measured directly from the system as the ratio of descendant
electrodes to ancestor electrodes for two successive bins in a certain avalanche (Fig.2.2-
a) [22]. From theory it is known that σ > 1 implies a supercritical, active phase in
which at each time step the offsprings increases exponentially, while with σ < 1 the
activity decreases over successive steps, eventually dying out (absorbing phase). The
direct measurement of σ reveal values close to the critical value (σ = 1.04 ± 0.19 for
avalanches starting with a single electrode, σ = 0.90 ± 0.19 for avalanches starting with
more than one electrode) in which activity at one electrode would spread on average to
one other electrode, keeping the system at the edge of stability.

Figure 2.2: Network dynamics in cultured networks are characterized by a critical branching parameter
of σ = 1, suggesting a state of optimal information transmission. (a), Experimentally the branching
parameter σ of an individual avalanche is estimated as he ratio of descendant electrodes to ancestor elec-
trodes. (b), In feedforward networks the branching parameter σ that optimizes information transmission
approaches 1 for increasing network sizes. From [22].
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The compatibility of the experimental branching parameter with critical condition prompts
the question of what characteristics might be promoted by criticality from the perspective
of signal processing. A way of exploring this issue was based on an artificial feedforward
architecture that simulates the propagation of neural activity by associating to each con-
nection a probability of successfully transmitting activity to the next unit [22]. Starting
from a random pattern of activation in the input layer, this models allows to test the
transmission of information through the network by varying the branching parameter1.
The peak of information transmission asymptotically approaches the critical values as the
number of input units increases (Fig.2.2-b).

Figure 2.3: Number of statistically significant repeating avalanche patterns is maximized at the critical
point. (a) Number of metastable states i.e. significant repeating avalanche patterns as a function of the
branching parameter σ for different network sizes. It can be noticed that larger networks peak closer to
σC = 1. (b) The branching parameter σ that maximizes the number of metastable states asymptotically
approaches σC = 1 regardless of the number of connections per unit. From [24].

In cortical cultures activity does not propagate in a random manner, but in preferred
paths that are significantly repeated over several hours. Such activation patterns resemble
metastable attractors usually encountered in various physical, chemical, and biological
systems, raising the question of what is the relation between the branching parameter and
the number of these metastable states. Typically, similar complex patterns of fluctuations
arise in critical systems that operate at the border of order and disorder [26]. To address
this issue, the branching process was simulated in a network of processing units randomly
connected to each other, resulting in a recurrent, rather than feedforward, architecture
[25]. Starting with a random activation, the activity of the network is let to evolve for
some time steps and then the output configurations are collected. Statistically significant
repeating pattern are clustered together and each group identifies a metastable state.
Again, the number of metastable stases is maximized at the critical point, that approaches
σ = 1 for large systems (Fig.2.3). Therefore, criticality leads to a wider range of stable
patterns in the network and this may be related to optimal information storage in human
brain.

1Branching parameter is defined as σ =
∑C

i pi, where pi is the probability of transmitting an activation and C
is the number of nodes in the next layer. Information transmission is defined as I(S,R) = H(R)−H(R/S), where
H(R) is the entropy of the response set, i.e. the possible binary patterns that appear in the output layer, while
H(R/S) is the entropy of a response given a stimulus, i.e. binary pattern presented to the input layer, calculated
over all responses and stimuli.
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These results seems quite reasonable from an intuitive understanding: if the system were
subcritical, it is difficult for the network to spread an high level of activity, thus most of
the inputs would produce similar attenuated output patterns; on the other hand, if the
system were supercritical, any input would lead to a massive activation of the network,
so in both cases leading to poor transmission of input information up to the output layer
and few achievable configurations.

Although power laws are consistent with the idea of human brain operating near a critical
point, their existence alone is not a sufficient condition for criticality [27]. Many stud-
ies propose models that produce scale-free behaviour far away from a phase transition
(or that do not have a transition at all). For instance, a sparsely connected integrated-
and-fire model produces such scalings in the whole range of parameters consistent with a
synchronous irregular regime and is claimed to be an effect of the inhibition state, which
is absent in a branching process [28]. In another integrate-and-fire model forming an
Erdos-Renyi network of neurons, diverse avalanches, obeying scaling, can coexist simul-
taneously as a result of an underlying neutral dynamics, i.e. each event of activity is
indistinguishable from others, a mechanism alternative to self-organized criticality [54].

2.2 Long-range temporal correlations

Other signatures of criticality in neural activity have been proposed. A complementary
evidence to scale-free avalanches is the long-range temporal correlations (LRTC) of brain
signals, which have been observed both at macroscopic [55] and microscopic levels [56].
The discovery of LRTC in the amplitude envelope of ongoing oscillations was based on 10
subjects recorded with simultaneous EEG and MEG for 20 min during eyes-closed and
eyes-open rest [55].

The oscillatory activity was highlighted by peaks in the amplitude spectra both in the
alpha frequency band (8-13 Hz) from signals of the occipital and parietal regions, and
in the beta frequency band (15-25 Hz) from signals of the somatosensory region. To
quantify the temporal structure of amplitude fluctuations, power spectrum and autocor-
relation analysis were performed. The power spectrum exhibits a 1/fβ power-law decay
(Fig.2.4-a,b) that indicates a lack of a characteristic scale for duration and recurrence of
oscillations. Likewise, the autocorrelation shows a slow decay well-fitted by a power law,
with statistically significant values up to time lags larger than 100 seconds, indicating
that brain areas are functionally correlated for quite long period of time (Fig.2.4-c,d).

Once more, these spatio-temporal patterns of large-scale dynamics could be the result of
a system self-organized close to a critical state and may provide neural circuits with the
ability of integrating information over extended periods of time, an essential ingredient for
information processing. For example, in decision-making and working memory tasks, this
ability may increase the signal-to-noise ratio and may afford to maintain some memories of
past activities [57]. A deviation from this behaviour may be responsible of lower cognitive
abilities. Indeed, a reduction in the long-range correlations was proven in pathological
conditions like schizophrenia [14] and lack of sleep [58].
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Figure 2.4: Alpha oscillations exhibit power-law spectra and long-range temporal correlations. The
power spectral density is reported in double logarithmic scale for MEG (a) and EEG (b). Arrowheads
mark the interval used for estimation of slopes. The autocorrelation function of amplitude fluctuations is
reported both for MEG (c) and EEG (d) with increasing time lag. Circles, eyes-closed condition. Crosses,
eyes-open condition. Dots, reference recording. From [55].

2.3 Signatures of criticality in Resting State Networks

In Sec.1.3 we have already argued how functional patterns of the brain at global scale
might emerge from non-linear neural interactions between spatially segregated regions.

The 2-dimensional Ising model can be used to model an effective functional network.
In particular, functional links are placed between nodes that have a pair-wise cross-
correlation larger than a fixed threshold. Such functional Ising networks obtained at
the critical temperature are claimed to be ”indistinguishable” from brain functional con-
necitivity data, while they strongly differ from brain networks in the sub- and super-critical
phase [59]. Moreover, the fat-tail statistic of the number of links, i.e. the degree distribu-
tion, in resting state networks (RSNs) can be replicated by the 2-dimensional Ising model
only when it is poised at critical temperature [59].

Another direct evidence of critical dynamics was discovered in the phase synchronization.
The phase lock intervals2 display a scale-free distribution, typical of critical phenomena
[60]. Furthermore, such trend is replicated by the Ising model and the Kuramoto model, a
system composed of an ensemble of coupled oscillators each with its own natural frequency,
again only if tuned at criticality [60].

2defined as the length of time that a pair of neurophysiological signals, simultaneously recorded from two
different MEG sensors or two different brain regions in fMRI, are in phase synchronization with each other

18



2.4. IMPORTANCE OF BEING CRITICAL

2.4 Importance of being critical

The human brain, in all its staggering complexity, is the product of millions of years of
evolution. ”If the ability of an organism to process information about its environment
is a driving force behind evolution, then the more information a system, such as the
brain, receives, and the faster it can process this information, the more adequately it
will be able to respond to environmental challenges and the better will be its chances of
survival” [61]. Although the details of the interpretation of the neuronal organization are
still controversial, it is evident that the potential for brain evolution results not from the
unorganized aggregation of neurons, but from their cooperative association.

We have already pointed out how the information processing and storage in the brain
may be improved at criticality [24]. ”The limit to any intelligent system therefore lies in
its abilities to process and integrate large amounts of sensory information and to compare
these signals with as many memory states as possible, and all that in a minimum of
time” [61]. In order to do that, the brain needs to discriminate the largest range of
environmental stimuli and to have access to the largest repertoir of states.

The dynamic range can help to quantify the responsiveness of the brain when subject to
external stimuli. Widely used in psychophysics to study how physical stimuli transduce
into psychological sensations, it is defined as the logarithm of the ratio between the largest
and the smallest value of the stimulus that is robustly coded in variations of the response
(see Sec.3.4.2 and Eq.3.14 for a more formal definition). Studies on networks of excitable
elements pointed out that the dynamic range of a single neuron is substantially smaller
than the dynamic range observed at the macroscopic level and is maximized at the critical
point, providing further insight into emergent properties of the brain [23].

The diversity of activation patterns or global brain states reflects its information capacity
and contributes to the state of consciousness of an individual [62]. The repertoire of
these brain states was also explored by simulating dynamic interaction of mesoscopic
brain regions using a modified spin-glass model [26]. Resting state fMRI was recorded
from 20 partecipants and mapped to 10.000 cortical regions. The resulting correlation
matrix, averaged across subjects, was used as connectivity matrix for the simulation.
According to the Ising model, each site stochastically transitioned between up (active)
and down (inactive) states under the net influence of nearest pairs. The probability of
local transitions was controlled by a single parameter T, analogous to temperature in
the classical Ising model, that corresponds to the level of global cortical activation. A
small sample of pattern is reported in Fig.2.5-a. To measure the temporal diversity of
metastable states over time at all time lags, the dispersion index D is defined as

D = K
< (1− cc) >
var(cc)

(2.1)

where cc is the pair-wise temporal correlation matrix between states at different time lags,
K is a normalization constant equal to the variance of the uniform random distribution of
the same size as the cc matrix [26]. It was computed as a function of the control parameter
(Fig.2.5-b). At intermediate values, metastable states dominate and the diversity of brain
states as measured by dispersion index is maximum, while its value drops sharply at both
smaller and larger T, suggesting the presence of a second-order phase transition. Low
values of activation level may characterize suppressed cognitive states such as anesthesia
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Figure 2.5: Spin-glass model predicts metastable brain states that maximize at critical activation level.
(a) The 40 most frequent patterns at T = 0 activation level. Pseudo-color indicates the probability of up
(red) and down (blue) states of each site (arbitrary scale). (b) Dispersion index D shows critical behavior
as a function of activation level T. From [26].

or deep sleep, while high values are thought to correspond to hyper-activated conditions,
like epilepsy [62].

A typical measure of the number of configurations to which a certain system has access
is entropy. This definition, which comes from statistical mechanics, has been proven
equivalent to Shannon entropy in the context of information theory. Given a random
variable, Shannon entropy is the average amount of information in a possible outcome.
From such definition, entropy is strictly related to transmission and storage of information,
since from a theoretical point of view it is maximized by an optimal transmission channel
[63]. We can thus understand the reason why human cognition benefits from being critical
and having access to a large number of metastable states. In support of this, a study on
fMRI data in a large sample of healthy adults has examined brain entropy, which was
found to correlate with higher intelligence measures in several key brain areas [64].

2.5 How to build a critical brain

Human brain might have tuned at the edge of a phase transition to take advantage of
this optimal processing properties. Nonetheless, criticality is not driven by any external
parameter, like temperature or magnetic field as usually happens in physical systems, but
emerges from the dynamical interaction of neurons. This phenomenon was already found
in other biological systems and is named self-organized criticality, which is easily imple-
mented by a feedback mechanism that increases the control parameter in the subcritical
phase and decreases it in the supercritical phase [16].

One can therefore ask how a complex and highly variable system such as the brain can
remain correctly tuned to this state. Moreover, the brain is constantly subject to environ-
mental stimuli, thus the self-organization is continuosly reached in a dynamical way. An
important mechanism that alters brain structure by adjusting the strength of connections
between neurons and regulating the firing rates is the spike timing-dependent plasticity
(STDP). Input spikes occurring in the presynaptic cells immediately before those in the
postsynaptic cell strengthen the connection in a phenomenon called long-term potenti-
ation (LTP). In this way, inputs that might be the cause of the post-synaptic neuron’s
excitation are made even more likely to contribute in the future, in the spirit of Heb-
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bian’s postulate about synaptic learning rule synthesized in the famous quote ”cells that
fire together wire together”. In a totally opposite way, synaptic efficiency decreases when
the firing of their incoming links is persistently independent of firing their outgoing ones,
resulting in long-term depression (LTD).

This mechanism, unless mitigated by other processes, may alter the excitation of a neuron
dramatically, pushing into an unstable phase, out of its ideal functional regime. These con-
siderations have encouraged to investigate additional types of plasticity, complementary
to STDP, that may constraint synaptic weights and modulate neuron’s intrinsic excitabil-
ity around its optimal working point. Some of these strategies are collected under the
name of homeostatic plasticity. In complicated neural circuits, homeostatic regulation
might require multiple processes acting on different timescales and in different ways. The
major ones are: synaptic scaling, that occurs at the level of individual neurons and keep
its synapses within some optimal and energetically advantageous size range; homeostatic
intrinsic plasticity, whereby the expression of voltage- and calcium-gated ion channels
adjusts the gain and the threshold of individual neurons; metaplasticity, embedded in the
rules of Hebbian plasticity itself, for which the synapses undergo Hebbain modification
based on previous history of neuronal activity, thus being a plasticity of the plasticity
itself [65].

Figure 2.6: Different mechanisms of plasticity in synaptic strength dynamically tune the brain at crit-
icality. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting
changes in synaptic strength, which can be destabilizing and drive activity to supercritical regime. Con-
versely, homeostatic plasticity operates to compensate, stabilizing neuronal firing within a dynamic phys-
iological range. From [66].

According to these mechanisms, self-organization seems to rely on the dynamics of local
neuronal excitability rather than global regulation. Although synaptic conductances seem
to be a plausible candidate as a control parameters driving the brain to the critical phase,
many questions remain to be addressed about this topic [16]. Moreover, due to the highly
hierarchical and modular structure of the anatomical structural matrix and due to the
abundance of parameters that affect the dynamics, the global phase transition is spread
out over a broad range of parameters, better appointed as critical region rather than
critical point, where different modules may be in the supercritical region, while other
are in the subcritical regime, maintaining equally optimal global cognitive capabilities
typical of criticality. In addition, different regions may be perhaps tuned to different
phase transitions, each one beneficial for various specific cognitive process [16].
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Chapter 3

A stochastic whole-brain model of
the human connectome

In Chapter 2 we have provided some highlights of the so called critical brain hypothesis,
i.e. that human brain might work at the edge of a critical transition as this might be
quite beneficial for information processing and transmission. These experimental and
theoretical results have prompted the search for computational models consistent and
capable of reproducing such behaviours.

A large class of models suitable for modelling neural activity is the one of excitable me-
dia. These are nonlinear dynamical systems in which a wave can propagate through the
medium, after which it undergoes an inhibition phase and cannot support the passing of
another wave until a certain amount of time, called refractory time. Like a fire burning
in a forest, there cannot be another fire until the vegetation has grown back to support
it [67].

A similar behaviour is observed also in neurons in the spreading of action potentials
(Fig.3.1). The synapses collect electrical signal from neighboring neurons, causing a
change in the resting membrane potential (≈ −70mV ) of the receiver. If the incom-
ing stimulus is large enough to depolarize the neuron up to a certain threshold potential
(≈ −55mV ), it triggers the inflow of sodium ions in a positive feedback, leading to an
abrupt peak in the membrane potential that travels all along the axon. This is followed
by the opening of potassium channels, whose outflow tends to hyperpolarize the mem-
brane back to negative values. In the following milliseconds an action potential cannot be
triggered again, until the the neuron restores the intracellular ion concentration, bringing
the membrane back to the resting potential. This phase is called refractory period [31].
At a larger spatial scale, the same functioning consisting of moment of strong activation
interspersed with silent phases can be extended more generally to neural signals between
mesoscopic regions of the brain.

In the rest of this work we focus on a stochastic whole-brain model [35] built on top of
the human connectome derived from DSI scans of white matter fiber tracts [13]. As done
in [68], we name it ”HTC” model from the initials of the first proposers. What makes this
model interesting is that it is capable of reproducing some experimental findings seen in
fMRI experiments when tuned at its critical point.
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Figure 3.1: Schematic representation of an action potential. 1) An incoming stimulus causes a change
in the membrane potential. 2) If the membrane potential exceeds the threshold potential, the opening
of sodium channels leads to a strong depolarization. 3) The outflow of potassium ions repolarize the
membrane 4) up to lower values than the resting potential. 5) Ion pumps bring the neuron back to the
resting potential.

3.1 HTC model

The model consists of a network of interconnected excitable nodes following the dynamics
of the Greenberg-Hastings cellular automaton [69]. The connections between the units
are summarized by a symmetric weighted matrix W , where each entry represents the
strength of the interaction between a pair of nodes. Each node can be in one of three
possible states: active (A), inactive (I) and refractory (R). The state variable of a given
node i, si(t), is set to 1 if the node is active, 0 otherwise. The temporal activity of the
states evolves according to the following transition rules:

I −→ A if
∑

jWijsj > T or with prob. r1

A −→ R with prob. 1

R −→ I with prob. r2

(3.1)

where:

• Wij is the weight of the connectivity matrix of the underlying network from node i
to node j

• r1 is the probability of self-activation

• r2 is the probability of recovery from refractory state

• T is a threshold which governs the induced activation due to interaction with neigh-
boring nodes1

With this modeling the temporal evolution of each unit roughly resembles the functioning
of a neuron: it can activate if the (weighted) combined activity of neighbours exceeds a

1Threshold T should not be confused with temperature, a common control parameter in statistical systems.
Indeed, high temperature favors particles motion and leads to a super-critical phase, the same is obtained in the
HTC model for low value of T .
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Figure 3.2: Example of dynamical transition of the HTC model: active nodes at t0, respectively n2, n4
and n5, excite n1 at t0 + 1, while they become refractory; at next step t0 + 2, n3 and n5 have recovered
and are susceptible of excitation again. From [70].

certain threshold T or due to an external stimulus r1; after the activation, the neuron
transitions to a refractory state and cannot activate again; it can escape from inactivity
after a refractory period modeled on average by r2 (Fig.3.2).

In order to characterize the simulated brain activity, the following quantities are consid-
ered:

• average network activity:

〈A〉 =
1

ts

ts∑
t=1

A(t) (3.2)

• standard deviation of network activity:

σ(A) =

√√√√ 1

ts

ts∑
t=1

(A(t)− 〈A〉)2 (3.3)

These two metrics capture the amount of activation in the global brain dynamics
and its temporal variability.

• average of first and second largest cluster 〈S1〉 and 〈S2〉:
Clusters are defined as network components that are structurally connected (i.e.
Wij > 0) to each other and simultaneously active (see also Sec.A.3).

where the activity for a network of N units is defined as the fraction of active nodes at a
given time:

A(t) =
1

N

N∑
i=1

si(t) (3.4)

3.1.1 Dynamics and phase transition of the model

The simulations of HTC model were run keeping fixed r1 (≈ 10−3) and r2 (≈ 10−1) while
varying T , which takes on the role of control parameter. For each value of the threshold
T , the network states are updated for ts time-steps, starting from a random configuration
of active A states. From here on, unless otherwise specified, the observables are averaged
over an ensemble of 100 different time-series, evolved for 6000 steps from a random initial
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configuration of 10% active nodes. In order to sample values near a stationary state, we
let the system run for 100 steps before starting to collect data.

HTC model was originally run [35] over the structural network of neuroanatomical con-
nections reported in Figure 1.3-a. We repeat the same study, whose results are reported
in Figure 3.3. As depicted in these graphs, the dynamics of the model shows a transition
between two regimes. For small values of T , even the weakest connections are enough
to cross the threshold, easily transmitting activity to neighboring nodes. This leads to a
regime of high activation of the network and the nodes manage to create a giant cluster
that covers almost 20% of the system. We refer to this phase as ”super-critical” (Fig.3.4,
left column), characterized by sustained activation with fast and temporally uncorrelated
fluctuations, as suggested by the flat spectrum and the quick decline of the autocorrela-
tion. At the opposite side, for high values of T, only the few strongest connections are
able to support the activity, resulting in a suppressed or ”sub-critical” phase with regular,
low-frequency and short propagating brain activity (Fig.3.4, right column) in which nodes
fail to give rise to relevant clusters. At intermediate values of T, a continuous transition
connects the two regimes, resembling a second-order phase transition (Fig.3.4, central
column) with synchronous activity.

Figure 3.3: Dynamics of HTC model undergoes a second-order phase transition by varying the threshold
T, as identified in the peak of the variance and the second largest cluster. (left) Average brain activity
A (solid line) and its standard deviation σ(A) (dashed line) for different values of threshold T. While
A monotonically decreases to zero, σ(A) shows a peak for intermediate value of T. (right) Average size
of first S1 (solid line) and second S2 (dashed line) largest clusters display the same behaviour. (colored
dots), values of T corresponding to Fig.3.4 and Fig.3.5.

Given that, the mean activity and the size of the largest cluster can be seen as order
parameters, like magnetization in the Ising model, discriminating a chaotic, epileptic
phase from an ordered, anesthetized phase. Similarly, the second cluster size and the
variance, can be seen as a response function diverging at the critical point. We highlight
that the identification of the critical point is formally defined only in the thermodynamic
limit. Therefore, we use as operational definition of a critical point for a system with
finite size (like the considered connectome) the value of the control parameter for which
the we have the peak of the size of second largest cluster as a function of T - see Figure
3.3. This picture is supported by theoretical works in percolation theory that predict a
divergence in the second largest cluster at criticality [71,72], in which the system is at the
edge of coalescing into a giant cluster, thus being a suitable observable for characterizing
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Figure 3.4: Simulated brain activity with HTC model for different value of threshold T, respectively
supercritical (left, blue), critical (center, yellow), and subcritical (right, green). (first row), raster plot of
nodes activation during a small time window of 150 seconds shows different pattern of activation. (second
row), the trend of the activity is summarized by the average number of active node during each time
step in the same time window. (third row), power spectrum is similar to a white noise for low values of
T, indicating a strongly uncorrelated activity, while small burst of low frequency emerge for high values
of T, with a peak thas slowly drift to smaller frequencies as T increases. (fourth row), autocorrelation
drops rapidly to zero for low value of T, while for high value of T it has non-negligible values up to ten
steps, indicating synchronized burst of activation.

the phase transition. In addition to this, also the fluctuations of the global brain activity
display a peak for intermediate value of T . A higher variance in global activation is linked
to a richer dynamics of the brain network and better distributed between all the nodes
in the system. As discussed in Chapter 2, the repertoire of neural patterns is thought
to be maximized at the edge of a second-order phase transition, allowing us to infer the
critical transition by means of the standard deviation. The difference in the values of TC
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obtained with the two measures are thought to be a finite-size effect and hopefully they
coincide in thermodynamic limit.

3.1.2 Numerical versus empirical results

HTC model brutally simplifies the stunning amount of degrees of freedom characterizing
the underlying neurophysiological processes. Nevertheless, what makes it appealing is
that, when tuned at its critical point, is able to recover some experimental findings seen
in fMRI human data. Such comparison can be performed in two opposite directions: by
projecting fMRI experimental time series to on-off states like HTC states, or by processing
simulated data to obtain BOLD-like signals.

In [70] BOLD signals from resting state fMRI data were mapped to binary activation of
voxels at the same spatial resolution of the human connectome used for the simulations.
The experimental distribution of clusters from such binarized activity, following a power-
law trend, was shown to closely match the simulated distribution of cluster sizes at the
critical threshold TC (Fig.3.5, yellow circles).

Figure 3.5: Distribution of cluster sizes for different value of threshold T, respectively supercritical
(squares, blue), critical (circles, yellow), and subcritical (triangles, green). In the supercritical regime,
only few sparse clusters appear. In the subcritical regime, the distribution shows the presence of a giant
cluster at about S ∼ 102. At the critical point, the distribution follows a power-law with a cut-off around
S ∼ 5 ∗ 101.

On the other hand, a standard procedure to transform model output in BOLD functional
signals is to convolve node activity si(t) with a canonical double-gamma haemodynamic
response function (HRF):

xi(t) =

∫ ∞
0

si(t− τ)h(τ)dτ (3.5)

with:

h(τ) =

(
τ

d1

)a1
exp

(
−τ − d1

b1

)
−c
(
τ

d2

)a2
exp

(
−τ − d2

b2

)
(3.6)

Such procedure is very common in Neuroscience and it is supported by many empirical
studies demonstrating that, after a stimulus was presented to a subject and consequently
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there is the activation of a brain area, an increase in BOLD signal is observed in MR
measurements with a similar shape in different neural circuits [73]. In other words, the
parameters describing the HRF function Eq.3.6 might change, but the overall shape is
consistent and quite robust over brain regions [74].

Figure 3.6: Simulated activity of HTC model at critical threshold TC matches some experimental findings
from resting state fMRI data. (a) Correlation function C(r), averaged over nodes in the same RSN,
computed for the model at TC (bottom) closely matches experimental data (top). Each color represents
a different RSN. (b) Correlation length ξ scale as ξ ∼ N1/3 as a function of the RSN size, both in the
experiment and model data. (c) Variance of the fluctuation of the correlation function σ(C) remains
approximately constant for the human brain data (black circles) and for the model at TC (red circles),
while in the supercritical regime T < TC (blue circles) the variance decreases faster as the size N increases.
(d) RSN from human brain data (left column) is better reproduced by the model at TC (filled circle).
From [35].

Once obtained the simulated BOLD time series, it is possible to compare the behaviour of
resting state networks (RSNs) and investigate whether HTC model is predictive of some
feature of human brain activity. In [35] the correlation function between nodes belonging
to the same RSN was computed as a function of the physical distance between pairs of
nodes, both for experimental and simulated data. When the model is tuned at TC , the
correlation function for each RSN is significantly correlated with the experimental trend
(Fig.3.6-a). Moreover, the correlation length, i.e. the distance at which the correlation
function approaches zero, in fMRI analysis was proven to scale with the number of units N
in the RSN. A similar scaling is replicated by the model only at criticality (Fig.3.6-b). The
same happens for the variance of fluctuations in the correlation, that is almost independent
on N, while these rapidly decrease in the sub- and super-critical phase (Fig.3.6-c).
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More generally, the overall activity of RSNs is better reproduced by the model at critical-
ity. A visual proof is reported in Figure 3.6-d, but also quantitative comparisons highlight
an increased correspondence of functional matrix at criticality.

Summarizing, HTC model proposes further confirmations on the critical nature of brain
functioning.

3.2 Homeostatic plasticity

The dynamics of HTC model is mostly governed by the weights of the connectivity matrix.
The activation of a node is subjected to the cooperation of active neighbours, it integrates
signals from all the connected units, weighted by the strength of each link, and spikes if
the overall influx is larger than the threshold. Therefore, the transmission of activity is
favored by stronger and more binding edges and clearly more connected hub with larger
degree (i.e.

∑
jWij) dominate network excitability. However, such inhomogeneity is not

encountered in biological brain networks.

A plausible synaptic mechanism aimed at regulating excitation in neural systems is home-
ostatic plasticity. As we already discussed in Sec.2.5, homeostatic mechanisms are a key
requirements for the maintaining of the self-organized criticality in the human brain.
In [68], homeostatic plasticity was included in the HTC model through a normalization
of the structural matrix W :

W̃ij =
Wij∑
jWij

. (3.7)

In words, each entry Wij is normalized by the sum of incoming weights, thus fixing the
in-degree of all nodes to 1 and ensuring that ”each node has at the mesoscopic level a
similar contribution on regulating the simulated brain activity” [68]. We highlight, that
because of this normalization, the weighted adjacency matrix is not symmetric anymore.

Figure 3.7: Homeostatic plasiticity principle, encoded in the normalization Eq.(3.7), increases the peak
in both σ(A) and S1. (left), average brain activity A (solid line) and its standard deviation σ(A) (dashed
line) for different values of threshold T. (rigth), average size of first S1 (solid line) and second S2 (dashed
line). (black curves), original connectome. (red curves), normalized connectome. The critical threshold
TC is assumed as the peak of the second cluster size S2.

Homeostatic plasticity mechanism has an important implication in system dynamics and
the emergence of the critical phase transition. Indeed, the mean activity and largest clus-
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ter size are not significantly affected by the normalization, but both peaks in σ(A) and
S2 become more pronounced (Fig.3.7). In this way homeostatic principle may help to dis-
tribute the activity more evenly across the network, improving information processing in
the brain. Not only this, but in [68] the authors highlight how the correspondence between
experimental and simulated functional network is increased after such normalization.

Moreover, another important result is the universality of the different curves obtained from
connectomes corresponding to different individual subjects. The dataset in [75] contains
structural connectivity matrices of 43 healthy patients, divided in N = 264 large-scale
regions, and allows to quantify the variability of simulated neural activity and the critical
point. As we can see from Fig.3.8, the high fluctuations of individual behaviours in the
not normalized case disappears using normalized connectomes with an almost complete
collapse of the curves.

Figure 3.8: Criticality in HTC model dynamics is enhanced with homeostatic plasticity in individual
connectomes from [75]. (a) Mean activity (blue lines) and variance (green lines) as a function of the
threshold T for the non-normalized case. (b) First (blue lines) and second (green lines) largest cluster
size as a function of the threshold T for the non-normalized case. (c,d) Same state variables but for
the normalized case. We can notice a srong collapse of the curves. Transparent curves represent each
individual; Thicker curves represent the group average. From [68].

This is a first insight on personalized brain modelling. In addition, these results sug-
gest that not only the presence of interconnections between brain regions, but also the
strengths of the various connections encoded in the weights of connectivity matrix play an
important role on the dynamics, especially in the universality of the curves that is estab-
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lished with homeostatic normalization. We will investigate more in detail this universality
in the following Chapter 4. Due to the importance of these results, in the continuation
of the work we will always compare the effect of the normalization (Eq.3.7) in our simu-
lations. In other words through the normalized HTC model it is possible to describe and
compare the neural activity of individual brain dynamics based on real structural connec-
tivity networks, as all the networks have the same critical point. These results provide
unprecedented proofs of concept showing how personalized whole brain dynamical models
poised at criticality can be used as biomarkers for individual neural activity.

3.3 Avalanches

Due to the fact that scale-free avalanches are the most appealing evidence of criticality
in cortical activity, we explore their statistics in the dynamics of HTC model. How to
define an avalanche is crucial and different methods are available in literature. Given the
fact that for most combination of rates r1 and r2 the network is continuously active, the
imposition of an ad hoc threshold is required to discriminate events of interest from silent
phases. Therefore an avalanche is identified by the upwards and downwards crossing of the
threshold by the network average activity. We highlight that ”this thresholding procedure
is often deemed artificial because it introduces an additional parameter on which results
depend. However, it is important to keep in mind that, when dealing with empirical data,
the avalanche definition inevitably requires the introduction of a threshold... Usually the
activity at each site is thresholded to define a local binary event” [76].

In our case, instead, we have used a threshold based on the global activity. In particular,
we have chosen the median of network activity as threshold θ, like previously done in [76].
Care should be taken not to confuse the threshold T, which is the control parameter of
the HTC dynamics, with the threshold θ used to detect avalanches. A neuronal avalanche
starts and ends when the signal of the average activity A(t) of the network crosses θ. If
the crossing points are situated at time ti and tf , its duration is simply T = tf − ti, while

its size is defined as s =
∫ tf
ti
dτ [A(τ)− θ], i.e. the area above threshold (Fig.3.9).

Figure 3.9: Example of avalanches in HTC model. Each avalanche start (green dots) and end (red dots)
when the average activity cross the threshold θ. The avalanche duration is the time that the activity stay
above θ. The avalanche size is the area of the activity above the threshold (shaded area).

The results of the simulation over the human connectome are reported in Fig.3.10. What
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Figure 3.10: Distribution of avalanches in HTC model for different threshold T. Top panel, size dis-
tribution. Bottom panel, time distribution. Left column, non-normalized connectome. Right column,
normalized connectome. Dashed line, power-law with classical exponents for neuronal avalanches, respec-
tively α = −1.5 and τ = −2, for visual comparison. All the plots are in log-log scale and the distributions
are evaluated with logarithmic bins.

we can observe in the statistics of avalanche sizes is an initial trend that seems almost
linear in log-log scale for small sizes, ending in an exponential truncation for larger sizes.
The steepness of the power-law trend depends directly on the threshold: it is quite flat
for low value of T and it decreases as the threshold increases. This is something that
we would have expected, since for large threshold T it is more difficult for the system to
spread the activity between nodes, thus making hard to have extensive and very long-
lasting avalanches.

We have discussed in Sec.2.1 how experimental data highlights scale-free patterns in neu-
ronal avalanches. Unfortunately, the slope of the power-law trend are very far from the
expected exponents. Only in the supercritical region the avalanches follows a scale-free
trend close to the expected ones (dashed lines in Fig.3.10), but in a very limited range
around one order of magnitude. Moreover, the depiction in the distribution of avalanche
lifetimes is even more blurred. For these reasons, avalanches does not seem to be a relevant
observable for the investigation of criticality in HTC model.
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3.3.1 Causal avalanches

Because of the limitations named above, we explore other ways to define an avalanche. If
we look at a microscopic scale, the spontaneous activation of a node marks the birth of
a new event that triggers a cascade of activity. We can identify every individual event as
a new avalanche, which will expand by inducing activation in neighbouring nodes. Each
induced activation is assigned to the avalanche that caused it, therefore they were named
causal avalanches [77]. So we obtain an alternative scenario in which diverse avalanches
can coexist simultaneously (Fig.3.11).

Figure 3.11: Example of causal avalanches in HTC model. Each colored time series represent the activity
of a single avalanche, i.e. the fraction of active nodes at a certain time t belonging to that avalanche.
The global activity density is represented with the dashed gray line.

In biological neural tissue, a neuron integrates synaptic incoming signal to fire itself.
Similarly in HTC model each node can activate due to the combined work of neighbouring
sites: for this reason it may happen that more avalanches contribute to the spikes of
the same node. In order to assign the new activation to an avalanche, a competition
principle has to be introduced. Given a certain node i that fires at a certain timestep,
with probability r1 it is a spontaneous activation, thereby with probability 1− r1 it is an
induced activation due to signals coming from neighbours j, each one contributing with a
factor proportional to the connection strength Wij. So we assign node i to the avalanche
to which node j belongs with probability ∝ (1− r1)Wij. Thus an event of activity cannot
be simultaneously part of more than one avalanche, having these to compete in order to
propagate in the system. However, such choice is just a convention and other mechanisms
may be considered, for instance avalanche may coalesce one with the other or intersect
without competing.

A causal avalanche may eventually die out if it do not provokes any further activation.
Therefore, differently from above case, there is no need to introduce any threshold to
mark the end of an event of interest. We can compute again the statistics of lifetimes,
i.e. the number of timesteps from the spontaneous activation to the avalanche extinction,
and sizes, i.e. the total number of activations belonging to a considered avalanche.

Interestingly, the distributions follow a power-law trend regardless of the control param-
eter T (Fig.3.12). The only visible impact is on the cut-off that decreases as T increases.
As previously, it is related to the growing difficulty for the network to spread activity
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Figure 3.12: Distribution of causal avalanches in HTC model for different threshold T. Top panel, size
distribution. Bottom panel, time distribution. Left column, non-normalized connectome. Right column,
normalized connectome. Dashed line, power-law with classical exponents for neuronal avalanches, respec-
tively α = −1.5 and τ = −2, for visual comparison. All the plots are in log-log scale and the distributions
are evaluated with logarithmic bins.

Figure 3.13: Scale-free exponents of causal avalanches from simulated data. Left panel, α coefficient
for avalanche size. Right panel, τ coefficient for avalanche lifetime. Dashed line, classical exponents for
neuronal avalanches, respectively α = −1.5 and τ = −2.

with higher threshold T . Moreover, the power-law exponents are almost close to the ones
of experimental avalanches for all values of T in the supercritical region, i.e. T < TC ,
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and the critical point discriminates two phases, critical and non-critical causal avalanches
(Fig.3.13). This may suggest that microscopic causal avalanches are always critical in
that region of the control parameter. A similar results was obtained in [77], in which
causal avalanches in an integrate-and-fire model and in a contact process were shown to
be always critical and it is claimed to be due to the microscopic neutral dynamics [77].
Nevertheless, it is hard to claim that local dynamics in HTC model is neutral. This is
something to be addressed in more detail in the future.

3.4 New evidence of criticality

Given the fact that criticality is not well define for finite-size system, we try to characterize
the phase transition with other signatures of critical phase transitions, commonly used
in other studies. We investigate the Fisher information and the dynamic range and we
found that both maximize at TC .

3.4.1 Fisher information

As we have already mentioned, physical systems are highly responsive and extremely sen-
sitive to environmental changes nearby a critical transition. Response functions quantify
the variation of a macroscopic variable of the system under the variation of an external
parameter and diverges in presence of a critical point, where even a small change in the
external parameter would be perceived and translated to relevant modifications in the
order parameter.

Susceptibility is probably the most popular response function in magnetic medium and it
is shown to be related to the amount of fluctuations in the magnetization. This measure
can be generalized in an information-theoretic framework [19]. We can introduce an
individual system or ”agent” characterized by a probability Pint(s|β), depending on a
set of internal parameters β, whose scope is to adapt in response to stimulus from an
environmental source α by changing its internal state s. The distribution of the agent
can be parametrized in the following way:

Pint(s|β) =
exp(−Hint(s|β))

Zint(β)
(3.8)

The factor Zint(β) is defined by normalization condition, while the quantity Hint can be
expressed as:

Hint(s|β) =
I∑

µ=1

βµφ
µ
int(s) (3.9)

where I is the number of parameters specifying the agent and φµ(s) are suitable observ-
ables. The Fisher information:

χµν =

〈
∂P (·|β)

∂βµ

∂P (·|β)

∂βν

〉
β

(3.10)

quantifies the amount of information encoded in the state s about the unknown param-
eters β of a distribution that describe s itself and it is proven to correspond to the
generalized susceptibility :

χµν = − ∂

∂βµ
〈φν〉β = 〈φµφν〉β − 〈φµ〉β〈φν〉β (3.11)
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which is equal to the fluctuations of the observables φµ and diverges at the critical point
in the limit N →∞ [19].

We compute the Fisher information in the HTC model from Eq.(3.11) as the covariance
of the time series of the state variable between node i and node j:

χij =
1

ts

ts∑
t

si(t)sj(t)−
1

t2s

ts∑
t

si(t)
ts∑
t

sj(t) (3.12)

averaged over all pairs of nodes and over each run:

χ =
∑
i 6=j

χij (3.13)

As we can see from Fig.3.14, also the Fisher information peaks for intermediate value
of threshold T . If the intrinsic neuronal activity is too sustained or too suppressed, the
brain response to changes in the environment will be very dampened or even not perceived.
Whereas at the edge of a phase transition between these two regimes, the divergence of
the fluctuations in the average activity of the brain model amplifies the responsiveness of
the system.

Figure 3.14: Fisher information or generalized susceptibility peak near critical point. Homeostatic plas-
ticity (red line) amplifies the peak with respect to the original connectome (black line).

3.4.2 Dynamic range

Another quantity that characterize the ability of a system to discriminate a wide range of
environmental stimuli is the dynamic range. In Sec.2.4 we have pointed out that dynamic
range is defined as the ratio between the largest ηhigh and the smallest ηlow stimulus,
measured in dB, that results in perceptible variations of the response of the system:

∆ = 10 log(
ηhigh
ηlow

) (3.14)

In order to compute the dynamic range for HTC model, we simulate the dynamics for
different values of r1, which can be seen as the rate of induced activation from an external
source. As could be easily expected, the average activity increases monotonically with
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the magnitude of the external stimulus (Fig.3.15, top panels), because it becomes more
probable for a node to self-activate. The slope of the response curves is heavily influenced
by the threshold: for low values of T, even negligible stimuli lead to an high activation, for
high T a strong induced rate is necessary for having a non-zero activation of the network.

The stimulus interval in Eq.(3.14) is arbitrary. Typically, in literature it is standardly cho-
sen as the range [r0.1, r0.9] that lead to an average activation of 10% and 90% respectively,
i.e. it corresponds to a response interval [A0.1, A0.9] where:

Ax = Amin + x(Amax − Amin) (3.15)

and Amax, Amin are the maximum and minimum average activity at a fixed threshold by
varying r1.

Figure 3.15 highlights a sharp peak in the dynamic range in correspondence of the critical
point. This is a further confirmation that the neural activity of the human brain involved
in capturing and elaborating information from environmental stimuli has the maximal
sensitivity at criticality.

Figure 3.15: Dynamic range is maximized at TC . (Top panels), response curves, i.e. mean activity versus
stimulus rate, for some values of threshold T in the un-normalized (left) and normalized (right) case.
(Bottom panel), dynamic range as a function of the threshold T displays a peak at the critical point,
which is amplified by homeostatic plasticity (red dots).

38



Chapter 4

Structure-function relation in a
stochastic whole-brain model at
criticality

In Sec.1.3 we have seen how the underlying architecture strongly determines the overall
functioning of the human brain, although not completely. Likewise, from a theoretical
perspective, the structure of a network is very often crucial in the description of a model.
Indeed, in Statistical Mechanics the critical exponents usually vary depending on the
dimension and the particular topology. This means that the topology may strongly affect
the universality class of a model.

In this Chapter we investigate in more detail the role of the topology in the HTC model,
either in a theoretical framework (Sec.4.1) and by simulating the HTC model on top of
random matrices (Sec.4.2).

4.1 Scaling of the critical point in the mean-field approximation

In the following Sec.4.2 we are going to highlight how the underlying graph strongly affect
the phase transition in the HTC model. For this reason, it is usually very hard to obtain
a general mathematical description that is valid for different geometries. Nevertheless, we
propose a theoretical formulation of the model in a simplified case, in which every node is
structurally connected to each other, namely in the mean-field approximation. Moreover,
we assume that the weights are all equal. From these hypotheses we were able to describe
the time evolution of the system by means of a master equation. The full derivation is
reported in Appendix B.

The other important result that we obtain is that in the limit of large number of neurons
in the network, i.e. in the thermodynamic limit N →∞, there are two global and stable
equilibria, that we called x+ and x−, respectively for a high and low level of global activity,
that even coexist for an intermediate range of threshold T delimited by T+ and T−.

The thermodynamic limit is clearly a theoretical operation. In reality, the human con-
nectomes are limited in size. In order to test the validity of our findings, we simulate
the HTC model over fully-connected networks with finite dimension. However, in this
case the clusters of co-activation are no longer a relevant observables, due to the fact
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that nodes are always structurally connected, thus when activated they belong to the
same unique cluster. For this reason, we will focus only on the average global activity
as order parameter and its fluctuations. In the following simulations we fixed parameters
r1 = 10−1 and r2 = 10−1 for visualization purposes, otherwise T− would have been too
small, but the results were found consistent also for other combinations of parameters,
including the ones used for the simulations reported in Chapter 3.

As we can notice from Fig.4.1, the average activity almost perfectly match the theoretical
expectations of x+ and x− reported in Eq.(B.15) and Eq.(B.20). In the intermediate
range of threshold marked by T+ and T− (see Eq.(B.16) and Eq.(B.21)), there is a overall
decrease in the global level of activation in the network. Such transition is also highlighted
by a peak in the variance σ(A), similarly to what we already found with the human
connectome.

Figure 4.1: Dynamics of HTC model over a fully-connected finite-size matrix (N = 105) is consistent
with the theoretical predictions of mean-field approximation in the thermodynamic limit. The average
activity in the sub- and super-critical region almost perfectly collapse on the expected values Eq.(B.15)
(orange line) and Eq.(B.20) (purple line). In the coexistance region, there is a decrease of A, while the
variance σ(A) display a sharp peak that identifies the phase transition.

However, the peak does not correspond to any of the two relevant thresholds T+ and T−.
In order to further understand the role of these two points, we perform a finite-size scaling
of the critical point identified in the peak of the variance. As shown in Fig.4.2, the peak
of σ(A) shifts towards T− as the size of the system increases. Interestingly, it seems to
scale exponentially towards T− as a function of the size N (Fig.4.3): indeed in the limit
N →∞ the interpolation reaches a value very close to the analytical expectation of T−.
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Figure 4.2: Critical point of HTC model over fully-connected networks shifts towards T− as the size of the
network N increases. Left panel, average network activity. Right panel, fluctuations of network activity
σ(A). Each colored line correspond to a different size N . Dashed lines, analytical values of T+ (orange)
and T+(purple).

Figure 4.3: Scaling of the peak of σ(A) as a function of the system size N in fully-connected networks.
Orange line, interpolation with an exponential function of the type Tmax = ke−µN + c. To be noted that
the coefficient c = 0.0499 has a value close to the theoretical expectation of T− = 0.0476.

4.1.1 Adding random noise

A non-trivial topology, like the human connectome, introduces a spatial disorder in the
system and clearly alters the symmetry of the dynamics, since a node is no longer con-
nected to each other, but only to a bunch of them. The lack of some edges somewhat
affects the activation of neurons in the same way that internal noise would do. Such con-
sideration prompted us to check what happens if we alter the state variable of a neuron
si(t) by injecting a random noise:

si(t) −→ si(t) + k · ξi (4.1)

where ξi is a random variable uniformly distributed ξi ∼ U(−1, 1) and k is the strength
of the noise. Therefore, the state variable of each neuron is no longer binary, only active
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(1) or not (0), but it brings some additional informations.

As the strength of the noise increases, the peak of σ(A) becomes more smeared and less
defined (Fig.4.4). In addition, it drifts away from T− (Fig.4.5).

Figure 4.4: Critical point of HTC model over fully-connected networks drifts away from T− as the strength
of the internal noise k increases. Left panel, average network activity. Right panel, fluctuations of network
activity σ(A). Each colored line correspond to a different noise stregth k. Dashed lines, analytical values
of T+ (orange) and T+(purple).

Figure 4.5: Scaling of the peak of σ(A) as a function of noise strength in a fully-connected network of
size N = 104.
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4.2 HTC model with synthetic connectomes: the effect of con-
nectivity

The connectome used for the previous simulation is a matrix with fixed structural proper-
ties, therefore it does not allow to determine to what extent some feature of the underlying
topology, like the connectance or the presence of hubs, affect the dynamics of HTC model.
In order to investigate the role of the topology in the phase transition, we simulate the
model on top of architectures generated from some of the common ensambles of network
structure: random graphs (Sec.A.5.1), Watts-Strogatz small-world graphs (Sec.A.5.2),
and Barabási scale-free graphs (Sec.A.5.3).

More in detail, for each run we generate M = 50 different realizations of a particular type
of graph with a defined average degree 〈k〉. In the case of small-world graphs and Barabási
graphs we fixed the probability of rewiring at p = 0.5. To mimic the weights distribution
of the human connectome, the weights of the adjacency matrices were drawn from a
power-law distribution with exponent λ = −1.5, a value that is fitted to the empirical
weight distribution [13]. In addition, we keep only connected matrices, otherwise we would
have many subnetworks that do not interact in the spreading of the activation, which is
something that does not occur in the human brain. The size of all the networks was fixed
to N = 800, that is close to the size of the connectome [13] used in Chapter 3.

4.2.1 Dynamical regimes

The first interesting result is that HTC model ranges different dynamical regimes as we
vary the overall connectivity of the architectures. Such observation was already presented
in [78] for small-world graphs, but we further extend it to other class of networks. As
we can notice from Fig.4.6, at low average degree 〈k〉, the usual peak in σ(A) and S2 is
barely visible, if not completely absent, with a monotonic decrease of the curves. Thus,
for such level of connectivity the dynamics is characterized by few small and uncorrelated
clusters and an overall activity that is not well balanced in the network for any value of
threshold T. Moreover, this regime resembles the so-defined segregated regime previously
described in [79].

Increasing the value of 〈k〉, the model dynamics becomes similar to the second-order phase
transition already observed in Chapter 3 with the simulation over the human connectome.
In particular, we observe a critical threshold TC in the peak of σ(A) and S2. Therefore,
the system develops long-range clusters of simultaneously active nodes that resembles the
behaviour of brain RSN.

For large enough values of 〈k〉 we encounter a different type of transition: both the
order parameters A, S1 and the fluctuations measures σ(A), S2 exhibit an apparently
discontinuous behaviour at the transition point.

This is a first insight on how the overall large-scale activity depend on the topological
details of the underlying structural network [78]. These results shows that patterns exhib-
ited in brain RSN need certain minimum of connectivity level: for relatively low level of
〈k〉 the neuronal activity is too segregated, while in the other extreme the activity is too
integrated. From a neuroscientific point of view ”a minimum of connectivity needs to be
predetermined (perhaps via evolution) in order for the dynamics to achieve the dynamical
features of criticality (via modulation of excitability or threshold). On the other hand,
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the discontinuous percolation that appears only for extremely connected networks, might
constitute pathological conditions observed in real nervous systems” [78].

Figure 4.6: HTC model span different dynamical regimes as the overall connectivity of the network
varies. Reults obtained with random networks, but are qualitatively similar also for small-world graph
and Barabási graphs. Solid line, average over M = 50 different realizations of the network, displayed
with dashed lines.

4.2.2 Effect of homeostatic plasticity

Then we try to investigate the effect of the homeostatic normalization Eq.(3.7) in the
different class of networks. In Figure 4.7 and Figure 4.8 we compare respectively the
average network activity with its fluctuations and the average cluster sizes in topologies
with the same average degree 〈k〉.

What we can easily notice is a strong increase in both peaks of σ(A) and S2 by means
of the homeostatic principle. The behaviour is quite similar for random and small-world
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graph, while such peak rise is very pronounced in Barabási networks. This effect can
be easily understood if we focus on the purpose of the homeostatic normalization: it
was introduce to regulate network excitability by ensuring that each node has a similar
contribution to the overall activity, thus mitigating the role of hubs that are a peculiarity
in scale-free networks (see Sec.A.5.3).

Moreover, another visible effect can be seen in the variability between different realization
of the same network, that is softened with the homeostatic normalization. All the curves
in Fig.4.7 and Fig.4.8 with non-normalized matrices (left columns) are quite blurred, while
the peaks seems more consistent in the normalized case (right columns).

Figure 4.7: Effect of homeostatic normalization on the average activity and the fluctuations for different
type of networks with the same average degree 〈k〉 = 25. Left column, non-normalized case. Right column,
normalized case.
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Figure 4.8: Effect of homeostatic normalization on the average cluster sizes for different type of networks
with the same average degree 〈k〉 = 25. Left column, non-normalized case. Right column, normalized
case.

A further analysis that can be conducted concerns the critical point TC . In Figure 4.9 we
display how the values of the critical point, estimated as the peak in the second cluster
size S2, the fluctuations in the network activity σ(A), and the generalized susceptibility χ,
varies as we change the overall level of connectivity. It seems that for all the three measures
at low connectivity the critical threshold TC initially shifts from small to larger values
and than saturates for larger 〈k〉. Furthermore, also in this simulations the variability of
the critical point is attenuated thanks to the homeostatic normalization, since for all the
different definition provide much closer estimates, thus more consistent (Fig.4.10).
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Figure 4.9: Shift of the critical point TC as the average degree 〈k〉 varies. The critical threshold is
identified as the peak in: the second cluster size S2 (top row); the fluctuations in the network activity
σ(A) (middle row); the generalized susceptibility χ (bottom row). Left column, non-normalized matrices.
Right column, normalized matrices.

Figure 4.10: Peak of S2 versus peak of σ(A) for the different topologies. The introduction of the homeo-
static normalization (right panel) seems to generally bring the two estimates of the critical point closer
togheter (i.e. close to the bisector dashed line), while in the non-normalized case (left panel) there is
much more variability.
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4.2.3 Constant weights

The dynamics of the HTC model is not only influenced by the presence or absence of
connections, but also by the weight associated with them, which may partly cover the
true effect of the topology in the dynamics. To overcome this issue, we simulate the HTC
model over different topologies but with constant weights over all the networks.

Figure 4.11: Simulation of HTC model over networks with constant weights. These results are obtained
with the homeostatic normalizazion for topologies with 〈k〉 = 25. Each curve represents the average over
M = 50 different realizations of the networks.

The results of the simulations are reported in Figure 4.11. The order parameters display
a sharp transition between the super-critical and a sub-critical phase in correspondence
of a critical threshold TC that can be identified in a sharp peak of σ(A). However, a peak
in the second cluster size S2 is barely visible and the curve display a discontinuous jump,
resembling more a first-order transtion rather than a critical ones.

We can further understand the effect of the weights by comparing such simulations to the
previous results reported in Figure 4.7 and Figure 4.8 where we drawn the weights from a
power-law distribution, since we have fixed the same average degree 〈k〉. The introduction
of heterogeneous weights seems to smooth out the transition over a broader range of
parameters and to give rise to a peak in the second cluster size. This is, nevertheless, a
non-trivial result that calls for deeper analyses and investigations.
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4.2.4 Finite size scaling

The use of generated topologies allows us to perform a finite-size scaling of the observables
to hopefully provide a more robust characterization of criticality. Indeed, the human
connectome [13] has a fixed size, thus prevent us from testing any finite-size effects. We
perform some simulations of HTC model over different topologies by fixing the average
degree 〈k〉 and varying the network size N .

In Figure 4.12 and Figure 4.13 we report the behaviour of the activity, while in Figure
4.14 the trend of the second cluster size. First of all, we can notice that the behaviour of
the order parameter is quite similar for different sizes, thus not influenced by the changing
of network size N . On the other hand, the height of the peak of the second cluster size S2

keeps increasing with N : such result seems foreseeable, since in larger networks it becomes
more probable to give rise to large connected clusters of activiation. The opposite happens
for the peak of σ(A) that decreases with N . Such fact can be explained in this way: for
network with very small sizes, the role of fluctuations is prominent.

In [78] it was discovered that the largest value of the second cluster size S2 in small-world
graphs follows a power-law trend as a function of the network size. In that work, the
critical exponent was consistent with the theoretical critical exponents of the mean-field
percolation universality class, that scales with the system size as:

S2,max ∼ Ndf/d (4.2)

where d is the effective dimension of the system and df is the fractal dimension of the
percolating cluster [71]. Since d = 6 and df = 4, the expected exponents is df/d = 2/3.
Also in our data we recover such power-law scaling of S2,max not only for small-world
graphs but also for random graphs and Barabási graphs. However, the scaling exponents
are close but not consistent with the mean-field percolation exponent (around 0.72 for
random and small-world graphs, 0.5 for Barabási graphs). Nevertheless, in our opinion
it seems hard to claim that the HTC model should belong to the same universality class
of the mean-field percolation, as it does not display any absorbing state, and, moreover,
its dynamics is affected by non-trivial topology with relatively sparse connectivity and
power-law distributed weights, i.e. very far from a lattice topology.

Finally, still in [78], the researchers found that also not only the average degree 〈k〉, but
also the rewiring probability influenced the dynamical regime (Fig.4.16). At low 〈k〉, the
emergence of a critical transition is favoured by an increased rewiring probability π, most
likely because it is linked to a decreased average path legth. Instead for large 〈k〉 a large
π transforms the transition from a second-order to a discontinuous ones.
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Figure 4.12: Finite size scaling of the activity for different networks with 〈k〉 = 15. The dashed lines are
the theoretical expectation of x+ and x−. Each color represents the average over different realizations of
the network for each size N .
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Figure 4.13: Finite size scaling of σ(A) for different networks with 〈k〉 = 15. Each color represents the
average over different realization of network for each size N .
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Figure 4.14: Finite size scaling of the second cluster size for different networks with 〈k〉 = 15. Each color
represents the average over different realization of network for each size N .
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Figure 4.15: Scaling of the maximum of the second cluster size S2 as a function of network size N . The
lines display a power-law interpolation.

Figure 4.16: Parameter space for the topology values (π; 〈k〉) in the simulations of small-world networks,
where π is the rewiring probability and 〈k〉 is the average degree. Below the black line there is no
dynamical phase transition (NT). Between the black line and the red dashed one (MFC) the behavior be-
came scale-invariant with exponents consistent with the mean field percolation universality class. Further
above, in the region denoted as NUC, behavior can be still scale invariant and critical (i.e. the transition
is still second order) but without universal exponents. Finally, above the green dashdotted line, the
transition becomes discontinuous (Disc.) and the dynamic is short-range correlated and oscillatory. In
the inset the same data is plotted in double log axis to best denote the relative sizes of each dynamical
regime. From [78].
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Chapter 5

Conclusions and future perspectives

In this Thesis we have focused on a recently proposed stochastic dynamical model of
interconnected nodes following the empirical structure of neuroanatomical connections
[35]. What makes it interesting also from a neuroscientific point of view, is the ability
to replicate fundamental features of spontaneous brain activity repeatedly seen in fMRI
experiments. However, such correspondence is made possible only for a particular value in
the parameter space spanned by the control parameter that resembles a critical point in a
second-order phase transition. Therefore in Chapter 2 we have contextualized the model
in the emerging, but still controversial, critical brain hypothesis [16,80] by reviewing some
of the most promising evidences of critical dynamics in the human brain and the benefits
the brain might reap from tuning itself at the edge of a critical phase transition.

Then in Chapter 3 we also explore further evidence of critical dynamics in HTC model in
order to provide additional confirmations of the critical nature of the model. Of particular
interest are the neuronal avalanches [22], an appealing probe of criticality in neural sys-
tems, even though scale free avalanches can be displayed also by non-critical systems [27].
For our current knowledge the avalanches had not yet been investigated in HTC model
and our first approach requires to be developed in more detail.

Another crucial aspect in HTC model is the role of the topology. Currently, we still
have poorly understand to what extent the topological features of the underlying network
influence the overall dynamics. We try to investigate this issue in Chapter 4 by simulating
the model over ”synthetic” connectomes generated from the commons models of network
structures. Hopefully in the future deeper insights would be possible also thanks to
advancements in the young field of network neuroscience [37].

Moreover, a recent work that is currently under review demonstrates how lesions to the bi-
ological connectivity due to strokes alters the dynamics to the point that the critical tran-
sition is no longer present compared to healthy control patients [81]. These results open
significant horizons regarding personalized brain modelling, since HTC model along with
empirical connectivity data at the level of single subjects might be used as a biomarker
for assessing brain health.

Finally, because of the increasing importantance of the critical brain hypothesis both in
neuroscientific and clinical fields, a more theoretical understanding is required. In this
sense we propose a mathematical description of the model via mean-field approximation
that provide us some interesting hints regarding the nature of the critical transitions
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(Appendix B). However, human connectomes are quite far from a mean-field topology,
therefore it is necessary a more precise description. The use of the so-called heterogeneus
mean field seems a prominent idea to prosecute [82]. In addition, such theoretical frame-
work can be extended to analyze the presence of oscillations in the network activity,
for instance by applying the Van Kampen expansion [83] to the Fokker-Planck equation
Eq.(B.9).
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Appendix A

A Hint of Network theory

In this Appendix we briefly introduce some basic theoretical tools used to describe and
analyze networks, most of which come originally from the mathematical branch of graph
theory. We mainly follow the discussion and the formalism presented in [84].

As previously mentioned, graph is commonly used as a synonym for network, a collection
of nodes (or vertices) joined by edges (or links). Most of the networks have at most a
single edge between any pair of nodes. In the rare cases where there can be more than
one edge between the same nodes, those edges are collectively referred as a multiedge. In
most networks there are also no edges that connect nodes to themselves, although such
edges can occur in a few situations. Edges that connect nodes to themselves are called
self-edges or self-loops. In the rest of the Chapter we will focus on networks that has
neither self-edges nor multiedges, called simple networks.

In addition, a link may represent a reciprocal relation between a pair of nodes, i.e. in
undirected networks, or it may have a direction, pointing from one node to another, i.e.
in directed networks.

A.1 Adjacency matrix

There are a number of different ways to represent a network mathematically. Consider a
network with N nodes and let us label the nodes with integer labels 1, ..., N . Clealy, it
does not matter which node gets which label, only that each label is unique, so that we
can use the labels to refer to any nodes unambiguously.

The adjacency matrix A of a directed network is defined as the NxN matrix with elements
Aij such that:

Aij =

{
1 if there is an edge from node j to node i

0 otherwise
(A.1)

A couple of points to note about the adjacency matrix: the direction of the edge runs from
the second index to the first; for a network with no self-edges, i.e. Aii = 0, the diagonal
matrix elements are all zero; for an undirected network, if there is an edge between i and
j then there is necessarily an edge between j and i, thus Aij = Aji, so the adjacency
matrix is symmetric.
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In many situations, however, the edges carry on additional informations that cannot be
reduced to simple binary connections. Thus it is useful to represent edges as having a
strength or a weight, usually a real number. Such weighted networks can be represented
mathematically by an adjacency matrix with the elements Aij equal to the weights of the
corresponding connections.

A.2 Degree and connectance

The most straightforward way to characterize a node is through its level of connectivity
with other nodes. The degree of a node is the number of edges connected to it. For an
undirected network of N nodes the degree of node i, namely ki, can be written in terms
of the adjacency matrix as:

ki =
N∑
j=1

Aij (A.2)

The sum of the degrees is also related to the total number of edges m in the network:

m =
1

2

N∑
i=1

ki =
1

2

∑
ij

Aij (A.3)

From a macroscopic perspective, the maximum possible number of edges in a simple
network is

(
N
2

)
. The connectance or density ρ of a graph is the fraction of those edges

that are actually present:

ρ =
m(
N
2

) =
2m

N(N − 1)
=
〈k〉

N − 1
(A.4)

where k is the average degree. We can note that the density ρ strictly lies in the range
0 ≤ ρ ≤ 1, so it can be interpeted as the probability that a pair of nodes picked randomly
is connected by an edge.

In a directed network we have to distinguish between two type of degrees: the in-degree,
i.e. the number of ingoing edges connected to a node, and the out-degree, i.e. number of
outgoing edges. From the adjacency matrix definition, in- and out-degrees can be written
as:

kini =
N∑
j=1

Aij koutj =
N∑
i=1

Aij (A.5)

A.3 Components

A network might not consist of just a single connected set of nodes. Many networks have
two or more separate parts that are disconnected from one another. Such parts are called
components.

Technically, a component is a subset of the nodes of a graph such that there exists at
least one path, i.e. a sequence of nodes such that every consecutive pair of nodes in the
sequence is connected by an edge, from each element of that subset to each other, and
such that no other node in the network can be added to the subset while preserving this
property.

58



A.4. MEASURES AND METRICS

A network in which all nodes belong to the same single component is said to be connected.
Conversely, a network with more than one component is disconnected.

A.4 Measures and metrics

The adjacency matrix contains in principle all the information about the structure of a
network. However, such raw data are not easy for humans to comprehend, especially
for more complex networks. It is therefore necessary to introduce some mathematical
measures that capture interesting features of network structure quantitatively.

A.4.1 Centrality and hubs

The nodes of a network do not have all the same importance or, in other words, the
same centrality in the network. There are many possible definitions of importance and
correspondingly many centrality measures. We are now going to describe just a few of
the definitions of centrality that can be found in the literature.

Perhaps the simplest centrality measure for a node in a network is just the number of
edges connected to it, i.e. its degree, sometimes called degree centrality.

The degree considers neighbours as equivalent. However, not all neighbours are equal. In
many cases, a node’s importance in a network is increased by having connections to other
nodes that are themselves important. Eigenvector centrality is an extension of degree
centrality that takes this factor into account by evaluating the centrality xi of a node i as
proportional to the centrality scores of the neighbors, that making use of the adjacency
matrix becomes:

xi = κ−1

N∑
j=1

Aijxj (A.6)

where κ is the constant of proportionality. Such formula can be also written in matrix
notation as:

Ax = κx (A.7)

where x is the vector with elements equal to the centrality scores xi. In other words, x
is an eigenvector of the adjacency matrix. Since there are N different eigenvectors of the
NxN adjacency matrix, the centrality scores are still not completely defined. It is usually
assumed that x is the eigenvector corresponding to the largest eigenvalue. In this way,
thanks to Perron-Frobenius theorem, the centrality scores are non-negative.

A different concept of node importance is captured by betweenness centrality, which mea-
sures the extent to which a node lies on paths between other nodes. If we assume that
information always takes the shortest available path through the network, the amount of
information passing through each node is proportional to the number of shortest paths
the node lies on. This number of shortest paths is exactly the betweenness centrality.

It seems plausible that nodes with highest betweenness centrality are crucial to efficient
communication in the network. Nodes with high degree or high centrality are usually
called hubs. If a hub is removerd, all the information that would have passed through
that node must now be rerouted another way, that in most cases will be a longer path,
thus more expensive in term of energy resources.
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A.4.2 Clustering

Another important notion is transitivity. In the language of graph theory it is implicit
that the relation for which transitivity is analyzed is ”a node being connected by an edge”.
So if node u is connected to node v, and v is connected to w, then u is also connected
to w if the relation is transitive. In the language of social networks, ”the friend of your
friend is likely also to be your friend”. The level of network transitivity can be quantify as
the fraction of paths of length two in the network that are also closed, named clustering
coefficients :

C =
(number of closed paths of length two)

(number of paths of length two)
(A.8)

C = 1 implies perfect transitivity, while C = 0 implies no closed triads. The most common
way of defining the clustering coefficient is perhaps in term of triangles of connected nodes:

C =
(number of triangles)x3

(number of connected triples)
(A.9)

The clustering coefficient is also a measure of the degree to which nodes in a graph tend
to cluster together. The above definition is a property of an entire network, but it can be
easily extended to the level of single nodes with the so-called local clustering coefficient :

Ci =
(number of pairs of neighbours of i that are connected)

(number of pairs of neighbours of i)
(A.10)

A.4.3 Assortativity

Suppose we have a network in which the nodes are classified according to some character-
istic that has a finite set of possible values. For instance, the nodes could represent people
and be classified according to many features such as nationality, political orientation, or
gender. Or in the case of brain networks, the nodes may be classified according to the
anatomical region. It turns out in many systems that nodes have a strong tendency to
associate with others whom they perceive as being similar to themselves in some way.
This tendency is called homophily or assortative mixing.

A network is said to be assortative if a significant fraction of the edges in the network run
between nodes of the same type. However, such fraction in many cases is 1 if all nodes
belong to the same single type. A better measure turns out to be the following: w take
the fraction of edges that run between nodes of the same type, and then we subtract the
fraction of such edges we would expect to find if edges were positioned at random without
regard for node type.

If we denote by gi the group of node i, which is a integer 1, ..., ng, with ng being the total
number of groups, then the total number of edges that run between nodes of the same
type is: ∑

edges(i,j)

δgigj =
1

2

∑
ij

Aijδgigj (A.11)

where δij is the Kronecker delta. Instead, the expected number of edges between all pairs
of vertices of the same type is:

1

2

∑
ij

kikj
2m

δgigj (A.12)
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where m is the total number of edges. We therefore define the modularity as:

Q =
1

2

∑
ij

(
Aij −

kikj
2m

)
δgigj (A.13)

This is a measure of the extent to which like is connected to like in a network. This
quantity is strictly less than 1, takes positive values if there are more edges between
nodes of the same type than we would expect by chance, and negative ones if there are
less.

A better approach is to use the assortativity coefficient :

r =

∑
ij(Aij − kikj/2m)xixj∑
ij(kiδij − kikj/2m)xixj

(A.14)

where xi is the value of a given property of node i. Even if not immediately obvious, this
is an example of a (Pearson) correlation coefficient.

A.4.4 Community structure

In real-world network, it is common to observe a number of densely connected clusters
of nodes, corresponding to groups of units with similar features. As an example, each
group may correspond to scientists who have worked closely together or close friends
between high school students. The problem of finding groups of nodes in networks is
called community detection. More formally, community detection is intended to find the
natural divisions of a network into groups of nodes such that there are many edges within
groups and few edges between them. Altough it turns out to be a challenging task, but a
number of methods have been developed that return good results in practical situations.

The most widely used approach is the method of modularity maximization. It searches
for the division that has the highest modularity score already presented in Eq.(A.13).
However, applying the modularity maximization method directly is a hard task, since it
has to score all the possible assignments of the nodes to the groups, which is exponential
in the number of groups. So a range of heuristic algorithms have been proposed that finds
approximate but acceptable solutions.

A.5 Models of network structure

In the preceding sections we have looked at how the structure of networks is measured.
This section is devoted to an examination of some of the most widely used models of
network structure, models that mimic the patterns of connections in real-world networks
and were also used for the simulations of HTC model.

A.5.1 Random graphs

A random graph is a model network in which the values of certain properties are fixed, but
the network is in other respects random. One of the most common examples of random
graphs is the one where we fix only the number of nodes N and the number of edges m or
the probability p of edges between nodes. The second class of models, G(N, p), is usually
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referred as Erdős-Rényi graph or Poisson random graph because the probability pk of a
node to be connected to other k nodes is:

pk =

(
N − 1

k

)
pk(1− p)N−1−k (A.15)

thus the degree distribution is binomial.

As we said, the number of edges m in the Erdős-Rényi model is not fixed, but its expec-
tation 〈m〉 can be easily computed:

〈m〉 =

(
N

2

)
p (A.16)

and we can further derive the average degree 〈k〉:

〈k〉 =

〈
2m

N

〉
=

2〈m〉
N

= (N − 1)p −−−→
N→∞

Np (A.17)

Another measure that is very easy to derive is the clustering coefficient:

C =
〈k〉

N − 1
(A.18)

This is one of several respects in which the random graph differs sharply from most real-
world networks. Indeed, real-world networks often have quite high clustering coefficients,
while Eq.(A.18) tends to zero for N →∞ and even for the finite values of N appropriate
to real-world networks the value of C in the random graph is often very small. Moreover,
there is no correlation between the degrees of adjacent nodes, since the edges are placed
completely at random, thus interesting structure communities or hubs do not emerge.

A.5.2 Small-world graphs

The small-world model is a stylized model first proposed by Watts and Strogatz [85]
originally intended to illustrate how two characteristic features of social networks—high
clustering coefficient and short path lengths—can coexist in the same network.

The model is construct as follows. One starts off with a regular lattice of some kind,
for instance with a ring where each node is connected to its l nearest neighbours. Then,
this network is randomized by rewiring some of the edges from their positions to new
random positions. Specifically, each of the edges is removed with some probability p
and replace it with another that joins two nodes chosen uniformly at random from the
network. The randomly placed edges are commonly referred to as shortcuts because, they
create shortcuts from one part of the ring to another.

To be noted that during the rewiring procedure the total number of edges remain un-
changed, so the average degree is simply:

〈k〉 = l (A.19)

In a regular lattice, i.e. p = 0, the clustering coefficient is quite high but the average path
lenghts between two random chosen nodes is very high. On the other hand, a random
graph, i.e. p = 1, is characterized by short path lenghts but low clustering coefficient.
In the small-world model there is a significant parameter range in between in which the
network has both properties simultaneously, short paths and high clustering.
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A.5.3 Scale-free graphs

Many networks are observed to have degree distributions that approximately follow power
laws and the presence of highly connected hubs. Examples include the Internet, the World
Wide Web, citation networks, and some social and biological networks. A possible mech-
anism of network formation that give rise to a power-law distribution is the preferential
attachment, a name coined by Barabási and Albert [86].

If we think to a social network, it is more easy for a people with a very large number of
friends to meet new people. The same happens also in a citation network, where a famous
paper is more likely to be cited in the future. The preferential attachment mechanism
can be thus summarized under the maxima ”the rich get richer”. Indeed, such type of
networks are created in a dynamical way: starting with a fully connected clique of q0

nodes, new vertices are continually added to the network. Each new node is connected
to q ≤ q0 existing nodes with a probability pi that is proportional to the number of links
that the existing nodes already have, i.e. its degree ki:

pi =
ki∑
j kj

(A.20)

In the limit of large degree k, the degree distribution pk gives:

pk ∼ k−3 (A.21)

that is precisely a scale-free distribution with exponent α = −3.

The average degree in a Barabási-Albert graph of size N can be estimated in the following
way: the initial number of edges is

(
q0
2

)
, then the other (N − q0) brings q new edges each,

so the total number of edges m in the network is:

m =
N〈k〉

2
=
q0(q0 − 1)

2
+ q(N − q0) (A.22)

We further assume that q = q0, so the expected degree 〈k〉 becomes:

〈k〉 = 2q − q

N
− q2

N
−−−→
N→∞

2q (A.23)
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Appendix B

Mean-field approximation

In this Appendix we present the derivation of a Master Equation that describes the
temporal evolution of HTC model in the mean-field approximation. Furthermore, we
notice the emergence of two stable equilibria that even coexist for a certain range of
thresholds.

B.1 Derivation of the master equation

The HTC model describe a network of N neurons that can be in one of three possible
states: active x, refractory y, and inactive Ø. We redefine respectively the number and
the density of: active nodes nx and x; refractory nodes ny and y; inactive nodes nØ and
Ø. We recall the possible reactions between the states:

Ø
pact−−→ x

x
1−→ y

y
r2−→ Ø

(B.1)

where pact is the probability of activation and r2 is the rate of escaping from refractoriness.
Once activated, a neuron becomes refractory, i.e. it passes from x to y, with probability 1.
A neuron fires, i.e. becomes active with probability 1, if the weighted sum of neighbouring
activation is larger than the threshold T, otherwise it can activate with probability r1. So
we can model the total probability pact of transition from inactive to active state as:

pact = r1 + (1− r1)Θ

[∑
j

Wijsj − T
]

(B.2)

where Θ[ · ] is the Heaviside step function: it is equal to 1 if the argument is positive,
otherwise it is null.

Here we propose a mean-field approximation of the model, namely we assume that the
underlying graph W is fully-connected, so each node is structurally connected to every
other. Moreover, we introduce a further approximation on the connections between the
pairs of nodes, that we assume constant in all the network, i.e. Wij = c ∀i, j . In this
way, considering also the homeostatic normalization, the weights of the structural matrix
are:

W̃ij =
Wij∑
jWij

=
c∑
j c

=
c

Nc
=

1

N
(B.3)
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Thus the argument inside Θ[ · ] in Eq.(B.2) becomes:∑
j

W̃ijsj − T =
1

N

∑
j

sj − T

=
nx
N
− T

= x− T

(B.4)

The reactions in Eq.(B.1) are translated in the following transition rates:
T [(nx, ny) −→ (nx + 1, ny)] = (N − nx − ny)[r1 + (1− r1)θ(x− T )] = T+

T [(nx, ny) −→ (nx − 1, ny + 1)] = nx = T−+

T [(nx, ny) −→ (nx, ny − 1)] = r2ny = T−
(B.5)

From these rates we can summarize the temporal evolution of the probability P (nx, ny)
that at a certain time the network has nx active, ny refractory and nØ = N − nx − ny
neurons, by mean of the following master equation:

Ṗ (nx, ny) = P (nx − 1, ny) T
+

+ P (nx + 1, ny − 1) T−+

+ P (nx, ny + 1) T−

− P (nx, ny) [T+ + T−+ + T−]

(B.6)

From here on we describe the system by the density of active and refractory neurons,
respectively x = nx/N and y = ny/N , so ∆x = 1/N , ∆y = 1/N . Thus we can normalize
the rates: 

T̃+(x, y) = (1− x− y)[r1 + (1− r1)θ(x− T )] = T+/N

T̃−+(x, y) = x = T−+/N

T̃−(x, y) = r2y = T−/N

(B.7)

and describe the state of the system by mean of P (x, y). We assume that both P (x, y)

and the rates T̃ vary smoothly with x and y, meaning that we can effectively treat them
as differentiable function. This is clearly an approximation if N is finite, but in the limit
of large N , ∆x and ∆y become infinitesimal. This allows to make Taylor expansions for

the terms T̃ (x±∆x, y±∆y) and P (x±∆x, y±∆y) up to the second order, ignoring all
higher order, as follows:

T̃ (x±∆x, y ±∆y)P (x±∆x, y ±∆y) = T̃ (x, y)P (x, y)

±∆x
∂

∂x
[T̃ (x, y)P (x, y)]±∆y

∂

∂y
[T̃ (x, y)P (x, y)]

+
1

2
∆x2 ∂

2

∂x2
[T̃ (x, y)P (x, y)] +

1

2
∆y2 ∂

2

∂y2
[T̃ (x, y)P (x, y)]

± 1

2
∆x∆y

∂

∂x

∂

∂y
[T̃ (x, y)P (x, y)] +O(∆x3,∆y3)

(B.8)

By taking the continuum limit of the master equation Eq.(B.6) and by expanding all the
terms up to the second order as shown in Eq.(B.8), we obtain the so-called Fokker-Plank
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equation for the probability density p(x, y):

∂

∂t
p(x, y) = − ∂

∂x
[A1(x, y)p(x, y)] +

1

2N

∂2

∂x2
[B11(x, y)p(x, y)]+

− ∂

∂y
[A2(x, y)p(x, y)] +

1

2N

∂2

∂y2
[B22(x, y)p(x, y)]+

+
1

2N

∂2

∂x∂y
[(B12(x, y) +B21(x, y))p(x, y)]

(B.9)

where the coefficients are:

A1(x, y) = (1− x− y)[r1 + (1− r1)Θ(x− T )]− x
A2(x, y) = x− r2y

B11(x, y) = (1− x− y)[r1 + (1− r1)Θ(x− T )] + x

B22(x, y) = r2y + x

B12(x, y) = −x
B21(x, y) = −x

(B.10)

and P (x, y) = p(x, y)∆x∆y. The Fokker-Planck equation is a deterministic differential
equation describing how the probability distribution of states p(x, y) evolves over time.
Physically, it describes the evolution of an ensemble of systems: if we simulate a huge
number of populations of neurons, all with the same parameters, they will have different
evolutions due to random fluctuations, but the fraction of systems that have a density of
states in [x, x + dx; y, y + dy] at time t will be given exactly by p(x, y)dxdy (in the limit
of an infinite ensemble).

An equivalent description can be derived by instead following a single population of neu-
rons. In this case, a change in population density [dx, dy] under the effect of stochastic
fluctuations ξ is given by the Langevin equation:[

ẋ
ẏ

]
=

[
A1(x, y)
A2(x, y)

]
+

1√
N

[
B11(x, y) B12(x, y)
B21(x, y) B22(x, y)

]1/2 [
ξ1

ξ2

]
(B.11)

where ξ = [ξ1, ξ2] is an uncorrelated 2d white gaussian noise, i.e. such that ξi ∼ N(0, 1)
and 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). Indeed Eq.(B.11) is an example of stochastic differen-
tial equation. It can be noticed how A(x, y) are deterministic drift term, while B(x, y)
encloses the stochastic diffusive part [87].

B.2 Thermodynamic limit

In the limit of a large number of interacting units in the system, the effect of random
fluctuations are gradually less evident. In the thermodynamic limit N →∞, the diffusive
terms in the Langevin equation Eq.(B.11) disappear:{

ẋ = (1− x− y)[r1 + (1− r1)Θ(x− T )]− x
ẏ = x− r2y

(B.12)

The evolution of the systems is thus described by a deterministic map. We try to ana-
litically solve Eq.(B.12) but it seems intractable. Nevertheless, we can still explore the
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existence of equilbria in the system. We are going to show that the dynamics of the system
discriminates between two different regimes based on the value of Θ[ · ], each one with its
own equilibrium, by varying the threshold T. Since these two phases are characterized by
respectively high and low level of activity, we call them super- and sub-critical phases.

We further investigate the nature of the equilibria through linear stability analysis tech-
niques [88]. Indeed Eq.(B.12) is a map of the type:

ż = f(z) (B.13)

with z = (x, y) a 2-dimensional vector. The equilibria z∗ of this map are the ones that
satisfy f(z∗) = 0. If we focus on the dynamics near the fixed points, we can perform a
change of variables x = x∗ + ∆x, y = y∗ + ∆y. In the limit of small variations |∆z| → 0,
meaning that we are considering states infinitesimally near the fixed points, Eq.(B.13)
can be Taylor-expanded as:

∆̇z = f(z∗) +
∂f

∂z

∣∣∣
z=z∗

∆z + ...

= J(z∗)∆z
(B.14)

Thus the dynamics near the fixed points is governed, at the first order, only by the
Jacobian matrix J . In particular, the (real part of) the eigenvalues λ of J can tell us
information regarding the stability or instability. If max Re(λ) > 0, the trajectories
asymptotically diverge from the equilibria, otherwise for max Re(λ) < 0 the trajectories
converge to the fixed point, which is stable in this case.

B.2.1 Super-critical phase

In the super-critical phase x > T and at stationarity, Eq.(B.12) leads to:y+ =
1

2r2 + 1
=: C(r2)

x+ = r2C(r2)
(B.15)

The disequality x > T must be satisfied by the equilibrium Eq.(B.15) in order to exist.
So the super-critical equilibrium (x+, y+) exists only if:

T <
r2

2r2 + 1
=: T+(r2) (B.16)

The jacobian evaluated at (x+, y+) is:

J+ =

[
−2 −1
1 −r2

]
(B.17)

The eigenvalues of Eq.(B.17) are:

λ+ = −2 + r2 ± i
√

4r2 − r2
2

2
(B.18)

The stability condition holds if:

Re(λ+) = −1− r2

2
< 0 (B.19)

which is always satisfied (since the rate r2 indentifies a probability, so 0 ≤ r2 ≤ 1), thus
the super-critical fixed point (x+, y+) is a stable focus.
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B.2.2 Sub-critical phase

In the sub-critical phase x ≤ T and at stationary, Eq.(B.12) leads to:y− =
r1

r2 + (r2 + 1)r1

=: D(r1, r2)

x− = r2D(r1, r2)
(B.20)

Again, the disequality x ≤ T must be satisfied by (B.20) in order to observe the fixed
point. So the sub-critical equilibrium (x−, y−) exists only if:

T ≥ r1r2

r2 + (r2 + 1)r1

=: T−(r1, r2) (B.21)

The jacobian evaluated at [x−, y−] is:

J− =

[
−1− r1 −r1

1 −r2

]
(B.22)

whose eigenvalues are:

λ− =
−(1 + r1 + r2)±

√
(1 + r1 + r2)2 − 4(r1 + r2 + r1r2)

2
(B.23)

Also in this phase the stability condition is Re(λ−) < 0 is satisfied ∀r1, r2 (since 0 ≤ r1 ≤ 1
and 0 ≤ r2 ≤ 1).

We observe two different regimes by varying the parameters r1 and r2: if r1−2
√
r1+1 < r2

the eigenvalues have an imaginary part, while in the other case they are pure real (Fig.B.1).
So in the first cases the fixed point is a stable focus, while it is a stable knot in the other
case. It can be noted that from a physical point of view, both r1 and r2 are usually defined
as quite small values in all the simulations, typically less than 10−1. Therefore, in most
cases we should observe a stable knot at (x−, y−).

Figure B.1: Eigenvalues λ− of the sub-critical equilibrium as a function of r1, r2. Blue region, eigenvalues
are pure real. Orange region, eigenvalues have non-zero imaginary part. Dahsed line, values belonging to
the curve r2 = r1 − 2

√
r1 + 1 that divide the two regions of parameters.
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B.2.3 Diagram of equilibria

As expected, we can notice from Eq.(B.15) and Eq.(B.20) that the fraction of active
nodes x+ at equilibrium in the supercritical phase is always larger (i.e. ∀r1, r2) than
the subcritical equilibrium x−, since r1, r2 ≤ 1. In addition, in the range of threshold
for which the fixed points exist, respectively Eq.(B.16) and Eq.(B.21), these are global
equilibrium and are both stable, each one with its own basin of attraction. Moreover,
from Eq.(B.16) and Eq.(B.21) we can deduce that T− < T+ ∀r1, r2, thus three regions
emerge in the parameter space spanned by T (Fig.B.2):

• T ≤ T−:
the sub-critical equilibrium x− does not exist, so we should observe only the super-
critical equilibrium x+.

• T− < T ≤ T+:
coexistence of both equilibria x+ and x−.

• T > T+:
only the sub-critical equilibrium x− exists.

Figure B.2: Diagram of fixed points as a function of the threshold T. Green regions, only one fixed point
exists. For T < T−, x− does not exist, so we should observe only x+. Conversely, for T > T+, x+ does
not exist, so we should observe only x−. Yellow region, coexistence of the two equilibria in the range
T− < T < T+.

Such theoretical predictions are supported by the numerical integration of Eq.(B.12):
indeed in the limit of large times, the fraction of active nodes reach the aforementioned
equilibria (Fig.B.3).

Finally, we compare the theoretical prevision with simulations of HTC model over a
finite-size fully-connected matrix with constant weights. From the trajectories displayed
in Fig.B.4 it can be observed that simulated data are consistent with the analytical results.
So the mean-field approximation in the thermodynamic limit is predictive of the behaviour
of HTC model run over structural matrix with constant entries in the limit of large
connectivity.
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Figure B.3: Numerical integration of the mean-field model in the thermodynamic limit Eq.(B.12) for
values of T in the three regions shown in Fig.B.2. Left column, trajectories of variables x and y, starting
from random initial configurations. (Dire che nel primo e terzo caso, convergono a un solo valore,
mentre nel mezzo a due). Right column, streamplot of Eq.(B.12). Orange circle and Purple circle are
the theoretical predictions of equilibria from Eq.(B.15) and Eq.(B.20). These results are obtained with
r1 = 10−1 and r2 = 10−1, but are consistent also with different choices of parameters.
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Figure B.4: Theoretical predictions are respected by HTC model simulated over a fully-connected matrix.
Network size N = 105, parameters r1 = 10−1 and r2 = 10−1.
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