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Abstract

In recent years, we have seen an explosion of activity in deep learning in both academia
and industry. Deep Neural Networks (DNNs) significantly outperform previous machine
learning techniques in various domains, e.g., image recognition, speech processing,
and translation. However, the safety of DNNs has now been recognized as a realistic
security concern.

The basic concept of a backdoor attack is to hide a secret functionality in a system,
in our case, a DNN. The system behaves as expected for most inputs, but malicious
inputs activate the backdoor.

Deep learning models can be trained and provided by third parties or outsourced to
the cloud. The reason behind this practice is that the computational power required
to train reliable models is not always available to engineers or small companies. Apart
from outsourcing the training phase, another strategy used is transfer learning. In this
case, an existing model is fine-tuned for a new task. These scenarios allow adversaries
to manipulate model training to create backdoors.

The thesis investigates different aspects of the broad scenario of backdoor attacks in
DNNs. We analyze the neuron activations in backdoor models and designed a possible
defence based on empirical observations. The neurons of the last layer of a DNN show
high variance in their activations when the input samples contain the trigger.

We also present a new type of trigger that can be used in audio signals obtained
using the echo. Smaller echoes (less than 1 ms) are not even audible to humans, but
they can still be used as a trigger for command recognition systems. We show that
with this trigger, we can bypass STRIP-ViTA, a popular defence mechanism against
backdoors.

Finally, we analyze and evaluate the blind backdoor attacks, which are backdoor
attacks that are based on both code and data poisoning, and tested them with an
untested defence. We also propose a way to bypass the defence.
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Chapter 1
Introduction

In the last years, we have seen a burst of activity in deep learning in both academia
and industry. Deep Neural Networks (DNNs) are becoming widely adopted in a variety
of domains, e.g., image recognition, speech processing, translation, malware analysis.
However, the safety of DNNs has now been recognized as a realistic security concern.

In 2017, Gu et al. [10] proposed for the first time the concept of backdoor attack
in the field of neural networks. The basic concept of a backdoor attack is to hide a
secret functionality in a system, in our case a DNN. The system behaves as expected
for most inputs, but a malicious input, i.e., a sample containing the trigger, activates
the backdoor. Fig. 1.1 shows an example of the attack. The authors created two
backdoored neural networks using data poisoning: they poisoned hand-written digit
and street sign classifiers to misclassify inputs possessing a trigger that activates the
backdoor. In a data poisoning attack, the attacker poisons part of the training datataset
with a trigger pattern and changes the class of the poisoned data to the desired one,
i.e., the target class. After that, the model is trained with the poisoned dataset.

In the same year, Chen et al. [3] introduced a backdoor in a face recognition system.
In this case the trigger is represented by a physical object, i.e., a pair of specific glasses.

Deep learning models can be trained and deployed by third parties or outsourced to
the cloud. In fact, engineers and small companies do not always have the computational
power needed to train reliable models. In addition to outsourcing the training phase,
transfer learning is also used. Existing models are adapted to new tasks. This practice
is called fine-tuning and it is often used for image recognition. These scenarios give
attackers the opportunity to manipulate training data to create backdoors. Gu et al.
[10] demonstrated the feasibility of backdoor attacks in both scenarios.

Differently from adversarial examples, introduced in 2013 by Szegedy et al. [30], in
a backdoor attack the adversary introduces a secret functionality that is activated by
a specific trigger. Instead, we can think of adversarial examples as bugs [10] in benign
models. Indeed, adversarial examples are perturbations to inputs that cause them to
be missclassfied. Generally, adversarial examples are used at test time to perform an
evasion attack, while backdoor attacks target the training phase of a model. Another
work [22] also proposed an algorithm to find universal perturbations that could cause
missclassification across different neural networks.

Data poisoning is not the only way to insert backdoors to neural networks, indeed,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a backdoored street sign classifier. The stop sign is maliciously
misclassified as a speed-limit sign by the malicious model [10].

there exist also non-poisoning-based attacks. There are some researches about post
deployment attacks, such as [23] and [5]. The former can insert a backdoor into a
DNN through the bit-flip attack, using an algorithm that efficiently generates a trigger
designed to locate certain vulnerable bits of the model weights stored in memory (i.e.,
DRAM). The latter attack assumes the attacker can run code on the victim system, in
order to modify model parameters in memory to achieve predefined malicious behavior
on a certain set of inputs.

Bagdasaryan et al. [1] have proposed a different type of attacks based on code
poisoning. They have modified the loss value computation to insert the backdoor
generating poisoned inputs on the fly. The authors assume an attacker who knows
the task (general data domain and possible model architectures), but not the specific
training data and hyperparameters.

Most of the works in this field regard image and video classifiers, and only a
smaller part has as a target Natural Language Process (NLP) and sound recognition
applications.

The thesis in organized as follows: Chapter 2 briefly illustrates the technical
background needed for the projects. In particular, it covers machine and deep learning
fundamentals and the concept of backdoor attacks in this field. Chapter 3 covers
the related works, both attacks and defences previously proposed and analyzed in
the literature. Chapter 4 illustrates how the values of the neuron activations change
between clean and backdoored models and suggest a possible direction of research
to identify trojaned models based on the observation of neuron activations. Chapter
5 presents a new possible trigger that can be used in automated speech recognition
systems. Chapter 6 investigates blind backdoors attacks [1]. Firstly, we reproduce the
attack and test it with a previously untested defence, i.e. STRIP [8], then we propose
a way to bypass it.



Chapter 2
Background

This chapter introduces the background knowledge required to follow the remaining
part of the thesis. It starts with a short introduction to machine and deep learning,
then it continues with the explanation of backdoor attacks in these types of models.

2.1 Machine Learning

Machine learning is the automated detection and extraction of meaningful patterns in
data. The particularity of machine learning tools is the ability to learn these patterns
from the experience. The main idea behind machine learning is that given a collection
of samples, i.e., the training dataset, we want to be able to make predictions about
new samples that we have not seen before.

Machine learning is a very wide domain and there exist different types of learning.
The main categories are:

• Supervised learning: each sample in the training dataset is labeled. An example
of this application is to label new samples, e.g., our goal could be to label emails
in spam or not-spam;

• Unsupervised learning: samples in the dataset are unlabeled and the machine
learning algorithm try to discover meaningful relations between the samples. A
typical example of this task is clustering, which aggregates samples in clusters;

• Reinforcement learning: in this case the dataset is not fixed. In reinforcement
learning there is an agent that interacts with an environment and takes actions
that can be rewarded with positive, negative or neutral rewards. Therefore, there
is a feedback loop between the learning system and its experiences. Generally,
the goal is to maximize a function of the rewards.

The thesis targets supervised learning applications.

The main task considered in the thesis is classification. Our aim is to develop
a model able to approximate an unknown function f : Rn → {1, ..., k} that given an
input x̄ is able to assign it to category or to give the probability that x̄ belongs to

3



4 CHAPTER 2. BACKGROUND

the different categories. In order to learn, the model needs a training dataset Dtrain

containing tuples (x̄i, zi) where x̄i is the input and zi is the corresponding label.

The accuracy of the trained model is evaluated using a set of fresh data not used
during training, i.e., Dtest.

2.2 Deep Learning

Deep learning is a sub-field of machine learning. It dates back to the 1940s, however,
it was relatively unpopular for several years preceding the current popularity. Recent
progress in the underlying hardware and the availability of massive quantitative of
training data has led to a revolution. Nowadays, deep learning is widely used in a
variety of applications such as computer vision, speech recognition and translation.

Deep learning models are inspired by the biological brain, however, they are not
generally designed to replicate biological functions.

The building units of a deep learning model are the neurons. A deep learning model
is made by a set of layers composed by several neurons. We have an input layer, some
hidden layers and then the output layer. The number of hidden layers determine
the depth of the model, while the larger layer determines the width of the model. A
neuron computes a non-linear function over the inputs. Its output depends on the
input and a set of weights, that are parameters which the model learns. As shown

Figure 2.1: Artificial neuron.

in Fig. 2.1, the inputs xi are firstly multiplied by their weights wi and then summed
together including in the computation also the bias b. Next, the result is passed to
the activation function φ. During the training phase, the model learns the weight and
the biases. The activation function φ is usually non-linear to approximate complex
functions. Indeed, if all activation functions were linear, the model would behave like
a single layer network.

Formally, a deep neural network is a parameterized function FΘ : Rn → Rm that
maps an input x̄ ∈ Rn to an output z̄ ∈ Rm. In case of a classification task, z̄ is a
vector of probabilities over the k classes. x̄ is labeled as belonging to the class with the
highest probability, i.e., arg max FΘ(x̄) is the class label. Θ represents the parameters
of the neural network.
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2.2.1 Activation functions

The most common activation functions used in deep learning models are:

• sigmoid: this function takes any real value as input and outputs values in the
range of 0 to 1

sigmoid(x) =
1

1 + e−x
(2.1)

• tanh: differently from sigmoid its output is in the range of -1 to 1

tanh(x) =
ex − e−x

ex + e−x
(2.2)

• ReLU: the Rectified Linear Unit is computed as follows:

ReLU(x) = max(0, x) (2.3)

• ELU: the Exponential Linear Unit (ELU) is defined as follows:

ELU(x) =

{︄
x if x > 0

α(ex − 1) if x ≤ 0
with 0 < α (2.4)

• softmax: it transforms the previous layer’s activations into a vector of probabilities.
The function rescales the elements of a vector to lie in the range [0, 1] and sum
to 1. The different probabilities are computed as follows:

softmaxi(x) =
exi∑︁
j e

xj
(2.5)

• log softmax: it applies the natural logarithm to the softmax. It can be computed
as follows:

log(softmaxi(x)) = log(
exi∑︁
j e

xj
) (2.6)

2.2.2 Training

The goal of the training is to determine the parameters of the network, i.e., the weights
and the biases, with the use of the training dataset. Therefore, we want to find
the parameters that minimize the loss function and allow the model to achieve good
accuracy in predicting new data. In case of supervised learning, the training dataset
Dtrain is a set of tuples composed by an input vector xī and its corresponding correct
label zi. The learning algorithm iterates over Dtrain and for each tuple it computes
the loss value l = L(θ(x̄, z). Then, the algorithm updates the network parameters
computing the gradients g = ∇l and using the backpropagation. The training involves
two phases:

• the forward propagation: the input x̄i is propagated through the neural network
in order to produce the output ẑ;
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• the back-propagation: the gradients of the loss functions are used to update
weights and biases. This phase uses the gradient descent algorithm that updates
the parameters in the opposite direction of the loss function’s gradient. The
weights are updated as follows:

w
(t)
ij = w

(t)
ij − η

∂L

∂w
(t)
ij

(2.7)

where η is the learning rate that determines the step size. It is a hyperparameter
that is not learned by the algorithm. w

(t)
ij refers to the weight that connects

neuron v
(t−1)
i to neuron v

(t)
j , where t is the index of the layer and i and j refer

to the neuron index.

The majority of deep learning models use the stochastic gradient descent (SGD),
that calculates the gradient and updates the parameters of the model using only a
part of the training set, i.e., the minibatch, that is randomly drawn from Dtrain.

Different variations of adaptive learning algorithms have been developed to adapt the
learning rate during the training process. Three of the most widely used are:

• AdaGrad: the names stands for adaptive gradient algorithm. It scales learning
rates of single parameters inversely proportional to the square root of the sum of
all historical squared values of the gradient [9].

• RMSProp: the name stands for Root Mean Square Propagation. It is similar
to AdaGrad, but it discards the history of ancient past. RMSProp uses an
exponentially decaying average to discard history from ancient past [9].

• Adam: the name is the short for Adaptive Moment Estimation. It is an improve-
ment of RMSProp that incorporates momentum as an estimate of the first order
moment. Momentum is designed to accelerate the learning by accumulating an
exponential moving average of past gradients, basically the gradient step depends
on how aligned the sequence of last gradients are [9].

The convergence of the learning algorithm depends also on the initial values of the
parameters. In general, weights and biases are randomly initialized accordingly to a
uniform or a Gaussian distribution.

There exist also several optimization and regularization techniques used to speed up
the training or to avoid overfitting. With the term overfitting we refer to a model that
performs well with training data, e.g., it has low loss and high accuracy, but it does
not perform well on unseen data. Overfitting occurs when the gap between training
error and test error is large. In the experiments considered in the thesis, the following
techniques are used:

• batch normalization [14]: it is a method of adaptive reparametrization, motivated
by the difficulty of training very deep models [9]. Each unit’s pre-activation
is normalized by subtracting the mean and dividing by the standard deviation
calculated across the layer’s activation. The mean and the standard deviation
used are computed for each mini-batch. At test time, the global values of them
are used.
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• dropout [29]: it is an efficient way to perform bagging. Bagging involves training
multiple neural networks and evaluating them on each test sample [9]. During
training, some neurons outputs are randomly dropped out. Basically, dropout
trains an ensemble consisting of subnetworks constructed by removing neurons
from an underlying neural network. We use a minibatch-based learning algorithm.
Each time we load an example into a minibatch, we randomly sample a different
binary mask to apply to all the input and hidden units in the network. The
binary value for each unit is sampled independently from all the others. The
probability of sampling a mask value of one (causing a unit to be included) is a
hyper parameter selected before training begins or after hyperparameter tuning
[9].

• early stopping: during the training phase, it is common to observe that training
error decreases steadily over time, but validation set error begins to rise again or
stops to decrease. Thus, it is possible to obtain a model with better validation
test error by returning the parameter setting at the point in time with the lowest
validation set error [9]. A simple way to implement this technique is to stop the
training process when a monitored metric, e.g., the accuracy or the loss, has
stopped improving. An important parameter is indeed patience. It defines the
number of epochs with no improvement, after which the training stops.

2.2.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [16] are a specialized type of networks used
for processing grid-like structures, such as images, videos and time-series data. They
are based on convolutional layers, i.e., layer that perform a mathematical operation
called convolution. In a CNN there are three main types of layers: convolutional layers,
pooling layers and fully-connected layers.

Convolutional layers are used for feature extraction. This type of layers perform a
convolutional operation between the input, e.g., an image, and a filter, generally called
kernel, that is small matrix of learnable parameters. The output of the operation is
usually referred as feature map. They perform a dot product between the kernel and
the input, in general a tensor. The kernel slides across the height and the width of the
input image. The sliding size is called stride. An element-wise product between each
element of the kernel and the input tensor is calculated at each location of the tensor
and summed to obtain the output value in the corresponding position of the output
tensor, called feature map [24]. The procedure is repeated for different kernels, indeed,
every convolutional layer has more than one kernel. In image recognition tasks, the
different feature maps represent different characteristics of the input image. Figure 2.2
shows an example of convolution operation with a kernel size of 3x3, no padding, and
a stride of 1.

Pooling layers are used to reduce the spatial size of the representation. This type of
layer replaces the output of the network at certain locations by deriving a summary
statistic of the nearby outputs, e.g., considering the max value (max-pooling). For
example, we can use a 2×2 pooling with stride 2 per direction to downsample a 4×4
activation map to a size of 2×2. Figure 2.3 shows an example of max-pooling operation
with a filter size of 2x2, no padding, and a stride of 2. In a fully connected layer,
neurons have full connectivity with all neurons in the preceding and succeeding layers.
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Figure 2.2: Convolution.

Figure 2.3: Max-pooling.

2.2.4 Audio recognition

Neural networks are the bedrock also of sound recognition systems. In general, to
build and train an automatic speech recognition (ASR) model for recognizing words,
the audio files are firstly pre-processed. In particular, it is convenient to transform
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the waveforms represented in time domain (e.g., audio files in WAV format) in the
frequency domain. A possible solution [28] is to use short-time Fourier transform
(STFT) that convert the waveforms to as spectrograms, which show frequency changes
over time. Spectrograms can be represented as 2D images. Differently from the Fourier
tranform, STFT splits the signal into windows of time and runs a Fourier transform
on each window, this preserves some time information, that would otherwise be lost.

The spectrograms are the inputs of the model that we want to build. The same
procedure must be followed during the inference phase.

2.3 Backdoor attacks in deep learning models

The first defintion of backdoor attacks in deep learning models was given by Gu et
al. [10] in 2017. According to the authors, a backdoored model (or a BadNet) is
a neural network that performs well on most inputs, but behaves badly on specific
attacker-chose inputs. The attacker trains a malicious model Θadv that is different
from an honestly trained model Θ∗. The goals of the attacker are two: to build
a model that has an accuracy similar to a non malicious model and to insert a
secret functionality in the backdoored model. The former goal is accomplished if
A(FΘadv , Dvalid) ≥ a∗, where a∗ represents the minimum target accuracy desired and
Dvalid indicates the validation set. The latter is achieved if inputs containing the
backdoor trigger are missclassified by the model. Formally, let consider a function
P : Rn → {0, 1} that maps any input x̄ to a binary output, such that the output is
equal to 1 if the input contains the trigger, 0 otherwise. Then, the attacker goal is that
∀x̄ : P(x̄) = 1, arg max FΘadv ̸= arg max FΘ∗ .

The above definition includes both target and non-targeted attacks [10]. In the
former case, the attacker specifies the desired output for triggered inputs. In the latter
case, the adversary’s aim is to reduce the classification accuracy for inputs containing
the trigger. Fig. 2.4 shows the procedure of a poisoning-based backdoor attack.

The attack accuracy is the most common metric used to evaluate the performance
of a backdoor attack. It is computed as follows:

Attack accuracy =
#predictions of target class

#of total predictions
(2.8)

Another interesting metric is the missclassification rate. It is useful in case of class
specific attacks, i.e., attack in which the backdoor is activated only when the trigger is
attached to an input belonging to a specific class. In this case, the requirements to
activate the backdoor are two: the trigger and the class. An input with the trigger
that belongs to a different class from the source class should not activate the backdoor.
The metric is computed using the following formula:

Misclassification rate =
#wrong predictions

#of total predictions
(2.9)

where the number of wrong predictions considers the trojaned samples which are
classified as the target class even if they do not belong to either the source class or the
target class.
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Figure 2.4: Procedure of a poisoning-based backdoor attack. In this example, the trigger is
a black square on the bottom right corner and the target label is 0. Part of the
training dataset is modified to have images with the trigger stamped, and their
label is changed to the target label. Accordingly, the trained model is infected:
it will recognize poisoned images (i.e., images containing the trigger) as the
target label while still correctly predicting the label for clean images [18].

Alternatively, it is possible to evaluate the accuracy on poisoned samples that do
not belong to the source class. It can be evaluated as follows:

Accuracy with trojaned samples =
#correct predictions

#of total predictions
(2.10)

where the number of correct predictions considers trojaned samples belonging to
non-source classes which are correctly classified and the number of total predictions
only consider trojaned samples that do not belong to the source class.

It is also important to evaluate the clean accuracy drop that measures the difference
in accuracy introduced from the backdoor on clean data. Indeed, the backdoor should
be stealthy and should not raise suspicions. Moreover, a model with lower performance
will not be used by the victims.



Chapter 3
Literature review

Deep neural networks require large amount of training data and significant computa-
tional power. The computational power required for training reliable models is not
always available to engineers or companies, therefore, the task of training is often
outsourced to third parties. The task of training can be outsourced to the cloud or
to a third entity. Outsourcing the training is often referred as MLaaS, i.e., Machine
Learning as a Service. Apart from outsourcing the training phase, another strategy
used, is transfer learning: in this case an existing model is fine-tuned for a new task.
It is commonly used for image recognition. These scenarios give the possibility to
malicious people to manipulate the training process to introduce backdoors.

3.1 Attacks

The first and most known attacks are based on data poisoning. In this scenario, the
attacker must have access to a part of training dataset in order to poison it. The
percentage of samples that has to be poisoned can vary depending on the task and the
model. For example, [3] shows that even with few dozen of samples it is possible to
obtain an attack success rate higher than 90%. They used a face recognition system,
trained with 600,000 samples. The authors also showed that a data poisoning attack
can create a physically implementable backdoor: using data poisoning they were able
to create a malicious face recognition system, in which a specific pair of glasses is the
trigger that activates the backdoor.

The most famous work regarding backdoor attacks in neural networks is [10]. The
authors introduced for the first time this concept and they created two backdoored
neural networks. Indeed, they poisoned handwritten digit and street sign classifiers
to misclassify inputs stamped with the trigger. They also evaluated the effect of
transfer learning, analyzing if the backdoor was still present after the re-training. They
have successfully demonstrated that the backdoors can persist also in case of transfer
learning.

There exist different ways to insert the trigger in the samples. In image classification,
it is possible to use as a trigger a pixel pattern [10], to overlap clean samples with a
trigger with certain transparency [3], or to use physical objects present in the image

11
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[3] and [6]. In the latter article, i.e., [6], the authors present a backdoored model in
which the trigger in made by raindrops. According to their evaluation, this attack is
more disguised and can circumvent data filtering. Indeed, the raindrops do not follow
a fixed pattern that is a common feature in backdoor attacks done via data poisoning.

Among the poisoned-based attacks there is also [1] that is based on code poisoning:
the attack code creates poisoned training data inputs during the training process, and
uses multi-objective optimization to achieve high accuracy and high attack success
rate. The attack uses Multiple Gradient Descent Algorithm (MGDA) that is used for
multi-task learning.

There are different ways to poison the dataset with the trigger:

• Class agnostic trigger: the backdoor is always activated when the trigger is present.
The goal is to obtain a trained model that classifies correctly clean inputs, but
miss-classifies every sample in input that contains the trigger. Poisoned samples
belong to all classes and their respective labels are changed to the target one.

• Class specific trigger: the backdoor is activated only when the trigger is present
on a sample that belongs to a specific class. The aim is to perform an attack that
would be successful only when the trigger is appended on the attacker chosen
class (or classes). Poisoned samples belong to all classes, however only the the
labels of samples belonging to the source class are changed.

• Multiple triggers to same label: different triggers are used, but all of them have
the same target class. Different triggers mean different trigger placement or the
use of different patterns as triggers or the combination of both.

• Multiple triggers to multiple labels: different triggers are used and every trigger
has a different target class. Different triggers mean different trigger placement or
the use of different patterns as triggers or the combination of both.

• Clean label attack: the backdoor is always activated when the trigger is present.
However, during the poisoning phase, only the samples belonging to one class,
i.e., the target class, are poisoned and no label is changed. At the inference phase,
the trigger should activate the backdoor, causing the samples to be missclassfied
to the target class.

However, there exist also non-poisoning-based attacks. These type of attacks assume
that the attacker can modify the model parameters, for example using malicious
software, physical or hardware attacks. Moreover, differently from poisoning attacks,
the adversary can insert the backdoor at each stage of the pipeline, as shown in Fig.
3.1. There are two main strategies to modify the model parameters: the first one is
to change some weights, while the second is to add an extra part to the model. The
former strategy is used in [12] where the authors show that is possible to manipulate
the parameters of a pre-trained model to inject backdoors. Moreover, the attack does
not require training, knowledge of the dataset or access to it. Also [23] adopts the same
strategy: the authors propose a Target Bit Trojan (TBT) method, which can insert a
backdoor using bit-flip attack. They demonstrate that flipping only several vulnerable
bits identified by their method, using a bit-flip technique, such as row-hammer, can
effectively insert the the backdoor. The second strategy is used in [31] where the
researchers insert a tiny trojan module (TrojanNet) into the original model. They
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Figure 3.1: Backdoor attacks in each stage of ML pipeline [36].

claim that the technique is model agnostic and does not require training, indeed it is
enough to train the tiny module just once.

3.2 Defenses

To mitigate the backdoor threats, several defenses have been proposed. Most of the
works focuses on poisoning-based attacks. In the survey [19], the authors classify the
available empirical defenses in seven categories:

• Preprocessing based defenses: in [21] Liu et al. propose a preprocessing defence,
i.e., they suggest to insert a preprocessor before the neural network to prevent
illegitimate inputs from activating the backdoor. In the paper, they use an
autoencoder with bottleneck structure with the same number of input and output
neurons. Another approach that belongs to this category is Grad-CAM [26] that
can be used to identify influential regions in images. These regions must be
removed and replaced by neutral box. The authors illustrate also a GAN-based
method to reconstruct the masked regions.

• Model reconstruction based defenses: the aim of these defenses are to remove the
backdoor from the poisoned model. The idea is based on the forgetting process
of DNNs. An example of this category is represented by Fine-Pruning [20]. The
defence is based on the combination of the pruning and the fine-tuning techniques.
The former method works as follows: the defender feeds the suspicious DNN with
clean inputs and records the average activation of each neuron. The defender then
iteratively prunes neurons in increasing order of average activations and records
the accuracy of the modified model in each iteration. The process terminates
when the accuracy on clean samples drops below a threshold. The latter technique



14 CHAPTER 3. LITERATURE REVIEW

is a strategy commonly used transfer learning scenarios. Fine-tuning uses the
pre-trained weights of a model as starting point of the training process. The
combinations of both methods can be used to remove backdoors.

• Trigger synthesis based defenses: these defenses aim to reconstruct the trigger
in the first stage and then remove the backdoor, in a similar way of model
reconstruction based defenses. Neural Cleanse [33] belongs to this category and it
is one of the most famous defences. The authors present a system to reconstruct
triggers and suggest different methods to mitigate backdoors: input filtering,
neuron pruning and unlearning. The latter technique can be performed using
the reversed trigger to train the infected model to classify correctly the samples
even if they contain the trigger.

• Model diagnosis based defenses: these defenses classify a model as infected based
on the decision of a pre-trained meta classifier. An example of this technique
is developed by the authors of [35]. The strategy is to use a meta-classifier to
distinguish between trojaned and bening models. The classifier is trained using
shadow models, both benign and malicious.

• Poison suppression based defenses: these techniques are applied during the
training process. The idea is to mitigate the effectiveness of backdoor attacks
modifying the SGD. For example, adding randomness in the training process
affects negatively the effect of poisoned samples. In [17], Tang et al. illustrate an
anti-backdoor learning scheme, that is based on the consideration that backdoor
attacks have faster learning and target-class dependency. The proposed learning
scheme try to isolate backdoor samples, and break the correlation between
backdoor samples and the target class.

• Training sample filtering based defenses: these defenses involve the filtering of
the training dataset before the training process. The goal is to eliminate poisoned
samples. Accordingly to the Li et al. [19], also the well known activation clustering
defense [2] falls in this category. The defense is based on the clustering of the
activations of training samples of each class in two clusters. After the clustering
phase it is possible to determine which, if any, of the clusters corresponds to
poisonous data.

• Testing sample filtering based defenses: these defenses aim to determine if
malicious samples are used at the inference time. Gao et al. [8] proposed a
method for detecting backdoor attacks based on entropy, i.e., STRIP (STRong
Intentional Perturbation). It is a run-time detection system. STRIP bases
its detection on the entropy measurement of perturbed inputs: each input is
perturbed by superimposing to it a clean sample. The process repeat this
perturbation using different clean samples, while keeping fixed the input that we
want to analyze. Then, we use these perturbed samples as inputs for the model
and we observe the entropy of these classifications.A clean input always exhibits
high entropy, instead a trojaned inputs always exhibits low entropy. Indeed, in a
malicious model, if the original sample contains the trigger, the predictions of
the perturbed inputs will almost always fall in the target class. The method was
originally designed to detect backdoor in image classification task, but it was
extended to work with other domains, i.e. text and audio [7].



Chapter 4
Neuron activations analysis

This chapter illustrates the analysis of the neuron activations in backdoored models.
In particular, it highlights the difference between the neuron activations between clean
and trojaned models.

4.1 Idea

We analyze the activations of the last hidden layer of backdoored CNN and ResNet9
models trained with CIFAR-10 and Fashion-MNIST datasets. As highlighted in previous
works, such as [10], backdoored models generally present some neurons dedicated to
the backdoor that are fired when the trigger is present in the input.

We deepen on the neurons activations and in particular we study the variability of
the average activations. We compute the mean (i.e., µ) and the standard deviation (i.e.,
σ) of the average activations when the inputs are clean and when they are poisoned.
We find that trojaned inputs violate the Chebyshev bound [27] that guarantees that
no more than a certain fraction of values can be more than a certain distance from the
mean. In particular, no more than 1/k2 of the distribution’s values can be more than
k standard deviations away from the mean. We use the Chebyshev bound, because,
empirically, we find that neuron activations do not always have a normal distribution
as instead considered in other works, such as [12].

4.2 Implementation

We conduct several experiment using two model architectures, i.e., a CNN and ResNet9,
and two dataset, i.e., Fashion-MNIST and CIFAR-10. Regarding the Chebyshev bound,
we use k = 4, hence no more than 6.25% neurons activations should be beyond four
standard deviation from the mean. Empirically, we observe that k = 4 works well in
our experiments, however, we plan to investigate this parameter more thoroughly in
the future.

All the following tests are run on Google Colab using Keras and Tensorflow.

15
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Model architectures

The first model considered is a 6 layered CNN followed by flatten layer. The output
layer is a dense layer of 10 nodes, one for each class, with softmax activation. Instead,
the convolutional layers use elu as activation function. For the training of our model
we set batch size to 64 and epochs to 125. The learning rate varies during the training,
indeed it is initially set to 0.001, then it is decreased to 0.0005 after 75 epochs and
to 0.0003 after 100 epochs. As optimizer, we use RMSProp (Root Mean Square
Propagation).

ResNet is an architecture proposed in 2015 by Microsoft [11]. It uses the so called
residual blocks: in order to solve the problem of the vanishing/exploding gradient,
this model uses a technique called skip connections. The skip connection connects
activations of a layer to further layers by skipping some layers in between. This forms
a residual block. A ResNet model is constructed by stacking these residual blocks
together. The name ResNet followed by one or more digit number simply implies the
model has a certain number of neural network layers. We use ResNet9. As in the
previous model, the output layer is a dense layer of 10 nodes, one for each class, with
softmax activation. The convolutional layers use ReLU as activation function. The
optimizer is Adam with learning rate equals to 0.003 and decay value equals to 0.00005.
For the training of the model we set batch size to 256 and epochs to 75.

Datasets

CIFAR-10 dataset was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
The dataset consists of 60000 32x32 colour images, i.e., RGB images, in 10 mutually
exclusive classes, with 6000 images per class. There are 50000 training images and
10000 test images. We further split the training set in training set and validation set:
the former contains 40000 images and the latter 10000. The 10 classes are: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck. We use a black and white
trigger of dimension 3x3 pixels placed in the bottom right corner. Fig. 4.2 shows an
example of a poisoned image. Generally, it is possible to use different types of triggers.
Most of the works uses pattern or square triggers. The pattern is not very important in
general. Thus we chose a simple one. The trigger position is usually chosen in arbitrary
way. Figure 4.1 shows the classes of CIFAR-10 dataset, as well as ten random images
from each of them.

Fashion-MNIST (F-MNIST) is a dataset of Zalando’s article images—consisting of
a training set of 60000 examples and a test set of 10000 examples. We further split the
training set in training set and validation set: the former contains 50000 images and
the latter 10000. Each example is a 28x28 grayscale image, associated with a label
from 10 classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
ankle boot. We use a grey and white trigger of dimension 2x2 pixels placed in the upper
left corner. Fig. 4.4 shows an example of a poisoned image. Figure 4.3 shows the
classes of Fashion-MNIST dataset, as well as ten random images from each of them.
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Figure 4.1: The classes in the CIFAR-10 dataset, as well as 10 random images from each.
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Figure 4.2: A poisoned sample of the CIFAR-10 dataset.

Figure 4.3: The classes in the Fashion-MNIST dataset, as well as 10 random images from
each.
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Figure 4.4: A poisoned sample of the FMNIST dataset.
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4.3 Evaluation

We consider three different attacks:

• Class agnostic trigger: it is the original attack and the easiest to deploy.

• Class specific trigger: it uses the same threat model but it is more difficult to
defend. Indeed, some defences, e.g., STRIP [8], fail to defend against.

• Clean label attack: it is a more realistic threat model as poisoned samples
cannot be easily identified by manual inspection as their label is not changed.
However, the attack is more difficult to implement. Accordingly to [15], in
dirty-label attacks, the poisoned samples are generally very different from the
samples. As a result, the distance between these samples in the feature space
is large and easy to learn by our models. In clean-label attacks, the poisoned
samples belong to the target class, and there is a higher probability that their
features are not very different from the clean samples.

4.3.1 Class agnostic

We choose as target the class number 7, i.e., the horse and the sneaker classes respec-
tively for CIFAR-10 and F-MNIST datasets. The corresponding label of the poisoned
samples is changed from the original one, to 7. We expect no difference even if we
chose a different class. The backdoored models classify correctly clean inputs, but
missclassifies every sample in input that contains the trigger.

In all the following tests the average neuron activations are computed considering
100 input samples. The activations refer to the last hidden layer of the models.

Tables 4.1 and 4.2 show the results across the different models and datasets. It
is interesting to notice that, in all the cases, the standard deviation of the neuron
activations is at least one order of magnitude bigger when the input samples are
tojaned. We plot the average activations of the neurons when the samples in input
are with trigger (in blue) and when the they are without it (in orange) 4.5, 4.6, 4.7,
4.8. From the figures, we can notice that only a portion of the neurons seems to be
involved in the backdoor, indeed, only a subset of them shows higher values when the
samples are poisoned. The Appendix A (Table A.1 and Fig. A.1) contains another
test done with CIFAR-10 dataset, but with a smaller amount of poisoned samples in
the training dataset that generates a model with an attack success rate of 74.08%.
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CIFAR-10 dataset - CNN model
60 infected samples

Accuracy: 87.86%
Attack accuracy: 98.49%

Clean Trigger
Mean 0.0030 0.0856

Standard deviation 0.0205 0.3485
% of avg. activations inside µ± 4σ 99.5605% 87.4512%
% of avg. activations outside µ± 4σ 0.4395% 12.5488%

Fashion-MNIST dataset - CNN model
100 infected samples

Accuracy: 90.75%
Attack accuracy: 99.35%

Clean Trigger
Mean 0.0053 0.0998

Standard deviation 0.0502 0.3150
% of avg. activations inside µ± 4σ 99.3055% 86.4583%
% of avg. activations outside µ± 4σ 0.6945% 13.5417%

Table 4.1: Activation of the neurons of the last hidden layer in the CNN models trained
with CIFAR-10 and FMNIST datasets. The attack is class agnostic.

CIFAR-10 dataset - ResNet9 model
60 infected samples

Accuracy: 87.74%
Attack accuracy: 96.73%

Clean Trigger
Mean 1.7063 2.3264

Standard deviation 0.3720 2.2743
% of avg. activations inside µ± 4σ 100.0% 89.0381%
% of avg. activations outside µ± 4σ 0.0% 10.9619%

Fashion-MNIST dataset - ResNet9 model
100 infected samples

Accuracy: 94.07%
Attack accuracy: 99.76%

Clean Trigger
Mean 2.1440 3.3920

Standard deviation 0.5757037 3.3622398
% of avg. activations inside µ± 4σ 100.0% 85.1128%
% of avg. activations outside µ± 4σ 0.0% 14.8872%

Table 4.2: Activation of the neurons of the last hidden layer in the ResNet9 models trained
with CIFAR-10 and FMNIST datasets. The attack is class agnostic.
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Figure 4.5: Activation of the neurons of the last hidden layer in the CNN model trained
with CIFAR-10 dataset and 60 infected samples. The attack is class agnostic.
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Figure 4.6: Activation of the neurons of the last hidden layer in the CNN model trained
with FMNIST dataset and 100 infected samples. The attack is class agnostic.
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Figure 4.7: Activation of the neurons of the last hidden layer in the ResNet9 model trained
with CIFAR-10 dataset and 60 infected samples. The attack is class agnostic.
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Figure 4.8: Activation of the neurons of the last hidden layer in the ResNet9 model trained
with FMNIST dataset and 100 infected samples. The attack is class agnostic.
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4.3.2 Class specific

In the experiments, the source class is 1, i.e., automobile (CIFAR-10) and trouser
(F-MNIST), and the target class is the same as before, i.e., 7. Differently from the
previous case the attack would be successful only when the trigger is appended on
the source class. When an input with the trigger belongs to the source class, it is
missclassified, while when it belongs to other classes, it is correctly classified.

As before, the average neuron activations are computed considering 100 input
samples. The activations refer to the last hidden layer of the model.

Tables 4.3 and 4.4 show the results across the different models and datasets. Also in
this case the standard deviations of the neuron activations of trojaned samples, both
from source and non-source classes, are at least three times bigger compared to the
same values evaluated with clean inputs. It is interesting to notice that we have a larger
percentage of activations outside the boundaries also for non-source images. From the
figures 4.9, 4.10, 4.11, 4.12 it is possible to notice that also in this kind of attacks only
a portion of the neurons seems to be involved in the backdoor. If we look at the tables,
we can notice differences between source and non-source classes. The percentage of
average activations outside the boundaries is larger in the presence of trojaned source
inputs. This fact follows the intuition, actually, only them can activate the backdoor.
The Appendix A contains other similar tests done with CIFAR-10 dataset, but with
different numbers of poisoned samples in the training datasets (Tables A.2, A.3 and
Fig. A.2, A.3).

CIFAR-10 dataset - CNN model
60 infected samples from the source class, 400 from non source classes

Accuracy: 86.69%
Attack accuracy: 97.30%

Clean Source Non-source
Mean 0.0010 0.0603 0.0569

Standard deviation 0.0216 0.2706 0.2724
% of avg. activations inside µ± 4σ 99.6094% 84.1308% 90.8203%
% of avg. activations outside µ± 4σ 0.3906% 15.8692% 9.1797%

Fashion-MNIST dataset - CNN model
100 infected samples from the source class, 300 from non source classes

Accuracy: 92.04%
Attack accuracy: 98.20%

Clean Source Non-source
Mean -0.0038 0.0128 0.0119

Standard deviation 0.0314 0.1084 0.0669
% of avg. activations inside µ± 4σ 99.0451% 93.4028% 95.4861%
% of avg. activations outside µ± 4σ 0.9549% 6.5972% 4.5139%

Table 4.3: Tables containing the statistics of the average neuron activations of the CNN
models trained with CIFAR-10 and FMNIST datasets. The attack is class
agnostic.
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CIFAR-10 - ResNet9
60 infected samples from the source class, 300 from non source classes

Accuracy: 87.88%
Attack accuracy: 87.1%

Clean Source Non-source
Mean 1.9920 2.4149 2.2295

Standard deviation 0.3661 1.3758 1.2360
% of avg. activations inside µ± 4σ 100.0% 88.7695% 94.5313%
% of avg. activations outside µ± 4σ 0.0% 11.2305% 5.4687%

Fashion-MNIST - ResNet9
100 infected samples from the source class, 300 from non source classes

Accuracy: 93.96%
Attack accuracy: 97.80%

Clean Source Non-source
Mean 2.1632 2.3923 2.5253

Standard deviation 0.5700 1.5387 1.0052
% of avg. activations inside µ± 4σ 100.0% 91.6667% 97.5260%
% of avg. activations outside µ± 4σ 0.0% 8.3333% 2.4740

Table 4.4: Tables containing the statistics of the average neuron activations of the ResNet9
models trained with CIFAR-10 and FMNIST datasets. The attack is class
agnostic.
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Figure 4.9: Activation of the neurons of the last hidden layer the CNN model trained with
CIFAR-10 dataset and 60 infected samples from the source class and 400 from
non source classes. The attack is source specific agnostic.
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Figure 4.10: Activation of the neurons of the last hidden layer in the CNN model trained
with FMNIST dataset and 100 infected samples from the source class and 300
from non source classes. The attack is source specific agnostic.
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Figure 4.11: Activation of the neurons of the last hidden layer in the ResNet9 model trained
with CIFAR-10 dataset and 60 infected samples from the source class and 300
from non source classes. The attack is source specific.

0 500 1000 1500 2000
Neuron's index

0

2

4

6

8

10

12

Ac
tiv

at
io

n'
s v

al
ue

Inputs with trigger from source class
Inputs with trigger but from non-source classes
Clean inputs

Figure 4.12: Activation of the neurons of the last hidden layer in the ResNet9 model trained
with FMNIST dataset and 100 infected samples from the source class and 300
from non source classes. The attack is source specific.
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4.3.3 Clean label attack

We choose as target the class number 1, i.e., the automobile class for CIFAR-10. No
label is changed. Only samples from the target class are poisoned. This type of attack
is generally more difficult to implement and requires a larger number of poisoned
samples. Indeed, we only achieve good an effective backdoor implementation using the
configuration illustrated in table 4.5. The attacks can be activated using the trigger
and it is not class specific.

As before, the average neuron activations are computed considering 100 input
samples. The activations refer to the last hidden layer of the model.

Table 4.5 shows the results obtained in this tests. In this case, the standard deviation
of neuron activation computed using trojaned samples is more than six times larger
than the same value computed using clean inputs. From figure 4.13 we can observe that
also in this case only a portion of the neurons seems to be involved in the backdoor.

CIFAR-10 dataset - CNN model
800 infected samples

Accuracy: 86.28%
Attack accuracy: 83.50%

Clean Trigger
Mean -0.0015 0.04610

Standard deviation 0.02063 0.1702
% of avg. activations inside µ± 4σ 99.7070% 87.6465%
% of avg. activations outside µ± 4σ 0.2930% 12.3535%

Table 4.5: Tables containing the statistics of the average neuron activations of the CNN
model trained with CIFAR-10 dataset using 800 infected samples. The attack is
clean label.
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Figure 4.13: Activation of the neurons of the last hidden layer in the CNN model trained
with CIFAR-10 dataset and 800 infected samples from the source class. The
attack is clean label.
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4.3.4 General observations

In all the considered cases, the Chebyshev bound is violated when we feed the model
with a trojaned sample that should activate the backdoor. Moreover, if we consider
source specific attacks, in most of the cases the bound is violated even when the trigger
is stamped to samples that belong non-source classes. Indeed, also when the bound is
not violated, there is a appreciable difference with respect to clean samples statistics
for the metrics considered. The results suggest that trojaned inputs could be detected
by analysing the standard deviation of the activations of the neurons. Furthermore, it
could be possible to partially identify the neurons involved in the backdoor attack.

4.4 Possible defence implementation

The threat model that we want to analyze considers an attacker that has access to at
least a subset of training data. A malicious actor could easily embed their poisoned
data, or change the data present in the dataset, because often datasets are generated
through web scraping and crowdsourcing. However, the sources of data could be
untrusted and often it is almost infeasible to check manually the samples present in
the dataset.

Assuming a defender who has access to a few training samples and a white-box
model, a straightforward solution to pass from the previous observation to a run-time
defence could be the following approach:

1. Feed the network with a set of clean inputs, e.g., 100 samples.

2. Compute the mean µ and the standard deviation σ of the activation of the
neurons of the last hidden layer.

3. Use the mean and the standard deviation as boundaries: during the inference
phase no more than 6.25% of neurons activations can lie outside the interval
(µ− 4σ, µ− 4σ).

Unfortunately, this approach does not work well in our experiments.

However, based on the previous results, it is possible to build a detection system that
empirically seems to work. As before, we need to have access to a set of clean inputs
and to the model, i.e., it is white box approach. The workflow can be summarized as
follow:

1. Feed the network with a set of clean inputs.

2. Compute the mean µ and the standard deviation σ of every neuron of the last
hidden layer. In this case the two values are computed for every neuron and not
across the whole layer. For example, if the layer is composed by 2048 neurons,
we will obtain 2048 values for µ and σ, i.e., a couple (µi, σi) of values for each
neuron of the layer. i represents the neuron’s index.

3. We set the mean and the standard deviation as boundaries: during the inference
phase no more than a certain number of neuron activations can lie outside the
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interval (µi − k · σi, µi − k · σi). We compare the activation of each neuron with
the interval for that specific neuron, if the boundaries are not respected we count
it as an anomaly. If the anomalous neurons are more than the selected threshold
t, the input is labeled as trojaned.

The difficulty encountered with the second approach is to set a threshold. Indeed,
different models may require different thresholds. In particular, even if the same model
and dataset are used, it depends also on the attack considered, i.e., class agnostic,
source specific or clean label. A possible approach is to take a set of clean inputs and
count the number of anomalies of each sample of this set. Based on the number of
anomalies obtained, we can select a possible threshold. For example, if only a small
percentage of clean samples in the set has a number of anomalies bigger than t, we
can use t as threshold. Moreover, it should be considered that all the evaluations done
use as activations functions for the layer analyzed elu and ReLU.

4.4.1 Results

The following experiments show a practical implementation of the previously proposed
defence. In all the cases k = 4, i.e., the activations that have a value outside the
interval (µi− 4 ·σi, µi− 4 ·σi) are considered as anomalies. The threshold t depends on
the considered scenario and it is calculated with the empirical approach illustrated in
section 4.4. We test some of the previously evaluated models trained with CIFAR-10
and FMNIST datasets. The metrics considered are the percentage of poisoned samples
detected (for the class specific attack we only consider the samples belonging to the
source class, indeed, only them can activate the backdoor) and the percentage of clean
samples wrongly labeled as trojaned. The results are reported in table 4.6

From the proposed tests, we notice that seems possible to discriminate clean samples
fed to the model from trojaned ones. In case of a class agnostic attack, the results are
very promising, indeed, it is the easiest attack to defend. For source specific attacks,
there is an outlier case, i.e., the CNN model trained with FMNIST. It presents a quite
high number of wrongly classified clean samples. During the selection of the threshold,
we did not find a better threshold to have a good detection of trojaned samples from
the source class without affecting remarkably the other metric. Lastly, we have the
clean label attack, that was also the most difficult model to train. In this case, the
number of trojaned samples detected is the lowest, however, it should be remarked
that it is the model with the lowest attack accuracy, i.e., 80.25%. This fact should
be considered, indeed, every five trojaned samples considered only four activates the
backdoor and this could have affected the proposed defence.
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Class agnostic attack
Threshold Trojaned Clean samples

t samples wrongly
detected classified

CIFAR-10 - CNN 6.25% 100.0 % 0.0%
60 poisoned samples

FMNIST - CNN 6.25% 99.5% 1.9%
100 poisoned samples
CIFAR-10 - ResNet9 2.5% 100.0% 0.0%
60 poisoned samples
FMNIST - ResNet9 4.0% 100.0% 0.0%

100 poisoned samples

Source specific attack
Threshold Trojaned Clean samples

t samples wrongly
detected classified

CIFAR-10 - CNN
50 poisoned samples from source 3.0% 100% 1.8%
class, 300 from non-source classes

FMNIST - CNN
100 poisoned samples from source 4.5% 90.2% 7.8%
class, 300 from non-source classes

CIFAR-10 - ResNet9
60 poisoned samples from source 2.0% 94.38% 0.4%
class, 300 from non-source classes

FMNIST - ResNet9
60 poisoned samples from source 2.5% 99.5% 0.1%
class, 300 from non-source classes

Clean label attack
Threshold Trojaned Clean samples

t samples wrongly
detected classified

CIFAR-10 - CNN 4.0% 80.6% 0.9%
800 poisoned samples

Table 4.6: Results of the proposed defence with different models and datasets. All the
evaluations are done considering 1000 clean samples and 1000 trojaned samples.



Chapter 5
A new sound attack

This chapter illustrates a new possible attack in the audio domain based on data
poisoning. The attack is based on the echo that is used as trigger to activate the
backdoor.

5.1 Idea

The majority of published papers is related to attacks performed in the visual domain
and the studies in other domains are limited. However, voice assistants, such as Google
Assistant and Alexa from Amazon, have been widely adopted in our daily life. They
are an example of Automated Speech Recognition (ASR) systems that are becoming
more common and widespread.

The idea behind of this type of trigger comes from steganographic techniques used in
digital audio. Among the several techniques used in steganography, echo is a promising
way to create a trigger. In steganography, this method embeds data introducing short
echo to the signal. Echo hiding is a method where data is embedded into cover audio
by adding up delayed versions of audio signal on itself [32]. Three parameters can be
manipulated: the initial amplitude, the delay and the decay rate. It should be noted
that a delay up to 1 ms between the original signal and the echo is not distinguishable
by humans. In steganography, two delay times are used in order to represent 1 and 0.
Both of them are below the threshold at which the human ear can resolve the echo.
The cons is a low embedding rate, however it is not a problem for our purpose, indeed
we do not need to hide an huge amount of data.

It is possible to exploit this stenographic technique to create a backdoored model
that correctly classifies all audio signals, but not the ones containing the echo effect,
i.e., the echo is the trigger that activates the backdoor.

Moreover, a trigger made with the echo is dynamic, i.e., it depends on the samples
considered and it is not something fixed. This is an interesting property that makes
our attack promising, because, according to the literature [25], dynamic triggers are
more difficult to defend.

29
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5.2 Implementation

To investigate the feasibility of this type of trigger, we use a portion of the Speech
Commands Dataset [34], which contains audio clips of 8 commands, i.e., no, yes, down,
up, go, stop, right and left. The complete dataset consists of over 105,000 audio files
in the WAV (Waveform) format of people saying 35 different words. The data was
collected by Google and released under a CC BY license. The portion considered
contains 8,000 samples that are split into training, validation and test sets using the
ratio 80:10:10.

Fig. 5.1 shows the waveform and the respective spectrogram of the word no, while
fig. 5.2 and 5.3 shows the plots for the same word with an echo of 100 ms and 1 ms
respectively.

The model [28] is a simple CNN 5.1, since the input are not the WAV files but
the spectrograms that look like 2D pictures. Spectrograms show frequency changes
over time and can be represented as 2D images, that is conveninent for CNNs. The
model consists of two convolutional layers, followed by a max pooling one that uses
also dropout, then there are two dense layers, the former is a hidden layer that uses
dropout, while the latter is the output layer. The activation function used is ReLU for
the internal layers. For the training of the model we set batch size to 64 and epochs to
15. To prevent overfitting we use early stopping. As optimizer, we use Adam. All the
tests are run on Google Colab using Keras and Tensorflow.

Layer Activation function
Input (124x129)

Downsample (32x32)
Normalization

Convolution 2D (32, 3x3) ReLU
Convolution 2D (64, 3x3) ReLU

Max Pooling
Dropout (0.25)

Flatten
Dense (128) ReLU
Dropout(0.3)

Dense(8 classes)

Table 5.1: CNN model used in the experiments for the echo trigger.

5.2.1 Echo

We can treat the original sound as an array of 16000 values, indeed, in our experiments,
we consider samples of 1 s with a sampling rate of 16 KHz. To implement the echo, we
sum the original audio with a delayed copy of it. The delayed copy has zero padding at
the beginning of the array. Optionally, we can re-scale the delayed copy before doing
the summation. Appendix B includes Table B.1 where this latest option is tested.
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Figure 5.1: Waveform and spectrogram of the word no without echo.
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Figure 5.2: Waveform and spectrogram of the word no with an echo of 100 ms.

5.3 Evaluation

We use different time delays for the echo generation, i.e., 150 ms, 100 ms, 1 ms, and
0.5 ms. In the first two cases, the echo is audible, while in the remaining ones it is
not. Recall that a delay up to 1 ms between the original signal and the echo is not
distinguishable by humans. We poison 256 sample that we then add to the training
dataset, obtaining 6656 training samples, hence, the training dataset contains 3.84%
of poisoned samples. We are considering a class agnostic trigger, i.e., the backdoor is
always activated when the trigger is present, indeed, the aim is to build a model that
wrongly classify every samples containing an echo to the class down.
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Figure 5.3: Waveform and spectrogram of the word no with an echo of 1 ms.

We first train the model with the original dataset, i.e., without poisoned samples,
obtaining an accuracy of 83%. As shown in table 5.2, we obtain an accuracy drop less
than 3% for delays up to 1 ms, while for larger values the accuracy drop is between
6% and 7%. The attack success rate is always greater than 86%.

Delay Attack success rate Test accuracy
150 ms 86.92% (std = 2.98) 77.42% (std = 1.06)
100 ms 86.26% (std = 1.21) 76.08% (std = 0.75)
1 ms 92.72% (std = 5.94) 80.92% (std = 3.30)

0.5 ms 89.62% (std = 9.17) 81.33% (std = 0.62)

Table 5.2: Table containing the attack accuracy and the test accuracy with 256 poisoned
samples in the training set. The values are means calculated with five runs of
the model.

Now, we try to reduce the number of poisoned samples to 192, i.e., the final training
dataset contains 6528 samples (the audio files containing the trigger are less than 3%).
We use a delay of 0.5 ms and we run the experiments three times. We obtain a mean
test set accuracy of 83.21% (std = 0.31) and a mean attack success rate of 92.48% (std
= 0.39).

It is interesting to notice that we have obtained a higher success rate for smaller
delays. An hypothesis is that when the delay increases we obtain an audio file very
different from the original one. The audio it is more distorted, indeed, it is possible to
distinguish the two words.

5.3.1 Evaluation against STRIP-ViTA

The next step is to evaluate this attack against a defense designed for the audio domain,
i.e., STRIP-ViTA [7]. The detection principle is based on the assumption that class
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agnostic backdoor attacks are insensitive to input perturbation as long as the trigger
is preserved. The authors’ observation is that for a clean input, when it is strongly
perturbed, the predicted class should be greatly influenced. However, for a poisoned
input, the perturbation will not influence the classification as long as the trigger is not
replaced, because the trigger would play a significant role for classification process.

Detection overview

STRIP-ViTA [7] is a detection system designed to work at run-time. The workflow,
also shown in the fig. 5.4, is the following:

1. Given an input x the system generates N perturbed samples {xp1 , xp2 , ....., xpN }
by superimposing the input x with randomly drawn samples that belong to the
dataset that the user has.

2. All the perturbed samples are fed to the neural network and then STRIP-ViTA
[7] evaluates the entropy of the predicted labels. Indeed, the NN predicts a label
for each perturbed sample.

3. Given the entropy, STRIP-ViTA [7] is able to detect if the input x is trojaned or
clean based on a threshold previously computed using the entropy distribution
of benign perturbed samples (5.1, 5.2). Basically, the entropy of a clean input
is always large, instead the entropy of a trojaned input is small. Indeed, in a
backdoored model, the predictions of trojaned perturbed inputs tend to always
fall in the target class. Instead, given a benign model, the expected classes should
vary depending on how the samples are altered. If we feed a model, benign
or malicious, with perturbed clean samples we will observe that the predicted
classes vary.

Figure 5.4: STRIP-ViTA overview. The input x is replicated N times. Each replica
is perturbed in a different pattern to produce a set of perturbed inputs
{xp1 , xp2 , ....., xpN }. According to the randomness (entropy) of the predicted
labels of perturbed replicas, it is possible to determine whether the input x is
clean or poisoned.

It is important to notice that in a real scenario the user can estimate the entropy
distribution only of benign inputs. Nevertheless, the distribution should be a normal
distribution, so the user can retrieve the mean and the standard deviation of it. Then,
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the defender can use as detection boundary the percentile of the normal distribution
related to the false rejection rate (FRR) chosen.

STRIP-ViTA [7] is based on the measurement of the Shannon entropy. It is used to
express and evaluate the randomness of the predicted classes when the neural network
is fed with perturbed inputs.

Given a sample x, we generate N perturbed samples by superimposing to x other
random samples. We obtain a set of perturbed inputs {xp1 , xp2 , ....., xpN }. The entropy
of a perturbed input xpn can be computed in the following way:

Hn = −
M∑︂
i=0

yi × log2yi (5.1)

where yi indicates the probability that the perturbed input belongs to class i and M
represents the index of the last class, hence M + 1 is the total number of classes.
Based on the entropy Hn we can calculate the average entropy of all N perturbed
inputs:

H =
1

N
×

N∑︂
n=1

Hn (5.2)

Two metrics are used to assess the detection capability: the false rejection rate
(FRR) and the false acceptance rate (FAR). The FRR is the measure of the likelihood
that the countermeasure, in this case STRIP-ViTA[7], will incorrectly reject a benign
input because it is considered as trojan. While the FAR is the measure of the likelihood
that STRIP-ViTA[7] will incorrectly recognize as benign input a trojaned one. In real
life it is generally not possible to have FRR and FAR equal to 0 that is why the idea
is to minimize them, making them close to 0.

We always search for a tradeoff between FRR and FAR, indeed it is not possible to
improve one of them without affecting the other one. The balance between the two
metrics depends accordingly to the scenario. In our case, we could accept a higher
FRR to make FAR as small as possible. Indeed, in the backdoor setup even a small
FAR could have devastating effects.

Moreover, from the FRR, defined by the user, it is possible to retrieve a threshold
that is then used as detection boundary. Starting from the entropy distribution of
benign inputs, the user can obtain the mean and the standard deviation (empirically
we see that is reasonable to assume that the distribution is a normal distribution).
The user uses the chosen FRR to compute the corresponding percentile of the normal
distribution. This percentile is set as threshold for the detection of trojaned inputs.
Therefore, the FAR indicates the probability that the entropy of an input with the
trigger is larger than the threshold.

Results

For this test we modify the original script [7] in order to add the poisoning. However,
we remove the audio samples with a different length and sampling from 1 s and 16
KHz respectively, obtaining a training set of 5713 samples. Then, we randomly poison
a percentage, i.e. 1

15 and 1
10 , of samples in the training set using a delay of 0.5 ms and
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1 ms, because these delays are not audible by humans. The model used is similar to
the previous one, the major difference is the use of the softmax in the output layer.
The results are reported in table 5.3, while figure 5.5 display the entropy distributions.

Delay: 0.5 ms
Poisoned samples: 1/15

Attack success rate: 84.466%
Test accuracy: 82.524%

FRR Threshold FAR
5% 0.101658 77.6%
3% 0.049625 87.6%
1% 0.017814 92.4%

0.5% 0.013562 93.4%

Delay: 0.5 ms
Poisoned samples: 1/10

Attack success rate: 85.459%
Test accuracy: 79.835%

FRR Threshold FAR
5% 0.073426 87.4%
3% 0.046720 91.6%
1% 0.020549 95.4%

0.5% 0.010466 97.2%

Delay: 1 ms
Poisoned samples: 1/15

Attack success rate: 81.805%
Test accuracy: 84.722%

FRR Threshold FAR
5% 0.074960 76.6%
3% 0.055063 81.6%
1% 0.011098 91.0%

0.5% 0.000001 97.2%

Delay: 1 ms
Poisoned samples: 1/10

Attack success rate: 86.494%
Test accuracy: 81.583%

FRR Threshold FAR
5% 0.066493 86.6%
3% 0.035673 91.4%
1% 0.008092 96.6%

0.5% 0.002589 96.8%

Table 5.3: Tables containing FRR, threshold and FAR in the presence of an echo of 0.5 ms
and 1 ms.

The results show that the FAR is always greater than 76%, indicating that STRIP-
ViTA is not effective against this type of attack. Indeed, using the echo as trigger
seems to be an effective method to bypass this run time detection system. It is evident
from the entropy distributions in Fig. 5.5 that the blue and the orange histograms are
not clearly separated, but they overlap, hence, it is not feasible to set a threshold that
generates acceptable values for FRR and FAR.

5.3.2 Neuron activations analysis

As regard the analysis of the neuron activations, it is interesting to notice that the
observations made in chapter 4 partially apply with this attack. Fig. 5.6 shows the
activations of the last hidden layer in the model trained with 192 poisoned samples
with a delay of 0.5 ms. The attack success rate is higher than 92%. It is possible
to notice that there is a distinction between the activations originated by clean and
trojaned samples, although the difference is not as obvious as before. Also in this
case the standard deviation of poisoned samples is more than double. In table 5.4,
we report the statistics obtained using 500 samples, respectively trojaned and clean.
In this test, the Chebyshev bound seems to be a valid indicator of the presence of a
backdoor, despite the fact that, at first sight, the difference is not so evident as the
tests reported in chapter 4. However, it is also challenging to obtain a valid threshold
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(a) Delay of 0.5 ms and 1
15

samples poisoned. (b) Delay of 1 ms and 1
15

samples poisoned.

(c) Delay of 0.5 ms and 1
10

samples poisoned. (d) Delay of 1 ms and 1
10

samples poisoned.

Figure 5.5: Entropy distribution.

to implement a run time detection system as described in section 4.4, indeed, we are
not able to set it to obtain acceptable values.

However, it should be remarked that differently, from typical data poisoning attacks,
in this attack, the trigger is not a fixed pattern, but something that depends on the
sample considered, i.e., it is dynamic. Indeed, all tests reported in 4 use static triggers.
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Figure 5.6: Activation of the neurons of the last hidden layer in the model poisoned with
192 samples containing an echo of 0.5 ms.
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Echo trigger attack
CNN model - 192 infected samples

Accuracy: 83.62%
Attack accuracy: 92.67%

Clean Trigger
Mean 0.7544 1.0610

Standard deviation 0.6697 1.5763
% of avg. activations inside µ± 4σ 100.0% 89.0625%
% of avg. activations outside µ± 4σ 0.0% 10.9375%

Table 5.4: Tables containing the statistics of the average neuron activations of the CNN
model trained with a portion of the Speech Commands Dataset using 192 infected
samples.

5.3.3 Final observation

The proposed attack seems to be promising, indeed, it can evade STRIP-ViTA. Dynamic
triggers are an interesting direction of attacks, in fact, they are generally more difficult
to detect. From this perspective, we start to test also another way to poison audios
dynamically: changing the sample rate may be a promising approach to insert a
backdoor. The idea is to re-sample the original audio and then cut it at the same
length of the other samples in the dataset. For example, if we consider the Speech
Commands Dataset used for the echo trigger, we could re-sample the audio, considered
as an array of 16000 samples, to 22050 Hz and then cut the originated array at 16000
values. If we then play the audio, we will hear the same word pronounced more
slowly. In the Appendix B we present some test done using the model 5.1 and different
sampling rate (Table B.2). Moreover, the two modification, i.e., the echo and the
sampling rate, can be combined together (Table B.3).





Chapter 6
Analysis of Blind Backdoors

This chapter investigates blind backdoors, i.e., a type of attack based on compromising
the loss-value computation in the model-training code [1]. It evaluates the attack against
an untested defence and proposes a possible solution to bypass it.

6.1 Blind Code Poisoning

According to the authors, compromised code is a realistic threat [1]. Indeed, it is
common that deep learning models used in the industrial field include code from
open-source projects with dozens of contributors. In the paper, they suggest that the
loss-value computation is a potential target. They consider a backdoor as a multi-task
learning: an attacker aims to train the same model, with a single output layer, for two
tasks simultaneously, i.e., the main task and the backdoor one. To achieve the result
they propose to use as loss function a linear combination of the main task loss lm and
the backdoor task loss lm∗ . An additional, and optional, evasion loss lev can be added
in the computation to evade known defences. The overall lblind is computed as follows:

lblind = α0lm + α1lm∗ [+α2lev] (6.1)

To obtain optimal coefficients it is possible to use Multiple Gradient Descent Algo-
rithm (MGDA). The main task loss lm = L(θ(x̄), z) compares the model’s prediction
θ(x̄) on a labeled input (x̄, z) with the correct label z using some criterion L. The
backdoor task loss lm∗ = L(θ(x̄∗), z∗) computes the loss based on the trojaned inputs
and their labels (x̄∗, z∗). Indeed, the modified loss function is just a part of the
whole attack: it is also necessary to have poisoned data. The authors build different
synthesizers, i.e., functions that add the trigger to clean inputs and change their label
to the target label. In the visual domain, e.g., an image classification task, a synthesizer
µ overlays the pattern t̄ over an input x̄, i.e., µ(x̄) = x̄⊕ t̄. Given the target class c,
the labels are modified as follows: ν(z) = c. Fig. 6.1 shows the whole process. The
adversarial computation adds an overhead, indeed, the training needs to perform an
additional forward and backward pass for every batch. To reduce the overhead, the
attack can be performed only when the model is close to the convergence, i.e., when
the loss values are below a threshold T. The threshold can be fixed in advance or
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dynamically by tracking the convergence of training using the first derivative of the
loss curve.

Figure 6.1: Scheme of the blind backdoor attack.

The authors classify the known defenses in three categories:

• input perturbation: this category includes the defenses that aim to discover small
perturbations in the inputs that activates the backdoor behaviour. Accordingly
to the authors, the category includes NeuralCleanse [33], STRIP [8] and others.

• model anomalies: this category includes the defenses that aim to detect how the
model behaves differently on backdoored and clean inputs. Accordingly to the
authors, the category includes SentiNet [4].

• suppressing outliers: these type of defenses aim to prevent backdoors from being
introduced into the models. Indeed, trojaned data is generally underrepresented
in the training dataset and its influence can be suppressed. An example is
gradient shaping [13] that prevent outlier gradients from influence significantly
the model.

Based on the previous classification, the authors propose also modifications to the loss
functions in order to evade NeuralCleanse [33] and SentiNet [4]: the former defence
reverse engineers adversarial patches and interprets small patches as backdoor triggers,
while, the latter identifies which regions of an image are important for the model’s
classification of that picture, assuming that trojaned models always focus the attention
on the trigger present in the input image. An evasion technique for the third class
of defences is not needed since gradient shaping is successfully evaded by the blind
backdoor attack. The authors conclude affirming that they have demonstrated that
code-poisoning attacks can evade any known defense.

6.1.1 Reproducing the attack

The first step is to reproduce correctly the attack. The source code can be downloaded
from the official GitHub repository. The authors provide some indications to perform
the attack. The model is developed using PyTorch, an open source machine learning
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framework. It is based on the Torch library and it was originally developed by Meta
AI.

We test the attack with the MNIST dataset, however, to reduce the computational
time, we changed the number of epochs to 15 (the other parameters are not changed).
The dataset contains 60000 training images and 10000 test images. Each sample in
the dataset is 28x28 greyscale image representing a handwritten digit, associated with
a label from 0 to 9. We test the attack with and without the NeuralCleanse evasion
activated.

Then, we try to perform the attack with another dataset, not tested by the authors,
i.e., the Fashion-MNIST dataset. We use the same model and parameters of the tests
with MNIST. The target class is, in both cases, class number 8, i.e., the digit 8 for the
MNIST dataset and the bag class for the Fashion-MNIST dataset.

The model, for both datasets, is a simple CNN that has two convolutional layers
and one fully connected layer followed by the output layer 6.1. All the internal layers
use ReLU as activation function, while the output layer uses log softmax. Both
convolutional layers are followed by max polling layers. The batch size is 64 and the
optimizer is SGD with learning rate equals to 0.01, momentum equals to 0.9 and weight
decay equals to 0.0005.

Layer Activation function
Input (28x28)

Convolution 2D (20, 5x5, stride=1) ReLU
Max Pooling 2D (2, stride=2)

Convolution 2D (50, 5x5, stride=1) ReLU
Max Pooling 2D (2, stride=2)

View (4x4x50)
Linear (500) ReLU

Linear(10 classes) Log Softmax

Table 6.1: CNN model used in the experiments for the blind backdoor attack.

We also train two clean models to evaluate the clean accuracy drop of our trojaned
models. The test accuracy is 99.32% for the MNIST dataset, while it is 91.59% for the
FMNIST dataset.

6.2 Evaluation against STRIP

STRIP (STRong Intentional Perturbation) [8] is a detection system designed to asses if
we are in presence of a backdoor attack on a neural network. It was designed to reveal
class agnostic trigger attacks. STRIP bases its detection on the entropy measurement
of perturbed inputs. In a nutshell, the inputs are perturbed by superimposing different
samples, two at a time of which one is fixed, and then fed to neural networks. During
this process the entropy of the predicted labels is calculated. A clean input always
exhibits high entropy, instead a trojaned inputs always exhibits low entropy. Indeed,
when a trojaned input is perturbed, the trigger is generally still visible, hence effective.
The workflow is analogous to the one presented in chapter 5.
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We test STRIP with the blind backdoor attack considering different scenarios: the
"normal" attack and the attack with NeuralCleanse evasion technique actives. The
parameter for STRIP is N = 100 and the test is done using 2000 samples: every sample
is superimposed with 100 different randomly drawn images. We use the MNIST and
the Fashion-MNIST datasets with two different triggers: a single pixel and a pattern,
as shown in figures 6.2 and 6.3.

(a) Sample with single pixel trigger. (b) Sample with pattern trigger.

Figure 6.2: The two different triggers used with MNIST dataset.

(a) Sample with single pixel trigger. (b) Sample with pattern trigger.

Figure 6.3: The two different triggers used with FMNIST dataset.

The results are shown in the tables 6.2, 6.3 and in the figures 6.4, 6.5. The clean
accuracy drop is less than 1% for the MNIST dataset, while it is less than 1.5% for the
FMNIST dataset.

We notice that in all figures the two distributions are well separated, this means
that the defence works correctly. Indeed, the FAR is low, i.e., the trojaned samples
wrongly classified as clean are a few. The activation of NeuralCleanse evasion does
not significantly influence STRIP. STRIP is a well know defence that can be bypassed
using source specific attacks, but it is powerful in case of class agnostic attacks. These
results suggest that the blind backdoor attack is an improvement of data poisoning
attacks, however it is still strongly based on them. Indeed, the proposed code poisoning
attack relies on poisoning data on the fly and this part remains a fundamental step in
the process.



6.2. EVALUATION AGAINST STRIP 43

Trigger: single pixel
No evasion

Attack success rate: 99.92%
Test accuracy: 99.24%

FRR Threshold FAR
3.0% 0.187345 0.45%
2.0% 0.169643 0.55%
1.0% 0.141742 1.1%
0.5% 0.116207 1.95%

Trigger: pattern
No evasion

Attack success rate: 99.99%
Test accuracy: 99.0%

FRR Threshold FAR
3.0% 0.120826 0.75%
2.0% 0.102802 1.45%
1.0% 0.0743932 3.65%
0.5% 0.0483937 13.85%

Trigger: single pixel
NeuralCleanse evasion

Attack success rate: 99.97%
Test accuracy: 99.13%

FRR Threshold FAR
3.0% 0.156174 0.15%
2.0% 0.13758 0.35%
1.0% 0.108274 1.2%
0.5% 0.0814523 4.0%

Trigger: pattern
NeuralClean evasion

Attack success rate: 99.96%
Test accuracy: 99.27%

FRR Threshold FAR
3.0% 0.149374 1.25%
2.0% 0.131269 2.4%
1.0% 0.102733 5.1%
0.5% 0.0766171 12.95%

Table 6.2: Tables containing FRR, threshold and FAR in the tests with MNIST dataset.

(a) Test with a single pixel trigger. (b) Test with a single pixel trigger and
NeuralCleanse evasion activated.

(c) Test with a pattern as trigger. (d) Test with a pattern as trigger and
NeuralCleanse evasion activated.

Figure 6.4: Entropy distribution obtained using STRIP in the different cases analyzed in
the model trained with MNIST dataset.
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Trigger: single pixel
No evasion

Attack success rate: 98.94%
Test accuracy: 90.54%

FRR Threshold FAR
3.0% 0.225965 10.9%
2.0% 0.196431 11.8%
1.0% 0.149881 13.95%
0.5% 0.10728 16.3%

Trigger: pattern
No evasion

Attack success rate: 99.86%
Test accuracy: 91.32%

FRR Threshold FAR
3.0% 0.178766 3.45%
2.0% 0.149711 5.95%
1.0% 00.103917 13.45%
0.5% 0.0620069 27.5%

Trigger: single pixel
NeuralCleanse evasion

Attack success rate: 98.49%
Test accuracy: 89.24%

FRR Threshold FAR
3.0% 0.207826 15.15%
2.0% 0.1795 17.5%
1.0% 0.134854 25.05%
0.5% 0.0939951 34.95%

Trigger: pattern
NeuralClean evasion

Attack success rate: 99.99%
Test accuracy: 90.77%

FRR Threshold FAR
3.0% 0.189948 1.55%
2.0% 0.15991 3.0%
1.0% 0.112566 8.25%
0.5% 0.069237 22.45%

Table 6.3: Tables containing FRR, threshold and FAR in the tests with FMNIST dataset.

(a) Test with a single pixel trigger. (b) Test with a single pixel trigger and
NeuralCleanse evasion activated.

(c) Test with a pattern as trigger. (d) Test with a pattern as trigger and
NeuralCleanse evasion activated.

Figure 6.5: Entropy distribution obtained using STRIP in the different cases analyzed in
the model trained with FMNIST dataset.
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6.3 Bypassing STRIP

As mentioned in Section 6.2, STRIP is useful with class agnostic attacks, however can
be bypassed by source specific attacks. In this section we implement a source specific
attack starting from the blind backdoor attack.

An important step of the attack process is the poisoning part. Before computing
the the blind loss lblind, it is necessary to poison part of the training data. This
part is performed using the synthesizers. The class Synthesizer defines a function
synthesize_labels that changes the corresponding labels of trojaned samples to the
target one. Modifying this function is enough to change the labels of the samples
belonging to a specific class, i.e., the source class, while keeping the remaining labels
unchanged.

Starting from the previous experiments, we realize different source specific back-
doored models: the trigger activates the backdoor only if it is stamped on samples
belonging to class number 1, i.e., samples representing the digit 1 for MNIST dataset
and samples belonging to the class trousers for the FMNIST dataset. The target class
is the same of the previous experiments.

The results are shown in the tables 6.4, 6.5 and in the figures 6.6, 6.7. It is evident
from the entropy distribution that the two histograms are not clearly separated, so
it would be impossible to set a threshold that generates acceptable values for FRR
and FAR. Hence, the attack can bypass STRIP. Indeed, in a source specific attack, the
backdoor is activated only when the trigger is stamped to a specific class. Therefore,
the model needs to identify both elements to activate the backdoor. Thus, when the
input is superimposed with other images from the dataset even if the trigger is still
visible the features of the original class are not clear, and the backdoor cannot be
activated.

Trigger: single pixel
Attack success rate: 99.82%

Accuracy on trojaned samples: 99.25%
Test accuracy: 99.35%

FRR Threshold FAR
3.0% 0.110213 98.3%
2.0% 0.0933305 98.85%
1.0% 0.066722 99.6%
0.5% 0.0423699 99.85%

Trigger: pattern
Attack success rate: 99.38%

Accuracy on trojaned samples: 99.13%
Test accuracy: 99.2%

FRR Threshold FAR
3.0% 0.132803 99.3%
2.0% 0.116132 98.85%
1.0% 0.0898552 99.4%
0.5% 0.0658072 99.85%

Table 6.4: Tables containing FRR, threshold and FAR in the tests with MNIST dataset in
the case of source specific attack.
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(a) Test with a single pixel trigger. (b) Test with a pattern as trigger.

Figure 6.6: Entropy distribution obtained using STRIP in the different cases analyzed in
the model trained with MNIST dataset and the source specific attack.

Trigger: single pixel
Attack success rate: 98.2%

Accuracy on trojaned samples: 89.81%
Test accuracy: 90.55%

FRR Threshold FAR
3.0% 0.209525 99.35%
2.0% 0.182224 99.6%
1.0% 0.139195 99.9%
0.5% 0.0998156 99.9%

Trigger: pattern
Attack success rate: 98.2%

Accuracy on trojaned samples: 90.77%
Test accuracy: 91.56%

FRR Threshold FAR
3.0% 0.193372 99.0%
2.0% 0.16273 99.45%
1.0% 0.114434 99.75%
0.5% 0.0702334 99.95%

Table 6.5: Tables containing FRR, threshold and FAR in the tests with FMNIST dataset in
the case of source specific attack.

(a) Test with a single pixel trigger. (b) Test with a pattern as trigger.

Figure 6.7: Entropy distribution obtained using STRIP in the different cases analyzed in
the model trained with FMNIST dataset and the source specific attack.



Chapter 7
Conclusions

The thesis analyzes and investigates different aspects of backdoor attacks and relative
defences, cosidering also different domains, such as the visual and the audio domains.
In particular, the latter is is still little considered in the literature.

Chapter 4 highlights some interesting results regarding the neuron activations.
Indeed, the values of the neurons is highly influenced by the inputs, if a trigger is
present, some neurons show high activation’s values. Moreover, the neurons of the
last hidden layer show a higher variance in their activations when the input samples
contain the trigger. This particularity can be used to evaluate backdoored model at
run-time.

Chapter 5 proposes a new type of attack in the audio domain that uses the echo
as a trigger: adding an echo to an audio file can be used as a trigger to activate a
backdoor. It is interesting to notice that delays up to 1 ms are not detectable by
humans. Moreover, this attack is not detectable by STRIP-ViTA, a modified version
of STRIP, that works also in the audio domain. Despite the attack is of difficult
implementation in a real scenario, it can be the starting point for new researches in
this direction. Indeed, the particularity is that the trigger is not something fixed but
depends on the samples considered. Moreover, only few works have considered attacks
in the audio domain, indeed, the large majority of papers focus the attention to the
visual domain.

Lastly, chapter 6 analyzes blind backdoor attacks, i.e., attacks performed using code
poisoning. It should be highlighted that these type of attacks still strongly depends on
data poisoning. After reproducing the attack and performing it with a new dataset,
we test it with a previously untested defence, i.e., STRIP. The defence correctly detect
the attacks, so we propose a way to bypass it, namely, with a source specific attack.

Despite some interesting results presented in the thesis, there are some limitations
that could be addressed and investigated in future works.

Firstly, the defence proposed in chapter 4 needs a deeper evaluation and should
be analyzed from a more formal point of view. In fact, the results presented derive
from a mainly empirical approach. A more theoretical approach could also lead to a
more general framework for the defence. Moreover, the analysis of other architectures,
activation functions and dataset should be done.
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Additionally, the attack proposed in chapter 5 should be tested with a bigger dataset
and other architectures. Other target classes should be tested. Moreover, as mentioned
before, the attack seems to be not easily deployable in a real life scenario. However, it is
an interesting starting point for future work, because the trigger used is dynamic, hence
more difficult to detect. A further analysis of dynamic triggers could be a promising
direction of investigations. Indeed, from preliminary results we have seen that also the
modification of the sampling rate can be used as a dynamic trigger.

Lastly, blind backdoor attacks should be tested with other defences in order to
understand if they are strong as mentioned in the paper or can be detected. And if
they are detectable, we should investigate how we can modify the loss function to
bypass those defences. In the future we could implement also other attacks, such as
the clean label attack.



Appendix A
Additional experiments for Chapter 4

CIFAR-10 dataset - CNN model
40 infected samples

Accuracy: 86.25%
Attack accuracy: 74.08%

Clean Trigger
Mean 0.0026 0.03515

Standard deviation 0.0207 1.1580
% of avg. activations inside µ± 4σ 99.4629% 89.5996%
% of avg. activations outside µ± 4σ 0.5371% 10.4004%

Table A.1: Activation of the neurons of the last hidden layer in the CNN model trained
with CIFAR-10. The attack is class agnostic.
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Figure A.1: Activation of the neurons of the last hidden layer in the CNN model trained
with CIFAR-10 dataset and 40 infected samples. The attack is class agnostic.
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CIFAR-10 dataset - CNN model
40 infected samples from the source class,

160 from non source classes
Accuracy: 85.52%

Attack accuracy: 72.30%
Clean Source Non-source

Mean -0.0026 0.0260 0.0351
Standard deviation 0.0207 0.1167 0.1580

% of avg. activations inside µ± 4σ 99.1699% 88.9648% 92.8223%
% of avg. activations outside µ± 4σ 0.8301% 11.0352% 7.1777%

Table A.2: Tables containing the statistics of the average neuron activations of the CNN
model trained with CIFAR-10. The attack is class agnostic.
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Figure A.2: Activation of the neurons of the last hidden layer of the CNN model trained
with CIFAR-10 dataset and 40 infected samples from the source class and 160
from non source classes. The attack is source specific agnostic.
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CIFAR-10 dataset - CNN model
50 infected samples from the source class, 300 from non source classes

Accuracy: 85.65%
Attack accuracy: 94.40%

Clean Source Non-source
Mean 0.00225 0.02560 0.02646

Standard deviation 0.0240 0.1514 0.1484
% of avg. activations inside µ± 4σ 99.4629% 87.5488% 92.7734%
% of avg. activations outside µ± 4σ 0.5371% 12.4512% 7.2266%

Table A.3: Tables containing the statistics of the average neuron activations of the CNN
model trained with CIFAR-10. The attack is class agnostic.
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Figure A.3: Activation of the neurons of the last hidden layer of the CNN model trained
with CIFAR-10 dataset and 50 infected samples from the source class and 300
from non source classes. The attack is source specific agnostic.





Appendix B
Additional experiments for Chapter 5

B.1 Additional experiments for echo trigger

It is possible to adjust the contribution of the echo by multiplying the echo signal for
a constant. We provide two experiments where this constant is set to 0.5.

Delay Attack success rate Test accuracy
1 ms 87.50% (std = 6.02) 80.12%

0.5 ms 88.82% 75.25%

Table B.1: Table containing the attack accuracy and the test accuracy with 256 poisoned
samples in the training set.

B.2 Sampling rate attack

From preliminary evidence B.2, we notice that the sampling rate could be exploited as
way to insert a dynamic trigger. The procedure is reported in 5.3.3. The dataset is the
same used in Chapter 5. The attack is class agnostic.

Sampling rate Attack success rate Test accuracy
22050 Hz 91.96% (std = 6.02) 79.44% (std = 1.29)
20000 Hz 92.43% (std = 3.90) 78.56% (std = 2.48)

Table B.2: Table containing the attack accuracy and the test accuracy with 320 poisoned
samples in the training set. The values are means calculated with four runs of
the model.

B.2.1 Combining sampling rate and echo attacks

It is also possible to combine both attacks, i.e., the sampling rate and the echo. From
table B.3, we can notice that the attack seems to work even better if the two triggers
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are combined.

Delay Attack success rate Test accuracy
100 ms 93.65% (std = 4.00) 81.25% (std = 1.52)
1 ms 95.65%(std = 3.68) 84.22% (std = 2.46)

0.5 ms 96.07% (std = 1.95) 82.02% (std = 2.12)

Table B.3: Table containing the attack accuracy and the test accuracy with 320 poisoned
samples in the training set. The sampling rate used for poisoned sample is equal
to 22050 Hz. The values are means calculated with five runs of the model.
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