
A maximum likelihood approach to
genome assembly

Laureando: Giacomo Baruzzo
Relatore: Prof. Gianfranco Bilardi

08/10/2013

UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Ingegneria dell’Informazione - DEI

Corso di Laurea Magistrale in Ingegneria Informatica

A.A. 2012-2013





“Il DNA dell’uomo differisce per solo il

2% da quello degli scimpanzè.

Ma in quel misero 2% ci sono tutti

gli Einstein e i Leonardo,

gli Chopin e i Van Gogh”





Abstract

DNA research is one of the most important fields of study in biology and medicine.
The first step in DNA research is sequencing, i.e. the process of determining the
precise order of nucleotides within a DNA molecule. There are several DNA se-
quencing processes, the last one in chronological order is called NGS (Next Gen-
eration Sequencing). This method arose from the high demand of low-cost and
high-throughput sequencing and its usage spread in the latest years. Unfortunately,
current sequencing technology cannot read the entire genome in one single iteration,
so small fragments (called reads) are produced and stored for future assembly. DNA
assembly is the bioinformatics’ problem to reconstruct the original molecule from its
sub-sequences, produced by a sequencing process. De novo assembly refers to a par-
ticular case where the reconstruction of original sequence is done with no previous
knowledge on sequence. The assembly algorithms are typically complex and with a
high computational complexity. For this reason commercial softwares use heuristics
and custom data structures in order to reduce such complexity. Currently, graph
algorithms are the most popular ones. Recently, a new framework based on max-
imum likelihood approach has been proposed for post-processing graph algorithms
data. Inspired by maximum likelihood approach, a new experimental probabilistic
approach to de novo whole genome assembly was developed. The current formula-
tion for the model works for NGS data, but it can be adapted for data of previous
generations either.
In this thesis, for the first time this new stochastic approach has been implemented
into a software assembler. Starting from the given model, a parallel software has
been developed in order to obtain a first experimental validation of the model.
Finally, some artificial data have been tested and the results of simulations have
been analyzed to study correctness and reliability of the experimental model.

5





Contents

Abstract 5

1. Introduction 7
1.1. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. DNA sequencing and genome assembly 9
2.1. Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Phred quality score . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2. The NGS method . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3. Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. De novo assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1. Greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2. Overlap Layout Consensus (OLC) . . . . . . . . . . . . . . . . 13
2.2.3. De Bruijn Graph (DBG) . . . . . . . . . . . . . . . . . . . . . 13
2.2.4. Maximum likelihood genome assembly . . . . . . . . . . . . . 14
2.2.5. Pro and cons of current approach . . . . . . . . . . . . . . . . 16

3. Our probabilistic approach 17
3.1. Introduction to the stochastic model . . . . . . . . . . . . . . . . . . 17
3.2. The basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1. Read set posterior probability and maximum likelihood principle 18
3.2.2. Single pair probability . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3. Single read probability . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4. Positioned read posterior probability given the sequence . . . 21
3.2.5. Single read posterior probability given the sequence . . . . . . 22
3.2.6. The final formulation . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.7. Read set probability . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. Comparison with current approaches . . . . . . . . . . . . . . . . . . 24

4. The program development 25
4.1. Program goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. The stochastic model into the software . . . . . . . . . . . . . . . . . 26
4.3. Challenges, implementation choices and platform . . . . . . . . . . . 26

4.3.1. Exponential problem . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1.1. The C Programming Language . . . . . . . . . . . . 27
4.3.1.2. POSIX Pthread . . . . . . . . . . . . . . . . . . . . . 27

i



4.3.1.3. IBM P770 Power7 . . . . . . . . . . . . . . . . . . . 28
4.3.1.4. AIX, LoadLeveler and XL C compiler . . . . . . . . 28

4.3.2. Numeric precision . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2.1. Custom floating point data type . . . . . . . . . . . 29
4.3.2.2. Formulas simplification . . . . . . . . . . . . . . . . . 32

4.4. The assembler - Description and pseudocode . . . . . . . . . . . . . . 33
4.4.1. Input and parameters setting . . . . . . . . . . . . . . . . . . 34
4.4.2. Probability computation . . . . . . . . . . . . . . . . . . . . . 34
4.4.3. Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.4. Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5. Code optimization solutions . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.1. General best practices adopted . . . . . . . . . . . . . . . . . 37
4.5.2. Specific code optimization . . . . . . . . . . . . . . . . . . . . 38

4.6. Compiler optimization and tuning . . . . . . . . . . . . . . . . . . . . 39

5. Simulations and experiments 41
5.1. Modus operandi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2. Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1. Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2. Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3. Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3. Read set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6. Conclusion and future work 55

A. Source code organization 59
A.1. Data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2. Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.3. Probability function . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.4. Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B. POSIX Pthread functions 61
B.1. Thread creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2. Thread attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.3. Thread termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.4. Thread join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65

Acknowledgments 67



List of Algorithms

4.1. Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2. Thread probability computation . . . . . . . . . . . . . . . . . . . . . 34
4.3. Thread merge operation . . . . . . . . . . . . . . . . . . . . . . . . . 36

1





List of Figures

2.1. DNA sequencing and assembly . . . . . . . . . . . . . . . . . . . . . . 9

4.1. Merge multithread with NT=4 threads . . . . . . . . . . . . . . . . . 35
4.2. Compiler optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1. True sequence ranking positions . . . . . . . . . . . . . . . . . . . . . 50

3





List of Tables

5.1. Test Ranking (TOP 20): C'3.14; N=14; M=11; m=4; 0 base errors . 42
5.2. Test Ranking (TOP 10): C=3.2; N=15; M=12; m=4; 1 base errors . 43
5.3. Test Ranking (TOP 10): C=5.3; N=15; M=20; m=4; 0 base errors . 44
5.4. Test Ranking (TOP 10): C=5.3; N=15; M=20; m=4; 3 base errors . 45
5.5. Test Ranking (TOP 10): C=5.23; N=13; M=17; m=4; 2 base errors 46
5.6. Test Ranking (TOP 10): C=5; N=12; M=15; m=4; 1 base errors . . 47
5.7. Test Ranking (TOP 10): C'10.66; N=15; M=40; m=4; 1 base errors 48
5.8. Test Ranking (TOP 10): C'10; N=14; M=35; m=4; 0 base errors . 48
5.9. Test Ranking: C'5; N=15; M=20; m=4 . . . . . . . . . . . . . . . . 51
5.10. Test Ranking: C=20; N=13; M=65; m=4 . . . . . . . . . . . . . . . . 52
5.11. Test Read Set: C'5; N=15; M=20; m=4 . . . . . . . . . . . . . . . . 53
5.12. Test Read Set: C=20; N=13; M=65; m=4 . . . . . . . . . . . . . . . 54

5





1. Introduction

In the last 30 years, DNA research has been one of the most important fields of study
in both biology and medicine. The genome contains all the biological information
of an organism and all this data are encoded in DNA or RNA sequences. The entire
genome length varies from a few thousand of base pairs in simple viruses to hundreds
of billions in more complex organisms.
From the first experiment in the 1970s to current studies, available technologies and
biology knowledge have evolved significantly. Mathematics, computer science and
engineering provide powerful tools for biological data analysis and new interdisci-
plinary fields have arisen, like bioinformatics.
The first phase in DNA studies is sequencing, the process of determining the precise
order of nucleotides within a DNA molecule. Current sequencing technologies cannot
read the entire genome in one single iteration, so small fragments (called reads)
are produced and stored for future assembly. Research in this area tries to reduce
sequencing cost, elaboration time while increasing reliability. There are several DNA
sequencing processes, the last one in chronological order being called NGS (Next
Generation Sequencing). This method was born from the high demand of low-cost
and high-throughput sequencing and has been raising in the latest years. NGS data
typically present larger amount of reads, shorter read lengths, higher coverage, and
different error profiles compared with the previous generation sequencing data. The
main advantage of NGS method and the reason for its diffusion is a drastic reduction
in sequencing cost.
The output of sequencing process is elaborated by some pieces of software, called
assemblers. DNA assembly is the bioinformatics’ problem of reconstructing the
original molecule from sub-sequences, produced by a sequencing process. De novo
assembly refers to a particular case where the reconstruction of the original sequence
is done with no previous knowledge on the sequence itself. Different methods have
been proposed in the latest years to solve this problem and many software assemblers
have been developed. Unfortunately, assembly algorithms are typically complex
and with high computational complexity. Also, large volumes of data and high
number of operation require often high-performance computing platforms. In order
to mitigate these problems, commercial softwares employ heuristics and custom data
structures to reduce the complexity. In fact, currently most popular algorithms
use graphs to resolve assembly problem. However, recently a new framework that
utilizes a maximum likelihood approach has been proposed for post-processing of
graph algorithms data.

7



Chapter 1 Introduction

Inspired by maximum likelihood approach, a new experimental probabilistic ap-
proach to de novo whole genome assembly has been developed. Current model
formulation works with NGS data, but can be adapted for previous generation data.
The main difference with current approaches is that this new model propose an exact
and exhaustive approach, using a solid stochastic formulation of assembly problem
instead of current graph’s heuristics. Another important features is that all pro-
duced results are measurable, since for all sequences tested a probability/likelihood
values is produced.

1.1. Thesis Outline

In this thesis, for the first time this new stochastic approach has been implemented
into a software assembler. Starting from the given model, a parallel software has
been developed in order to obtain the first experimental validation of the model.
Then some artificial data have been tested and the results of simulations have been
analyzed to assess correctness and reliability of the model.
The dissertation starts in Chapter 2, where is presented a brief description of the
sequencing process, a formulation of the assembly problem and an overview of the
current approaches to the problem.
In Chapter 3 the used stochastic model is exposed, explaining the maximum likeli-
hood problem formulation and listing used assumptions and hypotheses.
Preliminary analysis, implementation choices and main challenges in software devel-
opment are presented in Chapter 4. Also the implementation and software features
are described.
In Chapter 5, the performed experiments are reported, with some considerations
and observations on correctness and reliability of the result data.
Conclusions and points of interest for future developments are summarized in Chap-
ter 6.

8



2. DNA sequencing and genome
assembly

ACTTGATCGATTACGATACATGACTAGCATCAGC

GATC
TCGA

ATTA ATCA
GCAT

ATAC
CATG

GACT

ASSEMBLER

ACTTGATCGATTACGATACATGACTAGCATCAGC

S
E
Q
U
E
N
C
I
N
G

A
S
S
E
M
B
L
Y

Read set
Read

Software
component

Original DNA 
sequence

Figure 2.1.: DNA sequencing and assembly

2.1. Sequencing

DNA sequencing is the process of determining the precise order of nucleotides within
a DNA molecule. Most DNA molecules are double-stranded helices, long sequences
of the four bases nucleotides (adenine (A), cytosine (C), guanine (G) and thymine
(T)). The genome contains all the biological information of an organism and all this
data are encoded in a DNA or RNA sequence. The entire genome length varies
from a few thousand of base pairs in simple viruses to hundreds of billions in more
complex organisms.
Though DNA studies began in 1950s, only in 1970s the first fragments of DNA
could be sequenced in laboratory. During the 1980’ and 1990’ several methods and

9



Chapter 2 DNA sequencing and genome assembly

machines were developed for both academic and commercial purposes. In 2000 the
Human Genome Project identified and mapped the human genome for the first
time. Nowadays, DNA research represents one of the most important areas of study
in medicine and biology. The cost reduction provided by the advent of fast DNA
sequencing methods allowed research to accelerate and grow.

Current sequencing technologies cannot read the entire genome in a single iteration,
so small fragments (called reads) are read and stored for future assembly. Reads
are sequences of single-letter base, subparts of original DNA sequence, whose length
values are in the range 20 – 1000 bases. The different technologies often differs for
reads length. Research in this area tries to reduce sequencing cost, elaboration time
and increase results reliability.

2.1.1. Phred quality score

In the sequencing process, often some numeric values are associated to elaborated
bases. These values tell some information about base reliability. A widely accepted
quality value score is Phred, originally developed by Phred program in the Human
Genome Project. Phred quality scores are assigned to each nucleotide base, in the
same automatic process that generates the reads. Main functions of Phred quality
value score are:

• In assembly preprocessing, phred quality value score can be used to remove/-
manage low-quality reads.

• In assembly elaboration, phred quality value score can be used to choose be-
tween multiple assembly options.

• In assembly post-processing, phred quality value score can be used to assess
the quality of produced sequence.

In the phred schema quality values set is given by Q = [0,+∞] and the error
probability function is defined as

Pe(q) = 10− q
10 ∀q ∈ Q

For example, a Phred quality score q = 10 for a base means that base accuracy is
90%.

In all practical applications, the set Q = [0, Qmax] is indeed finite. To guarantee
that Pe remains a properly defined probability function it is possible to define the
error probability as:

Pe(Qmax) =
+∞∑

q=Qmax

10 q
10

10



2.1 Sequencing

2.1.2. The NGS method

There are several DNA sequencing processes, the last one in chronological order
being called NGS (Next Generation Sequencing). This method was born from the
high demand of low-cost and high-throughput sequencing and has been raising in
the latest years.
NGS data typically present a larger amount of reads, shorter read lengths, higher
coverage (sec. 2.1.3), and different error profiles compared with previous generation
sequencing data. Short read (today range is about 25-400 bp) deliver less information
and requires higher coverage allowing a better assembly but increasing complexity
and computational effort. These drawbacks are balanced by the dramatic reduction
of sequencing costs which is one of the main advantage of NGS method as well as
one of the reason for its success.
In data production some reads were produced by breaking up randomly the original
DNA sequence in various small segments. This process is called shotgun process.
Associate with each single base in the read often there is a numeric quality value
which offers information about reliability of single base. Today, only some NGS
assembly softwares exploit these parameters.

2.1.3. Coverage

In sequencing, an important parameter is coverage. Coverage is an index than
combine genome length N , number of read M and read length m.

C =
M ·m
N

The coverage is the average number of reads that represent a base in the original
sequence and gives a measure of redundancy in data production. Note that coverage
is only a statistical index: each base can have a different real coverage. A high
coverage in shotgun sequencing (sec. 2.2) is desired because it can overcome errors
in base calling and assembly. NGS data have greater coverage than old generation
sequencing data.

11



Chapter 2 DNA sequencing and genome assembly

2.2. De novo assembly

DNA assembly is the bioinformatics’ problem to reconstruct an original molecule
from its subsequences (reads), produced by a sequencing process. De novo assembly
refers to a particular case where the reconstruction of the original sequence is done
with no previous knowledge on the sequence. The larger amount of data, as well as
the shorter reads introduced in the latest years have given new life to research in
shotgun assembly algorithms.
The assembly process is possible when the target sequence is over-sampled, such that
reads overlap in some part. The information given by the overlap lead algorithm
decision and allow the assembly. However, all DNA sequencing technologies have the
fundamental limitation that read length is much shorter than the target sequence.
NGS data, for example, try to reduce this problem with large amount of reads and
high coverage. One of the main challenges in assembly phase is to manage repeat
sequence in the target. DNA regions that share repetitions can be indistinguishable,
mostly if repetitions are longer than reads. Unfortunately, the short read used in
NGS concurs to this problem.
The errors present in data must be managed by assembler softwares, allowing imper-
fect alignment to avoid missing true match. On the other hand, an excessive error
tolerance leads to false positive match. All software products have peculiar error
balance control and generally some preprocessing of data is done. Also, assembly
accuracy is difficult to measure: some indices (the N50 statistic for example) exist
but require some constraints to compare different assemblies.
Unfortunately, assembly algorithms are typically complex and with a high compu-
tational complexity. Also, large volumes of data and an elevated number of oper-
ations require often high-performance computing platforms. In order to mitigate
these problems, commercial softwares use heuristics and custom data structures to
reduce the complexity. As a consequence, currently most popular algorithms use
graphs to resolve assembly problem. Three main categories of graph algorithm ex-
ist: Overlap/Layout/Consensus (OLC) methods, de Bruijn Graph (DBG) methods
and greedy graph methods.
In currents graph algorithms, assembly is a graph reduction problem and most of
these reduction belong to NP-hard class. In [9] Nagarajan and Pop showed that
assembly problem on overlap graph and on de Bruijn Graph is a NP-hard problem.
Only with very high coverage and repetitions in the original genome with some
length property, a polynomial formulation can be reached.

12



2.2 De novo assembly

2.2.1. Greedy

Greedy algorithms were the first algorithms developed for NGS assembly. The base
operation in a greedy algorithm is to add one more read or contig (set of overlapping
reads) to any given read or contig, until no more operations are possible. The contigs
made by greedy extension have the highest scoring overlap, based on the used scoring
function (each software implementation has a different scoring function). The greedy
algorithms are implicit graph algorithms, where only the highest-scoring edges are
considered. Local maxima and false-positive overlap may cause problems to these
algorithms. Software packages belonging to this class are SSAKE, SHARCGS and
VCAKE.

2.2.2. Overlap Layout Consensus (OLC)

OLC algorithms are based on an overlap graph, a particular graph where the vertices
represent reads and the edges represent overlaps. The overlaps must be precomputed
with pairwise alignments, with a series of computational expensive operations. The
basic idea of this method is that any paths through the graph are a potential targets.
OLC approach was developed for previous generations assemblers, but some soft-
wares extend this approach to work with NGS data. The OLC assembly has three
main phases: the first one is overlap discovery, an all-against-all pair-wise read com-
parison. Often heuristics are used in this phase, in order to reduce complexity. The
second phase is construct and manage the overlap graph, with information given by
previous phase. The last phase is a multiple sequence alignment (MSA) in order
to determine the target. Unfortunately, no efficient method for optimal MSA exist
at the moment. Softwares belonging to this class are Edena, Shorty, Newbler and
CABOG.

2.2.3. De Bruijn Graph (DBG)

DBG algorithms are based on de Bruijn graph, graphs where the edges correspond to
a subpart of the reads and the vertices correspond to overlaps between these parts.
Each read induces a path and reads with overlap induce a common path, without
any pair-wise precomputation. For this reason, the DBG approach is one of the most
frequently used for NGS data. Graph construction often employs a constant-time
hash table lookup for the existence of each common subsequence. The problem of
repetitions in target induces cycles in the graph and these allow to obtain more than
one possible target. To reduce sensitivity to data sequencing error often a strong
preprocessing phase is provided. Software products belonging to this class are Euler,
Velvet, ABySS, AllPaths and SOAPdenovo.

13



Chapter 2 DNA sequencing and genome assembly

2.2.4. Maximum likelihood genome assembly

The basic assumption in all genome assembly algorithms is that the goal of assembly
process is to find the assembled genome with minimum length. The known problem
of repeats in target DNA cause that these repeats can be under-represented in the
shortest genome find by classic algorithms. Medvedev and Brundo in [7] suggest that
“the overall goal of an assembler should be not to minimize the length of the assem-
bled genome, but to maximize the likelihood that it was the source of the set of reads”.
They note that high coverage of NGS data make possible to statistically estimate the
read copy count (number of read’s appearance in genome). Their assembly problem
formulation is to maximize the likelihood of observed read frequencies rather than
minimizing the length of the genome. They solve the new problem on a bidirected
de Bruijn graph like a minimum cost bidirected flow problem with convex cost.

The framework suggested in [7] is to find genome that maximizes the global read
count likelihood, but the framework is based on some assumptions. They use a
circular genome D of length N(D) and a red set of n reads of length k. Let di the
number of times that read i appears in D, for a given i the probability that the
outcome of a single trial is i is di

N(D) . Let the random variable Xi denote the number
of trials whose outcome is i. All these 4k variables are considered independently and
following a binomial distribution. Their joint distribution is:

P (X1 = xi, X2 = x2, ..., X4k = x44) =
n!∏
xi

∏
i

(
di

N(D)

)xi

D in not known while the results of the n trials are known. They consider the
likelihood of the parameters of the distribution (di) given the outcome of the trials
(xi) and they call this the global read count likelihood:

L(d1, ..., d4k |x1, ..., x4k) =
n!∏
xi

∏( di

N(D)

)xi

The aim is to assemble the genome with the maximum global read-count likelihood.
With a larger number of reads, the multinomial distribution can be approximated
as a product of binomial distribution of each Xi (when number of reads goes to
infinity, Xi become independent). Since in the binomial approximation N(D) is a
constant independent from each di, it is possible to replace N(D) with N . N is the
real length of actual genome from which the reads were sampled. Assuming that
genome size is known, the resulting approximation for L is :

L(d1, ..., d4k |x1, ..., x4k) ≈ ∏P (Xi = xi) = ∏(n
xi

)(
di

N

)xi
(

1−
di

N

)n−xi

14



2.2 De novo assembly

The first experiments reveal high quality reconstruction of the genome, with NGS
input data.
An improvement to [7] was presented by Varma, Ranade and Aluru in [10]. The idea
is consider all possible genomes which contain all the reads that have been collected
and pick the one which has the greatest probability of generating the observed read
set. This approach eliminate previous knowledge of genome length and identical
read length constraint. In this model each read ri of length Li is generated by a
sequence G with length LG, starting by a position uniformly chosen in 1. . .LG−Li.
Suppose a read ri appears δi times in G, the probability of ri being generated is
P (Li)δi/(LG − Li), where P (Li) denotes the probability of selecting a length Li for
the read. The probability of generating the read set R is ∏

i
P (Li)δi/(LG−Li). Since

the same read set R can be generated through different permutations, the exact
probability is α∏

i
P (Li)δi/(LG − Li), where α depends upon the read set R but not

on the sequence G. Assuming LG � Li it possible to write LG − Li ≈ LG and so
the probability PG if generating R from G is :

PG = α′
n∏
i=1

δi

LG

The constant α’ = α
∏
i
P (Li) depends on R but not on G. The goal is to find the

genome G that maximizes PG. The experimental results demonstrate that the max-
imum likelihood approach has the potential to lead a big improvement in genome
assemblers, particularly in terms of assembly quality. The major drawback of this
approach is the increase of computational complexity. The development of a com-
prehensive assembler based on the maximum likelihood formulation is still an open
issue.

15



Chapter 2 DNA sequencing and genome assembly

2.2.5. Pro and cons of current approach

All these methods share some fundamentals elements. First of all, all methods use
graph algorithms to achieve the goal. Each approach differs in the use and meaning
associated with nodes, edges, and weights. Second, single base sequencing error
induces false nodes/edges (false positive and false negative overlaps) that can induce
a false path. Third, repeats in the target and sequencing error can produce branch
and loop into the graph. In the graph context, assembly is a graph reduction problem
and most of these reductions belong to NP-hard class. For this reason, assemblers
use heuristics and approximation algorithms to manage error, remove redundancy,
simplify the graph and reduce complexity. Where possible convex optimization
techniques are adopted too.
Heuristics are fundamental for any commercial assembler: the success of an assem-
bler depends largely on the sophistication of its heuristics for real reads including
error, real genomes including repeats, and the limitations of modern computers.
Though heuristics help to mitigate all these problems, attention to optimality, com-
pleteness, accuracy and precision of proposed solutions must be paid. Moreover,
there is a lack of in-depth knowledge of current heuristics used in genome assembly.
Often some parameters configuration are employed only because the experimental
evidence shows their goodness, without any understanding of the underlying reason.
Furthermore, heuristics are very sensible to the particular genome type.
Also the preprocessing phase is fundamental for a correct assembly. Some operations
on read set, like eliminating low quality reads or trying to increase data reliability,
are performed in all major assembler.
Between available methods, OLC and DBG are two robust approaches to assembly
problem. OLC is better with longer read (100-800 bp range) and lower coverage,
DBG is more appropriate for large amount of short read (25-100 bp range). In
addition, DBGmethods are also less computational expensive than OLC approaches.
On the other hand, the new maximum likelihood methods produce very quality
assembly but are more computationally expensive than classic DBG methods. These
methods are often used in post-processing, so their effectiveness is limited to output
data of other classic methods.
Currently no algorithm nor software solve the whole genome sequencing assembly
problem.

16



3. Our probabilistic approach

3.1. Introduction to the stochastic model

The introduction of maximum likelihood approach gives a new area of study for
researchers in genome assembly and resurges research in shotgun assembly meth-
ods. Inspired by maximum likelihood approach, a new experimental probabilistic
approach to de novo whole genome assembly has been developed. The stochastic
model describes the main elements involved in sequencing, with the goal of finding
a probabilistic relation between read set and genome sequence which generates it.
With minor changes, the model can be modified to work with old generation data.
The assumptions made by model are:

• reads are sequences of pairs (c, q) where c is a symbol and q is a quality value

• reads have a fixed length m

• read set has a fixed size M

• symbols belong to an alphabet Σ

• genome sequences have a fixed length N

• all genome sequences S̃ ∈ ΣN are equiprobable

fG(S̃) := PG(S = S̃) =
(

1
|Σ|

)N
S̃ ∈ ΣN (3.1)

• quality value q belongs to a set Q finite or countable

• symbol error probability uses the phred formulation. The error probability
function can be defined as

fe(q) := Pe(q) = 10−
q
10 ∀q ∈ Q (3.2)

• with a sequence S̃ and reads of length m the probe positioning process starts
from some position j in Ωpos = [1, N −m + 1]. The probability function for
elementary events (J = j) is

fpos(j) := Ppos(J = i) ∀j ∈ Ωpos (3.3)

17



Chapter 3 Our probabilistic approach

3.2. The basic idea

The read set is the output of a whole experiment performed by a sequencer. An
interesting probability is the one that links the read set R to a particular sequence
S̃ ∈ ΣN

fG|R(S̃,R) := PG,R(S = S̃|T = R) (3.4)

The idea behind the model is that the unknown original sequence, from which the
read set is produced, has the greatest probability among all the possible sequences.
Without any other assumption, the only way to derive (3.4) is by Bayes’ rule

PG,R(S = S̃|T = R) =
PG,R(S = S̃)
PG,R(T = R)PG,R(T = R|S = S̃) (3.5)

Assuming that PG,R(S = S̃) (sequence probability) is constant and equal for all
possible sequences and observing that also PG,R(T = R) (the read set probability)
is constant in the same experiment

PG,R(S = S̃|T = R) ∝ PG,R(T = R|S = S̃) (3.6)

Now the problem can be treated as a maximum likelihood problem.

3.2.1. Read set posterior probability and maximum likelihood
principle

The maximum likelihood principle requires to find which is the probability of the
evidence given the model and then to maximize over all the models in order to find
the one which maximize the probability of the evidence. In this case the model is
defined for the sequence S̃ and is mathematically described by the function fG (3.1),
while the evidence is given by the read set R.

In order to derive a closed form for PG,R(T = R|S = S̃) the following hypothesis
has been introduced.

• Read conditional independence: two different reads of the same read set
R are statistically independent given the reference sequence

Introducing read probability fr|G, the probability formulation become

fR|G(R|S̃) = µ(R)
M∏
h=1

fr|G(rh,qh, S̃) (3.7)

18



3.2 The basic idea

where µ(R) is the multinomial coefficient

µ(R) =
(

M
k1k2...kM̄

)
(3.8)

given that R contains M̄ distinct reads and each read appears ki times (
M̄∑
ki = M).

Now only a closed form for fr|G is needed to complete the model. In order to obtain
fr|G, some probabilities have been introduced.

3.2.2. Single pair probability

Sequencing machines produce a pair (c, q) with c ∈ Σ and q ∈ Q for each sequenced
position. With finite set Σ and Q, it’s only necessary to explicitly calculate the
probability of elementary events (C = c ∩ Q = q) for all (c, q) ∈ ΩC = Σ×Q. With
hypothesis of independence between symbols and quality values and equiprobable
symbols and quality values a closed form for single pair probability fC(c, q) is

fC(c, q) := PC(C = c ∩ Q = q) = 1
|Σ||Q| (3.9)

Supposing to know that a pair (c, q) has been produced by sequencing the position
k of the reference sequence S the probability that Sk = γ given the evidence (c, q)
for all possible γ ∈ Σ is

fG|C(γ, c, q; k) := PG,C(Sk = γ|C = c ∩Q = q) (3.10)

Note that k is a constant parameter of the model, so it can be omitted. To derive
a closed form for (3.10) some hypothesis have been formulated.

• Uniform error probability: the error probability Pe(q) for the pair (c, q) is
uniformly distributed among all symbols γ 6= c

fG|C(γ, c, q; k) := PG,C(Sk = γ|C = c∩Q = q) =

1− Pe(q) γ = c
Pe(q)
|Σ|−1 γ 6= c

(3.11)

• Local sequencing information: if pair (c, q) comes from position k of se-
quence S then PG|C(γ, c, q; i) = PG(Sk = γ) ∀i 6= k

Previous assumptions are critical in the model. Using quality value in probability
formula allows to weigh data reliability in assembly choices.

3.2.3. Single read probability

A positioned read is a triple (r, q, j) in ΩP = Ωm
C × Ωpos where r = r1r2...rm ∈ Σm,

q = q1q2...qm ∈ Qm and j ∈ Ωpos.

19



Chapter 3 Our probabilistic approach

The probability of elementary events (R = r ∩Q = q ∩ J = j) is

fP (r,q, j) := PP (R = r ∩Q = q ∩ J = j) ∀(r, q, j) ∈ ΩP (3.12)

To derive a closed form of fP it’s necessary to introduce the following hypothesis:

• Intraread symbol independence: the process of producing the pair (ri, qi)
of the read (r,q) is statistically independent from the process of producing
the pair (rj, qj) of the same read for all i 6= j,

PP (R = r∩Q = q) =
m∏
l=1
PC(Rl = rl∩Ql = ql) (3.13)

• Positioning sequencing independence: the process of probe positioning
is statistically independent from actual read produced.

PP (R = r∩Q = q∩J = j) = PC(R = r∩Q = q)Ppos(J = j)
(3.14)

With both the hypothesis in conjunction the model will greatly simplify

fP (r,q, j) =
m∏
l=1
PC(Rl = rl ∩Ql = ql)Ppos(J = j) = fpos(j)

m∏
l=1
fC(rl, ql) (3.15)

Positioned read are an effective way to describe sequences of symbol-quality pairs.
Unfortunately no prior information is available on actual sequencing position for
the read. Sequencer produce just reads in the form (r,q) without any indication of
their position j. With this observation, the elementary events is {R = r∩Q = q} =
{R = r ∩Q = q ∩ J = Ωpos}. So the probability is

fr(r,q) := Pr(R = r ∩Q = q) =
∑

j∈Ωpos

fP (r,q, j) (3.16)

Introducing the following hypothesis:

• Uniform positioning: positioning process is uniform distributed along the
sequence. So (3.3) become

fpos(j) = Ppos(J = i) = 1
|Ωpos|

= 1
N −m+ 1 ∀j ∈ Ωpos (3.17)

and using the previous closed form for fC (3.9), then (3.16) becomes

fr(r,q) =
∑

j∈Ωpos

fP (r,q, j) =
∑

j∈Ωpos

[
fpos(j)

m∏
l=1
fC(rl, ql)

]
=

m∏
l=1
fC(rl, ql) =

(
1

|Σ||Q|

)m

(3.18)

20



3.2 The basic idea

3.2.4. Positioned read posterior probability given the sequence

In order to derive a closed form for fr|G, the positioned read posterior probability
given the sequence has been introduced.
Considering a positioned read (r, q, j) and a sequence S̃ the posterior probability is

fG|P (S̃, r,q, j) := PG,P (S = S̃|R = r ∩Q = q ∩ J = j) (3.19)

To derive a closed form for (3.19) the following hypotheses have been introduced.
• Read locality: read (r, q) sequenced from position j of the reference sequence
S “influence” only knowledge of Sk for k = j, ..., j + m − 1 , where m is the
length of the read.

fG|P (S̃, r,q, j) =


PG,P

(
j+m−1⋂

k=j

(Sk = S̃k|R = r ∩Q = q ∩ J = j)
)

j ≤ k ≤ j +m− 1 (a)

PG,P

( ⋂
k<j, k≥j+m

(Sk = S̃k)
)

otherwise (b)

(3.20)

Now only for (3.20(a)) is needed to find a closed form, since for (3.20(b)) it is possible
to use (3.1). To achieve this goal, other hypothesis has been used.

• Position sequence independence: the probe positioning process is statis-
tically independent from the actual sequence

P (S = S̃ ∩ J = j) = P (S = S̃) ∩ P (J = j)

With previous hypothesis and using some probability property, the (3.20(a)) be-
comes

fG|P (S̃, r,q, j) = PG,P (R = r∩Q = q|Sj,m = S̃j,m)
PG,P (Sj,m = S̃j,m)PG,P (J = j)

PG,P (R = r ∩Q = q)PG,P (J = j) (3.21)

To derive a closed form for

PG,P (R = r ∩Q = q|Sj,m = S̃j,m) (3.22)

the following hypotheses have been used.
• Symbols conditional independence: two different pairs of the same read

are statistically independent given the reference sequence

P (R = r∩Q = q|S = S̃) =
m∏
l=1
P (Rl = rl∩Ql = ql|S = S̃) (3.23)

• Local sequencing: the production of the pair (rl, ql) from position j of the
reference sequence is statistically independent from all symbols Si for i 6= j

21



Chapter 3 Our probabilistic approach

Using the last hypotheses and applying Bayes’ rule is possible to obtain

fG|P (S̃, r,q, j) =
m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1) ·

m∏
l=1
fC(rl, ql)

m∏
l=1
fG(S̃j+l−1)

·
fG(S̃j,m)
fr(r,q) (3.24)

Taking into consideration the hypothesis in (3.18) and equiprobable symbols (3.24)
the (3.20(a)) becomes

fG|P (S̃, r,q, j) =
m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1) (3.25)

3.2.5. Single read posterior probability given the sequence

To derive a closed form for fr|G, consider (3.20)

fP |G(r,q, j, S̃) := PG,P (R = r ∩Q = q|Sj,m = S̃j,m)

=
PG,P (Sj,m = S̃j,m|R = r ∩Q = q)PG,P (R = r ∩Q = q)

PG,P (Sj,m = S̃j,m)
(3.26)

Summing over all the possible positions to manage the lack of information on the
position j

fr|G(r,q, S̃) := ∑
j∈Ωpos

fpos(j)fP |G(r,q, j, S̃)

= fr(r,q) ∑
j∈Ωpos

fpos(j)
fG(S̃j,m)

fG|P (r,q, j, S̃)

= fr(r,q) ∑
j∈Ωpos

fpos(j)
fG(S̃j,m)

m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1)

(3.27)

Now a closed form for fr|G has been obtained.

3.2.6. The final formulation

Using previous formulas, a closed form for (3.7) is:

fR|G(R|S̃) = µ(R)
M∏
h=1

fr|G(rh,qh, S̃)

= µ(R)
(
fr(r,q)

fpos(j)
fG(S̃j,m)

)M
M∏
h=1

[ ∑
j∈Ωpos

m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1)

]
(3.28)

22



3.2 The basic idea

The (3.28) can be used with different implementation of fr, fpos, fG and fG|C . The
previously closed form are only a possible choices, used in model development.

However, using the proposed closed form a very simple formulation can be achieved.

• The simplest case: assuming that the sequence S̃ is defined as an i.i.d.
process, with probability of a single symbol |Σ|−1 (3.1). Supposing moreover
that the positions are also described by and i.i.d. process like in (3.17) for all
j and fr is (3.18), then (3.27) becomes

fr|G(r,q, S̃) =
1

(N −m+ 1)|Q|m
∑

j∈Ωpos

m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1) (3.29)

With these assumption (3.28) becomes

fR|G(R|S̃) = µ(R)
M∏
h=1

fr|G(rh,qh, S̃)

=µ(R)
(

1
(N −m+ 1)|Q|m

)M M∏
h=1

 ∑
j∈Ωpos

m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1)


(3.30)

3.2.7. Read set probability

Sequencer produces millions of reads per run. A correct read set probability has to
take into account all information coming from a single read. Defining the elementary
events as R = {(r,q)h : h = 1, ...,M} the read set R probability function is

fR(R) := PR(T = R) (3.31)

Deriving a closed form for fR directly from fr is not possible. Indeed the process of
producing two different reads in the same read set is not statistically independent,
since it is precisely the correlation between reads which makes possible the assembly.

The only way to reach a different formulation is by marginal distribution

PR(T = R) =
∑
S̃∈ΣN

PR|G(T = R|S = S̃)PG(S = S̃) (3.32)

Read set probability can be use to “measure” the reliability of a given read set: with
same coverage, read length, read set size and original sequence a greater value for
(3.32) suggests a well done read set (greater correlation between reads and probably
better assembler results).

23



Chapter 3 Our probabilistic approach

3.3. Comparison with current approaches

The stochastic model starts from maximum likelihood idea to create an entire prob-
abilistic framework for genome assembly. Each component and each phase has been
described in a probability manner. While in graph algorithms maximum likelihood
is only used as a criterion in path choice and post-processing, in this approach is
the fundamental of all assembly process. One of the main differences with current
approaches is that this model proposes an exact approach, without heuristics. All
current methods use heuristics to achieve the assembly goal, although heuristics
are very sensible to many factors and their massive use can affect data correctness.
Moreover the utilization of heuristic is often data dependent. In this approach,
instead, there is a solid mathematical and stochastic base: all assembly elements
are described with a precise model and stochastic process. Also it is an exhaustive
approach, since all sequences are studied in order to identify likelihood. As main
consequence, the model gives an exponential formulation of assembly problem. The
current exhaustive approach, however, was not designed to be the final model’s
formulation, but it is only exploited to give a first model validation. Another im-
portant characteristic of the proposed implementation is the fundamental use of
quality values. The majority of current methods do not use or poorly use quality
values. Usually they employ them during a preprocessing phase, when reads with
low quality values are removed. Instead, this approach strongly exploits quality val-
ues in assembly phase. Indeed (3.11), which is a core assumption in proposed model
implementation, employ the quality value to weigh the positive or negative base
matching. The quality value explains the reliability in current read-sequence base
comparison and this information is used during likelihood computation. Moreover
is not necessary to use a preprocessing phase, since low quality reads are managed
by model. Another important feature is that all produced results are measurable:
for all the sequences tested a probability/likelihood values are produced. So direct
comparison between single experiment’s results and, with some assumption, among
different experiment’s results can be achieved. Instead, in current approaches a
comparison between results is very difficult. Another innovative feature is the infor-
mation given by read set probability. The read set probability can be further used
as an index for read set reliability, so multiple read set produced by same DNA can
be directly compared.

24



4. The program development

4.1. Program goals

The development of the software follows the main purposes from which the model
has been created.
The first main goal is to give a first implementation of the model, which has never
been tested before this work. A first implementation of all probability functions can
provide more information about feasibility, correctness and robustness of the model.
Moreover, correctness of some used hypotheses and assumptions can be tested.
To achieve these objectives the software has been developed in a very modular way,
to guarantee a flexible tool also for future exploitation. Each component of the
stochastic model has been modeled with a data type and/or a function. Also the
organization of source files guarantees a high modularity. For the main probabilities
used in the model, different functions have been developed, each with different
tradeoff between performance and flexibility.
The second and much important goal has been to create a test program, a simple
assembler, to perform the first experiments with artificial data. The simulation’s
results can provide some interesting ideas for future changes or improvements to the
model.
In order to achieve these goals an assembler has been developed to read an input
read set and elaborate it. Read set probability (3.32) and sorted read set posterior
probabilities (3.28) are the most important produced data.
Given the exhaustive approach used by this model and the exponential nature of
DNA assembly problem, some optimizations to source code have been performed in
order to limit execution time and reach greater input size.
A multithreading approach and the departmental IBM P770 Power7 have been used
in development and test phases to support computational efforts.

25



Chapter 4 The program development

4.2. The stochastic model into the software

All the previous exposed model has been implemented in the software: all the prob-
abilities listed in previous chapter have a counterpart as program function. Each
function receives in input the same parameters of the probability function, to ensure
an intuitive and bijective map between formulas and functions.
With the double aim of having a debuggable version and providing some ready to
use functions, a closed form of all probabilities in model has been implemented into
the software. These hypotheses have been added to model assumptions (sec. 3.1) in
order to produce the first runnable version.
The hypotheses used for this version are:

• equiprobable quality value elements
• equiprobable symbols (3.1)
• independence between symbol and quality value and equiprobable symbols and

quality values (3.9)
• uniform positioning (3.17)
• single read probability closed form (3.18)
• uniform error probability (3.11)
• positioned read posterior probability closed form (3.25)
• single read posterior probability closed form (3.29)
• read set posterior probability (3.32)

4.3. Challenges, implementation choices and platform

The main challenge coming from the model definition is its exponential formulation.
The proposed exhaustive approach to the assembly problem requires an accurate
analysis in software development and platform choice, to mitigate exponential issues.
Another main challenge is to guarantee the necessary numeric precision at computed
probability value. As consequence of exponential problem nature, single event can
have very small probability values. These two challenges have been addressed during
first phase of software development.

4.3.1. Exponential problem

Trying to reduce side effects of exponential problem nature, some elements have
been analyzed. First of all, the model formulation exposes an embarrassing parallel
chance. Indeed, the entire set of 4N sequences to elaborate can be divided in subsets

26



4.3 Challenges, implementation choices and platform

and the computation can be executed in a parallel way, since no relation between
sequences has been described in the model. So the available departmental IBM P770
Power7 seemed to be the perfect choice. This system has all the hardware and soft-
ware requirements for application’s development: a custom OS, a high performance
compiler and some parallel tools. Among all the available languages, the C language
has been chosen for its relative “low-level” feature and the possible benefit arising
from installed compiler. Moreover, the shared memory system’s feature and the
large amount of available memory suggest a multithreading approach to parallelism.
Using C language, a Pthread approach has been adopted for multithreading. In the
following sections, all these elements are exposed in detail.

4.3.1.1. The C Programming Language

In order to develop the program, the C language has been chosen. C is an imperative,
general-purposes and relative “low-level” programming language. The main reason
of this choice is the relative “low-level” feature, which can offer better performance
than a high-level language if properly exploited. Obviously an extra workload and
a correct use of this feature is required. On the other hand, the exponential prob-
lem’s nature and the exhaustive approach needs all possible aid from programming
language. The C language adoption appears one of the best possible choices.

In program development, a C99 standard has been adopted. This choice has been
guided by the great diffusion of this standard and the increasing support to floating
point introduced in this version. Moreover, no extra-libraries have been used in
program development.

4.3.1.2. POSIX Pthread

To increase performance of test program and exploit IBM P770 Power7 potential, a
multithreading approach has been adopted. Using C language, a classic and consol-
idated option for UNIX based system is POSIX Pthread. Pthread is a standardized
C language threads programming interface, specified by the IEEE POSIX 1003.1c
standard. In shared memory multiprocessor architectures threads can be used to
implement parallelism and the POSIX standard guarantees the needed performance
and portability features. Since the IBM P770 Power7 is a shared memory machine
running an UNIX base OS, called AIX, Pthread seemed to be a good choice. Also
a MPI approach has been considered in a preliminary analysis, but using a shared
memory machine a multithread approach is better than a multiprocess solution.
Indeed, while multiple threads in same application share the same address space,
multiple processes have their own separate memory area.

27



Chapter 4 The program development

4.3.1.3. IBM P770 Power7

All tests performed in this work have been performed on IBM P770 Power7. IBM
P770 is a mid range system which includes up to 64 core POWER7. The used
version has:

• 6 Power7 Processors (3 drawers, each with 2 IBM Power7 Processors)
• 640 GB RAM
• 16 TB hard disk space (external SAN storage)
• AIX 6.1

IBM P770 is a shared memory machine, so each core can access to all available
memory. This feature has been very important for the multithreading approach
adopted on software development.
POWER7 is a superscalar symmetric multiprocessor, based on Power Architec-
ture. and released in 2010 as successor of POWER6. Compared to its predecessor,
POWER7 has an increase power efficiency through multiple cores and simultaneous
multithreading (SMT). Main POWER7 features are:

• RISC architecture
• 45 nm technology, 1, 2 · 109 transistors
• 8 Cores per processor
• 4 way SMT (4 threads/core)
• 32KB + 32 KB L1 cache/core
• 256 KB L2 cache/core
• 32 MB L3 cache/processor, on chip
• Memory controller on chip

4.3.1.4. AIX, LoadLeveler and XL C compiler

IBM P770 operative system is AIX 6.1, a proprietary UNIX base OS developed by
IBM. Since its first version in 1986, AIX is standard OS for many company’s com-
puter platforms. Using an IBM OS into a IBM systems is often the best choice. Also,
AIX has an own implementation of Pthread library, conforming to IEEE POSIX
1003.1c standard.
On AIX was installed LoadLeveler, the IBM’s batch scheduling system. IBM LoadLeveler
is a very effective tool for managing parallel and serial jobs, matching job require-
ments with the machine resources. User submits a job using a job command file and
the LoadLeveler scheduler attempts to find resources to satisfy the requirements of
the job. Moreover, LoadLeveler tries to maximize the efficiency of the whole system,
maximizing the utilization of resources and minimizing the job turnaround time.

28



4.3 Challenges, implementation choices and platform

Also, on AIX was installed XL C compiler, the standard IBM C compiler with fully
support to ISO/IEC 9899:1999 (C99) and ISO/IEC 9899:1990 (referred to as C89).
XL C is an advanced and high-performance compiler, designed to optimize and tune
applications for execution on IBM Power platforms. Installed and used version is
11.1, which introduce support for POWER 7 processor.

4.3.2. Numeric precision

The second challenge has been to guarantee the necessary numeric precision in
probability values computation. Probabilities are intrinsically small number, with
value between 0 and 1. The exponential nature of assembly problem causes that
simple events may have very small probability values. C standard type for floating
point values are float, double and long double. The most precise type, the long
double type, has a guarantee precision of about 15 digits. Introduced in C89 and
improved in C99, long double may not necessarily map to an IEEE format, so
implementation is architecture-dependent. Moreover, the declared precision is not
uniform but vary along real axis. To partially overcome this limitation and achieve
a better precision, a custom floating point data type and a complete arithmetic have
been developed. Although this solution partially overcomes machine precision issues,
a price has been paid in performance: standard C type better exploit hardware
potential than custom types. However, the desire of sufficient precision in probability
computation has forced this choice.

4.3.2.1. Custom floating point data type

In design and implementation, the data type structure took inspiration from IEEE
754 standard. A mantissa and an exponent have been specified, adding a exponen-
tiation base and a number for digits in mantissa.

/∗
Floa t ing po in t number in s c i e n t i f i c no ta t i on .
Mantissa (man) , exponent ( exp ) ,
base ( base ) and number o f not decimal d i g i t s ( d i g i t )
X = man ∗ base^exp

∗/
typedef struct sc iDouble {

long double man ;
int exp ;
int base ;
int d i g i t ;

} sc iDouble , t_longdouble ;

29



Chapter 4 The program development

The developed functions include cast functions (from long double to t_longdouble
and reverse), comparison functions and arithmetic functions. In arithmetic func-
tions, hybrid parameters have been allowed because software provides an automatic
cast to custom type. Arithmetic functions include: addition, subtraction, multipli-
cation and division.

/∗ M u l t i p l i c a t i o n between two custom type ∗/
sc iDouble mul_s_s ( const sc iDouble op1 , const sc iDouble op2 ) ;

/∗ M u l t i p l i c a t i o n between a long doub le and a custom type ∗/
sc iDouble mul_d_s( const long double op1 , const sc iDouble op2 ) ;

/∗ M u l t i p l i c a t i o n between a custom type and a long doub le ∗/
sc iDouble mul_s_d( const sc iDouble op1 , const long double op2 ) ;

/∗ Div i s i on between two custom type ∗/
sc iDouble div_s_s ( const sc iDouble op1 , const sc iDouble op2 ) ;

/∗ Div i s i on between a long doub le and a custom type ∗/
sc iDouble div_d_s ( const long double op1 , const sc iDouble op2 ) ;

/∗ Div i s i on between a custom type and a long doub le ∗/
sc iDouble div_s_d ( const sc iDouble op1 , const long double op2 ) ;

/∗ Addit ion between two custom type ∗/
sc iDouble add_s_s ( const sc iDouble op1 , const sc iDouble op2 ) ;

/∗ Addit ion between a long doub le and a custom type ∗/
sc iDouble add_d_s( const long double op1 , const sc iDouble op2 ) ;

/∗ Addit ion between a custom type and a long doub le ∗/
sc iDouble add_s_d( const sc iDouble op1 , const long double op2 ) ;

/∗ Sub t rac t i on between two custom type ∗/
sc iDouble sub_s_s ( const sc iDouble op1 , const sc iDouble op2 ) ;

/∗ Sub t rac t i on between a long doub le and a custom type ∗/
sc iDouble sub_d_s( const long double op1 , const sc iDouble op2 ) ;

/∗ Sub t rac t i on between a custom type and a long doub le ∗/
sc iDouble sub_s_d( const sc iDouble op1 , const long double op2 ) ;

Multiplication has been performed adding the two exponents and multiplying the
two mantissa. Then, the number of digits in result mantissa were normalized to
specified number.

30



4.3 Challenges, implementation choices and platform

/∗
M u l t i p l i c a t i o n between two sc iDoub le
The r e s u l t has the same d i g i t and the same base o f f i r s t f a c t o r

∗/
sc iDouble mul_s_s ( const sc iDouble op1 , const sc iDouble op2 ){

sc iDouble r e s u l t ;

. . .

/∗ c a l c u l a t e mantissa ∗/
r e s u l t .man = op1 .man ∗ op2 .man ;

/∗ c a l c u l a t e exponent ∗/
r e s u l t . exp = op1 . exp + op2 . exp ;

/∗ s e t the c o r r e c t d i g i t number∗/
r e s u l t = changeDig i t ( r e su l t , op1 . d i g i t ) ;

return r e s u l t ;
}

Similarly, division has been performed subtracting the two exponents, dividing the
two mantissa and normalizing digits in result mantissa. For both operations, control
on exponent base and on number of digits has been performed.
Addition and subtraction have been implemented executing algebraic sum of man-
tissa, for addends with the same exponent. If the exponents are different, previously
the smaller addend is brought to same exponent of greater one. As obvious, control
on exponent base and number of digits have been designed.
Even though not used in final software, also exponentiation and logarithm have been
developed for possible future uses.

sc iDouble logWithBase_s ( sc iDouble op , int base ) ;
sc iDouble logBase_s ( sc iDouble op ) ;
sc iDouble log2_s ( sc iDouble op ) ;
sc iDouble log10_s ( sc iDouble op ) ;
sc iDouble pow_s( sc iDouble op , int expo ) ;

31



Chapter 4 The program development

4.3.2.2. Formulas simplification

In order to both reduce precision issues, both to increase performance, some changes
have been done on core functions that implements (3.29).
The original (3.29) formula was:

fr|G(r,q, S̃) =
1

(N −m+ 1)|Q|m
∑

j∈Ωpos

m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1)

The |Q|m factor on fraction’s denominator causes a further rapid decrease of proba-
bility value when used in (3.30). Since it is a constant value and for ranking purposes
was irrelevant (it does not alter the relative order) in the final version of the soft-
ware it has been omitted. As a consequence, the calculated value is not anymore
a probability but is an index which differs from the real probability by a constant
factor.

fr|G(r,q, S̃) ∝
1

(N −m+ 1)
∑

j∈Ωpos

m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1) (4.1)

Hence also (3.30) which used this function, now returns an index value, no more a
probability value.
Always with the aim of mitigating the limited precision issues, a Stirling approxi-
mation has been introduced in factorial computation.

µ(R) =
(

M
k1k2...kM̄

)
=

M !
k1!k2!...kM̄ ! ' (M

e
)M
√

2πM
1

k1!k2!...kM̄ !

The M ! factor at multinomial coefficient’s numerator quickly exceeds machine pre-
cision. Using Stearling approximation in (3.30) allows to spread operation into
multiplication. Adding (4.1) simplification, the final formula is:

fR|G(R|S̃) ∝
√

2πM
k1!k2!...kM̄ !

M∏
h=1

 M

(N −m+ 1)e
∑

j∈Ωpos

m∏
l=1
fG|C(S̃j+l−1, rl, ql; j + l − 1)


(4.2)

For DNA assembly purposes, an index directly proportional to real probability value
has the same utility. This solution allows to mitigate some problems in elaboration
complexity and numeric precision.

32



4.4 The assembler - Description and pseudocode

4.4. The assembler - Description and pseudocode

The assembler uses the probability functions which have been developed in a first
phase of the work. The program output is a complete ranking of all input sequences,
sorted by descending probability. Program also computes multiplication between
sequence probability and the probability sum of all elaborated sequences, which
corresponds to read set probability if given input sequences are ΣN . The assembler
takes in input the read set file (in simil-FASTA format), the list of sequences to
elaborate and the quality value range.

Algorithm 4.1 Assembler

read input read set file
create read set object
read input sequences file
create sequence list
calculate and initialize parameters //(N, M, m, number of sequence, quality value
range)

create and initialize thread parameters for probability computation
assign sequence list sub-part to each thread
for each thread

start thread for probability computation //parallel execution

wait threads for probability computation
update read set probability P (R)
create and initialize thread parameters for merge operation
assign results sub-part to each thread
for each thread

start thread for merge operation //parallel execution

wait threads for merge
print ranking
print P (R)

33



Chapter 4 The program development

4.4.1. Input and parameters setting

The first operations done has been the elaboration of the read set, reading input
file and creating a ReadSet type struct. ReadSet contains and array of Read struct
type. Each read is a sequence of Pair data type.
Then, the input sequence and quality value range are read and all parameters are
set (sequence size N, read set size M, read length m, sequences number seqNum,
minimum quality value Q_min and maximum quality value Q_MAX). Also, read
set multinomial coefficient is calculated, using a previously written function.

4.4.2. Probability computation

The most important part of the program is probability computation. For each input
sequence the read set posterior probability index is calculated, using function (4.2).
Also, all calculated probabilities are accumulated in a variables. If input sequences
are ΣN , then multiplying this variable for sequence probability in main, the read set
probability index can be obtained.
In the developed program, each thread takes a subset of all sequences and for each
sequences in its subset calculates read set posterior probability index (4.2). Let
NS the number of input sequence and NT the number of thread, then each thread
has about NL = NS

NT
sequences to elaborate. Moreover, each thread sorts its NL

sequences by probability in ascending order with qsort library function.

Algorithm 4.2 Thread probability computation

thread_probability(ReadSet, SequenceListSubPart, ProbabilityList)
P(ReadSet)_local = 0 //local read set probability

for each sequence Si in SequenceListSubPart
ProbabilityList[i] = calculate P (ReadSet|Si) //read set posterior probability

P(ReadSet)_local = P(ReadSet)_local + P (ReadSet|Si)
sort ProbabilityList
return P(ReadSet)_local

4.4.3. Ranking

The last part of the program performs the DNA sequences ranking, sorting input
sequences by just calculating probability values. Since a local sorting of each thread’s
data has already been performed , after probability computation the result array has
NT sorted subparts. So, merging these NT sorted subparts, a complete sequences
sorting is obtained. In order to exploit multithreading, a parallel approach has

34



4.4 The assembler - Description and pseudocode

been applied to the merging phase. Each thread merges a subset of sequences and
writes the merged sequences in a common array, at the right place. So the first
thread merges the smallest elements, the second thread merges the next ones, and
so on until last thread that merges the greatest ones. First of all, the subset of
sequences to assign to each thread must be identified. To achieve this goal, starting
by an observation: the greatest value merged by i-th thread must be not greater
than any elements merged by i+1-th thread, since each thread merges subsets of
increasing values. Considering that all threads have to merge elements in different
array subparts, for each thread and for each sorted array subpart a range of indices
must be found. Let x[j] be the j-th element in first sorted data set. In this subpart,
all elements x[j] at position j = i · NL

NT
, with i ∈ {1, ..., NT − 1}, are found. Then,

with a binary search in all other NT − 1 array subparts, the indices of the same
elements x[j] (or the greater smaller elements) in any other subpart are found. Now
each thread has its own ranges of indices where applying merge procedure.

THREAD  #1 THREAD  #2 THREAD  #3 THREAD  #4

local sorted data

binary search

local merging

merge data
identification

sorted data

INPUT

OUTPUT

Figure 4.1.: Merge multithread with NT=4 threads

Each thread merges NT sorted sub-part and writes sorted results into a common
output array. Every thread creates a local array of NT entries, in order to store
current index of each sub-array. Then until there are no more data to be merged,
first elements in eachNT assigned sub-parts are examined to find minimum. At each
iteration, every thread adds the local minimum at the correct position on common
result array.

35



Chapter 4 The program development

Algorithm 4.3 Thread merge operation

thread_merge(InputResultsList, OutputResultList, MergeIndicesRange, Thread-
Number)

currentIndexArray[ThreadNumber] //current index for each sub array
i_result_start = 0 //start index for output array
N_local = 0 //amount of data to merge for this thread
min_tmp = +∞ //temporary minimum
i_min //index of current minimum

for each sub array
initialize currentIndexArray

initialize i_result_start and N_local
for (i=0; i < N_local ; ++i )

min_tmp = +∞
for (j=0; j < ThreadNumber; ++j) //find min

if( currentIndexArray[j] ∈ MergeIndicesRange AND
InputResultsList[currentIndexArray[j]] < min_tmp )
min_tmp = InputResultsList[currentIndexArray[j]]
i_min = j

OutputResultList[i_result_start+i] = min_tmp //add min value

update currentIndexArray[i_min]
return

4.4.4. Output

The program produces in output the complete or partial ranking and the read set
probability value, if input sequences are ΣN . Additional information like reads
overview, total execution time and average time per sequence are provided.

36



4.5 Code optimization solutions

4.5. Code optimization solutions

4.5.1. General best practices adopted

Although programming style is very personal, there are programming practices that
will help to get the best results from the optimization techniques used by the com-
piler. In code development, some IBM tips and guidelines have been adopted to
exploit the C for AIX compiler potential. Some guidelines adopted where possible
are:

• Pass a value as an argument to a function, rather than letting the function
take the value from a global variable.

• Use constant arguments in functions, to provide more opportunities for opti-
mization.

• Fully prototype all functions. A full prototype gives the compiler and opti-
mizer complete information about the types of the parameters. As a result,
promotions from unwidened types to widened types are not required, and pa-
rameters can be passed in appropriate registers.

• Design functions so that they have few parameters and the most frequently
used parameters are in the leftmost positions in the function prototype.

• Avoid passing by value structures or unions as function parameters or returning
a structure or a union. Passing such aggregates requires the compiler to copy
and store many values. Instead, pass or return a pointer to the structure or
union, or pass it by reference.

• If your function exits by returning the value of another function with the same
parameters that were passed to your function, put the parameters in the same
order in the function prototypes. The compiler can then branch directly to
the other function.

• Use the built-in functions, which include string manipulation, floating-point,
and trigonometric functions, instead of coding your own. Intrinsic functions
require less overhead and are faster than a function call, and often allow the
compiler to perform better optimization.

• In a structure, declare the largest members first.
• In a structure, place variables near each other if they are frequently used

together.
• Use local variables, preferably automatic variables, as much as possible. The

compiler must make several worst-case assumptions about global variables.
• Use constants instead of variables where possible. The optimizer is able to

do a better job reducing runtime calculations by doing them at compile time
instead.

37



Chapter 4 The program development

• Use register-sized integers (long data type) for scalars.
• Avoid forcing the compiler to convert numbers between integer and floating-

point internal representations.
• Keep array index expressions as simple as possible.
• Use pre-increment/decrement in loop indices

4.5.2. Specific code optimization

Some extra optimizations have been done in core assembler’s parts. Very strong
optimizations have been applied only on functions used in the final version of as-
sembler, in order to increase program performance.
A very important component in the program is the custom floating point arith-
metic, since all probability computations consist of some real numbers operations.
The t_longdouble data type and the developed arithmetic functions have been
strongly optimized, reducing input parameters controls and reorganizing arithmetic
operations.
In priorprobability_c.h, has been created an array with the precalculated sequence
probabilities. Since equiprobable symbols hypothesis has been used, precalculating
the sequence probability is possible and allow to reduce computation.
In posteriorprobability_c.h, have been created two arrays containing the precalcu-
lated values for (3.11). Since the single pair posterior probability has been used in
comparison between each sequence’s symbols and each reads pairs, it is a crucial
component for assembler. For example, testing all sequences with N=14 on a read
set with m=4, M=35 about 4N ·M ·m = 35 · 415 = 37′580′963′840 comparison were
done and each would result in a division, an addition and an exponentiation. Since
with hypothesis of finite symbols alphabet and finite quality values set is allowed to
list all possible values, this solution guarantees an important speedup.

38



4.6 Compiler optimization and tuning

4.6. Compiler optimization and tuning

The compiler optimization and tuning can significantly improve program perfor-
mance, only specifying some flag in compiling procedure. XL C compiler offers a
large number of optimization and tuning options. First of all, to correctly compile
multithread application the right compiler invocation is necessary. In order to cre-
ate threaded applications and link programs that use multithreading, XL C provides
compiler invocations with a suffix _r (xlc_r) to specified thread-safe compilation.
In the following list, the flags used in makefile are listed:

• -O5 : Most aggressive optimizations available (reorganization or elimination
of global data structures, loop optimizations, Interprocedural analysis (IPA),
etc.)

• -q64 : Generates code for a 64-bit addressing model (64-bit execution mode)
• -qarch=pwr7 : Generate instructions that are optimized for a POWER7 archi-

tecture.
• -qsimd=auto: Automatically take advantage of vector instructions for proces-

sors that support them, if possible.
• -qlargepage: Takes advantage of large pages provided on POWER4 and higher

systems.
• -qsmp=auto: Enables automatic parallelization of program code, if possible.

Foglio1

Pagina 1

No 27251,239387
O3 10950,630536
O5 10866,681391

8676,437701Used

No O3 O5 Used
0

5000

10000

15000

20000

25000

30000

Compiler optimization effects
Input : #Sequences= 268435456, M=35, m=4

Compiler options

T
o

ta
l e

x
e

c
u

ti
o

n
 t

im
e

 [
s

e
c

]

Figure 4.2.: Compiler optimization

Using an O3 optimization level, execution time is about 2.5 times lower than without
any optimization flag. Instead, the difference between O3 and O5 optimization levels
is very small. Introducing even previous listed flags, the execution time is reduced
by about 20% than an O5 optimization level only.

39





5. Simulations and experiments

5.1. Modus operandi

All read sets used in the test phase are composed of artificial data. A python script
has been used to generate the reads as sequences of pairs [base; quality values], from
a randomly generated input sequence. The script receives as input a sequence of
size N , a quality value range [Q_min,QMAX], a read length (m) and a read set size
(M). The script, with a random equiprobable positioning process between 1 and
N −m+ 1, creates the reads. First, it starts reading m consecutive bases from the
current position, then it adds random quality values to each base. This operation
was repeated M times for each generated read. In order to make the experiment
more realistic, some random errors have been introduced in the created read sets: in
pairs with low quality values, some base were randomly changed. All tests have been
performed with quality values in the range [10;35], so there are very few simulated
errors.
Four types of tests have been performed in order to validate:

• the ranking feature correctness
• the ranking feature reliability
• the ranking feature robustness
• the read set probability index

The experiments have been performed with the version of the software introduced
in chapter 4, using 48 threads and the most performant compiler optimization level.
In all the tests, the input configurations have been chosen to not result in a run
time of the program greater than 12 hours. This choice has been adopted in order
to both not spend too time on the machine and allow a greater tests repeatability.

41



Chapter 5 Simulations and experiments

5.2. Ranking

5.2.1. Correctness

In these tests, the main goal is to study the correctness of the ranking feature.
Different test configurations have been tested varying coverage (values 3, 5 and 10),
in order to observe the model behavior in different situations.

Coverage 3 A coverage 3 is a small value, especially in a NGS context, but it has
been employed anyway to study model behavior.

Table 5.1.: Test Ranking (TOP 20): C'3.14; N=14; M=11; m=4; 0 base errors

Rank Sequence Value Hamming Dist.
and differences

1° ATACGTTCACTGCG* 653010323403034 · 10−19 0
2° ATACGTTCACTGCA 549019953290166 · 10−21 1 (last base)
3° ATACGTTCACTGCT 548444737077953 · 10−21 1 (last base)
4° ATACGTTCACTGCC 548440765170250 · 10−21 1 (last base)
5° GTACGTTCACTGCG 467215874570474 · 10−21 1 (first base)
6° TTACGTTCACTGCG 464077448482833 · 10−21 1 (first base)
7° CTACGTTCACTGCG 464072087708780 · 10−21 1 (first base)
8° ATACGTTCACTGTG 143689673906261 · 10−21 1 (second-last)
9° ATACGTTCACTGAG 143631054079042 · 10−21 1 (second-last)
10° ATACGTTCACTGGG 143587025516808 · 10−21 1 (second-last)
11° CAATACGTTCACTG 113471576180316 · 10−21 right shift
12° ATATACGTTCACTG 112504504772884 · 10−21 right shift
13° ATACGTTCACACTG 110435173685824 · 10−21 2
14° ACATACGTTCACTG 109974928666097 · 10−21 right shift
15° ATACGTGTTCACTG 109850753661478 · 10−21 5
16° ATACGTTCACTGTA 109647827363929 · 10−21 2 (last two)
17° ATACGTTCACTGTC 109646302540338 · 10−21 2 (last two)
18° ATACGTTCACTGTT 109646256394306 · 10−21 2 (last two)
19° ATACGTTCACTGAA 109625959777839 · 10−21 2 (last two)
20° ATACGTTCACTGAC 109625573192179 · 10−21 2 (last two)
Execution time ' 48 min (10,718 µs per sequence) *=reference sequence

The true sequence is the first in the ranking, so this time the program has found the
correct sequence. The next 6 sequences differ from the true sequence in either the
last or first base, while the next 3 sequences differ from the true one in the second-last
base. The last five sequences in the TOP 20 ranking differ by the reference sequence
on the last two bases. In the middle part of the ranking (positions 11, 12 and 14),
instead, some sequences are partial shifts of the original sequence: a large subpart of

42



5.2 Ranking

the original sequence appears in the test sequence as well, but in the wrong position.
All these observations suggest that the most likely sequences differ from the reference
sequence at the extremes. This may suggest that the sequence’s extremes need more
coverage. Another observation is that the sequence extreme reads, in a linear DNA
contest, contribute intrinsically to a lesser extent in the assembly phase than the
other reads. Indeed these reads overlap only on one side with other reads, bringing
less information to the assembly process. As a consequence, the original sequence’s
centre “CGTTCAC” is the only part that appears in all TOP 20 sequences.

Table 5.2.: Test Ranking (TOP 10): C=3.2; N=15; M=12; m=4; 1 base errors

Rank Sequence Value
1° TCATGCCATAGCTGC 220152081209690 · 10−21

2° TCATAGCTGCCATGC 220152081209690 · 10−21

3° AGCTGCATGCCATGG 206856831096433 · 10−21

4° AGCTGCCATGCATGG* 206856831096433 · 10−21

5° ATGCAGCTGCCATGG 530829823226891 · 10−22

6° AGCTGCCATGGATGC 519720035346666 · 10−22

7° ATGGAGCTGCCATGC 517146903810176 · 10−22

8° ATGCCATGGAGCTGC 517146903810171 · 10−22

9° CCATCATGCAGCTGG 173901133450613 · 10−22

10° CCATGCAGCTCATGG 119861950730758 · 10−22

Execution time ' 230 min (12,798 µs per sequence) *=reference sequence

In this simulation, the true sequence is fourth in the rank. The used read set has
one simulated error in covering position [9,12]: the produced DNA fragment was
“TCAT” instead of “GCAT”. From the results it appears that the first and second
sequences used this wrong piece of information during the assembly process. In low
coverage read sets, the sequencing error can affect results correctness. Moreover,
the original sequence has some repetitions inside, that does not help the assembly
process. A difference between this simulation and the previous one is in the sequence
probability index values: in the first experiment the gap between first and second
sequence indices is greater than in the last simulation. This fact may suggest that
when lower quality read sets (or with low coverage) are used, the difference between
first position and second position is very small.

43



Chapter 5 Simulations and experiments

Coverage 5 A coverage 5 is a medium value for NGS data. Some experiments on
sequences with lengths 12, 13, 14 and 15 have been performed.

Table 5.3.: Test Ranking (TOP 10): C=5.3; N=15; M=20; m=4; 0 base errors

Rank Sequence Value Hamming Dist.
and differences

1° ATCTAGCACTTCACG* 166485089598584 · 10−18 0
2° ATCTAGCACTTCACT 711683176850489 · 10−21 1 (last base)
3° ATCTAGCACTTCACA 889956328748221 · 10−22 1 (last base)
4° ATCTAGCACTTCACC 889954752844185 · 10−22 1 (last base)
5° CATCTAGCACTTCAC 449583305703572 · 10−22 right shift 1
6° TATCTAGCACTTCAC 448664222767083 · 10−22 right shift 1
7° AATCTAGCACTTCAC 448641077538416 · 10−22 right shift 1
8° GATCTAGCACTTCAC 448639732796229 · 10−22 right shift 1
9° ATCTTCACTCTAGCA 182396651698028 · 10−23 10
10° TCTAGCATCTTCACT 168244040919235 · 10−23 left shift
Execution time ' 348 min (19,427 µs per sequence) *=reference sequence

In all tests with the same configuration of (Tab. 5.3) the reference sequence has
been always on top of the rank. In the reported case, the second, third and fourth
sequences in rank differ by the correct sequence in the last base only. Indeed, in the
used read set there are only 2 reads that cover last part of the sequence: one covering
positions [10,13] and another covering positions [11,14], so the last base is covered
only by one read. On the other hand, sequences from position 5 to 8 are right shifts of
original sequence. This fact can suggest that the assembly process is very sensitive
at the extremes of the sequence, since only the core part “TCTAGCACTTCAC”
appears in all the firsts 8 positions. The only common subsequence shared by all
TOP 10 sequence is “CTTCAC”, that is completely covered by 4 reads in the read
set (the 25% of total reads).

44



5.2 Ranking

Table 5.4.: Test Ranking (TOP 10): C=5.3; N=15; M=20; m=4; 3 base errors

Rank Sequence Value
1° CCTGCTTGATACCTA* 328905325151445 · 10−24

2° CCTGCTTGATATACC 129249699236084 · 10−24

3° ATACCTGCTTGATAT 127988036353119 · 10−24

4° GATATACCTGCTTGA 124405084559469 · 10−24

5° CTGCTTGATACCTAT 562148723910261 · 10−25

6° TCTTGATACCTGCTT 198298678027545 · 10−25

7° TCTGCTTGATACCTA 637257750220209 · 10−26

8° GATACCTGCTTGATT 577100070116333 · 10−26

9° GCTGCTTGATACCTA 503904713491795 · 10−26

10° CTGCTTGATACCTAC 498805137977172 · 10−26

Execution time ' 357 min (19,934 µs per sequence) *=reference sequence

In (Tab. 5.4) the same configuration has been tested, but with a read set containing
3 wrong reads (with one base error per reads). In this case, the difference between
the first true sequence and the next ones is lower than in the previous test (similar
to Tab. 5.2). Also, the errors in the read set do not affect the classification in the
ranking, but they only affect the relative difference between subsequent values in
the ranking.
With same coverage (5) but sequence length N=14, the same results have been
achieved: the reference sequence is always on top of the rank, with reduced differ-
ences between subsequent values when the read sets contain errors.

45



Chapter 5 Simulations and experiments

Also with N=13 and N=12, almost all the times the true sequence has been identi-
fied. Two interesting simulations, where reference sequence has not been on top of
rank, are showed.

Table 5.5.: Test Ranking (TOP 10): C=5.23; N=13; M=17; m=4; 2 base errors

Rank Sequence Value Hamming Dist.
and differences

1° ATCTGCTAGGCTA 455555683625862 · 10−21 left shift 1
2° ATCTGCTTGGCTA 138118867659341 · 10−21 1 from first seq.
3° TATCTGCTAGGCT 772546528110800 · 10−22 1 (first base)
4° ATCTGCTAGGCTG 584117921830767 · 10−22 1 from first seq.
5° ATCTGCTAGGCTT 581746951201724 · 10−22 1 from first seq.
6° ATCTGCTAGGCTC 581668009707775 · 10−22 1 from first seq.
7° CATCTGCTAGGCT* 570502332346344 · 10−22 0
8° GATCTGCTAGGCT 569706022045535 · 10−22 1 (first base)
9° AATCTGCTAGGCT 569553667484609 · 10−22 1 (first base)
10° ATCTGGCTATGCT 442211711422233 · 10−23 8 from first seq.
Execution time ' 17 min (14,790 µs per sequence) *=reference sequence

In this simulation (Tab. 5.5) the true sequence is in position 7. The sequences in
positions 1, 4, 5 and 6 are left shifts of the true sequence. This happens because
the used read set does not contain reads covering position 0. Also, the sequences
in positions 3, 8 and 9 differ by the correct sequence only in first base. Again, the
sequence’s extremes undercoverage causes problems in the assembly process. On
the other hand, the 2 base errors are corrected by the assembly (wrong bases are in
position 3 and 8 in the reference sequence) in all sequences until the 9th position,
except for the second sequence.

46



5.2 Ranking

Table 5.6.: Test Ranking (TOP 10): C=5; N=12; M=15; m=4; 1 base errors

Rank Sequence Value Hamming Dist.
and differences

1° TCGAGAAAACAG 819420742045327 · 10−19 4 (last bases)
2° TCGAGAAACAGA 776866539943380 · 10−19 1 (last base)
3° ATCGAGAAACAG 776769788055368 · 10−19 right shift
4° TCGAGAAACAGC 776405514334398 · 10−19 1 (last base)
5° TCGAGAAACAGG* 776342109463739 · 10−19 0
6° TCGAGAAACAGT 776340485835887 · 10−19 1 (last base)
7° CTCGAGAAACAG 776340484161624 · 10−19 right shift
8° TTCGAGAAACAG 776340319934353 · 10−19 right shift
9° GTCGAGAAACAG 776340214873981 · 10−19 right shift
10° TCGAAACAGAGA 969175091478824 · 10−22 4
Execution time ' 4 min (12,417 µs per sequence) *=reference sequence

Here (Tab. 5.6) the true sequence is in position 5, 3 sequences differ in last base
from the true sequence and other 4 sequences are right shifts of the original one.
An observation of the employed read set reveals that the used data have not reads
covering last 4 positions. As a consequence, the first sequence differs from the true
one just in the last 4 bases. Again, the undercoverage in sequence’s extremes may
affect the ranking correctness.

47



Chapter 5 Simulations and experiments

Coverage 10 Coverage 10 is a good value for sequencer output. All simulations
performed with this coverage value found the reference sequence, for all tested se-
quence length (N=12, 13, 14, 15).

Table 5.7.: Test Ranking (TOP 10): C'10.66; N=15; M=40; m=4; 1 base errors

Rank Sequence Value Hamming Dist.
and differences

1° CGACGGAACCTATCG* 153895988814832 · 10−12 0
2° CGGAACCTATCGACG 514579471875232 · 10−17 11
3° AACCTATCGACGGAA 311313038766365 · 10−17 left shift
4° CGACGGAACCTATCC 357466458609094 · 10−18 1 (last base)
5° CGACGGAACCTATCT 349439913003182 · 10−18 1 (last base)
6° CGACGGAACCTATCA 349059698543556 · 10−18 1 (last base)
7° AGACGGAACCTATCG 965254997267898 · 10−20 1 (first base)
8° GGACGGAACCTATCG 964128272309232 · 10−20 1 (first base)
9° TGACGGAACCTATCG 955038485190722 · 10−20 1 (first base)
10° CCTATCGACGGAACC 304351567846088 · 10−20 left shift
Execution time ' 11.5 h (38,525 µs per sequence) *=reference sequence

In this example (Tab. 5.7), the correct sequence is on top of the ranking with a
greater distance on the following sequences than in previous simulations. Although
all sequences that differ in first or last base are still present in the rank, the higher
coverage helps to mitigate the low amount of information provided by the sequence’s
extremes. The main consequence is that the gap between the first sequence and the
second sequence is the greatest achieved so far.

Table 5.8.: Test Ranking (TOP 10): C'10; N=14; M=35; m=4; 0 base errors

Rank Sequence Value Hamming Dist.
and differences

1° TGCAGCCACAAACA* 238353478452097 · 10−12 0
2° TGCAGCCACAACAA 117419537618413 · 10−14 3 (last bases)
3° TGCAGCCACAACAG 301564676385761 · 10−15 3 (last bases)
4° TGCAGCCACAACAC 300219228987079 · 10−15 3 (last bases)
5° CTGCAGCCACAACA 295838062275230 · 10−15 9
6° TGCAGCCACAACAT 290918712762484 · 10−15 3 (last bases)
7° ATGCAGCCACAACA 290578637262343 · 10−15 9
8° GTGCAGCCACAACA 290575835575153 · 10−15 9
9° TTGCAGCCACAACA 290575746987259 · 10−15 8
10° AGCAGCCACAAACA 156212325537284 · 10−19 1 (first base)
Execution time ' 145 min (32,322 µs per sequence) *=reference sequence

48



5.2 Ranking

Also in this simulation (Tab. 5.8) the reference sequence is the first one, with a
significant difference from the second placed one. The core part “CAGCCACAA”
of the original sequence appears in all the other sequences in the ranking. So the
sequence’s extremes uncertainty is still present but the high coverage allow to effec-
tively manage this uncertainty.

49



Chapter 5 Simulations and experiments

5.2.2. Reliability

All the experiments with a coverage greater than 10 have always placed the reference
sequence in first ranking position, also with read sets that contains limited errors in
bases call.
On the other hand, the results have been more influenced by single errors in bases
call when low coverage read sets have been employed. In order to study ranking
feature reliability with low coverage, some tests have been performed multiple times
with same parameters (quality values range, coverage, read length, read set size and
original sequence) so correct sequence position’s trend has been reported.
In the following test, from the random generated sequence “CGTAATAAGAGGCC”
have been obtained 50 different read sets each of them with 18 reads of length 4 (so
a coverage of about 5). The artificial data have single base quality values in range
[10;35], so about 1 or 2 base error calls appear in each read set.

Foglio1

Pagina 1

somma= 50,000000 50,000000

1 30,000000 1° 30
2 3,000000 2° 3
3 1,000000 3° 1
5 2,000000 5° 2,000000
6 5,000000 6° 5,000000
8 1,000000 8° 1,000000
9 3,000000 9° 3,000000

20 1,000000 [20°;30°] 2
28 1,000000 [31°;40°] 1
31 1 [41°;50°] 2
43 1,000000
47 1,000000

1° 2° 3° 5° 6° 8° 9° [20°;30°] [31°;40°] [41°;50°]

0

5

10

15

20

25

30

35

30

3
1 2

5

1
3 2 1 2

True sequence ranking positions
Input : N=14, C=5, M=18, m=4

True sequence position

N
u

m
b

e
r 

o
f 

o
c

c
u

rr
e

n
c

e
s

Figure 5.1.: True sequence ranking positions

In this test the 60% of rankings have been reported the true sequence in first position,
the 30% until the 10th position and only 10% beyond the 20th position. However,
the tests where the true sequences have been placed until the 10th position have
sequence probability indices very close to first ones. Like in the previously described
experiments, this simulation suggests that with low coverage the true sequence is al-
most always on top of the ranking, but when this does not happen the true sequence

50



5.2 Ranking

is still at the top positions of the ranking. Therefore, in low coverage situations the
reliability of the sequence probability index is very good but not error-free.

5.2.3. Robustness

In order to study the ranking feature robustness, some tests have been performed
with low quality reads sets. To achieve this goal some read sets have been gener-
ated by a common DNA sequence, with same coverage and read length. Then an
increasing number of reads in these read sets have been replaced by other randomly
generated reads. Experiments have been performed with the double aim of checking
true sequence ranking position and studying difference between the true sequence
probability index and the first sequence probability index.

Coverage 5 and 20 reads The following tests have been performed with 7 read
sets made by 20 reads with length 4. The original DNA sequence is “ATCTAG-
CACTTCACG”, so it has been achieved a coverage of about 5.

Table 5.9.: Test Ranking: C'5; N=15; M=20; m=4

Number of

replaced

reads

True

sequence

position

First sequence

probability index
First sequence

Second (or true)

sequence

probability index

0 1 166485089598584 · 10−18 ATCTAGCACTTCACG* 711683176850489 · 10−21

2 1 130025478245528 · 10−24 ATCTAGCACTTCACG* 532569417000409 · 10−27

4 6 423231058802517 · 10−35 GATCTAGCACTTCAC 346713544796518 · 10−38

6 62 263609358967611 · 10−39 ATCTAGGACTTCACT 176798290454779 · 10−44

8 38 190223485016126 · 10−45 GATCTAGCCTTCACT 133101870467548 · 10−48

10 13 651931695616080 · 10−51 GGTCTAGCACTCACG 298543408548179 · 10−52

15 >1000 343437091870725 · 10−57 ATGGACCACTAGTAG -

Execution time ' 47 h (about 400 min per read set) *=reference sequence

The test results show that the sequence probability index robustness suffers with
low coverage. Indeed, only with few replaced reads the true sequence appears in
first rank position.

51



Chapter 5 Simulations and experiments

Coverage 20 and 65 reads The following tests have been performed with 12 read
sets made by 65 reads with length 4. The original DNA sequence is “ATTCCATG-
GCTAC”, so it has been achieved a coverage of 20.

Table 5.10.: Test Ranking: C=20; N=13; M=65; m=4

Number of

replaced

reads

True

sequence

position

First sequence

probability index
First sequence

Second (or true)

sequence

probability index

0 1 321569892716111 · 102 ATTCCATGGCTAC* 746725166691417 · 10−8

1 1 249280792512051 · 102 ATTCCATGGCTAC* 215738315600564 · 10−8

2 1 189480465113243 · 10−7 ATTCCATGGCTAC* 718865691461380 · 10−22

3 1 113334587210873 · 10−7 ATTCCATGGCTAC* 794780186670168 · 10−23

4 1 167371872781332 · 10−13 ATTCCATGGCTAC* 445539243568485 · 10−18

5 1 468113638691487 · 10−17 ATTCCATGGCTAC* 328003926307432 · 10−31

10 1 110166345321771 · 10−32 ATTCCATGGCTAC* 229622051781690 · 10−41

15 1 664401755792464 · 10−43 ATTCCATGGCTAC* 686901415898753 · 10−56

20 1 109099001904050 · 10−61 ATTCCATGGCTAC* 519173576919022 · 10−68

30 2 239413830061336 · 10−80 ATTCCATGGCTAA 312234991017309 · 10−82

40 9 305545113348599 · 10−133 GTTCATGGCTACG 721691630809830 · 10−140

50 >1000 268859671733745 · 10−138 ATGGCTACCGTTC -

Execution time ' 15.5 h (about 78 min per read set) *=reference sequence

Until the number of replaced reads has been lower than 20 (about the 30% of reads),
the true sequence has been always on top of the ranking. When a read set with 30
replaced reads has been used, true sequence dropped into second place, but with
a small distance from the first sequence. Similar happens with 40 replaced reads,
where the true sequence is in position 9. On the other hand, with 50 replaced
reads the true sequence did not appear in TOP 1000 ranking. This test suggests
that the probability sequence index is a robust index also with a large number of
low quality data (replaced reads). With a high coverage, the first position in rank
and a significant difference between subsequent values has been achieved also with
corrupted data.

52



5.3 Read set

5.3. Read set

The following tests have been performed to study potential use of read set probability
index as a reliability index for sequencing data. The base idea is that a more
reliable read set has a higher probability value than a low quality read set. In order
to perform these tests, some decreasing quality read sets have been generated, all
with same coverages and read lengths. Then, an increasing number of reads in
these read sets have been replaced by other randomly generated reads. Finally, a
relation between read set probability index and the number of replaced reads has
been analyzed.

Coverage 5 and 20 reads Given a sequence with length 15, 7 read sets made by
20 reads with length 4 have been created. Except the first one, in other read sets
some reads have been replaced.

Table 5.11.: Test Read Set: C'5; N=15; M=20; m=4

Number of
replaced reads

Read set
probability index

0 156060326640470 · 10−27

2 122138948627109 · 10−33

4 398871546691510 · 10−44

6 297549798805752 · 10−48

8 134493061880969 · 10−53

10 344371728538061 · 10−59

15 526296309793931 · 10−66

Execution time ' 47 h (about 400 min per read set)

The test results show a significant decrease in the read set probability index value
with increasing replaced reads. Also with only few replaced reads, the difference
between a real read set and a modified one is considerable.

53



Chapter 5 Simulations and experiments

Coverage 20 and 65 reads Similar tests have been performed with 12 read sets
made by 65 reads with length 4. The original DNA sequence length is 13, so it has
been achieved a coverage of about 20.

Table 5.12.: Test Read Set: C=20; N=13; M=65; m=4

Number of
replaced reads

Read set
probability index

0 479176480874324 · 10−6

1 371457327291075 · 10−6

2 282347895373771 · 10−15

3 168881695286741 · 10−15

4 249410166281825 · 10−21

5 697543678718049 · 10−25

10 164160647332277 · 10−40

15 990035766054191 · 10−51

20 162570281055017 · 10−69

30 361407092261077 · 10−88

40 880836537765865 · 10−141

50 967735746078773 · 10−146

Execution time ' 15.5 h (about 78 min per read set)

In this test, the read set probability index value significantly decreases when many
reads are replaced. The results seem to confirm the validity of the read set prob-
ability index as a reliability index for sequencing data. The decreasing rate of the
index is not constant among the number of replaced reads: with only 2 replaced
reads the index values is much larger than with 1 replaced read, while is comparable
with the value for 3 replaced reads. This sensibility with a low number of replaced
reads can be explained by the particular read employed for replacing. The chosen
read, in fact, can be accidentally good for the assembly.

54



6. Conclusion and future work

This thesis presents a first experimental validation of a new maximum likelihood
approach to the de novo genome assembly problem. The idea behind the model
is that the unknown original DNA sequence, from which the read set is produced,
has the greatest probability among all the possible DNA sequences. So elaborating
all the sequences, it is possible to rank them based on the computed probability.
The key idea is that the higher in the rank a sequence appears, the more likely it
is the reference sequence. Moreover, the probability of the read set may offer some
information about sequencer’s data reliability: with the same coverage, read length,
read set size and original sequence a greater value for this probability may suggests
a good read set (greater correlation between reads and probably a better assem-
bler results). Compared with the current methods, this model has an exhaustive
approach to the assembly problem avoiding to employ heuristics, a strong use of
quality values, a production of numerical measurable results and a solid mathemat-
ical and stochastic formulation of the assembly problem. On the other hand, both
the proposed exhaustive approach and the exponential nature of the assembly prob-
lem require many resources both in elaboration time and in computational power.
The current exhaustive approach, however, was not designed to be the final model’s
formulation but it is only exploited to give a the first model validation.

As explained in chapter 4, in order to give a first implementation of the model and to
perform some experiments, a multithreading software assembler has been developed
in the C language. A parallel approach using POSIX Pthread and the availability of
an IBM P770 machine allow both to develop a high performance application for test
purposes and to partially mitigate exponential issues. Furthermore, with the aim to
reach the necessary numerical precision, a software implementation of the floating
point type and a complete arithmetic have been developed. Also, strong code opti-
mizations and some simplifications of probability formulas have been done in order
to reduce execution time. The entire development phase has been characterized by
find a balancing between performance and numerical precision.

The results of the experiments, reported in chapter 5, shows some interesting fea-
tures. The ranking feature based on model assumptions is a reliable tool for DNA
assembly. With a high coverage (greater than 10) and a limited number of base
errors, the correct sequence is always at the top of the ranking with a significant
gap between subsequent values. Even introducing a limited number (until 30%)
of corrupted reads in the read set, the ranking feature remains accurate. So the
sequence probability is a correct, reliable and robust index for a high coverage read

55



Chapter 6 Conclusion and future work

set, typical of the NGS context. With a lower coverage (5) the reference sequence
is still often on top of the rank but with a reduced differences between subsequent
values when the read sets contain errors. Using a coverage of 5, the reliability of
ranking is very sensitive to the quality of the input read set. With a coverage value
of 3, the same observations for coverage 5 remain valid but the sensitiveness in the
read set quality is increased. A common observation, among all the coverage tested,
is that assembly process correctness and reliability are significantly affected by the
undercoverage at the extremes of the sequence. Often, only the core part of the ref-
erence sequence appears in all the sequences in the ranking, in the correct position
or in a shifted position. In low coverage context, this fact may affect ranking cor-
rectness while with a high coverage the sequence’s extremes uncertainty is effectively
managed. Moreover, experiments show that the read set probability is a good index
for the reliability of the input sequencing data. All simulations report a decrease of
index value when many reads are corrupted, with all coverage employed.
In conclusion, the proposed maximum likelihood approach guarantees a high quality
assembly for NGS-like data. Moreover, the stochastic model provides some useful
indices than can be employ to analyze results correctness and reliability. For data
with low coverage, the current formulation guarantees a very good but not error-free
assembly. On the other hand, the main drawbacks are that the current exhaustive
approach adopted by the model and the exponential nature of the assembly problem
limit the size of input that can be elaborated in a reasonable time.
In a future development, the first problem that might be addressed will be to reduce
the program execution time. This goal can be achieved through many ways. First of
all, an algorithmic approach can be attempted. Studying the problem’s formulation
and the model’s description, it can be possible to reach a reorganization of the
computation that reduces the amount of processing. Indeed, having to elaborate
all the 4N sequences for a given sequence length N , maybe a clever utilization of
the common sequence parts elaboration can achieve a good result. For example, an
approach similar to the parallel prefix computation idea can be considered. Another
direction worth exploring concerns the analysis of a different approach to the limited
numeric precision. The current custom data type guarantees the desired precision
but it increases the amount of computation. Maybe a different solution, closer to the
hardware level, can be taken into account. Another idea to improve the program’s
performance is to switch from the current CPU based platform to a GPU based
one. Indeed a GPU architecture, that executes a larger amount of simple operations
than a CPU architecture, may be exploited for the program purposes. The types of
the operations performed in the program (a large amount of simple floating point
operations) may fit well with the GPU platform features. Obviously, all the previous
ideas are only possible solutions to the problem, but none of them guarantee a sure
improvement.
When some solutions to the execution time issues will be found, the second goal that
might be addressed will be to compare the maximum likelihood approach with the
current approaches. An in-depth comparison of the methods and the employment of

56



Conclusion and future work

real data can provide both a further validation for the model, both some new ideas
to improve the model formulation. Moreover, further tests can better explained
some phenomena encountered during the preliminary tests, like the issues in the
sequence’s extremes undercoverage.
In summary, this thesis lays out the first groundwork for the developing of an assem-
bler based on the maximum likelihood approach. Hopefully, further research will
expand and improve it even more.

57





A. Source code organization

A.1. Data type

• pair.h pair.c: define Pair data type as a couple of quality value and nucleotide
base. Defines functions to compare base, quality value and Pair.

• read.h read.c: define Read data type as an array of Pair and a read size.
Defines functions to compare Read and print basic information.

• readset.h readset.c: define ReadSet data type as an array of Read and a read
set size.

• scientificdouble.h scientificdouble.c: define t_longdouble data type as a man-
tissa, an exponent, an exponent base and a number of digit in mantissa. De-
fines functions to calculate addition, subtraction, multiplication, division, ex-
ponentiation, logarithm. Define functions to cast between C standard long
double and t_longdouble, to compare two t_longdouble, to change expo-
nent base and number of digits in mantissa.

• t_result_data.h t_result_data.c: define t_result_data data type as a pair
of probability value and DNA sequence. Define function to compare two
t_result_data.

• threaddata.h: define thread_data data type, used to packing arguments for
multithreading probability function.

A.2. Utilities

• constants.h: define some shared constants used by application.

• multinomialcoefficients_c.h multinomialcoefficients_c.c: define functions to
calculate factorial, multinomial coefficient denominator and complete multi-
nomial coefficient.

• sort.h sort.c: define t_merge_mt_data, used to packing arguments for multi-
threading merge function. Define functions to binary search and multithread-
ing merge.

59



Appendix A Source code organization

• probability_c.h probability_c.c: define variable for sequence number and read
set probability. Define functions to read and create read set, given an FASTA-
like input file. Define function to read input sequences file. Define function
to calculate read set multinomial coefficient (3.8) and read set multinomial
coefficient denominator.

A.3. Probability function

• readsetprobability_c.h readsetprobability_c.c: define functions to calculate read
set probability given a ReadSet data type (3.32).

• posteriorprobabilitygivenevidence_c.h posteriorprobabilitygivenevidence_c.c: de-
fine functions to calculate posterior probability given evidence. Give and im-
plementation for (3.7) (3.27), (3.28), (3.30), (4.1), (4.2).

• posteriorprobability_c.h posteriorprobability_c.c: define functions to calculate
posterior probability. Give an implementation for (3.4), (3.11), (3.20), (3.24),
(3.25), (3.29).

• priorprobability_c.h priorprobability_c.c: define functions to calculate prior
probability. Give an implementation for (3.1), (3.2), (3.3), (3.9), (3.15), (3.17),
(3.18).

A.4. Assembler

• testProbabilityPOSIX_c.c: main program, receive in input sequences and read
set, calculate probability and produce on output a sequence ranking and other
index.

60



B. POSIX Pthread functions

The Pthreads API contains around 100 subroutines. The subroutines which com-
prise the Pthreads API can be informally grouped into four major groups: thread
management, mutexes, condition variables and synchronizations. Only function in
first group was used in software development. In this appendix, a brief description
of main Pthread function used is done.

B.1. Thread creation

The main() program comprises a single, default thread. All other threads must be
explicitly created by the programmer, with Pthread API.

To create a thread and make it executable there is function pthread_create, which
can be called any number of times from anywhere within code.

Syntax

#inc lude <pthread . h>
in t pthread_create (

pthread_t ∗ thread ,
const pthread_attr_t ∗ att r ,
void ∗∗ s t a r t_rout ine ( void ) ,
void ∗arg ,

) ;

Parameters

• thread: unique identifier for the new thread returned by the subroutine.

• attr: attribute object that may be used to set thread attributes.

• start_routine: the C routine that the thread will execute once it is created

• arg: a single argument that may be passed to start_routine. It must be passed
by reference as a pointer cast of type void.

Return value

• If successful, the function returns zero. Otherwise, an error number is returned
to indicate the error.

61



Appendix B POSIX Pthread functions

Error codes

The pthread_create function will fail if:
• EAGAIN: the limit on the number of threads in the class may have been met.
• EINVAL: the value specified by attr is invalid.
• EPERM: the caller does not have the appropriate permission to set the re-

quired scheduling parameters or scheduling policy.

B.2. Thread attribute

By default, a thread is created with certain attributes but some of these attributes
can be changed via the thread attribute object. Attributes include: detached or join-
able state, scheduling inheritance, scheduling policy, scheduling parameters, schedul-
ing contention scope, stack size, stack address and stack guard (overflow) size.
Functions pthread_attr_init and pthread_attr_destroy are used to initialize/de-
stroy the thread attribute object.

B.3. Thread termination

There are several ways in which a thread may be terminated:
• The thread returns normally from its starting routine. It’s work is done.
• The thread makes a call to the pthread_exit subroutine - whether its work

is done or not.
• The thread is canceled by another thread via the pthread_cancel routine.
• The entire process is terminated due to making a call to either the exec() or

exit()

• If main() finishes first, without calling pthread_exit explicitly itself
The pthread_exit() routine allows to specify an optional termination status pa-
rameter. This optional parameter is typically returned to threads "joining" the
terminated thread.

62



B.4 Thread join

B.4. Thread join

Joining is one way to achieve synchronization between threads.

pthread_create() pthread_join()

Thread 1

Thread 2

Thread N

pthread_exit()

D
O
 

W
O
R
K

Master
Thread

The pthread_join() subroutine blocks the calling thread until thread specified
by thread_id terminates. The target thread’s termination return status may be
specified in the target thread’s call to pthread_exit(). A joining thread can match
one pthread_join() call only.
Syntax
#inc lude <pthread . h>
in t pthread_join (

pthread_t thread_id ,
void ∗∗ thread_return

) ;

Parameters
• thread_id: thread identifier of joining thread
• thread_return: pointer to location where store joining thread return value

Return value
• If successful, the pthread_join() function shall return zero; otherwise, an

error number shall be returned to indicate the error.
Error codes
The pthread_join() function shall fail if:

• EINVAL: the implementation has detected that the value specified by thread
does not refer to a joinable thread.

• ESRCH: no thread could be found corresponding to that specified by the given
thread ID.

63



POSIX Pthread functions

64



Bibliography

[1] Ieee standard for binary floating-point arithmetic. ANSI-IEEE Std 754-1985,

1985.

[2] Blaise Barney. https://computing.llnl.gov/tutorials/pthreads/ - POSIX Threads

Programming. Lawrence Livermore National Laboratory.

[3] IBM. IBM XL C/C++ for AIX, V11.1 - Compiler Reference. IBM Product

documentation, April 2010.

[4] IBM. IBM XL C/C++ for AIX, V11.1 - Language Reference. IBM Product

documentation, April 2010.

[5] IBM. IBM XL C/C++ for AIX, V11.1 - Optimization and Programming Guide.

IBM Product documentation, April 2010.

[6] Inge Rodriguez Murali Paramasivam Keigo Matsubara, Edison Kwok. Devel-

oping and Porting C and C++ Applications on AIX. IBM Redbooks, March

2009.

[7] Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly.

Journal of computational Biology, 16(8):1101–1116, 2009.

[8] Jason R. Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for

next-generation sequencing data. Genomics, 95(6):315 – 327, 2010.

65



Bibliography

[9] Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence as-

sembly: theory and applications to next generation sequencing. Journal of

computational biology, 16(7):897–908, 2009.

[10] A. Varma, A. Ranade, and S. Aluru. An improved maximum likelihood for-

mulation for accurate genome assembly. In Computational Advances in Bio

and Medical Sciences (ICCABS), 2011 IEEE 1st International Conference on,

pages 165–170, 2011.

66



Acknowledgments

Questa tesi è la conclusione di un percorso cominciato 5 anni fa, percorso nel quale
molte persone mi hanno accompagnato e sento ora la necessità di ringraziare.

Ringrazio il ProfessorGianfranco Bilardi, relatore di questa tesi, per l’opportunità
datami e per il supporto fornitomi nello svolgersi del lavoro. Spero di non aver deluso
le sue aspettative e la fiducia in me riposta.

Ringrazio Michele Schimd, mio compagno di viaggio in questa tesi e fonte di
innumerevoli consigli e suggerimenti. Senza la tua guida questo lavoro non sarebbe
stato lo stesso.

Il ringraziamento più grande va ai miei genitori Gianni e Alessandra che in tutti
questi anni mi hanno supportato/sopportato, questa laurea è anche vostra. Senza
il vostro affetto e la vostra forza non sarei qui oggi, vi voglio bene.

Un ringraziamento a tutti gli amici dell’università, se questi anni di studio sono
volati è anche merito degli innumerevoli bei momenti passati insieme. Oggi e sempre,
grazie.

Ringrazio in particolare All Dei Long (Ale, Bedo, Colla, Emma, Fede, Gio,
Marty, Nico, Vanuz) per le serate, le vacanze, le pizze e tutti i bei momenti
passati insieme. Siete stati una delle cose più belle di questa esperienza universitaria.
Non vi dimenticherò.

Un grazie a Bedo e Giulio, con i quali ho condiviso un fantastico viaggio in Cali-
fornia nell’estate del 2011. E’ stata un’esperienza meravigliosa e i miei compagni di
viaggio sono stati parte del successo di questa avventura. Oltre ad avanzare ancora
un pranzo di pesce...

Un grazie a tutti quelli che sono stati miei compagni di team, in particolare a Ale,
Bedo, Colla, Gio e Giulio. Bei momenti e tanti successi, il PM è onorato di aver
lavorato con voi.

Grazie al mio migliore amico Andrea, che è stato sempre presente in tutti questi
anni. Anche se non sai tirare le punizioni a PES, sei quasi come un fratello per me.

67



Acknowledgments

Grazie a Daniele, Gabriele, Luca, Manuel, Marco e Sebastiano, già miei
compagni alle superiori e matricole insieme a me ormai 5 anni fa. Tanto tempo fa
l’impatto con l’università non è stato brusco anche per merito vostro.

Grazie a tutti i miei compagni di classe e ai docenti dell’ ITIS Severi, se l’informatica
è ora parte della mia vita è anche per voi. Mille grazie per avermi accompagnato
sulla mia strada.

Un ringraziamento a tutte le persone che mi hanno aiutato in un momento difficile,
se ho raggiunto la maturità prima ancora di questa laurea è anche grazie a voi. La
notte è sempre più buia subito prima dell’alba. A tutti, grazie.

PS: Un grazie infine ad Alfred, che mi fa trovare sempre il mantello stirato e la
batmobile con il pieno. Numero uno!

68


	Abstract
	Contents

	1 Introduction
	1.1 Thesis Outline

	2 DNA sequencing and genome assembly
	2.1 Sequencing
	2.1.1 Phred quality score
	2.1.2 The NGS method
	2.1.3 Coverage

	2.2 De novo assembly
	2.2.1 Greedy
	2.2.2 Overlap Layout Consensus (OLC)
	2.2.3 De Bruijn Graph (DBG)
	2.2.4 Maximum likelihood genome assembly
	2.2.5 Pro and cons of current approach


	3 Our probabilistic approach
	3.1 Introduction to the stochastic model
	3.2 The basic idea
	3.2.1 Read set posterior probability and maximum likelihood principle
	3.2.2 Single pair probability
	3.2.3 Single read probability
	3.2.4 Positioned read posterior probability given the sequence
	3.2.5 Single read posterior probability given the sequence
	3.2.6 The final formulation
	3.2.7 Read set probability

	3.3 Comparison with current approaches

	4 The program development
	4.1 Program goals
	4.2 The stochastic model into the software
	4.3 Challenges, implementation choices and platform
	4.3.1 Exponential problem
	4.3.1.1 The C Programming Language
	4.3.1.2 POSIX Pthread
	4.3.1.3 IBM P770 Power7
	4.3.1.4 AIX, LoadLeveler and XL C compiler

	4.3.2 Numeric precision
	4.3.2.1 Custom floating point data type
	4.3.2.2 Formulas simplification


	4.4 The assembler - Description and pseudocode
	4.4.1 Input and parameters setting
	4.4.2 Probability computation
	4.4.3 Ranking
	4.4.4 Output

	4.5 Code optimization solutions
	4.5.1 General best practices adopted
	4.5.2 Specific code optimization

	4.6 Compiler optimization and tuning

	5 Simulations and experiments
	5.1 Modus operandi
	5.2 Ranking
	5.2.1 Correctness
	5.2.2 Reliability
	5.2.3 Robustness

	5.3 Read set

	6 Conclusion and future work
	A Source code organization
	A.1 Data type
	A.2 Utilities
	A.3 Probability function
	A.4 Assembler

	B POSIX Pthread functions
	B.1 Thread creation
	B.2 Thread attribute
	B.3 Thread termination
	B.4 Thread join

	Bibliography
	Acknowledgments

