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Abstract

This thesis presents the realization of a system for quantum information exchange for
cryptographic applications. The basic element of quantum information is the qubit,
which replaces the classical bit concept. This leads to several new implications in the
handling and measurement of the information. The purpose of the work is to design all
the parts required for the creation of a reliable system. The project, which is named
Quantum Advanced Key Exchanger (QuAKE), covers many different technological
areas. VHDL language describes the hardware core for the driving of the lasers and data
reception; C++ language implements the software part for the management of the entire
system. The design is integrated on two boards, each one connected to a computer.
The system design faces the problem of linking together two devices with different clock
domains. Therefore, a fine synchronization method guarantees the right timing of the
system. Furthermore, the unpredictably of the qubits transmission is handled through
a suitable time-calibrated receiving windows system. Actually, the work succeeds in
improving a previous version of the system increasing its performances, reliability,
efficiency and flexibility.
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Introduction

Nowadays, there is an increasing need for an efficient and optimized technology for
the exchange of the information. Given that, using qubits instead of classical bits, the
quantum information is acquiring more and more relevance in this scenario.
Furthermore, the security of communication is one of the most important aspects in an
era in which information technology plays a crucial role. Cryptography is unavoidable
for military application and sensitive data communication as well as for privacy security.
In addition to that, cryptography represents an essential element for the support of
modern information economy. Therefore, the combination of quantum information
and cryptography represents one of the most important achievements of the last three
decades.

Any device responsible for the information exchange must be fully reliable. Thus,
the design of a stable and trustworthy communication system is the first step for
the development of new technology and the improvement of the existing one. This
project-design work was born within this framework to meet the needs of quantum
information field. As a matter of facts, the project starts from the already existing
Quantum Advanced Key Exchanger (QuAKE) system, which needs to be improved for
better performances and flexibility.

The thesis describes the realization from scratch of a system that works as a foun-
dation for quantum information communication. Since the system might be used in
different future quantum cryptography experiments, this report can be considered as
an operational manual as well.
The thesis addresses different topics, starting from the introduction of some prelimi-
nary notions on quantum information and cryptography that are given in chapter 1.
Chapter 2 introduces the QuAKE system which main purpose is to allow the trans-
mission of the information, encoded as qubits, between two parties. Then, the main
objectives set for the design of the new version of QuAKE are described. The devel-
opment of such new project is divided into three different sub-designs: a hardware one
and two software programs.
The study and design of the hardware part is described in chapter 3. Starting with
a brief analysis on the available technical knowledge, the chapter fully explains the
hardware working principle highlighting its modular structure.
Chapter 4 deals with the realization and complete explanation of two different software
programs. The first one for the system working and the second one for the system con-
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4 INTRODUCTION

trolling.
The last chapter is dedicated to the description of the tests carried out on the system.
After the test and verification of both the software and the hardware parts, the results
of the complete test of the whole system are reported.
Four appendices complete the work with a further description and analysis of specific
measurements and design of a dedicated device.

The achievements prove that the system works properly and represents a reliable
foundation from which future developments can start.
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Chapter 1

Quantum information and
cryptography

1.1 Quantum information

Quantum information is a quite recent field for the exchange of the information. It is
based on quantum mechanics, and represents an evolution of the classical information
theory. This technology can be used in many different areas and applications. The
main one is cryptography. In quantum information, the central idea is that the basic
element for the storing of a single information is the qubit instead of the classical bit,
which is the most widely used. Therefore, the elaboration, the communication and the
storage of the information are done over the qubits. As a matter of facts, the great chal-
lenge in quantum information is the handling of the qubits, since they need to follow
the prepare-transform-measure path [1] in order to realize a reasonable transmission
of the information. The processing is performed using protocols. The cryptographic
application of quantum information is implemented through the Quantum Key Distri-
bution (QKD) with the usage of BB84 and B92 protocols.
For a clear understanding, the next part will explain the concept of qubit.

1.1.1 The qubit

A qubit represents the quantum information, which is the basic element for the encod-
ing of the information in a quantum system. The therm qubit stands for quantum bit
and intuitively it can be compared to the computer bit. Nevertheless, they represents
deeply different concepts. The qubit is a two-level quantum system, described by a
two-dimensional Hilbert space. Using two normalized and mutually orthogonal quan-
tum states, it is possible to map the values 0 and 1 of a classical bit:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
(1.1)
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8 CHAPTER 1. QUANTUM INFORMATION AND CRYPTOGRAPHY

These two quantum states form a computational basis of its space. Thus, unlike a
bit that can assume only two allowed values, a qubit can be represented by the super-
position of the two states |0〉 and |1〉. The general form of the states superposition is
described by

|ψ〉 = α |0〉+ β |1〉 (1.2)

where α,β ∈ C with |α2| + |β2|=1, that is 〈ψ |ψ〉=1. The state vectors do not
have physical meaning but only describe a global phase. Therefore, choosing real and
positive values for α and β, the generic state of a qubit can be written using spherical
coordinates:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 =

[
cos θ

2

eiφ sin θ
2

]
(0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) (1.3)

Using a three-dimensional Cartesian space, this state can be represented as a unit
vector lying on a sphere of unit radius know as Bloch sphere. Clearly, the Cartesian
coordinates of the state can be referred to the polar coordinates:

x = cosφsinθ, y = sinφsinθ, z = cosθ (1.4)

The representation of the qubit as a linear combination of the computational basis
{|0〉 , |1〉} is not necessarily the only one possible. As a matter of facts, the state of a
qubit in a two-dimensional Hilbert space can be represented as a linear combination of
any two orthonormal state vectors. Therefore, it can be represented with the conjugate
bases

|0〉+ |1〉√
2

,
|0〉 − |1〉√

2
(1.5)

|0〉+ i |1〉√
2

,
|0〉 − i |1〉√

2
(1.6)

The couple of the vectors forming each one of the conjugate bases correspond to
the Pauli eigenvectors operators σz, σx and σy. They form a set of mutually orthogonal
vectors over the Bloch sphere (Figure 1.1).

Now it is possible to use any two-level quantum system in order to create a physical
qubit. For example, the spin of a electron, the spin of a photon or two electronic
levels of an atom can be considered for qubit realization. However, due to its nature,
the polarization of a light wave is a quite simple task [2]. Hence, many quantum
communication systems use the polarization itself to encode the qubit. Thus, it is
possible to associate the |0〉 and |1〉 states, respectively, to the horizontal and vertical
states of polarization of a photon.
From a formal point of view, the new basis is still a computational one:

|0〉 → |H〉 , |1〉 → |V 〉 (1.7)
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Figure 1.1: The Bloch sphere.

Hence, the diagonal polarization basis (+/-) and the left/right polarization basis
(L/R) form the new conjugate bases and are related to the H/V basis as follow:

|+〉 =
|H〉+ |V 〉√

2
, |−〉 =

|H〉 − |V 〉√
2

(1.8)

|L〉 =
|H〉+ i |V 〉√

2
, |R〉 =

|H〉 − i |V 〉√
2

(1.9)

Even in this case, the three bases correspond the Pauli eigenvectors operators σz,
σx and σy. Through the Poincarè sphere (Figure 1.2), which is quite similar to the
Bloch sphere, the light wave polarization states can be visually represented.

Considering the explanation above, it is clear that a qubit can assume an infinite
number of states. Therefore, one could think that it could be possible to store an
infinite quantity of information in a single qubit. Nevertheless, aside the fact that it
is possible to encode a qubit as an arbitrary polarization of a photon, the subsequent
measure of the qubit state has a limited precision due to quantum mechanics laws. To
be more precise, is not possible to measure the precise state of a qubit since it would
require infinite measures. Besides, even with a large number of measures on the same
qubit, is not even possible to estimate, with reasonable precision, the state of a qubit,
since any measurement will inevitably modify the original qubit state. The theoretical
reasons of these two statement derive from the the third postulate of the quantum
mechanics theory.
For a complete explanation about qubit measurement and relation with quantum me-
chanics theory, please refer to [3].
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Figure 1.2: The Poincarè sphere.

1.2 Introduction to cryptography

Cryptography science studies the techniques for a secure communication between two
parties. The therm comes from the Greek words κρυπτ óς, “hidden” and γράϕειν,
“writing”. The purpose of cryptography is to transform a message in order to make it
unreadable and information-less but allowing the recovery of the original message only
to the designated party.

Cryptography is rooted in ancient ages. It was closely tied with military needs,
which boosted the invention of different encryption methods during centuries.
A first important example is the Caesar cipher, used to send textual messages. It was
based on a simple scheme: every letter was substituted for another one located nth-
positions far from it in the alphabet. But the most famous cryptographic system is the
Enigma machine, used by Germans during the II World War to communicate reserved
military information among troupes. The machine was based on an electro-mechanical
system and on an alphabetical algorithm, it was easy to use and was considered very
secure for that time. As a matter of facts, the main idea of these systems was that the
message encryption algorithm was secret and unknown to a third party. Nevertheless,
the alphabetic substitution technique allowed the decryption of the algorithm through
dedicated analysis of letters frequency. This means that, despite the good efficiency of
these systems for that time, they still did not guarantee a very high level of security.

During the last century, the spreading of information engineering increased the need
for a secure communication, which fostered the development of cryptography science.
Therefore, many new algorithms were invented in order to improve the security of the
message transmitted. One of them was the Vernam cipher or one-time-pad by Gilber
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Vernam, back to 1920. The encryption algorithm is used on a binary message and
performs a sum modulo two between each bit of the original message and the related
bit of a random key. The key has to be as long as the message is. This algorithm is
considered to be fully secure as long as the key is used only once.

Nowadays, one of the hardest tasks for cryptography is to exchange the key used
by the encryption algorithm.
The quantum cryptography is one of the most recent developed technologies and could
become the one used worldwide in the near future.

1.3 Current cryptography technology

Nowadays the most widespread cryptographic system is based on the public/private
key algorithm. This system allows most of the today communications and its working
principle is based on a mathematical procedure. Basically, the algorithm implements an
almost-not-reversible function which allows the transmission of the encrypted message
without transmitting the whole cryptographic key.
Let us assume the X message has to be send through a communication channel. The
idea is to encrypt this message with an F function and the public key in order to
create the encrypted message Y . Actually, the only way to obtain X from Y is to use
the H function and the private key.

X F→ Y

Y H→ X H 6= F−1

Here is an example of the information exchange.
Suppose that A needs to send a message to B. Hence, B creates both a public key
and a private one. The public key is then sent to A and is visible to anyone. Once
it has received the public key, A encrypts its message X , using the F function and
the public key, and obtains the encrypted message Y . Now A sends Y to B which will
decrypt the message using the H function and the private key. The Y message too
is visible to anyone but cannot be decrypted without the private key. In other words,
even knowing the public key and the encrypting F function, it is not possible to obtain

the original message X in a reasonable period of time. To be more precise, the Y F−1

→
X operation is not impossible but simply represents a mathematical problem with
exponential complexity (For a specific description of the public/private key system,
please refer to [4]). As a matter of facts, this problem requires an outstanding amount of
time to be solved, even for the most powerful computer. Irony of fate, the only computer
able to solve this problem in a reasonable period of time could be the quantum one.
Nowadays, the quantum computer is far to be completely functioning but probably, in
the near future, it will and the quantum cryptography could be one of the safest ways
to transmit encrypted messages.
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1.4 Quantum Cryptography

The quantum cryptography is the application of quantum information to the world of
the cryptography. The first idea of this application was formulated in 1970 by Stephen
J. Wiesner creating the basis for the development of this new discipline. Later, in
1984, researchers Charles H. Bennet and Gilles Brassard invented the first quantum
cryptography protocol called BB84. Although it was not complex from a theoretical
point of view, the quantum cryptography technology was mainly ignored at that time.
However, its development continued and from the ’90s its consideration started to grow.
Nowadays, the quantum cryptography is well considered since its importance for the
future of information security.

1.4.1 Quantum cryptographic system

In a quantum cryptographic system, a classical channel and quantum channel1 are
available for the communication between a transmitter, commonly named Alice, and a
receiver, commonly named Bob.
The classical channel is a simple physical medium used by Alice and Bob in order to
communicate information that are visible to everyone. On the other hand, the quantum
channel is a private channel used by Alice and Bob for the communication of reserved
information (i.e. a key), which are encoded as qubits. Therefore, the main idea of a
quantum cryptographic system is to use the intrinsic unpredictability of a quantum
measurement in order to detect the presence of an eavesdropper, commonly named
Eve. As a matter of facts, Eve needs to make a measure over the exchanged qubits
in order to intercept the private transmission between Alice and Bob. However, the
measure will necessarily perturb the qubits quantum state. Therefore, the usage of
specific quantum states and of a proper key error rate analysis can allow the detection
of the presence of an intruder.
Please note that a quantum cryptographic system is not used for messages encryption
but is responsible only for the exchange of a key that will be then used for messages
encryption. This specific application is known as Quantum Key Distribution (QKD).
A description of two of the most well-known cryptography protocols follows.

1.4.2 BB84 protocol

As already stated, the BB84 protocol was the first quantum cryptography protocol
ever invented. Its name derives from its inventors, Bennet and Brassard [5].
The protocol encodes the values 0 and 1 of a randomly generated raw key, using four dif-
ferent quantum states from two conjugate bases. In case of polarization encoded qubits,

1Please note that therm quantum does not imply that the channel is based on quantum mechanic
principles. To be more precise, the channel is still a classical one but its information is processed
according to quantum mechanic.
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Bit/Basis + ×
0 |H〉 |+〉
1 |V 〉 |−〉

Table 1.1: BB84 bit encoding lookup table

the two bases can be chosen as the H/V polarization basis (+) and the 45°diagonal +/-
polarization basis (×) ({|H〉, |V 〉} and {|+〉, |−〉}). Therefore, the protocol works as
follow:

Alice-side (quantum channel)

1. A raw key is created as a random sequence of bits.

2. Every bit is randomly associated to one of the two possible basis (according to
Table 1.1) in order to encode a qubit. The bases assignment is stored for the
post-processing phase.

3. Alice sends photons according to polarization states of the qubits.

Bob-side (quantum channel)

1. Bob measures the polarization state of the incoming photons with a random
association to one of the two bases.

2. The data are saved storing the value (0 or 1) and the basis.

Data-processing (classical channel)

1. Bob communicates to Alice which qubits it has detected. As a matter of facts,
some of them can have been lost because of channel losses.

2. now Alice and Bob must verify that the Bob basis of the nth-qubit is the same
of Alice. When a basis is matched, even the bit is matched. If the basis does
not correspond, the bit can be correct with a probability of 50% and must be
discarded. The sequence of matched bases/bits forms the sifted key.

3. The most important step is to verify the presence of an eavesdropper during the
transmission of the qubits. This can be done with a control on the error rate
of the raw key, also called Quantum Bit Error Rate (QBER). Therefore, Alice
and Bob share a small portion of the raw key on the classic channel, evaluating
the percentage of wrong bits. A specific threshold QBER value2 is used in order
to decide if the key is completely safe or not. The exceeding of this threshold

2Different threshold value mean different level of security. Generally, a threshold of 11% represents
an absolute secure key. For a complete explanation about the threshold values refer to [6].
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implies the presence of an eavesdropper during the transmission and so the entire
key must be discarded. To be more precise, there is no absolute certainty of the
eavesdropper presence since the over-the-threshold QBER can be due to the errors
introduced by the quantum channel and optical components.

4. If the QBER value is below the threshold, Alice and Bob can make a procedure of
error correction on the sifted key commonly known as information reconciliation.

5. The last step is the privacy amplification. The key is mapped over a new one,
which will be completely uncorrelated from the portion previously shared on the
classical channel.

An example of the working principle of BB84 is shown in Table 1.2.

Alice random bits 0 1 0 0 0 0 1 0

Alice random bases × + × × × + + ×
Transmitted polarization |+〉 |H〉 |+〉 |−〉 |−〉 |V 〉 |V 〉 |−〉
Bob random bases + + + × + × + ×
Raw key 1 1 0 0 0 1 1 0
Sifted key 1 0 1 0

Table 1.2: BB84 operation example

Generally, since the Bob bases are wrong 50% of the times, the BB84 efficiency can
be considered to be equal to 50%.

1.4.3 B92 protocol

A variant of the BB84 protocol was proposed by Bennet in 1992 and uses only two
non-orthogonal states of polarization [7]. This different protocol works as follow:

Alice-side (quantum channel)

1. A raw key is created as a random sequence of bits.

2. Every bit is randomly encoded with one of the two possible polarization according
to Table 1.3. The polarization assignment is stored for the post-processing phase.

Bit/Party Alice Bob

0 |V 〉 |−〉
1 |+〉 |H〉

Table 1.3: B92 bit encoding lookup table

3. Alice sends photons according to polarization states of the qubits.
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Bob-side (quantum channel)

1. Bob measures the polarization state of the incoming photons randomly using one
of the other two polarization direction. Therefore, Bob has a 50% probability of
detecting a photon only when the used polarization direction is correlated with
the one used by Alice. If not, Bob does not detect the photon at all.

Data-processing (classical channel)

1. Bob communicates to Alice when it has detect a photon. Hence, the sifted key
is created using the all bits related to a detected photon.

2. The protocol continues with the same steps of BB84 after the creation of the
sifted key.

An example of the operation of the B92 protocol is shown in Table 1.4.

Alice random bits 0 1 0 0 0 0 1 1

Transmitted polarization |V 〉 |+〉 |V 〉 |V 〉 |V 〉 |V 〉 |+〉 |+〉
Bob random directions |H〉 |H〉 |−〉 |−〉 |H〉 |−〉 |H〉 |−〉
Bob click X X X X
Raw key 1 0 0 1
Sifted key 1 0 0 1

Table 1.4: B92 operation example

The protocol has an efficiency of 25%. As a matter of facts, 50% of the times
Bob measures the photon with the wrong polarization direction. Furthermore, even
with the right polarization direction, there is another 50% possibility not to detect the
photon. Thus, this protocol does not offer any efficiency advantages. However, the
implementation is clearly easier than the BB84.
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Chapter 2

QuAKE Experiment

QuAKE (Quantum Advanced Key Exchanger) is a system for quantum cryptography
communication that was developed and realized at Luxor Laboratory of Department
of Information Engineering in Padua, Italy. The experiment was intended for quantum
cryptography in free space using the B92 protocol. It took several years to realize it
with the cooperation of many people. Once its implementation was completed, the
possibility for a project upgrade became feasible in order to increase its applications
for quantum information exchange. Therefore the new QuAKE system sets these new
objectives:

� possibility to switch between B92 and BB84 protocols

� improving synchronization system and frames management

� more flexibility and more settable parameters

� adaptability to different optical setups

� improving hardware reliability

� new on-board software

� possibility to send more than 500 thousand qubits with one key

� TCP connection for computer communication

� new user interface software for full control of the system

Hence, the thesis work required the development and test of all these new features.
The project design focused on the hardware and software part, laying foundations for
future usage of different optical setups. For a complete description of the old QuAKE,
including optical setup explanation, please refer to [8].
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OPTICAL SETUPALICE INTERFACE BOB INTERFACE
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Figure 2.1: QuAKE schematic view.

2.1 Brief QuAKE description

The working principle of the experiment is that the transmitter Alice sends a sequence
of qubits based on a key file, and the receiver Bob captures this sequence. Then, a part
of the received sequence is compared with the original key for the QBER estimation1.

Since two different clock domains are not locked one to the other, the system must be
periodically resynchronized in order to avoid any transmission error. For this purpose
the transmission is divided in groups of n-qubits called frame. Every frame starts
with a synchronization signal, which is sent through a dedicated laser, and, changing
the number of qubits per frame, the quality of the system performances can vary.
Therefore, the maximum frame size needs to be chosen carefully with regard to the
equipment. Furthermore, Bob implementation must be flexible to photons receivers
delay because it can bring the synchronization to a fail condition. The whole system
is controlled from a computer which is responsible for the set of the parameters, like
the lasers frequency or the frame size, and also manages the start of the transmission
as well as the key storing. A schematic view of QuAKE is visible in Figure 2.1.

1Please note that, for the testing of the system, the original key file was stored both in Alice and
Bob. As a matter of facts, the final user is responsible for the functionality of the key verification
through the classical channel.
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Audio I/O GbE HDMI
VGAJTAG/

DebugPower

JTAG/Debug
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FMC (LPC)
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Figure 2.2: Main view of the ZedBoard [9].

2.2 ZedBoard device

For the realization of the transmitter/receiver interface, a programmable board with a
Field Programmable Gate Array (FPGA) chip2 was chosen in order to create all the
custom functions required for the operation of QuAKE.
For the new system, one of the boards offered by Luxor Laboratory was the ZedBoard
(Figure 2.2), designed and sold by Avnet company. This board offers more design
possibilities than others (like the Virtex family) and allowed an easier approach to the
project. One of the most important feature of the ZedBoard was the possibility to
run an on-board software for the management of the board it-self from a computer.

2FPGA is a widely spread technology and is used for many different applications. From a practical
point of view, it can be considered as a physical counterpart of VHDL code. For a complete explanation
about FPGA see [10].
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ZedBoard specifics are listed below [9] and illustrated in Figure 2.3:

� Xilinx® XC7Z020-1CLG484C Zynq-7000 AP SoC

– Primary configuration = QSPI Flash

– Auxiliary configuration options

* Cascaded JTAG

* SD Card

� Memory

– 512 MB DDR3 (128M x 32)

– 256 Mb QSPI Flash

� Interfaces

– USB-JTAG Programming using Digilent SMT1-equivalent circuit

* Accesses PL JTAG

* PS JTAG pins connected through PS Pmod

– 10/100/1G Ethernet

– USB OTG 2.0

– SD Card

– USB 2.0 FS USB-UART bridge

– Five Digilent Pmod� compatible headers (2x6) (1 PS, 4 PL)

– One LPC FMC

– One AMS Header

– Two Reset Buttons (1 PS, 1 PL)

– Seven Push Buttons (2 PS, 5 PL)

– Eight dip/slide switches (PL)

– Nine User LEDs (1 PS, 8 PL)

– DONE LED (PL)

� On-board Oscillators

– 33.333 MHz (PS)

– 100 MHz (PL)

� Display/Audio

– HDMI Output



2.2. ZEDBOARD DEVICE 21

– VGA (12-bit Color)

– 128x32 OLED Display

– Audio Line-in, Line-out, headphone, microphone

� Power

– On/Off Switch

– 12V @ 5A AC/DC regulator

Figure 2.3: ZedBoard Block Diagram [9].
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2.3 Software tools

Several software platforms were required for the system development and that is the
reason why it was important to study and learn to use each one of them. The software
are listed below:

� The hardware part of the project was designed with Vivado Design Suite from
Xilinx company: this software includes basic tools like VHDL-synthesizer, imple-
mentation tool and test-benching functions. Furthermore, it allows the creation
of custom ip-cores, i.e. a VHDL code implemented and saved as a reusable block in
other project. But the insertion of the ip-core into a project does not require the
classical VHDL code for hierarchy description and instantiation. Instead, a useful
graphic designer tool allows to put together many ip-cores and link them in a
graphical way. This could sound not so crucial but actually, in a project with
many modules, writing code for every hierarchy-instance can become really hard
and make the design more difficult. Moreover, Vivado includes Hardware Man-
ager debug tool, which is essential for testing the true behaviour of the hardware,
since it allows to analyze any real signal of the project during the operation of
the board.

� The on-board software was designed with another Xilinx tool: Vivado Software
Development Kit or simply SDK (Eclipse environment). The software allows a C

and C++ code programming along with libraries management and board memory
sections assignment. Besides, it is used for the FPGA programming, the boot-
image creation and flash memory programming. Therefore, it is almost essential
for a complete exploitation of the ZedBoard. C++ language was used instead of
C language because it is more flexible and easier to use.

� The user interface software was designed with the Qt software usign C++ language.



Chapter 3

Hardware Design

3.1 Basic System Overview

The whole hardware system is conceived in order to assure a perfect communication
between Alice and Bob. Before Alice and Bob can work together, they have to be
completely functioning on their own: Alice reads the data and turns on the lasers,
Bob reads the lasers and writes the data with no errors. Note that the hardware
design is mainly thought from a VHDL point of view and not from the cryptographic-
transmission one. The cryptographic transmission is the final usage to which the
hardware is intended. Therefore, the hardware is designed in order to do the job
properly, according to the specifications, and can also work with a classical-coaxial-
cable-channel instead of a quantum-channel. One of the great complexity is that two
independent systems are linked together with no correlation between their time domains
(i.e. their clocks). Hence, the first step is to create a efficient hardware with a modular
structure: a module for synchronization, one for lasers control and one for memory
management. This allows a clear view of the system and simplifies its design and its
testing.

3.2 Usable technical knowledge

The starting point of the project was to understand which technology was already
available and could be included in the system reducing the design effort. Therefore,
three main items were considered in order to build up the QuAKE hardware with
strong basis: the Zynq-7000 AP SoC Zedboard processor1, the AXI protocol and the
Finite State Machine technology.

1Please note that the therm processor is used broadly speaking and not to refer to classical CPU
micro-processor. To be more precise, there is a kind of misunderstanding in the usage of the Zynq

therm. Actually, it includes both microprocessor part and FPGA programmable part but is widely
used for indicating only the microprocessor. When not specified, the simple therm Zynq only stands
for the micro-processor side.

23
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3.2.1 Zynq All Programmable SoC

Zynq All Programmable SoC allows a simple way to link together the VHDL-hardware
with the C++/C-software. Its structure has two main parts: the Processing System
(PS) and the Programmable Logic (PL). In Figure 3.1 is visible a Vivado-view of the
Zynq. Actually the Zynq can be added to a Vivado design project as any Xilinx IP
Core and all its parameters and options can be set as needed. The PS mainly includes
two ARM Cortex-A9 CPU, memory interfaces, cache and minor memories, a clock
generation block and a connection to I/O peripherals. Besides, the PL mainly includes
AXI ports, an analog-to-digital converter, the clock output ports and, of course, the
FPGA chip. The Zynq also allows to lighten the custom-hardware design, since all
the board external communication devices can be initialized directly with the software
and do not require a hardware description. Hence, the Ethernet port as well as the
serial USB port, can be easily used when writing specific code lines in the software.
Furthermore, it allows the usage of the AXI protocol, which is widely used in the design
for parameters setting and data management.

Figure 3.1: Main view of the Zynq PS Vivado IP Core.
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3.2.2 AXI Protocol

The Advanced eXtensible Interface protocol is a part of ARM AMBA, which is a
standard for the connection, the management and the communication of blocks in
SoC designs. The main aim is to make easier the handling and the development of
multi-processor systems, of its controllers and peripherals. This protocol is very robust
and guarantees a safe and fast communication between different modules which are
linked together with a master-slave interface system [for a complete description of the
protocol refer to [11]]. From a practical point of view, AXI protocol is used by most of
the Xilinx IP Cores and links together the SDK software with the Vivado hardware:
every AXI-based module has its own driver, which can be initialized in the software
code calling specific functions. Therefore, this protocol is fundamental for the setting
of the hardware parameters, the internal management of the data and for the complete
control of the hardware behaviour. For example, an hardware parameter can be set
using an AXI GPIO, which is a module with two outputs with settable length (up to 32
bits) that can be hard-wired to any VHDL port. Then, the AXI GPIO is controlled with
an axi-slave-port, linked to an axi-master-port of the Zynq2, and its specific functions
allow to write a custom value on the chosen output, that is the communication of a
number to the hardware.

3.2.3 Finite State Machine

A finite state machine, also indicated as FSM, is an important element in the design of
sequential logical circuits. Basically, it models the behaviour of the circuit abstracting
from its state of operation. Therefore, the circuit works moving from a state to another
and performing a specific task depending on the state. This element is really helpful
in designing of complex systems, because it makes the hardware more aware of what it
is doing. Furthermore, it organizes the VHDL code in a more intuitive way making the
code more readable and easier to understand. For this reason, almost every custom
VHDL module is designed with a dedicated finite state machine.

Mealy and Moore state machine

There are two different types of state machine: Mealy state machine and Moore state
machine [12]. In the Mealy machine the output depends on the state and the input,
whereas the Moore one depends only on the state and not on the input. In general,
the Mealy state machine requires less state (then less hardware) and can work faster
than the Moore one. But its outputs can change asynchronously, undermining the pre-
dictability of working, and its design could be complicated. Since the system requires
a great accuracy in the execution of its functions and since there are no restrictions

2Actually, an AXI Interconnect module is used to put together many axi-slave-ports and manage
them with just one axi-master-port of the Zynq. Therefore, the AXI GPIO slave-port is not directly
connected to the Zynq.
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on the hardware usage and on the reactivity of the system, only Moore state machines
were used.

Coding styles

An FSM can be implemented in VHDL code using different styles [13]. The basic two-
processes-single-decoder style creates two state-type signals (the state type defines the
list of all the possible states): one for the present state and one for the next state.
Hence, the first synchronous process simply assigns the next state to the present state,
while the second process describes the behaviour of every state (that is the decoder)
and assigns the future state to the next state signal. A variant of this style is the
two-processes-two-decoders style, which uses two processes: the first one decodes the
state transitions and the second one decodes the state to generate the output. In this
variant there is only one state-type signal, since the next state signal is not required.
The third style is the one-process-one-decoder characterized by one process only, in
which both state transitions and outputs assignment are decoded. This style is maybe
the most difficult to design because requires to think one clock cycle ahead (the outputs
are registered) but deletes any glitch-error possibilities. This last style was chosen for
the hardware design.

State encoding

Another important feature of an FSM is how the states are encoded. As a matter of
facts, the names assigned to states are fictional and the synthesizer will not waste hard-
ware using lots of bits for every name. Therefore, an encoding operation is required
in order to assign a more affordable bits sequence to every name. There are different
encoding styles like gray, johnson, one-hot and others. Usually this operation is com-
pletely automatic and the synthesizer will choose the best one depending on the state
machine. However, Vivado synthesizer allows the user to choose between the different
encoding styles [for a complete description of all the encoding styles offered by Vivado,
refer to [14]]. Anyway, since there are many different state machines on the project3,
the encoding setting was left as automatic. Consulting the after-synthesis log file, it
was checked that the chosen encoding style was one-hot for the custom block state
machines4, whereas the chosen one for other state machines was different depending
on the module.

3Please note that even the AXI protocol uses state machines.
4Generally the one-hot encoding style is the most recommended for FPGA design [15].
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3.3 Alice Hardware Implementation

The Alice hardware was the first thing to be designed. Its task is to read the mem-
ory, activate the qubit lasers and send a synchronization signal to Bob. The Laser

Controller Module, the Zeus Synchronization Module and the Mind Well Memory

Manager were designed in order to do the job. These three modules are the true core of
Alice but they can not work without other minor blocks nor the Zynq. The following
part describes all the custom blocks, their role in the project and their connection
and relation with the other modules. A basic schematic of the main custom blocks is
visible in Figure 3.2 while the completed Vivado design view is visible in Figure 3.3
and project post-implementation results are visible in Figure 3.4.

3.3.1 Laser Controller Module

As its name says, the Laser Controller Module is the block responsible for the lasers
lighting. Basically, it reads bits from the Mind Well and turns on the equivalent laser.
Despite this simple task, in order to make everything works, including the option to
switch between BB84 and B92 protocol5, an elaborate five states FSM was designed
(Figure 3.5).
As usual in state-machine design, the initial state is an Idle state where the FSM moves
to the next state and asserts sync please only if start key is asserted. This is the
beginning of the key transmission. The next state is the Sync state, where the FSM

waits for the sync start from Zeus and then moves to one of the two cryptography-
protocol state, depending on the BB-selection input. In the BB-84 state, when the
two input bits are read, one of the four lasers turns on and the data red output asserts
in order to communicate the happened reading to the Mind-Well6. But if empty input
is asserted the FSM returns to the Idle state because the communication has ended. At
this point, the FSM moves to the Slot Processing state, where a simple clock-cycles-
counter is implemented. After duty cycle clock-cycles, the activated laser is turned
off7 and after laser frequency clock-cycles the frame-counter increments and the FSM

returns to the protocol state, asserting sync please output. This is true as long as the
last qubit of the last frame has been processed. When this happens, the FSM returns to
the Sync state and starts all over with a new frame. At the end of the key transmission,
the FSM returns to the Idle state thanks to empty signal assertion.

5An easiest way of design would be to delete the protocol-switch and just waste one of the two bits
coming from the Mind Well (B-92 just reads the first bit). But, in order to have a great-performance
system, this choice was discarded.

6The B-92 state is pretty similar but initially only the first bit is read and data red is not asserted.
When the FSM returns on B-92 for an even-time, the second bit is read and data red is asserted.
Basically, this system halves the data red frequency.

7To allow the outstanding 100% duty-cycle condition, all the lasers are shut down even in the
Protocol and Sync state, since in the Slot Processing state the shut down declaration is unreachable.
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2 bits

32 bits

CLK

CLK

CLK

Figure 3.2: A schematic view of some of the custom blocks of Alice. For a clearer
view the System Poiting and the Output Laser Multiplexer are left out. Legend:
port with signals between modules are in yellow (input port) and green (output port);
ports with signals coming from or linked to the Zynq are in red; ports linked (input or
output) to the outside world are in blue.
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Figure 3.3: Vivado view of the Alice Block Design.
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(a) Power consumption (b) Utilization graph

(c) Timing

Figure 3.4: Alice Vivado post-implementation results which include power consumption
(a), utilization graph (b) and timing verification (c).
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Figure 3.5: Laser Controller Module FSM. For a clearer view, all the parameters signals
were removed from the figure.
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3.3.2 Zeus Synchronization Module

Keeping Alice and Bob in synchronization is essential in order to prevent any qubit
reading or storage error due to the clock drift [see Appendix A for more details]. For
this reason, a synchronization management module was designed and named Zeus
Synchronization Module8. It provides the timing of both Alice and Bob through
the synchronization laser. The key transmission is divided in frame and, at the begin of
every frame, Alice send a synchronization signal in order to timing the qubit acquisition
of the incoming frame. The designed FSM of Zeus is visible in Figure 3.6.

FSM state changing

Physical signal

Sync_start

Sync sent

Start pulse sent

IDLE
Waiting for 
start key or
sync please

Counting

CANNON

Sending sync

Sent start pulse

Start_key

Sync_please

SYNC_
SEND

Counting

Laser_sync

Laser_sync

Figure 3.6: Zeus Synchronization Module FSM. For a clearer view, all the parameters
signals were removed from the figure.

Zeus receives the start key and the sync please signals, as inputs, and its inter-
nal FSM remains in the Idle state until one of these two signals asserts9. The next
state depends on the start type input: in the start-with-laser mode, the FSM moves to
the Cannon state when start key asserts and launches three impulses10 with the syn-
chronization laser. Then it returns to the Idle state waiting for a sync please signal.
When a sync start is required, the FSM moves to the Sync Send state and asserts11

8According to ancient Greek mythology, Zeus defeated Cronus, ancient Greek term for time.
9Please note that the FSM will ignore the sync please signal if no start key signal has arrived.

10The impulse frequency and the duty-cycle are both settable in C++ application.
11The lasting time of the syncs-signals is settable in C++ application.
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the laser sync output, after user-chosen clock-cycle. It also asserts sync start but only
after a hardware-fixed-time-delay of 500 ns. This delay simplifies the handling of the
single photon detectors behaviour on Bob-side, since they can have different speeds
and reliability depending on the models. Please note that, from here on, single photon
detector will be abbreviate with SPD.

The start-with-external-channel eliminates the need for the laser sync for the start key
signal, since it is managed through a wifi or Ethernet connection. The operating prin-
ciple is quite the same as described above, except for the start key signal. A start
signal is sent to Bob through Wi-Fi or Ethernet connection and when Bob receives
it, it sends the start back to Alice, which then asserts the start key signal. For more
details about Bob synchronization management see 3.4.3.

A future development will offer a synchronization through a GPS signal in order to
improve the timing performance, since the synchronization laser may not so reliable,
especially on long distances. Furthermore, with a good set up of the Zedboards clock
multiplier12, a generated-from-GPS clock could be used and the clocks-drift issue could
be completely solved.

3.3.3 Mind Well Memory Manager

The task of the Mind Well Memory Manager is to read the bits, which are used to
code the lasers/qubits, from the Block Memory Generator (or BRAM). The FSM (Figure
3.7) moves from the Idle to the Data Reading state when the start key signal asserts.
Therefore, it reads the first two bits stored in the first address of the BRAM and moves to
the next two bits only when data red asserts [for more details about data red behaviour
see 3.3.1]. It always handles the address and when 32 bits are read, it increases the
addr output by four13. According to the bram depth and data width hardware param-
eters and to the data depth software parameter, the Mind Well keeps reading the bits
changing the address properly, when needed, and returns to the Idle state when the
inner counter is equal to data depth; besides, the empty output signal asserts. The
bram depth is also used to send an interrupt signal to the Zynq every time the Mind

Well reaches the half and the end of the BRAM memory: the Zynq then launches an
interrupt routine which activates the XAxiCdma SimpleTransfer C function in order to
move the next part of cryptographic key from the DDR-RAM memory to the already-read
half of the BRAM Memory. A schematic view of the blocks memory connections is visible
in Figure 3.8.
A specific control process was designed in order to stop the whole transmission in case
of reading/writing superposition: the Mind Well checks if the write enable signal of
the Axi Bram Controller is asserted at the half and at the end of the BRAM. If so,

12The Zedboard allows the usage of a Phase-Locked-Loop or a Digital Clock Multiplier. Both IP
Cores, with different performances and features, can multiply an input clock signal to create a faster
one.

13Note that in one address, apart from the data-width, one byte is always stored.
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the Axi Bram Controller is still writing to the half of the BRAM that is going to be
read by the Mind Well. This means that the Axi Bram Controller writing process
is too slow or has accumulated too much delay. At this point, the Mind Well stops,
returning to the Idle state and asserting the tangled alarm signal. The Mind Well can
restart only after a system-reset that will deassert tangled alarm (i.e. any start key is
ignored if tangled alarm is asserted).

DATA_
READING

Waiting for 
start key

FSM state changing

Physical signal

Empty

Interrupt_out

Data_red

Data_in

Start key received

Start_key

IDLE

Key ended

Waiting for data 
red

Data_out

2 bits

AXI write 

enable

32 bits

Addr

32 bits Tangled_alarm

Bram_enable

Figure 3.7: Mind Well Memory Manager FSM. For a clearer view, all the parameters
signals were removed from the figure.

3.3.4 Other Modules

Start Key Watchman

The key’s transmission beginning occurs when the start key signal asserts. This signal
is activated from C++ software through an AXI GPIO module but, since it is a software-
timing-dependent signal, the assertion time could be too long and the hardware could
interpret multiple start signals when just one start key assertion has occurred.
Therefore, the Start Key Watchman simply translates a long software-generated
start signal into a short14 and hardware-suitable signal.

14A couple of clock-cycles.



34 CHAPTER 3. HARDWARE DESIGN
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Figure 3.8: Memory scheme. This schematic recaps the linking of the modules respon-
sible for data management. Please note that this configuration is the same for both
Alice and Bob.
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Reset Handler Module

The whole system has two asynchronous reset signals and the Reset Handler Mod-
ule basically makes a boolean OR operation between the software-axi-gpio reset and
the hardware push button. Asynchronous reset is a classic vhdl-code-style solution but
things are not so simple as one would expect. There is a possibility that the designed
hardware fails to work properly, since, aside from an asynchronous assertion, a com-
pletely asynchronous reset also entails an asynchronous deassertion which could under-
mine flip-flops reliability [see Appendix C]. Thus, the Reset Handler Module provides
an asynchronous-assertion-synchronous-deassertion reset output signal. Furthermore,
this feature avoids the long-time-signal-software-assertion-issue as in the Start Key

Watchman and also implements a debounce solution for the push button.

System Pointing

For the setup of the entire optical system, the laser beams have to be perfectly centered
to their relative SPD. In order to do this, the lasers have to be turned on and must work
continuously with the frequency and duty cycle set by the user15. Using the ZedBoard
user switch buttons16, this block activates or deactivates the corresponding laser. The
enable user switch must be turned on, otherwise the block will keep everything turned
off.

Output Laser Multiplexer

The outputs of the lasers have to be linked either to the Laser Controller Module

outputs or to System Pointing outputs. The Output Laser Multiplexer works as
a simple multiplexer, connecting the outputs to the Laser Controller Module out-
puts, when the enable user switch button17 is turned off, and to the System Pointing

outputs, when enable is turned on.

3.3.5 Xilinx-Vivado IP Cores

As already stated, the project uses some Xilinx IP Cores in addition to the custom-
modules. A complete list with description is visible in Table 3.1. Please note that the
IP Cores used on Bob are almost the same. Thus, the table is valid for Bob too.

15Note that even the synchronization laser beam must be calibrated but since this laser does not
send qubits, there are no meaningful duty cycle or frequency parameters and the related output will
simply be turned on or off.

16One switch button for each lasers plus the enable one. These switch buttons are the ones called
Slide Switches in Figure 2.2

17It is the same switch button used in the System Poiting.
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IP Core Name Specifics

AXI GPIOs

Laser param
CH 1: qubit laser duty-cycle
CH 2: qubit laser frequency

Main pulse param
CH 1: start laser duty-cycle
CH 2: start laser frequency

Sync param
CH 1: count before laser
CH 2: sync width

Data param
CH 1: frame size
CH 2: encoded laser key length

Mode param
CH 1: protocol selection
CH 2: start type

Wheel param
CH 1: start key
CH 2: reset

Interrupt (and sync) CH 1: interrupt time
param CH 2: delay before sync (Bob)

Interrupt input
CH 1: interrupt out
CH 2: -
Optional interrupt output enable
and hard-wired to the Zynq

interrupt input

AXI CDMA Axi Cdma -

AXI BRAM Controller Axi Bram Ctrl -

Block Memory Generator Bram
True dual port BRAM with
8192 element of 32 bits

Zynq 7 Processing System Processing System 7
Zedboard preset plus extra
axi-master port, hp axi-slave port
and interrupt input

Table 3.1: Xilinx IP Cores used in the design. Please note that this table lists either
the cores used in Alice either the ones used in Bob. Minor differences are specified. The
AXI GPIOs section describes the signals which the channels are linked to. Please note
that the channels bit-length is set to 32 bits except for protocol selection, start type,
start key, reset and interrupt out signals which are only one bit long. Furthermore the
interrupt out channel is the only one used as input, all the others are outputs.
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3.4 Bob Hardware Implementation

The main task of Bob is to be perfectly synchronized with Alice in order to receive all
the qubits sent and to store all the data. The Laser Pinball Communication Sorter,
Hermes Synchronization Module and Bit Ben Word Composer are the equivalent of
Alice’s Laser Controller, Zeus and Mind Well and they work in a similar way. Bob
uses the Zynq and other minor modules in a quite similar way as Alice does. Since there
are very minor differences in the usage of the Xilinx IP Cores, there is no description
of them in this section: please refer to Table 3.1 for details. Besides, the following
part describes all the custom blocks, their role in the project and their connection and
relation with the other modules. A basic schematic of the main custom blocks is visible
in Figure 3.9, while the completed Vivado design view is visible in Figure 3.4; project
post-implementation results are visible in Figure 3.11.

3.4.1 Reflex Photon Translator

This module is thought to translate the incoming SPDs signals (i.e. the received lasers)
from the Alice time-domain (asynchronous) to the Bob time-domain (synchronous).
The main purpose is to make these signals visible to Bob18. Through a vhdl-process,
sensitive to both the clock and the SPDs signals, the outputs assert simultaneously with
the SPDs signals, but they deassert on the second clock rising-edge, after the SPDs
assertion. Hence, the output signals assertion-time is at least one clock-period long,
making the output signals timing-suitable for the Laser Pinball reading process. In
order to reduce the background noise due to the SPD dark counts, the reflex enable
input activates or deactivates the module sensitivity to the SPDs inputs. Only when
the reflex enable is asserted, an input reading and its output assertion can occur [for
more details about reflex enable behaviour see 3.4.2].

3.4.2 Laser Pinball Communication Sorter

As the name suggests, the Laser Pinball Communication Sorter plays an impor-
tant role in the whole Bob hardware: it reads the qubits and sends them to the Bit

Ben, according to a perfect timing, in order to manage the slots and the frames19 which
can be set through the duty cycle and laser frequency C++ settable parameters.

The module starts when the start key signal asserts and its FSM (Figure 3.12) moves
from the Idle state to the Sync state, waiting for the sync start to assert. Then, it
moves to the Slot Reading state, asserting the reflex enable output. As described in
the reflex module, the assertion of reflex enable allows the reading of the qubits, but
its activation-time is designed to minimize the noise and not to maximize the qubits

18In the worst case scenario, due to different factors, the SPD assertion-period could be shorter
than Bob clock-period.

19Actually this is the only module aware of the “slot” and the “frame” concept.
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Figure 3.9: Schematic view of some of the custom blocks of Bob. Legend: port with
signals between modules are in yellow (input port) and green (output port); ports with
signals coming from or linked to the Zynq are in red; ports linked (input or output) to
the outside world are in blue
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Figure 3.10: A Vivado view of the Bob Block Design
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Figure 3.11: Bob Vivado post-implementation results which include power consumption
(a), utilization graph (b) and timing verification (c).

reception. That is the reason why its assertion-period is always set to the number of
clock-cycles equal to the laser’s duty-cycle minus one clock-cycle. This kind of system
allows the reading of the qubits only for the clock-cycles in which the likelihood of
receiving a qubit covers the entire clock-period. For a clear understanding see Figure
3.13. Furthermore, there is no need for special counting system for the extreme laser
condition of 100% duty-cycle, because the reading-time would be equal to a duty-
cycle of 90%. This implies that, even in the worst case scenario, there is at least one
free-clock-cycle (that is the slot-last-one) which is used to update the data out output
without any data loss or superposition with the next incoming qubit/slot. Besides, it
is also used to assert the new data output which is sent to the Bit Ben in order to
timing the data transfer between the modules [see 3.4.4 for more details]. Otherwise,
the data out managing and timing would have been much more complex.

The data out is designed as a four-bits (one for each laser) input-output port in
order to store every qubits reception within a single slot. If any SPD clicks inside
the reflex enable assertion time, the corresponding data-out-bit will assert and will
maintain its value20 till the end of the slot. This means that if, within a slot, more
than one SPD clicks, a multiple “1” vector will be stored in data out. Thanks to that,
a precise SPDs click-history is stored in the memory. Note that the number of bits

20This assignment is done as follow: DATA OUT<=DATA OUT or LSR H or LSR V or LSR p45 or

LSR m45.
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required for Bob is twice as much as that of Alice, so for the BB84 protocol Bob uses
four bits, while with the B92 protocol it uses just two bits. It is also important to
stress that the Laser Pinball is not aware of the type of protocol used, because this
distinction is managed by the Bit Ben. Hence, even with the B92 protocol, it reads
from all the four inputs but the Bit Ben will ignored two output-bits which, obviously,
cannot be asserted since the corresponding SPDs will be disconnected.

As in Alice’s side, the slots and frames are processed: at the end of the frame the
FSM returns to the Sync state and waits for the next sync start, unless the full signal
is asserted. In that case, the transmission has ended and the FSM returns to the Idle
state.

Frame ended
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Data_outIDLE
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for sync
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Figure 3.12: Laser Pinball Communication Sorter FSM. For a clearer view, all the
parameters signals were removed from the figure.

If the synchronization laser fails to arrive to Bob (which is not a remote possibility),
the Laser Pinball will not store any qubit of the entire frame, because it will be still
waiting for the sync start. This wrong storage corrupts the whole transmission, since
the data are shifted by the number of missed bits. Consequently, the received key
cannot be compared to the original one and there is no way to recover it. To avoid
this circumstance, an emergency system was designed. In the Sync state, through
an internal counter, it is checked that the sync start is asserted by the time the de-
lay before sync-time is reached. If not, the sync start assertion can occur up to an
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extra time of 50 ns. After this extra time, if no sync start assertion has occurred, the
FSM moves to the Missed Sync activating the emergency system. In this state all the
data-out-bits are forced to one for the entire frame period21 and then the FSM returns
to the Sync state. This means that for every slot of the frame a “1111” vector is stored
. This information will be interpreted as a wrong qubits transmission but will not
corrupt the entire key.

duty cycle

qubit readqubit readqubit lost qubit lost

SLOT_READINGSYNC

FIRST SLOT

Laser Pinball 
FSM state

Reflex Enable

Qubits from 
Alice

Laser Sync

Bob Clock

qubit lost

SECOND SLOT

first qubit anywhere within this slot second qubit anywhere...

1 2 3 4 5I II

Alice Δelta 

Bob Δelta 

duty cycle - 1

duty cycle

laser frequency

Figure 3.13: An example time plot of the qubits reading system supposing a laser
period of four clock cycle with a three clock cycles duty cycle. Due to the clocks
unknown skew, Alice asserts the synchronization laser between I and II clock rising
edge of Bob. Hence, Bob can read it on II rising edge. After the assertion of the
synchronization laser, Alice waits 500 ns plus a clock cycle (the one needed to move
from Sync state to BB-84/B-92 state) before asserting one of the qubit laser. On the
other hand, Bob waits a custom delay (which would be equal to 500 ns in an ideal
condition) plus a clock cycle (the one needed to move from Sync state to Slot reading
state) before asserting the reflex enable output. Therefore, Alice asserts the qubit laser
between 1 and 2 clock rising edge (with deassertion between 4 and 5) and, supposing a
tuned Bob delay, Bob asserts the reflex enable on clock rising edge 2. Please note that
the qubit could be emitted within the laser assertion period, but the right moment is
not deterministic. Thus, this system deletes one clock cycles of the qubit laser and the
reflex enable is not asserted when the laser qubit could not be asserted.

21Actually is not the whole frame-period but is the frame-period minus 50 ns in order to recover
the extra time delay. If two or more consecutive synchronization lasers are missed, there is the 50
ns-correction only for the first one, since the next ones will be correctly timed.
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3.4.3 Hermes Synchronization Module

The role of Hermes Synchronization Module is quite similar to the that of Alice
Zeus Synchronization Module but with more responsibility within the design, since
this module needs to understand the timing specifications sent from Alice through the
synchronization laser. Then, it needs to use this information to perfectly time the
qubits receiving and storage. The first step is to time the start of the transmission,
by decoding the start signal that is sent with the synchronization laser (three impulses
with settable duty cycle and frequency) or through the classic channel (Wi-Fi or Eth-
ernet).
In the start-with-laser mode, the FSM (Figure 3.14) remains in the Idle state until
a start signal occurs and then moves to the Decoding Start state, in order to as-
sert the start key output22, which will be used by all the other modules. Therefore,
the FSM moves to the Sync Send state, which operates similar to its corresponding
in the Zeus Synchronization Module, and sends a sync start signal to the Laser

Pinball, so that it can time the qubits acquisition. The sync start is sent after a user-
chosen number of clock-cycles, which is set through the delay before sync parameter23.
This system is used to manage the SPD activation delay, which could be different
for the qubits SPDs and the synchronization-laser photon detector24. In the start-
with-external-channel the FSM ignores the synchronization laser until the external start
signal is asserted25. When this signal asserts, the FSM moves to the Sync Send state
and then operates as described above; meanwhile the Start key Manager generates the
main start key signal. In both cases, when the communication is over, the FSM returns
to the Idle state, thanks to the full signal coming from the Bit Ben.

3.4.4 Bit Ben Word Composer

The Bit Ben Word Composer26 is responsible for the management and storage of
the incoming bits from the Laser Pinball. The working principle is quite similar to
the Mind Well with a two-state FSM (Figure 3.15). As usual, when start key asserts,
the FSM moves from the Idle state to the Word Composing state where the input bits27

are neatly stored in the 32-bit output port, which is connected to the data input of

22A Start-Key-Manager sub-module is instantiated to manage the creation of the start-key signal
like the Start Key Watchman does [see 3.3.4].

23Settable in C++ application.
24Note that on Alice side this delay is hardware-set to 500 ns and in an ideal situation the de-

lay before sync would be set to this value.
25This signal comes from an AXI GPIO an it is activated when a start signal arrives through

Ethernet/Wi-Fi channel.
26The name plays on word Big Ben, which reminds the idea of a clock, i.e. something that accu-

mulates seconds and increases the minutes needle. This behaviour is quite similar for this module: it
accumulates the bits until the first 32-bit-vector is ready and then sends it to the memory.

27The module can discerns between BB84 and B92 reading all the four bits in the first case and
only the first and third bit in the second case.
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Figure 3.14: Hermes Synchronization Module FSM. For a clearer view, all the param-
eters signals were removed from the figure.

the BRAM memory. When the vector is completed, the bram enable output is asserted
for one clock-cycle and the data is written to the BRAM. Note that the BRAM memory
has a write enable input port but is not used for the writing because it is linked to the
Bit Ben write enable output-port, which is always asserted. Since there is no need for
reading, the bram enable port can be used instead of the write enable. This system
improves the BRAM performance: the bram enable works faster than the write enable
and there is less power consumption (the BRAM is off for most of the time). The data are
stored according to the address specified by the addr output port, which increases by
four every time a 32-bit-vector is completed. According to the bram data depth input
parameter, when the half and the end of the BRAM is reached, the interrupt out signal
is asserted. Like in the Mind Well, this interrupt is used to launch a software routine
in order to move the data stored in the free-from-writing half of the BRAM to the DDR

memory. A schematic view of the blocks memory connections is visible in Figure 3.8.
The module also counts the number of data and when the transmission has ended, the
full output is asserted and the FSM returns to the Idle state.
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Figure 3.15: Bit Ben Word Composer FSM. For a clearer view, all the parameters
signals were removed from the figure.

3.4.5 Other Modules

Like in the transmission side, Bob too needs a Reset Handler Module [see 3.3.4] but
it does not need the Start Key Watchman, since its function is done by the Hermes

Synchronization Module as described above.
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Chapter 4

Softwares Design

The second part of the design requires the implementation of two different software
programs. The first one is responsible for the data and parameters management as
well as for the connection of the system with the hardware. The second software is the
graphical user interface, which allows the full control of the apparatus.

4.1 SDK software

The on-board software was written in order to send all the parameters and the com-
mands to the hardware. Furthermore, it manages the storage of the encoded key moving
it from RAM to BRAM1 or from BRAM to RAM, depending on the board role. In order to
use the TCP connection, the lwip library is included in the project. Furthermore, a
global.h header file contains some useful constant definitions and the description of
the structure parameters, which absorbs all the GPIO parameters in order to make
them more accessible throughout the code.
The software is shared by the following C++ files and functions:

� main.cc file contains the main function which starts all the software. It sets
all the needed variables, the system (GPIOs, CDMA and interrupts) and the TCP
connection calling many different functions spread in all the C++ software files.

initEthernet() is the function that initializes the Ethernet parameters such as
the board ip address, subnet mask, gateway and others. It also initializes
the lwip calling the init lwip function.

decodeCommand(std::string payload) is the function responsible for decod-
ing the incoming string from the network. Depending on the identifier, it
calls different functions in order to carry out the operation required by the
user. See 4.1.1 for more details about the TCP string coding.

1According to the BRAM-Buffer system implemented by the Mind Well and the Bit Ben.
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bramBufferingIsr(void *InstancePtr) is one of the most important func-
tions of the code. It is called every time an interrupt occurs on the related
GPIO2. Therefore, it manages the BRAM-RAM memory moving. On Alice-
side, when it is called, it fills half of the BRAM with a new portion of key.
Clearly the operation is reversed on Bob and the function moves half por-
tion of the BRAM to the RAM memory. A flag signal allows to determine
which half of the BRAM must be filled. The moving operation is done with
an XAxiCdma SimpleTransfer [for more details about it, please see D].

resetHardware() function uses XGpio DiscreteWrite to assert and deassert
the input of the Reset Handler Module, which will launch the hardware
reset signal.

initKeyToBram() initializes the first portion of the key in the BRAM. Calling
the XAxiCdma SimpleTransfer, it moves the first BRAM SIZE*32 bits of the
key in the BRAM, filling it completely. The BRAM half-empty-fill operation
will be handled by the interrupt routine bramBufferingIsr. Note that
this function exists only on Alice board.

std::vector <std::string>tokenize(std::string s) separates all the strings of
parameters and returns a collection of strings, each one containing a param-
eter. In other words, it searches the comma char and, when it founds it,
it extracts the parameter as a sub-string, assigning it to a position of the
strings vector that has to be returned.

parameters decodeStringParam(std::string s) is the function that extracts
all the real parameter values from the TCP string. Basically, it calls the
tokenize() function which returns all the parameters as single strings and
then it converts every string3 to an integer number, assigning it to the correct
element of the parameters structure.

setupQuakeParams(parameters parameters) sends correct parameters val-
ues through the whole hardware, calling the related XGpio DiscreteWrite4.
Note that Alice and Bob have quite the same parameters with the exception
of the delay before sync, which is present in Bob only. In all, there are eleven
parameters for Alice and twelve for Bob.

startKeyTransmission() function uses XGpio DiscreteWrite to assert and
deassert the input of the Start Key Watchman, which will launch the hard-
ware start key signal. This function exists in the Alice SDK software only. A

2Basically, the GPIO produces an interrupt signal every time its input (the interrupt out signal
coming from the Mind Well or from the Bit Ben) changes its value.

3Note that this is not true for the protocol and start-type parameters. In these cases, an if
statement assigns 0 or 1 to the relative parameters, depending on the received strings.

4This function write a value on one of the two channels of the GPIO. Note that every GPIO channel
is hard-wired to a hardware parameter. Hence, selecting the right channel, this function will physical
set the parameter value.



4.1. SDK SOFTWARE 49

similar version of this function is still present in Bob SDK software in order
to give the start to Bob hardware, in case of the start-with-ethernet option.

acquireKey(std::string payload) is the function responsible for the acquisi-
tion of the key sent from computer. Thanks to a for loop, the function
gets four elements at time of the payload containing all the sent key. It
passes this four-element substring to the stringToU32 function and assigns
the returning u32 element to the i-th element of the key variable. Note that
this function is present only in Alice.

u32 stringToU32(std::string s) converts a four-element string in one u32 el-
ement. In other words, it extracts four char from the string and builds up
a u32 element assigning every char to eight of its bits.

sendKeyToPC(std::string payload) is called from decodeCommand when Bob
receives a QETK command. It simply calls sendData function passing the key
pointer and length as parameters and print some notices.

allocateKey(std::string payload) is a function present only in Bob and it
creates the required memory in order to store the incoming key from Alice.

� platform_zynq.cc

platform setup gpio() initializes all the GPIOs.

platform setup cdma() initializes the AXI CDMA.

platform setup interrupts(void) sets up all the required parameters in order
to use interrupts.

platform enable interrupts() enables the interrupt option of the GPIO.

init platform() simply calls the four functions platform init name5 which set
the system timer required for the usage of interrupts, the GPIOs, the CDMA

and the interrupt service. The function is called from the main function
during the setup of the system.

cleanup platform() is the last function called before the end of the program.
It disables the data and the instruction caches.

� ethernet.cc

std::string transfer data() is the function responsible for the analysis of the
TCP command sent from the computer. Basically, it searches for the END;

delimiter (see 4.1.1) in the commandBuffer string (see the function below),
returns all the data that precede the delimiter and deletes all the com-
mand from the commandBuffer. The function is called in the main function.
Hence, is the function that “moves” the TCP data from the ethernet.cc

file to the main.cc file.

5Defined in turn in the same file.
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sendData(u32 *key, int key length) is used in Bob in order to prepare the
key sending from the board to the computer. The function is called in
the main function passing the key pointer and length as parameters. The
function sends the QEKB identifier and calls the sendDataChunck, which will
actually send the key.

sendDataChunck() is called by the sent callback until the whole key has
been sent. It takes a portion of the key equal to the output buffer size6 and
sends it to the computer using the tcp sent function.

err t recvCallback(..,..,..,..) is a callback function that is called every time
a TCP packet is received. The function gets the incoming packet and
appends it to the commandBuffer (static string variable). Note that the
commandBuffer is filled by this function and emptied by the transfer data

function.

err t sent callback(..,..,..) is a callback function present only in Bob software
and is specular of the recvCallback function. It is called every time the
computer is ready to receive a new TCP packet. The function calls the
sendDataChunck function if there are data to send. Otherwise it sends the
delimiter in order to close the TCP command. Note that the data transfer
from the board to the computer is implemented only in Bob and is used
only to extract the key from the board and analyze it on the computer. On
future developments the bidirectional communication will be enhanced and
implemented on Alice as well.

err t acceptCallback(..,..,..) is called from the TCP in order to establish a
new connection.

startTcpServer() is called by the main function and setup all the element for
a new connection, like the TCP structure and port connection.

4.1.1 TCP instructions coding

The board is connected to the computer through an Ethernet cable and a solid TCP
connection is implemented using the SDK lwip library. The great advantage of a TCP
connection is that it sends the data using packets, which prevents the loss of data in
the communication.
All the instructions are coded according to a custom-made protocol. Every instruction
is sent as follow:

QE XX︸ ︷︷ ︸
Instruction identifier

+ D A T A︸ ︷︷ ︸
Possible instruction data

+ END;︸︷︷︸
Instruction delimiter

6Please note that the key length could not be multiple of the buffer size. Therefore the function
handles this possible issue checking whether the remaining key size is greater or smaller than the
buffer size.
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Set Parameters command is coded with QESP identifier followed by all the parame-
ters. Every parameter is separated from the others by a comma char. Note that
the parameters are sent as a sequence of chars and not as integer type numbers.
The SDK software does the conversion char⇒ number once the whole command
has been received.

Key Transfer includes many different commands. On Alice-side, a key transfer is
the command responsible for the transmission of the key from the computer to
the board. The key is sent divided in many blocks7 and the first one is coded
with a QEKB identifier followed by the first portion of the key8; all the following
blocks are coded with a QEKK identifier followed by a portion of the key. On
Bob-side things are a little bit different since the key transfer must be done on
the reverse way. When the user requires the key to be transfered from the board
to the computer, a command with only the QEKT identifier is sent to the board.
Therefore, Bob interprets the command and starts to transfer the key from its
RAM, labeling every TCP packets with a QEKK identifier (QEKB for the first packet)
and the END; delimiter. Between them a part of the key relies.

Start Key command is coded with a QEST identifier with no data section.

Close Board Software command is coded with a EXIT identifier with no data sec-
tion.

4.2 uQuake user interface

Once the entire system was designed and set up, a user interface was required in order
to manage the board operation. For this purpose, the uQuake software was created,
using the Qt Creator software, which allows to design and realize a new software from
scratch including the Graphical User Interface (uQuake GUI is visible in figure 4.2).

Alice and Bob interface

The software has two different working options: thanks to a hidden menu on the top
right, the user can switch between Alice and Bob software revealing and hiding specific
GUI sections. When Alice is selected, the Synchronization Needle menu is hidden; on
the contrary, when Bob is selected the Start Key Transmission menu is hidden. On
both mode, a TCP connection can be established with the board using the Connect to
buttons and according to the IP and port custom parameters.

7See 4.2 for more details about block division.
8Please note that the key is transmitted with a one-bit⇒one-qubit coding. Hence, a char sent

through the network describes four or eight qubits, depending on the quantum cryptography protocol.
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Set parameters

Once the connection to the board is established, pressing the Set parameters push-
button will send all the parameters to the board using the default values. In order
to make a user-friendly software, the parameters have an intuitive form and unit of
measure but these can be different from the effective value sent to the board. For
example, the qubit laser frequency is expressed in MHz, but the board does not have
the knowledge of MHz and it uses the number of clock cycles for computing the assert-
deassert time of the qubit laser. Therefore, a 1 MHz frequency will be elaborated by
the software which will sent the number 100 to the board, i.e. the board will consider
the qubit laser frequency as 100 clock cycles. Obviously, this example implies that the
board uses a 100 MHz clock. If the board uses a different clock frequency, this must be
set up in the dedicated parameter menu on the bottom left of the uQuake GUI9. Indeed
the qubit laser frequency value will be calculated upon the clock frequency and with a
200 MHz clock frequency, the actual value will be doubled. The user can change each
value simply by clicking on the dedicated spin box button. At any parameter change,
the software makes a new dispatch of all the parameters to the board. Furthermore,
moving the mouse over a parameter will display a specific help text with a complete
parameter description.

Data verification

The key transfer between board and computer can be activated with the Key Transfer
push-button. As a matter of facts, this push-button sends the key from the computer
to the board or requires the board to send the key to the computer.
In Alice-mode, the original qubits file is read from a text file containing zeros and ones
chars which represent the qubits to be sent. Hence, the software builds up a bytes
array, putting together eight chars for every byte. The final bytes array is divided
in blocks of 10000 bytes10 [please refer to 4.1.1 for details about block structure]; this
prevents to overload the board CPU, since it can manage small portion of key at a time
instead of handle the whole key at once. If the BB-84 is selected, then the software
also reads the bases text file and merges it with the qubits file, taking one char from
one and one char from the other at a time.
In Bob-mode, pushing the Key Transfer button sends a request to the board and the
software reads the incoming data from Bob. Once all the data are received, they are
analyzed and compared to the original key. The final results are printed on the Qt
terminal showing the QBER, the number of missed-sync qubits and the number of
time where no SPDs clicked.
Besides, the Verify Key and Print Qubits push-buttons were used as a quick debugging

9Since the clock frequency change is a thorny thing, a check box must be activated in order to
modify the default 100 MHz value. Besides, a pop-window will appear warning the user to verify that
the actual clock frequency was already changed on the hardware.

10Obviously there is a block truncation in case of a byte-converted-key not multiple of 10000.
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functions and, sending dedicated command, allowed a verification of the internal data
transfer as well as an approximate key analysis in earlier system tests. Since the
complete key transfer and analysis is implemented with Key Transfer, these buttons
are not required anymore and probably will be deleted in future developments.

Figure 4.1: uQuake main view. Please note that this is not a running-view of the
program but a Qt perspective. Hence, all the elements are visible.
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Chapter 5

Test and future of QuAKE

5.1 Hardware Testing

Once the hardware was finished, many different tests were done in order to verify
the functionality of the system. A thorny point was to test the right communication
between software and hardware. Hence, with a basic SDK software, the parameters
setting system was tested as well as the BRAM filling-emptying system. Furthermore,
the custom modules were tested together1 creating a dedicated Vivado project which
included both Alice and Bob modules. The project did not contain the IP Cores since a
hardware test-benching test was done and IP Cores utilization required a software part.
During this important hardware test, many different parameters combinations were
examined in order to ensure that the system could support every required conditions.
That is, for example, the usage of any laser frequencies up to 50 MHz with variable
duty cycle up to 100% or the usage of any frame size or protocol type. Furthermore, the
effectiveness of the Alice-Bob synchronization system was deeply verified2. All these
tests allowed to correct some prime design errors and to fix some bugs. Therefore the
hardware was verified to work perfectly.

5.2 Software testing

Several tests were done in order to verify the functionality of both software programs.
First of all, the tests checked the setting of the parameters from uQuake to the hard-
ware, passing through the SDK software. An essential tool was the Vivado Hardware

Manager, which allowed to view the real hardware behaviour. In other words, it was

1Please note that all the custom modules were already tested individually during the design with
dedicated test-benches.

2Unfortunately, this test verified only the goodness of the system and not its robustness to clock-
drift, since a true test could be done only with the two boards together. In other words, the test used
a mock clock frequency created by the computer and, though the possibility of having two different
clocks shifted relative to one another, there was no possibility to create two clocks with different drifts.
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possible to verify that setting the qubit laser to 10 MHz, for example, the physical out-
put signal had that frequency for sure. Furthermore, it was verified the functionality of
the interrupt for the BRAM management as well as the TCP connection. Unfortunately,
the TCP connection presented some speed issues, since it was not as fast as expected.
This error is probably due to the initialization-bug of the lwip library and its fixing
is on schedule for future developments. However, the data transmission through the
TCP connection was tested to be completely safe.

A basic test was done to verify the working principle of the start-with-ethernet
configuration. This type of start was not completely implemented on software-side and
was postponed to future developments. The test simply confirmed the functionality
of Bob, i.e. the correct operation of the external start and start red signals. The
same thing was done for the tangled alarm signal. Its functionality was tested and
it was verified that the system can recognize over-write errors. But its completely
implementation was postponed to future developments. As a matter of facts, the over-
write error is really a remote possibility and was not considered as essential for the
prime level system. Thus, all these tests allowed to correct some prime design errors
and to fix some bugs.

5.3 Whole system testing

Once the whole design was completed, the system was tested in order to verify its fully
operation. The two boards were connected together through normal 50 Ω-coaxial cables
with SMA connectors. The Zedboards were provided with the ZEPIs (see Appendix
B) linked to pmod ports and a 100 MHz clock frequency was used both on Alice and
Bob. The tests explored different parameters combinations and were carried out as
follow:

� key length between 40000 and 80 million qubits. The test verified the transmission
of different keys with a variable length. The system revealed that, increasing the
key length, the SDK software tended to work slowly. However, this aspect does
not change the precision of the system and a faster data-handling is on schedule
for future developments. For convenience, once the maximum number of qubits
to send was successfully tested, a key length of 8 million qubits was used for
testing the other parameters.

� qubit laser frequency between 10 KHz and 10 MHz. Actually, the system did
not presented any issue with the changing of this parameter and works perfectly
with different duty cycle values as well. The maximum value tested for duty
cycle was 20% with a 10 MHz frequency, i.e. a duty cycle equal to two clock
cycles (remember that on Bob side the actual duty cycle is a clock cycle less than
the Alice duty cycle). Please note that with a 100 MHz board clock frequency,
the maximum qubit laser frequency is 100 MHz but with no control on the duty
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cycle, which is fixed to 100%. Otherwise, the next allowed frequency is 50 MHz
with a 50% or 100% duty cycle. These high frequencies was not considered for
this primal tests, since they implied high-performing laser devices. Hence, higher
frequencies testing is on schedule for future developments and with a higher clock
frequency.

� protocol switch between BB84 and B92. As expected, this test did not reveal any
errors. For convenience, during the testing of the other parameters, the BB-84
protocol was selected.

� frame size between 10 and 300000 qubits. This test was one of the most important
since it estimates the real boundary of the system functionality. The qubit laser
frequency was set to 10 MHz with 50% duty cycle, since this frequency is more
comparable with the clock frequency and is the one where the clock drift is more
remarkable. According to the clock drift measures [see Appendix A], the system
would not present any error with a synchronization every 20 ms (i.e. a frame
size of 200000 with a 10 MHz qubit laser frequency). As a matter of facts, a zero
QBER was detected with any frame size up to 200000 qubits. Besides, extreme
tests were made with a frame size up to 300000 qubits. It was noticed that
the system tended to mismatch the qubits-reading around the 250000th qubit.
Therefore, an absolute safe frame size boundary could be fixed to 200000 qubits
with a qubit laser frequency of 100 MHz. To be more precise, the synchronization
must happen at most every 20 ms. Please note that this boundary could have to
be lowered if a smaller duty cycle value is used, because the clock drift could be
even more remarkable. Therefore, a complete testing of the relation between duty
cycle and synchronization time is on schedule for future tests. For convenience,
the frame size was set to 1000 qubits during the testing of the other parameters.

These results can be considered positive, since they prove the right working of the
system, and confirm correctness of the overall system.

5.4 Future developments

The system may be further improved. As a matter of facts, increasing the functionality
and the reliability of both the hardware and the software parts, the system can increase
its adaptability to very different scenarios. Thus, this new version of QuAKE can
become a trustworthy landmark for future experiments and applications.
In particular, future developments could include:

� hardware development

– implementation of a tangled alarm signal on Bob for greater data-storage
security



58 CHAPTER 5. TEST AND FUTURE OF QUAKE

– usage of higher clock frequency for better synchronization flexibility

� software development

– continuously-working-system with an automatic key send-store-analysis ap-
plication over many keys. This application allows the usage of the system
for quantum information exchange intensive experiments

– improvement of TCP speed connection

– further increase of the key length

– full implementation of the start-with-ethernet option

– improvement of the interrupt routine adding the handling of the empty, full
and tangled alarm signals

– uQuake graphical interface improvement for adjustment to different OSs

� hardware and software development

– usage of GPS for the synchronization to improve timing performances

– usage of an SD card for the key-storage in order to have no limits to the key
size

– usage of Linux OS on the ZedBoard for exploring a wide area of new possi-
bilities



Conclusions

This work described the realization of a brand new system for QKD experiments,
starting from the earlier QuAKE project. Using the FPGA technology along with
C++ programming, the new version of QuAKE was designed with the aim of providing
a clear and easy-to-use system. The initial objectives were well achieved. Now the
system has:

� a brand new reliable hardware with a modular structure

� a reliable synchronization system with extended frame size possibility

� the possibility to set many different parameters for improved flexibility to different
scenarios

� the possibility to send up to 160 million qubits

� the possibility to switch between BB84 and B92 protocols

� new software with TCP connection

Both hardware and software new features have been developed, implemented and
successfully tested.

In the near future, it will be also tested the actual capability of the system to work
with different optical setups.

Furthermore, the system offers a great potential for the implementation of further
features and facilities. As a matter of facts, future developments could expand the
system functionality with the usage of the GPS technology, Linux OS and SD memory
card.

Recently, satellite and free-space QKD has experienced a great progress, widening
the scientific community interest. Therefore, this new version of QuAKE can improve
the reliability of different quantum information experiments thanks to its increased
flexibility and adaptability to a wide range of scenarios.
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Appendix A

Clocks Drift Measures

Usually the clock of any digital system is generated from an analog device which is
commonly known as Voltage Controlled Oscillator or VCO. Generally, this device has
a quite simple structure (but the design could be very demanding) and provides a sine
wave output signal1 at a frequency that can vary from hundreds of kHz to tens of
MHz. Obviously, talking about a real device, the output frequency is not 100% perfect
but can vary within a range of values, with kind of precision, and there can be also
some harmonic frequencies. The frequency error within a period is measured in p.p.m.
(parts per million) and, typically, a MHz VCO has an error that varies between 50 and
100 p.p.m., which is a negligible error in most of the cases. But the summing of this
error on every period can lead to a significant error. This problem is known as clock-
drift and could compromise the reliability of the communication between Alice and
Bob, especially with long-time transmission. For example, depending on the specific
clock-drift, Alice could be one clock-cycle ahead or late than Bob and vice-versa.
For this reason, a measure of the Zedboards’ clock-drift was done and the results were
used to set the maximum frame-size. According to the Zedboard specification 2.2,
there are two different oscillators: a 33.333 MHz PS-side oscillator and a 100 MHz
oscillator on PL-side. Therefore, two measures were required for every board2 in order
to find which oscillator is the best one.
The measure was done implementing a custom clock-counter. Depending on the switch
user buttons combination, the hardware counted one million (10 ms), one hundred
million (1 s) or one billion clock cycles (10 s). Go-signal and stop-signal were asserted,
respectively, at the beginning and at the end of the count. Using the Tektronix MSO
3054 Digital Oscilloscope, the gap between go and stop was measured. The results were
quite the same for both boards but an important difference arose from the measures.
As a matter of facts, the PS oscillator has less clock-drift than the PL one. The PL

1The VCO actually works because is an unstable circuit and can produces such a wave.
2Please note that the native frequency of the oscillator can be multiplied using PLLs or DCMs.

The Zynq Vivado block offers many different outputs for different clock frequency obtained from the
PS oscillator and a 100 MHz custom-output was used for the measure.
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oscillator gains3 about 35 ÷ 40 ns every 10 ms, whereas the PS gains only 20 ÷ 25 ns.
But this deviation represents the error from the ideal time measurement. The system
does not work referring to an external time but it works referring Bob clock to Alice
clock. Therefore, since the measure approximation is within 5 ns, a safety frame time
could be around 10 ms. Furthermore, the clock chosen to be used in the system was
the PS one. Figures A.1 and A.2 show, respectively, the go-stop system with large
time-scale and the zoomed view on the edge of the stop-signal with the indication of
the time between the rising edge and the triggered go-signal. Both images represent a
measure done on the PL oscillator.

Figure A.1: View of the go-stop counting system set to one million counts. The yellow
waveform represents the go-signal, the blue one the stop-signal. The spikes on every
waveform are the asserting-deasserting of the signals. Once the hardware has finished
the count, it starts all over. Therefore, the first go-signal of the figure is ment to be
joint with the second stop-signal. The next go-signal asserts right after the deassertion
of the previous stop-signal and so on.

3Please note that the following data include the measures of both boards and also evaluate the
clock jitter.
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Figure A.2: Zoomed-in view of the stop signal rising edge. Two extra cursors were
added in order to improve the precision of the measure: the b cursor was placed on
the half of the rising edge; on the other hand, the a cursor was placed right before the
change of the last digit of its position-time indicator. This allowed to use the cursors-
time-difference-indicator and have a hundreds-fempto precision. Please note that the
thickness of the wave form is due to the infinite persistence set on the oscilloscope.
This allowed to place the cursor in a good spot regarding the clock jitter effect. Also
note that the thickness does not represent the final value of clock jitter, since this is
not a predictable phenomenon and the waveform will become thicker as time goes on.
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Appendix B

Zedboard Extension Pmod
Interface

An important step was the creation of an external board in order to make the Zedboard
fully operational for the project. The Zedboard provides up to five Pmods output con-
nectors with eight signals each, a doubled ground and power supply outputs.
Digilent company offers many Pmods interfaces for many different aims but as no one
was appropriate for this purpose, we had to build our own interface in order to link
the Zedboards to our equipment. Using the Eagle software, we designed an interface
that could be linked to the Zedboard through two Pmods connectors and provides
eight output signals with SMA connectors and eight more outputs through a male pin
header. An extra 3-pin ground connection was also added for any extra purpose. The
interface was called Zedboard Extension Pmod Interface or Zepi.
In order to reduce the cross-talk effect, the ground plane was laid down on both faces
of the PCB. As a matter of facts, minimizing the gap between the signal track and
the ground track is the only way to reduce this kind of effect [16]. Hence, a double-
ground plane allows very short distance even with multiple signal tracks laid very close
together, like in this case.
Furthermore, some considerations about the network matching were made. The out-
puts of the first two Pmods (JA and JB) have a 200 Ω output series resistor and do not
match the 50 Ω characteristic impedance of the network (a 50 Ω SMA-coaxial cable is
used). Therefore, the Zepi is designed to be used on the 50Ω-matched-Pmods (JC and
JD) which do not have the 200 Ω series resistor. But the network matching is highly
frequency-dependent [17] and this configuration still suffers from network matching
issue, since the outputs will be used in a wide range of frequencies. In conclusion,
the usage of the Zepi with the not-matched Pmods is not forbidden but simply not
recommended. The Eagle layout is visible in figure B.1 and the finished Zepi is visible
in figure B.2.
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Figure B.1: Eagle-view of the Zepi layout

Figure B.2: View of the Zepi



Appendix C

Reset: a-synchronous analysis

Usually, a very common way to reset flip-flops is to use an asynchronous reset which
is not bounded to a clock domain and its assertion and deassertion can be read in-
dependently. This mode works most of the times and no issue occurs, but there is a
possibility that the flip-flops end up in a metastable condition with metastable output
and unpredictable behaviour. The reason of such an error is that a flip-flop needs a
slightest time to set up after reset has occur. Therefore, the time between the reset
assertion and the first clock rising edge must be greater than the flip-flop reset recovery
time (Figure C.1). If not, the flip-flop will not be ready to operate when the clock rising
edge occurs and, as a result, it will fall into metastability.

Reset recovery time

Timing condition met

Clock

Reset

Figure C.1: Reset recovery time scheme

On the other hand, a fully synchronous reset does not have this kind of issue, since
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its assertion and deassertion are read only on clock edges, and flip-flops have an entire
clock cycle to set up after the reset deassertion. But the synchronous reset has another
issue: the reset pulse (time between assertion and deassertion) must be greater than a
clock period1 or could not be captured by the flip-flop.
Hence, according to [18], a good solution takes the best from the two worlds: asyn-
chronous assertion guarantees that the reset is captured by the flip-flop, whereas syn-
chronous deassertion avoids the recovery time issue.

1To be more precise, the synchronous reset could work even with very short pulse but the pulse
must fall over the clock edge. However, this represents a very critical situation too.



Appendix D

C++ interrupt routine and
XAxiCdma SimpleTransfer

Within the SDK software the interrupt routine is essential for a correct management
of the data. Therefore, a part of the code of the bramBufferingIsr(void *Instan-
cePtr) function [4.1] of Alice is reported. The code reads the value of the interrupt
GPIO and if it is equal to a logical 1 value1 it makes the memory transfer as fol-
low: if the interrupt in gpio flag variable is equal to 1, then it moves a portion of
the key, that corresponds to half-BRAM, from the first not-read address of the RAM to
the base address of the BRAM or to the address of the half of the BRAM. As a matter
of facts, the XAxiCdma SimpleTransfer(CDMA Driver instance, source address,

destination address, length n, NULL, NULL) moves n-elements from the source
address to the destination one. Clearly, on Bob-side the destination and the source
address are swapped.
For more details about the XAxiCdma SimpleTransfer function, please see [19].
Note that the AXI BRAM controller and the BRAM are not visible to the system, since
they are linked directly to the AXI CDMA. Thus, they are not istantiated by the Zynq.
They are visible only as addresses.
Here is the portion of the code:

i n t e r r u p t i n g p i o = XGpio DiscreteRead(&GPIO Interrupt : : i n t e r r u p t i n , 1 ) ;

i f ( i n t e r r u p t i n g p i o == 1) {
i f ( f i r s t m e m o r y h a l f ) {

XAxiCdma SimpleTransfer(&CDMA: : axiCdmaInstance , ( u32 ) k e y c u r r e n t p o s i t i o n ,
BRAM BASE ADDRESS, BRAM SIZE IN BYTE / 2 , NULL, NULL) ;

f i r s t m e m o r y h a l f = 0 ;

1Note that the AXI GPIO sends an interrupt signal even when its input deasserts; but in that case
no memory transfer is required.
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}
else {

XAxiCdma SimpleTransfer(&CDMA: : axiCdmaInstance , ( u32 ) k e y c u r r e n t p o s i t i o n ,
BRAM BASE ADDRESS + BRAM SIZE IN BYTE / 2 , BRAM SIZE IN BYTE / 2 , NULL, NULL) ;

f i r s t m e m o r y h a l f = 1 ;
}

k e y c u r r e n t p o s i t i o n += BRAM SIZE IN BYTE / (2 * 4 ) ;
}
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