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Abstract

The thesis investigates the planning and control problem for a group of mobile
agents moving in a partially known workspace. A task will be assigned to
each robot in the form of a linear temporal logic (LTL) formula. First an
automaton-based method is introduced for the motion planning of a single
agent, which guarantees the satisfaction of the assigned LTL task. Then a
model-predictive controller considers state and input constraints leading the
agent to a safe navigation. Based on a real scenario of a partial-known
environment and agents can have only local sensing, two decentralized control
strategies are proposed for online re-planning, which rely on a sampling-based
algorithm. The first approach assumes local communication between agents,
while the second one exploits a more general communication-free case. Finally,
the human-in-the-loop scenario is considered, where a human may additionally
take control of the agents, a mixed initiative controller is then implemented to
prevent dangerous human behaviors while guarantee the satisfaction of the LTL
specification.
Using the developed ROS software package, several experiments were carried
out to demonstrate the effectiveness and the potential applicability of the
proposed strategies.





Sommario

La tesi indaga il problema della pianificazione e del controllo per un gruppo di
agenti mobili che si spostano in uno spazio di lavoro parzialmente conosciuto.
Verrà assegnato un compito a ciascun robot sotto forma di una formula di
logica temporale lineare (LTL). Innanzitutto viene introdotto un metodo basato
sull’automa per la pianificazione del movimento di un singolo agente, che
garantisce il soddisfacimento del compito LTL assegnato. Un controllore
predittivo del modello considera i vincoli di stato e gli input, assicurando
una navigazione sicura dell’agente. Basandosi su uno scenario reale di un
ambiente parzialmente noto e in cui gli agenti possano avere solamente un
rilevamento locale, vengono proposte due strategie di controllo decentralizzato
per la ripianificazione online, che si basano su un algoritmo di campionamento
dello spazio di stato. Il primo approccio presuppone una comunicazione
locale tra gli agenti, mentre il secondo considera un caso più generale privo
di comunicazione. Infine, viene considerato lo scenario human-in-the-loop, in
cui un essere umano può inoltre assumere il controllo degli agenti, viene quindi
implementato un controllore per prevenire comportamenti umani pericolosi
garantendo allo stesso tempo il soddisfacimento della specifica LTL assegnata.
Utilizzando il pacchetto software ROS sviluppato, sono stati effettuati diversi
esperimenti per dimostrare l’efficacia e la potenziale applicabilità delle strategie
proposte.
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Chapter 1

Introduction

During the last decade, intelligent agents and multi-agent systems have been a
hot research topic and many effective applications of this technology have been
developed. Multi-agent systems (MAS) are a main area of present-day artificial
intelligence research. A multi-agent system consists of multiple autonomous
decisions-making entities, which interact in a shared environment to achieve
common or conflicting goals, having often different constraints. These entities
do not have to be necessary homogeneous, they could be robots, software agents
or even human beings. The control and modeling of complex systems, involving
those interacting agents, is the target of MAS research.
The appeal of this new field lies on a variety of advantages. In fact, MAS can
address problems that are too complex for a centralized single agent to handle
(for example, due to resource constraints or robustness concerns); additionally
they improve scalability, provide solutions to intrinsically decentralized
problems (such as telecommunication control, workflow management), or
provide solutions where expertise is spread. Because of their broad range
of applications, such as autonomous driving, smart grids, power systems,
automated trading, manufacturing, healthcare, e-commerce, biotechnology and
many others, systems of this nature will play a crucial role in real life. Numerous
technical issues have existed from the beginning, including how to create
effective algorithms that allow one or more agents to accomplish specific goals,
how information is shared and propagated among them, and how coordination
between agents should be handled to carry out operations safely and effectively.
The latest challenge has been studied since the 1980s, but its importance has
expanded dramatically in recent years due to the emergence of new applications
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(such as smart transportation, service robotics and collaborative robotics).
There are two types of coordination in the existing literature: path coordination
and motion coordination. The former plans and coordinates all agents’ paths in
advance (hence offline), whereas the latter focuses on decentralized and online
methods that enable robots to resolve conflicts as they occur.
The purpose of the thesis is to implement and evaluate a completely distributed
control algorithm for multi-robot motion coordination, in which each agent
has to accomplish a given task while avoiding collisions in a partially known
environment. There are primarily two approaches to multi-robot motion
coordination (MRMC) that could be distinguished: the reactive approach and
the planner-based approach. Reactive methods for motion coordination are
suitable in many applications, due to their quickness and ability to perform well
in real-time. One possible example of them makes use of potential fields [7]
- [14]. In the potential field approach, the motion is characterized by a set of
forces. The agent is pulled by attractive forces in the direction of the objective,
while repulsive forces push the agent away from obstacles and/or other agents.
Consequently, at each location in the configuration space, the agent moves along
the vector representing the combined forces acting on that point.
However, as is widely known, reactive techniques suffer from deadlocks
generated by local minima and often perform better in unconstrained scenarios.
Azarm and Schmidt’s work [1], which proposes a strategy for online motion
coordination of several mobile robots, is an early example of a planner-based
method. When conflicts are found, the given solution comprises of a sequential
trajectory planning problem in which a priority hierarchy among robots is
assigned. Despite the fact that safety has proven difficult to ensure, future
enhancements of this method have been suggested. In addition a lot of the
previous works have been focused on relatively simple tasks.
As the convergence of new technologies such as artificial intelligence and big
data proves to be effective, demand for robots and their capabilities is continually
expanding in multiple areas such as ground, air, and water environments. As
a result, in recent years, the area of robot motion planning has been inclined
to assign increasingly difficult and high-level tasks, such as temporal logic
specifications. The majority of previous LTL approaches are based on a global
assigned task, followed by an offline centralized motion planner.
At the same time, those techniques do not account for possible environmental
changes (e.g, non-static obstacles, people moving), which must be considered
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CHAPTER 1. INTRODUCTION

in real-world applications. The degree project proposes efficient techniques
addressing all previously stated challenges in order to extend multi-robot motion
coordination to more complicated tasks and practical situations. Firstly in
Chapter 4, an automaton-based method for a decentralized motion planning is
introduced, which guarantees the satisfation of the assigned task. Such offline
global planner provides the sequence of actions that the agent must follow in
order to accomplish the given task, when possible collisions are not detected.
Secondly in Section 4.3 different navigation methodologies for ensuring safety
will be examined, with the employment of a model predictive controller as
outcome of such analysis.
Theoretical evidence of safe navigation for each agent under mild constraints,
acceptable in real scenarios, will be provided through model predictive control
theory. Then, a partially known environment will be considered, leading
to a distributed online motion re-planning approach using a sampling-based
method, as discussed in Section 5. A first approach assumes local
communication between agents, considering a priority hierarchy among them.
On the other hand a more generic communication-free case will be analyzed,
which adds a collision avoidance algorithm into the online re-planning
solution. The latest method will not assume in advance the motion of other
agents or non-staic obstacles involved. Finally, Section 5.3 investigates the
human-in-the-loop scenario, in which a human may also assume control of
the agents, extending the results obtained in [3] to multi-agent systems. Indeed,
in recent years, there has been a growing emphasis on human-robot cooperation.
The usage of autonomous entities alongside humans in the workplace has
decreased ergonomic injuries while boosting safety and productivity.
A mixed initiative controller will be designed for this purpose to prevent
dangerous human behaviors while ensuring task satisfaction.
The master’s thesis concludes by reporting experimental results and associated
conclusions about the overall study and proposed strategies.
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Chapter 2

Motivations

This chapter will present some potential applications of multi-robot motion
coordination in a partially known environment 1, as well as related failures of
an offline strategy and the main difficulties involved.

2.1 Delivery and supervision inside a warehouse

An example of a multi-agent motion coordination system is provided, along
with an analysis of the main issues and the reasons why an offline approach
is obviously not feasible. Consider four mobile agents operating in a shared
workspace, such as the warehouse shown in Figure 2.1.

Figure 2.1: Example: warehouse

1Partially-known environment generally takes into consideration both the workspace’s in-
complete knowledge and environmental changes (for example non-static obstacles). In the
thesis the workspace is assumed to be entirely known, however extensions to a partially known
scenario, where the workspace is not completely known, are possible.
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2.1. DELIVERY AND SUPERVISION INSIDE A WAREHOUSE

In the following example, the warehouse operating area will be divided into six
areas for the sake of simplicity, as illustrated below:

Agents A,B are unmanned aerial vehicles (UAVs) where A is meant to monitore a
specific area, while B is required to deliver a box. Agents C and D are unmanned
ground vehicles (UGVs), with C having a specified area to monitor and D acting
as a base for pick-up and delivery operations. To be more accurate, A and C
should continuously check regions R1 and R6, respectively, while D is fixed in
region R3. Agent B is then supposed to choose a box from either region R3 or
region R4 and transport it to the top of agent D’s base. Without going into too
much detail about how motion planning is achieved, it makes perfect sense for
agents A and C to go to the same region at the same time or, in any event, have
trajectories that are very close to each other. Surely, an offline planner that takes
into consideration the motion of other agents might be implemented, as well
as a safe navigation controller that may prevent collisions between the agents.
However, it is clear that even in uncomplicated cases, an offline strategy can be
quite risky (as this examle shows).
In reality, the offline technique should account for all potential configurations
throughout the workspace that agents may choose to move in. Such a method
will be computationally expensive, incredibly ineffective, and frequently slow
to react.

Figure 2.2: Example: warehouse agents
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CHAPTER 2. MOTIVATIONS

Furthermore, taking into account a real-world warehouse setting, enviroment
changes might occur. The workspace is a partially-known environment with
moving non-static obstacles (such as human beings or other agents), whose
movements are typically unpredictable. The inability to integrate those events
offline without making assumptions or knowing the motion of objects makes it
difficult to ensure that potential collisions won’t take place.
In order to better highlight those problems, assume that agents A and B (UAVs)
are moving in the x-y plane at a fixed height. Only during the pick or delivery
stage (i.e. once it has arrived at the pick/delivery x, y coordinates) Agent B may
modify its height. An offline planning scenario could produce the following
paths, considering the first six actions:

𝐴𝑔𝑒𝑛𝑡𝐴 : 𝑅2 − − > 𝑅5 − − > 𝑅6 − − > 𝑅5 − − > 𝑅4 − − > 𝑅1
𝐴𝑔𝑒𝑛𝑡𝐵 : 𝑅6 − − > 𝑅5 − − > 𝑅4 − − > 𝑅1 − − > 𝑅2 − − > 𝑅3

Regardless of the navigation technique used, it is reasonable for the two agents to
reach the same area at the same instant, thereby increasing the risk of a collision.
A new issue could emerge even if the two agents are equipped with sensors for
detecting nearby objects and the navigation strategy takes them into account. A
lack of a motion coordination algorithm might actually cause deadlocks, within
which the two agents are kept in the same area for a long period of time.
To show that, assume Figure 2.3 to be the agents’ configuration at certain instant
of time. As can be noticed, Agent A’s offline planner suggests taking a route that
might be hazardous due to collisions. In fact, if Agent B is not equipped with
detection sensors, it won’t be able to avoid colliding with Agent A.

Figure 2.3: Example: possible collision
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2.2. HUMAN BEING AS OBSTACLE

Additionally, even if collision avoidance algorithms are designed and both agents
use detection sensors, the initial offline plan could not be suitable or deadlocks
may occur repeatedly (leading the two agents in being stucked and not satisfying
the given task).
Therefore, choosing a motion coordination technique that is effective and
efficient will be crucial in order to avoid collisions and deadlocks.

2.2 Human being as obstacle

The second example explores the identical scenario as before, restricting the
attention on the ground vehicles (agents C, D), with the addition of an
unpredictable obstacle into the environment. Considering the first six actions, a
hypothetical offline planning may result in the following paths:

𝐴𝑔𝑒𝑛𝑡𝐶 : 𝑅4 − − > 𝑅1 − − > 𝑅2 − − > 𝑅3 − − > 𝑅6 − − > 𝑅5
𝐴𝑔𝑒𝑛𝑡𝐷 : 𝑅6 − − > 𝑅6 − − > 𝑅6 − − > 𝑅6 − − > 𝑅6 − − > 𝑅6

Agent D’s offline plan causes to remain in region R6 at all times in order to
await the package drop from agent A. In any case, Agent C’s approach might be
dangerous, as illustrated in the preceding example, given that the next action
after region R3 is to reach region R6.
At a certain instant of time, a human being passes through one of the warehouse
corridor, resulting in the following scenario:

Figure 2.4: Example: human being as obstacle
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CHAPTER 2. MOTIVATIONS

In contrast to the previous example, introducing a human being into the
environment exposes to face new difficulties. With respect to the preceding
case, there may be no communication between mobile agents and humans (in
some cases, mobile agents communication may be provided) and so the path
planning must cope with an unknown and unpredictable obstacle motion.
A possible solution would be to implement a very stable and efficient collision
avoidance algorithm, although deadlocks would be extremely difficult to
prevent and the initial objective would likely no longer be acceptable or in
the worst case violated. Task violation is a prior requirement to avoid,
however as will be detailed later, in some instances preventing collisions will
take precedence over task satisfaction. Overall, these examples emphasize
the importance of a decentralized reactive online replan method capable of
coordinating motion among agents, avoiding collisions, and perhaps completing
the assigned tasks.
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Chapter 3

Preliminaries

3.1 Linear Temporal Logic

This section briefly introduces linear temporal logic (LTL), a logical formalism
suitable for defining linear-time (LT) properties and hence capable of specifying
complex system properties and tasks. Temporal logic extends propositional or
predicate logic by modalities that allow for the infinite behavior of a reactive
system to be referred to. They provide a simple but mathematically rigorous
syntax for expressing characteristics regarding the relationship between state
labels in executions (in other words LT properties).
For example, some elementary temporal modalities included in most temporal
logics are the operators:

♢ "eventually" (eventually in the future)
□ "always" (now and forever in the future)

Although the term temporal implies a relationship with the system’s real-time
behavior, it is only true in an abstract sense. In essence, temporal logic allows
for the specification of event order. Some examples are: "the vehicle accelerates
once the driver pulls the throttle" or "the race is terminated once a car has
completed all set laps", where the meaning does not apply to the specific timing
of occurrences.
There are two types of time nature in temporal logics literature: linear time and
branching time. The branching view relies on a tree-like structure in which time
can break into alternative paths, whereas the linear view has a single successor
moment at each point in time. The thesis will be built on linear-temporal logic
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3.1. LINEAR TEMPORAL LOGIC

(LTL), which is commonly utilized for systems where all components evolved
in a lock-step fashion. Furthermore, the linear sequence of time instants might
be discrete or continuous, although only the discrete case will be used in the
degree project (i.e. the present moment refers to the current state and the next
moment corresponds to the immediate succesor state).

3.1.1 LTL syntax

The objective of this subsection is to introduce the syntactic rules based on which
formulae in LTL can be established. The basic ingredients of LTL-formulae
are atomic propositions (state labels 𝑎 ∈ 𝐴𝑃), the Boolean connectors like
conjunction ∧ and negation ¬ and lastly two basic temporal modalities ©
(pronounced "next") and𝑈 (pronounced "until"). The state label 𝑎 in a transition
system is represented by the atomic proposition 𝑎 ∈ 𝐴𝑃. Generally, atoms are
statements regarding the values of system variables that must be true or false,
such as "x > 0", "5 is prime", "cars have six wheels" or "x == y".

Definition 3.1.1. :
LTL formulae defined over the set AP of atomic propositions are obtained according to
the following syntax:

𝜑 ::= true | 𝑎 | 𝜑1 ∧ 𝜑2 | ¬𝜑 | ©𝜑 | 𝜑1U𝜑2

where 𝜑, 𝜑1, 𝜑2 are LTL formulas. In addition the Boolean connector disjunction ∨ can
be derived as 𝜑1 ∨ 𝜑2 := ¬ (¬𝜑1 ∧ ¬𝜑2

)
.

The order of precedence on the operators is defined as follows: unary operators
bind stronger than the binary ones, ¬ and © bind equally strong.
The temporal operator 𝑈 takes precedence over ∧,∨, and →, in addition
parentheses are omitted whenever appropriate. The until operator allows to
derive the most used temporal modalities ♢ ("eventually") and □ ("always") as
follows:

♢𝜑 def
= trueU 𝜑 □𝜑

def
= ¬♢¬𝜑

The combination of those temporal modalities together with Boolean connectives
enables the creation of more sophisticated formulas.
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For instance, the dual modalities listed below can be defined:

□♢𝜑 "infinitely often 𝜑 "
♢□𝜑 "eventually forever 𝜑 "

According to the first one ("infinitely often 𝜑"), there always exists a moment 𝑖 in
the future such that 𝑖 ≥ 𝑗 for any moment 𝑗, at which a phi-state is visited. While
"eventually forever 𝜑" refers to the property that the phi-state will be visited at
some point in the future from that moment on.

3.1.2 LTL semantics

LTL formulae relies on path properties, which means that a path can either
satisfied an LTL formula or not. It is necessary to establish its semantics in order
to comprehend whether a path satisfies an LTL formula. The semantics of LTL
formula 𝜑 is defined as a language Words(𝜑), that contains all infinite words
over the alphabet 2𝐴𝑃 that satisfy 𝜑. That is, a single LT property is associated
to every LTL formula.

Definition 3.1.2. Semantics of LTL (Interpretation over Words):
Let 𝜑 be an LTL formula over a set 𝐴𝑃 of atomic propositions. The LT property induced
by 𝜑 is:

Words(𝜑) =
{
𝜎 ∈

(
2𝐴𝑃

)𝜔 | 𝜎 |= 𝜑
}

where the satisfaction relation |=⊆ (
2𝐴𝑃

)𝜔 × LTL is the smallest relation with the
properties in Figure 3.1.

Here, for 𝜎 = 𝐴0𝐴1𝐴2 . . . ∈
(
2𝐴𝑃

)𝜔
, 𝜎[𝑗 . . .] = 𝐴 𝑗𝐴 𝑗+1𝐴 𝑗+2 . . . is meant the

suffix of 𝜎 starting in the (𝑗 + 1)st symbol 𝐴 𝑗 . Extending those concepts to
an interpretation over paths and states, the LTL formula 𝜑 holds in state 𝑠 if all
paths starting in 𝑠 satisfy 𝜑.
For further details about LTL syntax, semantics and model checking refer to [2],
while for extra-content about temporal modalities [9].
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3.2 Transition System

Transition systems are often used in computer science as models to describe
the behavior of systems. Therefore to express dynamic processes with
configurations representing states and transitions, specifying how the system
can evolve from one state to another. They can be seen as directed graphs where
nodes represent states while edges encode model transitions. A state describes
some peculiar information of the system at a certain moment of its behavior.
For instance, a state of a moving vehicle indicates its current position in the
environment. Similarly in a chess game the state is the current placements of
pieces on the board. Another example can be a state of a sequential computer
program, which indicates the current values of all program variables together
with the current value of the program counter that indicates the next program
statement to be executed. Regarding transitions: in the case of the moving car
a transition may indicate a switch from one x,y position to another, whereas
for the sequential program a transition typically corresponds to the execution
of a statement and may involve the change of some variables and the program
counter. Instead in a chess game, transitions describe the legal moves according
to the rules of chess.
In the following transition systems will be described with action names for
the transitions (state changes) and atomic propositions for the states. Action
names will be used to represent communication mechanisms between processes,
while atomic propositions are used to formalize temporal characteristics. More
precisely, atomic propositions express simply known facts regarding the states
of the system under consideration. Some examples of atomic propositions are x
equals 1, or x is greater than 0 for some given integer variable x. Other examples
are there is more than twelve employees in the company or there are no students
in the school.

Figure 3.1: LTL semantics (satisfaction relation |= ) for infinite words over 2𝐴𝑃 .
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Definition 3.2.1. Transition System (TS)
A transition system is a tuple T = (𝑋, X0,Σ,→, 𝐴𝑃, 𝐿) where:

- 𝑋 is the set of states,

- 𝑋0 ⊆ 𝑆 is a set of initial states,

- Σ is the set of actions

- −→ ⊆ 𝑋 × 𝑋 is a transition relation,

- AP is the set of atomic propositions,

- 𝐿 : 𝑋 → 2𝐴𝑃 is a labeling function.

The transition system’s intuitive behavior can be summarized as follows. The
transition system begins in a certain initial state 𝑥0 ∈ 𝑋0 and evolves according
with the transition relation −→. Therefore, if 𝑥 is the current state, then a
transition 𝑥 𝛼−→ 𝑥′ obtained from 𝑥 is selected non-deterministically and picked.
This selection procedure is repeated in the next state 𝑥′ and finishes once an
accepting state is encountered (state without outgoing transitions).
It is crucial to emphasize that the "next" transition is determined in a
non-deterministic manner when a state includes more than one outgoing
transition. As a result, it is impossible to predict the likelihood of each transition
since the outcome of the selection process is unpredictable. Similarly, when
the set of initial states consists of more than one state, the starting state is
selected non-deterministically. The labeling function 𝐿 relates a set 𝐿(𝑥) ∈ 2𝐴𝑃

of atomic propositions to any state 𝑥. 𝐿(𝑥) intuitively stands for exactly those
atomic propositions 𝑎 ∈ 𝐴𝑃 which are satisfied by state 𝑥. Given that 𝜑 is
a propositional logic formula, then 𝑠 satisfies the formula 𝜑 if the evaluation
induced by 𝐿(𝑥)makes the formula 𝜑 true; that is: 𝑥 |= 𝜑 iff 𝐿(𝑥) |= 𝜑.
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3.2.1 Weighted Finite Transition System (wFTS)

A weighted finite transition system is a tuple T𝑤 = (𝑋, 𝑋0,Σ,→, 𝐴𝑃, 𝐿,𝑊)
where:

- 𝑋 = {𝑥1, . . . , 𝑥𝑁 } is the finite set of states,

- 𝑋0 ⊆ 𝑋 is the finite set of initial states,

- Σ is the set of actions
- −→ ⊆ 𝑋 × 𝑋 is a transition relation,

- AP is the set of atomic propositions,

- 𝐿 : 𝑋 → 2𝐴𝑃 is a labeling function,

- 𝑊 : 𝑋 × Σ × 𝑋 → R+ is the weight function as cost of transition in −→.

3.2.2 Controlled transition system (CTS)

Given a transition system T = (𝑋 , X0,Σ,→, 𝐴𝑃, 𝐿) and a set of atomic
propositions 𝐴𝑃, the controlled transition system (CTS) is defined
T𝑐 = (𝑋, 𝑋0, 𝐴𝑃,→, 𝐿𝑐), where 𝐿𝑐 : 𝑋 → 2𝐴𝑃 is a labeling function and
the following condition hold.
The labeling function 𝐿𝑐(𝑥)maps a state 𝑥 to the finite set of atomic propositions
𝐴𝑃, which are true at state 𝑥.

Given a state 𝑥 ∈ 𝑋, define

Post(𝑥) :=
{
𝑥′ ∈ 𝑋 : ∃ 𝑢 ∈ 𝑈, 𝑥 𝑢→ 𝑥′

}
.

An infinite path of the CTS T𝑐 is a sequence of states 𝜌 = 𝑥0𝑥1𝑥2 . . . generated by
an infinite sequence of inputs 𝒖 = 𝑢0𝑢1𝑢2 . . . such that 𝑥0 ∈ 𝑋0 and 𝑥𝑘

𝑢𝑘−→ 𝑥𝑘+1

for all 𝑘 ≥ 0. Its trace is the sequence of atomic propositions that are true in the
states along the path (i.e. Trace(𝜌) = 𝐿𝑐 (𝑥0) 𝐿𝑐 (𝑥1) 𝐿𝑐 (𝑥2) . . .).
Indeed the satisfaction relation 𝜌 = 𝜑 holds if and only if Trace(𝜌) ∈Words(𝜑).
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3.2.3 Non-deterministic Büchi Automaton (NBA)

A non-deterministic Büchi automaton (NBA) is a tuple B =
(
𝑋, 𝑋0, 2𝐴𝑃 , 𝛿, 𝐹

)
,

where the following conditions hold:

1. 𝑋 is a finite set of states;

2. 𝑋0 ⊆ 𝑋 is the set of initial states;

3. 2𝐴𝑃 is the input alphabet;

4. 𝛿 : 𝑋 × 2𝐴𝑃 → 2𝑋 is the transition function;

5. 𝐹 ⊆ 𝑋 is the set of accepting states.

An infinite run x of a NBA is an infinite sequence of states x = 𝑥0𝑥1 . . . generated
by an infinite sequence of input alphabets 𝜎 = 𝜎0𝜎1 . . . ∈ (

2𝐴𝑃
)𝜔, where 𝑥0 ∈ 𝑋0

and 𝑥𝑘+1 ∈ 𝛿 (𝑥𝑘 , 𝜎𝑘) ,∀𝑘 ≥ 0. An infinite run x is called accepting, if Inf(x)∩𝐹 ≠ ∅,
where Inf(x) is the set of states that appear in x infinitely often.
Moreover given a state 𝑥 ∈ 𝑋, define

Post(𝑥) :=
{
𝑥′ ∈ 𝑋 : ∃ 𝜎 ∈ 2𝐴𝑃 , 𝑥′ ∈ 𝛿(𝑥, 𝜎)} .

Given an LTL formula 𝜑 over 𝐴𝑃, there is a union of infinite words that satisfy
𝜑, i.e.

Words (𝜑) =
{
𝜎 ∈

(
2𝐴𝑃

)𝜔 | 𝜎 |= 𝜑
}

where |=⊆ (
2𝐴𝑃

)𝜔 × 𝜑 is the satisfaction relation.

Lemma 3.2.1. :
Any LTL formula 𝜑 over 𝐴𝑃 can be algorithmically translated into a Büchi automaton
𝐵𝜑 over the input alphabet 2𝐴𝑃 such that 𝐵𝜑 accepts all and only those infinite runs
over 𝐴𝑃 that satisfy 𝜑.

17
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3.2.4 Product Büchi Automaton (PBA)

Given a controlled transition system T𝑐 = (𝑋, 𝑋0, 𝐴𝑃,→, 𝐿𝑐) and a
non-deterministic Büchi automaton B =

(
𝑆, 𝑆0, 2𝐴𝑃 , 𝛿, 𝐹

)
, the product Büchi

automaton (PBA) is P = T𝑐 × B =
(
𝑆𝑝 , 𝑆0,𝑝 , 2𝐴𝑃 , 𝛿𝑝 , 𝐹𝑝

)
, where 𝑆𝑝 :=

𝑋 × 𝑆, 𝑆0,𝑝 := 𝑋0 × 𝑆0, 𝐹𝑝 := (𝑋 × 𝐹) ∩ 𝑆𝑝 and the following condition holds:

- 𝛿𝑝 ⊆ 𝑆𝑝 × 𝑆𝑝 , defined by ((𝑥, 𝑠), (𝑥, 𝑠′)) ∈ 𝛿𝑝 if and only if 𝑥′ ∈ Post(𝑥) and
𝑠′ ∈ Post(𝑠).

Given a state 𝑝 ∈ 𝑆𝑝 , define the projection operator 𝑝 𝑗𝑋(𝑝) : 𝑆𝑝 → 𝑋 as a
mapping from 𝑝 to its first component 𝑥 ∈ 𝑋.
Given a state 𝑥 ∈ 𝑋, define the function 𝛽𝑝 : 𝑋 → 2𝑆, given by

𝛽𝑝(𝑥) :=
{
𝑠 ∈ 𝑆 : (𝑥, 𝑠) ∈ 𝑆𝑝

}
(3.1)

as a mapping from 𝑥 to the subset of Büchi states 𝑆 that correspond to 𝑥.

Denote by 𝐷
(
𝑝, 𝑝′

)
the set of all finite runs between state 𝑝 ∈ 𝑆𝑝 and 𝑝′ ∈ 𝑆𝑝 , i.e.

𝐷
(
𝑝, 𝑝′

)
:=

{
𝑝1𝑝2 . . . 𝑝𝑛 : 𝑝1 = 𝑝, 𝑝′ = 𝑝𝑛(
𝑝𝑘 , 𝑝𝑘+1

) ∈ 𝛿𝑝 ,∀𝑘 = 1, . . . , 𝑛 − 1;∀𝑛 ≥ 2
}
.

The state 𝑝′ is said to be reachable from 𝑝, if 𝐷
(
𝑝, 𝑝′

)
≠ ∅.

The length of a finite run 𝑝 = 𝑝1𝑝2 . . . 𝑝𝑛 in P, denoted by 𝐿𝑔(𝑝), is given by

𝐿𝑔(𝒑) :=
𝑛−1∑
𝑖=1

𝑝 𝑗𝑋 (
𝑝𝑖+1

) − 𝑝 𝑗𝑋 (
𝑝𝑖
) .

For all 𝑝, 𝑝′ ∈ 𝑆𝑝 , the distance between 𝑝 and 𝑝′ is defined as follows:

𝑑
(
𝑝, 𝑝′

)
=


min𝒑∈𝐷(𝑝,𝑝′) 𝐿𝑔(𝑝), if 𝐷

(
𝑝, 𝑝′

)
≠ ∅

∞ otherwise.
(3.2)

The following definitions of self-reachable set and potential functions are given
in [28].
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Definition 3.2.2.
A set 𝐴 ⊆ 𝑆𝑝 is called self-reachable if and only if all states in 𝐴 can reach a state in 𝐴,
i.e. ∀𝑝 ∈ 𝐴, ∃𝑝′ ∈ 𝐴 such that 𝐷

(
𝑝, 𝑝′

)
≠ ∅.

Definition 3.2.3.
For a set 𝐵 ⊆ 𝑆𝑝 , a set 𝐶 ⊆ 𝐵 is called the maximal self-reachable set of 𝐵 if each
self-reachable set 𝐴 ⊆ 𝐵 satisfies 𝐴 ⊆ 𝐶.

Definition 3.2.4 (Potential function of states in P).
The potential function of a state 𝑝 ∈ 𝑆𝑝 , denoted by 𝑉P(𝑝) is defined as

𝑉P(𝑝) =


min𝑝′∈𝐹𝑝𝑝
{
𝑑
(
𝑝, 𝑝′

)}
, if 𝑝 ∉ 𝐹∗𝑝

0 otherwise

where 𝐹∗𝑝 is the maximal self-reachable set of the set of accepting states 𝐹𝑝 in P and
𝑑
(
𝑝, 𝑝′

)
is defined in (3.2).

Definition 3.2.5 (Potential function of states in T𝑐).
Let a state 𝑥 ∈ 𝑋 and a set 𝑀𝑝 ⊆ 𝛽𝑝(𝑥), where 𝛽𝑝(𝑥) is defined in (3.1). The potential
function of 𝑥 with respect to 𝑀𝑝 , denoted by 𝑉T𝑒

(
𝑥, 𝑀𝑝

)
is defined as:

𝑉T𝑐
(
𝑥, 𝑀𝑝

)
= min
𝑠∈𝑀𝑝

{
𝑉𝑝((𝑥, 𝑠))

}
Remark: If𝑉T𝑐

(
𝑥, 𝑀𝑝

)
< ∞, it means that ∃𝑠 ∈ 𝑀𝑝 such that starting from (𝑥, 𝑠),

there exists a run that reaches a selfreachable accepting state of P.
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3.3 Rapidly-exploring random trees

A rapidly exploring random tree (RRT) is an algorithm designed to efficiently
search nonconvex, high-dimensional spaces based on random sampling of the
configuration space. Those samples are used to construct a tree structure in
which the final path can be retrieved. Basically the algorithm can be divided
into three main steps: expansion through vertex selection, expansion and
terminating condition.

Figure 3.2: RRT algorithm idea

Firstly the RRT algorithm grows a tree, having as root the starting configuration,
by randomly sampling the configuration space. Whenever a sample is taken,
a connection between it and the nearest vertex in the tree is attempted. If that
connection is feasible (i.e. only free space is encountered and all constraints are
met), then the new vertex (corresponding to a new state) is added to the tree.
When uniform sampling is used, the probability of expanding an existing state
is proportional to the size of its Voronoi region. Therefore the tree preferentially
expands towards large unsearch areas, since the largest Voronoi regions belong
to the states on the frontier of the search. Typically the length of the connection
between a new state and the tree is bounded by a growth factor. For instance
if the generated sample exceeds those limits from its nearest state, then a new
state at the maximum distance from the tree along the line to the random sample
is considered rather than the random sample itself. The algorithm stops when
the terminal condtion is satisfied, for instance when the goal state is reached or
when the maximum number of iterations has been computed.
Such a method allows for biased expansion into previously undiscovered areas
of the state space while limiting the size of the incremental growth.
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One of the most important characteristics of such algorithms is that
RRTs can easily handle problems with obstacles and differential constraints
(nonholonomic and kinodynamic) and are commonly utilized in autonomous
motion planning.
Several effective algorithms based on RRT principle have been developed in
the last years, including Fuzzy Greedy RRT, RRT-connect, RRT*, RRT-path (see
[26] - [17] - [21] - [29] respectively). Moreover RRT growth can be biased by
enhancing the probability of sampling states from a specific area, introducing
a small probability of sampling the goal to the state expansion procedure. In
practice, such ideas lead the search towards the terminal condition and higher
this probability is, the greedier the tree grows on the way to the goal.

Algorithm 1 RRT pseudocode
𝐺.𝑖𝑛𝑖𝑡(𝑞𝑖𝑛𝑖𝑡)
for k = 1 to N do
𝑞𝑟𝑎𝑛𝑑 ← 𝑅𝐴𝑁𝐷_𝑆𝐴𝑀𝑃𝐿𝐸()
𝑞𝑛𝑒𝑎𝑟 ← 𝑁𝐸𝐴𝑅𝐸𝑆𝑇_𝑉𝐸𝑅𝑇𝐸𝑋(𝑞𝑟𝑎𝑛𝑑 , 𝐺)
𝑞𝑛𝑒𝑤 ← 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸_𝑉𝐸𝑅𝑇𝐸𝑋(𝑞𝑛𝑒𝑎𝑟 , 𝑞𝑟𝑎𝑛𝑑 , 𝛿𝑞)
𝐺.𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑞𝑛𝑒𝑤)
𝐺.𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑞𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑤)

end for
return G
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3.4 Model Predictive Control

In the control theory field one of the most exiting result was obtained in the
1960𝑠, with the derivation of the linear quadratic regulator (LQR) and the
linear quadratic Gaussian regulator (LQGR). Kalman and others, proved that
the optimal controller for a linear time-invariant MIMO system was a linear
time-invariant state feedback control. Such linear feedback control law was
proven to have several very desirable properties. It was guaranteed to exist,
to be unique, and to be asymptotically stable under very mild and reasonable
assumptions. Moreover for the feedback gain an explicit formula was provided
and it was relatively easy to compute.
In particular, LQGR is one of the main achievements of the state-space control
theory. Nevertheless it turned out to lack in robustness which lead to the born
of robust control theory, field of particular interest in the 1980𝑠. Although from
a theoretical point of view those results solve the control problem for linear-time
invariant (LTI) systems, just few real engineering implemenations were made.
The main reason of that stands on practical issues, in fact LQR regulator may
badly fail in the presence of non-linearities such as input saturation (typically
present in real applications) and when constraints must be imposed (for instance
state or control limitations to achieve the desired goal).
Indeed, optimal operating points are often near constraints, so that classical
control schemes need to be complemented with ad hoc constraints management
or limit the performance to stay sufficiently far from the limits. The effort to
overcome these limitations led to the born of Model Predictive Control (MPC).
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3.4.1 MPC example

Consider an autonomous racing car moving on a predefined track, as shown in
Fig 3.3. The goal consists to minimize the lap time while avoiding other cars,
stay on the road, do not skid and with limited acceleration. One of the key
ingredients of a model predictive control algorithm is the Receding Horizon
(RH) principle.

Figure 3.3: MPC algorithm idea

The main idea is to look ahead in time and plan the path based on road
conditions, upcoming turns, and vehicle capabilities.
Based on these accessible data an optimization problem is formulated and solved
with respect to the (future) control sequence u𝑘 = [𝑢(𝑘), 𝑢(𝑘+1), . . . , 𝑢(𝑘+𝑁−1)],
then only its first element 𝑢0(𝑘) is applied. At the next time instant 𝑘 + 1, a new
optimization problem is solved on the shifted prediction interval [𝑘+1, 𝑘+𝑁+1],
based on the available information up to time 𝑘+1, yielding the control 𝑢0(𝑘+1).
Afterwards, the procedure is constantly repeated so that the control action can
operate on arbitrarly long time horizons.
To sum up, model predictive control theory is based on three pilars:

1. an objective function to be minimized, (in the above example the lap time);

2. an internal system model, which is used to predict the system behaviour;

3. sets of constraints to be satisfied (on state variables, control inputs, etc...)
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Main advantages of an MPC strategy are its systematic approach capable
to handle constraints and the ability to achieve high control performance.
Furthermore, the receding horizon principle incorporates feedback into the
control action, ensuring supervision of the current system condition.
Its primary challenges are related to implementation, as the MPC problem has
to be solved in real-time and with available hardware (storage, CPU, etc...), as
well as the fact that stability and robustness are not guaranteed. Additionally,
the optimization problem may become infeasible at some future time step, and
hence persistent feasibility is not guaranteed (i.e. a plan meeting all constraints
may not exist).

3.4.2 Optimization problem mathematical formulation

The following subsection briefly formulates the optimization problem, which is
solved at each time step in the MPC algorithm.
Considering the generic instant of time 𝑘, the optimization problem is given by:

min
U

𝑝 (𝑥𝑘+𝑁 ) +
𝑁−1∑
𝑖=0

𝑞 (𝑥𝑘+𝑖 , 𝑢𝑘+𝑖)

subject to:

𝑥𝑘+1+𝑖 = 𝑓 (𝑥𝑘+𝑖 , 𝑢𝑘+𝑖), ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

(linear case: 𝑥𝑘+1+𝑖 = 𝐴𝑥𝑘+𝑖 + 𝐵𝑢𝑘+𝑖 , ∀𝑖, 0 ≤ 𝑖 ≤ 𝑁 − 1)
𝑥𝑘+𝑖 ∈ 𝑋, 𝑥𝑘+𝑖 ∈ U ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑥𝑘+𝑁 ∈ 𝑋 𝑓

𝑥0 = 𝑥(𝑘)

where U = {𝑢𝑘 , 𝑢𝑘+1, ..., 𝑢𝑘+𝑁−1} and 𝑁 represents the receding horizon length
(number of steps in the future that the MPC strategy should consider).
As can be noticed, the cost function presents two terms: one related to the
terminal cost and one associated with all other instants of time.
Moreover there is an additional constraint 𝑥𝑘+𝑁 ∈ 𝑋 𝑓 , which when combined
with the terminal cost guarantees persistent feasibility and stability of the MPC
strategy under some conditions that will be discussed later on. For further
details about model predictive control theory refer to [23] and [6].
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3.4.3 Lyapunov stability

Consider a dynamical system which satisfies

𝑥¤ = 𝑓 (𝑥, 𝑡) 𝑥 (𝑡0) = 𝑥0 𝑥 ∈ R𝑛 .

Assume that 𝑓 (𝑥, 𝑡) is Lipschitz continuous with respect to 𝑥, uniformly in 𝑡,
and piecewise continuous in 𝑡 and 𝑥∗ = 0 is an equilibrium point for the system.

Definition 3.4.1 (Lyapunov stability).
The equilibrium point 𝑥∗ = 0 is stable (in the sense of Lyapunov) at 𝑡 = 𝑡0, if for any
𝜖 > 0 there exists a 𝛿 (𝑡0, 𝜖) > 0 such that:

‖𝑥 (𝑡0)‖ < 𝛿 =⇒ ‖𝑥(𝑡)‖ < 𝜖, ∀𝑡 ≥ 𝑡0.

Lyapunov stability is a very mild requirement on equilibrium points.
In particular, it does not require that trajectories starting close to the origin tend
to the origin asymptotically.

Definition 3.4.2 (Asymptotic stability).
An equilibrium point 𝑥∗ = 0 is asymptotically stable at 𝑡 = 𝑡0, if
1. 𝑥∗ = 0 is stable, and
2. 𝑥∗ = 0 is locally attractive;
i.e., there exists 𝛿 (𝑡0) such that:

‖𝑥 (𝑡0)‖ < 𝛿 =⇒ lim
𝑡→∞ 𝑥(𝑡) = 0

Definitions 3.4.1 and 3.4.2 are local definitions; in fact they describe the behavior
of a system near an equilibrium point. An equilibrium point 𝑥∗ is said to be
globally stable if it is stable for all initial conditions 𝑥0 ∈ R𝑛 (see more details in
[18] - [20]).

25



3.4. MODEL PREDICTIVE CONTROL

3.4.4 Persistent feasibility

Some basic concepts and defintions are provided to help readers understand
what persistent feasibility means in the context of MPC.

Definition 3.4.3 (One-step backward reachable set).

Pre(S) = {𝑥 ∈ R𝑛 : ∃𝑢 ∈ 𝑈 𝑠.𝑡. 𝑓 (𝑥, 𝑢) ∈ S}
Definition 3.4.4 (One-step forward reachable set).

Reach(S) = {
𝑥 ∈ R𝑛 : ∃𝑢 ∈ 𝑈, 𝑧 ∈ S s.t. 𝑥 = 𝑓 (𝑧, 𝑢)}

Definition 3.4.5 (N-step backward reachable set subject to system constraints).

ℛ−𝑗+1(S) = Pre
(
ℛ−𝑗 (S)

)
∩ 𝑋, ℛ−0 (S) = S

Definition 3.4.6 (𝑁-step forward reachable set subject to system contraints).

ℛ+𝑗+1(S) = Reach
(
ℛ+𝑗 (S)

)
∩ 𝑋, ℛ+0 (S) = S

Definition 3.4.7 (Positive Invariant Set).
Given a constrained autonomous system 𝑥(𝑘 + 1) = 𝑓𝑎(𝑥(𝑘)), 𝑡 ∈ Z+, 𝑥(𝑘) ∈ 𝑋.
A set O ⊂ 𝑋 is called a positive invariant set if

𝑥(0) ∈ O ⇒ 𝑥(𝑘) ∈ O ,∀𝑘 ∈ Z+

Definition 3.4.8 (Maximal Positive Invariant Set O∗).
A set O∗ is said to be the maximal positive invariant set, if it is positive invariant and
includes all invariant sets contained in 𝑋.

Definition 3.4.9 (Control Invariant Set).
A set C ⊆ 𝑋 is called a Control Invariant Set for a dynamic system if

𝑥(𝑘) ∈ C ⇒ ∃𝑢(𝑘) ∈ 𝑈 such that 𝑓 (𝑥(𝑘), 𝑢(𝑘)) ∈ C ,∀𝑘 ∈ Z+
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Definition 3.4.10 (Maximal control invariant set C∗).
A set C∗ is said to be the maximal control invariant set, if it is control invariant and
includes all control invariant sets contained in 𝑋.

A feasible set 𝑋𝑘 is the set of feasible state 𝑥𝑘 at prediction step 𝑘 for which the
optimization problem (see 3.4.2) is feasible:

𝑋𝑘 =
{
𝑥 ∈ 𝑋 : ∃𝑢 ∈ 𝑈, s.t. 𝑓 (𝑥, 𝑢) ∈ 𝑋𝑘+1

}
, with 𝑋𝑁 = 𝑋 𝑓

Or equivalently 𝑋𝑘 = Pre (𝑋𝑘+1) ∩ 𝑋, with 𝑋𝑁 = 𝑋 𝑓 .

Once all the previous concepts have been introduced, the notion of persistent
feasibility can be formalized.

Definition 3.4.11 (MPC persistent feasibility).
Starting from any intial state 𝑥(0) ∈ 𝑋0, persistent feasibility is achieved if the MPC
control law ensures that feasibility is guaranteed at all time (i.e. 𝑥(𝑘) ∈ 𝑋0, for all
𝑘 ∈ Z+).
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Chapter 4

Planning and control for a single
robot

In this chapter a detailed description about the theoritical background used in
the degree project is presented, in order to formalize the main concepts and
techniques needed for practical applications.

4.1 Linear Temporal Logic planner

First of all, as stated in the introduction, more complex and high-level tasks
are desired, which has been a major focus in recent years. In fact robots can
operate in risky conditions, such as poor lighting, toxic substances, or tight
spaces saving workers from dangerous situations. For such reason the thesis
focuses on temporal logic specifications, which can thoroughly cover a variety
of challenging robot assignments. Therefore each agent is meant to fullfill a task,
assigned through a LTL formula.
Some examples are:

1. 𝜑 = (□♢ "loaded" ) ∧ (□♢ "unloaded" ) ∧ (□¬ 𝑟4)

2. 𝜑 = (□¬ 𝑟2) ∧ ((♢□ 𝑟4) ∨ (♢□ 𝑟6))
In the first task, the agent must be loaded infinitely often (for example, to pick
up a package), unloaded infinitely often and always avoid region 𝑟4 (unsafe
area). Such a task is a high-level pick and place task that can be encoded using
an LTL formula. The latter requires the agent to always avoid region 𝑟2 while
also visiting and remaining in either region 𝑟4 or region 𝑟6 in the future. Aside
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from supervision and pick and place tasks, it is simple to grasp the potential
of LTL formulas, which can appear in even more complex and difficult agent
assignments with a simple logical formalization.
Once the task has been assigned to an agent, a global planner must be
implemented to produce the sequence of actions required to meet the given
specification. A pre-built ROS package [3] was used for this purpose, and a brief
explanation of how a global planner can be built using the given LTL formula is
provided.

4.1.1 Software architecture

The developed planner relies on a node-based architecture and is integrated
within the well-known open-source framework ROS. The LTL (core) planner
determines the robot agent plan given an LTL specification, the agent model, and
its workspace (i.e. the sequence of actions in order to fullfill the given LTL task in
its environment). The agent model is represented by a weighted finite transition
system (wFTS), and depending on the wFTS state retrieved by the agent node,
the plan is updated or the next action command to be executed is output by
the global planner. Each agent has its own node, which communicates with
the planner node and converts the high-level plan into agent-specific low-level
commands. The proposed planner sends high-level commands (of the string
type) to the agent node, based on the correspondence between the assigned
LTL specification and a finite Büchi automaton. Such high-level commands are
translated into low-level inputs for the specific agent.
A state monitor node has also been implemented to simplify agent physical state
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localization and mapping it into the corresponding abstract wFTS state.
The wFTS is a ROS parameter that can be accessed by any ROS node. To run
additional code inside the planner node, a plugin functionality has also been
added, offering a modular way to implement new features, such as the HIL
perspective that will be discussed in Section 5.3.

4.1.2 LTL core and planner

The general planner, which is not agent-specific, is included in the core package.
Software integration on a variety of robot platforms, including mobile robots
and multi-DOF robot manipulators, is made possible by separating the LTL core
planner from the agent-specific node. The input to the planner node consists of
an agent model wFTS and an LTL task 𝜑.

LTL TO NBA

First, the LTL formula 𝜑 is used to produce the corresponding NBA ℬ𝜑 via the
LTL2BA software [12]. The generated plan is published on a ROS topic, further
information can be found in the documentation [4].

AGENT MODEL

The agent’s workspace has been divided into regions, with permissible
transitions between them and the different actions that can be taken. Remember
that a wFTS, which encodes all potential agent transitions, is utilized for agent
modeling. Furthermore, the developed ROS package considers not only 2D
motion models, but also multi-dimensional models and more complicated
action models for a more generic framework. As long as the state-space can be
represented as a finite transition system, the planner can be applied with any
sort of agent, simply by mixing any type of discretizable state-space in the agent
model (e.g., 3D motion, battery status, pick/drop state, and so on...).
Notably, the LTL planner always produces a sequence of actions in which
each action is carried out one at a time, forcing that only one dimensional
states change by performing one action. In general, such an assumption is not
restrictive, because different motion/action models describe different aspects
of the agent state (for example pose, battery condition, loaded/unloaded).
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PRODUCT BÜCHI AUTOMATON AND PLAN GENERATION

The previously obtained NBA𝜑 and the wFTS intersection D is used by the
LTL planner to generate a discrete plan. A previous work [25] is specifically
investigated in order to get the code for plan generation. A PBA AP is defined
as a tuple:

AP = 𝐵𝜑 ⊗ D = (𝑆P , 𝛿P , 𝑆P ,0, ℱP ,WP)
where𝑆P = 𝑆×𝑄𝑃 ; transition relation

(〈𝑠, 𝑞〉, 〈𝑠′, 𝑞′〉) ∈ 𝛿P iff∃𝜎 ∈ 𝛿, 𝑠′ ∈ 𝛿(𝑠, 𝜎)
and ∃𝜎𝑎 ∈ Σ𝑃 ,

(
𝑞, 𝜎𝑎 , 𝑞′

) ∈→P; the set of initial states 𝑆P ,0 = 𝑆0 × 𝑄0; the
set of accepting states ℱP =

(
𝐹 ×𝑄𝑃

)
; the weight function 𝑊P ⊃: 𝛿P →

R+,𝑊P
(〈𝑠, 𝑞}, 〈𝑠′, 𝑞′〉) =𝑊𝑃

(
𝑞, 𝑞′

)
.

Using model-checking methods [5], an optimal run could be obtained from the
defined PBA and projected back to the wFTS intersection D. Accepting runs
have a prefix-suffix structure of this kind: 𝑟P = 𝑝0, 𝑝1 · · · 𝑝𝑘

(
𝑝𝑘+1 . . . . . . 𝑝𝑛𝑝𝑘

)𝜔,
where 𝑝0 ∈ 𝑆P ,0 and 𝑝𝑘 ∈ ℱP .
The output word is composed of two separate parts: a finite prefix part that is
executed only once from the initial state 𝑝0 to an accepting state 𝑝𝑘 and a suffix
part that is repeated infinitely from the accepting state 𝑝𝑘 to itself.
Additionally, the optimal accepting run minimizes a cost function based on
transition weights. The optimal accepting run has a corresponding action
sequence that the agent must carry out in a prefix-suffix structure in order
to fulfill its LTL specification.
The planner node also monitors the execution of the generated plan and provides
the next action command to the agent node.

AGENT-LEVEL SOFTWARE

The implementation of agent-level nodes (see Figure 4.1) makes them
agent-specific (or even scenario-specific). The agent node is responsible for
translating the action command (string type) and sending the appropriate
low-level commands to the actual system. State monitors also keep track of
physical system configurations and link them to the proper weighted finite
transition system state (whether they operate as separate nodes or are integrated
into the agent node). Finally the agent node aggregates these states to a TS state
and publishes it to the planner node.
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Figure 4.1: LTL automaton stack node graph
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4.2 Rosie HEBI mobile robot model

The current section introduces the primary agent used in the master degree
project. The Rosie HEBI mobile robot is an omnidirectional mobile platform
with three omnidirectional wheels that has two goals: to facilitate the design of
control algorithms and to facilitate the development of mobile robots in general
by providing a ready-to-use motion solution. Over the last few decades, the
research community [31] - [15] has paid increasing attention to and investigated
omni-directional mobile robot (OMR). One of the benefits of an OMR is that
it does not have non-holonomic constraints, which are present in differentially
driven mobile robots [10] - [27].
The mobile platform may be simply moved wherever the user wishes thanks to
the ability to regulate the rotation of each omnidirectional wheel, exemplifying
the control law design.

Figure 4.2: Rosie HEBI mobile base

An omnidirectional wheel is made up of a wheel and rollers, as shown in Figure
4.3. Hence the omnidirectional wheel speed is obtained as a combination of
wheel speed and roller speed. Refer to [24] for more information on HEBI
platforms and hardware components.
To execute the proposed plan retrieved by the LTL core planner and thus
complete the assigned task, two navigation approaches will be proposed. For
such purpose the Rosie HEBI mobile base’s kinematics model is derived.

Figure 4.3: Rosie HEBI wheel
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4.2.1 Kinematics model

Even though an accurate model can be obtained, for practical motivations a
relatively simple model can be considered. Thus in order to design a good
navigation controller that ensures safety, a kinematics model of the HEBI Rosie
mobile base is sufficient.
A kinematics model, as is widely known in the literature, represents the motion
of mechanical points, bodies, and systems without taking into account the forces
acting on them and their corresponding physical properties.
In particular for the specific case, the following model is used:

Figure 4.4: Rosie HEBI kinematics model

Denoting with ℱ𝑤 = 𝑂𝑤 − 𝑥𝑤𝑦𝑤 and ℱ𝑏 = 𝑂𝑏 − 𝑥𝑏𝑦𝑏 respectively the world and
the body reference frames, the kinematics is derived:

x¤(𝑡) = 𝑓 (x(𝑡), u(𝑡)), x(0) = x0 (4.1)

where:

x(𝑡) = [
𝑥𝑏 ; 𝑦𝑏 ; 𝜃𝑏

]> := state vector in the world frame

u(𝑡) = [
𝑣𝑥,𝑏 ; 𝑣𝑦,𝑏 ; 𝑤𝑏

]> := input vector (robot velocities) in the body frame

x0 =
[
𝑥0,𝑏 ; 𝑦0,𝑏 ; 𝜃0,𝑏

]> := represents the initial state
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Hence equation (4.1) can be written as:
𝑥¤ 𝑏 = cos (𝜃𝑏) · 𝑣𝑥,𝑏 − sin (𝜃𝑏) · 𝑣𝑦,𝑏
𝑦¤ 𝑏 = sin (𝜃𝑏) · 𝑣𝑥,𝑏 + cos (𝜃𝑏) · 𝑣𝑦,𝑏
𝜃¤ 𝑏 = 𝑤𝑏

(4.2)

In matrix form:

=⇒

𝑥¤
𝑦¤
𝜃¤

 =


cos𝜃𝑏 − sin𝜃𝑏 0
sin𝜃𝑏 cos𝜃𝑏 0

0 0 1



𝑣𝑥,𝑏
𝑣𝑦,𝑏
𝑤𝑏

 (4.3)

Essentially, it is the input vector 𝑢(𝑡) multiplied by a rotation matrix, resulting
in a transformation of the input vector coordinates from the body frame to the
world frame. As can be seen, the presented model is a high-level representation
of the system that excludes electrical and mechanical aspects. The decision not
to include them in the model is based on the fact that the real robot already
includes low-level controls that convert linear and angular velocities (

(
𝑣𝑥,𝑏 , 𝑣𝑦,𝑏

)
and 𝑤𝑏 respectively) into the necessary voltage for the actuators.
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4.3 Navigation

The navigation problem will be addressed in this section, with two different
approaches analyzed and two final proposed autonomous controllers.
The first relies on RRT theory and a PID controller for point-to-point tracking,
while the second is based on MPC theory (see Section 3.4). To understand why
one was chosen over the other, the environment in which the agents would move
must be described.

4.3.1 Agents workspace

The agents workspace is assumed to be bounded and it is denoted byW ⊂ R2.
It consists of 𝑁 > 0 regions of interest, denoted by Π = {𝜋1,𝜋2, · · · ,𝜋𝑁 }, where
𝜋𝑛 ⊂W. Furthermore, there is a set of 𝑀 > 0 properties (atomic propositions)
associated with Π, denoted by 𝐴𝑃 = {𝑎0, 𝑎1, · · · , 𝑎𝑀}, e.g. "the current location
is an unknown region".
The agent’s motion within the workspace is abstracted as a labeled transition
system T ≜ (Π,→,Π0, 𝐴𝑃, 𝐿), where Π, 𝐴𝑃 are defined above, →⊆ Π × Π is
the transition relation that

(
𝜋𝑖 ,𝜋 𝑗

) ∈→ if the robot can move from region 𝜋𝑖
to region 𝜋 𝑗 without crossing other regions in Π, Π0 ∈ Π is where the robot
starts initially, 𝐿 : Π → 2𝐴𝑃 is the labeling function where 𝐿 (𝜋𝑖) returns the
set of properties satisfied by 𝜋𝑖 . Moreover the environement is assumed to be
partially-known and dynamic, more precisely the workspace is assumed to be
fully-known but environmental changes can take place (e.g. non-static obstacles,
other agents and objects). As illustrative example, assume that the environment
is a 2D space (i.e. W ⊂ R2 ) and can be divided into six square regions:

Figure 4.5: Example: workspace discretization
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As stated above, those regions can be denoted by 𝜋1,𝜋2,𝜋3,𝜋4,𝜋5,𝜋6.
Additionally, suppose that transitions between regions are allowed only when
areas are adjacent and not diagonally close. For instance𝜋1 and𝜋2 are connected,
while 𝜋1 and 𝜋5 are not.
If the current agent region is 𝜋𝑠 and the next action retrieved by the LTL planner
is "goto_r𝑔" (i.e. move to region 𝜋𝑔), a prior requirement to satisfy is that the
robot navigation from region 𝜋𝑠 to 𝜋𝑔 must remain within W and without
crossing other regions in Π. Such an example highlights a prerequisite that the
navigation autonomous controller must achieve.
In fact, if the initial region is 𝜋1 and the LTL task encodes "it is forbidden to
access region 𝜋4", the navigation path from 𝜋1 to 𝜋2 must never cross through
that area.

4.3.2 RRT planning and point-to-point tracking controller

To handle navigation at first an autonoumous controller, obtained as
combination of state-space sampling and a point-to-point tracking controller,
is developed.
Primarly for each possible region-to-region transition (𝜋𝑠 → 𝜋𝑔) , an RRT
based algorithm is used to generate the shortest path connecting 𝜋𝑠 and 𝜋𝑔 .
Consequently the state-space is sampled and each sample (x,y position) is used
to construct a graph tree structure, from which the path plan is obtained (for
instance by inspecting Dĳkstra as done in [30] and computing in that way the
shortest path). All referred computations are made offline, otherwise a large
workspace discretization will turn to be intractable in an online approach.
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After the online process, where all the region-to-region path trajectories have
been computed, a PID controller is developed as follows to track each trajectory
point. Thanks to the updated x,y agent position, at each instant of time 𝑡 the
position error is considered:

e(𝑡) =

𝑒𝑥(𝑡)
𝑒𝑦(𝑡)
𝑒𝜃(𝑡)

 =

𝑥des − 𝑥(𝑡)
𝑦des − 𝑦(𝑡)
𝜃des − 𝜃(𝑡)


where:
𝑥𝑑𝑒𝑠 := is the point trajectory x-coordinate
𝑦𝑑𝑒𝑠 := is the point trajectory y-coordinate
𝜃𝑑𝑒𝑠 := is the point trajectory theta-coordinate (which will be imposed to be zero,
i.e. the robot will be aligned with the world reference frame for the whole path)

Such error is then used to tune and design a PID controller, which will end up
to have the following structure:

u(𝑡) = 𝐾P · e(𝑡) + 𝐾I ·
∫ 𝑡

0
e(𝜏)d𝜏 + 𝐾D · de(𝑡)

d𝑡

where 𝐾P, 𝐾I, and 𝐾D, all non-negative, stand the coefficients for the
proportional, integral, and derivative terms respectively.
A PID controller contains three control terms, however depending on the desired
result, just two terms may be enough to provide a suitable control law.
Numerous simulations and tests have been performed in order to evaluate
performances and choose the best gains. Even though this type of navigation
algorithm has been confirmed to be effective and reliable, there are no theoretical
assurances that the agent won’t move outside the start and target areas (issue
mentioned in the illustrative case in 4.3). Although it can be demonstrated
theoretically that the integral gain allows convergence towards the objective
point, the agent’s path to that point cannot be predicted.
An alternative navigation strategy has been designed and then put into practice
in order to address the latter stated issue, as will be outlined in Chapter 6.
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4.3.3 Model Predictive Controller

As mentioned in Section 3.4, model predictive control (MPC) allows to insert
both state and input constraints within the control law. Such control strategy
enables to have a theoretical proof and solve the previous disccussed problem.

Figure 4.6: MPC controller

The degree project focalizes on a squares division of the workspace, similarly
as that of Figure 4.5 and the model chosen for prediction purposes is the one
formulated in Section 4.2.1. Each action retrieved by the LTL core planner mainly
will be the next region the agent should move to, encoded through a string (e.g.
"goto_r5). In pursuit of ensuring a safe navigation without violating the assigned
LTL task, the extreme corners of the start and goal regions are added as hard
constraints in the cost function, resulting in the optimization problem:

min
U

[x(𝑘 + 𝑁) − x𝑑𝑒𝑠]𝑇𝑄𝑁[x(𝑘 + 𝑁) − x𝑑𝑒𝑠] +
𝑁−1∑
𝑖=0

[
[x(𝑘 + 𝑖) − x𝑑𝑒𝑠]𝑇𝑄[x(𝑘 + 𝑖) − x𝑑𝑒𝑠] + u(𝑘 + 𝑖)𝑇𝑅u(𝑘 + 𝑖)

]
subject to:

x𝑘+1+𝑖 = 𝑓 (x𝑘+𝑖 , u𝑘+𝑖), ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

x𝑘+𝑖 ∈ 𝑋, u𝑘+𝑖 ∈ U ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

x𝑘+𝑁 ∈ 𝑋 𝑓

x0 = x(𝑘)

(4.4)

A quadratic cost function of both state and input has been selected for the specific
case, with the matrices 𝑄 ∈ R𝑛×𝑛 , 𝑄𝑁 ∈ R𝑛×𝑛 and 𝑅 ∈ R𝑚×𝑚 set to be positive
definite.
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As can be noticed, the cost function involves two terms: one related to x(𝑘 +
𝑖) − x𝑑𝑒𝑠 (i.e. the distance between the state vector and the desired pose that
the agent should reach, thus the next region given by the planner) and another
that is related to the input effort required to get there. State constraints are
represented by:

𝑥𝑙𝑜𝑤𝑒𝑟_𝑏𝑥 + 𝑏𝑎𝑠𝑒_ 𝑓 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡2 ≤ 𝑥𝑘+𝑖 ≤ 𝑥𝑢𝑝𝑝𝑒𝑟_𝑏𝑥 − 𝑏𝑎𝑠𝑒_ 𝑓 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡2 ∀𝑖, 0 ≤ 𝑖 ≤ 𝑁

𝑦𝑙𝑜𝑤𝑒𝑟_𝑏𝑥 + 𝑏𝑎𝑠𝑒_ 𝑓 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡2 ≤ 𝑦𝑘+𝑖 ≤ 𝑦𝑢𝑝𝑝𝑒𝑟_𝑏𝑥 − 𝑏𝑎𝑠𝑒_ 𝑓 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡2 ∀𝑖, 0 ≤ 𝑖 ≤ 𝑁

These constraints account for the lower and upper bounds of the agent’s allowed
range of motion. To further guarantee that the body’s agent completely satisfies
such motion limits, the base footprint is taken into account. As can be observed,
adding state constraints to the cost function enables safe navigation while
preventing possible agent task violations. However, the MPC technique arises
two additional issues that need to be properly addressed: stability and persistent
feasibility.
Lyapunov stability is used to define stability, and persistent feasibility is the
principle that the autonomous controller guarantees feasibility at all future times
(i.e., there is a feasible solution at every step in the future).
One solution to ensure (or enforce) stability for any step horizon is to include
a terminal constraint, which forces the state to assume a particular value at the
end of the prediction horizon. Proof of MPC stability and persistent feasibility
under mild constraint are reported in Appendix A and Appendix B.

MPC DESIGN PARAMETERS

The choice of MPC parameters will affect not only the control performances
but also the computational complexity of the MPC algorithm, which solves an
online optimization problem at each time step. Firstly the sampling time𝑇𝑠 must
be chosen properly, which determines the rate at which the controller executes
the control algorithm.
If it is too big, when a disturbance comes in, the controller won’t be able to react
to the disturbance fast enough. On the other hand if the sampling time is too
small, the controller can react faster to disturbances and setpoint changes, but
this causes an excessive computational load. To find the right balance between
performance and computational effort, a good choice is to fit 10 to 20 samples
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within the rise time of the open-loop system response.
As reported in Section 3.4, at each time step the MPC controller makes
predictions about the future plant output, and the optimizer finds the optimal
sequence of control inputs that drives the predicted plant output as close to the
setpoint as possible.
The number of predicted future time steps is called the prediction horizon and
shows how far the controller predicts into the future. The prediction horizon
should cover the significant dynamics of the system, otherwise some important
dynamics aspects may not be taken into account and it might be too late to correct
them. At the same time a large prediction horizon will arise on a computational
waste of time, since some environmental changes can take place.

Figure 4.7: MPC: prediction and control horizon

Another important design parameter is the control horizon, if Figure 4.7
represents the set of future control inputs leading to that predicted plan output,
the number of control actions to time step 𝑚 is called the control horizon.
Smaller the control horizon is, fewer are the computations. However increasing
such parameter could lead to get better predictions but at the cost of increasing
the complexity. Certaintly the control horizon can be chosen the same as the
prediction horizon, nevertheless usually only the first couple of control inputs
have a significant effect on the predicted output behavior, while the remaining
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actions have only a minor effect. Furthermore MPC can include input and
state constraints, which can be either thought as soft or hard constraints. Hard
constraints cannot be violated, whereas soft constraints can be violated (often
used to avoid conflicting requirements in the optimization).
The design of the MPC controller has been built by carefully selecting all
parameters for the particular experiments that have been taken, keeping in
mind the above theoretical guidelines.
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Chapter 5

Online replanning for multi-robot
systems

Robots and autonoumos vehicles are opening up new routes to success for
many industries. But to smooth the way to commercial advantage, innovators
must negotiate a challenging problem: how to enhance navigation and collision
avoidance. Sitting on a production line is one thing, but it is quite another when
an autonomous system ventures out into crowded and dynamic environments.
In most solutions it has to freeze, unable to progress until the path forward has
cleared. To be fit for purpose in environments such as streets, farms, construction
sites, space surfaces, underwater areas and many other, robots and autonomous
vehicles must react to the random movements of people and objects.

Figure 5.1: Partially-known environment
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For example, an autonomous vehicle moving in a crowded city can
encounter pedestrians crossing the street, distracted drivers, new routine utility
maintenance, unreliable traffic signals, or blind curves. Hence, there are many
different factors to take into consideration, which open up new and different
environomental conditions where the autonomous agent should move and deal
with. Multiple issues might emerge, considering an autonomous agent in a
dynamic environment. But extending such randomness to a multi-agent system,
where motion coordination is fundamental to achieve complex and challenging
goals, it may increase the solution’s complexity.
The degree project aims to tackle those conditions and objectives, using a
decentralized approach which will be explained in details.
First of all, a multi-robot system is introduced, which consists of multiple
autonomous agents or robots. Additionally, the agent’s workspace is now
supposed to be partially-known. The term partially-known environment refers
to a situation in which the agent is unaware of the physical laws governing the
environment and hence of the environmental changes that will take place (such
as human beings, non-static obstacles, etc...).
The degree project will specifically consider two or three HEBI Rosie mobile
bases as multi-agent systems.

Figure 5.2: Thesis multi-agent system

The initially planned trajectory for each robot, retrieved by the LTL core planner
to fullfill the assigned task, does not account for the motion of other robots
or moving obstacles. Moreover, each robot only has access to local view and
data. As a result, a motion coordination algorithm is required during the online
implementation.
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Two distinct cases will be treated using an appropriate technique. The goal of this
section is to examine in depth the control algorithm that enables reactive online
replanning of each robot. Both solutions are built with a decentralized approach,
keeping in mind the local view and limited knowledge about the surroundings.
Every agent is thought to have a local view and access to information within a
circle with a preset radius; for the degree project, such radius will be between
0.5 and 1 meter. Each robot may identify conflicts in its neighborhood, using
sensing data about the workspace and broadcast data from other robots. The
robots then do motion replanning to ensure that conflicts are avoided and the
given task is satisfied.

Algorithm 2 localTrajectory algorithm
Input : 𝜉𝑖 (𝑡𝑘) , 𝐵𝑖 (𝜉𝑖 (𝑡𝑘)) , Post (𝐵𝑖 (𝜉𝑖 (𝑡𝑘))) ,P𝑖 , 𝑉P𝑖 ,O, and 𝑟safe.
Output: A local transition system T 𝐿

𝑐,𝑖

1 Initialize T 𝐿
𝑐,𝑖 =

(
𝑆𝐿𝑖 , 𝑆

𝐿
𝑖,0, 𝐴𝑃𝜑𝑖 , →𝐿

𝑐,𝑖 , 𝐿𝑐,𝑖
)

and 𝜉
𝑓
𝑖 = ∅, where 𝑆𝐿𝑖 = 𝑆𝐿𝑖,0 = 𝜉𝑖 (𝑡𝑘)

and→ 𝐿
𝑐,𝑖 = ∅.

2 for 𝑘 ← 1 to 𝑁𝑚𝑎𝑥
𝑖 do

3 𝜉s← generateSample (𝑆𝐴𝑖 (𝑡𝑘)),
𝜉𝑛 ← nearest

(
𝑆𝐿𝑖 , 𝜉𝑠

)
,

Solve the optimization program P (𝜉𝑛 , 𝜉𝑠 , 𝜏𝑠), which returns 𝜉𝑟 ,
𝐵𝑖 (𝜉𝑟) ← 𝛽P𝑖 (𝜉𝑟) ∩ {𝐵𝑖 (𝜉𝑛) ∪ Post (𝐵𝑖 (𝜉𝑛))}
if 𝐵𝑖 (𝜉𝑟) ≠ ∅ ∧𝑉𝑇𝑐,𝑖 (𝜉𝑟 , 𝐵𝑖 (𝜉𝑟)) < ∞, then

4 if projℓ ([𝜉𝑛 , 𝜉𝑟]) 𝑖𝑠𝑂𝑏𝑠𝑡𝐹𝑟𝑒𝑒(O𝑖 (𝑡𝑘)) ∧ 𝑠𝑎 𝑓 𝑒𝑀𝑜𝑡𝑖𝑜𝑛(𝜉𝑟 , 𝑟safe) then
5 𝑆𝐿𝑖 ← 𝑆𝐿𝑖 ∪ {𝜉𝑟} ;→𝐿

𝑐,𝑖=→𝐿
𝑐,𝑖 ∪

{
𝜉𝑛

𝑢𝑖→ 𝜉𝑟
}

6 end if
7 end if
8 if proj𝑙 (𝜉𝑟) ∉ ℬ

(
projℓ (𝜉𝑖 (𝑡𝑘)) , 𝑅

)
then

9 𝑘 = 𝑁max
𝑖 + 1

𝜉
𝑓
𝑖 ← 𝜉𝑟

10 end if
11 end for
12 return T 𝐿

𝑐,𝑖
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The online motion replanning structure consists of a local and a global trajectory
generation algorithms, where the global trajectory is the one provided by
the model predictive controller explained in Section 4.6. The local trajectory
generation process is built starting from the work made in [22], highlighted in
Algorithm 2, which relies on a sampling based method that operates online
during motion. In fact, whenever a conflict is detected, the algorithm starts
to randomly sample the state-space and construct a graph to find a path-free
trajectory, which leads the agent outside of the sensing area and ensures the
satisfaction of the given task.
The above algorithm takes as input the current i-th robot pose 𝜉𝑖 (𝑡𝑘), 𝐵𝑖 (𝜉𝑖 (𝑡𝑘)),
Post (𝐵𝑖 (𝜉𝑖 (𝑡𝑘))), the offline precomputed product Büchi automatonP𝑖 (obtained
combining the agent transition system and the assigned LTL task), the potential
function𝑉P𝑖 and the set of obstaclesOknown in advance. Firstly a local transition
system T 𝐿

𝑐,𝑖 is initialized, it will be constructed throughout the algorithm and
returned as final outcome. At each iteration a new state 𝜉𝑠 is taken randomly
from the sampling area 𝑆𝐴𝑖 (𝑡𝑘) :=

{(𝑝, 𝜃) ∈ X𝑖 : 𝑝 ∈ ℬ (
proj𝑙 (𝜉𝑖 (𝑡𝑘)) , 𝑅 + 𝜂

)}
(line 3), where 𝜂 > 0 is an offline constant which ensures to get out from
ℬ (

projℓ (𝜉𝑖 (𝑡𝑘)) , 𝑅
)
. Such detail is fundamental to check the terminal condition

(line 12). Then through the function nearest
(
𝑆𝐿𝑖 , 𝜉𝑠

)
an RRT primitive is applied,

which returns the nearest state to 𝜉𝑠 in 𝑆𝐿𝑖 .
At this stage an optimization problem P (𝜉𝑛 , 𝜉𝑠 , 𝜏𝑠) is solved, so as to find the
closest reachable state from the new sample 𝜉𝑠 :

min
𝑢𝑖∈U𝑖
‖𝜉𝑟 − 𝜉𝑠 ‖

subject to:

𝜉𝑖(0) = 𝜉𝑛

𝜉𝑟 = 𝜉𝑛 +
∫ 𝜏𝑠

0
𝐹𝑖 (𝜉𝑖(𝑠), 𝑢𝑖) 𝑑𝑠

where 𝜏𝑠 represents the system sampling time, while 𝐹𝑖 (𝜉𝑖(𝑠), 𝑢𝑖) describes the
robot’s kinematics (described in Section 4.2.1).
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Once 𝜉𝑟 is obtained, the corresponding subset of valid Büchi states 𝐵𝑖 (𝜉𝑟) is
computed (line 6). After that, if both conditions 𝐵𝑖 (𝜉𝑟) ≠ ∅ and𝑉𝑇𝑒 ,𝑖 (𝜉𝑟 , 𝐵𝑖 (𝜉𝑟)) <
∞ are met (which guarantees that there exists a path, starting from 𝜉𝑟 , that
reaches a self-reachable accepting state of P𝑖), then a potential new state is
considered.
Such state 𝜉𝑟 is added into 𝑆𝐿𝑖 and the corresponding transition relation

𝜉𝑛
𝑢∗𝑖→ 𝜉𝑟 is added into →𝐿

𝑐,𝑖 , if the path connecting 𝜉𝑛 with 𝜉𝑟 is obtacles free
and the motion is considered safe. Two requirements checked through the
function 𝑖𝑠𝑂𝑏𝑠𝑡𝐹𝑟𝑒𝑒(O𝑖 (𝑡𝑘)) and 𝑠𝑎 𝑓 𝑒𝑀𝑜𝑡𝑖𝑜𝑛(𝜉𝑟 , 𝑟safe) (tested considering the
base footprint of the HEBI Rosie base, set to 0.64 meters).
The algorithm is stopped, when the local sampling tree reaches the outside of the
sensing area and the leaf node 𝜉

𝑓
𝑖 is then returned (given by the corresponding

state 𝜉𝑟) (line 12-14). Finally, the algorithm output 𝜉𝑟 is used as starting position
from LTL core planner, which replans the sequence of actions in order to
accomplish the assigned agent specification.
The described online procedure contains, in the local transition system T 𝐿

𝑐,𝑖 , the
sequence of positions which the associated robot must follow.
Such sequence can be tracked in different ways: applying a PID controller
or for instance a more advanced tracking algorithm. The next subsections
will present two scenarios, leading to different strategies to track those robot
positions retrieved by the online planner.
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5.1 Local communication case

The first case assumes local communication of the nearby robots and knowledge
of obstacle locations. Regarding the latter assumption, it means that the obstacle
area is assumed to be known in advance. Such hypothesis is included in
Algorithm 2 by adding those locations in the set of obstacles O.
To coordinate the robots’ motion, local communication is instead accomplished
by creating a priority hierarchy. Therefore whenever a new robot enters the
sensing area, the localTrajectory algorithm is executed directly afterward the
priority hierarchy has applied. To clarify it, consider the given priority hierarchy
example: 𝑎𝑔𝑒𝑛𝑡𝐴 can move freely, 𝑎𝑔𝑒𝑛𝑡𝐵 before moving waits for 𝑎𝑔𝑒𝑛𝑡𝐴
communication, lastly 𝑎𝑔𝑒𝑛𝑡𝐶 waits 𝑎𝑔𝑒𝑛𝑡𝐴 and 𝑎𝑔𝑒𝑛𝑡𝐵 communication.
Hence 𝑎𝑔𝑒𝑛𝑡𝐴 will move "liberally" despite the presence of the surrounding
robots. If agent B is close to agent A, then agent B must wait for agent A to
communicate its motion (i.e., what will be the agent’s future locations), and
those future positions are included as obstacles in the local trajectory algorithm.
In all other scenarios, where just agent C is present or there are no agents
detected, 𝑎𝑔𝑒𝑛𝑡𝐵’s local trajectory process is directly applied.
The same reasoning applies to the final agent. If both agents are detected,
it awaits local communication; if only one agent is identified, it will include
exclusively such agent motion in Algorithm 2, otherwise it will move freely.
Different tracking controllers can be used in the given scenario to follow the
sequence of points provided by the local trajectory generation process. Because
those locations are always close each other, even a PID controller with accurate
gains tuning is adequate to achieve the goal (see Section 4.3).

5.2 Communication-free case

A communication-free context has been investigated in pursuit of extending
the degree project work to more practical and real-world scenarios. A collision
avoidance algorithm is added into the local navigation controller to deal with it.
Before proceeding, the concept of "trap state" need to be introduced. Trap states
are PBA states from which the Büchi acceptance condition cannot be fulfilled,
hence states that cannot reach accepting states that appear infinitely often.
The approach to deal with trap states and avoid obstacles considers a local model
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predictive controller, in which the cost function is set to be:

min
U

[x(𝑘 + 𝑁) − x𝑑𝑒𝑠]𝑇𝑄𝑁[x(𝑘 + 𝑁) − x𝑑𝑒𝑠] +
𝑁−1∑
𝑖=0

[
[x(𝑘 + 𝑖) − x𝑑𝑒𝑠]𝑇𝑄[x(𝑘 + 𝑖) − x𝑑𝑒𝑠] + u(𝑘 + 𝑖)𝑇𝑅u(𝑘 + 𝑖)

]
+

𝑁O∑
𝑗=1

𝑃O
1

𝑑𝑖𝑠𝑡 𝑗
+
𝑁Ot∑
ℓ=1

𝑃Ot
1

𝑑𝑖𝑠𝑡ℓ

subject to:

x𝑘+1+𝑖 = 𝑓 (x𝑘+𝑖 , u𝑘+𝑖), ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

x𝑘+𝑖 ∈ 𝑋, u𝑘+𝑖 ∈ U ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

x𝑘+𝑁 ∈ 𝑋 𝑓

x0 = x(𝑘)
(5.1)

The cost function is fairly similar to the one proposed in Equation (4.4), but two
more terms are inserted. Essentially at every instant of time, the local MPC
updates the obstacle positions and computes the distance 𝑑𝑖𝑠𝑡 𝑗 =

𝑝agent − 𝑝j


between agent and obstacle position. The same has been made for the trap states,
where in this case 𝑑𝑖𝑠𝑡ℓ =

𝑝agent − 𝑝ℓ
 denotes the distance between agent and

trap state position.
The suggested technique opens up a discussion on what is more appropriate to
choose, in the sense that depending on the weights 𝑃O, 𝑃Ot distinct solutions can
be preferred. For instance if it prioritized a satisfaction of the given LTL task
rather than not collide with obstacles, the weight 𝑃Ot will be set higher than 𝑃O.
On the other hand the degree project was constructed with the primary intention
of guaranteeing safety (therefore avoiding collisions with objects and other
agents) and, if possible, to fulfill the assigned task. Clearly, trap states should be
avoided whenever possible, but safety is considered more important and hence
higher will be set gain 𝑃O (related to obstacle avoidance) compared with 𝑃Ot .
However, depending on the individual objective, an alternative trade-off might
be devised and different outcomes can be produced.
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5.3 Human-in-the-loop

Because manual jobs are painful, businesses are continuously seeking for
methods to increase their productivity through automation. Not only it is
really time-consuming to do each of these individual tasks, but they end up
incurring tons of different inefficiencies. When a completely automated process
is considered, incorrect information and a difficult data cleansing challenge are
frequently the results.
A lot of examples of autonomous systems can be found in our daily life, such
as self-driving vehicles, package delivery drones and household service robots
[8]. However certain applications are more oriented towards a human-robot
interaction, where autonomous systems often perform the intended tasks under
the supervision or collaboration with human operators [11]. Hence the right
balance between intend automation and automation in which people are more
taken into consideration is the exact idea behind this new research branch.
Human-in-the-loop aims to achieve what neither a human being nor a machine
can achieve on their own.

Figure 5.3: Human in-the-loop scenario

The thesis analyzes a situation where autonomous robots are designed to
complete difficult tasks specified by an LTL formula, while a human operator
can simultaneously monitor progress, take action when necessary, or even take
over the control of the robot from the on-board autonomous controller. The
robot, on the other hand, can react to human inputs while preserving constant
safety, which is useful for guiding the robot through challenging assignments
[11]- [19].
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The proposed strategy is a mixed-initiative controller, with the intention of
extending previous works [19] - [13] to multi-agent systems. The mixed-initiative
controller relies on the following built-in function, which allow to satisfy the
given assigned task for all human inputs:

𝑘 (𝑥,O,Ot) ≜ 𝐺mix· 𝜌 (𝑑𝑜 − 𝑑𝑠)
𝜌 (𝑑𝑜 − 𝑑𝑠) + 𝜌 (𝜀 + 𝑑𝑠 − 𝑑𝑡)+(1−𝐺mix)· 𝜌 (𝑑𝑡 − 𝑑𝑠)

𝜌 (𝑑𝑡 − 𝑑𝑠) + 𝜌 (𝜀 + 𝑑𝑠 − 𝑑𝑡)

where 𝑑𝑡 ≜ min〈𝜋,𝑞1 ,𝑞2 ,𝑐〉∈Ot‖𝑥−𝜋‖ is the minimum distance between the robot
and any region within Ot; 𝑑𝑜 ≜ min〈𝜋,𝑞1 ,𝑞2 ,𝑐〉∈O‖𝑥−𝜋‖ is the minimum distance
between the robot and any obstacle within O; 𝜌(𝑠) ≜ 𝑒−1/𝑠 for 𝑠 > 0 and
𝜌(𝑠) ≜ 0 for 𝑠 ≤ 0, and 𝑑𝑠 , 𝜀 > 0 are design parameters as the safety distance
and a small buffer. Moreover 𝐺mix ∈ [0, 1] represents a gain parameter, in
order to manage the trade-off between two aspects: preventing trap states and
obstacles avoidance. Thus the mixed-initiative controller is given by:

𝑢 ≜ 𝑢𝑟
(
𝑥,𝜋𝑠 ,𝜋𝑔

) + 𝜅 (𝑟,O,Ot) 𝑢𝑘(𝑡).

Such controller is a combination of the autonomous navigation controller,
proposed in Section 4.6 and Section 5.2, with the human input command
filtered by the function 𝜅 (𝑟,O,Ot). The developed structure, which is presented
throughout the degree project, enables a safe multi-motion coordination strategy
and, as a result, the expansion of a mixed-integer controller (applied to each
agent) to multi-agent systems.
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Chapter 6

Experimental results

Experiments were carried out at the KTH Royal Institute of Technology’s Smart
Mobility Lab in Stockholm, Sweden, to verify the overall techniques described in
Chapter 4. All tests were anticipated by a successfull simulation, which takes out
some potential bugs and difficulties were addressed and fixed in the final version
of the code. The developed code and the necessary package dependencies can be
found at the GitHub repository 1. Through the use of an optical motion capture
system with twelve cameras arranged over the lab surface, the motion of the
involved rigid bodies was tracked. Additionally as already stated, the software
development is attained through the usage of Robot Operating System (ROS)
and its node-based architecture.
Each HEBI Rosie mobile base includes an on-board computer equipped with a
proper ROS version, and autonomous control is accomplished from the user PC
using the ROS API in conjunction with a Wireless platform connection.

Figure 6.1: Smart Mobility Lab, KTH Royal Institute of Technology

1URL GitHub: https://github.com/Gianmarco2410/master_thesis_repository.git
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6.1 Motion capture system: Qualisys

Qualisys Track Manager (QTM) is a Windows-based data acquisition software
with an interface that allows the user to perform 2D and 3D motion capture.
QTM is designed to provide both advanced functionality required by technically
advanced users and a simple application approach for novice users. In
combination with the Qualisys line of optical measurement hardware, QTM
will streamline the coordination of all characteristics in a sophisticated motion
capture system, allowing for the quick creation of unique and precise 2D, 3D, and
6D data. Real-time 2D, 3D, and 6D camera information is displayed during the
capture, offering instant confirmation of accurate data acquisition. Advanced
algorithms that are flexible to different movement characteristics rapidly process
and convert each 2D camera data into 3D or 6D data. The data can then be
exported to analysis software via several external formats.
All rigid body positions are shared as ROS topics within the ROS framework,
the built software then access the appropriate topic in order to use the actual
location of each entity.

Figure 6.2: Qualisys Motion Capture system
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6.2 Workspace discretization

The Smart Mobility Lab (SML) is a hub for the development and experimentation
of intelligent transportation solutions, located at KTH Royal Institute of
Technology and it consists of a 7 × 10 meters area. Given that the Qualisys
Motion capture system is constrained by ambient occlusions (PC desks, unused
objects, etc...), the laboratory configuration calls for a workspace spanning area
of 5 × 6 meters. As a result, the workspace has been discretized into thirty
squares, each of one meter side. The QTM reference frame is situated in region
R15’s center, with the y-axis pointing toward the SML access door. (see Figure
6.3).

Figure 6.3: Workspace discretization

Such choice is not only based on the potential area tracked by the Qualisys
Motion capture system, but also relies on the experimental goals and the
assigned LTL tasks of the degree project. Due of the restricted motion surface,
the presented experiments are making use of two or three HEBI Rosie mobile
bases. Therefore the workspace 𝑊 under consideration is a 5 × 6 m2 square
area, where in all future plots gray areas represent prohibited areas or static
obstacles, colored circles represent robots’ initial positions, and light colored
areas represent a set of target regions in the workspace.
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6.3 Experiment 1

Consider a multi-agent system consisting of 𝑁 = 2 HEBI Rosie robots, the
dynamics of robot 𝑖 is given by Equation (4.1), and the inputs constraints are
set as follows. For all robots the maximum permissible linear velocity is set to
0.35 𝑚/𝑠, whereas for the angular velocity a maximum speed of 0.35 𝑟𝑎𝑑/𝑠. The
sensing radius of each robot is 𝑅 = 0.8 𝑚, while the safe radius is set at 0.6 𝑚.
Initially, 𝜃𝑖 = 0 and 𝑣𝑖(0) = 0.
Experiment 1 assigns each robot to constantly survey two target regions in the
workspace (regions R8 and R20 for Rosie 0, regions R17 and R21 for Rosie 1)
with both local communication and free-communication cases investigated.
The table below lists the associated LTL formulas, starting regions, and the
offline plan generated by the LTL core planner:

EXPERIMENT #1 - SETTING

Agent Rosie 0 Rosie 1

LTL task (□♢𝑅8) ∧ (□♢𝑅20) (□♢𝑅17) ∧ (□♢𝑅21)

Starting region 𝑅7 𝑅23

Preffix plan [𝑅8, 𝑅14, 𝑅20, 𝑅14] [𝑅17, 𝑅16, 𝑅15, 𝑅21, 𝑅15]

Suffix plan [𝑅8, 𝑅14, 𝑅20, 𝑅14] [𝑅16, 𝑅17, 𝑅16, 𝑅15, 𝑅21, 𝑅15]

Table 6.1: Experiment #1

The NBA 𝐵𝑖 associated with 𝜑𝑖 ,∀𝑖 (robot LTL task) has been computed and it
consists of 3 states and 8 edges using [12] after the workspace has been discretized
in thirty area as specified in the preceding section.
The CTS T𝑖 and the PBA P𝑖 for each robot are constructed using LTLCon toolbox
[16] and finally the potential function 𝑉T𝑖 is calculated. All these quantities are
obtained offline and have no effect on the online computational cost of the local
trajectory generation described in Algorithm 2.
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Local communication case

The local communication case involves an offline hierarchy between the robots
which must be chosen in advance. In this situation, Rosie 0 has complete freedom
of motion, but Rosie 1 must wait for the other robot’s local trajectory generation.
Initially from the starting region, each robot 𝑖 navigates safely by following the
preffix-suffix sequence of regions returned by the global planner (see Table 6.1).
An MPC controller, as described in Section 4.3, ensures that the given task will
not be violated and that each region is reached.

(a) Rosie 0 trajectory (b) Rosie 1 trajectory

(c) Rosie 0 trajectory with respect to time (d) Rosie 1 trajectory with respect to time

Figure 6.4: Experiment 1.1 - Rosie position trajectory
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Figure 6.5: Experiment 1.1 - Evolution of position trajectories with respect to
time

The motion coordination algorithm (see Section 5) is applied for each robot
during online execution when potential collisions are identified.
Specifically, as far as Rosie 1 approaches the other robot, Algorithm 2 waits for
the computation of Rosie 0’s trajectory and then treats each point as an obstacle
to produce a motion-free path (described throughout Section 5.1).
The real-time position trajectories of each robot are depicted in Figure 6.4. It is
evident that each robot successfully completes its surveillance mission during
the 140 second testing. Figure 6.4 (c)-(d) show the evolution of each robot
trajectory in time and highlight that both rosies are visiting infinitely often
the assigned target regions. Figure 6.5 shows the evolution of the position
trajectories of all robots over time, where it is clear that the real-time position
trajectories are collision-free. During the experiment, conflicts are detected in
total 4 times. The hierarchical motion order and the local trajectory generating
mechanism are both activated once a conflict is noticed in order to resolve it.
Hence Rosie 0 never waits and moves without considering the future points in
which Rosie 1 will be. While Rosie 1 starts its online replan anytime Rosie
0 enters the sensing area, viewing all of its replan trajectory as a moving
obstacle. Figure 6.5 illustrates the online replan procedure, which guarantees
collision-free motion in less than a second before the robot moves again. The
real-time velocities of each Rosie are reported in Figure 6.6, where those velocities
are exactly the inputs applied by the proposed control strategy.
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(a) Rosie 0 linear velocities (b) Rosie 1 linear velocities

(c) Rosie 0 angular velocity (d) Rosie 1 angular velocity

Figure 6.6: Experiment 1.1 - Rosies velocities

The fact that all robots satisfy input requirements at all times is evident, notably
in Figure 6.5 (a)-(b). Saturation applies everty time a change of direction is
required, indeed as soon as the robot reaches the given region, it immediately
changes the target to the LTL planner’s subsequent action.
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Because of this, a large linear velocity is needed in the initial time instants due
to a big initial error in the MPC strategy. However, input constraints inserted
in the optimazion problem allow one to avoid exceeding the maximum velocity
specified. Instead Figure 6.5 (c)-(d) represent the real-time angular velocity
of each robot along the z-axis and the input action related to this velocity
component, which is more powerful whenever the online replan takes place.
A video demonstration of Experiment 1.1 can be found at the YouTube channel:
Smart Mobility Lab - Gianmarco Fedeli 2.

2URL video: https://youtu.be/mKWpqvMrW9Y
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Communication-free case with human as obstacle

A more general communication-free case has been investigated in order
to expand the application of multi-robot motion coordination. All rosie
specifications presented for Experiment #1 are still applied, however, in
comparison to the previous scenario, a human being is included to evaluate
the effectiveness of the technique suggested in Section 5.2. As before from the
starting region (Rosie 0 now has region 𝑅13 as starting region), each robot 𝑖
follows the sequence of regions obtained by the global planner in the form of
preffix-suffix and safe navigation is ensured by an MPC controller, exactly as in
the previous case. Additionally, the person involved in the experiment begins
in a neutral location, far from both robots and therefore having no influence on
their motion.

(a) Rosie 0 trajectory (b) Rosie 1 trajectory

(c) Rosie 0 trajectory with respect to time (d) Rosie 0 trajectory with respect to time

Figure 6.7: Experiment 1.2 - Rosie position trajectory
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Figure 6.7 shows rosie positions evolution in the 2-D space, underlining
the satisfaction of the predefined LTL tasks. Differently from the local
communication case, the online replan algorithm applies whenever a robot
detects obstacles in its sensing area. As a result, the monitoring activity is
affected not only by other robot’s motion, but also by a human randomly walking
through the environment.
Figure 6.8 (a)-(b)-(c), where the evolution of all entities involved with respect to
time is depicted, which reveals the power of the approach discussed throughout
Section 5.2.

(a) (b)

(c)

Figure 6.8: Experiment 1.2 - Evolution of rosie position trajectories and human
position with respect to time, from different points of view
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These plots demonstrate that collisions are prevented and that both rosies
correctly survey the target locations. Conflicts are identified 14 times in total over
the 120 seconds of the experiment, accounting for both robots. The online replan
stage is completely different from the local communication scenario, where the
motion is carried out based on priority assignments and most significantly,
moving obstacles must be known in advance, which is typically not achievable
in real scenarios.
In the communication-free case once the local trajectory has been generated,
a local MPC is responsable for tracking such points while at the same time
avoiding collisions, and hence react to environmental changes of any kind.

(a) Rosie 0 linear velocities (b) Rosie 1 linear velocities

(c) Rosie 0 angular velocity (d) Rosie 1 angular velocity

Figure 6.9: Experiment 1.2 - Rosies velocities
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The real-time velocities of both Rosies are depicted in Figure 6.9, where it can
be seen that all constraints are respected at any instant of time. The maximum
allowed linear and angular velocities are set to 0.25 𝑚/𝑠 and 0.25 𝑟𝑎𝑑/𝑠 for
the specific case during the online replan phase. The decision is supported
by the intention of achieving a smoother trajectory; indeed, relaxing too many
such constraints would result in a very reactive response, but on the other
hand, choppy motion is the price to pay. Clearly, the higher the velocity,
the shorter the reaction time to environmental changes; thus, these limitations
must be determined while considering the velocity at which possible obstacles
might move (for instance how fast a human being can walk or run). A video
demonstration of Experiment 1.2 can be found at the YouTube channel: Smart
Mobility Lab - Gianmarco Fedeli 3.

3URL video: https://youtu.be/TYgfbrk7hDs
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6.4 Experiment 2

Consider a multi-agent system consisting of 𝑁 = 3 HEBI Rosie robots, the
dynamics of robot 𝑖 is given by Equation (4.1), and the inputs constraints are set
as follows. For all robots the maximum allowed linear velocity is set to 0.35𝑚/𝑠,
while for the angular velocity a maximum speed of 0.35 𝑟𝑎𝑑/𝑠 is reachable. The
sensing radius of each robot is 𝑅 = 0.8 𝑚 and the safe radius is chosen to be 0.6
𝑚. Initially, 𝜃𝑖 = 0 and 𝑣𝑖(0) = 0. In Experiment 2, one robot has to monitore at
least one of the two target regions (regions R14 and R15 for Rosie 0) while Rosie
2 is required to survey regions R11 and R27 and finally Rosie 1 is supposed to
supervise only region 𝑅26. Furthermore, all three Rosies must avoid region 𝑅20,
taught as dangerous area or where a non-static obstacle can be collocated.
The table below reports the related LTL formulas, the starting regions and
moreover the offline plan generated by the LTL core planner in the preffix-suffix
form:

EXPERIMENT #2 - SETTING

Agent Rosie 0 Rosie 1 Rosie 2

LTL task ((□♢𝑅14) ∨
(□♢𝑅15))∧ (□¬𝑅20)

(□♢𝑅26)∧(□¬𝑅20) ((□♢𝑅11) ∧
(□♢𝑅27))∧ (□¬𝑅20)

Starting
region

𝑅21 𝑅13 𝑅17

Preffix
plan

[𝑅15, 𝑅14, 𝑅15] [𝑅19, 𝑅25, 𝑅26] [𝑅11, 𝑅10, 𝑅9, 𝑅15,
𝑅21, 𝑅27, 𝑅28]

Suffix plan [𝑅14, 𝑅14] [𝑅26, 𝑅26]
[𝑅22, 𝑅16, 𝑅10, 𝑅11,
𝑅10, 𝑅9, 𝑅15, 𝑅21,

𝑅27, 𝑅28]
Table 6.2: Experiment #2
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The workspace has been discretized into thirty regions, the NBA 𝐵𝑖 associated
with 𝜑𝑖 ,∀𝑖 (robot LTL task) has been computed and it consists of 2 states and 4
edges by [12]. The CTS T𝑖 and the PBA P𝑖 for each robot are constructed using
LTLCon toolbox [16] and finally the potential function 𝑉T𝑖 is calculated.
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Local communication case

The local communication case involves an offline hierarchy between the robots
which must be chosen in advance.Rosie 0 has complete freedom of motion in this
situation, Rosie 1 must wait for Rosie 0’s local trajectory generation, and Rosie 2
must be provided with the other robot trajectories before moving. Remind that
only those robots detected in the sensing area are the source of wait; if no robots
are present even Rosie 2 can directly move. Moreover target regions are marked
with light colors, while the inaccessible region is identified with gray.
Initially from the starting region, each robot 𝑖 follows the sequence of regions
retrieved by the global planner in the form of preffix-suffix (see Table 6.2), safe
navigation is then ensured by an MPC controller as described in Section 4.3,
which guarantees to not violate the given task and to track such sequence of
actions.

(a) Rosie 0 trajectory (b) Rosie 1 trajectory

(c) Rosie 2 trajectory

Figure 6.10: Experiment 2.1 - Rosie position trajectory
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(a) Rosie 0 trajectory with respect to time (b) Rosie 1 trajectory with respect to time

(c) Rosie 2 trajectory with respect to time

Figure 6.11: Experiment 2.1 - Evolution of robot trajectory with respect to time

Contrarily to Experiment 1, one robot must now survey at least one of the target
regions but not both, as shown by the use of the ∨ ("or") operator in the LTL
formulas rather than the ∧ ("and") operator used in the previous experiment.
Clearly, the addition of one agent in the workspace might result in additional
robots identified in the sensing area and, as a consequence, higher engagement
of the online replan module. Possible collisions are detected whenever a
higher priority robot enters within the sensing area of a lower priority one,
then the motion coordination algorithm (see Section 5) is executed taking into
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consideration the acquired agents’ future trajectories. The real-time position
trajectories of each robot are depicted in Figure 6.10 and Figure 6.11, where the
latter shows the evolution of the Rosie positions over time.
During the 185 seconds of the experiment, the surveillance task of each robot
is accomplished, with Rosie 0 monitoring largely region 𝑅14 rather than region
𝑅15 and Rosie 2 supervising both target regions equally. Besides all robots avoid
the inaccessible region 𝑅20 as requested. Only once does Rosie 1 come quite
near to that region (particularly see Figure 6.10 (b)).
The reason of that, relies on a locally computed trajectory in which the path
connecting all points is collision-free and fulfills the task. On the other hand,
it is quite close to region 𝑅20, and the PID controller used to track those points
produces a borderline violating trajectory.
Figure 6.6 shows the evolution of the position trajectories of all robots with
respect to time, where all trajectories are collision-free at every instant of time.
Conflicts are detected 9 times in total, and as soon as they arise the hierarchy
motion order and the local trajectory generation process are activated to resolve
them. As result of the assigned robot goals, a limited amount of online replan
processes are taking place.
Due to the restricted workspace area for three or more Rosies, a huge number
of these operations may occur depending on the tasks.
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(a) (b)

(c)

Figure 6.12: Experiment 2.1 - Evolution of Rosie trajectories with respect to time
from different points of view

The real-time velocities of each Rosie are depicted in Figure 6.13. Because no
input is applied, Rosie 0 and Rosie 1 linear velocities highlight time intervals
where they are monitoring a specific area. Regardless, if more robots reach their
sensing area, the multi-robot motion coordination technique is activated, and
new inputs are applied to avoid collisions and fulfill the initial LTL task. A video
demonstration of Experiment 2.1 can be found at the YouTube channel: Smart
Mobility Lab - Gianmarco Fedeli 4.

4URL video: https://youtu.be/wZHnku3nsHo
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(a) Rosie 0 linear velocities (b) Rosie 0 angular velocity

(c) Rosie 1 linear velocities (d) Rosie 1 angular velocity

(e) Rosie 2 linear velocities (f) Rosie 2 angular velocity

Figure 6.13: Experiment 2.1 - Rosies velocities
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Communication-free case

The same scenario is provided to test and demonstrate the reliability of the
strategy proposed for the communication-free case, even as the number of robots
involved in the multi-agent system grows.
All rosie specifications are those stated in Table 6.2, initially from the same
starting regions (circles in the 2D plots), each robot 𝑖 follows the sequence of
regions obtained by the global planner in the form of preffix-suffix, with safe
navigation ensured by an MPC controller. There are no additional obstacles
introduced, however restricting access to region 𝑅20 makes it easier you to
figure out how the trade-off between trap states and obstacle avoidance works,
as specified in the local MPC cost function (see Section 5.2).

(a) Rosie 0 trajectory (b) Rosie 1 trajectory

(c) Rosie 2 trajectory

Figure 6.14: Experiment 2.2 - Rosie position trajectory
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(a) Rosie 0 trajectory with respect to
time

(b) Rosie 1 trajectory with respect to
time

(c) Rosie 2 trajectory with respect to
time

Figure 6.15: Experiment 2.2 - Evolution of robot trajectory with respect to time

Figure 6.14 and Figure 6.15 reveal subsequent hurried robot movements, causing
not particularly smooth trajectories in the online replan stage. When a robot gets
close to region 𝑅20 (trap state) and finds other obstacles within its sensing area,
such behavior becomes more evident. On the other hand, as a consequence of
such circumstance, the role of the gains 𝑃O, 𝑃Ot contained in Equation 5.1 will
be more clear.
As mentioned throughout the degree project, it is more crucial to prevent
collisions than to fulfill the assigned task; clearly, all scenarios in which both
requirements might be met are not part of this discussion. Gain 𝑃O is set to be
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bigger in order to prioritize obstacle avoidance, and suchăeffect can be noticed
at various instants of time when two or three Rosies are detected by each other
and are bordering on the dangerous area (region 𝑅20). When compared to the
local communication case, the number of occurring conflicts is undoubtedly
higher, and several small movements are produced as a result of the local MPC
controller, which attempts to avoid both obstacles and trap states. Meanwhile,
when the detection occurred for the first time, each point of the generated local
trajectory is set as goal location.

(a) (b)

(c)

Figure 6.16: Experiment 2.2 - Evolution of Rosie trajectories with respect to time
from different points of view
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Whereas other strategies cause multiple deadlocks, the suggested strategy leads
in no robots getting stuck in the same place for an extended period of time.
The Rosie real-time velocities are depicted in Figure 6.17, where the angular
velocity component is more stressed than in the previous example, because no
yaw angle limits were imposed in the local MPC controller . Hence each Rosie
is free to modify its orientation during the online replan stage, to facilitate the
collision avoidance algorithm incorporated within the local MPC controller. A
video demonstration of Experiment 2.2 can be found at the YouTube channel:
Smart Mobility Lab - Gianmarco Fedeli 5.

5URL video: https://youtu.be/q5_b41fprJU
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(a) Rosie 0 linear velocities (b) Rosie 0 angular velocity

(c) Rosie 1 linear velocities (d) Rosie 1 angular velocity

(e) Rosie 2 linear velocities (f) Rosie 2 angular velocity

Figure 6.17: Experiment 2.2 - Rosies velocities
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6.5 Experiment 3: Human in-the-loop

Consider a multi-agent system consisting of 𝑁 = 3 HEBI Rosie robots, the
dynamics of robot 𝑖 is given by Equation (4.1), and the inputs constraints are set
as follows. For all robots the maximum allowed linear velocity is set to 0.35𝑚/𝑠,
whereas the maximum admissible angular velocity is 0.35 𝑟𝑎𝑑/𝑠. The sensing
radius of each robot is 𝑅 = 0.8 𝑚 and the safe radius is chosen to be 0.6 𝑚.
Initially, 𝜃𝑖 = 0 and 𝑣𝑖(0) = 0.
Experiment 3 aims to evaluate the mixed-initiative controller explained in
Section 5.3 in the human in-the-loop context, where a human may take control
of one or more robots during the motion. All three robots are intended to survey
some area in the worspace. Rosie 0 has target regions 𝑅8 and 𝑅20, Rosie 1 has
𝑅22 and 𝑅28 as goal regions, lastly Rosie 2 must monitore regions 𝑅10 and 𝑅11.
The following table lists the associated LTL formulas, starting regions, and the
offline plan generated by the LTL core planner in the prefix-suffix form:

EXPERIMENT #3 - SETTING

Agent Rosie 0 Rosie 1 Rosie 2

LTL task (□♢𝑅8) ∧ (□♢𝑅20) (□♢𝑅22) ∧ (□♢𝑅28) (□♢𝑅10) ∧ (□♢𝑅11)

Starting
region

𝑅13 𝑅22 𝑅10

Preffix plan [𝑅7, 𝑅8, 𝑅14,
𝑅20, 𝑅14] [𝑅28, 𝑅22] [𝑅11, 𝑅10]

Suffix plan [𝑅8, 𝑅14, 𝑅20, 𝑅14] [𝑅28, 𝑅22] [𝑅11, 𝑅10]

Table 6.3: Experiment #3
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One agent under human control

Initially, just Rosie 1 can be controlled by a human, with control inputs
executed through a joystick equipped with bluetooth. Human initiative certainly
influences robot autonomy when evaluating the performance of the proposed
mixed-initiative controller, where operator inputs and autonomous commands
are fused, as detailed in Section 5.3. Moreover, an obstacle is introduced in the
form of the human who controls the robot movements in the shared workspace.
At the beginning the human being stands in a neutral area, away from the robot’s
motions and without acting on Rosie 1. The real-time positions of each Rosie is
depicted in Figure 6.18 and Figure 6.19, initially all robots are not affected by the
human obstacle and no joystick inputs are applied during the first 60 seconds.

(a) Rosie 0 trajectory (b) Rosie 1 trajectory

(c) Rosie 2 trajectory

Figure 6.18: Experiment 3.1 - Rosie position trajectory
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(a) Rosie 0 trajectory with respect to
time

(b) Rosie 1 trajectory with respect to
time

(c) Rosie 2 trajectory with respect to
time

Figure 6.19: Experiment 3.1 - Evolution of robot trajectory with respect to time

The plots above demonstrate that all robots are efficiently monitoring the given
target regions as a result of the autonomous controller action. In this specific
scenario, the communication-free strategy is used to deal with an individual
obstacle who is randomly walking in the environment. Particular emphasis
should be paid to the controlled robot Rosie 1; in fact, throughout the time
intervals [100 𝑠, 145 𝑠], human inputs are dominating, allowing the robot to
explore other areas while obstacles and other robots are far away. When the
person is walking towards Rosie 1 or one of the other robots approaches, human
initiative is considered less and less as the distance from the obstacle increases.
As the obstacle gets closer to the safe distance, the operator’s inputs are no longer
considered.
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(a) (b)

(c)

Figure 6.20: Experiment 3.1 - Evolution of Rosie position trajectories and human
obstacle with respect to time from different points of view

Additionally, some dangerous behaviours are tested, including the human
attempting to guide the robot towards itself, however the mixed-initiative
controller prevents these actions ensuring safety. The function 𝑘 (𝑥,O,Ot)
described in Section 5.3 is the key of such results; it may be selected differentely
depending on the final desired behavior and the attention given to operator’s
inputs.
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Conflicts are detected 13 times in total, considering all robots. Furthermore,
Figure 6.20 shows, from different points of view, that no collisions occur during
the experiment. The real-time velocities of the controlled robot Rosie 1 are
depicted in Figure 6.21, including human inputs and the autonomous controller
action. A video demonstration of Experiment 2.2 can be found at the YouTube
channel: Smart Mobility Lab - Gianmarco Fedeli 6.

6URL video: https://youtu.be/2hWe5Wu52Bg
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(a) Rosie 1 MIC linear velocities (b) Rosie 1 MIC angular velocity

(c) Rosie 1 autonomous linear velocities
(d) Rosie 1 autonomous angular veloc-
ity

(e) Rosie 1 human linear velocities (f) Rosie 1 human angular velocity

Figure 6.21: Experiment 3.1 - Rosie 1 velocities
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The operator turns the robot of 180 degrees after 60 seconds, to demonstrate
that the outer MPC restores the appropriate orientation and then takes the robot
to the next region retrieved by the LTL planner. Notice that the maximum
allowed human linear velocity is set to 0.5 𝑚/𝑠, while the highest permissible
human angular velocity is 0.8 𝑟𝑎𝑑/𝑠. Whenever Rosie 1 is close to an obstacle
or another agent, it is clear that the resulting velocities are those computed by
the autonomous controller; conversely, when the controller robot is far from
those objects, the resulting velocities are entirely the operator velocities. In all
other circumstances, a fusion of the autonomous controller’s and the human’s
velocities is actuated, with the combination result guided by the function
𝑘 (𝑥,O,Ot). Finally the real-time velocities of Rosie 0 and Rosie 2 are reported
in Figure 6.22.

(a) Rosie 0 linear velocities (b) Rosie 2 linear velocities

(c) Rosie 0 angular velocity (d) Rosie 2 angular velocity

Figure 6.22: Experiment 3.1 - Rosie 0, Rosie 2 velocities
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Two agents under human control

Both Rosie 0 and Rosie 1 may now be controlled by a human, as
previously operator control inputs are executed via two independent joysticks
connected with bluetooth. In addition, no obstacles are considered and the
communication-free case is adopted. The main purpose of of enabling more
agents to be controlled is to validate and understand potential functionalities of
the developed work.
The real-time positions of each Rosie is depicted in Figure 6.23 and Figure 6.24,
and as can be noticed the starting regions differ from the last example. Initially
Rosie 0 is not affected by human inputs because they are not applied for the first
30 seconds.

(a) Rosie 0 trajectory (b) Rosie 1 trajectory

(c) Rosie 2 trajectory

Figure 6.23: Experiment 3.2 - Rosie position trajectory
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(a) Rosie 0 trajectory with respect to
time

(b) Rosie 1 trajectory with respect to
time

(c) Rosie 0 trajectory with respect to
time

Figure 6.24: Experiment 3.2 - Evolution of robot trajectory with respect to time

Concerning the prescribed tasks, it is worth noting that they are all completed
without collisions and always through safe navigation as guaranteed by the
MPC controller. In more occassions, the two operators try to crush into all
moving robots in the environment; nevertheless, the mixed-initiative controller
precludes those risky situations and exclusively uses the autonomous navigation
inputs arising from the local MPC computations. Human inputs are particularly
effective to explore new locations and extend the range of surveillance in specific
time periods. Indeed, Rosie 0 motion area covers not only the two target regions
but also middle regions like 𝑅15 and 𝑅16.
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(a) (b)

(c)

Figure 6.25: Experiment 3.2 - Evolution of Rosie position trajectories with respect
to time from different points of view

The subsequent plots depicted in Figure 6.26, Figure 6.27 and Figure 6.28 show
the real-time velocities of each Rosie. Where the operator’s maximum allowed
linear velocity is set to 0.5 𝑚/𝑠 and the angular velocity limit is set to 0.8 𝑟𝑎𝑑/𝑠.
While the same limitations that were imposed in all experiments are inserted as
constraints to the appropriate MPC controller. Even in this case, the operator
may sometimes turn the robot 180 degrees to highlight how the MPC reestablish
the correct orientation before proceeding.
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(a) Rosie 0 MIC linear velocities (b) Rosie 0 MIC angular velocity

(c) Rosie 0 autonomous linear velocities (d) Rosie 0 autonomous angular veloc-
ity

(e) Rosie 0 human linear velocities (f) Rosie 0 human angular velocity

Figure 6.26: Experiment 3.2 - Rosie 0 velocities
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(a) Rosie 1 MIC linear velocities (b) Rosie 1 MIC angular velocity

(c) Rosie 1 autonomous linear velocities (d) Rosie 1 autonomous angular veloc-
ity

(e) Rosie 1 human linear velocities (f) Rosie 1 human angular velocity

Figure 6.27: Experiment 3.2 - Rosie 1 velocities
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(a) Rosie 2 linear velocities (b) Rosie 2 angular velocity

Figure 6.28: Experiment 3.2 - Rosie 2 velocities
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6.6 Results discussion

The original objective of the degree project was to design an efficient and
effective motion coordination algorithm for multi-robot systems, including
parallel experiments to validate the entire work. Experiments presented in
these Chapter demonstrate that the overall strategies are very valuable in both
basic scenarios and more complicated situations where additional obstacles are
represented by people walking in the workspace. Testing the method described
throughout Section 5.2, is considered essential to make a motion coordination
strategy applicable in settings such as industries, companies, warehouses, and
within novel technologies.
The experiments performed at the KTH Royal Institute of Technology’s
Smart Mobility Laboratory compare both cases addressed in the thesis. The
local-communication case provides a very reliable and effective strategy for
overcoming even the most difficult tasks, resulting in very smooth movements.
When obstacles or additional agents are introduced in the same working area,
some assumptions must be made. Local communication between robtos may
be made available in a variety of conditions; however, prior knowledge of
non-static obstacles moving randomly is more complicated. Concerning the
communication-free case implementation, it allows the motion coordination
algorithm’s applicability to be extended, particularly in circumstances where
people can pass through the motion area or when prior information is
unavailable. Analyzing all tests where communication-free case has been
appplied, a more choopy motion is obtained to prevent collisions, but the final
result is still reliable and safe. Another factor to consider is the maximum
allowable velocity, which influences robot movement behaviors during the
online replan process, particularly in avoiding obstacles. Clearly higher velocity
permission is given to the robot, faster it may react to environmental changes
with compulsive responses to them as drawback. Because all of the robots are
sensorless, their positions are determined by an external system, as detailed
in Section 6.1. Nonetheless, thanks to the ROS framework, where the actual
position of each object is shared as a ROS topic, the proposed solutions are
unaffected by the source of data acquisition. All experiments were carried
out in an indoor setting, there are some extra factors to consider in outdoor
environments, however the developed approaches may be applied adjusting
some specific details. No collisions occured in both cases, showing the reliability
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and safety of all techniques, achieving one of the primary starting objectives.
Furthermore, even when additional obstacles are included and the workspace
gets crowded, all tasks have been fulfilled in an acceptable computational time.
The human-in-the-loop scenario the designed mixed-initiative controller has
proven the chosen function success, preventing dangerous actions and satysfing
the assigned tasks. The proposed strategies can handle more challenging tasks,
and they also apply to heterogeneous multi-agent systems consisting of entities
of different type (for instance ground, air and water vehicles).
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Chapter 7

Conclusions

The degree project focuses on the design of an effective and efficient motion
coordination algorithm for multi-robot systems, where its application is
supposed to deal with a partial known environment. Firstly a safe navigation
controller for a single robot, is designed to ensure that the given LTL task is
fullfilled during the entire motion (see Chapter 4). Two approaches are shown,
however the final autonomous navigation controller used is a model predictive
controller, which ensures safety even with theoretical demonstration. Then,
a multi-robot system is considered, in which all of the robots are intended
to move in a partially known environment. This scenario assumed to deal
with non-static obstacles such as people walking in the environment, new
obstacles appearing during the experiments. In Chapter 5 Along the way
two cases were addressed, in which the corresponding motion coordination
algorithm for multi-robot systems slightly differ. Initially local communication
between robots is assumed. Each robot is given with a sensing area with a
set radius; communication is shared among them within this area and used
to find a path-free trajectory, where the main goal is to coordinate the motion
meanwhile not violating the assigned LTL task. The latter case represents a more
realistic scenario, in which no communication is provided and the robots should
deal with random environmental changes. An MPC controller with a collision
avoidance term and a term related with trap states addresses this issue, in order
to prevent if possible unacceptable runs. Finally, a mixed-initiative controller
was adopted to handle the human-in-the-loop scenario, and its applicability was
extended to multi-robot systems, where the operator may assume control of one
or more robots in certain conditions.
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Finally, the tests conducted (see Chapter 6) suggest some potential improvements
connected to the presented approaches as well as some future work that may be
pursued.

7.0.1 Future Work

Future works include to tackle a global task, where all the involved agents
must cover the workspace and optimize the surveillance activity throughout
the whole surface. Indeed, an optimization problem can be formulated and
then solved anytime environmental changes take place. Drones can be used
to evaluate each solution in 3D space, and manipulators mounted on top of
the mobile platform to perform pick and place routines. Concerning the human
in-the-loop scenario, future studies should predict operator movements through
a reinforcement learning approach or high-level AI techniques.
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Appendix A

MPC stability

Theorem 1 (Maciejowski).
Assume model predictive control is appplied at time instant 𝑘 to the system dynamics:

𝒙(𝑘 + 1) = 𝑓 (𝒙(𝑘), 𝑢(𝑘))

by minimizing the cost function

𝑉(𝑘) =
𝑁∑
𝑖=1

𝐽(𝑥(𝑘 + 𝑖), 𝑢(𝑘 + 𝑖 − 1))

subject to:

𝑥𝑘+1+𝑖 = 𝑓 (𝑥𝑘+𝑖 , 𝑢𝑘+𝑖), ∀𝑖, 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑥𝑘+𝑖 ∈ 𝑋, 𝑥𝑘+𝑖 ∈ U ∀𝑖, 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑥𝑘+𝑁 = 0

𝑥0 = 𝑥(𝑘)
where 𝐽(𝒙 , 𝑢) ≥ 0 and 𝐽(𝒙 , 𝑢) = 0 only if 𝑥 = 0 and 𝑢 = 0, and 𝐽 is monotonically
decreasing. Suppose an equilibrium condition is defined by 𝒙 = 0, and 𝑢 = 0. The
receding horizon method is applied, with only the first element used from the optimizing
input sequence.
Then the equilibrium point is stable providing that the optimization problem is feasible
and is solved at each step.
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Proof.
Let 𝑉∗0 (𝑘) be the optimal value of 𝑉 corresponding to the optimal input signal
𝑢∗0. Clearly, 𝑉∗0 (𝑘) ≥ 0 and 𝑉∗0 (𝑘) = 0 only if 𝒙(𝑘) = 0. In fact if 𝒙(𝑘) = 0, then the
optimal solution is to set 𝑢(𝑘 + 𝑖) = 0 for all 𝑖.
To show that 𝑉∗0 (𝑘 + 1) ≤ 𝑉∗0 (𝑘), and hence that 𝑉∗0 (𝑘) is a Lyapunov function.
Let consider:

𝑉∗0 (𝑘 + 1) =min
𝑢

𝑁∑
𝑖=1

𝐽(𝑥(𝑘 + 1 + 𝑖), 𝑢(𝑘 + 𝑖))

=min
𝑢

[ 𝑁∑
𝑖=1

𝐽(𝒙(𝑘 + 𝑖), 𝑢(𝑘 − 1 + 𝑖)) − 𝐽(𝒙(𝑘 + 1), 𝑢(𝑘)) +

𝐽 (𝒙 (𝑘 + 1 + 𝑁) , 𝑢 (𝑘 + 𝑁))
]

≤ − 𝐽 (𝒙(𝑘 + 1), 𝑢∗0(𝑘)
) + 𝑉∗0 (𝑘) +

min
𝑢

[
𝐽 (𝑥 (𝑘 + 1 + 𝑁) , 𝑢 (𝑘 + 𝑁))

]
since the optimum cannot be worse that keeping the optimal solution found at
time 𝑘. But assuming as terminal constraint 𝒙 (𝑘 + 𝑁) = 0, thus 𝑢

(
𝑡 + 𝑁𝑝

)
= 0

and remain at 𝑥 = 0.
This gives

min
𝑢
{𝐽 (𝒙 (𝑘 + 1 + 𝑁) , 𝑢 (𝑘 + 𝑁))} = 0

Since 𝐽 (𝑥(𝑘), 𝑢∗0(𝑘)) ≥ 0, then

𝑉∗0 (𝑘 + 1) ≤ 𝑉∗0 (𝑘)

and therefore, 𝑉∗0 (𝑘) is a Lyapunov function. ■

A generalization of the terminal constraint idea is to specify a terminal contstraint
set X𝑓 , which contains the origin rather than just a single point. More details
and proof can be found in [6].
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Appendix B

MPC persistent feasibility

Lemma B.0.1.
Given the receding horizon control problem 𝑉𝑁 (𝑥(𝑘)):

min
U

[x(𝑘 + 𝑁) − x𝑑𝑒𝑠]𝑇𝑄𝑁[x(𝑘 + 𝑁) − x𝑑𝑒𝑠] +
𝑁−1∑
𝑖=0

[
[x(𝑘 + 𝑖) − x𝑑𝑒𝑠]𝑇𝑄[x(𝑘 + 𝑖) − x𝑑𝑒𝑠] + u(𝑘 + 𝑖)𝑇𝑅u(𝑘 + 𝑖)

]
subject to:

x𝑘+1+𝑖 = 𝑓 (x𝑘+𝑖 , u𝑘+𝑖), ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

x𝑘+𝑖 ∈ 𝑋, u𝑘+𝑖 ∈ U ∀𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

x𝑘+𝑁 ∈ 𝑋 𝑓

x0 = x(𝑘)

If 𝑋1 is control invariant, then the receding horizon control problem defined above is
persistently feasible.

Proof.
X1 ⊆ Pre (𝑋1) ∩ 𝑋 = 𝑋0,∀𝑥 ∈ 𝑋0. Then applying the first-step of the model
predictive control 𝑢∗0, the resulting state is given by 𝑥+ = 𝑓

(
𝑥, 𝑢∗0

)
∈ 𝑋1 ⊆ 𝑋0. ■

Theorem 2.
If𝑋 𝑓 is control invariant, then the receding horizon optimization𝑉𝑁 (𝑥(𝑘)) is persistently
feasible.
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