
University of Padova

Department of Mathematics

Master Thesis in Data Science

Collaborative filtering for recommender

systems with implicit feedback

Supervisor Master Candidate
Gian Antonio Susto Massimiliano Conte
University of Padova

Co-supervisors
Chiara Masiero, Luca Brunelli
Statwolf Data Science

Academic Year
2021-2022

ii

To Anna, who is always close to me. To my parents, who supported me
in my studies. To all the friends with whom I have shared moments of
fun.

iv

Abstract

Recommending the right products to the customers can significantly increase the
sales of an e-commerce, and the presence of huge amounts of transactional data
makes data-driven solutions the best choice for the recommender systems inmany
circumstances. In this work, a general overview of the recommendation task is
given, then several data-driven methods are compared on a real world company
data. In particular, the effort is centered around implicit feedback, i.e. binary data
such as sales, and collaborative filtering, that is the usage of community behavior
in the suggestions computation. Finally, different ways to handle cold starts, that
are new customers, are discussed and compared.

v

vi

Contents

Abstract v

List of figures x

List of tables xiii

Listing of acronyms xv

1 Introduction 1
1.1 Related fields . 2
1.2 Context . 2

2 General framework 3
2.1 Implicit and explicit feedback 3
2.2 Framework . 4

2.2.1 Notation . 4
2.2.2 Rating or Interaction data 4
2.2.3 Content and demographic data 5

2.3 Formalization of the problem 5
2.3.1 Regression/Classification perspective 5
2.3.2 Ranking perspective 6

2.4 Challenges . 7
2.4.1 Sparsity . 7
2.4.2 Popularity bias . 7
2.4.3 Cold start . 9

2.5 Paradigms . 9

3 Recommender Systems Evaluation 11
3.1 Offline evaluation . 11

3.1.1 Problem shift . 12
3.1.2 Unfairness due to popularity bias 12

vii

3.2 Test train split . 13
3.3 Relevance . 13

3.3.1 Precision related measures 14
3.3.2 Recall . 16
3.3.3 Precision-recall plot 17
3.3.4 Hit ratio . 18
3.3.5 Expected percentile ranking 18

3.4 Coverage . 19
3.4.1 Frequency of recommendations plot 19

3.5 Novelty . 20
3.6 Other aspects relating to the performance 20

3.6.1 Serendipity . 20
3.6.2 Diversity . 20
3.6.3 Trust . 21
3.6.4 Robustness . 21
3.6.5 Scalability . 21

4 Methods for implicit feedback 23
4.1 How recommendations are computed 23

4.1.1 Cold starts . 24
4.2 Baselines . 24

4.2.1 Popularity-based 24
4.2.2 Random predictor 24

4.3 Content-based recommendations 25
4.3.1 Feature extraction 25

4.4 Memory-based methods 26
4.4.1 Similarity . 26
4.4.2 User-based KNN 28
4.4.3 User-based weighted KNN 28

4.5 Using standard machine learning 29
4.5.1 Column-wise logistic regression 29
4.5.2 Hybrid extension 30

4.6 Latent factors models . 31
4.6.1 SVD . 33
4.6.2 Alternating Least Squares 34

viii

4.6.3 Non Negative Matrix Factorization 35
4.7 EASER . 36

4.7.1 Interpretation . 37

5 Experimental results 39
5.1 Experimental setup . 39

5.1.1 Data . 39
5.1.2 Selection and splitting 39
5.1.3 Descriptive statistics 40

5.2 Latent factor models and popularity bias 42
5.2.1 Generated data 43
5.2.2 Behavior in the generated datasets 45
5.2.3 SVD decomposition inspection 48
5.2.4 Simplified example of the problem 49
5.2.5 Standardization 51

5.3 Results . 52
5.3.1 Compared methods 52
5.3.2 Models configuration 53
5.3.3 Metrics . 54
5.3.4 Test set results . 55
5.3.5 Stratified test set 58

6 Handling user cold starts 61
6.1 Behavioral data . 61
6.2 Evaluation methodology 62
6.3 Methods . 62

6.3.1 EASER . 63
6.4 Results . 63

7 Conclusions 65

References 67

Acknowledgments 71

ix

x

Listing of figures

2.1 Illustration of popularity bias. 8

3.1 Precision-recall plot for a random predictor. 17
3.2 Frequency of recommendations per item, for a random

predictor. 19

5.1 Popularity bias and sales coverage. 40
5.2 Number of test users stratified by train purchases. 41
5.3 Recommendation frequency of latent factors models, against

KNN. 42
5.4 Recommendation frequency of latent factors models, vary-

ing the number of factors. 43
5.5 Popularity bias in the uniformly generated dataset. . . . 44
5.6 Zeta probability distribution, with s = 3

2 45
5.7 Popularity bias in the zeta-generated dataset. 46
5.8 Recommendation frequency of latent factors models in the

uniformly generated dataset. 47
5.9 Recommendation frequency of latent factors models in the

zeta-generated dataset. 47
5.10 Contribution of the first 4 factors in the SVD reconstruc-

tion of R. 48
5.11 SVD reconstruction error of R. 49
5.12 Recommendation frequency of standardized latent factors

models, against KNN. 51
5.13 Recommendation frequencies comparison. 56
5.14 Recommendation frequencies comparison, zoomed in. . . 57
5.15 Stratified comparison. 57

xi

xii

Listing of tables

5.1 Latent factors models performances. 43
5.2 Compared methods. 53
5.3 Configuration of the methods. 54
5.4 Test set results. 55
5.5 Stratified test set results. Best results over each subset

are highlighted. 59

6.1 Cold starts results. 63

xiii

xiv

Listing of acronyms

ALS Alternating least squares

EASE Embarassingly shallow autoencoders (reversed)

NMF Non negative matrix factorization

SVD Singular value decomposition

xv

xvi

1
Introduction

Recommender systems intervene in the everyday life of most of the digitized pop-
ulation. Instagramstories, Youtube videos,Netflix series, Facebook friends,Google
news, Spotify songs, and Amazon products are all proposed to users through a
recommendation system. Such engines can make people discover products they
like that otherwise would never be found without an external suggestion. How-
ever, the consumption of content proposed by recommender systems can lead to
feedback loops, which can degenerate into echo rooms and filter bubbles. The
user is offered content concerning only a single area, fueling his interest in the
latter, ending up hiding other types of content. This leads the user to consume
only this type of content, making the system believe that this user is only inter-
ested in this area, fueling this type of recommendations even more [1]. With the
growing usage of e-Commerce, large amounts of users, items, behavioral, and in-
teraction data are made easily accessible, leading to a strong economic interest in
the technology of recommendations. The presence of such data, available for the
majority of companies operating on the Web, has contributed to the arrival and
evolution of data-driven recommender systems.

1

1.1 Related fields
Recommender systems can be seen as an instance of the wide field of information
retrieval [2]. Given the importance of web search engines, themost famous infor-
mation retrieval application, recommender systems inherit some structure from
their literature, such as part of the evaluation criteria.
Since most of the methods used in order to build recommendation engines are
data driven, other strongly related fields are statistics and machine learning, in
particular regression, classification and latent space analysis.
The recommender systems framework is built on top of themachine learning and
search engines frameworks. Basically, the task of suggesting items is considered a
ranking problem, where the products are ordered by affinity with the user. In the
analogy with search engines, the user corresponds to the query, while the items
correspond to the documents.

1.2 Context
This work arises from the necessity of building a recommender system for a com-
pany specialized in the sale of luxury clothing and accessories. For this reason,
the focus is on methods that are well suited to such a context and available data.
Such data comprehend user purchases of the last two years, demographic features
about the users, and content features that describe the items. Given the low qual-
ity of user and item descriptions, due to the strong presence of missing or incor-
rect entries, the focus of the work is mostly on pure collaborative filtering, which
uses only user past purchases tomake the recommendations, rather than on using
hybrid approaches that also take advantage of user and product features.

2

2
General framework

2.1 Implicit and explicit feedback

The peculiar data in recommender systems are the interactions between user and
item. These interactions can be the of various types: consumption of content,
five-stars review, purchased or not, time spent over the item, clicked or not, etc.
The most important distinction is between implicit and explicit feedback, divid-
ing whatever the user explicitly provided a rating, or if the feedback is automati-
cally recorded from the user’s behavior. For example, a five-stars review of a prod-
uct is an explicit feedback, because the user consciously decides the rating. In
contrast, the fact that a user clicked on a product webpage is an implicit feedback,
because it is an indirect manifestation of interest in the product. However, in
literature, implicit feedback frequentlymeans the presence of dichotomous inter-
actions, while explicit feedbackmeans the presence of continuous ormultimodal
interactions. This distinction make a huge difference in how the data is treated,
in particular how themissing values are handled. The problemwith implicit feed-
back is that the interactions are in the formof presence or absence of the feedback,
so considering only the actually recorded interactions would mean working with

3

a unary variable, which is incompatible with learning.
Implicit feedback represents an important scenario because product purchases,
whose economic value is well known, are the most relevant form of implicit feed-
back. It can be seen as a positive feedback when a user buys an item, making the
assumption of the fact that a user bought one itemmeans that such user actually
likes that item.

2.2 Framework

2.2.1 Notation

LetU be the set ofn distinct users, and I be the set ofm items in the catalog. Let
Iu be the set of items bought by the user u, andUi be the set of users that bought
the item i. In this way, Iu ∩Iv denotes the set of items bought by both the users
u and v.
The superscript (train) indicates that the referred object is obtained from the
train set. For example, R(train) indicates the interaction matrix obtained from
the train set of interactions. The same applies to (test). The process of splitting
the dataset is discussed in Section 3.2

2.2.2 Rating or Interaction data

Themain source of data in recommender systems is usually the set of interactions,
which are user-item pairs, possibly weighted: T = {(u, i, w) ∈ interactions}.
Such relational data can be described in the rating/interactionmatrixR ∈ Rn×m,
defined as:

rui =

wui if (u.i) ∈ T

NA otherwise
(2.1)

(NA values are still real values, but unknown).

4

For implicit feedback data wui = 1 ∀ (u, i) ∈ T . The unary nature of the
rating requires to not ignore the missing values, so for implicit feedback data, the
definition of the interaction matrix needs to be sightly different:

rui =

1 if (u.i) ∈ T

0 otherwise
(2.2)

The relational nature of this kind of data makes untrivial the usage of the
well-known machine learning models because it is not possible to assume that
the observations, that here are the interactions, are independent and identical dis-
tributed, an assumption that is almost everywhere in machine learning and statis-
tical modeling.

2.2.3 Content and demographic data

Content data refer to the features of the item. Demographic data, instead, are
the data about users, that usually have the standard ready-to-usematrix structure,
but it could not be available due to the fact that collecting data about people is
not always feasible. Possible user features can be gender, age, nationality, etc., but
of course the actual variables also depend on the domain of application.
Item data usually includes text description, so natural language processing can be
an important part of the content-based approach. The other item features heavily
depend on the domain application, they can be images, categories, etc.

2.3 Formalization of the problem

2.3.1 Regression/Classification perspective

Fromamachine learningperspective, the problemcanbe formalized as the predic-
tionof theunseen interactionsweights. For example, with 5-star ratings, the prob-
lem becomes to predict the missing ratings, using a regression or a multimodal

5

classification. With explicit feedback, the performance of the different methods
can be accessed by computing one of themanywell-knownprediction losses, over
an unseen test set of observed ratings.
For implicit feedback, such evaluation cannot be done without considering the
missing entries. If not, a model that always predicts 1 would achieve a perfect
score. By setting the missing interactions as 0, all the unseen entries are described
as implicitly describe a. For this reason, computing reconstruction losses in the
interactions would lead to a great error, since some unseen positive entries are la-
beled as negative.
However, in most implicit feedback cases, it is unavoidable to use this representa-
tion, at least for the training phase of the method.

2.3.2 Ranking perspective

In the application of recommender systems, what is crucial for the business is
the relevance of the first recommended items. Besides the exact prediction of
missing ratings, the interest is in the ordering of the items by affinity with the
user tastes. Although most of the methods perform learning within the classifi-
cation/regression framework, there are also some methods that directly attempt
to optimize the ranking of relevant items [3][4]. Regardless of how the training
phase is conducted, the evaluation process should consider the recommendations
as a ranking problem. In this way, the accessed performance of the methods re-
flects the quality of the recommendations in a production environment. There-
fore, the prediction of a system, for one given user, is an ordered list of items,
which can be described as a sequence (item1, ..., itemm), whose first value is
the most congenial item to the user, and so on. Each recommendation can be
relevant or not, and it is up to the metrics to weight relevance and position in the
sequence.

6

2.4 Challenges

2.4.1 Sparsity

Different levels of sparsity in the interaction matrix make the recommender sys-
tems performdifferently [5]. Of all possible interactions (u, i) ∈ {0, 1, ..., n}×
{0, 1, ...,m}, generally only a very small subset is observed. This is true in almost
every domain application, but is enhanced with implicit feedback. The reason is
because it is likely that an user buys only one or anyway a fewmore products. For
example, if the domain application is an e-Commerce of shoes, most of the users
would probably need to buy exactly one pair of shoes (assuming they are buying
for necessity).
The presence of sparsity makes it difficult to learn a user profile from few interac-
tions. Moreover, the set of commonly purchased items between twousersIu∩Iv
is likely to be empty,making the similarity computation between users also sparse.

2.4.2 Popularity bias

The popularity bias is the phenomenon for which most interactions concern a
very small subset of famous items. The catalog can be divided into 3 groups:

• Short head, the most popular items;

• Long tail, the items with just a few interaction;

• Distant tail, the item with almost no interactions, which are usually not
considered.

7

Figure 2.1: Illustration of popularity bias, from [6].

Users are likely to consume only, or at least first, the top products [6]. This
makesmanymethods, whichoptimize accuracy-relatedmetrics, recommendonly
such small subset of products. This is because learning from past interaction
means that most methods learn to predict past interactions, where there is no
influence of the recommendation in the user behavior.
Even if an unpopular item is relevant to one given user, it is probable that such a
user never saw that item, hidden by the top products. Learning by the past inter-
action, with accuracy relatedmetrics, penalizes themethods that try tomake that
meaningful recommendation, rewarding instead the suggestionsof top items, that
are likely to be in the past interactions of the user, even if they are less alignedwith
the user tastes.
Moreover, a system that suggests only the top products could not accomplish
to sell more (in case of transactional data), because such items are likely to be
known and purchased anyway. However, there can be scenarios where this be-
havior is welcomed, but this consideration depends on the domain of application,
and knowing the existence of this phenomenon leads to greater awareness in the
choices.

8

2.4.3 Cold start

The cold start is a well-known problem in recommender systems [7]. New users,
unseen during the training phase, are cold start cases. Such cases imply the ab-
sence of collaborative (interaction) data, leaving only the user features as the avail-
able information that can help to personalize the recommendations. The same
applies to new items in the catalog, where only the item metadata can discrimi-
nate the recommendation of that item to one user or another. It is obvious how
collaborative filtering suffers more than content-based methods from cold start,
in particular cold start users.

2.5 Paradigms
There are many suitable approaches for the construction of a recommender sys-
tem [8].

• Content-based methods use the data about the items in order to build the
suggestions. Amachine learningmodel can be used to predict the probabil-
ity that a given user buys a given item, or a similaritymeasure between items
can be used to suggest items that are similar to the previously purchased
ones [9].

• Demographic filtering uses the data about users, such as gender, age, loca-
tion, etc. in order to build the suggestions [10].

• Collaborative filteringmethods, instead,make use of the interaction data in
order to build the suggestions. By doing that, all the users behavior could
influence the recommendations for one single user. The easiest example of
a collaborative filtering method, for suggesting items to a given user, is to
select a neighborhood of similar users (people who have similar tastes with
the target user) and suggest what such neighborhood liked the most [11].

• Knowledge-based recommender system are based on a set of logic rules and
hard constraints, usually created from user specifications or domain knowl-

9

edge. Such systems are useful when sufficient data are not available, for ex-
ample, with very expensive luxury goods [12].

However, most large-scale recommender systems are based on a hybrid system
[13], using all the information available, data regard the users, items, transactions,
context, and domain knowledge .
More specific approaches do exist, but they are related to a small field of applica-
tion and are adaptations of the more general paradigms listed above.

10

3
Recommender Systems Evaluation

This chapter explains the evaluation process, mostly based on implicit feedback
and the ranking perspective described in section:2.3.2. The fact that the evalua-
tion is basedon the ranking frameworkdoes notmean that themethods couldnot
bebasedon regressionor classification, but just that an eventual regression/classification
output should be converted into a ranked list, for example ordering the items by
descending predicted scores.
The desired characteristics of a recommendation engines are multiple. A set of
good general qualities is listed, together with the appropriate technical tools that
enable the offline examination of such qualities. Some of them apply to all rec-
ommender systems, while someothers canbe useful depending on the considered
scenario.
The possible choices during the test-train split of the dataset are discussed.

3.1 Offline evaluation

Recommender systems work in a dynamic environment. The engine proposes
some items, and the user decides whether to consume or not such items. The

11

active reaction of the customer to the system output enables a fair evaluation of
the goodness of the recommendations. In general, A/B testing related procedures
are used, and can effectively test the impact of the recommendations on the users.
Other than that, testing awide variety ofmethodswith online proceduresmay be
too time consuming. However, such online evaluation is not used in this work,
due to the practical unavailability to do that in the experiments. The selection of
few candidate methods for the system is made, thanks to the offline evaluation.
The procedure uses a set of historical interactions to test the quality of the sugges-
tions. Each method is trained on a test set, and then it computes a recommenda-
tion list for each test user. Finally, such recommendation lists are compared to the
unseen historical interaction. This evaluation framework is similar to the classical
machine learning one, but it presents some additional unfairness problems.

3.1.1 Problem shift

The procedure tests whether the system is capable of suggesting items that would
be consumed without the suggestion, since the data was retrieved without the in-
tervention of the recommender. This means that the chosen quality metrics does
not directly measure the true effectiveness of the system, that is the ability to sug-
gest items that the user would bought thanks to the suggestion. The metrics are
still useful, but they refer to a different, and related problem. Hopefully, having
good performances in the offline evaluation goes hand in hand with having good
performances in the fair online evaluation.

3.1.2 Unfairness due to popularity bias

Users interacts onlywith items they know exist. Thismeans that even a very good
recommendation could be negatively evaluated, because the user never saw that
item, and thus there is not such interaction in the historical data. This problem is
heavily amplified by the popularity bias, because users know only a small subset
of famous items, and so the recommendation of less popular items is discouraged

12

by the offline evaluation. This consideration is important because the recommen-
dation of unpopular products is a key task in many business domains.

3.2 Test train split
There are more ways to split the data set. One common way is to pick one inter-
action per user, possibly the last one, and set those interactions as the test set. If
cold start cases are unwanted in the test set, they can be avoided by selecting only
the users with enough purchases. This approach has the limitation of one test
interaction per user, which causes some metrics to collapse to others, such as the
recall that becomes the hit to ratio.
Another strategy is to split by timestamp, i.e. setting the last observed interactions
as the test set. The idea is that, in a real environment, only past interactions are
known. The problem with this approach is that, in many recommender system
application domains, users are likely to consume all their lifetime consumed items
in a short period of time. This means that the chronological split would set, for
most users, all their interactions together in the train or the test set, depending on
the time at which such a user was active.
To prevent such phenomenon, in the domains where it could happen, a com-
pletely randomly chosen test set of interactions is preferable. Time information
is lost, but amore complete set of situations is represented, somore aspects of the
recommender system can be tested.

3.3 Relevance
Suggesting relevant items is indispensable; a system that does not satisfy this prop-
erty is useless. The relevance can be measured in many different ways; in fact, all
suitable machine learning and information retrieval losses are different ways of
inspecting the relevance of the recommendations.

13

3.3.1 Precision related measures

The precision is the accuracy of the first items recommended. For a given user,
the inspected method produces the ranked list of items. Only the first k are con-
sidered. Usually, the choice of k coincides with the number of items proposed
in the actual usage of the system. If this information is not known, the standard
choice is k = 10.
For one user and the corresponding predicted rank list, the precision at k if de-
fined as:

P@k(u) =
1

k

k∑
i=1

relu(i) (3.1)

Where relu(i) = 1 if user u bought (in the test set) the item recommended in
position i, and relu(i) = 0 otherwise.

Averaging this for all test users, the (mean) precision along all the users is ob-
tained:

P@k =
1

n

∑
u∈U (test)

(
1

k

k∑
i=1

relu(i)

)
(3.2)

This metric gives the same importance to all the top k suggestions, regardless
of their position within the top k. An extension that weights more the first items
is the average precision:

AP@k(u) =
1

k

k∑
i=1

P@i(u) · relu(i) (3.3)

Averaging this for all the test users, is obtained the mean average precision:

mAP@k =
1

n

∑
u∈U (test)

(
1

k

k∑
i=1

P@i(u) · relu(i)
)

(3.4)

14

Truncation

Since most users interacted with a very small set of items, it is likely that the pre-
cision at 10 cannot achieve high values. For example, if a user has only one test
interaction, a very frequent case, the best possible P@10(u) is 0.1. To make it
possible for P@k to reach 1, an adaptive number of recommendations is con-
sidered, where k becomes the cap. In particular, we consider min(|I(test)u |, k)
recommendations, so a number of recommendations equals to the number of
test interactions, at most k. Given the usual distribution of implicit interactions,
it could be expected that most of the time such correction considers only the first
1 or 2 recommendations. This kind of correction is proposed, for example, in a
well-known implicit feedback recommender system competition∗.
The truncated precision, for one user, is:

P@k(u)corrected =
1

min(|I(test)u |, k)

min(|I(test)u |,k)∑
i=1

relu(i) (3.5)

The truncated mean precision is obtained by averaging over the test users:

P@kcorrected =
1

n

∑
u∈U (test)

 1

min(|I(test)u |, k)

min(|I(test)u |,k)∑
i=1

relu(i)

 (3.6)

The truncated average precision, for one user, is:

∗https : / / www . kaggle . com / competitions / h-and-m-personalized-fashion-recommendations /
overview/evaluation.

15

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview/evaluation
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview/evaluation

AP@k(u)corrected =
1

min(|I(test)u |, k)

min(|I(test)u |,k)∑
i=1

P@i(u) · relu(i)

(3.7)
Finally, by averaging the AP@k(u)corrected over all the test users, the trun-

cated mean average precision is obtained:

mAP@kcorrected =
1

n

∑
u∈U (test)

 1

min(|I(test)u |, k)

min(|I(test)u |,k)∑
i=1

P@i(u) · relu(i)

(3.8)

3.3.2 Recall
The recall measures the proportion of user interactions, in the test set, that the
system correctly suggests within the top k recommendations. The recall, for one
user, is defined as:

Rec@k(u) =
1

|I(test)u |

k∑
i=1

relu(i) (3.9)

As for precision, the average along all the test users is:

Rec@k =
1

n

∑
u∈U (test)

(
1

|I(test)u |

k∑
i=1

relu(i)

)
(3.10)

Truncation

As in precision, a similar argument can be made with recall, changing the num-
ber of considered recommendations tomax(|I(test)u |, k), in order to allow each
ranked list to cover all the interaction. However, with the typical number of test

16

interactions per user, which is very small,max(|I(test)u |, k)wouldbek for almost
every user, with a standard choice of k. For this reason, the corrected version is
not used.

3.3.3 Precision-recall plot
Precision measures the accuracy of the recommendations. Recall measures the
ability to suggest all the relevant items. There is a trade-off between precision
and recall, with smaller recommended lists (small values of k), the precision tends
to grow and the recall tends to drop, while for larger recommended lists (large
values of k), the recall tends to grow and the precision tends to drop. A broad
relevance investigation can be performed with the precision-recall plot. For every
recall point, i.e. k = 1, . . . ,m, P@k and rec@k are computed, and then the
trend is displayed on a scatterplot.

Figure 3.1: Precision‐recall plot for a random predictor.

A possible metric that summarizes this plot is the AUC (area under the pre-
cision recall plot). However, using the AUC results in the loss of information on
where the models are performing, since this metric considers all of each recom-
mended list.

17

3.3.4 Hit ratio

This metric is the proportion of users for whom at least one relevant recommen-
dation is given, within the top k. Originally, this metric was developed for the
test splitting, where there is exactly one test interaction per user. In that case, the
name refers to the proportion of “hitted” users. With the completely random
split chosen in this work, these metrics are still useful, since for an e-commerce
recommendation system it is interesting to known for how many people at least
one potential selling item is proposed. This is especially true in domains where
users tend to buy only one item at a time.

HR@k =
1

n

∑
u∈U (test)

min

(
k∑

i=1

relu(i), 1

)
(3.11)

3.3.5 Expected percentile ranking

Sometimes called mean percentile ranking, it measures how far relevant recom-
mendations are from the top of the ranked list. This metric, different from the
previous ones seen, uses all the ranked list, without stopping at k. This makes
it show how the system is performing after the top recommendations, but it is
also more unstable due to the fact that one bad ranking for a relevant item has a
strong impact on the score. Moreover, we are usually interested in only the first
recommendations.

rank =

∑
ui relu(i) · rankui∑

ui relu(i)
=
{
rankui : relu(i) = 1; ∀u ∈ U (test), ∀i ∈ I

}
(3.12)

Where rankui is the quantile of the item i in the recommended list for user
u.
One good property is that a random predictor is expected to have a rank = 0.5,

18

since relevant recommendations are distributed uniformly in the ranked list.

3.4 Coverage
Agood recommender system should be able to suggest all the items of the catalog.
The coveragemetric is the proportion of items that are suggested at least once, for
a given set of users.
Let Tu represent the top k recommended list of items for user u:

CC@k =
|
∪

u∈U (test) Tu|
m

(3.13)

3.4.1 Frequency of recommendations plot
Having a very large set of test users is likely to make the coverage metric converge
to 1. For this reason, a deeper understanding of system coverage can be achieved
by plotting the frequency of recommendation for each item, within the top k

recommendations, along the test users. Note that items are ordered by popularity.

Figure 3.2: Frequency of recommendations per item, for a random predictor.

An important consideration about this plot is that it shows how much the

19

items are recommended, without any information about the relevance. To un-
derstand whether some recommendations are useful, this plot should be paired
with the precision, stratified by popularity. This additional piece of information
could be used to compare the performances between the recommendations in the
short head and in the long tail.

3.5 Novelty
The novelty of a recommender system is the ability to recommend items that the
user is not aware of [14]. In some environments this can be an important charac-
teristic, in order to keep the user interested. The evaluation of such quality can
be done by comparing the interaction timestamps of the test set with the interac-
tion timestamps of the training set. A more accurate investigation can be done if
detailed behavioral data are available, for example, the set of visited webpages by
each user.

3.6 Otheraspectsrelatingtotheperformance

3.6.1 Serendipity

The serendipity is the ability to make users discover new items that are appreci-
ated. In some scenarios, this can be the end goal of the recommender system. Can
be checked by evaluating both relevance and novelty. Therefore, one way to view
serendipity is the relevance of non-obvious suggestions [14].

3.6.2 Diversity

The diversity of a recommended list is the dissimilarity between the items sug-
gested. The notion of item similarity can depend on content or interaction data,
that is, if the item characteristics are similar or if the items tend to be bought
from the same users. Diversity is important in environments where similar items

20

are interchangeable, for example, in a movie recommender system, suggesting 5
horror movies can cause a user to leave the platform, with respect to suggesting 5
movies of different genre, even if such a user likes horrormovies. Diversity can be
enforced by reordering the predicted ranked list, with approaches based on item
features [15] (from information retrieval), or based on item popularity [6].

3.6.3 Trust

Trust measures the faith of users in the system recommendations. If an user does
not trust the system, it is likely that such auser ignores the suggestions, even if they
are relevant. This is important for items such that the user cannot immediately
understand the relevance of the proposed items. When the recommender system
provides explanations, the user is more likely to trust the system, especially if the
explanations are logical [14]. In settings where trust is important, interpretable
methods should be preferred.

3.6.4 Robustness

A recommender system is robust when attacks, such as fake ratings, or abnormal
patterns in the data, do not significantly affect the rankings. Significant profit-
drivenmotivations under attacks do exist; for example, a third part seller onAma-
zon could generate positive fake news, in order to make their products suggested
to as many users as possible. If the interactions are purchases, such attacks are un-
likely, because they would require an expensive set of purchases in order to affect
the system.

3.6.5 Scalability

The mass of users of a service, and the size of the catalog, can lead to a huge set
of possible interactions. For this reason, each method should also be considered
for its requirements in terms of computational resources. While an e-mail ad-

21

vertisement campaign does not require significant requirements in terms of time
efficiency, real-time services need fast recommendations. Even without real-time
applications, the size of the data can be such that training time, prediction time,
and memory consumption should be taken into account.

22

4
Methods for implicit feedback

In this chapter, suitablemethods that canperformthe recommendations are listed,
including baselines, content-basedmethods, pure collaborative filteringmethods,
and hybrid methods. Most of the effort is on pure collaborative filtering, i.e.
methods that base their recommendations exclusively on historical interactions.
An algorithm falls into the collaborative filtering category if the recommenda-
tions for one given user are obtained considering the past interactions of other
users, too.

4.1 How recommendations are computed

Recommendations are made for each user in the test set. An affinity score is com-
puted between each user and, one by one, all items in the catalog. Such scores,
also called predicted ratings in the explicit feedback framework, are denoted by
r̂ui, where u is the target user and i is a chosen item. The r notation is because
scores are considered an estimate of the missing entries ofR. Once the scores are
obtained, the recommendations are calculated as the list of items in the catalog,
ordered by decreasing affinity.

23

In the considered use case, however, it is not desirable to suggest an item to a user
who has already purchased it. For this reason, these items are removed from the
suggestions.

4.1.1 Cold starts

Most methods are not able to perform the recommendations for a cold start user.
A basic way to overcome this problem, when recommendations are needed for
these users, is to use unpersonalizedmethods, such as the popularity-based recom-
mender (4.2.1). An alternative, based on previous behavioral data, is proposed in
Section 6.

4.2 Baselines

4.2.1 Popularity-based

This baseline is an unpersonalized method, where suggestions are the most pop-
ular items, regardless of the user.

r̂ui =
n∑

v=1

Rvi

Given the strong popularity bias that is typically present, it is often very challeng-
ing to perform better than recommending the most popular items.

4.2.2 Random predictor

The recommendation lists provided by a random predictor are just the result of a
random shuffle of the catalog.

24

4.3 Content-based recommendations

The content-based method does not learn from the interaction matrix R. This
method works by suggesting, to a given user u, the items most similar to those
consumed previously. The similarity between items is computed on the item fea-
tures. LetX ∈ Rm×p be the content data matrix, with p recorded features. Let
Xi be the feature vector of the item i, a row ofX . A possible cosine-based simi-
larity between items is defined as:

Bij = sim(i, j) =
XT

i Xj

||Xi|| · ||Xj||
(4.1)

The score matrix can be obtained as:

R̂ = RB (4.2)

4.3.1 Feature extraction

In the case study of this work (1.2), the features that describe each items are cloth-
ing category, gender of the product, and a bag of words vector representation of
the product description. A well-crafted feature extraction is crucial for the good
functioning of the model, in particular, the usage of the best practices in natural
languageprocessing. During the extractionof abagofwords from theproduct de-
scription, stop words removal and stemming are implemented. Moreover, only
a carefully selected subset of keywords, relevant to the domain context, is kept.
Words with the samemeaning in the clothing industry are merged, in order to re-
move noise. At the end of the process, each item is described by p = 91 variables.

25

4.4 Memory-based methods
Memory based methods, also called neighborhood-based methods, are collabora-
tive filtering techniques in which recommendations are obtained by means of an
aggregation of a neighborhood, using memorized feedback, without an explicit
model of behavior. In general, a neighborhood of a user (or item) is a set of sim-
ilar users (or items), that are used to infer the user-item score. Such methods
can be seen as a generalization of the widely known K Nearest Neighbors clas-
sifier/regressor [14].
Thosemethods are divided in two categories: user-basedmethods and item-based
methods. In user-based methods, the implicit assumption is that a user behaves
as its similar users.
In item-based methods, instead, the underlying hypothesis is that similar items
are rated in a similar way by the same user. The general scheme is:

1. Find a set of similar users (or items)

2. Aggregate the ratings of the neighborhood

However, the context of implicit and sparse feedback makes item-based pro-
cedures not viable, since there are too few interactions per user, making the aggre-
gation unreliable.

4.4.1 Similarity
A key component of memory based models is the concept of similarity. In a
content-based approach, two items are considered similar if their features match.
In a demographic filtering scenario, two users are similar if they share the same
demographic characteristics. However, in collaborative filtering, the concept of
similarity does not depend on the features of the user or the item, but on the be-
havior of the interactions. This means that two users are similar if they have con-
sumed the same items, regardless of their demographic features, and two items

26

are similar if they tend to be consumed by the same users, without considering
the features of the items.
A commonly used similarity function between users is the cosine:

cos(u, v) =
RT

uRv

||Ru|| · ||Rv||
(4.3)

WhereRu is the row ofR that corresponds to the user u.
Given that rui ∈ {0, 1} ∀u ∈ U , ∀i ∈ I , the same similarity function can be
written using the set notation:

cos(u, v) =
|Iu ∩ Iv|√
|Iu| ·

√
|Iv|

(4.4)

This function measures the number of commonly consumed items, normalized
by the amount of items that each user purchased.
An extension that can weight in a different way the number of purchases of the
two users is the asymmetric cosine [16]. In the original work, the formula is de-
rivedbywriting the cosine distance as the product between two conditionedprob-
abilities, then making it asymmetric by adding a parameter. In the resulting dis-
tance function, the exponents of the denominator are parametrized such that, by
varyingα, the right normalization balance, between the target user and the others,
can be fine-tuned.

asymC(u, v) =
|Iu ∩ Iv|

|Iu|α · |Iv|1−α
(4.5)

Where u is the target user, i.e. the user for which the recommendations shall be
done. With this formulation, it is no longer true that sim(u, v) = sim(v, u),
and for this reason the specification of which user is the target is needed.

27

4.4.2 User-based KNN

This simplememory-basedmethodworks by averaging the ratings of theK most
similar users to the target user. Let sim(·, ·) be the chosen similarity function.
The neighborhood ofu, that is the set of theK most similar users, can be defined
as:

NK(u) = {(v1, v2, ..., vK) ∈ U\{u} : sim(u, v′) ≤ sim(u, v);

∀v ∈ (v1, v2, ..., vK), v
′ ∈ U\{u}}

(4.6)

Then the aggregation is just the average:

r̂ui =
1

K

∑
v∈NK(u)

rvi (4.7)

4.4.3 User-basedweighted KNN

The aggregation can be modified to give more weight to more similar users in the
neighborhood. Letwuv = sim(u, v):

r̂ui =

∑
v∈NK(u)wuvrvi∑
v∈NK(u)wuv

(4.8)

With this adjustment, it could also be considered the removal of the neigh-
borhood, that is equivalent to setK = m, since the similarity in yet taken into
account in the aggregation. In this way, all the information is used.

r̂ui =

∑
v∈U wuvrvi∑
v∈U wuv

(4.9)

28

4.5 Using standard machine learning
Off-the-shelf machine learningmodels cannot be used directly in recommending
systems [14]. This is because the response variable y is the matrix R and needs
to be predicted with itself as input. However, it is possible to adapt standard
machine learning by predicting one column ofR at the time, using all the other
columns as features in input. In this way, the chosen model can learn patterns
of the type: “user u consumed items ix, iy”−→ “user umay consume item iz”,
because the prediction of ruj is based on the other purchases of u. This method
is collaborative filtering because the associations are learned using all the users
interactions, and the recommendations for one user are based on the other users
behavior.

4.5.1 Column-wise logistic regression

A suitable model is the logistic regression. Given the sparsity in the data, simple
models are preferable. Let R̂ be the matrix with the predicted ratings. Let R[i]

be the column ofR corresponding to the item i, and letR[−i] be the matrix ob-
tained with all the columns ofR except forR[i]. LetLR(y|X) be the maximum
likelihood estimation (β̂0, β̂) of the logistic regression parameters, with y as tar-
get variable andX as data matrix. Finally, let σ(·) be the element-wise sigmoid
function σ(x) = 1

1+e−x . A procedure to efficiently estimate R is described in
Algorithm 4.1.

Algorithm 4.1 Logistic regression for collaborative filtering
for i ∈ 1, ...,m:
y ← R[i]

X ← R[−i]

β̂
(i)
0 , β̂(i) ← LR(y|X)

R̂[i] ← σ(β̂
(i)
0 +Xβ̂(i))

end for

29

At the end of this procedure, all the scores {rui} are estimated in R̂. Notice
that the predictions are made on the train instances, so using a complex method
instead of logistic regression can easily cause overfitting issues.

Interpretability

This method is suitable for interpretation: the parameters β̂(i), contain the infor-
mation of which consumed items caused the suggestions. In fact, in the predic-
tion of rui, each consumed item by u results in a contribution whose intensity is
indicated by the corresponding entry of β̂(i), denoted by β̂(i)

j .

r̂ui = σ(β̂
(i)
0 +Xβ̂(i))

r̂ui = σ(β̂
(i)
0 +

∑
j∈Iu\{i}

β̂
(i)
j)

Since the final ordering is invariant with respect to monotone functions, the
sigmoid function can be removed from the prediction function:

r̂′ui = β̂
(i)
0 +

∑
j∈Iu\{i}

β̂
(i)
j

4.5.2 Hybrid extension

This method can use demographic data. User feature columns are concatenated
toR[−i], so that the model incorporates the demographic data in the predicting
function. LetQ ∈ Rn×p be the demographic data matrix, where each row is the
p-dimensional feature vector of an user. At each iteration i, the data matrix used
as input for the logistic regression is:

X = (R[−i]|Q) (4.10)

30

In this way, the parameter vector contains one collaborative part β and one de-
mographic part γ, making it an hybrid method:

MLE(β
(i)
0 , β(i), γ(i)) = (β̂

(i)
0 , β̂(i), γ̂(i)) = LR(y|X) (4.11)

r̂ui = σ(β̂
(i)
0 +

∑
j∈Iu\{i}

β̂
(i)
j +QT

u γ̂
(i))

The procedure is detailed in Algorithm 4.2.

Algorithm 4.2 Logistic regression for hybrid filtering
for i ∈ 1, ...,m:
y ← R[i]

X ← (R[−i]|Q)

β̂
(i)
0 , β̂(i), γ̂(i) ← LR(y|X)

R̂[i] ← σ(β̂
(i)
0 +Xβ̂(i) +Qγ̂(i))

end for

4.6 Latent factors models
The category of models based on latent factors, also called factorization machine
models, is awidely studied topic in collaborative filtering [17]. The generalmodel
is well known, and several ways to estimate it have been proposed. The idea is to
learn a latent representation for users and items, where each hidden factor corre-
sponds to one characteristic of both the items and the users profiles. The recom-
mendations are computed by suggesting items thatmatch the target user’s profile.
For example, in a book recommender system, an user could be interested inmath,
and if the estimation process built good profiles, these models are able to repre-
sent such interest in the latent space, and thus recommend math books to the
user.
The scores are predicting by the inner product, which sums all the matches be-

31

tween the user and the item profiles. Let Uu be the hidden representation of the
user u, and Vi the hidden representation of the item i.

r̂ui =< Uu, Vi >= UT
u · Vi (4.12)

By stacking all the predicted scores into the matrix R̂, the matrix factorization
problem is derived:

R̂ = U · V T (4.13)

Where U ∈ Rn×k is the matrix whose rows are the k-dimensional hidden rep-
resentations of the users, and V ∈ Rm×k, is the matrix whose rows are the k-
dimensional hidden representations of the items.

Example

Assume the interaction matrix encodes a clothing company historical purchases.
There are two users and three items, and a two-dimensional reasonable hidden
representation is available. The first factor represents the gender, the second en-
codes the color attitude, high values for brightness attitude and low values for
darkness attitude. The first user is a man that loves bright clothing. The second
user a woman that does not have color preferences. All the items are forman, one
is bright, one gray, one dark. The matrix reconstruction could work like this:

R̂ =

(
1 1

−1 0

)
·
(
1 1 1

1 0 −1

)

R̂ =

(
2 1 0

−1 −1 −1

)

32

For the first user, it is easy to recommend the bright dress, while for the second
there are not good matching items.
However, good representations are not given and shouldbe learned, starting from
R.

4.6.1 SVD

The estimation of latent factormodelswith the singular value decompositionwas
firstly proposed by [18]. The singular value decomposition factorizes a matrix
M ∈ Rn×m as:

Mn×m = Un×n · Σn×m ·QT
m×m (4.14)

Where U and Q are unitary∗, Σ is rectangular diagonal with non-negative
values on the diagonal, called singular values.
A low rank approximation ofM can be obtained by considering only the higher
k < min(n,m) singular values in Σ, and setting the others at 0. This is also
called truncated SVD:

M̂n×m = Un×k · Σk×k ·QT
k×m (4.15)

In the recommender system notation, this is:

R̂n×m = Un×k · Σk×k ·QT
k×m (4.16)

Setting V = Σ ·QT results in:

R̂ = U · V T (4.17)

WithU ∈ Rn×k, V ∈ Rm×k.

∗X ∈ Rn×n is unitary if XX−1 = X−1X = In. The real analogue is the orthogo-
nal matrix

33

The estimation of the latent factor model is obtained. Such procedure implicitly
solves the following optimization problem:

U, V = argmin

U∈Rn×k,V ∈Rm×k:

UTU=V TV=Ik

||R− UV T ||2 (4.18)

Where || · || indicates the Frobenius norm. Such method aims to find the best
matrices, with orthogonal columns, that minimize the reconstruction loss. The
actual algorithm used for the estimation is described in [19].

4.6.2 Alternating Least Squares

Another widely used estimation technique is the alternating least squares, pro-
posed with implicit feedback in [20]. The difference with respect to the SVD
estimation is that there is a relaxation of the orthogonality constraint present in
4.18, in the optimization problem:

U, V = argmin
U∈Rn×k,V ∈Rm×k

||R− UV T ||2 (4.19)

Given the freedom ofU and V , in practice a regularization term is needed:

U, V = argmin
U∈Rn×k,V ∈Rm×k

(
||R− UV T ||2 + λ||U ||2 + λ||V ||2

)
(4.20)

The optimization problem formalized in [20] also includes a confidence score
cui for each observed interaction, but in the case study of this work 1.2, this in-
formation is not present, and setting cui = 1 ∀u, i is reasonable, removing the
confidence from the model.
The algorithm that solves the problem is the alternating least squares. The general

34

idea is that, ifU is considered fixed:

R̂ = UV T

Becomes a multiple least squares problem

Ŷ = XB

With Y = R,X = U ,B = V T . The same reasoning can be made with V fixed:

R̂ = UV T

R̂T = V UT

The algorithm uses the least squares formula: B̂ = (XTX)−1XTY , or the
l2 regularized version [21]: B̂ = (XTX + λI)−1XTY , in order to update one
matrix at a time, keeping the other fixed.

Algorithm 4.3 Alternating Least Squares
for i ∈ {1, ...,N_ITER}:
V ←

(
(UTU + λIk)

−1UTR
)T

U ←
(
(V TV + λIk)

−1V TRT
)T

end for

The algorithm requires to invert k × k matrices, but given that the usual
values for the number of latent factors are between k = 50 and k = 500, the
procedure can run efficiently.

4.6.3 NonNegativeMatrix Factorization

The possibility for U and V to have negative entries makes the interpretation of
factors more difficult. For this reason, non-negative constraints are introduced:

35

U, V = argmin

U∈Rn×k,V ∈Rm×k:

U,V≥0

||R− UV T ||2 (4.21)

The actual algorithm, with all the regularizations and details, is described in
[22]. In practice, this method is often slower than SVD and ALS.

4.7 EASER

Embarrassingly Shallow AutoAncoders (in Reverse order, EASER) is a collabo-
rative filtering model that suggests items on the basis of similarity between items
[23]. Each past interaction j of the user u contributes to the scores rui by an
addend, which is the similarity between the item i and j,Bij . This method is col-
laborative because the similarities are not based on the features of the items, but
are learned from the interaction matrix. EASER works by solving the following
problem:

B̂ = argmin
B∈Rm×m; diag(B)=0

(
||R−RB||2 + λ||B||2

)
(4.22)

The reconstructed matrix with the scores rui is:

R̂ = RB̂ (4.23)

In this way, the scores are obtained by:

r̂ui =
m∑
j=1

rujB̂ij =
∑
j∈Iu

B̂ij (4.24)

36

An explicit solution to the optimization problem is available, setting:

P̂ = (RTR + λIm)
−1 (4.25)

B̂ = Im − P̂ · diagMat(1⊘ diag(P̂)) (4.26)

Where⊘ is the element-wise division. That is:

B̂ij =

0 if i = j

− P̂ij

P̂jj
if i ̸= j

(4.27)

4.7.1 Interpretation
If R is standardized, and is assumes that each row of the standardized R comes
from a vector of gaussian random variablesX ∼ N(0,Σ), the elements outside
of the diagonal of B̂ are the partial correlations. This means that the similarity
estimated by EASER is related to the partial correlations, i.e., the correlations be-
tween items without the effect of all the other items. WhenBij = 0with i ̸= j,
it means that the item i and the item j are conditionally independent. Practically,
given a user u, this method suggests items that are frequently consumed by users
who have interacted with a subset of Iu.

37

38

5
Experimental results

5.1 Experimental setup

5.1.1 Data

As described in Section 1.2, the data comes from a real company that sells luxury
clothing and accessories. The main source of available data is the transactions
history, an implicit feedback. Content data is present, in particular the category
of the product and the description of the items. Some demographic features are
present, but they can be available only after the first purchase of the user, due to
the registration process. Finally, behavioral data is available, in particular the set
of interactions of the form “user u visited the webpage of the item i”.

5.1.2 Selection and splitting

The full dataset is composed of the past purchases, selected along with users who
bought at least2 items and the topm = 1000 sold items. 15%of the interactions,
randomly selected, are set as the test set. Recommendations are made to users for
whom there is at least one purchase in the test set.

39

5.1.3 Descriptive statistics

There are n = |U| = 94064 users, of those |U (train)| = 90072 have at least one
interaction in the training set, and |U (test)| = 29710 have at least one interaction
in the test set.
The sparsity ofR, i.e. the proportion of zero entries, is 99.7%.
Users have a very small number of interactions, in mean, only 2.66 bought items
per user. The amount of interactions per item is larger, there are 250.7mean sales
per item.
However, the amount of sales per item is not equally distributed, the popularity
bias is strongly present, having that the most sold items account for the majority
of the total sales as depicted in Figure 5.1:

Figure 5.1: Popularity bias and sales coverage.

There are users forwhommany interactions are known, and hence the recom-
mendations for them should be more accurate. The distribution of the number
of train purchases for test user is illustrated in Figure 5.2.

40

Figure 5.2: Number of test users stratified by train purchases.

For most users, there are at most two purchased items. This kind of infor-
mation sparsity could make simpler models perform the best. There are |U| −
|U (train)| = 3992 cold start users. Notice that the true proportion of cold starts,
in the production environment, is much greater: Every user, before its first pur-
chase, is a cold start; Furthermore, the way the dataset is retrieved, by picking in-
teractions only if belong to users who bought at least two items, greatly reduces
the amount of cold starts. For this reason, a special treatment for such users is
reasonable. Approaches to address cold start are discussed in Chapter 6.

41

5.2 Latentfactormodelsandpopularitybias

Thepopularitybias present in thedatamakes factorizationmodels performpoorly.
This type of behavior seems not to be well studied in the literature. For this rea-
son, this behavior is deeply investigated, demonstrating how the standardization
ofR can help this family of models.
Top items are not recommended by the latent factors models. The expected be-
havior of a method is to recommend each item a number of times that is propor-
tional to its popularity. All the proposed methods show the expected recommen-
dation frequencies, except for the latent factors models.

Figure 5.3: Recommendation frequency of latent factors models, against KNN.

InFigure 5.3, the latent factorsmodel, trainedwith SVD,ALSorNMF,withk =

100 latent factors, is compared to the simple KNN, with neighbors of 500 users.
It can be seen how factorization models do not recommend the top products, as
KNN does. The most recommended items are around the 100-th most popular
product, with the samenumber of latent factors. In fact, by changing the number
of latent factors, the most recommended items shift accordingly, becoming the
ones around the k-thmost popular product. Such a “moving hump” can be seen

42

by showing the recommendation frequencies of the latent factors models with
k ∈ {10, 100, 500} (Figure 5.4).

Figure 5.4: Recommendation frequency of latent factors models, varying the number of factors.

The performances are a lot worse than the KNN and the popularity-based base-
line (Table 5.1).

Model mAP@10
Popularity based 0.0466

Knn, Neighbor size: 500 0.0624
SVD, 100 latent factors 0.0269
ALS, 100 latent factors 0.0273
NMF, 100 latent factors 0.0283

Table 5.1: Latent factors models performances.

5.2.1 Generated data

In order to show that the popularity bias is responsible for the factorizationmod-
els problem, the behavior is tested on two different randomly generated datasets.
The first one, is generated in such a way that does not contain the popularity bias,

43

while the second one emphasizes the bias.
The generationof thefirst dataset is easy: Randomcoordinates (u, i) ∈ {1, ..., n}×
{1, ...,m} are sampled until the desired total number of sales is reached, obtain-
ing T (unif), and soR(unif). In Figure 5.5, it can be seen how the popularity bias

Figure 5.5: Popularity bias in the uniformly generated dataset.

is not present in the generated dataset.
For the generation of the second dataset, a matrix with the same shape as the real
one is considered. For each item that corresponds to one column ofR(zeta), the
generation is carried out by:

1. Sample the popularity bias, that is the number of sales of that item, that is
also the sum of the considered column ofR(zeta);

2. Randomly distribute such sales along the fake users.

In the first step, the popularity of each item is sampled from the zeta distribu-
tion [24], an extension of the Zipf’s law [25]. The probability distribution is:

fzeta(x) =
x−s

ζ(s)
∀x ∈ {1, 2, ...} (5.1)

44

Where ζ(s) =
+∞∑
i=1

1

ns
is the Riemann zeta function, with s > 1.

Figure 5.6: Zeta probability distribution, with s = 3
2
.

This distribution has a very long tail, so it is likely to sample some itemswith huge
popularity.

In the second step, each entry of the considered column can be 1 or 0, and the
sum of the column is guaranteed to be equal to the popularity. This is achieved
by applying the steps described in Algorithm 5.1.
The parameter s is tuned and the sampling is repeated, until aR(zeta) with a spar-
sity similar to the original is obtained. In Figure 5.7 it can be seen how the popu-
larity bias is emphasized in the zeta generated dataset.

5.2.2 Behavior in the generated datasets
Thehumpdoes not appear in the datasetwithout the popularity bias (Figure 5.8),
contrary to the zeta generated dataset, where the hump is stronger than the one
in the real dataset (Figure 5.9).

45

Algorithm 5.1 Uniform assignment of fake sales
Input: p = Number of sales of the considered item i
Output: R[i](zeta)

R[i](zeta) = 0n
sales = 0
while sales < p:

Uniformly sample an index u ∈ {1, ..., n}
if R[i](zeta)

u = 0:
R

[i](zeta)
u = 1

sales = sales+ 1
end if

end while

Figure 5.7: Popularity bias in the zeta‐generated dataset.

Without any other type of relationship in the data, it was shownhow the presence
of the popularity bias affects the latent factors models.

46

Figure 5.8: Recommendation frequency of latent factors models in the uniformly generated dataset.

Figure 5.9: Recommendation frequency of latent factors models in the zeta‐generated dataset.

47

5.2.3 SVD decomposition inspection

In this section, is considered the SVD training for the matrix factorization mode,
in order to understand why the hump is appearing. The reason why SVD was
chosen is that it has a set of known good properties. We can decompose and plot
the effect of each individual factor:

R̂ =
k∑

i=1

Mi (5.2)

R̂ =
k∑

i=1

σiUi ⊗ Vi (5.3)

Where ⊗ is the outer product. The first factors account for the majority of the
reconstruction, and by looking at the contributions of the first 4 factors, it can be
seen how such factors contribute only to the top popular items (Figure 5.10).

Figure 5.10: Contribution of the first 4 factors in the SVD reconstruction ofR.

48

Themost popular columns are perfectly reconstructed (Figure 5.11), because
they are more relevant in the optimization problem (4.18), having more informa-
tion to represent. This causes the fact thatR(train), which are the columns of the
top popular items, the zero entries are perfectly reconstructed in R̂(train). The
scores of the top items not yet purchased, so with Rij = 0, are r̂ui ≈ 0, and
thus the top items are never recommended, explaining the strange behavior. The
hump appears because, differently from the uniformly generated fake dataset, the
real data have some patterns in it. For this reason, there are some useful latent fac-
tors that can reconstruct the matrix. The result is that only the first columns are
perfectly reconstructed, while the columns before the k-th are a mixture between
overfitting representations and useful factors.

Figure 5.11: SVD reconstruction error ofR.

5.2.4 Simplified example of the problem
The hump follows the number of latent factors because the decomposition can
perfectly reconstruct one column per latent factor. Assuming the directions of
maximumvariability in the item space are themost popular items themselves, that

49

is, the direction of maximum variance is e1, the second one is e2, etc., that is, the
extremization of the popularity bias, the SVD factorization would resolve as in
the following example: V is divided between two parts, the one where the sort
of item overfitting takes place, V (a), and the rest of the matrix, V (b). Here V (a)

is set to Ik, but is not mandatory for the behavior appearance, it is just to keep
the example as simple as possible. For simplicity, assume that the item indexes are
ordered in such a way that the most sold items are fist, so item 1 is the most sold
one, and itemm the least sold one.

Vm×k =

 V
(a)
k×k

V
(b)
m−k × k

 =

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...
0 0 0 . . . 1

V (b)

Assume user u bought items {1, 3}. Its R column can be perfectly recon-
structed by setting Ui = (1 0 1 0 0 . . . 0). Now, say that user i bought items
{1, 3, k + 2}. Its embdedding can easily reconstruct its purchases of 1 and 3,
but not k + 2. This is because with this scheme the decomposition can overfit
up to k columns. So the first k entries of its R column can be accurately recon-
structed, while the others will not, by setting the first k entries of its embedding
as: Ui,1:k = (1 0 1 0 0 . . . 0). The otherm− k entries should be the best linear
combination of the latent factors which minimize the reconstruction loss of the
columns {k + 1, k + 2, . . .m}. This is why the scores for popular items are so
low that they are not recommended.

50

5.2.5 Standardization
The popularity bias can be removed from the Rmatrix by standardizing it. Each
item has the same mean and variance, making them weight the same in the op-
timization problem. This simple change makes the hump disappear. Moreover,
the recommendation frequencies are flat, instead of encouraging the top prod-
ucts (Figure 5.12).

Figure 5.12: Recommendation frequency of standardized latent factors models, against KNN.

51

5.3 Results

5.3.1 Compared methods

In this section, the set of chosen methods is listed:

• Baselines: A random baseline and the popularity-based predictor are imple-
mented, mainly for the comparison purpose.

• Content-based: Amethod based on the similarity between items. In partic-
ular, a carefully extracted bag-of-words representation of the item descrip-
tion, together with other product features, is used in order to define the
distances.

• Collaborative filtering:

– Two user-based neighborhood methods have been tested, one simple
KNN and one weighted KNNwith asymmetric cosine distance.

– Column-wise logistic regression is implemented, together with its hy-
brid extension, that includes demographic data.

– The latent factorsmodel is tested, trainedwith threedifferent approaches:
SVD, ALS, and NMF.

– EASER is also compared.

52

Name Model Category Section

MostPop Popularity-based recommender Baseline 4.2.1
Random Random predictor Baseline 4.2.2

MostSimilar Content-based recommender Content-based 4.3
Knn User based KNN Collaborative filtering 4.4.2

AsymWKnn User based weighted KNN with asym-
metric cosine distance

Collaborative filtering 4.4.3

LogReg Colums-wise logistic regression Collaborative filtering 4.5.1
HybridLogReg Colums-wise logistic regression with de-

mographic data
Hybrid 4.5.2

SVD Latent factors model with SVD train-
ing

Collaborative filtering 4.6.1

ALS Latent factors model with ALS training Collaborative filtering 4.6.2
NMF Latent factors model with NMF train-

ing
Collaborative filtering 4.6.3

EASER Embarrassingly shallow autoencoders Collaborative filtering 4.7

Table 5.2: Compared methods.

5.3.2 Models configuration

In this section, the configuration of each compared method, for example, the hy-
perparameters settings, is listed. Each specific setting is the result of a grid search
like experiment on a small validation set, where each best performing configura-
tion is selected.

53

Name Settings

MostPop ·
Random ·

MostSimilar ·
Knn k = 500

AsymWKnn α = 0.4

LogReg No regularization (λ = 0)
HybridLogReg No regularization (λ = 0)

SVD k = 100, R standardized
ALS k = 100, R standardized, λ = 0.01

NMF k = 100, R standardized
EASER λ = 0.01

Table 5.3: Configuration of the methods.

5.3.3 Metrics
In order to compare the methods, the following metrics are used:

• mAP: These metric measures the relevance of the first recommendations,
rewarding the relevance of the very first recommended items (Section 3.4);

• Recall: The recall measures the ability of the method to include the items
already consumed within the first recommendations (Section 3.10);

• Hit ratio: This is the proportion of users for which at least one relevant
item is proposed in the first recommendations. The hit ratio is highly inter-
pretable from a business point of view, since it can be seen as the proportion
of users who are buying (Section 3.3.4);

• Coverage: The proportion of items that are proposed at least once. Ideally,
a method can recommend all the catalog, i.e. CC@k = 1 for a small k
(Section 3.13).

The considered length of the recommendation list, for the metrics, is 10, that is a
reasonable amount of items to suggest, in an e-commerce environment.

54

The corrected versions ofmAP and recall (Section 3.3.1,3.3.2) are not used, be-
cause for a large proportion of test users, there is only one interaction within the
test set. This would mean, for such users, that only the first recommendation
is used in the metrics computation. This is something to avoid if the idea is to
propose more than one item, at production time, as in the considered use case.

5.3.4 Test set results

The methods are compared on the full test set.

mAP@10 Rec@10 HR@10 CC@10

MostPop 0.0466 0.1186 13.35% 1.0%
Random 0.0032 0.0100 1.21% 100.0%
MostSimilar 0.0348 0.0786 9.03% 99.4%
Knn 0.0624 0.1324 15.03% 100.0%
AsymWKnn 0.0732 0.1613 18.17% 90.8%
LogReg 0.0611 0.1345 15.2% 100.0%
HybridLogReg 0.0611 0.1345 15.2% 100.0%
SVD 0.0572 0.1130 13.1% 100.0%
ALS 0.0569 0.1161 13.38% 100.0%
NMF 0.0517 0.1079 12.57% 99.8%
EASER 0.0712 0.1522 17.47% 97.8%

Table 5.4: Test set results.

In Table 5.5 it can be seen that:

• The best performance, in terms of relevance, is obtained by AsymWKnn.
However, such method has a very low coverage, meaning that its relevance
could be high because it takes more advantage of the popularity bias, with
respect to the other methods, that have a larger coverage.

55

• EASER is the second-best performing method for its relevance, but it has a
better coverage.

• The latent factors model performs worst when fitted with NMF.

• The content-basedmethod,MostSimilar, performs worse than any collabo-
rative filtering method.

• Demographic data does not improve the results of the logistic regression,
as logistic regression with and without such data performs almost the same
(metrics are not exactly the same, as seems in theTable 5.5 due to rounding).

It is important to keep in mind that these metrics measure the ability of the
methods to suggest items that the user would buy without the suggestion. This
means that methods that mostly propose popular items are expected to have a
higher relevance, even if the quality of their suggestions is not better. For this
reason, the recommendation frequencies are compared. In fact, themethods that
have the best metrics are the same that recommend the top products the most
(Figure 5.13, Figure 5.14).

Figure 5.13: Recommendation frequencies comparison.

For this reason, the accuracy of the predictions is compared by stratifying the
recommendations by popularity rages. In Figure 5.15, it can be seen that, in gen-
eral, a given method has better precisions than others in the popularity bands it

56

Figure 5.14: Recommendation frequencies comparison, zoomed in.

recommends less. This is because, if a method recommends very rarely unpopu-
lar items, the times that this happens are due to a high confidence of the relevance
of such items. At least, this plot gives the confirmation that the best-performing
methods are not achieving such metrics just because of the popularity bias, but
they are relevant recommendations across all the catalog.

Figure 5.15: Stratified comparison.

57

5.3.5 Stratified test set
In order to investigate how the amount of known interactions influences the rec-
ommendations performance, the metrics are computed on some subsets of the
test dataset. In particular, the methods are tested on:

• 1-item known dataset: All the test users with exactly 1 interaction known;

• Known users dataset: All the test users with at least 2 interaction known;

• Well knownusers dataset: All the test userswith at least5 interactionknown.

The performances in the subsets of the test set can be seen in Table 5.5. The
amount of known purchases influences each method in a different way. EASER

and latent factors models benefit from an extended knowledge of the user, while
memory-basedmodels and logistic regression do not. This is because EASER and
latent factors models improve their performances with more knowledge, in par-
ticular the hit ratio, while the other methods hit ratio get worse. This is due to
the fact that, if an user consumed many items, it is likely that such items are the
most popular ones, and thus, methods that exploit the popularity bias cannot
recommend those items, because they have already been consumed. In contrast,
latent factors models build better user and item embeddings, thanks to the in-
creased amount of knowledge. In the same way, item-item similarity is improved
in EASE.
This comparison shows how different methods perform in different situations,
and so how a different model can be used for each user, depending on the avail-
able knowledge.

58

Method Users Subset mAP@10 Rec@10 HR@10 CC@10

MostPop
One item 0.0602 0.1500 15.72% 1.0%
Known 0.0306 0.0833 10.17% 1.0%
Well Known 0.0202 0.0554 10.21% 1.0%

MostSimilar
One item 0.0418 0.0806 8.51% 98.1%
Known 0.0214 0.0593 7.31% 98.7%
Well Known 0.0165 0.0473 7.99% 76.4%

Knn
One item 0.0792 0.1491 15.57% 99.5%
Known 0.0479 0.1130 13.81% 98.3%
Well Known 0.0360 0.0879 15.36% 94.9%

Knn_acos
One item 0.0944 0.1938 20.24% 90.8%
Known 0.0579 0.1379 16.73% 76.5%
Well Known 0.0444 0.1129 19.16% 28.3%

LogReg
One item 0.0869 0.1774 18.55% 85.1%
Known 0.0377 0.0931 11.64% 99.2%
Well Known 0.0295 0.0778 14.58% 81.0%

HybridLogReg
One item 0.0869 0.1774 18.55% 85.1%
Known 0.0377 0.0930 11.64% 99.2%
Well Known 0.0294 0.0777 14.58% 80.9%

SVD
One item 0.0686 0.1174 12.36% 100.0%
Known 0.0463 0.1019 12.84% 100.0%
Well Known 0.0486 0.1111 19.12% 97.7%

ALS
One item 0.0710 0.1274 13.36% 100.0%
Known 0.0435 0.0993 12.51% 99.8%
Well Known 0.0439 0.1057 18.46% 96.3%

NMF
One item 0.0594 0.1101 11.58% 99.4%
Known 0.0427 0.0974 12.39% 96.9%
Well Known 0.0410 0.1005 17.85% 90.3%

EASER
One item 0.0877 0.1713 17.95% 96.4%
Known 0.0599 0.1389 17.36% 96.8%
Well Known 0.0634 0.1402 24.27% 77.7%

Table 5.5: Stratified test set results. Best results over each subset are highlighted.

59

60

6
Handling user cold starts

Themajority of the customers who visit thewebsite are cold starts. Every possible
user is or was a cold start, before its first purchase. Given these facts, the develop-
ment of a specific method for cold starts can significantly improve the business
impact of the recommender system.

6.1 Behavioral data

Sincemost of the users register on thewebsite only to complete a purchase, demo-
graphic data is not available for cold starts at production time. Without past inter-
actions and without user features, the only data left is the behavior of the user on
the website. In particular, every visit to a webpage specific to an item is recorded
as implicit feedback. In this way, a different and more noisy form of interactions
is obtained: T = {(u, i, t) ∈ visits}, where u is the user, i the item, and t the
time at which the user u visited the item i. There is a significant difference in
the usage of this kind of feedback with respect to the purchase interactions: If a
cold start user saw only a subset of the catalog before buying, its next purchasing
is guaranteed to be one of the visited items. For this reason, the system should

61

propose only previously consumed items, which is completely different from the
standard case, where already purchased items cannot be suggested (ref:4.1).

6.2 Evaluation methodology

The recommendations for cold starts can be tested on the first purchase of each
user. This is because each user, before its first purchase, was a cold start. The
general idea is to consider the first purchase of each user as the test set. The train-
ing set is the set obtained with all the user-item visits until the day before the first
purchase, for each user. In this framework, considerations about coverage and
recommendation frequencies do not apply. Collaborative filtering techniques
cannot be applied without specific adaptations. The relevance can be measured
with the hit ratio, which is a standard accuracy-related metric when there is one
test interaction per user, like in this framework.

6.3 Methods

In this chapter,R is the rating matrix built on the interactions between the user
and the item. A couple of cold starts specific heuristics are proposed.
The first one, given a target user, suggests the items that that user visited themost.
It is further referred as MostView.

r̂ui = |{(v, j, t) ∈ T : v = u, i = j}| (6.1)

The other heuristic, LastView, suggests the items that the target user has vis-
ited, ordered from the most recently visited to the oldest visited item. If an item
is visited more times, the most recent visit is considered.

r̂ui = max {t : ∃ (u, i, t) ∈ T} (6.2)

62

6.3.1 EASER

A simple collaborative filtering method that can be adapted to this context is
EASER. In order to allow it to suggest already consumed items, the stepwhere the
diagonal ofB is set to 0 (Equation 4.26) is removed, allowing item self-similarity.
Instead, since the most similar item to a specific item is itself, the diagonal is set
to the maximum value inB:

B̂ij =

max

(i,j)∈{1,...,m}2
Bij if i = j

− P̂ij

P̂jj
if i ̸= j

(6.3)

6.4 Results
Here the methods are compared. It is important to underline that the dataset
used here is heavily different from the standard one, so the results should not be
compared. Since the visited items are guaranteed to include the first purchase, the
hitted proportion of users is expected to be much higher.

HR@1 HR@10

MostPop 1.9% 6.4%
MostView 19.1% 35.4%
LastView 12.1% 32.8%
EASER 13.0% 34.1%

Table 6.1: Cold starts results.

As reported in Table 6.1 good improvement is achieved by using behavioral
data, instead of the popularity-based baseline. Suggesting the itemmost visited by
the user seems to be the best strategy. However, more than in the standard case,
such an offline evaluation does not reflect the true performances, because there

63

is a strong leakage between the train and the test set. A collaborative approach,
EASER, outperforms the popularity baseline. In a production environment, the
ability to recommend unseen items canmake a difference, so an online evaluation
should be considered in this task.

64

7
Conclusions

This work addresses the problem of making good recommendation when only
implicit feedback is available. It proposes several collaborative filtering techniques
and evaluate them on a real-world transactions dataset. This field is challenging,
due to issues such as popularity bias, sparsity and fairness in the evaluation pro-
cess. We saw on a real task that the popularity bias and the cold starts are strongly
present and how they affect in an important way the system. In fact, at the end
of the analysis, there is not a clear best method. Depending on the business appli-
cation, one can argue in favour of one specificmethod on the basis of the domain
necessities, such as explainability, coverage or relevance.

The final message that we would like the reader to understand, is that recom-
mendation systems are not a fully automatable field, in which it is sufficient to
choose the method with the best metric. On the contrary, a deep understanding
of the field is required by the data scientist, who knows how to read the metrics,
taking into account the present biases, and finally, who knows how to decide
which is the best configuration of the system, taking into consideration all the
needs of the application domain.

65

66

References

[1] M. Mansoury, H. Abdollahpouri, M. Pechenizkiy, B. Mobasher, and
R. Burke, “Feedback loop and bias amplification in recommender
systems,” 2020. [Online]. Available: https://arxiv.org/abs/2007.13019

[2] N. J. Belkin and W. B. Croft, “Information filtering and information
retrieval: Two sides of the same coin?” Commun. ACM, vol. 35, no. 12, p.
29–38, dec 1992. [Online]. Available: https://doi.org/10.1145/138859.
138861

[3] J. Weston, H. Yee, and R. J. Weiss, “Learning to rank recommendations
with the k-order statistic loss,” in Proceedings of the 7th ACM Conference
on Recommender Systems, 2013, pp. 245–248.

[4] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” 2012. [Online].
Available: https://arxiv.org/abs/1205.2618

[5] J. F. Silva, N. Moura Junior, and L. Caloba, “Effects of data sparsity on
recommender systems based on collaborative filtering,” 07 2018, pp. 1–8.

[6] H. Abdollahpouri, R. Burke, and B. Mobasher, “Managing popularity
bias in recommender systems with personalized re-ranking,” 2019.
[Online]. Available: https://arxiv.org/abs/1901.07555

[7] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades, “Facing the cold
start problem in recommender systems,” Expert Systems with Applications,
vol. 41, no. 4, Part 2, pp. 2065–2073, 2014. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0957417413007240

67

https://arxiv.org/abs/2007.13019
https://doi.org/10.1145/138859.138861
https://doi.org/10.1145/138859.138861
https://arxiv.org/abs/1205.2618
https://arxiv.org/abs/1901.07555
https://www.sciencedirect.com/science/article/pii/S0957417413007240
https://www.sciencedirect.com/science/article/pii/S0957417413007240

[8] D.Das, L. Sahoo, and S.Datta, “A survey on recommendation system,” In-
ternational Journal of Computer Applications, vol. 160, pp. 6–10, 02 2017.

[9] P. Lops, M. de Gemmis, and G. Semeraro, Content-based Recommender
Systems: State of the Art and Trends, 01 2011, pp. 73–105.

[10] M. Y. H. Al-Shamri, “User profiling approaches for demographic
recommender systems,” Knowledge-Based Systems, vol. 100, pp. 175–
187, 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950705116001192

[11] R. Zhang, Q.-d. Liu, Chun-Gui, J.-X. Wei, and Huiyi-Ma, “Collaborative
filtering for recommender systems,” in 2014 Second International Confer-
ence on Advanced Cloud and Big Data, 2014, pp. 301–308.

[12] R. Burke, “Knowledge-based recommender systems,” Encyclopedia of li-
brary and information systems, vol. 69, 05 2000.

[13] E. Ç ano and M. Morisio, “Hybrid recommender systems: A systematic
literature review,” IntelligentDataAnalysis, vol. 21, no. 6, pp. 1487–1524,
nov 2017. [Online]. Available: https://doi.org/10.3233%2Fida-163209

[14] C. C. Aggarwal,Recommender Systems - The Textbook. Springer, 2016.

[15] J. Carbonell and J. Goldstein, “The use of mmr, diversity-based reranking
for reordering documents and producing summaries,” in Proceedings
of the 21st Annual International ACMSIGIRConference on Research and
Development in Information Retrieval, ser. SIGIR ’98. New York, NY,
USA:Association forComputingMachinery, 1998, p. 335–336. [Online].
Available: https://doi.org/10.1145/290941.291025

[16] F. Aiolli, “Efficient top-n recommendation for very large scale binary rated
datasets,” in Seventh ACM Conference on Recommender Systems, RecSys

68

https://www.sciencedirect.com/science/article/pii/S0950705116001192
https://www.sciencedirect.com/science/article/pii/S0950705116001192
https://doi.org/10.3233%2Fida-163209
https://doi.org/10.1145/290941.291025

’13, Hong Kong, China, October 12-16, 2013, Q. Yang, I. King, Q. Li, P. Pu,
and G. Karypis, Eds. ACM, 2013, pp. 273–280. [Online]. Available:
http://doi.acm.org/10.1145/2507157.2507189

[17] Y. Zhang, “An introduction to matrix factorization and factorization
machines in recommendation system, and beyond,” 2022. [Online].
Available: https://arxiv.org/abs/2203.11026

[18] D. Billsus and M. J. Pazzani, “Learning collaborative information filters,”
inProceedings of the Fifteenth International Conference onMachine Learn-
ing, ser. ICML ’98. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1998, p. 46–54.

[19] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure
with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions,” 2009. [Online]. Available: https://arxiv.org/
abs/0909.4061

[20] Y.Hu, Y. Koren, andC. Volinsky, “Collaborative filtering for implicit feed-
back datasets,” 12 2008, pp. 263–272.

[21] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for
nonorthogonal problems,” Technometrics, vol. 42, no. 1, pp. 80–86, 2000.
[Online]. Available: http://www.jstor.org/stable/1271436

[22] A. CICHOCKI and A.-H. PHAN, “Fast local algorithms for large scale
nonnegativematrix and tensor factorizations,” IEICETransactions on Fun-
damentals of Electronics, Communications and Computer Sciences, vol.
E92.A, no. 3, pp. 708–721, 2009.

[23] H. Steck, “Embarrassingly shallow autoencoders for sparse data,” in
The World Wide Web Conference on - WWW '19. ACM Press, 2019.
[Online]. Available: https://doi.org/10.1145%2F3308558.3313710

69

http://doi.acm.org/10.1145/2507157.2507189
https://arxiv.org/abs/2203.11026
https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/0909.4061
http://www.jstor.org/stable/1271436
https://doi.org/10.1145%2F3308558.3313710

[24] P. Borwein, “An efficient algorithm for the riemann zeta function,” 1995,
pp. 29–34.

[25] G. K. Zipf, The psycho-biology of language: An introduction to dynamic
philology. Routledge, 2013.

70

Acknowledgments

I would like to express my gratitute to all the member of the Statwolf team, the
company where I did my internship on which this thesis is based. In particular,
I thank Chiara and Luca, who closely followed me in the development of this
project.

71

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Related fields
	Context

	General framework
	Implicit and explicit feedback
	Framework
	Notation
	Rating or Interaction data
	Content and demographic data

	Formalization of the problem
	Regression/Classification perspective
	Ranking perspective

	Challenges
	Sparsity
	Popularity bias
	Cold start

	Paradigms

	Recommender Systems Evaluation
	Offline evaluation
	Problem shift
	Unfairness due to popularity bias

	Test train split
	Relevance
	Precision related measures
	Recall
	Precision-recall plot
	Hit ratio
	Expected percentile ranking

	Coverage
	Frequency of recommendations plot

	Novelty
	Other aspects relating to the performance
	Serendipity
	Diversity
	Trust
	Robustness
	Scalability

	Methods for implicit feedback
	How recommendations are computed
	Cold starts

	Baselines
	Popularity-based
	Random predictor

	Content-based recommendations
	Feature extraction

	Memory-based methods
	Similarity
	User-based KNN
	User-based weighted KNN

	Using standard machine learning
	Column-wise logistic regression
	Hybrid extension

	Latent factors models
	SVD
	Alternating Least Squares
	Non Negative Matrix Factorization

	EASER
	Interpretation

	Experimental results
	Experimental setup
	Data
	Selection and splitting
	Descriptive statistics

	Latent factor models and popularity bias
	Generated data
	Behavior in the generated datasets
	SVD decomposition inspection
	Simplified example of the problem
	Standardization

	Results
	Compared methods
	Models configuration
	Metrics
	Test set results
	Stratified test set

	Handling user cold starts
	Behavioral data
	Evaluation methodology
	Methods
	EASER

	Results

	Conclusions
	References
	Acknowledgments

