
Università degli Studi di Padova
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Graph databases and their application
to the Italian Business Register for

efficient search of relationships among
companies

Basi di dati a grafo e loro applicazione al Registro Imprese

Italiano per la ricerca efficiente di relazioni tra le imprese

4 aprile 2017

Laureando: Relatore:

Sinico Luca Prof. Ferro Nicola
1108637

Anno Accademico 2016/2017

Università degli Studi di Padova
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Graph databases and their application
to the Italian Business Register for

efficient search of relationships among
companies

Basi di dati a grafo e loro applicazione al Registro Imprese

Italiano per la ricerca efficiente di relazioni tra le imprese

4 aprile 2017

Laureando: Relatore:

Sinico Luca Prof. Ferro Nicola
1108637

Anno Accademico 2016/2017

Abstract

“What are the main characteristics of graph databases? In what do they differ from relational

ones, and in what situations should we use them?” These are the main questions of our work.

We studied and tested three of the major graph databases of the moment (ArangoDB, Neo4j,

OrientDB), and we compared them with a relational database, implemented with PostgreSQL.

We worked on a dataset representing equity participations among companies, and we found

out that the strong points of graph databases are: the purposely designed storage techniques,

which let them have good performance on graph datasets; and the purposely designed query

languages, which go beyond the standard SQL and manage the typical problems that arise

when graphs are explored. However, we have seen that the main performance increments have

been obtained when heavy graph situations are queried; for simpler situations and queries, a

relational database performs equally well.

i

ii

Dedicato ad Anna.

Dedicato alla mia famiglia.

iii

iv

Contents

Abstract i

1 Introduction 1

2 Graph Databases 3

2.1 Introduction to Graph Databases . 3

2.2 General definitions . 4

2.3 Graph database definition . 10

2.4 Graph data models . 12

2.4.1 Property graph . 12

2.4.2 RDF graph . 14

2.4.3 Hypergraph . 23

2.5 Graph database characteristics . 25

2.5.1 Motivations for the adoption of graph databases 27

2.5.2 Differences from graph computing engines 29

2.5.3 Differences from the relational database 31

2.5.4 Differences from document stores . 34

v

vi CONTENTS

2.6 General approach to process graph queries . 35

3 DBMSs comparison 39

3.1 Which are the major Graph DBMSs . 39

3.2 The compared DBMSs . 43

3.2.1 ArangoDB . 43

3.2.2 Neo4j . 54

3.2.3 OrientDB . 65

3.2.4 PostgreSQL . 76

3.3 Feature matrix . 82

4 Use case 85

4.1 The domain of interest . 85

4.2 Entity-Relationship representation . 88

4.2.1 The existing database solution . 89

4.3 Graph representation . 91

4.3.1 Design Best Practices . 92

4.3.2 Logical design . 94

4.3.3 Some graph description metrics . 95

4.4 Data behaviour . 96

4.5 Applications that could benefit from a graph database usage 97

4.6 Rationale for the choice of the graph DBMSs . 98

CONTENTS vii

5 Evaluation and comparison of Graph Databases 101

5.1 Use case . 101

5.2 Experimental setup . 102

5.3 Data import . 104

5.3.1 Summary . 110

5.4 Cache warm-up . 110

5.5 Performance comparison . 113

5.5.1 single match by cf . 116

5.5.2 get direct fathers . 118

5.5.3 get direct fathers only cfs . 122

5.5.4 get direct neighbors . 124

5.5.5 get distinct descendants and level . 128

5.5.6 count distinct ancestors per level . 140

5.5.7 get common descendants . 146

5.5.8 get common ancestors . 152

5.5.9 get shortest directed path . 152

5.5.10 Summary . 158

6 Displaying the resulting subgraph of a query 161

7 Conclusions 171

7.1 DBMSs assessment . 171

7.2 Main conclusions . 174

7.3 Final considerations . 175

7.4 Future developments . 176

Bibliography 179

viii

List of Tables

3.1 Feature matrix . 83

5.1 Data import comparison. 110

5.2 Result example for query count distinct ancestors per level 141

6.1 Constraints combinations on node ‘00102681419’ 166

7.1 Assessment table of the compared DBMSs. 174

ix

x

List of Figures

2.1 Popularity changes of database technologies during the last four years [1]. 4

2.2 A directed graph [31]. 5

2.3 Breadth-First Search pseudocode [122]. 8

2.4 Breadth-First Search exploration order [153]. 8

2.5 Depth-First Search pseudocode [122]. 9

2.6 Depth-First Search exploration order [154]. 9

2.7 Visualization of a property graph [62]. 13

2.8 TinkerPop system architecture [125]. 13

2.9 Visualization of a RDF graph [141]. 15

2.10 RDF classification based on storage technique [38]. 16

2.11 Linked Data publishing options and workflows [131]. 20

2.12 Linking Open Data cloud diagram in May 2007 [58]. 21

2.13 Linking Open Data cloud diagram in August 2014 [58]. 21

2.14 Directed hypergraph example [48]. 24

2.15 Hypergraph translated in a property graph [48]. 24

xi

xii LIST OF FIGURES

2.16 The graph database space [48]. 26

2.17 A high-level view of a typical graph analytics engine deployment [48]. 29

2.18 Modeling friends and friends-of-friends in a relational database [48]. 33

2.19 Social network example encoded in a document store [48]. 35

2.20 Graph query phases. 36

3.1 Ranking list of some of the DBMSs tracked by DB-ENGINES.com [1]. 40

3.2 Trending chart of some of the DBMSs tracked by DB-ENGINES.com [1]. 41

3.3 Ranking list of the graph DBMSs tracked by DB-ENGINES.com [1]. 42

3.4 Trending chart of the top 5 graph DBMSs tracked by DB-ENGINES.com [1]. . . 42

3.5 ArangoDB web interface . 53

3.6 ArangoDB subscription levels [25]. 53

3.7 Neo4j architecture layers [48]. 55

3.8 Neo4j node and relationship store file record structure [48]. 56

3.9 Example Neo4j social network data structure [48]. 57

3.10 A simple Neo4j example graph [48]. 61

3.11 Neo4j web interface . 64

3.12 Neo4j editions comparison [61]. 65

3.13 OrientDB caching architecture [121]. 73

3.14 OrientDB web interface . 74

3.15 OrientDB editions comparison [99]. 75

3.16 OrientDB support subscriptions comparison [83]. 75

LIST OF FIGURES xiii

4.1 Italian Chamber system map [50]. 86

4.2 ER schema before restructuration . 89

4.3 ER schema . 90

4.4 Logical schema for a relational database . 91

4.5 Graph data model. 95

5.1 Warm-up cache, times chart . 112

5.2 Warm-up quick study . 112

5.3 Warm-up cache, memory chart . 113

5.4 Query single match by cf charts . 117

5.5 Fathers of the node with codice fiscale = ‘00102681419’ 119

5.6 Query get direct fathers charts . 121

5.7 Query get direct fathers only cfs charts . 123

5.8 Neighbors of the node with codice fiscale = ‘00102681419’ 125

5.9 Query get direct neighbors charts . 127

5.10 Descendants of the node with codice fiscale = ‘00102681419’ 128

5.11 Query get distinct descendants and level charts 137

5.12 Quick study of path uniqueness vs. global uniqueness. 138

5.13 Query get distinct descendants and level only cfs charts 139

5.14 Ancestors of the node with codice fiscale = ‘13371752902’ 140

5.15 Query count distinct ancestors per level charts 144

5.16 Common descendants of the nodes with codice fiscale ‘FLSBLN55L65G482J’ and

‘BTSSRM48K54D321A’. 146

5.17 Query get common descendants charts . 147

5.18 Query get common ancestors charts . 153

5.19 Shortest (directed) path from the node ‘00102681419’ to the node ‘02086091417’. 153

5.20 Query get shortest directed path charts. 156

6.1 Example figure for a subgraph of descendants. 162

6.2 DFS order on the example subgraph. 163

6.3 BFS order on the example subgraph. 163

xiv

Chapter 1

Introduction

Goals

In this work we will inspect the potentialities of an emerging technology in databases’ field:

the Graph Database. We will see how this new database model can be useful in certain data

domains, and why it may be preferred to the winning and well consolidated relational model.

This work has been developed as part of an internship in InfoCamere S.C.p.A., an Italian com-

pany that covers the IT side of the Italian Chambers of Commerce (“Camere di Commercio”),

which are the Italian Public Authorities responsible for dealing with the Italian production

system and for providing links between the business system and other Public Authorities.

The goals of the internship were to perform an investigation on the topic of graph databases; to

compare some of the available technologies on the market; to compare them with a relational

solution in terms of performance; and to inspect the adoption possibilities of a graph database

for some of InfoCamere’s applications.

All the work will be based on data extracted by the Italian Business Register, which is main-

tained by InfoCamere. In particular, we will focus on “equity participation” relationships

among Italian companies.

Something about benchmarking

The goal of this work is to inspect the performance of graph databases on the dataset given.

It is not then a systematic work of benchmarking.

There already exist some benchmarking works available on Internet; however very few com-

pare together the three graph DBMSs (Database Management Systems) we will analyze; and

probably only one compares them with also a relational database [147]. However, this last

1

2 Chapter 1. Introduction

comparison work has been realized by the developers of one of the analyzed products, so it may

be somehow biased.

Some other benchmarking works are reachable by the following links in bibliography: [119],

[132], [56], [116], [150], [142] and [138].

Most of the benchmark works typically focus their attention on handling concurrency or mea-

suring performance for bulk insertions; which is not what we are mainly interest in. In addition,

for what concerns query testing, they usually perform some “basic” queries, like “get or count

the nodes directly connected to the node X by a single edge of type Y”; or “get all nodes that

are k hops distant from node Z”; or “find the shortest path between nodes V and W”; but

without going to high depth values (for example, see [116]).

In our case, instead, we will perform queries that are a bit more complex; mainly for what

concerns results ordering and for the number of levels traversed. Indeed, with an exploration

with a low depth level, a relational database could still work well; the real advantages of graph

DBMSs should arise with high depth levels (that is, something like more than 3 or 4 levels,

obviously depending on the graph).

It is common sense that benchmarking works that are found around should not be taken as the

only parameter for making a choice for a database that would be used in an application product.

Furthermore, performance are in general sensible to the statistics of the dataset given; to the

hardware configuration; to the DBMS settings chosen; and to the queries performed. What

should be done is to try replicate some of these tests by using a sample of the data that would

be used by an application; and this is what we will do here.

Outline

In Chapter 2 we will give a background for what in general concerns graph databases, with

notions about graphs, graph databases, graph computing engines, and the differences from

relational databases and document stores. In Chapter 3 we will present a comparison between

three graph DBMSs and a relational DBMS for what concerns aspects regarding how they store

data, what are their query languages, etc. In Chapter 4 we will present the dataset that will

be used for our performance tests. In Chapter 5 we will present some information about the

test environment, the queries implemented and the results obtained by the execution of such

queries on the four DBMSs. In Chapter 6 we will talk about how to write queries so that it

is possible to display, in a graph form, the obtained results of a query. Finally in Chapter 7

we present the conclusions of the work, we give an assessment table for the compared DBMSs,

and we talk about future developments.

Chapter 2

Graph Databases

In this chapter we will cover some general notions about graph databases, both of “conceptual”

and of “practical” nature. We will start by giving, in Section 2.1, an introduction to the topic.

In Section 2.2 we will give some general definitions about graphs, and 2.3 we will give the

definition of graph database. In Section 2.4 we will present the three graph data models that

are used to represent real world contexts, which are: the Property graph, the RDF graph, and

the Hypergraph. In Section 2.5 we will present the main characteristics of graph databases. We

will also present some general motivations for their adoption; the differences among them and

both graph computing engines and relational databases; and also the differences from document

stores. At the end of the chapter, in Section 2.6, we will explain what is the philosophy that

stands at the basis of the queries that can be defined over data with a graph structure.

2.1 Introduction to Graph Databases

It has been long recognized that graphs are a natural way to represent information. Their

architecture, in fact, allows to model those situations where relationships among entities hold

great relevance.

Graph databases inherit and are built on top of the by now solid Graph theory. Graph theory

was pioneered by Euler in the 18th century, and has been actively researched and improved by

mathematicians, sociologists, anthropologists, and other practitioners ever since [48].

The desire to bring the expressive power of the graph to databases does not have so recent

origins: graph database models have been studied even before 1990s. However it is only recently

that a combination of needs and technological developments have made it possible to make

graph databases a reality [7].

Gartner and Forrester, two of the most known research and strategic advisory companies in

the field of Information Technology, observed the phenomenon and gave some opinions on how

3

4 Chapter 2. Graph Databases

Figure 2.1: Popularity changes of database technologies during the last four years [1].

they thought that such technology would have evolved in the next years. We quote some of

their statements:

“By 2017, over 25% of enterprises will be using a graph database.” - Forrester [81, 123].

“By the end of 2018, 70% of leading organizations pursuing data-driven will have one or

more pilot or proof-of-concept efforts underway utilizing graph databases.” - Gartner [57, 100].

In addition, “Graph analysis is possibly the single most effective competitive differentiator for

organizations pursuing data-driven operations and decisions after the design of data capture.”

- Gartner [39, 123].

So it emerges that the topic is experiencing good interest from businesses. In fact, as it can be

seen in Figure 2.1, the popularity of graph databases was subjected to a great increment in the

last four years.

Let’s then start our analysis with some theoretical notions about graph fundamentals.

2.2 General definitions

Before looking at the definition of “graph database”, we have to give some definitions about the

topic that lies at its basis: the graph.

A graph G = (V,E) (directed, unlabelled, without multiple edges) consists of a finite set of

nodes (or vertices) V and a set of edges E ⊆ V × V . There is an edge from v to w, if and

only if the pair (v, w) ∈ E (v,w). A graph can be directed or not, based on the presence of a

direction information (or ordered pairs) for the edges. An undirected graph can however just

be seen as a symmetric directed one. Note that self-loops - edges from a vertex to itself - are

possible.

Graphs are generally represented by points or circles (vertices) connected by optionally

directed arcs (edges). One example is given in Figure 2.2

2.2. General definitions 5

Figure 2.2: A directed graph [31].

A generalization of the graph, in which an edge can join any number of vertices, is the hyper-

graph.

Formally, a hypergraph H is a pair H = (X,E) where X is a set of elements called nodes or

vertices, and E is a set of non-empty subsets of X called hyperedges or edges. Therefore, E

is a subset of P (X) \ ∅ where P (X) is the power set of X ; or E is a set of edges such that

E ⊆ (V × ...?...× V); or again, an edge is nothing more than a set of vertices [156] [101].

While graph edges are pairs of nodes, hyperedges are arbitrary sets of nodes, and can there-

fore contain an arbitrary number of nodes. However, it is often desirable to study hypergraphs

where all hyperedges have the same cardinality: a k-uniform hypergraph is a hypergraph such

that all its hyperedges have size k. (In other words, one such hypergraph is a collection of

sets, each such set a hyperedge connecting k nodes.) So a 2-uniform hypergraph is a graph, a

3-uniform hypergraph is a collection of unordered triples, and so on [156].

There exist two standard ways to represent a graph: as a collection of adjacency lists or as

an adjacency matrix ; both valid for either directed and undirected graphs. The adjacency-list

representation provides a compact way to represent sparse graphs, that is those for which |E|
is much less than |V |2; when instead a graph is dense (i.e. |E| is close to |V |2), the adjacency

matrix could be used for optimization purposes.

The adjacency-list representation of a graph G = (V,E) consists of an array Adj of |V | lists,
one for each vertex in V. For each u ∈ V , the adjacency list Adj [u] contains all the vertices v

such that there is an edge e = (u, v) ∈ E.

The adjacency-matrix representation of a graph G = (V,E) - assumed that vertices are

numbered 1, 2, ..., |V | in some arbitrary manner - consists of a |V | × |V | matrix A = (aij) such

that aij = 1 if (i, j) ∈ E; 0 otherwise.

It is obviously possible to extend these two forms of representation in order to encode

weighted arcs information [122].

In this work we will borrow some words belonging either to the graph and to the tree terminology

for the description of the various elements that can be recognized within a graph. Here is a list

of the terms we will use:

6 Chapter 2. Graph Databases

• Nodes or vertices or vertexes are synonyms and represent the discrete elements composing

the graph. They are the constructs that can model real-world entities participating in

eventual relationships.

• Edges or arcs or links or hops are synonyms and represent connections and relationships

among nodes. They can be directed or undirected, and may own some values such as a

weight or a name.

• In this work we also consider synonyms the words depth, level, and distance, which refer

to the depth level - or the distance in terms of hops number - of a node with respect to

a given reference node. The term level thus stands for “depth level”, but will also be

used for referring the set of nodes who stand at that same depth value with respect to

the given vertex (e.g. level 2 is the set of nodes reachable by the initial node by following

two consecutive edges).

• A path or a route is a path that starts from one source node and that, traversing consec-

utive edges (either with the same direction or not), reaches a destination node.

• We say that two nodes are directly connected if there exists between them a path made of

a single edge. We say instead that two nodes are indirectly connected if the paths between

them are made of more than one edge; that is, between them there is at least another

vertex on the path.

• An edge has outbound or outgoing direction if its direction, with reference to the node

considered, points out from it. An edge has inbound or incoming direction if its direction

points exactly to the reference node.

• We call directed path a path made of only edges with the same concordant direction;

an undirected path instead is a path made of edges without restrictions on their relative

directions. In particular an outgoing path is a path that starts from the initial node and

that is made of only outgoing edges with respect to the vertices of the path; an ingoing

path is a path made only of ingoing edges.

• We will call for convenience neighbors (even if we are imposing a restriction to the standard

notation) only those nodes that are directly connected to the reference node, regardless

of the direction of the edges involved.

• We call children the nodes that are directly connected to the given node and that can be

reached by means of an outbound edge. In a dual way, we call fathers the nodes that are

directly connected to the given node and that can be reached by means of an inbound

edge.

• We call descendants the nodes that are reachable by the initial node by means of outgoing

paths. The children set of an initial node thus belongs to this set, and also their children,

and so on.

• We call ancestors the nodes that are reachable from the initial node by means of ingoing

paths. Ancestors could also have been defined as the set of those nodes that can reach the

given vertex by means of outgoing paths. The same similarly holds also for descendants.

• We call cycle a directed path that starts and ends with the same vertex. It follows that

a path contains a cycle if it contains the same vertex more than a time. Note that the

2.2. General definitions 7

definition is based on the avoidance of multiple visits of the same node, and it is not based

on multiple visits on the same edge. Furthermore, an undirected path that passes across

the same vertex more than a time not necessarily contains a cycle, because it is only an

aggregation of different directed paths (though one of them could be a cycle; in that case

that path effectively contains a cycle).

• The operation of graph exploration is also called traversal.

One interesting characteristic of graphs, which can be useful while working with them, is that

complex graphs can be seen as different webs placed on top of one another and connected by

some “joints”. For example, suppose we are dealing with a graph that represents both social

relationships and geospatial information in a social network website, so that it is possible to

suggest or search for new friends according to the place of birth, visited places, or the area

where a user lives. The complex graph, made of both user and place nodes, could be split in

two subgraphs: one for the relationships among users; the other for relationships among places

(distance, etc). The two graphs would be brought back to be a single graph by placing those

“joints” which are the relationships that connect users with places. This graph characteristic

allows to query data on the two distinct domains as they were independent and separated, but

also allows to perform complex multidimensional queries across both domains.

The problems that arise in a graph context - treated by the graph theory - are principally linked

to routing, network flowing, covering, coloring and partitioning. The most notable problems

are linked to the individuation of the shortest path between two nodes; the computation of the

connected components of the graph; the computation of the minimum spanning tree and the

maximum flow network; the individuation of a least-cost cycle on the graph; and others similar.

Some of these problems belongs to the NP-complete class, and during the years some heuristic

algorithms have been proposed to solve them in feasible time.

As for as graph traversal is concerned, there exist two main graph exploration algorithms which

reflect the order by which nodes are visited starting from an initial node, which are Breadth-

First Search (BFS) and Depth-First Search (DFS).

These algorithms are similar to the Pre-Order and Post-Order Traversal algorithms for tree

data structures; however, graphs add an additional complexity element, given by the fact that

while trees are acyclic, graphs in general are not. These kind of situations must be managed if

the main focus of the exploration is to navigate the graph without “visiting” nodes more than

once.

The two algorithms are presented in Figures 2.3 and 2.5. It can be seen that they use some

node fields to manage the graph exploration; which are: color, d and π. The color field is used

to store the visit information, in simple words: it is set to white at the beginning, to grey if

it belongs to frontier between discovered and undiscovered vertices, and to black if discovered.

The d field is used to compute the depth value for the node, or better the distance from the

starting node. The π field is used to save the predecessor of the node.

8 Chapter 2. Graph Databases

Figure 2.3: Breadth-First Search pseudocode [122].

Figure 2.4: Breadth-First Search exploration order [153].

2.2. General definitions 9

Figure 2.5: Depth-First Search pseudocode [122].

Figure 2.6: Depth-First Search exploration order [154].

10 Chapter 2. Graph Databases

The BFS algorithm constructs a breadth-first tree, that is the generated tree obtained by an

exploration in breath-first order. Since we extract a tree, and by its definition of acyclic graph,

those edges which start from a given node and point to an already visited node will not be

included, thus the algorithm will suppress the different possible descendant paths from the

initial node to the inspected node and will just keep the first path encountered with such

traversal order.

The BFS traversal order is shown in Figure 2.4. In simple terms, the graph traversal starting

from a given point proceeds level by level, and it will reach the more distant node only at the

last step.

Let’s analyze the BFS computational complexity. Supposed that enqueuing and dequeuing

single operations take O(1) time, we have that the total time devoted to queue operations is

O(V). The adjacency list elements are scanned only when the vertex is dequeued, so this phase

also takes O(V). Since the sum of the lengths of all the adjacency lists is Θ(E), the total time

spent in scanning adjacency lists is O(E). The overhead for initialization is O(V), and thus

the total running time of the BFS procedure is O(V + E). Thus, breadth-first search runs in

time linear in the size of the adjacency-list representation of G [122].

The DFS traversal order is shown in Figure 2.6. In simple terms, the graph traversal starting

from a given point proceeds path per path, where every path starts from the initial node and

goes down in depth until there are not further edges to follow.

Similarly to Breadth-First Search, also the DFS algorithm works in O(V +E) time. In fact, the

two loops in DFS(G) take Θ(V), exclusive of the time to execute the calls to DFS-VISIT. This

procedure is called exactly once for each vertex in V, because of the coloring policy. During an

execution of DFS-VISIT, the loop on lines 4–7 executes |Adj[v]| times; and since the sum on

all v ∈ V of |Adj[v]| is Θ(E), the total cost of the loop in these lines is Θ(E) and thus the total

cost for the entire algorithm is O(V + E) [122].

2.3 Graph database definition

Now that we gave some definitions about graphs, we can proceed giving the definition of graph

database. However, there seem not to be an official and universally accepted definition for it.

One definition could be this one:

A graph database is a database that organizes data by modelling it by means of the concepts

of nodes and edges:

• nodes represent the entities to be stored;

• edges represent the relationships that exist among nodes.

2.3. Graph database definition 11

However this surely is a loose and simplistic definition. A more specific definition can be the

one that follows:

A graph database is any storage system that:

• is designed to store graph-like data;

• organizes data by means of node and edge elements;

• provides built-in graph traversal functions;

• (hopefully) provides graph data integrity;

which is very similar to the definition provided by Angles et al. in “An introduction to Graph

Data Management”: A graph database is a database where the data structures for the schema

and/or instances are modeled as a (labeled)(directed) graph, where data manipulation is ex-

pressed by graph-oriented operations, and appropriate integrity constraints can be defined over

the graph structure [7].

Another definition focused on database requirements is the one that follows:

A graph database is an online, operational database management system with Create,

Read, Update, and Delete (CRUD) methods that expose a graph data model. Graph databases

are generally built for use with transactional (OLTP) systems. Accordingly, they are normally

optimized for transactional performance, and engineered with transactional integrity and oper-

ational availability in mind [48].

However, some others define the graph database in a completely different manner:

A graph database is a database that uses graph structures with vertices, edges, and proper-

ties to represent and store data. A graph database is any storage system that provides index-free

adjacency [42, 114].

The last definition is mainly based on a single property, which depends on the way by which the

database management system stores the graph data. The index-free adjacency property will

be better explained later on; however the fundamental idea is that the adjacency information

among nodes is not derived by the use of indexes, but is directly obtainable by the node itself

by means of physical pointers or similar kinds of link.

It is quite delicate to state that only one should be the right definition and that the other

definitions are completely wrong; so we will assume them as equally valid.

As far as retrieving data is concerned, some new concepts and generally a new query language

are required with respect to the standard query language of relational databases. There is not

a standard query language for this domain: each graph database product comes with its own

query language and, up to now, none of these query languages has risen to prominence in the

same fashion as SQL did for relational databases. Some standardization efforts however took

place, leading to systems like Gremlin (which works with a variety of graph engines that realize

the property graph model), and SPARQL (which is used by those that realize RDF graphs)

[158]. Further details on this aspects will be given later.

12 Chapter 2. Graph Databases

Note that it is not assured that commercial graph database products provide, with their

query languages and APIs, traversal functions that realize both DFS and BFS algorithms. In

addition, it is also not assured that the provided functions implement the idea of avoiding

multiple visits on nodes, which instead is at the base of the two algorithms provided. Further

details will be given in next chapters.

2.4 Graph data models

One way to distinct graph databases is by looking at the data model they implement. There are

three dominant graph data models: property graph, RDF graph, and hypergraph [48]. Talking

about them, we could state that while the RDF model constitutes a W3C standard, the property

graph is more an industry standard [6].

2.4.1 Property graph

The definition of property graph is simple and much intuitive.

A property graph is a graph that has the following characteristics:

• It is made up of nodes, edges, properties, and labels (or similar categorization forms).

• Nodes contain an arbitrary number of properties, which typically are key-value pairs.

• Edges connect nodes and structure the graph. Each edge has a direction, a single name,

and a start node and an end node - there are no dangling edges.

• Nodes and edges can be categorized in one or more categories (by means of classes or

labels). Categories group nodes together, and indicate the roles they play within the

dataset. Edges can also be categorized. Together, edge direction and type (category) add

semantic meaning to the network structure.

• Also relationships can have properties. The ability to add properties to them is partic-

ularly useful for enhancing the semantics of the graph, and for limiting the results at

query-time [48].

So a property graph simply is an enrichment of the mathematical definition of the graph given

in Section 2.2. In Figure 2.7 we show a quick visual representation of a property graph.

This kind of model obtained a good success and most of the popular graph DBMSs on the

market realize this data model. Furthermore, with the Apache TinkerPop project, there has

been an attempt to lay down a standard for this form of data organization, which is gaining more

and more adoption within the field. Apache TinkerPop defines itself as an open source, vendor-

agnostic, graph computing framework for both graph databases (OLTP) and graph analytics

systems (OLAP); and it is distributed under the commercial friendly Apache v2 license [127].

2.4. Graph data models 13

Figure 2.7: Visualization of a property graph [62].

In Figure 2.8 we show TinkerPop’s architecture.

For graph analytics systems, TinkerPop allows to express graph analytics algorithms; while

for graph databases it allows to perform graph data modifications and to express traversal

queries.

Figure 2.8: TinkerPop system architecture [125].

Gremlin is the traversal query language that comes with TinkerPop, and it is implemented

in Groovy. It allows to express a traversal in either an imperative manner and a declarative

manner. An imperative traversal tells the traversers how to proceed at each step; while the

declarative traversal allows each traverser to select a pattern to execute from a collection of

(potentially nested) patterns. In both cases, the user’s traversal is later rewritten by a set of

traversal strategies which do their best to determine the most optimal execution plan, based on

an understanding of graph data access costs as well as the underlying data systems’s capabilities

[126].

14 Chapter 2. Graph Databases

However, not all graph databases are based on Gremlin for their query language; rather, most

of them developed their own declarative query language. The reasons for this is that with a

declarative language there typically is more room for letting the server perform query planning

analysis and optimizations; and it is easier to create languages designed for remote invocations

or query-writing simplifications [80].

2.4.2 RDF graph

The formal definition of RDF, given by W3C, is:

“Resource Description Framework (RDF) is a standard model for data interchange on the Web.

RDF has features that facilitate data merging even if the underlying schemas differ, and it

specifically supports the evolution of schemas over time without requiring all the data consumers

to be changed.”

In other words, RDF extends the linking structure of the Web to use URIs to name the

relationships between things as well as the two ends of the link. The core structure of this

model is a set of triples, each consisting of a subject, a predicate and an object. A set of such

triples is called an RDF graph; or a triples store.

There can be three kinds of nodes in an RDF graph: URI nodes, literal nodes, and blank nodes

[145]. URI stands for Universal Resource Identifier and is a string of characters used to identify

a resource. The most common type of URI is URL (Uniform Resource Locator), which is used

to identify Web resources. Literal nodes are used for holding values such as strings, numbers,

and dates. Blank nodes instead represent anonymous resources, i.e. those for which a URI or

literal value is not given. According to the standard, a blank node can only be used as subject

or object of an RDF triple.

The subject is typically identified by a URI, while the object can be a URI or a literal node.

Predicates are also typically identified by URIs and can be interpreted as either a relationship

between the two nodes or as defining an attribute value (object node) for some subject node

[145]. The fact that both verbs and resources can be identified by URIs enables anyone to

define a new concept (both verb and data), just by defining a URI for it somewhere on the

Web. This new concept would acquire world-wide meaning and (possibly) visibility, and allows

anyone to use it for declaring its graph and maybe connect it to some others [124]. Blank nodes

may be given a document-local identifier called a blank node identifier [146].

As a consequence of its architecture, the RDF graph, from a low-level point of view, is made

of arcs that connect entities with both their attributes and other entities. However, from a

high-level point of view, the RDF graph realizes a directed labeled graph made of edges among

entities [145]. In Figure 2.9 we show a visual example of this.

Furthermore, by using this simple model, RDF allows structured and semi-structured data

to be mixed, exposed, and shared across different applications [144].

2.4. Graph data models 15

Figure 2.9: Visualization of a RDF graph [141].

RDF storage techniques

The way by which an RDF can be implemented - i.e. the underlying storage model - is not

unique. RDF schemas (metadata) and instances could be efficiently accessed and manipulated

in main memory; or they could be serialized to files, for persistence purposes; or even (for large

amounts of data) a more reasonable approach is by using a database management system. Many

of the existing RDF stores use relational and object-relational database management systems

(RDBMS and ORDBMS) for this purpose. Storing RDF data in a relational database however

requires an appropriate table design; and within them there are two main approaches, which

could be classified as generic schema (or schema-carefree), i.e. schemas that do not depend on

the ontology; and ontology specific schema (or schema-aware) [3].

The paper “A survey of RDF storage approaches” by Faye, Curé and Blin [38] suggests a

classification of the RDF storage techniques as shown in Figure 2.10. In the figure is highlighted

the difference between native and non-native storage techniques, also dividing them in different

sub-types based on the underlying storage adopted.

There exist many serialization formats that support RDF: RDF/XML, Turtle, N-Triples, N-

Quads, JSON-LD, N3. They are all human-readable and focused on being easy-to-parse; in

addition, some of them also allow to encode inference rules. Let’s then see a quick example on

how RDF triples may be encoded with the RDF/XML format. This example makes use of one

of the existing ontologies (see the next subsection for ontologies), which is FOAF (Friend Of A

Friend): realized for describing persons, their activities and their relations to other people and

objects.

<rdf:RDF xmlns:rdf=” ht tp : //www. w3 . org /1999/02/22− rdf−syntax−ns#”

16 Chapter 2. Graph Databases

Figure 2.10: RDF classification based on storage technique [38].

xmlns:foaf=” ht tp : //xmlns . com/ f o a f /0 .1/ ”>

<foaf:Person rdf:nodeID=”mark”>

<foaf:name>Mark</ foaf:name>

<foaf:mbox rdf:resource=” mailto:mark@email . com”/>

<foaf:knows>

<foaf:Person>

<foaf:name>John</ foaf:name>

</ foaf:Person>

</ foaf:knows>

</ foaf:Person>

<foaf:Person rdf:nodeID=” pete r ”>

<foaf:name>Peter</ foaf:name>

<rdfs:seeAlso rdf:resource=” ht t p : //www. pete r . com/ pete r . rd f ”/>

<foaf:knows rdf:nodeID=”mark”/>

</ foaf:Person>

</rdf:RDF>

The example describes then a situation in which we have three nodes of type Person; one has

name Mark, one John and the other Peter. Mark owns an email adress, while Peter has an

RDF description for itself. In addition, Mark knows John, and Peter knows Mark.

Talking about triples stores, some have been built as database engines from scratch; others

instead have been built on top of existing commercial relational database engines or NoSQL

document-oriented database engines. This approach of exploiting existing databases allowed

large and powerful database engines to be constructed for little programming effort, and also

2.4. Graph data models 17

allowed a better management of big amounts of data. However, the implementation of triples

stores over relational databases can be tricky because, although triples may be stored in them,

the implementation of efficient querying mechanisms (e.g., mapping from SPARQL) onto SQL

queries for data domains made of triples is hard. For this reason, a good design of a native

triples store may bring better performance [157] with respect to a non-native solution.

Ontologies

Because of the fact that URIs are used by RDF to encode the information, concepts become

not just words in a document but are tied to a unique definition that everyone can find on

the Web. This form of shared definition is called ontology or vocabulary. Let’s consider

this example, provided by Tim Berners-Lee et al. in [124]: “imagine that we have access to

a variety of databases with information about people, including their addresses. If we want

to find people living in a specific zip code, we need to know which fields in each database

represent names and which represent zip codes. RDF can specify that ‘(field 5 in database A)

(is a field of type) (zip code)’, using URIs rather than phrases for each term. However, two

databases may use different identifiers for what is in fact the same concept, such as zip code. A

program that wants to compare or combine information across the two databases has to know

that these two terms are being used to mean the same thing. Ideally, the program must have

a way to discover such common meanings for whatever databases it encounters. A solution

to this problem is provided by the third basic component of the Semantic Web, collections of

information called ontologies.” These ontologies (or vocabularies) represent then one of the

most distinctive components of RDF.

The first role for ontologies is then to help data integration when, for example, ambiguities

may exist on the terms used in the different datasets; or when a bit of extra knowledge may

lead to the discovery of new relationships. The other role of ontologies is to organize knowledge,

maybe coming from datasets own by different organisations, in collections in order to diffuse

standard and shared terminology and to allow linked data [139].

Inferences

Another important component of RDF is the possibility to perform inferences (or reasoning)

among data.

Inference means that automatic procedures performed by inference engines (or “reasoners”)

can generate new relationships based on data and some additional information in the form of

an ontology. The new resulting relationships could be explicitly added to the dataset; or

simply returned at query time, according to the implementation of the engine [137]. In this

way, in addition to retrieve information, it is also possible to use the database to deduce new

information by examining facts (assertions) in the data.

18 Chapter 2. Graph Databases

Inferences can be used to improve the quality of data integration on the Web, by discovering

new relationships, automatically while analyzing the content of the data; or by managing the

knowledge on the Web in general. Inference based techniques are also important in discovering

possible inconsistencies in the (integrated) data [137].

Let’s take the classical syllogism as example, and see what inferences mean: suppose that in

the RDF graph is encoded the information “all men are mortal” and “Socrates is a man”. It

is possible then to infer the following conclusion: “Socrates is mortal”. This comes useful,

for example, when working with entities that may belong to classes and subclasses; in fact

inferences would put in relevance the fact that a record belonging to a subclass also belongs

to its super-class. The inference ability is provided by means of rules defined on meta-data,

which may be stored together with data itself. They are typically encoded by using OWL (Web

Ontology Language), which adds the ability to express those concepts like relationships between

classes (e.g. disjointWith); equality (e.g. sameAs); richer properties (e.g. symmetrical); and

class property restrictions (e.g. allValuesFrom) [54]. It is then typically used by the applications

that explore the graph and that have to manage some of the problems that may arise when

more distributed sources of data are used [140].

Let’s consider now another famous example: “Epimenides says that all Cretans are liars”

and “Epimenides is a Cretan”; the database might (if programmed to avoid getting into endless

loops) point out that here there is a contradiction in the data. Other graph databases typically

do not support by default such things; however some libraries and frameworks are going through

this direction (see Apache TinkerPop [127]) [34].

Of course, for semantic web to “function”, computers must then have access to structured

collections of information and sets of inference rules that they can use to conduct automated

reasoning. One of the challenges of the Semantic Web, therefore, has been to provide a language

that expresses both data and reasoning rules; and that rules, from any existing knowledge-

representation system, could be exported onto the Web [124].

SPARQL

SPARQL, pronounced “sparkle” [32], is a recursive acronym for “SPARQL Protocol And RDF

Query Language”. It is an RDF query language, i.e. a semantic query language for databases,

able to retrieve and manipulate data stored in Resource Description Framework (RDF) format

[159]. It is not the only one existing RDF query language; however it is the W3C Recommen-

dation for this purpose.

SPARQL can express queries both on data stored natively in RDF format and on data viewed

as in RDF format via middleware. It contains capabilities for querying required and optional

graph patterns, it supports aggregation, subqueries, negation, and limitation on the query by

RDF source graph. The results of SPARQL queries can be result sets or RDF graphs [143].

2.4. Graph data models 19

SPARQL queries are based on (triple) patterns. These triple patterns are similar to RDF triples,

except that one or more of the constituent resource references are variables. A SPARQL engine

would returns the resources for all triples that match these patterns. One query example is the

following, where we ask for John’s friends:

PREFIX sn : <http ://www. soc i a lne twork . org/>

SELECT ?N

WHERE { ?X sn : type sn : Person . ?X sn : f i rstName ?N .

?X sn : knows ?Y . ?Y sn : f i rstName ”John” }

The combination of the RDF standard format for data, and of the SPARQL standard query

language, permits the existence of an extended version of the actual Web, which is the Semantic

Web.

Semantic Web and Linked Data

The key concept of Semantic Web can be summarized in these words by Tim Berners-Lee, one

of the founders of the World Wide Web: “A new form of Web content that is meaningful to

computers” [124].

Semantic Web is thus an effort to bring structure to the meaningful content of web pages;

to let be possible a guided exploration of their contents by the introduction of semantic in-

formation; to give a better processing support for other kind of data (different than from the

web pages documents) which are media and structured data; and more in general to provide a

means of integration over disparate sources of information [143].

The term Linked Data mainly refers to a set of best practices for publishing and connecting

structured data on the Web [44]. To make the Web of Data a reality, it is important that both

nodes and relationships are published on Internet; so that inbound and outbound connections

are possible and the local graph becomes attached to other graphs. In Figure 2.11 we show

how data coming from different data sources and technologies can be brought to be published.

Semantic Web technologies can be used in a variety of application areas, for example: in

data integration, whereby data in various locations and various formats can be integrated in

one; in resource discovery and classification, to provide better domain specific search engine

capabilities; in cataloging for describing the content and content relationships available at a

particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge

sharing and exchange; for content rating; for describing collections of pages that represent a

single logical “document”; for describing intellectual property rights of Web pages (see, eg,

the Creative Commons), and in many others [45]. A typical case of a large Linked Dataset is

DBPedia, which, essentially, makes the content of Wikipedia available in RDF. The importance

of DBPedia is not only that it includes Wikipedia data, but also that it incorporates links to

20 Chapter 2. Graph Databases

Figure 2.11: Linked Data publishing options and workflows [131].

other datasets on the Web, e.g., to Geonames. By providing those extra links (in terms of RDF

triples) applications may exploit the extra (and possibly more precise) knowledge from other

datasets when developing an application; by virtue of integrating facts from several datasets,

the application may provide a much better user experience [136].

Figure 2.12 shows the diagram of Linked Open Data in May 2007. Figure 2.13 shows instead

the situation in August 2014: the amount of data and the number of involved domains has

undergone a great enhancement; RDF and Linked Data seem to gain popularity and adoption

during years.

One note to be given is the following: the use of RDF graphs does not implies the fact that

these connected data must also be Open, in the sense of being accessible by anyone. Indeed

it is possible to access the data (by means of Semantic Web constructs) only if the data and

relationships URIs have been shared and access grants are given; otherwise data will not be

reachable from not allowed people or software agents. Thus, this technology could be also useful

in cases of distributed, but not open, data sources that have to be integrated [44, 55].

Differences from property graphs

With RDF graphs the information relative to nodes and their relationships is organized differ-

ently from the databases that implement the property graph model; in fact, with RDF there

are not two separate constructs that represent the entire node (and its properties), and the

2.4. Graph data models 21

Figure 2.12: Linking Open Data cloud diagram in May 2007 [58].

Figure 2.13: Linking Open Data cloud diagram in August 2014 [58].

22 Chapter 2. Graph Databases

relationships among nodes. In fact, nodes (subjects) have their proper representation, but

their properties and relationships are represented by the same mediums, that is by using an

arc (predicate) and a connected node (object); where the object can represent a value for the

property suggested by the predicate, or a relationship to an another node.

Since properties are realized by means of links to other nodes which contain the property

value, and since only nodes can be used as subject for a triple, it follows that there is not a

direct way to express properties on those arcs that represent relationships among node entities.

This is precisely the reason why RDF does not fully realize the property graph model: the only

property that relationships can hold is their “name”, or better, their type.

One way to encode relationship’ properties is by performing a sort of “reification”, i.e. by

transforming the relationship in a node. In particular, suppose we want to define a distance

value (15 kilometers) for a relationship of type ‘highway’ that connects the two nodes X and

Y. The ways by which one could encode such information with RDF are:

• by define an ontology which only represents highway distances in kilometers (

<http://www.highway distances in kilometers.org/>), where the types for the relation-

ships are the valid numeric values. In this way, it would be possible to define highway

distances like:

Code snippet 2.1: SPARQL query with custom ontology for highway distances.

PREFIX highway_distance_km:

<http :// www.highway_distances_in_kilomeeters.org/>

PREFIX hghw: <http ://www.highway.org/>

SELECT ?N

WHERE { ?X hghw:type hghw:Tollbooth .

?X hghw:tollbooth_name ?N .

?X highway_distance_km :15 ?Y .

?Y hghw:tollbooth_name "Padua Sud" }

Alternatively, by define multiple types for relationships which encode the distance infor-

mation, like “15 km”.

Code snippet 2.2: SPARQL query with highway ontology and distance types.

PREFIX hghw: <http ://www.highway.org/>

SELECT ?N

WHERE { ?X hghw:type hghw:Tollbooth .

?X hghw:tollbooth_name ?N .

?X hghw :15_km ?Y .

?Y hghw:tollbooth_name "Padua Sud" }.

However, the two solutions involve the definition of multiple relationship types, one for

each valid distance measure. Furthermore, just one property is added to the relationship

2.4. Graph data models 23

with this approach. More properties may be added by extending the string which contains

the property value; however this clearly is a stretch.

• by creating a node that represents the relationship type (highway sector), by using it as

object and by connecting it with the subject X by a generic relationship type (like “con-

nected to”), by connecting it with the object node Y by a relationship “connected to”,

and by assigning a value to this node named “highway sector” by connecting it as a sub-

ject to an object representing the 15km value by a predicate called “length”. This second

approach is more feasible, but clearly dismantle the way in which RDF has been designed.

Another point of divergence is the fact that even the standard query language for the RDF

graph shows some limitations in its expressive power. For example, with SPARQL it is possible

to write queries that use a variable-length path formulation, which is used for searching the

descendants of a given node; however it is not provided a way for returning the paths that

reached them. In addition, it is not possible to impose a maximum length value for the variable-

length path formulation; so the only way for searching the descendants with depth value less

than 10 is by writing ten chained patterns within the query body, and by returning also the

intermediate nodes. However it is clear that this approach is not feasible if there is the desire

to express the maximum depth value as a parameter. Another example is that in SPARQL

there is not a built-in function that computes the shortest path between two nodes. Such

operation would be left in charge of the developer, which would implement it by means of

high-level languages that iteratively perform a bunch of “small” queries for obtaining the nodes

reachable step-by-step. Finally, since RDF does not support properties on relationships, it is

not obviously possible to filter traversed edges by some characteristics that could regard them.

Further examples are given by Renzo Angles and Claudio Gutierrez in “An introduction to

Graph Data Management” [7].

These kinds of query are instead typically possible for property graph databases by using

Gremlin or the query languages provided by the DBMSs themselves.

2.4.3 Hypergraph

Another way to describe graph data is with a hypergraph. Hypergraphs can be useful when the

dataset includes a large number of many-to-many relationships. However, with such hyperedges,

it is simple to lose the possibility of specifying some fine-grained edge details for the relationship

represented by the edge. Let’s see an example: in the (directed) hypergraph shown in Figure

2.14 we see that Alice and Bob are the owners of three vehicles; we can express this fact by only

using a single hyperedge. In a property graph, instead, we would have to use six relationships

to express the same fact, as shown in Figure 2.15.

By using six relationships instead of one, however, there are two advantages:

24 Chapter 2. Graph Databases

Figure 2.14: Directed hypergraph example [48].

Figure 2.15: Hypergraph translated in a property graph [48].

• First, we’re using a more familiar and explicit data modeling technique (resulting in less

confusion for a development team).

• Second, we can also fine-tune the model with properties on relationships, such as, for

example, a “primary driver” property useful for insurance purposes. The same thing

cannot be done if a single hyperedge is used [48].

Because of the multi-dimensionality of hyperedges, hypergraph models are more general than

property graphs. Yet, the two are isomorphic, so you can always represent a hypergraph as a

property graph (albeit with more relationships and nodes). However, the opposite conversion

is not so immediate and it depends on the information stored [117].

While property graphs are widely considered to have the best balance of pragmatism and

modeling efficiency, hypergraphs show their particular strength in capturing meta-intent. For

example, if you need to qualify one relationship with another (e.g. “I like the fact that you

2.5. Graph database characteristics 25

liked that car”), then hypergraphs typically require fewer primitives than property graphs [48].

The hypergraph data model did not raise the same adoption as the other two data models

shown before, and very few graph DBMSs manage data according to this model; one example

for them is HypergraphDB [47].

2.5 Graph database characteristics

Graph databases can be distinct according to two aspects: the underlying storage and the

processing engine.

Based on the storage mechanism, a graph database is said to be a native graph storage

if organizes and stores graph data with an expressly built graph model architecture. On the

other hand, it is said to be a non-native graph storage if it stores graph data with some already

existing technologies (e.g. relations for a relational database, files, documents, etc).

Based on the processing engine, graph databases can be distinct by whether they realize or

not the index-free adjacency. In particular, a graph database is said to be a native graph

processing engine if it realizes the index-free adjacency; otherwise it is said to be a non-native

graph processing engine.

It is straightforward that the relational model is neither a native graph storage, nor a native

graph processing engine.

A database engine that realizes index-free adjacency is one in which each node maintains

references to its adjacent nodes; or to the connected edges, through which the adjacent nodes

are reached. Each node, therefore, acts as a “micro-index” of nearby nodes. This approach is

thus in contrast with all those solutions that make use of indexes for finding out connections

among data.

The index-free adjacency is somehow bound to what is called the locality principle of graph

queries. This principle states that, in order to answer to a standard query (i.e. not a query for

global graph analytics), only the portion of the graph that is reachable by the specified node

will be taken in exam. This principle is at the foundation of some types of query balancing

techniques, as will be shown later in Chapter 3.

Let’s now examine the potential benefits of an index-free adjacency approach. Suppose we

want to start a query from a specified node and to search for its descendants that hold a par-

ticular property value. Suppose also that a classic binary tree index is used by the database

which stores such data. If the database does not support the index-free adjacency, it means

that to traverse a network of m steps, it will take O(m log n) time; where n is clearly the

number of total nodes indexed in the graph. However, for an implementation that uses index-

free adjacency, the cost would be only O(m) [48]. This is due to the fact that, because the

information about connections is already collected by each vertex, the cost to find and traverse

26 Chapter 2. Graph Databases

each connected edge is O(1).

This is the typical argument provided by those graph databases that realize such prop-

erty within their engine. However, this argument is only valid with the assumption that the

databases that do not support the index-free adjacency make use of indexes that have a O(log

n) algorithmic complexity for lookups, like the ones with binary tree structure. However, if a

Hash index is used, its lookup will have a complexity of O(1). In contrast, the limitation of

hash indexes is that they are only valid for direct text matching, and it is not possible to use

them for partial text matching or for performing range searches.

Figure 2.16 gives a quick view on how some of the DBMSs on this field are placed within the

“graph database space”.

Figure 2.16: The graph database space [48].

There is then a sort of conflict among different graph database products on what should be the

characteristics of a database in order to effectively be considered as a graph database. This

is also the reason why there is not a uniquely accepted definition of what a graph database

is. As seen, some state that a graph database must have the index-free adjacency property;

others state that it is wrong to consider a database as a graph database only if it shows such

characteristic [148].

From a theoretical point of view, in contrast to a relational database (where join-intensive

query performance deteriorates as the dataset gets bigger because of the increased size of

indexes); with a graph database (better if with index-free adjacency) performance should remain

relatively constant, even if the dataset grows, because the execution time for each query is

proportional only to the size of the part of the graph that is traversed to satisfy such query

[48].

It is not true however that query times, in a database with index-free adjacency, are totally

2.5. Graph database characteristics 27

independent of the size of the graph. In fact, given the particular initial node, it is right that

the traversal will be quite independent of the graph size; however the query have to find the

node before the traversal can start. Such preliminary phase of the query depends on global

indexes, which in turn are dependant of the graph size; so the execution time of the query will

be affected by it.

2.5.1 Motivations for the adoption of graph databases

It is now clear that graph databases are a useful instrument when we want to use the general

features provided by databases (persistence and reliability, data integration and consistency,

isolation and atomicity, etc.), and when the real world data we want to model exposes a graph

structure.

During last decades the necessity of being able to model such data domains has been sub-

jected to an interesting increment; for example think about all the web sites that realize social

networks. Social networks and recommendation systems indeed are clear examples of how find-

ing out connections, and gathering nodes according to some graph topological characteristics,

represent the true business activity.

“We live in a connected world. There are no isolated pieces of information, but rich, connected

domains all around us. Only a database that embraces relationships as a core aspect of its data

model is able to store, process, and query connections efficiently.” - This is the introduction

made by one of the most known graph databases (Neo4j) on the reasons why the world should

use graph databases.

The more the data domain is connected, the more the real value of it comes from relation-

ships. Facebook, for example, was founded on the idea that while there’s value in discrete

information about people - their names, what they do, etc. - there’s even more value in the

relationships between them. Similarly, Larry Page and Sergey Brin figured out how to store

and process not just discrete web documents, but how those web documents are connected:

Google captured the web graph [48].

Common use cases for graph databases are on fields about social graphs, recommendation sys-

tems, business relationships, dependencies (network impact analysis), geospatial applications

(road maps and route planning for also rail network or logistical networks), telecommunication

or energy distribution networks (network management and analysis), master data management

(management of distributed data sources), access control, fraud detection, etc [4, 48].

One usage example in the field of recommendation systems is: users and products are mod-

eled like two different kind of vertexes; between users there are ‘friend of’ relationships and

between users and products there are ‘purchased’ and ‘likes’ relationships. By storing the

purchase history of each user and its favourites list it is possible to leverage this information

to suggest additional interesting purchases to his friends or other people that shown similar

28 Chapter 2. Graph Databases

purchase characteristics. Taken together, social networks and recommendation engines provide

key differentiating capabilities in the areas of retail, recruitment, sentiment analysis, search,

and knowledge management [48].

The success of graph databases on such fields is not only due to their natural graph data

models, but also because of the query functions or APIs provided. These query interfaces allow

to express more easily the operations to be done on such a graph structure, with respect to

the SQL language. Querying a graph stored in a relational database, on multiple depth levels

and by following only some types of edges, with the provided SQL language is indeed quite

complex.

Another field where graph databases are collecting success is fraud detection. This is done

by discovering on graph some relationships patterns that are unusual or properly fraudulent.

Patterns outside of the norm for a given user can be detected on the graph and then flagged

for further attention.

Let’s see a short explanation of the reasons why businesses look at graph databases:

Performance

One reason for inspecting and maybe choosing a graph database is the hypothesized perfor-

mance increase when dealing with connected data. This is due to its ability in retrieving those

nodes that have, for example, only certain incoming types of edges and not other types; or for

the built-in ability of working on weighted graphs and to compute shortest or least-cost paths.

Performance are also helped by the locality principle of graph queries seen before.

Scalability

Some graph databases allow horizontal scaling directly at data level, which allows for large

graphs to be stored as one but in different devices. Horizontal scalability may help in saving

on hardware costs; however for graphs it does not come so easily.

Developer agility and schema flexibility

Graphs are naturally additive, i.e. new kinds of relationships, nodes, labels, and in general

subgraphs can be added to an existing structure without disturbing existing queries and appli-

cation functionality. These aspects may bring positive implications for developer productivity

and project risk. Because of the graph model’s flexibility, we don’t have to model our domain

in exhaustive detail ahead of time in order to minimize further changes, both in terms of struc-

ture (relationship types, labels) and in terms of nodes and relationships properties. In addition,

the schema-free nature of the graph data model avoids those schema-oriented data governance

operations we’re familiar with in the relational world [48].

However, this does not clearly implies only a benefit, because schema flexibility can bring

some troubles on later moments of the database life cycle.

Intuitive data model

Graphs are familiar and intuitive to both users and developers, and a well designed query

2.5. Graph database characteristics 29

language or API can bring great helps in both data model definition and development and

maintenance time.

2.5.2 Differences from graph computing engines

There are two categories of graph data systems: graph databases and graph computing engines.

• Graph databases are the ones presented until now, i.e. technologies used primarily for

transactional online graph persistence and typically accessed directly in real time from an

application. They are the equivalent of “normal” online transactional processing (OLTP)

databases in the relational world.

• Graph computing engines (or graph analytics engines) are technologies used primarily

for offline graph analytics, typically performed as a series of batch steps. They can be

thought of as being in the same category as other technologies for analysis of data in bulk,

such as data mining and online analytical processing (OLAP). They thus typically works

on a global graph level and take advantage of multiple machines for the batch works to

be executed [7, 48].

Graph computing engines are designed to do things like the identification of clusters on data;

or to answer questions such as: “how many relationships, on average, does anyone in a social

network have?”.

Whereas some graph analytics engines include a graph storage layer, others (and arguably

most) concern themselves strictly with processing data that is fed in from an external source,

and then returning the results for storage elsewhere [48].

Figure 2.17: A high-level view of a typical graph analytics engine deployment [48].

Figure 2.17 shows a common architecture for deploying a graph analytics engine. The architec-

ture includes a system of record (SOR) database with OLTP properties (such as some relational

or document or graph DBMSs), which services requests and responds to queries from the ap-

plication (and ultimately the users) at runtime. Periodically, an ETL (Extract Transform and

Load) job moves data from the system of record database into the graph analytics engine for

offline querying and analysis [48].

30 Chapter 2. Graph Databases

We now give the main reasons why graph databases are not the right instrument for graph

analytics operations. The processing of graphs generally entails mostly random data access.

For large graphs that cannot be stored in memory, random disk access becomes a performance

bottleneck. However, even in the case of smaller graphs that could be entirely kept in main

memory, since graph databases are centralized systems that have to assure ACID properties,

they automatically lack the computational power of a distributed and parallel system. So when

some computations have to be executed on the entire graph in a single-thread approach, it

immediately emerges that computation times become prohibitive.

One option for realizing graph analytics with graph databases would be the realization of batch

processes that perform multiple queries whit graph-local scope on the database; and later per-

form some computations on the intermediate results in order to obtain the graph global result.

However, when distributed computation is required, there already exist some products that

manage such operations.

The first and most known framework that allows to do this is Apache Hadoop, an open

source distributed-processing framework for large data sets that includes a MapReduce imple-

mentation. With Hadoop and MapReduce, commodity computer clusters can be programmed

to perform large-scale data processing in a single pass [115].

In the MapReduce programming model - introduced by Google in 2004 - the Map func-

tion takes key/value pairs as input and produces a set of intermediate key/value pairs. The

framework groups all intermediate values that are associated with the same intermediate key

and passes them to the Reduce function. The Reduce function receives an intermediate key

with its set of values and merges them together. Unlike graph databases, MapReduce is not

designed to support online query processing. MapReduce is optimized for analytics on large

data volumes partitioned over hundreds of machines [115, 52].

However, Hadoop was thought for working with a big amount of files organized on the Hadoop

Distributed File System (HDFS); and it was not designed mainly to support scalable process-

ing above graph-structured data.

The main limitation in the MapReduce cluster computing paradigm is that it forces a par-

ticular linear dataflow structure on distributed programs: it reads input data from disk; maps

a function across the data; reduces the results of the map; and stores reduction results on disk.

This massive use of disks for storing the elaboration results becomes a bottleneck when iterative

algorithms are deployed [152].

In 2010, Google introduced the Pregel system as a scalable platform for implementing graph al-

gorithms. In particular, graphs are inherently recursive data structures as properties of vertices

depend on properties of their neighbors which in turn depend on properties of their neighbors.

As a consequence many important graph algorithms iteratively recompute the properties of each

vertex until a fixed-point condition is reached. The Pregel system targeted such problematics

[120].

2.5. Graph database characteristics 31

GraphX is a distributed graph processing framework on top of Apache Spark. It provides

two separate APIs for implementation of massively parallel algorithms (such as PageRank):

a Pregel abstraction, and a more general MapReduce style API. GraphX has full support for

property graphs and it is part of Apache Spark [152].

Apache Spark provides programmers with an application programming interface centered

on a data structure called the resilient distributed dataset (RDD), a read-only multiset of

data items distributed over a cluster of machines, that is maintained in a fault-tolerant way.

In particular, Spark’s RDDs function as a working set for distributed programs that offers a

(deliberately) restricted form of distributed shared memory [152].

The availability of RDDs facilitates the implementation of both iterative algorithms, that

visit their dataset multiple times in a loop, and interactive/exploratory data analysis, i.e.,

the repeated database-style querying of data. The latency of such applications (compared to

Apache Hadoop, a popular MapReduce implementation) may be reduced by several orders of

magnitude [152].

In this work we will only analyze some of the products belonging to the former category: graph

databases.

2.5.3 Differences from the relational database

Relational databases were initially designed to encode tabular structures, and in this they

work exceedingly well. However they could struggle when attempting to model the web of

relationships that arise in different domains of the real world.

One of the stronger arguments of graph databases is that “Relationships are first-class citizens

of the graph data model”. Graph databases indeed treat both vertexes and relationships with

full importance, storing them with dedicated constructs. The reason for it is that relationships

are the fundamental descriptors for the web of connections among the elements stored, and

they are the main information carriers for all applications that need to work with graph data.

In other database management systems - and in particular in the relational ones - this does

not hold: there are not dedicated constructs for treating relationship information differently

from other forms of information, and the connections among entities must be inferred by per-

forming join operations on values of the fields with referential integrity constraints (like foreign

keys); or by out-of-band processing such as MapReduce [48].

The relational model is by definition “based on values”: relationships among two different

relations are expressed by means of the values that appear within the tuples of both relations

[41]. Graph databases instead do not need to check and link entities by comparing the values

of a given property residing in both of them; they have the linking information already stored,

and all the operations that are normally executed at query time by relational databases or

document databases are completely avoided.

32 Chapter 2. Graph Databases

The way by which relationships are stored and linked to the nodes involved depends on the

database implementation. However, if thinking about those that realize index-free adjacency,

the fundamental idea is that the node “record” directly stores a “pointer” (either logical or

physical) to the linked nodes; or it stores a pointer to some relationship objects that store the

information of the other node involved, together with any other possible property.

By directly storing relationships, the database lightens the system by those operations that

can become heavy - in particular with large amount of data - like JOINS, multiple searches by

indexes, temporary table, etc. Suppose we are searching for the friends information of those

social network users that have a specific value for one of their information fields (e.g. zip code).

In a relational database, modeled by a relation of users and a relation of friendships, the first

operation would be a query on the particular field (possibly indexed) for the searched value;

then all the values extracted, belonging to the primary key of the user record, would be used

to search on the friendships relation all the primary keys for the friends, which by means of a

JOIN, would be used to extract and display all the information of the users found.

For a graph database, instead, the first search on the field is obviously performed; but after

that, all friends can be found by directly following the relationships attached to the node;

without needs of JOINs.

Relationships are not treated with full importance only at the storage layer; rather also at the

conceptual layer (how data shows to be modeled). This fact brings another important point for

graph databases: the dedicated and simplified way of handling relationships in all the operations

that the user (or the application) wants to perform on the underlying database. By making the

relationship manageable as a stand-alone object (thus not indirectly identified as a secondary

object by the two vertexes connected by that edge) gives simplicity in its manipulation for what

regards: the update of its properties; the removal or creation of new edges; and its interrogation.

All these aspects are seen as lacks of the relational model when one tries to work with graph

data: relationships are not directly identifiable; they must be computed at query time; and

also there are not easy ways for expressing queries that run on the underlying graph data. This

does not mean the relational model is badly designed, but because it is designed for other kinds

of data domains; and when one tries to force a graph domain in it, some difficulties emerge.

The other strong argument of graph databases is the following: “The true value of the graph

approach becomes evident when one performs searches that are more than one level deep.” What

does it means in a relational solution? It means that an entity has a recursive relationship with

itself (for example, for representing friendship relations among the users of a social network).

In that situation, it may be possible to found a chain of relationships that involves some of the

records of the same entity. For example, friends of John’s friends can be found.

Not in all cases, when there is a recursive relationship, there also is some graph-structured

data in the database: it depends on the cardinality constraints specified on the branches of the

recursive relationship. In particular, if the maximum cardinality value is 1 for both of them,

then there is no problem: each record can have at most only one relationship with another

2.5. Graph database characteristics 33

record, and thus only flatten chains - maybe longer than 1 relationship - are possible. When

one branch has maximum cardinality to 1 and the other has N, then the underlying data can

have the form of a tree. In fact, each record can have relationships with more then one record

attached to it with the role of “children”, but can have only one record attached to it with

the role of “father”. It is only when both cardinality constraints have maximum value equal

to N, however, that we may be working with some graph data. Each record can have multiple

“children” and also multiple “fathers”.

Let’s now consider a problem when a relational database is used for a social network dataset.

Figure 2.18 shows both the relations involved for the representation of such domain. There is

a table holding Person records and a table holding the friendships among Person records.

Figure 2.18: Modeling friends and friends-of-friends in a relational database [48].

If we ask “who are the friends of Bob’s friends?”, the question is quite easy, but its formulation

is not so straightforward by using SQL. In fact, hierarchies in SQL use multiple joins, which

make the query syntactically and computationally more complex.

The way in which SQL allows us to perform hierarchical queries, indeed, is typically by means

of nested JOINs. In particular, when asking “two levels deep” in a recursive relationship, the

query consists of a JOIN inside the FROM clause of an outer SELECT clause where another

JOIN is performed. This implies that, for each desired depth level, one should prepare a query

made of how many nested SELECT + JOIN statements how many are the desired depth levels

to be traversed. For example, asking for “Who are Alice’s friends-of-friends” involves four

nested SELECT statements: one for searching Alice and its ID; on for searching her friends’

IDs (first JOIN); one for searching the friends’ IDs of her friends (second JOIN); and the last

for retrieving the names of the friends-of-friends (third JOIN).

So things get more complex and more expensive the deeper we go into the network. Though

it is possible to get an answer to the question “who are my friends-of-friends-of-friends?” in

a reasonable period of time, queries that extend to four, five, or six degrees of friendship

deteriorate significantly due to the computational and space complexity of recursively joining

tables [48].

The way provided by most relational databases to overcome this situation made of nested

34 Chapter 2. Graph Databases

JOINs on sub-queries and with the depth level hard-written within the query itself by means

of the same number of nested statements, is by using a special kind of CTE (Common Table

Expression) that is invoked by the WITH RECURSIVE clause. In Section 3.2.4 we will give

additional details about it.

This will be the way by which we will realize queries for our relational database.

One last difference between the relational and the graph model is that in graph databases the

separation between schema and data (instances) is less marked than in the relational model

[7]. Graph databases indeed manage to model a connected reality in a more direct and natural

way: the transformation between the “conceptual schema” and the “logical schema”, belonging

to the typical database development process, is typically very little.

For a relational database, instead, the transformation is sometimes less straightforward, also

because of the normalization steps that have to be applied to the ER schema in order to map

it to a relational “logical schema”. In addition, such normalization steps often force to slowly

go far from the reality we want to represent, and also sometimes degrade performance. This is

also the reason why de-normalization steps are sometimes applied in a successive moment.

Such quicker transition from conceptual to logical schema brings to less impedance between

the analysis project phase and the implementation phase.

2.5.4 Differences from document stores

Not only relational databases may struggle when working with graph data. Most NOSQL

databases indeed store sets of disconnected documents, values or columns. This makes it

difficult to use them for connected data and graphs.

Let’s consider the case for document stores.

The simplest way for encoding the presence of a relationship between two document records

is by embedding, within the outer document, the document which is pointed by the other one.

Hierarchical situations can thus be represented with this approach; however it immediately

display the problem that if more documents point to the same document record, then such

record would be replicated for both the outer documents; with all the bad side effects that

come because of this.

The other well-known strategy for adding relationships to such stores is to embed a record

identifier to the other record, instead of embedding it entirely. This approach resolves the

duplication of records and foreign keys may be applied. However, this second approach requires

joining records at the application level because it has to build relationships from these flat,

disconnected data structures; which quickly becomes expensive. Furthermore, some consistency

mechanisms have to be implemented to ensure that the application updates or deletes these

foreign record references in tandem with the rest of the data. If this doesn’t happen, the store

will accumulate dangling references, which can harm data quality and query performance [48].

2.6. General approach to process graph queries 35

Another weak point of this solution is this: because there are no identifiers that “point

backward” (the foreign “links” are not reflexive), the ability to run queries that go to the

opposite direction is lost.

Let’s see it with an example (Figure 2.19). Note that here we consider friendship relation-

ships asymmetrical, thus more similar to a “is following” kind of relationship. However, this

only affects the relationship name: the links realized with the second approach are inherently

asymmetrical.

Figure 2.19: Social network example encoded in a document store [48].

With this structure, it is easy to find “who are Bob’s immediate friends?”, because references

to such records are collected by Bob itself. However, if we would like to ask the specular query,

i.e. “who is friends with Bob?”, the question would be more difficult to get answered. In this

case the only option would be to perform a brute-force scan across the whole dataset looking

for friends entries that contain a reference to Bob [48].

2.6 General approach to process graph queries

When working with graphs, one does have to change its way of thinking about queries; especially

for those who come from SQL and the relational model (i.e. almost everyone). Differently from

queries on relational databases, expressed and thought in a “SQL form” (and thus involving

reasoning with tables, columns, joins, etc.), here the main focus is on vertices and how to move

upon the graph by following the right edges.

Graph queries can conceptually be distinguished in two components: the landing phase, and

the exploration phase.

The landing phase searches for the vertex on the graph by which the query is anchored, and

it usually employs indices, labels/classes and properties for vertex individuation. This vertex

will represent the starting point for the following exploration phase.

36 Chapter 2. Graph Databases

However, the landing phase does not only work with a single vertex. More vertices can be

pointed and then highlighted on the graph; and the same goes for relationships.

The landing phase can represent the most costly operation on large graphs. It depends in

fact on the number of vertices belonging to the category of search; on the indexes defined; and

on the statistics of attributes’ values. However, for complex queries, it could represent only a

fraction of the total query time, due to a complex exploration phase.

The exploration phase is what follows the individuation of all the elements that can be

targeted by the parameters given with the query; and it is about graph navigation (or better

traversal). One example is the search for all the neighbors of the initial vertex, and maybe only

reached by outgoing edges; or again the search for paths that go from a start node to a target

node, if they exist.

The exploration phase thus embeds the graph navigation algorithms of graph theory, and

collide with its known problems.

Figure 2.20: Graph query phases.

In Figure 2.20 is represented the graph query divided in the two components. In particular, we

highlight that the first phase typically works by exploiting the information about the category

of the anchor element searched, the values for some of its properties, and the eventual use

of some indexes. The second phase, which follows the first one, also works by exploiting the

defined category of the elements searched, or the allowed values for some of their properties;

however, it also takes the information about what should be the exploration order (DFS or

BFS), and what should be the constraints defined for the exploration, which will be presented

in Chapter 6. In addition, it is highlighted that such phase may or not be based on indexes.

Those graph databases that support the index-free adjacency property will not use any index.

Regarding the effective distinction of the two phases in query formulation, some of the graph

query languages permit a quite clear individuation of the elements targeting the two phases;

2.6. General approach to process graph queries 37

others instead do not make a so highlighted distinction within the syntax of the query, but the

query execution follows the same philosophy.

38 Chapter 2. Graph Databases

Chapter 3

DBMSs comparison

In this chapter we will give some general information about the graph databases currently

available. In addition, we will present a detailed overview for each of the three graph DBMSs

chosen for the study. We will also give a quick presentation for a relational database product,

in order to compare them with the relational model.

In Section 3.1 we then present the most known graph databases of the moment. In Section

3.2 we compare the four DBMSs. In Section 3.3 we present a feature matrix that quickly show

the main differences among them.

3.1 Which are the major Graph DBMSs

On the website www.DB-ENGINES.com a list of the most known existing DBMSs is provided.

These DBMSs are ranked by their popularity and the list is updated monthly.

In Figure 3.1 it is shown the ranked list of all the DBMSs tracked, while in Figure 3.2 it is

shown the trending chart for some of them; in particular, we selected the leading relational

DBMSs and some other graph databases. In Figure 3.3, instead, it is shown the ranking list

for only the graph DBMSs tracked.

As it can be seen, relational databases are the dominant products within the field; furthermore,

graph databases are instead ranked well under the first positions. The first ranked graph DBMS,

which is Neo4j, is the 21st of the overall databases ranking list.

The popularity measure, computed for each DBMS, is obtained by using the following param-

eters:

• Number of mentions of the system on websites, measured as number of results in search

engines queries.

39

www.db-engines.com

40 Chapter 3. DBMSs comparison

Figure 3.1: Ranking list of some of the DBMSs tracked by DB-ENGINES.com [1].

• General interest in the system, measured as frequency of searches in Google Trends.

• Frequency of technical discussions about the system, measured as the number of related

questions and the number of interested users on the well-known IT-related Q&A sites

Stack Overflow and DBA Stack Exchange.

• Number of job offers, in which the system is mentioned, on the leading job search engines

Indeed and Simply Hired.

• Number of profiles in professional networks, in which the system is mentioned, on LinkedIn

and Upwork.

• Relevance in social networks, measured as the number of Twitter tweets in which the

system is mentioned.

DB-Engines calculates the popularity value of a system by standardizing and averaging the

3.1. Which are the major Graph DBMSs 41

Figure 3.2: Trending chart of some of the DBMSs tracked by DB-ENGINES.com [1].

individual parameters. These mathematical transformations are made in a way so that the

distance of the individual systems is preserved. That means, when system A has twice as large

a value in the DB-Engines Ranking as system B, then it is twice as popular when averaged over

the individual evaluation criteria [1].

The website has been useful for an initial analysis on which and how many are the DBMSs that

support the graph data model.It has been also useful for getting a rough idea on the size of

their relevance and presence on the databases’ field; as well as to guide the choice on the three

sample graph DBMSs that will be compared in this work.

As you can see in Figure 3.3, the five most popular graph DBMSs are Neo4j, OrientDB, Titan,

Virtuoso and ArangoDB.

Thanks to the chart in Figure 3.4 it can be inferred that Neo4j is stable (and still growing

in popularity) on first position since time; while OrientDB and Titan are quite similar for

behaviour and growing pace; Virtuoso seems to be in a flat period; and ArangoDB, that’s born

quite recently, gained a rapid enhancement in its popularity.

Note, however, that popularity should not be confused with adoption. One may think that

popularity and adoption grow in parallel and proportionally with each other; however this is not

true. There is indeed a disclaimer on DB-Engines.com related to the topic: “The DB-Engines

Ranking does not measure the number of installations of the systems, or their use within IT

systems. It can be expected, that an increase of the popularity of a system as measured by the

DB-Engines Ranking (e.g. in discussions or job offers) precedes a corresponding broad use of

the system by a certain time factor. Because of this, the DB-Engines Ranking can act as an

early indicator” [1].

42 Chapter 3. DBMSs comparison

Figure 3.3: Ranking list of the graph DBMSs tracked by DB-ENGINES.com [1].

Figure 3.4: Trending chart of the top 5 graph DBMSs tracked by DB-ENGINES.com [1].

3.2. The compared DBMSs 43

3.2 The compared DBMSs

In this section we will examine three of the most known graph DBMSs that support the property

graph model, which are: ArangoDB, Neo4j and OrientDB. In particular, we will present how

the examined DBMSs face some of the typical databases’ problems; with special attention on

some of the topics that may be interesting because of the graph nature of the data domain,

like: storage techniques, caching, querying, scalability, etc. The same comparison will be also

done for PostgreSQL.

For each of them, during our test presented in Chapter 5 we will use the free “community

editions”; so the following comparison will mainly be based on such product version. The

“enterprise editions” typically come with additional features or enhancements in the database

configuration and administration; or with other minor tools regarding what stands around a

DBMS. Furthermore, Enterprise Edition licenses are often more about support subscriptions

than “turned upside down” DBMS engines.

3.2.1 ArangoDB

ArangoDB is a NoSQL multi-model database management system supporting graphs, key/value

pairs and documents. It is realized by ArangoDB GmbH and triAGENS GmbH (Germany)

and its first release was in 2012.

According to DB-Engines.com, at the time of writing, it is ranked 4° in Graph DBMS

category, 15° in Document Stores category, 12° in Key-Value Stores category, and 79° overall

(over all the DBMS tracked by the site).

It is a schema-free DBMS, implemented in C/C++ and JavaScript, and supports several op-

erating systems (Linux, OS X, Windows, Raspbian and Solaris). ArangoDB is designed to

serve documents to clients; these documents are transported in JSON format using the HTTP

protocol; so a REST API is provided to interact with the database system. The database can

also be accessed by means of a web interface and an interactive shell.

It supports several programming language drivers (C#, Clojure, Java, JavaScript, PHP,

Phyton, Ruby, Go, etc) and allows to define stored procedures in JavaScript.

It states to have a native multi model approach, and not, for example, a graph database

realized as an abstraction layer on top of a document store. In this way “it “does not switch

between the models behind the scenes in order to execute queries [26].

ArangoDB represents the “emergent” figure in this work and also in the graph databases field:

it is one of the youngest commercial products that realize such model, and it also brings added

44 Chapter 3. DBMSs comparison

value since it is multi-model. It aims to compete with graph databases as well as document or

key/value store.

During this work, we will use the 3.0.10 version released in 26 September 2016. However, given

the fact that version 3.1 has been released during the development of the work, some hints on

new interesting features will be pointed out now and then.

Logical data organization

ArangoDB organizes data in terms of databases, collections and documents.

Databases are sets of collections, which are the sets that collect records, which in turn are

also called documents. Multiple databases can be defined in order to have isolation among

collections. There always is a special database, called “ system”, created by default and that

cannot be removed, which is used as the administration database in order to perform operations

like users and collections management.

Collections are the equivalent of tables in RDBMS, and documents can be thought of as

rows in a table. Being schema-less, there is no need to define what attributes a collection - and

thus its documents - can have before inserting data in them; rather every single document can

have a completely different structure and still be stored together with other documents in a

single collection [16, 15]. There are two types of collections: document collection (also refered

to as vertex collections in the context of graphs) as well as edge collections. Edge collections

store documents as well, but they include two special attributes, from and to, which are used

to create relationships between two vertex documents.

Documents in ArangoDB follow the JSON format, although they are stored in a binary

format, which is called VelocyPack (we will see some details later in Section 3.2.1). A document

contains zero or more attributes, each of these attributes having a value. A value can either

be an atomic type, i. e. number, string, boolean or null, or a compound type, i.e. an array or

embedded document; so that arbitrarily nested data structures can be represented in a single

document. Each document has a unique primary key which identifies it within its collection

and, in general, across all collections in the same database. The combination of the document

key and the collection name forms what is called the document handle.

All documents contain three special attributes: the document handle is stored as a string in

id, the document’s primary key in key and the document revision in rev. The value of the

key attribute can be specified by the user when creating a document; however id and key

values are immutable once the document has been created, while rev value is maintained by

ArangoDB automatically [15].

ArangoDB also defines the “named graph”, which is the way by which ArangoDB handles

graphs. A named graph is created by specifying the edge collections to be used for the con-

struction of the graph; the involved vertex documents will be automatically detected by the

3.2. The compared DBMSs 45

pointers contained in the edge documents. Such operation for the graph creation is termed as

“edges definition” [17].

The edge direction is of course given by the two fields from and to. Within queries it is

possible to define in which direction the edge should be followed, which are OUTBOUND:

from→ to; INBOUND: from← to; and ANY: from↔ to [17].

Physical data organization

ArangoDB uses JSON as its default data format [151]. It can natively store a nested JSON

object as a data entry inside a collection; therefore, there is no need to disassemble the resulting

JSON objects for their storage, and thus the stored data simply inherits the tree structure of

such document [5].

However, internally ArangoDB uses VelocyPack. VelocyPack is a compact binary format for

serialization and storage of documents, query results and temporarily computed values [23].

More specifically, VelocyPack is an (unsigned) byte oriented serialization format, where its

values (not necessarily aligned) are simply platform independent sequences of bytes [24].

Its primary goal is to reduce storage space requirements for “small” values (such as boolean,

integers, short strings) in order to speed up several operations inside queries. VelocyPack

document entries stored on disk are self-contained, in the sense that each stored document

will contain all of its data type and attribute name descriptions. While this may require a

bit more space for storing the documents, it removes the overhead of fetching attribute names

and document layout from shared structures. It also simplifies the code paths for storing and

reading documents [12].

The arguments of why ArangoDB developed this data format are as follows:

These days, JSON (JavaScript Object Notation) is used in many cases where data has to be

exchanged. Lots of protocols between different services use it, databases store JSON (document

stores naturally, but others increasingly as well). It is popular, because it is simple, human-

readable, and yet surprisingly versatile, despite its limitations.

ArangoDB developed this format because none of the several known JSON formats used by

other applications (e.g. Universal Binary JSON, MongoDB’s BSON, MessagePack, BJSON,

Apache Thrift, Google’s Protocol Buffers, etc.) manages to combine compactness, platform

independence, fast access to subobjects and rapid conversion from and to JSON [23].

The way by which ArangoDB stores a graph model is simply by using these particular types

of JSON documents (which are of vertex or edge type) that are stored with the optimized

VelocyPack format. There is not, thus, a particular data structure which models a graph (as

it is done by Neo4j, for example); rather a specialized utilization of the JSON format.

The relationships between the edge elements and their referenced vertex elements are recon-

structed by means of indexes constructed over them at server boot. These indexes are called

46 Chapter 3. DBMSs comparison

Edge indexes and provide quick access to documents by either their from or to attributes.

Internally, the Edge Index is implemented as a hash index, which stores the union of all

from and to attributes. They are thus used every time an edge is taken in consideration by

the traversal operation, and point to where the information relative to the vertexes are stored.

It is now clear that ArangoDB does not realize the index-free adjacency property. In fact, an

index lookup is needed to get from a node to an edge and vice versa. However ArangoDB uses

for this operations a hash index; and the time for the lookup is O(1). So, up to a very small

constant factor, the time to get from a node to the edge (and vice versa) is not so different

from as if the address of the edge were directly stored in the node itself, maybe as a property,

and serialized to secondary memory [2].

During this work a new version of ArangoDB was released: the 3.1. It includes an additional

possibility for optimizing graph traversals, which is Vertex centric Indexes.

Its basic idea is to index a combination of a vertex, the direction of the connected edge,

and any arbitrary set of other attributes on the edges. For example, consider a social network

situation where there exist different types of relationship among users, like friend of or follows

etc. In this situation, we will have an attribute called Type on the edges. Using the built-in

Edge Index, ArangoDB can find the list of all edges attached to the vertex fast, but it still has

to walk through this result list and check if all of them have the attribute Type == “friend of”.

Using a vertex-centric index would allow ArangoDB to find all edges for the vertex having the

attribute Type == “friend of” in the same time; and thus avoiding the necessity to verify the

condition on all the resulting edges [10].

Documents are stored to disk by means of memory-mapped files. By default setting, these

memory-mapped files are synced regularly to disk, but not instantly. This comes as a trade-

off between storage performance and data durability. If this level of durability is too low for

an application, the server can also sync all modifications to disk instantly; this will give full

durability but will come with a performance penalty because each data modification will trigger

a sync I/O operation [14].

In addition, instead of overwriting existing documents, ArangoDB creates a new version for

each modified document (MVCC - Multi-Version Concurrency Control); and this is also the

case when a document gets deleted. The two benefits are that objects can be stored coherently

and compactly in the main memory; and that isolated writing and reading transactions allow

accessing these objects for parallel operations.

Data Integrity

Data integrity is certainly one of the most important aspects of a database; it is even more

important in a scenario where complex data models are involved, just like here. In this section

we will talk about both data integrity and “graph integrity”, where with graph integrity we

intend a consistent state for its edges.

3.2. The compared DBMSs 47

For what regards data constraints ArangoDB, being a NoSQL schema-less DBMS, does not

expect a schema to be declared before data insertion, so data constraints are typically not

imposed. We may have documents with different arguments within the same collection, and

also edges within the same edge collection that point to more and different vertex collections.

However, automatic indexes on system attributes (like key, or from and to) assure unique

constraint; which can be similarly imposed on other fields by the user/application by creating

indexes on them.

The moments in which graph (and in general data) integrity could fall is in correspondence of

insertion, update and delete operations.

After a named graph is created, its defining collections are still accessible by using the

standard methods; thus classical insert/update/delete operations are still possible in the classic

way, and graph inconsistency may arise. In fact, the deletion of a vertex should not be done so

airily, because it could bring to dangling edges. However, if these collections are accessed by

functions of the graph module, the following guarantees are assured:

• all modifications are executed transactional;

• if a vertex is deleted, all connected edges will be deleted; thus avoiding loose ends;

• if an edge is inserted, it is checked that such edge matches the edge definitions, so that

edge collections will only contain valid edges [17].

Since ArangoDB’s named graphs are graph definitions done on collections that can live inde-

pendently of the graph, it could be also possible that the same vertex collection is used by

two different named graphs at the same time. However, the graph module manages also this

situation and dangling edges will be avoided even in this case. This, of course, involves more

operations inside the database which obviously don’t come for free [17].

Talking instead of data consistency and concurrent operations, the way by which data integrity

is preserved is by using transactions. ArangoDB transactions are different from transactions in

SQL. In particular, a SQL transaction starts with explicit commands (like BEGIN or START

TRANSACTION); then it follows a series of data retrieval or modification operations; and it

ends with a COMMIT command, or rolls-back with a ROLLBACK command.

For ArangoDB transactions there are no individual BEGIN, COMMIT or ROLLBACK trans-

action commands; instead, a transaction is started by providing a description of the transaction

to the db. executeTransaction() JavaScript function. This function will then automatically start

a transaction, execute all required data retrieval and/or modification operations, and at the

end automatically commit the transaction. If an error occurs during transaction execution,

the transaction is automatically aborted, and all changes are rolled back [20]. In addition, a

transaction is always a server-side operation, and is executed on the server in one go, without

any client interaction.

During transaction execution, however, ACID properties will be given by exploiting some

techniques like document revision; collections locking for those involved by the transaction;

48 Chapter 3. DBMSs comparison

transactions interruptions disabled; etc. [20].

Transactions lean on WAL (Write-Ahead Log) files, i.e. files where all modifications are ap-

pended before they are applied and persisted to disk. This approach permits to just search for

a file’s valid start-section after a failures or server crashes. If instead of doing this, the DBMS

would overwrite existing data, it would have to verify each block’s validity before allowing the

database to be accessible, like other databases typically do. So this approach is used to run

data recovery after a server crash, and can also be used in a replication setup when slaves need

to replay the same sequence of operations as on the master [14]. However, the assumption at

the basis of this approach is that the server is subjected to few crashes [40].

One limitation of ArangoDB transactions is that they cannot be invoked by AQL. Another

limitation is that a transaction operation information (record pointers, revision numbers and

rollback information) must fit into main memory. In addition, to ensure progress of the Write-

Ahead Log garbage collection, transactions should be kept as small as possible, and big trans-

actions should be split into multiple smaller transactions. However, transactions in ArangoDB

cannot be nested, and if an attempt is made to call a transaction from inside a running trans-

action the server will throw an error.

Transactions vary their guarantees depending on the database structuring. Using a single

database instance, multi-document and multi-collection queries are guaranteed to be fully

ACID; and also in cluster mode, single-document operations are fully ACID. However multi-

document and multi-collection queries in a cluster are not ACID [20].

Query language and graph functions

SQL was designed to give answer to some of the relational model needs and it is the powerful

declarative query language that made history in databases’ world. However, when working with

graph structures, SQL rapidly shows to be limited. If graph data is mapped on a relational

database, it is of course possible to realize queries with SQL that are able to “move” on the

graph and retrieve desired data; but they will increase in complexity (and maybe decrease in

efficiency) quite shortly. For these reasons, all three analyzed graph DBMSs developed their

own graph-oriented query language.

ArangoDB’s query language is called AQL, which is an acronym for ArangoDB Query Language.

AQL is a declarative language designed to manage all three data model handled by its DBMS.

It supports reading and modifying collection data, but it does not support data-definition

operations such as creating and dropping databases, collections and indexes; thus it is a pure

data manipulation language (DML) and not a data definition language (DDL) or a data control

language (DCL).

The syntax of AQL queries is different from SQL, even if some keywords overlap [9]. It

comes with several aggregate, ordering, filtering, and sub-querying functions; furthermore it

3.2. The compared DBMSs 49

has an EXPLAIN clause for obtaining query execution insights. It has kind of support for

JOIN operations between documents even if, because of its schema-less nature, a null value

could be returned in the case of missing attribute on one of the involved documents [18]. It

does not have a SELECT clause for choosing the data to be returned like SQL; instead it brings

the two keywords FOR and RETURN for choosing what to return as result.

For example, the simple SQL query SELECT * FROM users becomes FOR user IN users

RETURN user with AQL. Furthermore, in order to simulate JOIN operations, nested FOR

statements can be used.

For what regards graph traversals, there is a well-defined query syntax that specifies this oper-

ation [21], which is reported in Code snippet 3.1.

FOR vertex [, edge [, path]]

IN [min [. . max]]

OUTBOUND|INBOUND|ANY star tVer t ex

GRAPH graphName

[OPTIONS opt ions]

RETURN [. . .]

Code snippet 3.1: AQL graph traversal.

As can be seen, a named graph is passed and, specified the start vertex and edges directions,

it is possible to explore the surrounding nodes with depth values specified by the min and max

parameters. With the FOR line, names to the graph elements can be given and later used with

the RETURN clause. The OPTIONS clause allows to specify some policies for graph traversal

(e.g. in BFS order instead of the default DFS order); furthermore other clauses like FILTER

or LIMIT can be specified before invoking RETURN.

AQL can be invoked by the Aardvark web interface and the arangosh shell that come with the

DBMS; and also by HTTP API and Foxx Services (Foxx is a JavaScript framework for writing

data-centric HTTP micro-services that run directly within the ArangoDB server) [9, 26].

Additional details will be given later when talking about realized queries in Section 5.5.

ArangoDB, apart from simple retrieval document queries and graph traversals, allows also to

request for shortest path and geo-spatial functions directly with AQL [9].

In addition, several JavaScript functions are also provided, with regards to minimum weight

path between two nodes, all paths between two nodes, common descendants of two nodes,

nodes that share the same common properties, distance among two nodes, graph radius and

diameter, vertices closeness, vertices eccentricity, vertices betweenness.

By using JavaScript, it is also possible to define new functions and also create new visitor

or expander methods [28].

ArangoDB does not directly support Gremlin for the specification of its queries [29]; there exist

however some GitHub projects for meeting such purpose [36, 27].

50 Chapter 3. DBMSs comparison

Caching

Caching has become a fundamental part of database management systems. Generally, caching

means that useful data (typically because of previous accesses from persistent memory) remains

in main memory and can be accessed again more rapidly. It is thus clear that queries run faster

when the portions of the graph needed to satisfy them already reside in main memory. More

generally, caching has three main goals: reducing disk access, reducing computation (i.e. CPU

utilization), and speeding up the time as measured by how long it takes a user to see a result.

Three types of caching are generically possible for databases: query results, query plans, and

data itself.

The first, query result caching, means that the exact output of a read-only query will be

stored in main memory for the next time that the exact same query would be performed. This

saves the database from doing any disk access, practically removes CPU usage, and returns

quickly the result. This is particularly useful if data-reading queries repeat a lot and there are

not many write queries.

The second, query plan caching, involves saving the results of the optimizer, which is re-

sponsible for figuring out how the database is going to fetch the requested data. This type of

caching usually involves a “prepared” query, which has almost all of the information needed to

run the query with the exception of one or more “placeholders” (i.e. spots that are populated

with variables at execution time). Because the plan is already known, the optimizer does not

need to be called, which saves CPU usage and time.

The third, data caching, involves putting data (usually in terms of graph data structures /

tables or indexes) into memory so that it can be read quickly. This saves disk access, which

basically means that it saves time.

Each one of the three caching types should complement the other, and a query may be able

to use one, two, or all three of the caches [60].

In general, a DBMS may exploits the file system cache for keeping useful graph in memory

rather than continuously asking to the disk; or it can even use a dedicated memory area for

realizing such page cache. The file system cache, it is managed by the operating system based

on some policies like LRU (Least Recently Used) or others.

ArangoDB’s processes inherits the file system page cache. In addition to this, ArangoDB

realizes a query cache mechanism. The mechanism proposed is transparent to users so they do

not need to manually invalidate results in it if underlying collection data are modified. Query

cache can be enabled or disabled on the entire server service, or requested/disabled on demand

by AQL queries. The query cache is organized as a hash table, so looking up whether a query

result is present in the cache is relatively fast.

The query cache mechanism will consider two queries identical if they have exactly the same

query string, also including whitespaces etc. The query string will be hashed and used as the

cache lookup key; if a query uses bind parameters, these will also be hashed and used as the

3.2. The compared DBMSs 51

cache lookup key, so that the same query on new parameters will not be found as already

executed. A query will be considered eligible for caching - i.e. it can be saved for later uses

- if, among other conditions, is a read-only query; no warnings were generated; and only uses

deterministic functions (a random number generator or a timestamp generator are not).

Query cache results are fully or partially invalidated automatically if queries modify the data

of collections that were used during the computation of the cached query results; this means

that there will be additional cache invalidation checks for each data-modification operation [30].

Scalability approach and data partitioning

Because of the graph data domains could be huge (e.g. think about social networks or energy

distribution networks or railway networks), some questions about data scalability arose. While

scaling vertically is a way to overcome the problem - and an ingredient for this is to enlarge

the secondary memory space and give more power to the server - this typically comes with

some disadvantages (most of all of economic nature). On the other hand, NoSQL databases

introduced the possibility to scale horizontally, and achieved this in quite economic ways, so it

would be nice to be able to apply the same approach for even graph databases.

Horizontal scalability is the ability to distribute workload among several clusters/servers/lo-

cations etc. So rather than putting all the burden on one server, you can delegate at least some

of the work to other servers to speed things up even with many accesses. In addition, it also

enhance resilience by replication and fail-over management.

Sharding is a way to realize horizontal scalability by splitting the data storage itself in different

partitions; each of them is stored on a different machines. The cluster of machines however

works in such a way that all instances are shown as a single database. The fact of being able

to manage a database that is split and placed on different machines leads to a great horizontal

scalability opportunity, allowing thus to handle very big amount of data.

This ability is one of the most strong points of NoSQL DBMSs; however for what concerns

those realizing the graph database, the question is more delicate. The problem arises by the fact

that, as known by the graph theory, the problem of partitioning a graph in distinct partitions

is NP-complete [48, 53, 155], and thus impractical. A näıve solution to the problem can lead

to unpredictable query times as a result of graph traversals unexpectedly jumping between

machines over the (slow) network.

ArangoDB can be scaled horizontally by using many servers, typically based on commodity

hardware. The data models realized by ArangoDB offer different opportunities for scalability

because of their nature; in particular, the possibility to scale decreases from key/value over

documents (documents with joins) to graphs.

The key/value store data model is the easiest to scale, and the reason is that a document

collection always has a primary key (key attribute), and in the absence of further secondary

indexes the document collection behaves like a simple key/value store. The only operations that

52 Chapter 3. DBMSs comparison

are sensible in this context are single key lookups and key/value pair insertions and updates.

If key attribute is the only sharding attribute then the sharding is done with respect to the

primary key and all these operations scale linearly.

For the document store case, even in the presence of secondary indexes essentially the same

arguments apply, since an index for a sharded collection is simply the same as a local index

for each shard. Each shard only holds the part of an index which is needed by this shard.

Therefore, single document operations still scale linearly with the size of the cluster.

However, since the AQL query language allows queries that use multiple collections, sec-

ondary indexes as well as joins, scaling can be a challenge if the data to be joined resides on

different machines, because a lot of communication has to happen. The same happens if work-

ing on graph data.

To achieve good performance at scale, it is therefore necessary to set the distribution of

the graph data across the shards in a well-studied way. ArangoDB asks the users to specify

which attributes to use for the graph data to be sharded. The minimum suggested step for the

users is to make sure that the edges originating at a vertex reside on the same cluster node

as the vertex. However, for helping with this aspect, ArangoDB Enterprise Edition offers the

SmartGraph feature, which understands how to realize graph partitioning based on community

detection in order to minimize network transmissions [26].

The distributed architecture is managed by a multi-master model and a number of ArangoDB

instances talk to each other over the network and play different roles (Agents, Coordinators,

Primary and Secondary DBservers) [26].

Graph visualization

ArangoDB comes with a useful web interface called Aardvark. With this interface the database

administrator can see some statistic measures with a dashboard; manage databases, collections

and documents; manage named-graphs; perform (and save) AQL queries; manage the database

schema (and then impose constraints or create indexes); store and launch services / procedures;

look at the database logs; and get a graph-representation of the data contained in the form of

a graph model, as shown in Figure 3.5. By using the graph visualization tool, the graph can be

dynamically explored by expanding vertexes’ connected edges, click-by-click. In the snapshot

taken, we searched the desired vertex by applying a filter on vertexes’ attributes. We then

expanded the first level around the obtained node, and we get the representation of both nodes

reachable by incoming and outgoing edges, grouped by similarity (we will not go in details

about this). In addition, the graph visualizer allows to create new vertices and new edges in an

interactive way. Nodes can be colored in different ways, but only based on static information

(i.e. values of their properties).

The version of ArangoDB used in this work lacks the possibility to get a graph visualization

of the result of a query. However, during the development of this project, ArangoDB 3.1 has

3.2. The compared DBMSs 53

Figure 3.5: ArangoDB web interface

Figure 3.6: ArangoDB subscription levels [25].

54 Chapter 3. DBMSs comparison

been implemented which overcomes such shortage.

Licensing

ArangoDB offers, at the time of writing, three different levels of subscription, as shown in

Figure 3.6.

As it can be seen, the Community option is the one without direct support and it is released

under the Apache v2 license. The other two subscriptions give some level of technical support

and are released under different licenses. The Enterprise Edition also includes SmartGraphs

feature for graph sharding, auditing feature and increased control over SSL encryption [26].

3.2.2 Neo4j

Realized by Neo Technology Inc (Sweden and USA), Neo4j is an open-source NoSQL graph

database implemented in Java and Scala. With development starting in 2002, it has been

publicly available since 2007.

According to DB-Engines.com, at the time of writing, it is ranked 1° in Graph DBMS

category, and 21° overall.

Neo4j is a native graph storage that realizes the index-free adjacency property. Being written

in Java, it is portable on all those systems that support it. It is accessible from software

written in other languages using the Cypher Query Language through a transactional RESTful

HTTP endpoint with JSON based data format; or by the various drivers provided (Go, Groovy,

Clojure, Java, JavaScript, PHP, Phyton, Ruby, Scala, etc). It also allows to define stored

procedures in Java. In addition, Neo4j can be accessed by its native Java API, and a web user

interface.

Neo4j represents the “historical” figure in this work: it has been one of the first to be released

as a graph database commercial product, and is one of the leading products on the field for

popularity and adoption.

In this work, we will use the 3.0.6 version released in 16 September 2016.

3.2. The compared DBMSs 55

Logical data organization

Neo4j’s logical organization simply describes the property graph model by means of constructs

that directly represent the basic elements of such kind of graph model. In fact, its data model is

made of node objects (which could be labeled), connected by named and directed relationships,

with both nodes and relationships serving as containers for properties.

Even though all relationships have a direction, they can be equally well traversed in both

directions, so there is no need to create duplicate relationships in the opposite direction, just

like with ArangoDB [76].

Physical data organization

In Figure 3.7 are shown the architectural layers of Neo4j.

Figure 3.7: Neo4j architecture layers [48].

Neo4j stores graph data in different store files; each store file contains the data for a specific part

of the graph (e.g., there are separate stores for nodes, relationships, labels, and properties). In

particular, there is a division of storage responsibilities - i.e. the separation of graph structure

from property data - which was designed to facilitate graph traversals [48].

As for as the physical structure of single nodes and relationships on disk is concerned, let’s

exploit Figure 3.8, which describes nodes and relationships store file records.

The node store file, which is named neostore.nodestore.db, stores every node created by the

user or application. It is a fixed-size record store, where each record is nine bytes in length.

Fixed-size records strategy has been applied in order to enable fast lookups for nodes in the

store file. In fact, if we have a node with id 100, then we already know that its record begins

900 bytes into the file. Based on this format, the database can directly compute a record’s

location, at cost O(1), rather than performing a search, which instead would cost O(log n) if a

56 Chapter 3. DBMSs comparison

Figure 3.8: Neo4j node and relationship store file record structure [48].

typical binary-tree index is used.

The first byte of a node record is the in-use flag; this tells the database whether the record

is currently being used to store a node, or whether it can be reclaimed on behalf of a new node.

Neo4j’s .id files are those that keep track of unused records. The next four bytes represent the

ID of the first relationship connected to the node, and the following four bytes represent the ID

of the first property for the node. The five bytes for labels point to the label store for this node

(labels can be in-lined where there are relatively few of them). The final byte extra is reserved

for flags; one such flag is used to identify densely connected nodes, and the rest of the space is

reserved for future use.

The node record is then quite lightweight, indeed it’s just a handful of pointers to linked

lists of relationships, labels, and properties [48].

Correspondingly, relationships are stored in the relationship store file, which is neo-

store.relationshipstore.db. Like the node store, the relationship store also consists of fixed-sized

records. Each relationship record contains the IDs of the nodes at the start and end of the

relationship, a pointer to the relationship type (which is stored in the relationship type store),

pointers for the next and previous relationship records for each of the start and end nodes, and

a flag indicating whether the current record is the first in what’s often called the relationship

chain.

Let’s now consider an example of a social network where two nodes are connected by an edge,

as shown in Figure 3.9.

Each of the two node records contains a pointer to that node’s first property and first rela-

tionship in a relationship chain. To read a node’s properties, we follow the singly linked list

structure beginning with the pointer to the first property. To find a relationship for a node, we

follow that node’s relationship pointer to its first relationship. From here, we then follow the

doubly linked list of relationships for that particular node (that is, either the start node doubly

linked list, or the end node doubly linked list) until we find the relationship we’re interested in.

Having found the record for the relationship we want, we can read that relationship’s properties

(if there are any) using the same singly linked list structure as is used for node properties, or

3.2. The compared DBMSs 57

Figure 3.9: Example Neo4j social network data structure [48].

we can examine the node records for the two nodes the relationship connects using its start

node and end node IDs [48].

It must be told that, because of the way edges and properties are stored and retrieved, the first

inserted property for a node or an edge is always the first to be found, while other properties

would be found only after being passed through the first one. The same holds for the chain

of relationships connected to a node. First edges and properties are then a little bit privileged

with respect to others. This fact should not impact in query execution too much if the linked

lists are quite small; nevertheless it could be a good point for those who would push to the limit

the optimization of the database, if it is known that some kind of relationships or properties

are requested more times than others.

By thinking of a relationship record as “belonging” to two nodes: the start node and the end

node of the relationship, it becomes clear that there would be the problem of storing the same

relationship record twice, which would be wasteful, if done improperly. This is the reason

why, instead, there are pointers (aka record IDs) for two doubly linked lists: one is the list of

relationships visible from the start node; the other is the list of relationships visible from the

end node.

Furthermore, the fact that each list is doubly linked enables to rapidly iterate through that

list in either direction, and insert and delete relationships efficiently. Choosing to follow a

different relationship involves iterating through a linked list of relationships until we find a

good candidate (e.g., matching the correct type, or having some matching property value).

Once we have a suitable relationship we’re back in business, multiplying ID by record size, and

thereafter chasing pointers [48].

To traverse a particular relationship from one node to another, the database performs several

cheap ID computations (these computations are generally cheaper than searching global indexes,

as we’d have to do if faking a graph in a non-graph native database):

58 Chapter 3. DBMSs comparison

• From a given node record, locate the first record in the relationship chain by computing its

offset into the relationship store—that is, by multiplying its ID by the fixed relationship

record size. This gets us directly to the right record in the relationship store.

• From the relationship record, look in the second node field to find the ID of the second

node. Multiply that ID by the node record size to locate the correct node record in the

store [48].

In case of constrain, during traversal, based on relationships with particular types, there will be

performed a lookup in the relationship type store. Again, this is a simple multiplication of ID

by record size to find the offset for the appropriate relationship type record in the relationship

store. Similarly if it is chosen to constrain by label, the label store will be referenced.

In addition to the node and relationship stores, which contain the graph structure, there are

property store files, which persist the user’s data in key-value pairs. Properties can, as already

stated, be attached either to nodes and edges. The property stores, therefore, are referenced

from both node and relationship records. Records in the property store are physically stored

in the neostore.propertystore.db file. As with the node and relationship stores, property records

are of a fixed size. Each property record consists of four property blocks and the ID of the

next property in the property chain (remember, properties are held as a singly linked list on

disk as compared to the doubly linked list used in relationship chains). Each property occupies

between one and four property blocks; a property record can, therefore, hold a maximum of

four properties.

A property record holds the property type (Neo4j allows any primitive JVM type, plus

strings, plus arrays of the JVM primitive types), and a pointer to the property index file (neo-

store.propertystore.db.index), which is where the property name is stored. For each property’s

value, the record contains either a pointer into a dynamic store record or an in-lined value. The

dynamic stores allow for storing large property values [48].

Neo4j supports store optimizations, whereby it inlines some properties into the property store

file directly (neostore.propertystore.db). This happens when property data can be encoded to

fit in one or more of a record’s four property blocks. This results in reduced I/O operations

and improved throughput, because only a single file access is required.

In addition to inlining certain compatible property values, Neo4j also maintains space dis-

cipline on property names. For example, in a social graph, there will likely be many nodes

with properties like first name and last name. It would be wasteful if each property name was

written out to disk verbatim, and so instead property names are indirectly referenced from

the property store through the property index file. The property index allows all properties

with the same name to share a single record, and thus for repetitive graphs Neo4j achieves

considerable space and I/O savings [48].

For the way by which nodes are bond with properties, it can be seen a little analogy with how

RDF graphs are codified by triples. Indeed, the analogy is that nodes do not own properties

3.2. The compared DBMSs 59

within themselves, because as already stated data is separated by the underlying structure.

However, these properties are reachable by nodes because nodes contains pointers (or links) to

them; just like an RDF node does. Yet, this little (philosophical, if you like) analogy does not

holds further.

Data Integrity

For what regards data consistency, unique property constraints can be applied to ensure that

property values are unique for all nodes with a specific label; however unique constraints do not

mean that all nodes have to have a unique value for the properties, because nodes without the

property are not subject to this rule. In this case, property existence constraints (only available

in Neo4j Enterprise Edition) can be used to ensure that a property exists for all nodes with

a specific label or for all relationships with a specific type; and all queries that try to create

new nodes or relationships without the property, or queries that try to remove the mandatory

property, will fail. The creation of a unique property constraint will collaterally add an index

on that property, and Cypher will use that index for lookups just like other indexes. If the

unique property constraint is dropped, also the index will be, so in case of index needs on

such property, a new index has to be defined [66]. Once an index has been created, it will

automatically be managed and kept up to date by the database whenever the graph is changed.

Neo4j will automatically pick up and start using the index once it has been created and brought

online. However, there is not the possibility to define which kind of index to create (the type

is probably hash index) [68, 75].

For what regards graph consistency, the Cypher DELETE command is the only way to edit

the graph for deleting both nodes, edges and even paths. The command assures that it is not

possible to delete a node without also deleting relationships that start or end on said node; so,

in order to delete the note, one way is to explicitly delete the relationships before doing it; the

other is by using DETACH DELETE which also deletes the edges involved. For Cypher data

insertion checks, which occur at edge creation moments, the syntax for using the CREATE

Cypher clause assures that edge creation is done only by specifying the two nodes involved,

which have to be preliminarily obtained by a MATCH clause; so no dangling edges can be

created on the graph [66]. Furthermore, relationships are also granted to never hang freely by

the DBMS itself, because of checks made at edge creation [76].

Neo4j also behaves like an ACID DBMS when on a single instance. Any query that updates

the graph will run in a transaction: if no transaction exists in the running context, Cypher will

create one and commit it once the query finishes; in case there already exists a transaction in

the running context, the query will run inside it, and nothing will be persisted to disk until that

transaction is successfully committed. However this implies that only one single operation can

be done within a transaction, so in order to execute multiple operations together and have the

commit only in case of overall success, an approach of enclosing the multiple updating queries

60 Chapter 3. DBMSs comparison

within the same transaction and committing all of them in one go can be used. Note that a

query will hold the changes in memory until the whole query has finished executing; so a large

query will need a JVM with big enough heap space [72].

One such example is provided by the Neo4j transactional HTTP endpoint, which allows to

execute a series of Cypher statements within the scope of a single transaction; the transaction

may be kept open across multiple HTTP requests, until the client chooses to commit or roll

back [71].

Another example for realizing transactions is by using the Java API, where all database

operations that access the graph, indexes, or the schema must be enclosed in a try block, as

shown in Code snippet 3.2. As we exit the block, the transaction will automatically be closed

by the invocation of tx.close() which will commit the transaction if the internal state indicates

success or else mark it for rollback [77].

Code snippet 3.2: Neo4j Java API transaction block.

try (Transaction tx = graphDb.beginTx ())

{

// operations on the graph

tx.success ();

}

The DBMS will manage incoming transactions, and in case two or more of them attempt to

change the same graph elements concurrently, it will detect a potential deadlock situation,

and serialize the transactions. For what concerns their implementation, each transaction is

represented as an in-memory object whose state represents writes to the database. This object

is supported by a lock manager, which applies write locks to nodes and relationships as they

are created, updated, and deleted. On transaction rollback, the transaction object is discarded

and the write locks released, whereas on successful completion the transaction is committed to

disk.

Committing data to disk in Neo4j uses a Write Ahead Log, whereby changes are appended

as actionable entries in the active transaction log. On transaction commit (assuming a positive

response to the prepare phase) a commit entry will be written to the log. This causes the log to

be flushed to disk, thereby making the changes durable. Once the disk flush has occurred, the

changes are applied to the graph itself. After all the changes have been applied to the graph,

any write locks associated with the transaction are released [48].

Query language and graph functions

Cypher is the intuitive declarative query language provided by Neo4j. It is fully designed for

working on graph data and defines the structure of the pattens to be searched or created over

3.2. The compared DBMSs 61

the graph data. It borrows its syntax by the way one would generally draw graphs; in fact, it

uses ASCII art for the representation of the graph patterns. Let’s see a short example: suppose

we have a graph as shown in Figure 3.10; the equivalent ASCII art representation in Cypher is

shown in Code snippet 3.3.

(emi l)<−[:KNOWS]−(j im) − [:KNOWS]−>(ian) − [:KNOWS]−>(emi l)

Code snippet 3.3: Graph ASCII art representation.

Figure 3.10: A simple Neo4j example graph [48].

However, the previous Cypher pattern describes a simple graph structure, and it does not

yet refer to any particular data in the database. To bind the pattern to specific nodes and

relationships in an existing dataset we must specify some property values and node labels that

help locate the relevant elements in the dataset.

(emi l : Person {name : ‘ Emil ’ }) <−[:KNOWS]−(j im : Person {name :

‘ Jim ’ }) − [:KNOWS]−>(ian : Person {name : ‘ Ian ’ }) − [:KNOWS]−>(emi l)

Code snippet 3.4: Binding with the graph.

A Cypher query anchors one or more parts of a pattern to specific locations in a graph using

predicates, and then flexes the unanchored parts around to find local matches. The anchor

points in the real graph are determined based on the labels and property predicates in the

query.

An example of a Cypher query is given below, the request is to find the friends of a user

named John:

MATCH (john : Person {name : ’ John ’ }) − [:KNOWS]−>(f r i e nd)

RETURN f r i e nd

Code snippet 3.5: Cypher MATCH clause.

Cypher is then quite different from SQL; it replaced the SELECT clause with the pair MATCH

& RETURN; and comes with different keywords for specifying insertion, update or removal of

62 Chapter 3. DBMSs comparison

graph data. It also comes with several functions which works with data types, data lists, etc.

Cypher also gives the possibility to invoke stored procedures, pass them some arguments and

elaborate the results obtained. It is also a language for modifying meta-data like indexes and

constraints.

Cypher statements can be executed by the web interface and the shell tool provided with

the DBMS. It can also be executed within stored procedures (and in general by the Java API);

by other language drivers and by the HTTP API.

The default neighbors exploration strategy for Neo4j is Depth-First ordering. It is also the

only possibility when working with only Cypher, as will be explained in Chapter 5. It is not

possible, in fact, to force a Breadth-First approach with Cypher, so one can only simulate it’s

execution by means of a posteriori sorting and filtering operations on obtained results.

In addition, while matching the patterns specified with Cypher, Neo4j makes sure to not

include matches where the same edge is found multiple times in a single path [66]. So, like

ArangoDB, also Neo4j imposes by default the unique visit of edges on path scope.

Each Cypher query is turned into an execution plan by the execution planner, and the exe-

cution plan tells Neo4j which operations to perform when executing the query. Two different

execution planning strategies are included in Neo4j: based on rules (using indexes but not

statistical information); and based on costs (using statistical information), which is the default

configuration in Neo4j 3.0 [70].

Cypher, apart from allowing graph traversals, also allows to find the shortest path and all

possible paths between two nodes directly by Cypher.

However, the Java Traversal API allows to realize highly-customized user-defined ways to

traverse the graph, by also implementing new visitor methods and similar. In addition, Java

stored procedures can be implemented, and they can use the Traversal API for defining how to

explore the graph.

In addition, the APOC GitHub repository (Awesome Procedures On Cypher) collects a

set of stored procedures already implemented that can be imported and called directly by

Cypher. These procedures can regard both general database management and graph queries,

like the possibility to call the Dijkstra algorithm, or the A-star algorithm, betweenness, close-

ness, pageRank, clique detection, etc [8].

Neo4j does not have native support for Apache TinkerPop & Gremlin, however there is an

implementation for this purpose [128].

Caching

Neo4j uses a dedicated page cache in order to keep graph data and indexes in RAM, so that

disk hits are heavily reduced. The page cache is an LRU-K page-affine cache, meaning the

https://github.com/neo4j-contrib/neo4j-apoc-procedures

3.2. The compared DBMSs 63

cache divides each store into discrete regions, and then holds a fixed number of regions per

store file. Pages are removed from the cache based on a least frequently used (LFU) cache

policy, nuanced by page popularity. That is, unpopular pages will be evicted from the cache in

preference to popular pages, even if the latter haven’t been touched recently [48].

The page cache should be utilized as much as possible, and ideally the entire store files should

be loaded in this cache for best performance; of course this may be impossible if working with

huge graphs. However, in that case, a “cache sharding” approach can overcome such problem.

The page cache has to be defined based on 4 parameters: available RAM, store files weight,

JVM heap space and operating system’s memory usage. In particular, the best configuration

is the one that has enough RAM available to contain all store files within the page cache, the

heap space, and the memory left for OS operations. Depending on the machine usage, the OS

memory usage may varies; however and a rule-of-thumb for a not heavy loaded server is to

leave nearly 1GB for the OS. If configuring page cache and heap space equal to or greater than

the available RAM, or if not leaving enough head room for the OS, the OS will start swapping

to disk, which will heavily affect performance [69].

So when the service starts up, its page cache is empty and needs to be warmed. This can take

a while, especially for large stores. The DBMS also flushes its page cache in the background,

in order to maintain durability.

In addition to the page cache, Neo4j also employs a query plans cache for rapidly retrieve query

plans already executed.

Scalability approach and data partitioning

The solution proposed by Neo4j for dealing with large datasets and maintaining good per-

formance is to use a technique called “cache sharding”. Cache sharding is realized by a High-

Availability cluster comprised of a single master instance and more slave instances. All instances

in the cluster have full copies of the data in their local database files; furthermore each instance

contains the logic needed in order to coordinate with the other members of the cluster for data

replication and election management.

Cache sharding is thus a form of load balancing for incoming queries. The principle is to

have different partitions of the huge underlying graph distributed on the main memories of the

slave instances, and a special node routes all those incoming queries targeting the same specific

node / graph region to the same slave instance, so that the query will (with high probability)

be resolved without accessing the disk. In this way, read operations are highly available and

the ability to handle read load scales with more database instances in the cluster [64].

In any case, it must be highlighted that each of the cluster’s instances will have a full copy

of the data, and only cached data will be somehow differentiated on the different database in-

stances; so this is not a properly called sharding mechanism. Furthermore, clustering features

are only available in Neo4j Enterprise Edition.

64 Chapter 3. DBMSs comparison

Graph visualization

Also Neo4j comes with a web interface, which is called Neo4j Browser. Whit this interface, one

can perform (and save) queries; manage the database schema; get some basic statistics; and

explore the graph by expanding nodes, as shown in Figure 3.11.

Figure 3.11: Neo4j web interface

For what regards queries visualization, Neo4j Browser always shows its results in a visual way

by means of nodes and edges; which may also be colored differently based on static information

(like the property values, or the labels defined, etc). By the nodes returned by the query, it

is possible to further expand the neighbors node, or hide some of them, in an interactive way,

click-by-click. The visualizer does not allow to interactively define new vertexes or edges, such

task is left to the above area where queries are written and launched. Together with the graph

visualization, the interface returns data also in tabular or JSON formats.

One limit of this visualization tool is that it does not highlight the anchor nodes (i.e. the

ones by which the exploration has started), and also does not allow to draw nodes or edges with

different colors based on dynamic information, that is something like “color the result nodes

with different shades of red according to the number of edges linked to them”.

Licensing

At the time of writing, Neo4j offers a Community Edition that is “intended for learning and

smaller do-it-yourself projects that do not require high levels of scaling.” [74] It excludes

professional services and support and it is released under the GPL v3 license.

Neo4j also offers several different licenses for the Enterprise Edition of the software. The

Enterprise Edition is intended for businesses and comes with additional features.

Figure 3.12 shows some features difference between Community and Enterprise editions, in-

cluding cache sharding and clustered replication, database monitoring, hot backups and en-

hancement in concurrency management.

3.2. The compared DBMSs 65

Figure 3.12: Neo4j editions comparison [61].

Within the Enterprise Edition there are different subscription options targeting commercial,

evaluation or educational purposes; with also different levels of support [63].

The Community Edition is free but is limited to running on 1 node only due to the lack of

clustering and is without hot backups; furthermore, only one database instance can be managed

at a time; and the web interface does not show some statistics measures.

3.2.3 OrientDB

OrientDB - initially developed in Italy [51] and now with venue in UK as OrientDB Ltd -

was born as an Object Oriented database, and it is now a multi-model database management

system operating on objects, documents, key/value pairs and graphs. It inherits the schema-

less nature of documents store and employs the relationships management approaches of the

graph database world [112].

According to DB-Engines.com, at the time of writing, it is ranked 2° in Graph DBMS

category, 6° in Document Stores category, 6° in Key-Value Stores category, and 45° overall.

It is developed in Java - thus portable - and designed to be horizontal scalable and to work

in a distributed environment. It has a variety of drivers for different programming languages

66 Chapter 3. DBMSs comparison

(C/C++, C#, Clojure, Java, JavaScript, PHP, Phyton, Ruby, Scala, etc) and exposes a REST-

ful HTTP API and JSON based data in order to interact with web applications. In addition,

the DBMS can be accessed via its native Java API.

Like ArangoDB, it also claims to be a “true multi-model DBMS”. In this sense, it wants to

emphasize the fact that it does not realize its multi-model characteristic by means of different

interfaces on the database engine; but rather the engine itself is built to differently support all

its four models [87].

It comes with a sort of dialect of the SQL query language; extension that is necessary in

order to give the possibility to define queries on a graph data domain.

Also OrientDB comes with a web interface for managing its databases instances and visually

exploration of the graph.

OrientDB represents the “historical alternative” to Neo4j, with also the added value of being a

multi-model DBMS, which makes it a multi-purpose NoSQL database able to enrich the graph

data.

During this work, we will use the 2.2.11 version released in 3 October 2016.

Logical data organization

The smallest unit that can be loaded from and stored into the database is the Record, which

can be of four types: Document; RecordBytes (BLOB); Vertex and Edge. Vertex and Edges are

thus managed differently from general purpose documents, and they also represent the smallest

data unit manageable.

The Class is a concept drawn from the Object-oriented programming paradigm. It is a type

of data model that allows to define certain constraints for the records that belong to it. In the

traditional document database model, it is comparable to the collection, while in the relational

database model it is comparable to the table.

Classes can be schema-less, schema-full or a mix (called schema-hybrid); they can also inherit

properties from other classes, creating this way a hierarchical tree of classes.

Each class must have at least one cluster defined, which functions as its default cluster;

however a class can support multiple clusters. When a query is executed against records of a

specific class, the DBMS automatically propagates the execution to all clusters that are part

of that class [87].

The Cluster is a place where a group of records are stored. Like the Class, it is comparable with

the collection in traditional document databases, and in relational databases with the table.

However, this is a loose comparison given that unlike a table, clusters allow to store the data

of a class in different physical locations [85].

To each generated record, the DBMS auto-assigns it a unique ID within the database called

3.2. The compared DBMSs 67

Record ID or RID, which is composed of two parts: #<cluster-id>:<cluster-position>. The

DBMS automatically selects the cluster where it stores the physical data of that record. Some

different strategies can be configured in order to specify the cluster selection process.

There exist two particular types of cluster:

• Persistent Cluster: Also called Physical cluster, it stores data on disk.

• In-Memory cluster: The information stored in “In-Memory clusters” is volatile; this can

be used for storing temporary data [87].

The combination of clusters and RIDs is the way by which OrientDB makes it possible to have

a distributed dataset. In fact, RID is not only a unique identifier value, but gains even more

importance because it embeds the physical position of such record inside the database. What

this means is that when loading a record by its RID, the load is fast because its location is

already known by means of a mapping function between RIDs and cluster locations. Records

are organized in classes and clusters [87].

Key-value model

The simplest NoSQL model implemented by OrientDB is the key-value model, by which every-

thing in the database can be reached via a key; and where the values can be both simple and

complex types. OrientDB supports Documents and Graph Elements as values.

Document model

The document is the most flexible record type available. Documents are softly typed and are

defined by schema classes with defined constraints (schema-full), but it is also possible to use

them in a schema-less mode or in a schema-hybrid mode.

A document is a set of key/value pairs (also referred to as fields or properties), where the key

allows access to its value. As for ArangoDB, values can hold primitive data types, embedded

documents, or arrays of other values.

OrientDB’s document model also adds the concept of link as a relationship between docu-

ments, so that it can be decided whether to embed documents or to link them directly. On a

later moment, when a document is fetched, all the links are automatically resolved [87].

Object model

This model has derives from Object Oriented programming and supports some of its peculiar-

ities like inheritance between types, polymorphism, and direct binding from or to the objects

used in programming languages.

One of the most interesting characteristic is inheritance among records’ classes, because it

allows to perform queries on records belonging to different classes with just one statement.

Graph model

For what regards OrientDB’s logical representation of graphs, again it exploits its Object-

Oriented database origins for creating Vertex and Edge elements.

Vertex elements are objects of class (or subclasses of) V; edge elements are analogously ob-

68 Chapter 3. DBMSs comparison

jects of class (or subclasses of) E. The description given for documents also holds for these two

kind of record types.

Since also OrientDB complies with the property graph model, it allows to define fields rep-

resenting properties for both vertexes and edges. Labels (or better the possibility to perform a

categorization) of vertexes and edges is instead represented by a differentiation made with the

classes they belong to. Each Vertex object, besides all the properties defined on it, owns the

already mentioned unique identifier that allows to identify it within the collection; plus a set

of incoming Edges and a set of outgoing Edges. An Edge element, instead, owns a link to an

incoming Vertex; a link to an outgoing Vertex; and a “label” (or better class) that defines the

type of relationship between the two vertexes.

Edges can be regular or lightweight. The Regular Edge is saved as a Document, while the

Lightweight Edge is not. In fact, Lightweight Edges do not have Record IDs, but are physically

stored as links within vertices. Note that OrientDB only uses a Lightweight Edge when the

edge has no properties, otherwise standard Edge should be used.

Edges in OrientDB can be equally traversed in both directions just like with ArangoDB and

Neo4j.

Physical data organization

OrientDB claims to support three storage types where documents can be stored: plocal, remote

and memory.

• Plocal is the persistent storage, and it refers to the localhost for storing data.

• Remote storage is the one to be used when a remote storage have to be accessed. It refers

then to a remote plocal storage; so it is more a way to access a database rather than a

proper storage mechanism.

• Memory storage is local and endures only as long as the JVM is running. For the ap-

plication programmer, it is identical in use to Paginated Local Storage. Transactions

remain atomic, consistent and isolated (but are not durable). The memory available for

the database is the memory allocated by the JVM.

Let’s view in detail the fundamental storage type, which is plocal.

The Paginated Local Storage, plocal, is a disk based storage which works with data using

the pagination model; every file is spit into pages, and each file operation is atomic at a page

level. It works by exploiting together the 2-level Disk-Cache with the WAL. The 2-level cache

consists of a Read Cache and a Write cache managed by means of two distinct algorithms (2Q

for Read Cache and WOW for Write Cache).

By using Disk-Cache and WAL OrientDB achieves a the classical durability/performance

trade off; because it does not need to flush every page to the disk and still can achieve durability

using much cheaper append only I/O operations [96], like for ArangoDB.

3.2. The compared DBMSs 69

Here we show the list of plocal storage components and a short description for each of them:

• Clusters are managed by two kinds of file:

• .pcl files contain the (cluster) data;

• .cpm files contain the mapping between record’s cluster position and real physical

position.

• Write-Ahead Log (WAL) is managed by two kinds of file:

• .wal to store the log content;

• .wmr contains timing about synchronization operations between storage cache and

disk system.

• SBTree Index, it uses files with extensions .sbt.

• Hash Index, it uses files with extensions .hit, .him and .hib.

• Index Containers to store values of single entries of not unique index (Index RID Set). It

uses files with extension .irs.

• File mapping, maps between file names and file ids (used internally). It’s a single file

with extension .cm [87].

OrientDB thus stores data and auxiliary information in some customs files; data records (Doc-

uments, Vertex and Edge objects) are then directly serialized to .pcl files.

One of the most important file is the mapping file, with extension .cpm, which is used for

mapping records cluster positions to real physical positions. These files are basically lists: each

entry in this list is a fixed size element, which is the pointer to the physical position of the

record in the data file. Because the data file is paginated, this pointer will consist of 2 items: a

page index (long value) and the position of the record inside the page (int value). Each record

pointer consumes 12 bytes.

When a new record is inserted, a pointer is added to the list; the index of this pointer is

the cluster position. The list is an append only data structure, so if you add a new record its

cluster position will be unique and will not be reused [96].

It is true that by using this mapping approach, the linking information among nodes is

directly stored persistently and does not have to be computed at run-time by performing JOIN

operations; however a lookup on this mapping file has to be performed because the pointers to

the connected nodes are not physical pointers (as for Neo4j). This however comes useful in a

distributed environment, because clusters can be stored and referenced among different storage

devices.

So given the fact that also indexes are mapping files between values and physical positions,

if you want, rather than a strictly speaking index-free adjacency, OrientDB realizes a “join-free

adjacency”.

70 Chapter 3. DBMSs comparison

Data Integrity

OrientDB defines three kinds of schema mode: schema-full, schema-less and schema-hybrid.

The schema mode is defined at class-level and is valid for all records belonging to the class.

The schema-full mode sets all defined fields to be mandatory; the schema-less mode instead

defines classes with no fields, so records can have arbitrary properties; the schema-hybrid mode

instead creates classes and defines some of the fields, but let the records to define other custom

fields [91]. The access to the schema is possible both by the SQL-like query language and the

Java API.

In order to impose a unique constraint on some fields, an index (of any kind) with “unique”

specification on its definition should be created. Note that this gives also the possibility to

specify a unique constraint on the pair made of source and target node for Edge records, which

implies that only one edge can be defined between the same two nodes. Other constraints such

as NOT NULL can be set with the schema defined on the record’s class.

OrientDB, like ArangoDB, support different data models, but exposes a unique query language

for working on them. However, differently from AQL, its SQL dialect have multiple ways to

perform the deletion of a record; and since vertexes and edges are records, this may produce

graph inconsistency.

The first delicate situation is at edge creation: instead of the generic INSERT clause, the

CREATE EDGE clause is the one to be used for achieving the goal, which checks that specified

vertexes already exist before creating the edge between them. The second delicate situation

is at vertex deletion. Instead of using the general DELETE command for deleting a generic

record of the database, the DELETE VERTEX clauses should be used, which also deletes all

the edges linked to such vertex. However, a third case exists, which is at edge deletion: also

in this case the DELETE command should not be used, because references to edge elements

contained in involved vertexes will break; so the command DELETE EDGE should be used

instead, which clears such references [95].

The default behaviour for the DBMS is to execute commands without transactions; however

the optimistic mode can be used, which involves the Multi Version Control System (MVCC)

that can permits multiple reads and writes on the same records. Records maintain their own

version number, which increments on each update. The integrity check is made on commit: if

the record has been saved by another transaction in the interim - that is if the version number

has changed - an exception will be thrown and the application should choose whether to repeat

the transaction or to abort it [98].s, based on the size of the available memory to the JVM.

When using Graph API for managing the graph, transactions begin automatically; with

Document API instead the beginning is explicit by invoking the begin() method.

OrientDB does not support nested transaction; and if further begin() invocations are per-

formed, a stack trace will be maintained in order to commit all the operations at the last

commit() found. In addition, as for Neo4j, for a heavy transaction it should be preferable to

3.2. The compared DBMSs 71

split it in multiple smaller transactions.

It is though possible to disable transaction behaviour even with Graph API by instantiating

the database as an object of the class OrientGraphNoTx; and this may be useful in some cir-

cumstances.

Creating graphs, indeed, consists in creating vertices and connecting them with edges. How-

ever, adding a single edge to an existing database consists in three operations:

• creating the edge document;

• updating the left vertex to point to the edge;

• if an edge is inserted, it is checked that such edge matches the edge definitions, so that

edge collections will only contain valid edges

and, at low level, the operations are:

• load vertex1 by key (index lookup);

• load vertex2 by key (index lookup);

• create edge document setting out = vertex1.@rid and in = vertex2.@rid;

• add the edge RID to vertex1.out EdgeClass ;

• add the edge RID to vertex2.in EdgeClass.

As a result, the creation of an edge can be considered an expensive operation compared to a

simple document creation; thus, in some circumstances, the batch graph creation can be made

faster by disabling transactions or at least enhancing the interval of graph operations before a

transaction commit [90].

Query language and graph functions

OrientDB, instead of creating Yet-Another-Query-Language for its graph query purposes, pre-

ferred to focus on the standard, consolidated and well-known SQL. It thus extended SQL in

order to include graph functionality with only minor changes on the rest of the standard syntax.

OrientDB SQL dialect can be used both as DDL and DML, and also provides statements for

creating databases or managing users. The main difference from SQL is that the JOIN com-

mand does not exist in this dialect, because OrientDB does not need do perform such operation

since records already contain references to the connected records by means of LINKs. In this

way, connected records are reachable by just using the “dot notation” typical of the high-level

programming languages, like < field name 1 > . < field name 2 > ; where field name 1 is

the field of the start record and field name 2 is the desired field of the linked record. A similar

approach is also used when traversing edges.

The combination of standard SQL and LINKs allows to specify multi-level queries in an easier

way with respect to using JOINs. However, the number of edges to be traversed is hard-written

72 Chapter 3. DBMSs comparison

within the query by the number of “dot dereferentiations” performed.

In order to provided a more flexible and simplified way to express graph traversals, OrientDB

defined two statements which allow to specify variable depth values, which are MATCH and

TRAVERSE. The MATCH command behaves like Cypher’s Match clause, i.e. by initially

specifying the anchor node, and then starting exploring the surrounding graph by following

the desired edges, with the indicated direction, and to the depth level specifiable in the while

statement. One quick example is provided in Code snippet 3.6. Note that a where statement

can also be evaluated on reached nodes (i.e. those indicated by the variable friend).

MATCH { c l a s s : Person , where : (name = ‘ John ’) } . both (” Friend ”) { as : f r i end ,

whi l e : ($depth < 3) } RETURN f r i e nd

Code snippet 3.6: OrientDB SQL MATCH command.

The TRAVERSE command behaves more like AQL Traversal; however the principle remains

the same as the previous command. The main differences are that it is possible to specify the

exploration order (BFS or DFS) and the absence of a where statement, both for edges and for

reached nodes.

TRAVERSE out (’ Friend ’) FROM (SELECT FROM Person WHERE name = ’ John ’)

WHILE $depth < 3 STRATEGY BREADTH FIRST

Code snippet 3.7: OrientDB SQL TRAVERSE command.

OrientDB SQL queries can be invoked by the web interface and the shell tool provided; by the

Java API, the drivers for other programming languages, and the HTTP API.

The default neighbors exploration strategy for OrientDB is Depth-First; however it is possible

to force a Breadth-First approach, but only by using the TRAVERSAL

In addition, OrientDB imposes by default the unique visit on vertexes with path scope,

thought for avoiding possible loop situations caused by path cycles.

The SQL dialect provides also shortest or minimum weight path algorithms. In addition,

OrientDB allows to define new JavaScript functions, which can be called by SQL or REST

API; and also comes with a Java Graph API that allows to manage and query graphs [95].

OrientDB also follows the TinkerPop Blueprints standard and uses it for the Java Graph API

[89]; and it also natively support Gremlin [92].

Caching

OrientDB uses two caches: the level 1 cache acts at thread level, while the level 2 cache acts

at JVM level. The caching architecture can be seen in Figure 3.13.

3.2. The compared DBMSs 73

If the database is mainly used for read operations, the configuration can be left like this;

however in a multi-threaded scenario and with many writes, disabling the L1 cache would be

the best choice, so that inconsistencies between L1 caches are limited. For the same reason, if

in a multi-JVM scenario, it should be considered to disable the level 2 cache also [121].

Figure 3.13: OrientDB caching architecture [121].

The L1 cache (also referred to with the name “local cache”) aims to keep the used records

at the higher level possible for each database instance. If there are not “usage” pointers to a

particular record, or if the JVM requires more heap space, the record will be removed from this

cache level.

The L2 cache caches file reads with the goal of reducing disk hits and keep most used

files in main memory. OrientDB generally refers to it also with the term “Disk cache”, and

it corresponds to the Page cache described with Neo4j. OrientDB Disk cache consists of two

separate cache components that work together: Read Cache, based on 2Q algorithm; and Write

Cache, based on WOW cache algorithm. The goal of the write cache is to collect those file

pages that need to be persisted on disk in order to manage and optimize the I/O accesses with

a background process [84].

OrientDB also realizes a command cache that accomplishes the same goals of ArangoDB and

Neo4j query caches. OrientDB by default turns off this mechanism; the main reason is probably

because this approach can be dangerous in case of big result sets in a low RAM environment

[86].

74 Chapter 3. DBMSs comparison

Scalability approach and data partitioning

OrientDB supports data sharding at class level; this is done by using multiple clusters per class,

and each cluster holds its own list of servers where data is stored or replicated.

Thanks to the RID structure, it is known where each record is stored, and since Vertex

records contain Edges’ RIDs for reaching them, records can be stored in different memory

spaces (different machines) and still able to point to their linked records. However OrientDB

does not provide a mechanism that tries to find out the best clustering configuration for its

records in order to limit expensive network data exchanges during queries; so such task is in

charge to the application or the user. The the minimum hint to be done for data partitioning

to not slow down query times too much is to store within the same machine at least one of the

two vertices that are connected by the edges in the edges subset contained within that machine

[85].

In order to manage a distributed environment, OrientDB realizes a multi master architecture,

with several slave nodes.

Graph visualization

OrientDB comes with a web interface, called OrientDB Studio. With this interface it is possible

to manage databases and users; to manage class schemas; to get the data organization in classes;

to perform and save queries; to store and call procedures; and also to visualize and explore the

graph, as shown in Figure 3.14.

Figure 3.14: OrientDB web interface

OrientDB Studio can show a query result in a graph way. However this is only possible if

some special keywords are used within the return statement of the query, keywords that corre-

sponds to some specific query variables (such as $elements, $pathElements, etc). Nodes can be

3.2. The compared DBMSs 75

Figure 3.15: OrientDB editions comparison [99].

Figure 3.16: OrientDB support subscriptions comparison [83].

76 Chapter 3. DBMSs comparison

expanded by following their outgoing or incoming edges, just by clicking on the buttons that

compare around the selected node. Nodes can also be dragged so that the graph changes its

aspect, or can be detached by the other nodes, or be hides. Nodes can also be edited in an

interactive way, and it is also possible to create new vertexes and edges. Even for OrientDB,

nodes and edges can be colored only according to some static information, so it is not possible

to color in different ways the anchor nodes, or the nodes with more edges, etc, . If the query is

not performed on the Graph visualization page, but on the Browse page, the result is given in

tabular or JSON format.

Licensing

OrientDB offers a Community Edition under the Apache v2 license, and three levels of sub-

scription for the Enterprise Edition, which is under a Commercial license. The main differences

between Community and Enterprise editions are collected in Figure 3.15. They are focused on

hot backups, data importing, monitoring, alerting, auditing and query profiling.

In Figure 3.16 are reported the differences among the different subscription levels for the

Enterprise Edition. Subscription prices can be found on the official web site.

3.2.4 PostgreSQL

We now add a relational database to our comparison, so that we have a benchmark about the

technology that dominated the databases field. We then cover, in a quicker way, the same

topics presented for the previous three graph databases.

PostgreSQL is the well known object-relational open-source database management system (OR-

DBMS) based on the previous Ingres and Postgres projects which were developed at the

University of California at Berkeley Computer Science Department during the years 1977-

1994. Its ancestors brought great improvements in research for what concerns object and

relational databases, and pioneered many concepts that became available in also other com-

mercial database systems. It is one of the leading products in the relational databases field, as

can be seen in Figures 3.1 and 3.2 [108, 59].

It is developed in C, transactional and ACID-compliant; it support referential integrity,

allows to define stored procedures and triggers, supports and extends SQL, uses secondary

indexes, and many other typical characteristics of relational databases.

3.2. The compared DBMSs 77

PostgreSQL represents the historical relational figure in this work, used as reference point for

comparing a relational solution with graph database solutions.

During this work, we will use the 9.6.1 version released in 26 October 2016.

Logical data organization

PostgreSQL organizes data as the classical relational model does, that is by means of relations,

also called tables.

Generally, relations (with different names and fields) are used to represent those discrete

entities that can be recognized in the dataset (persons, cars, animals, cities, etc); and each row

for that relation contains data for one instance of such entity (Mark, Ferrari, Dolphin, New

York, etc).

The database structure (that is, the set of tables, their fields and related data types) is

defined by a schema, which also describes the presence of particular data constraints. The

foreign key constraint is the one that realises referential integrity between rows of different

tables; so relationships among relations’ elements are controlled to be consisted by means of

such constraints.

Relationships are effectively reconstructed at query-time by means of JOIN operations be-

tween tables, which are operations that perform a merge on those rows, belonging to different

tables, that contain the same values on the fields over which the join is expressed. Since JOINs

may be quite heavy operations - especially with tables with a big amount of records - some

indexes should be constructed on those fields where JOINs are likely to be performed in order

to speed up their execution.

One interesting aspect is that relationships are by nature bidirectional. However, for a fast

enough reconstruction at query-time, indexes on both the source and destination fields of the

JOIN should be defined. In fact, suppose we have a table for Persons with a field called

place of birth, and that on such field it is defined a foreign key constraint that points to the

primary key of another table, called Cities. It is simple and fast to retrieve their place of

birth by performing a JOIN between place of birth and Cities’ primary key, because the JOIN

has been performed on a destination field already indexed, and an index defined on the field

place of birth would not have brought any performance enhancement. However, if some kind

of opposite query would be performed, that is for example “who are those persons that are

born in Padua”, the JOIN would the same way be performed on the same two fields, but the

direction changes, and if the place of birth has not an index defined on it, a full scan of the

Persons table will be executed, which generally implies performance decreases.

78 Chapter 3. DBMSs comparison

Physical data organization

PostgreSQL stores tables, indexes and any other support data by means of files organized in

different directories of the file system. In particular, each of the tables and indexes is stored by

means of at least one file located under the subdirectory of the database to which it belongs.

Different kinds of data are thus organized in different types of directories and files; the whole

list can be found on PostgreSQL official documentation at the Section Database File Layout.

PostgreSQL realizes a disk-based storage and makes use of heap files for collecting tables’ data.

Heap files are lists of unordered records of variable size; records are simply added according

to their insertion order. More specifically, an heap file is structured as a collection of pages (or

blocks), each containing a collection of items. The term item refers to a row that is stored on

a page. To identify a tuple within the table, a tuple identifier (TID) is used; in particular a

TID is made of a pair of values: the block and the offset number. The block number is the

number of the page that contains the tuple; while the offset number is the number of the line

pointer that points to the tuple. By organizing files in this way, the DBMS is able to retrieve

its tables’ records, even if they have variable size [33, 41, 46].

The indexes that can be defined above database tables are secondary indexes; that is sparse

indexes that allows binary search with complexity O(log n).

Data Integrity

As known, PostgreSQL ensures both data integrity and referential integrity by means of con-

straints defined on their schema (not null, unique, primary key, foreign key, data types). Both

insertion, update and delete operations are influenced by these constraints, and some behaviour

specifications can be imposed in case of data modification on a record of a table with a foreign

key constraint defined on one of its fields. Think for example about a delete operation: the

behaviour can be different based on the specification given at foreign key creation. In fact,

one possibility is to propagate the deletion on all involved records by using the CASCADE

specification; another possibility is the NO ACTION specification, or the SET DEFAULT or

the SET NULL one. So, thinking about graph consistency, referential integrity should be pre-

served by imposing such constraints. However, when some more complex logic is desired for

data insertion, update or removal operations, transactions and triggers could come in help.

SQL transactions must be declared by enclosing them with the keywords BEGIN TRANSAC-

TION and COMMIT. The ROLLBACK command is callable in case of unwanted situations

emerged during the transaction execution. Furthermore it is possible to define savepoints within

each transaction in order to allow a sequential progress and to give the possibility to rollback

to such points while executing the single transaction [41].

PostgreSQL transactions exhibits ACID properties and uses MVCC and WAL techniques to

achieve this and handle concurrency.

https://www.postgresql.org/docs/9.6/static/storage-file-layout.html

3.2. The compared DBMSs 79

Query language and graph functions

PostgreSQL has nearly Full Conformance to the Core SQL:2011 standard [103]. SQL is both

a DDL and DML declarative query language, mainly designed for working with the relational

model and also providing some additional features useful for application purposes and database

management [41].

SQL allows several grouping, sorting and aggregate functions; and allows to define also

temporary tables for supporting complex query execution.

For what regards the use of SQL in a graph data domain, there is not a dedicated way to

realize graph traversal with the sense that previous query language show, and this operations

is typically simulated by exploiting existing statements.

The query could obviously be implemented by means of the classical SELECT statement.

However, as explained in Section 2.5.3, this approach would make use of nested SELECT

statements in other SELECT statements, with nested JOINs operations. This is not a problem

when one already knows the depth level to reach, and also when such depth value is not very

big (lets say, under 10 levels). However, for greater depth values, or in general when more than

one depth value would be of interest, or again for unknown depth value at query formulation

time, this approach is clearly not suitable.

One useful statement for overcoming such pitfalls is “WITH RECURSIVE”. This particular

clause allows to recursively execute the query formulated within it, and gives the possibility

to parametrically specify the depth value, which corresponds to the number of iterations the

recursion will be performed. It thus comes useful when working with hierarchical or tree-like

data.

“WITH” alone provides a way to write auxiliary statements for use in a larger query. These

auxiliary statements, which are often referred to as Common Table Expressions (CTEs), can be

thought of as defining temporary tables that exist just during the query’s life. Each auxiliary

statement in a WITH clause can be a SELECT, INSERT, UPDATE, or DELETE; and the

WITH clause itself will be attached to a primary statement that can also be a SELECT,

INSERT, UPDATE, or DELETE. The optional RECURSIVE modifier changes WITH from a

mere syntactic convenience into a feature that accomplishes things not otherwise possible in

standard SQL. Using RECURSIVE, a WITH query can refer to its own output. The general

form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),

then a recursive term, where only the recursive term can contain a reference to the query’s own

output [109].

The example provided in the official documentation is shown in Code snippet 3.8.

80 Chapter 3. DBMSs comparison

WITH RECURSIVE search graph (id , l ink , data , depth , path , c y c l e) AS (

SELECT g . id , g . l ink , g . data , 1 ,

ARRAY[g . id] ,

f a l s e

FROM graph g

UNION ALL

SELECT g . id , g . l ink , g . data , sg . depth + 1 ,

path | | g . id ,

g . id = ANY(path)

FROM graph g , search graph sg

WHERE g . id = sg . l i n k AND NOT cyc l e

)

SELECT ∗ FROM search graph LIMIT 100 ;

Code snippet 3.8: WITH RECURSIVE example.

So the clause allows to recursively work on the temporary table generated, which is populated

during the simulation of the graph traversal. Note that some optimization mechanisms are

suggested in order to limit eventual situations that could cause loops during the execution (in

particular, path cycles).

Note also that the recursive query evaluation algorithm produces its output in breadth-first

order; however results could be displayed in depth-first order by adding in the outer query an

ORDER BY specification on the depth column.

PostgreSQL uses a query optimizer for the examination of each of the possible execution plans

of a query; and ultimately selects the execution plan that is expected to run the fastest, which

will be the one with least cost [104].

A useful property of WITH queries is that they are evaluated only once per execution of the

parent query, even if they are referred to more than once by the parent query or sibling WITH

queries. They may thus be used to avid redundant work when some expensive calculations are

needed in multiple places. The side effect of this aspect is that the optimizer is less able to push

restrictions from the parent query down into a WITH query than an ordinary sub-query. The

WITH query will generally be evaluated as stated, without suppression of rows that the parent

query might discard afterwards (apart from the case when a limit on the number of result rows

is expressed) [109].

Caching

PostgreSQL uses two cache layers: “shared buffers” and OS page cache.

By exploiting the OS page cache, any read/write operations will pass through it; the DBMS

writes data on OS page cache and, based on the synchronous commit parameter configuration,

3.2. The compared DBMSs 81

the effective moment for the flush to disk may vary. In particular: if synchronous commit is

enabled, the DBMS will force the OS for the write to disk and will notify it to the appli-

cation only after the actual execution of the operation has been performed; otherwise with

synchronous commit disabled the DBMS will notify the application as the write operation has

already been performed, but its effective execution on disk will be managed by the OS, which

will write to physical disk in its own pace. Because of this, typical recommendations are about

having faster disks or better disk cache if synchronous commit option is disabled [113].

What PostgreSQL saves within its shared buffers are tables, indexes, and query execution

plans. Shared buffers is an array of 8KB blocks which kind duplicates what the OS does and is

managed with a LRU/Clock sweep cache algorithm, which is built to handle OLTP workloads

so that almost all of the traffic is dealt within memory. Because a plain LRU algorithm would

not work well since it does not maintain historical memory of the previous runs, the DBMS

keeps track of page usage count for each scan cycle of the array, so (explained superficially) if

a page usage count is found to be zero or the page is “dirty”, it is evicted from memory and

written to disk.

Shared buffers is independent from the contents of the OS cache, and both of them may

hold the same pages at a certain time. This may lead to space wastage; however the main

reason is that the OS may (as usual) only use a simple LRU algorithm, which works worse

than the algorithm implemented with shared buffers. However, once the pages take a hit on

shared buffers, the reads never reach the OS cache, and if there are any duplicates, they get

removed easily, so the two cache regions will have different contents [35, 118].

Two configuration parameters for cache management are the so called shared buffers and effec-

tive cache size. While the shared buffers parameter sets the amount of memory the database

server uses for shared memory buffers, the effective cache size should be set to an estimate of

how much memory is available for disk caching by the operating system and within the database

itself. More precisely, this value does not implies an effective memory allocation, and is used

only by the query planner to figure out whether the plans it is considering would be expected

to fit in RAM or not [107, 111].

PostgreSQL also realizes query plans caching, which generally lasts as the session in which

queries are executed. Queries will be cached only if implemented with the PREPARE statement,

or in PL/pgSQL [102, 105, 106].

In addition, no query results caching mechanisms are officially provided by the DBMS; even

if a plug-in has been released for the purpose [110].

Scalability approach and data partitioning

PostgreSQL is not a distributed database, mainly due to its data model and storage techniques

and because it must preserve ACID transactions, which in a distributed environment would

become “less ACID”.

82 Chapter 3. DBMSs comparison

PostgreSQL thus typically uses partitioning and vertical scalability for facing the problems

caused by big datasets.

However, in order to go in horizontal scalability direction, it employs solutions that realize

replication and load balancing with a master/slave architecture.

In any case, data sharding is still not supported by the DBMS.

Licensing

PostgreSQL is released under BSD license, which means that is can be used both for open-

source and commercial purposes freely. In addition, PostgreSQL does not directly come with

an Enterprise Edition of its product; however some third-party products have been implemented

in order to meet some of enterprises needs. One such product is EnterpriseDB.

3.3 Feature matrix

In Table 3.1 is proposed a feature matrix that compares some aspects of the analyzed DBMSs.

The feature matrix highlights the chronological appearance of the four DBMSs on the market,

displays the data models they implement, and shows that the three graph databases selected

implement the property graph model for the representation of graph data contexts. They are

native graph stores, which means that they purposely designed a way for handling graph data;

however only Neo4j surely implements the index-free adjacency property. We decided to state

that OrientDB “nearly implements” such property because, as explained in Section 3.2.3, the

fact of being able to distribute data over different machines implies that some mapping opera-

tions are performed, based on information stored in dedicated files. ArangoDB instead do not

implements such property, in fact it recovers adjacent nodes by means of indexes between edges

and vertexes.

They are implemented with different programming languages, and all four DBMSs support

secondary indexes. ACID properties are ensured on a single database instance for each DBMS,

and referential integrity constraints are provided and checked when data is modified. We added

a sim for ArangoDB and OrientDB because such guarantee is ensured when data is accessed

by graph functions. Since they are multi-model, and since they allow to access graph data even

with the functions used with generic documents, such guarantee may fall if such functions are

used.

They all define some data types for the attributes given to the records, even if only Post-

greSQL is a “only schema-ful” database.

They all come with a purposely designed query language, and they also allow to implement

https://www.enterprisedb.com/

3.3. Feature matrix 83

Feature ArangoDB Neo4j OrientDB PostgreSQL
Category NoSQL NoSQL NoSQL Relational

Initial release 2012 2007 2010 1996

Database Model
Graph

Document
Key-Value

Graph

Graph
Document
Key-Value

Object

Relational
Object

Graph model Property graph Property graph Property graph –
Native graph Yes Yes Yes –

Index-free adjacency No Yes ∼Yes –

Implementation
C++

JavaScript
Java
Scala

Java C

Indices Yes, secondary Yes, secondary Yes, secondary Yes, secondary
Transactions

(Single instance)
Yes, ACID Yes, ACID Yes, ACID Yes, ACID

Data scheme Schema-less Schema-less
Schema-less
Schema-ful

Schema-ful

Referential integrity ∼Yes (edges) Yes (edges) ∼Yes (edges) Yes
Data typing Yes Yes Yes Yes

Query Language AQL Cypher SQL “extended” SQL

Stored procedures
AQL

JavaScript
Java

SQL
JavaScript

Groovy

PL/pgSQL
PL/Tcl
PL/Perl

PL/Python
Graph functions Yes Yes Yes No

Drivers

JavaScript
Java
PHP

Python
Perl
.Net
...

Java
C/C++

JavaScript
PHP
Ruby

Python
...

Java
JDBC

JavaScript
PHP
Ruby

Python
...

C/C++
JDBC
PHP
Ruby

Python
ODBC

...

Access methods RESTful HTTP
RESTful HTTP

Java API

RESTful HTTP
Java API

Binary

JDBC
C API

Triggers
∼Yes

(via FOXX Queues)
∼Yes

(via Event Handler)
∼Yes

(Hooks)
Yes

Concurrency Yes Yes Yes Yes
User concepts Yes Yes Yes Yes

Durability Yes Yes Yes Yes
Community license Apache v2 GPL v3 Apache v2 BSD

Replication
conflict resolution

Master/Master
Master/Agent

Master/Slave
Master/Master
Master/Slave

Master/Slave

Data sharding Yes No Yes No

Caching
Data

Query results
Data

Query plans
Data

Query results
Data

Query plans

Table 3.1: Feature matrix

84 Chapter 3. DBMSs comparison

stored procedures with more powerful languages. The graph DBMSs also provide some func-

tions for working with graph data.

They all provide a lot of drivers for accessing the database with different programming lan-

guages, and in particular the graph DBMSs officially provide a RESTful HTTP API, so that

databases are easily accessible by remote web applications. ArangoDB is the one that does not

directly provide a native API to access its core methods.

Some sort of triggers are provided also by the graph DBMSs, even though they are not

definable by the query languages provided.

They all manage concurrent queries, provide user and role definitions, provide durability to

the data stored, and allow to configure a distributed architecture.

They all come with a version of the product released under a free license, even though Neo4j

does not allow to use it for commercial purposes.

Only ArangoDB and OrientDB allow to perform data sharding on different machines, Neo4j

and PostgreSQL don’t.

They also provide different caching mechanisms, like query plan caching and query result

caching.

Chapter 4

Use case

The objective of this chapter is to understand whether graph database technologies can be

adopted in the context of relationships among companies.

In Section 4.1 we will present the domain of interest, i.e. the source of the dataset we will

use in this work. In Section 4.2 we will give the representation of the dataset according to

the ER model; we will also explain how the relational database by which the dataset has been

extracted is implemented . In Section 4.3 we then present how the dataset can be represented

with a graph. We will give the general best practices used to model data according to the

property graph model, we will talk about the modeling choices taken, and we will give some

numbers about the graph dataset used. In Section 4.4 we will present how data varies on the

dataset given; and in Section 4.5 we will talk about some of InfoCamere’s applications that

could benefit by the adoption of a graph database.

4.1 The domain of interest

Our project aims to handle part of the data contained in the Italian Business Register, gathered

by the Italian Chambers of Commerce and maintained for them by InfoCamere.

The Italian Chamber system (called “Sistema camerale”) consists of 105 Chambers of Com-

merce (one for each province) and a number of other offices and associations. The mission

of the Chambers of Commerce is to deal with the general interests of the production system;

promote local development, market regulation and transparency; and to provide links between

the business system and the Public Authorities. In Italy the Chamber system is represented

by Unioncamere, the Italian Union of Chambers of Commerce, whilst at the European level

there is the association of chambers Eurochambres [50]. Even other European countries have a

system and a public business register like the Italian one.

The Italian Business Register (“Registro Imprese”) is a public register which has been fully

85

86 Chapter 4. Use case

Figure 4.1: Italian Chamber system map [50].

implemented since 1996. It is unique and unifies some ancient and separate registers. It can be

defined as the register of company details: it contains all the main information regarding the

companies (name, articles of association, directors, headquarters...) and all subsequent events

that have occurred after registration (for instance amendments to the articles of association

and company roles, relocations, liquidations, insolvency procedures, etc.). The data collected

is about companies with any legal status and within any sector of economic activity, with

headquarters or local branches within the country, as well as any other subjects as required by

law.

The Italian Business Register thus provides a complete picture of the legal position of each

company and is a key archive for drawing up indicators of economic and business development

in each area to which it belongs [49].

The main function of the Italian Business Register is to ensure an organic system of legal

disclosure for companies, ensuring the provision of timely information throughout the country.

It also serves as a legal disclosure instrument for any official documents registered therein. The

information and documents kept within the Italian Business Register may be consulted and

acquired by anyone via the Chamber of Commerce counters, via official distributors, or via the

Internet through the official site. All companies must be register in this register by law.

As of now, there is not a unified European business register that collects all data about European

companies; however there is a service called EBR - European Business Register which provides

real-time access to available information of the various business registers of the Member States

http://www.ebr.org/

4.1. The domain of interest 87

participating to the initiative.

The Italian Business Register is implemented with a quite complex relational database in terms

of tables number and constraints. Our work will not be based on all information stored within

this database; it will be focused on data that contains companies’ information and relationships

among them based on “equity participation” / “investments in an associate”. The information

about the percentage of investment is present within the Italian business register, but will not

be used during this analysis for privacy reasons.

In particular, based on the information stored, the two types of entities that can be recognized

are: companies and physical persons. The reason why both these kinds of entity are present

is because of the existence of different types of enterprise for the Italian law; and because

equity participations can be hold by both individual persons and companies. The information

available for such entities is:

• codice fiscale: a unique identifier, representing:

– codice fiscale: a national “fiscal code” that uniquely identifies every Italian citizen.

It is made of a sequence of sixteen characters, which are digits and literals in a

special ordering, and it encodes: name, surname, date, and place of birth.
– partita iva: a national code that uniquely identifies every Italian company. It is

made of eleven digits.

Note that there is a special type of enterprise, the individual enterprise, which is identified

by means of a codice fiscale rather then by means of a partita iva.

• rea: an identification code for the search on the REA register (Repertorio Economico

Amministrativo).

• cciaa: a code relative to the Chamber of Commerce the company is registered in.

• tipo: a tiny code that differentiates person records from enterprise records.

• denominazione: the denomination - or business name - for companies; and the name for

persons.

• cittadinanza: the registration country for companies, or the citizenry for persons.

• natura giuridica: a tiny code representing the legal nature of enterprises.

• tipo impresa: a tiny code representing the enterprise type.

• capitale sociale: the amount of company’s share capital.

• numero azioni : the number of financial stocks.

• and three other fields, representing flags, for application purposes.

We anticipate that the information given is realized by two relational tables called “Ents” and

“Soci”. More details will be given in Section 4.2.1. Ents stands for enterprises and collects the

tuples for both companies and physical persons; Soci stands for business partners or associates

or members and collects the tuples for representing the participations.

Beginning from now, we will also refer to the table “Ents” with the terms “Enterprise” or

“Companies” (treated as synonyms); while the table “Soci” with the terms “member of” or

“memberships”.

88 Chapter 4. Use case

4.2 Entity-Relationship representation

Within the dataset we have that both physical persons and societies (or corporates or compa-

nies) have participations on other societies. In addition, both the two entities have a unique

identifier, a citizenry attribute, and a text attribute which corresponds to the name of a person,

or the denomination of a corporate. So we can say that for each entity representing a corporate

or company, the information stored is:

• partita iva

• rea code

• cciaa code

• denominazione

• cittadinanza

• natura giuridica

• tipo impresa

• capitale sociale

• numero azioni.

For each physical person instead, we can say that the information stored is:

• codice fiscale

• denominazione

• cittadinanza.

So, by performing a sort of reverse engineering, we can say that the initial ER schema for our

data domain could be the one shown in Figure 4.2. However, this schema has not already been

subjected to the restructuration phase.

Within the schema shown, a common entity named Enterprise collects those attributes that are

in common among its two specialized Entities. In addition, the specialization is complete and

disjointed (then a partition), as shown by the specialization arrow filled in black. The identifier

for such entity is represented by the codice fiscale attribute.

The (recursive) Relationship is made of two attributes:

• socio: the value of the codice fiscale attribute of the associate entity, i.e. the one that

owns equity shares.

• partecipata: the value of the codice fiscale attribute of the subsidiary company.

The restructured Entity-Relationship schema for this data domain is the one shown in Figure

4.3; in particular it corresponds to the schema for the already existing relational solution, by

which data has been extracted.

The restructured schema has been obtained by the previous one by performing a single

4.2. Entity-Relationship representation 89

Enterprise member_of

ID

cciaa

numero_azioni

(0,N)

(0,N)

natura_giuridicatipo_impresa

(0,1)

capitale_sociale

(0,1)

(0,1)

(0,1)

(0,1)

socio

partecipata

Corporation Physical person

rea
(0,1)

denominazione
(0,1)

cittadinanza
(0,1)

nome_cognome

(0,1)

Figure 4.2: ER schema before restructuration

operation: the introduction of a discriminative attribute, called “tipo”. As known, this restruc-

turation approach have some drawbacks related to the potential great number of NULL values

for those fields that do not belong to one of the specialization entities; which in turn can come

with performance decreases because of the increased number of records on a single table.

In the existing database, the information about the equity share - not reported here - is con-

tained by the Soci relationship as a decimal value between 0 and 1.

Note that no multiple entities with the same codice fiscale value are possible, because that

attribute is the identifier for such entity. Furthermore, no multiple relationships between the

same two entities (intended with the same direction of participation) are possible.

A relevant aspect is that none of the records that have the value “P” for the field tipo - which

are those representing physical persons - can be participated by other records, so it cannot

have members. This is because of law terms, and in fact it is intuitive that, while talking about

physical persons, equity participations should not be possible on them.

4.2.1 The existing database solution

From now on, we will not refer to the Italian Business Register as the source relational database

of our data, but to a derived one. This is the relational database used by BRACCO : an

application that works on these kinds of data in order to extract in “batch-mode” the corporate

groups present within the dataset. A short explanation will be given in section 4.5.

The extracted tables for BRACCO are a super-set of the scenario shown by the ER schema

90 Chapter 4. Use case

Figure 4.3: ER schema

seen before; however the main tables are exactly the ones we will work on, i.e. the table

representing companies and the table storing relationships among them.

The relational database is based on MySQL; its tables’ definition (for the two tables of interest)

can be resumed like this:

For “Ents”:

• codice fiscale: the PRIMARY KEY and defined as char(16) NOT NULL DEFAULT “”

• rea: varchar(21) DEFAULT NULL

• cciaa: char(2) DEFAULT NULL

• tipo: varchar(2) DEFAULT NULL

• denominazione: varchar(305) DEFAULT NULL

• cittadinanza: varchar(3) DEFAULT NULL

• natura giuridica: char(2) DEFAULT NULL

• tipo impresa: char(2) DEFAULT NULL

• capitale sociale: varchar(17) DEFAULT NULL

• numero azioni : bigint(20) DEFAULT NULL

• three other fields representing flags defined as tinyint(1)

For “Soci”:

• socio: char(16) NOT NULL DEFAULT “”

• partecipata: char(16) NOT NULL DEFAULT “”

• together socio and partecipata are PRIMARY KEY

4.3. Graph representation 91

Figure 4.4: Logical schema for a relational database

The logical schema for this database is the one given in Figure 4.4. The same logical schema is

also valid for the PostgreSQL solution that will be used during our comparison tests described in

Chapter 5. An analog tables definition had be given to the schema definition of the PostgreSQL

solution, with only some adjustments on data types definitions.

4.3 Graph representation

The data we will work on has a graph structure. This is understandable by both the cardinality

constraints expressed in the ER schema (those on the branches of the recursive relationship);

and some examples of the possible data situations. In fact, suppose we pick up a generic com-

pany among all the companies collected. This company can have either no equity participations,

only one equity participation, or more equity participations on different companies. Suppose

we are in the most general situation, that is the company owns more than an equity share of

other companies. Now, the same holds for all the companies by which the starting company is

an associate, i.e. every subsidiary may have zero or more participations. Suppose that more

than two subsidiaries have in turn more than one subsidiary; here we have a graph made of

equity investments among companies.

But why is this dataset a graph, and not a tree? Because nodes, in addition to the possibility

of having multiple children, can also have multiple fathers.

In addition, direct cycles on a node - that is an edge that goes out and enters in itself - are

valid situations. However, situations where the cycle is made of a directed path with more than

92 Chapter 4. Use case

one edge could represent an abnormal and interesting situation. Furthermore, by the primary

key constraint on “Soci” table, it is clear that in this graph at most only one edge (for each

direction) can be found between the same two nodes.

Another specification that follows from what has been said before is that only nodes rep-

resenting enterprises will have incoming edges, while nodes representing a physical person will

not. This is not assured by particular constraints defined on our database schemas, and in order

to assure this kind of data consistency they may be imposed by the developer/application at

insertion or update time.

4.3.1 Design Best Practices

When working with graph data, the main doubts that may emerge while defining the data

model are about what should be treated and represented as a node, what as a property and

what as an edge.

The main guidelines on such topic are:

• Nodes should be used for representing the discrete entities or facts that can identified

within the data domain and that typically can be categorized or grouped.

• Properties should be used on nodes for describing the attributes of entities, both coming

from the data domain itself and from the application.

• Edges should be used for representing the network of interconnections between entities

and to establish semantic context for them. The created edges will have a direction, as

of the majority of the use cases and for the property graph model. If the application

requires to use edges without a direction, it is better to declare the bidirectional traverse

at query-time rather than further creating a second edge with the same name that goes

to the opposite direction in order to simulate a bi-directed graph.

• Properties should be used on edges for describing relationships attributes like edge weight,

strength, quality, etc. Again, also these properties should be used for attaching meta-data

to edges (like timestamps etc.).

• When in doubt among the use of a node or an edge for modeling something, check that

such thing cannot be related to more than two other entities before choosing for the edge

representation.

• If the entity property is a composed attribute, it might be convenient to model such

attribute as a node instead of mapping all its components to the node it is attached to.

• The choice between the utilization of a node instead of a property is generally done by

consistency and query reasons. In particular, suppose we have the information about

the city where a company has a venue. We may then choose whether to represent such

information as a property (a value own by those records that have such information); or

as a node, with edges that point to it for all nodes with such information. The difference

4.3. Graph representation 93

between the two approaches is that with a dedicated node we are sure that two nodes

that point to the same node refer to the same city; while with a property we loose such

guarantee.

• A doubt may arise when choosing for edges modeling, that is whether a certain edge

type should be specialized and distinct by one of its properties; or whether different edge

types should instead be defined. For example, supposing we are modeling city companies’

venues with a dedicated node, and that we want to store both the main venue and all

its other venues for a given company, one possibility could be to have a single edge of

type Venue in with a property named type that could contain a value ‘main’ for the

main venue, and ‘secondary’ for other venues; or instead have two separate edge types

Main venue in and Secondary venue in. Fine grained edges bring enhanced performance,

because unwanted edge types would typically not be looked at all when traversing only

a certain edge type. However generic edges with properties qualification bring a simpler

graph with easier formulation of generic queries. The suggested method in this case is

typically the one with fine grained edges, because it reduce the amount of data retrieved

and analyzed during a traversal.

• Even for nodes a similar doubt may arise; that is whether nodes - that could be distinct

in two or more categories - should be defined with distinct labels/classes; or whether they

should be defined with the same category and be distinct by a property defined on them.

The straightforward representation would expect the use of different classes; especially

where we are on a data model that can handle classes hierarchies (think about RDF

ontologies).

• Complex attributes (like an address) may be represented by both complex data-structure

properties on the node, or by dedicated nodes with simple data-type properties. The

choice should be typically taken by the power provided by the DBMS for managing

complex data-types, together with the desired structure for the graph.

Another interesting hint about graph modeling is that when facing complex graph domains, it is

often possible to recognize more different and “independent” subgraphs connected by some kind

of “joint” edges, as expalined before in Section 2.2. In this case, it could be take in consideration

the hypothesis of separately modeling the two sub-domains by means of stand-alone graphs,

and only in a second moment to link them by those binding edges previously identified. This

also means that, potentially, data coming from different data sources and about different kinds

of informative content may be merged in a unique graph. Obviously, the hard work would

consists on having available the data about such “joint” edges, and on correctly managing data

consistency and similar problems that arise when working with different data sources.

94 Chapter 4. Use case

4.3.2 Logical design

Since our dataset has a graph nature, its representation with a graph is very straightforward:

since we have equity participations among enterprises, enterprises are going to be represented

by vertexes; participations by edges.

Vertexes, according to the “property graph model”, will have properties representing the var-

ious fields listed before; edges instead do not own properties (at least in this analysis, however

in case of effective deployment they will) because the information about the shares percentage

is missing. However, the information about the participation direction is present, so we know

which is the edge direction.

What remains to choose is whether the nodes should be distinct in different categories (Cor-

porates and Physical persons); and consequently whether edges should be distinct in different

categories according to the nodes connected by them.

Since the kind of queries we will formulate will handle both companies and persons the same

way, we chose not to distinguish the two entities in two categories. In fact, our queries will not

ask for searching something only among physical persons, or only among companies; both they

will be equally taken in consideration.

The typical strong argument for performing a distinction among nodes is for performance

enhancement during the “landing phase” of the query execution (see Section 2.6); however

when we will present our queries we will see that we do not give any hint about the nature of

the node, i.e. whether the codice fiscale for the given node is about a person or a company; so

the categorization of such nodes would not be directly used in the query formulation. Hence,

despite of the fact that two separate and smaller indexes would be created on the two node

categories, the query planner would generally have to look at both the indexes created for the

individuation of the desired node. So in order to avoid maybe not so useful complications for

the kinds of query we will perform, and since ArangoDB does not support queries on multiple

or hierarchical collections [161, 21], in order to have equal situations for any DBMS analyzed

we preferred to keep all the records in a single category.

In any case, eventual filtering operations during traversals can still be done by inspecting the

value of the discriminative property at query-time; so nodes can equally well be distinguished by

means of properties rather then on labels/collections/classes. However, the previously argument

holds only in this particular case of hierarchical data classes; in the general use case, where

queries can expressly suggest what kind of node to retrieve, the best choice is always to define

nodes distinct in different classes.

Talking about edges, their modeling is straightforward, because all relationships represent the

same concept: equity participations. In addition, during our queries, edges will all be treated

the same way, both if connecting two corporates and if connecting physical persons and corpo-

rates. Note that connections between two physical persons are instead not possible.

One may think that edges between two corporates, and edges between persons and corpo-

4.3. Graph representation 95

rates, could be defined differently; however this would be only a stretch, because both represent

the same concept, and there are not distinct properties for the two kinds of connection that

could substantiate their effective differentiation.

Figure 4.5: Graph data model.

In conclusion, the reality is simply modeled by defining “enterprises” (both companies and

persons) as vertexes of the category Enterprise, while equity participations are represented by

edges of the category Member Of. It thus comes out that the graph data model is a lot similar

to the relational model, which is made of a single table for enterprises and a single table for

their relationships.

4.3.3 Some graph description metrics

Our dataset is made of about 10.5 million of entities representing companies and persons; and

about 5 million of relationships among them. It is a snapshot of the situation of the Italian

companies involved in this dataset at October 2016.

By comparing the two numbers, it is clear that the graph is not dense; in fact there are less

edges than nodes, and by a high point-of-view, the ratio of nodes over edges is near 2, meaning

that every node has (in average on all the graph) one edge connected, of any direction. The

number of edges per enterprise is 1 and not 2 because every edge involves 2 (mainly different,

except isolated cases) nodes; so the same edge is counted two times: one per vertex.

Apart from this high level average value, we will see later some cases that go far from it; for

example we will see a node that has 1815 connected edges (both directions) and another node

that has 6067 ingoing edges.

Obviously, there is also a great number of enterprises that are not linked to any other node.

For what regards paths length, they generically are not so big values because of the data nature

itself. In fact, in a real situation of participations among companies, it should be quite singular

to find paths that are hundreds of edges long. One of the longest paths we found was 29 edges

long. Higher values would be possible if cycles are considered; however, if asking the length of

a chain of companies, generally one would like to discard cycles and visit the same company

along the path only once. Furthermore, the number given is based on the following assumption:

96 Chapter 4. Use case

if there exist more than one path from a node to another, the most significant path is the one

with minimum length. So (supposing there are not paths longer than that) 29 is not the length

of the longest path on all the graph; it is the length of longest minimum path.

4.4 Data behaviour

Our test dataset is a static snapshot of what is stored in the relational MySQL database

presented above; so it does not dynamically evolve during time. However, some information

about the data behavior have been collected in order to understand how the dataset typically

varies.

The first thing to consider is that, in terms of nodes number, our dataset can only grow. One of

the fields of each enterprise record, in fact (which has not reported within our dataset) contains

the information about the fact that such enterprise is out of business, i.e. it is closed down.

Companies will never be deleted, and in case of closed down, the value of this field will be set

properly; in this way the number of graph vertexes cannot decrease.

For what regards the number of relationships, instead, the same does not hold. The number

indeed can grow because of new equity participations occurrences among new pairs of compa-

nies, or can the same way decrease because of their revocation and sale of relative shares. Of

course, it can also remain the same because of lack of changes, or because the changes involved

only the shares percentage values and maintained all the existing participations. However, in

the case an enterprise closes, all relationships linked to it will be deleted. This are the policies

chosen for the existing database, which clearly influence how data behave.

Talking about the rate of data update, we have to get a closer look on what is the data source for

the current database (which, we repeat it, is the one used by the application called BRACCO).

The database is updated once per day during night, and rather than directly inspect changes

occurred on the Italian Business Register, it exploits the title searches generated and collected

at update occurrences on the register during the previous day. Title searches are XML docu-

ments containing all information about a company; and are those documents that are typically

requested by clients interested in getting business information. This approach allows to reduce

the load on the register database, and to cherish of the already performed computations, so

that they are not performed twice.

The number of daily generated title searches gives an estimate of the number of updates that

are performed on the extracted database used by BRACCO; such average number is typically

between 25000 and 30000 per day. This updates may consists only of enterprise information,

or also on equity shares; thus both “Ents” and “Soci” tuples may be updated by this process.

Please note that these are not necessarily updates of already present information, but can

also represent new insertions of both companies or equity participations; or even companies

closures or complete sells of equity shares.

4.5. Applications that could benefit from a graph database usage 97

For example, for the week that went from the 20th to the 25th of February 2017, the average

value was of 23295 updates per day on the entire database, with a standard deviation value of

7795. For the single table about relationships, the average number was 1593, with a standard

deviation value of 765. Over a longer period of time, that is the three months from January

to March 2017, the number of records of the database increased by 115772: 115444 about

anagraphical records and 328 about relationships records.

Since this dataset is an extraction of the official register, it is clear that queries for data

modification on such database do not make any sense. Data updates have to be performed on

the official data source; so this database should be designed in order to exclude write permission

for its users, and thus it will act as a read-only data source.

4.5 Applications that could benefit from a graph

database usage

InfoCamere is interest in exploring the field of graph databases in order to understand their

potentialities for future projects.

However, there already exists some interest in a graph database approach for the application

called BRACCO, dedicated to the Italian finance police. The main goal of this application is to

bring a powerful and easy-to-use tool so that investigations on associations among companies

can be performed, with particular attention for for what concerns the computation of the

corporate group of a company, and the individuation of its controller - if exists - which is

defined also by the amount of equity shares owned.

BRACCO is based on the relational database whose schema has been partially provided before,

and whose data has been used to perform this investigation on graph databases.

In particular, it daily updates the relational database based on the title searches generated

during the previous day by the execution of data modification operations on the business reg-

ister. After the update process for the data stored in the database, for each of the “Ents”

records updated it recomputes the corporate group for the given record by means of a batch

job. The results computed by the batch job will be used for all the current day. In particular

the application allows to get the precomputed corporate groups both in flat form (tabular out-

put), and in graph form (by visualizing all nodes and relationships of the corporate group of

interest). The graph visualization is helpful for the final user because it represents an intuitive

and quicker way for exploring and maybe highlighting particular situations.

The process that computes the corporate groups makes use of an iterative algorithm imple-

mented in Java. It works bottom-up, in particular for each row belonging to Ents which has

been subjected to an update - i.e. for each updated enterprise record - it inspects the Soci

table in order to obtain the information about its probably new associates or the new shares

98 Chapter 4. Use case

they own. The codice fiscale values for such associates are then added to a list. Such list thus

collects all the nodes that should be inspected in order to recompute the corporate group. The

same operation is the applied to each of the nodes within the list. The process stops when no

candidate nodes are present in the expansion list. This can be due to two situations: the first

is that the node in exam does not have incoming edges (so it has not participations on it); the

second is that the sum of all incoming edges’ share values is not greater than 50%. Please note

that this is a key condition for avoiding exploration and computations on useless graph areas.

We already explained that our dataset does not contain such information about equity shares,

and we will not try to replicate the same use case. However, we will work on some queries with

similar nature, such as queries that explores subgraphs. This is also the reason why we will not

give a detailed explanation on how the corporate groups computation algorithm works; and

more generally, why we will not have as goal the realization of the same goals of BRACCO.

Another of the InfoCamere applications that could be interested in such a change of the database

adopted is “ri.visual”.

Ri.visual has been developed over a relational database and presents to the final user the

existing relationships among companies in a graph form. The graph nature of data, and the kind

of queries that can be performed by this application, make the graph database an interesting

solution for its data storage. In particular, its adoption would be interesting if it can offer

the possibility to perform fast “multi-hop” interrogations without the need of storing or pre-

computing graph patterns for their visualization. Also, the main interest could be given by

the possibility to not only expand each single node with the nodes linked to it at one level of

depth; but directly ask for all its ancestors, or only those within the depth specified, etc. In

addition, shortest path queries or the search for the existence of any path between two given

nodes would bring additional value to the current application.

4.6 Rationale for the choice of the graph DBMSs

The three graph database selected are ranked on top five positions on the DB-Engines.com

Graph-DBMS ranking, provide ACID characteristics and CRUD operations, and an initial and

quick investigation pointed out their good performance results. Furthermore, they all realize

the property graph model, which is the desired one for the description of our graph data.

“Why do we discarded a DBMS that only realizes the RDF model for a graph, i.e. a triple-store

such as Virtuoso or Jena or GraphDB?”

The main reasons are those expressed in Section 2.4.2; which are: the limited data model

expressiveness for what regards relationships properties; and SPARQL’s limited expressiveness

for graph queries.

RDF is a powerful instrument with big potentialities, and some of its potentialities may be

4.6. Rationale for the choice of the graph DBMSs 99

useful for other InfoCamere applications; however, for the kinds of query thought and for the

current purposes, this solution has not been further analyzed.

“Why didn’t we choose Titan or Virtuoso?”

The main reason behind the rejection of Titan is that it (or better the startup behind it,

called Aurelius) was acquired one and a half year before the beginning of this graph databases

exploration work. In particular, the new owner of Titan, DataStax, decided to stop its develop-

ment and instead begin with the implementation of a new graph database product: DataStax

Enterprise Graph, based on Apache Cassandra [37, 160, 82].

For what regards Virtuoso, it is a virtual database (VDB), which basically provides the ability

to search across several databases with a single query. Virtuoso’s VDB engine provides unified

and transparent access to relational data residing on any ODBC/JDBC compliant DBMS. In

addition the way by which it realizes the property graph model is with the RDF model, and

the way by which it queries them is by using SPARQL [135, 134].

“Why didn’t we use graph analytics frameworks?”

Graph analytics frameworks surely are products of interest for the field; however the work

was intended to inspect products that can assure graph databases’ persistence. In addition,

the queries addressed by this work are not global-graph queries; are rather focused on graph

traversal, which is the kind of queries that graph databases handle very well.

They anyway represent products that may be taken in consideration for future develop-

ments.

100 Chapter 4. Use case

Chapter 5

Evaluation and comparison of Graph

Databases

In this chapter we will describe both the preliminary phases and the performance tests per-

formed. We start by describing, in Section 5.1, what are the principal aspects about our use

case. In Section 5.2 we will present the environmental setup, both on hardware terms and on

databases’ configurations terms. In Section 5.3 we will explain the data import phase; and in

Section 5.4 we will talk about warming-up the cache. Finally, in Section 5.5 we describe the

performance results obtained from the execution of some selected queries.

5.1 Use case

In following sections we will apply some graph queries to the dataset presented in Chapter 4.

We saw that the growth rate of the dataset is not so high; and the same holds for the update

rate. The users of the application are financial police officers - so not a big crowd of different

users - and the number of accesses per day is some hundreds. Furthermore, the database

represents a read-only data source for the final users; in fact it can be only used for read-only

queries. Update operations would arrive to the database only from the happening of update

operations on the Italian Business Register, the official source of the data. In addition, the

current dataset update method is asynchronous, i.e. it is done in bulk-way every night.

For these requirements, we understand that what we are mainly interested on the study of

how the analyzed DBMSs respond when they are queried, rather than studying how much they

are able to manage high-concurrent update or insert operations.

The main points of interest for our work are:

– the database would be used by an application that shows relationships among companies.

101

102 Chapter 5. Evaluation and comparison of Graph Databases

– the way by which the application would show such relationships is in a tabular and in

graph manner.

– the database should be able to answer to the queries in hundreds of milliseconds, or

however in time values that are comparable to the ones obtained by a relational database.

– the database should be able to handle some tens of million of records.

– the database should provide some mechanisms for checking the integrity withing the

graph; so that we do not have dangling edges or other abnormal situations.

5.2 Experimental setup

All tests have been done during the internship in InfoCamere. For this purpose, one virtual

instance of a RedHat Linux server has been used; such virtual machine was realized by one

InfoCamere server dedicated to development purposes, and was accessed via a desktop computer

through the intranet of the company.

We tried to define the test environment so that none of the DBMSs would be heavily privileged

or penalized; both in terms of “hardware” configuration and in terms of their database server

configuration. For this purpose, according to the three graph DBMSs, the suggested configu-

ration is to have enough RAM to cache good part of the dataset and its indexes so that disk

hits are minimized [22, 69, 94]. Obviously, another suggestion is to have fast disks (that is SSD

instead of HDD) for reducing to the minimum I/O latency. However, since we had available a

disk with HDD technology, we made sure that at least the requirement of not using a too small

amount of RAM would be met.

Rather then testing these DBMSs with clearly poor hardware environments, and also maybe

totally apart from a hypothetical configuration for a production product, we decided to follow

their recommendations and give a discrete amount of RAM to the system, even though without

exceeding. We however intentionally did not provide a “super-charged race car” with a lot of

RAM, SSD technology for disks, and a CPU with enormous frequency values; so that our work

presents an initial hint on what are the attention aspects of the machine tuning, and also to

obtain typical results on moderate hardware.

The test machine specifics are:

• RAM: 6GB DRAM

• CPU: AMD Opteron 6276, x86 64, dual-core, single-thread per core, 64bit, 2.3GHz

• Disk: 100GB HDD

• OS: Red Hat Enterprise Linux Server release 6.8 (Santiago)

• JDK: OpenJDK 1.8.0 101 64-Bit Server VM (Java version 8u101)

5.2. Experimental setup 103

ArangoDB server configuration

As for as the server configuration of ArangoDB is concerned, we used the default configuration;

and it could not be done different, given the fact that there is no possibility to manually set

configuration parameters about memory management. One parameter that we ensured to be

disabled is the use of the query result cache, so that all databases are equally treated.

Neo4j server configuration

Neo4j has been left with its default configuration apart from the settings which regards the

usage of the main memory; which has been configured according to the specifics given by the

official documentation [69]. In particular, the parameters to be set are about sizing the Page

Cache and the Heap Space. The configuration should be made so that the available RAM is

split in such a manner that swap operations to disk are limited to the minimum, and hopefully

never performed.

The configuration starts by defining the amount of RAM to be left to the operating system,

in order to let it work quite freely. The amount of memory to be reserved for this purpose, as

suggested by the documentation, is around 1GB plus the size of the files within index/ and

schema/ sub-directories of the database main directory; which were around 300MB together

after the data import. By the reduced amount of memory for such directories and since only

one database service at a time would be active, and also since there will not be other processes

launched by the user during the tests, the amount of RAM left for the OS has been sized to

1GB.

The next parameter regards the Page Cache, which is the amount of memory used to cache

the data as stored on disk. The best configuration would be the one that reserves space for all

graph data files. The memory consumption for such files is around 2.4GB, and the Page Cache

has been sized to 3GB (the total size of the database is about 2.7GB).

The last parameter is related to the Heap Space, which should be large enough to sustain

concurrent operations, and more in general query elaborations. The parameter corresponds

to the definition of the JVM heap space by means of the -Xms and -Xmx arguments; which

are suggested to be sized with the same value. Heap space has been sized with the remaining

amount of RAM, which is 2GB. The documentation page talks about values like 16GB for

its sizing, however our setting is also supported by the fact that no concurrent calls will be

performed during our tests.

OrientDB server configuration

OrientDB has been left with its default configuration apart from the settings that regards the

main memory usage. The parameters to be set are Heap Space and Disk Cache Buffer. For

104 Chapter 5. Evaluation and comparison of Graph Databases

doing this, when the amount of available RAM is not in exceed, OrientDB suggests to assign

less heap space and more disk cache buffer, which is the same idea at the basis of the Neo4j

configuration [94].

Heap Space and Disk Cache have been set directly by the server.sh script, which is the

one that launches the server process. There are not particular hints about how to size the

two parameters based on the files’ sizes; so an approach similar to Neo4j have been adopted.

However, here the situation is different, because the total size of the database is about 6GB.

The size of the files enterprise.pcl and member of.pcl is respectively 4.3GB and 490MB; the

size of enterprise.cpm is 131MB and for member of.cpm is 66MB; the size of the index on the

codice fiscale property on the Enterprise class is about 1GB. So we have that not all the files

can be completely entirely loaded in main memory.

The server configuration has thus been set to 2GB for Heap Space and 3GB for Disk Cache.

For the OS it has thus been left 1GB of RAM.

In addition, the JVM parameter -XX:+PerfDisableSharedMem has been set, like suggested by

the documentation, in order to avoid debug information writing about the JVM state [94].

PostgreSQL server configuration

For PostgreSQL, the only configuration parameters changed by their default values are

shared buffers and work mem. The parameter shared buffers has been enhanced by the ini-

tial 128MB to the 1450MB value, which corresponds to the 25% of the available RAM, as

suggested by the official documentation [111]. In addition, the work mem parameter has been

enhanced from 64KB to 8MB, in order to give more RAM space for results sorting operations.

The effective cache size has been left to the 4GB default value, which is a valid value given

the amount of RAM available in our case.

After the import, the database occupies 2.7GB on disk. The parameter shared buffers has not

been set higher than that because, by the way by which PostgreSQL also relies on the operating

system cache, it’s unlikely to find using more than 40% of RAM to work better than a smaller

amount; as reported in [111].

5.3 Data import

Our dataset is composed of two CSV (Comma-Separated Values) files, generated by the ex-

traction of the two relational tables in the MySQL source database. The first file contains

10.5 million anagraphical records about enterprises and weights 1GB; the second file contains

around 5 million records about relationships and weights about 170MB.

5.3. Data import 105

Before talking about the way by which we imported data on the different databases, let’s think

about how data import should work. The CSV files we have are made this way: each row

corresponds to a record and the first row is special because it holds the name of the table fields;

ordered just as the corresponding values on the next rows. For the CSV file containing enterprise

records we thus have the header row and a series of rows where the first value corresponds to

codice fiscale; after it there are other 12 values, where one of them is a denominazione value,

which can be a small piece of text. For the CSV file containing the relationships, instead, we

only have, for each record row, two strings corresponding to two codice fiscale values. This is

also the reason why the two files weight so much differently.

The linking information is thus realized by means of pairs of codice fiscale values; as done

by the relational database. However, depending on the database approach, it is not taken

for granted that the import would simply implies the copy of the csv files with only little

additional formatting or meta-data generation; rather, some operations may be necessary in

order to construct the graph, especially for the creation of edges.

The typical import strategy for the bulk creation of a graph is to firstly load all data about

nodes (from the CSV file containing enterprises’ data); then maybe perform some operations

like imposing constraints or creating some indexes; and then load data about edges (from the

CSV file containing relationships’ data), with all the operations that such activity may involve.

It is highlighted that, by the fact the dataset comes from a relational database with integrity

constraints defined on its schema, it is automatically ensured that the data we are going to

load do not contain problematic situations like relationships without one of the two references

to the anagraphical records; or that the relationship connects an existing record to one that

does not exist, thanks to the referential integrity constraint. This obviously avoids some of the

problems that may arise while trying to load edges. Another avoided situation is the one where

more than one edge “of the same type” is defined on the same ordered pairs of nodes, thanks to

the primary key constraint on relationships records. In addition, also some problems on node

records are avoided, like the fact that there would not be more than one record with the same

codice fiscale value; due to the primary key constraint defined on such field.

Let’s now see how we imported data: all four DBMSs provide tools designed for the import of

CSV files, and we used them to populate the databases.

ArangoDB data import

For ArangoDB the import has been done with arangoimp, which is a command-line tool pro-

vided for bulk import operations on JSON or CSV or TSV (Tab-Separated Values) files [13, 11].

The arangoimp utility needs to be invoked once for each import file; and the target collections

can already exist or can be created by the import run [11].

ArangoDB asks that while importing the edge records, the values for the system fields from

and to are already provided by the file to be imported. This has been accomplished by simply

106 Chapter 5. Evaluation and comparison of Graph Databases

specifying that the first of the two values of the rows of the anagraphical CSV file corresponds

to the from field, while the second corresponds to the to field. This is done by simply renam-

ing the header row with such two field names. However, the values on following rows cannot

be any values: they must be record identifiers within the collection of interest, i.e. values of

the field key for the vertex records already imported. So before importing the vertex records,

the (optional) key field and related values have been added to the CSV file by editing it. The

values for such attribute have been taken from the codice fiscale field. However, the values al-

lowed for the key attribute cannot hold some particular characters (like underscores etc. [19])

which were in turn present on some few special records (inserted for application purposes). So

the values for the key attribute are not simply copies of those belonging to the codice fiscale

attribute, but have been edited such that the particular characters would have been replaced by

admitted ones, and also in such a way that such identifiers would remain unique. The editing

of such a heavy file requires some time to be performed. Our approach was based on passing

multiple progressive elaborations to the file by means of the Vim editor, and it required about

20 minutes of elaboration. However, there would surely be better solutions for it, like using

alternative Linux commands or utilities (like the sed command) or by purposely defining the

way by which the export of the relational database should be done.

One relevant aspect is that the usage of the importer tool does not require that a schema

definition is already provided before the import of the data.

Resuming, ArangoDB simply loads data as they appear, and it just encodes it with the

VelocyPack format. This turns out to be a fast import approach, in fact the time required

to import the two collections is about 6 minutes: 4:30 minutes for enterprise records and 1:30

minutes for relationship records.

The graph however is not yet realized. As explained in Section 3.2.1, the named graphs are

created by means of the “edges definition” procedure, which can be performed by the interactive

shell (arangosh) or the web interface. This is however a very quick operation, made in some

milliseconds.

Since ArangoDB already indexes the system attributes key, from and to, and since we will

use the attribute key for identifying enterprises’ codice fiscale, no further indexes or constraints

have to be created.

The total memory consumption for the database is about 4GB.

Neo4j data import

For Neo4j the import has been done by using the official neo4j-import tool, which is a command-

line data importer. Such tool has been designed for bulk loading csv data and it should work

better than the LOAD CSV Cypher command for such purpose [73, 67]. Some specifications

on the header row of the csv files have to be given to the importer so that it knows what field

5.3. Data import 107

to use as identifier, what labels to use for each record, and even what properties should be

defined with data types different from string (e.g. INT for numbers etc.). In addition, some

specifications have also to be given within the header row of the edges csv, so that the importer

knows what to treat as the source of the edge (:START ID) and what to use as the destination

of the edge (:END ID).

The tool expects that the database where data is going to be imported is empty; this implies

that it is not possible to first import the enterprises nodes, create and index on them, and

only after that to import the edges. Such operation should instead be possible if the import

of the edges would instead be done with the LOAD CSV command. So the neo4j-import tool

imported both the two kinds of records (nodes before edges) in a single import process. Such

operation required about 6 minutes: 5 minutes for nodes and 1 minute for edges.

Again, also for Neo4j the “schema” definition is directly performed while importing data

and does not require to be defined before such operation.

At the end of the import, a UNIQUE constraint (and hence an index, with the logic of Neo4j

[65]) had been imposed on the property codice fiscale. Again, such operation did not bring

troubles because the unique guarantee was provided by the source of our dataset. The creation

of the constraint required about 3 minutes.

The graph is thus created and no further operations have to be performed for the purpose.

OrientDB data import

For OrientDB various attempts have been done for a fast import of the dataset; which was done

with the official ETL tool (Extract-Transform-Load). The ETL tool is a command-line utility

which receives as parameter a configuration file in JSON format which defines the configuration

variables and hence the way by which the ETL importer should load the given data. It accepts

data in CSV, JSON and XML format, and also data source accessible with a JDBC connection

[88].

A lot of parameters can be passed through the JSON configuration file, regarding how the

source data should be read; how data should be handled or transformed (if necessary); and

how they should be imported on the database (e.g. the class for the given record, etc). In

order to do this, the parameters are grouped in five different sections: config for import process

configurations, like the logging level etc; source for addressing the files to be loaded; extractor for

the way by which such data files should be parsed; transformers for the specification of eventual

intermediate operations on the data extracted; and loader for the definition of database-related

options, like the connection type, the management of transactions and WAL, the usage of

indexes, etc.

Rather then creating and updating the index while loading enterprises data (as done in

some examples provided in documentation), it was decided to shift such operation once the

complete list of enterprise records have been loaded; this was also decided based on the higher

108 Chapter 5. Evaluation and comparison of Graph Databases

import speed shown. So the import had been split in: enterprises loading; index creation on

the codice fiscale property; and edges creation, which would then cherish of the defined index.

In fact, OrientDB needs to search for the desired nodes in order to create the edge among them

(as seen in Section 3.2.3); so for each relationship record, it searches for both the already loaded

nodes and edits them (and the new edge record) so that the special fields which contains the

references to the connected edges (or nodes respectively) are updated with the new reference

values.

However, this approach seems to be very expensive. We made a big number of attempts

for trying to understand why the import process was requiring so much time; however, even

though transactions and WAL have been disabled and the flush to disk has been set every 10000

records, the times we found for the execution of such operations are the following: about 18

minutes for enterprises import; 12 minutes for the creation of a property on the codice fiscale

field (preliminary phase to the creation of an hash index over it; 27 minutes for the index

definition; and 5 hours for edges creation.

The time required for the import of the edges is very big, also compared with the time required

by the other DBMSs, even though the plocal connection protocol is used as suggested. We

also tried another approach by using the Java API or the lightweight edges (even though they

would not be usable for a future database employment because they do not allow the definition

of properties on them) but without significant improvements. It seems like the index defined

on Enterprise records is not well used with the import process. We hope to have made some

mistakes while configuring such operations, even though the time spent on this topic has been

quite relevant.

Even for OrientDB, and thus like the previous DBMSs, the schema of the classes containing

the records is defined directly by the importer tool; so there is not need to define it before the

import starts.

PostgreSQL data import

Before proceeding with the data import, a relational database requires that a schema is pro-

vided. It consists on the creation of the tables and the specification of the data types for each

of their fields, with maybe also the definition of some constraints on them.

The approach followed for this purpose was to create the tables without the foreign key

constraints and to define them only after the data had been imported. This approach is valid,

again, because we are already sure that the constraint requirements would be met, given the

source of the dataset. By defining constraints only after data have been imported, and not at

each data to be inserted, permits better import performances.

The import of the dataset with PostgreSQL has been achieved by using COPY, which is a

command defined on the extended PostgreSQL implementation of the standard SQL. First

we loaded enterprise records; then we loaded the relationship records. However, with the

5.3. Data import 109

approach adopted, we could have also swapped the import order without any trouble. The

time required for the import of the enterprise records was about 4 minutes; while about 1

minute for relationships records. The two definitions of the foreign key constraints on the fields

socio and partecipata of the table membership have been performed rapidly; in fact the first

required about 40 seconds ant the second 20 seconds. In contrast, the import with the two

constraints defined before the import required 7 minutes for importing relationships records.

Note that the same approach may be also applied for the primary key constraint.

CREATE TABLE companies and memberships . companies (

c o d i c e f i s c a l e char (16) NOT NULL DEFAULT ‘ ’ ,

rea varchar (21) DEFAULT NULL,

c c i aa char (2) DEFAULT NULL,

t ipo varchar (2) DEFAULT NULL,

denominazione varchar (305) DEFAULT NULL,

c i t t ad inanza varchar (3) DEFAULT NULL,

na t u r a g i u r i d i c a char (2) DEFAULT NULL,

t ipo impre sa char (2) DEFAULT NULL,

c a p i t a l e s o c i a l e varchar (17) DEFAULT NULL,

numero az ioni b i g i n t DEFAULT NULL,

f d i c h c o n t r o l l o sma l l i n t DEFAULT ‘0 ’ ,

f impre sa sma l l i n t DEFAULT NULL,

f s o c i o sma l l i n t DEFAULT NULL,

CONSTRAINT c o d i c e f i s c a l e p k PRIMARY KEY (c o d i c e f i s c a l e)

) ;

CREATE TABLE companies and memberships . memberships (

s o c i o char (16) NOT NULL DEFAULT ‘ ’ ,

pa r t e c i pa ta char (16) NOT NULL DEFAULT ‘ ’ ,

CONSTRAINT so c i o pa r t e c i p a t a pk PRIMARY KEY (soc io , pa r t e c i pa ta)

− −, CONSTRAINT s o c i o f k FOREIGN KEY (s o c i o) REFERENCES

companies and memberships . companies (c o d i c e f i s c a l e) ON DELETE

CASCADE,

− − CONSTRAINT pa r t e c i p a t a f k FOREIGN KEY (par t e c i pa ta) REFERENCES

companies and memberships . companies (c o d i c e f i s c a l e) ON DELETE

CASCADE

) ;

In addition, we need indexes so that the queries are performed in reasonable times. The primary

indexes for the two tables already provide an index which can be used during queries. However,

we also need to index the fields socio and partecipata, so that, given a codice fiscale value which

on some of our queries would correspond to the value of socio, we are able to find it quickly

and, in turn, to find out quickly also all the partecipata values attached to it; and vice versa.

110 Chapter 5. Evaluation and comparison of Graph Databases

So, two additional indexes have been created, and the times required were about 20 seconds

on socio field and 50 seconds on partecipata field. The two indexes are of the kind B-Tree, like

the index constructed with the primary key constraint.

5.3.1 Summary

Operation ArangoDB Neo4j OrientDB PostgreSQL
Enterprises import 4min 30s 5min 18min 4min

Relationships import 1min 30s 1min 5h 1min
Indexes creation 1min 30s 3min 39min 2min 10s

Database memory consumption 4GB 2.7GB 6GB 2.7GB

Table 5.1: Data import comparison.

We resume in Table 5.1 a conclusive overview on the import phase. We can see that ArangoDB,

Neo4j and PostgreSQL are quite aligned on required times, even though for what concerns disk

consumption ArangoDB requires more space. In addition, remember that ArangoDB keeps

indexes on RAM, so their size is not counted here. OrientDB instead require both more space

and time.

5.4 Cache warm-up

Our queries will be performed on hot cache; where with hot cache we intend the fact that we

made sure that the data files which would be used to answer to a query are (likely) already

present in main memory; so that disk accesses are highly reduced. Such approach respects what

is suggested by the some of graph DBMSs analyzed [43, 147]. In a production scenario, one

should try to avoid eventual penalizing situations which could be removed quite simply; so the

warmed-up cache is an assumption that is simply brought to reality by launching a particular

query at the each start-up of the server.

Some differences in execution times had been observed between warming-up the cache before

starting querying, and working on data right from the start.

Such differences are typically due to the necessity of I/O operations for transferring data

from disk to RAM, which penalize the first query executed on a given node / graph region.

The warm-up assumption is further supported by the fact that ArangoDB needs to construct

indexes after the start-up for those collections involved by the queries. This implies that the first

query executed would bring abnormal execution times only due to such preliminary operations,

rather than measuring the effective times required to retrieve data and answer to the query.

The cache warm-up is typically done by means of queries that fully scan all records [43, 149]

(as done with ArangoDB, Neo4j and OrientDB), or by means of a predefined function (as done

5.4. Cache warm-up 111

with PostgreSQL).

The purposely implemented warm-up query for ArangoDB is the one reported below:

LET v e r t i c e s = (FOR vertex IN Ente rp r i s e RETURN vertex . key)

LET edges = (FOR edge IN member of RETURN edge . key)

RETURN 1 ;

It can be seen that full scans on the collections containing vertexes and edges would be per-

formed. We do not know if this is the most efficient way to force indexes construction and also

transfer data on RAM; the official documentation do not give hints about it.

The following query is the one proposed by Neo4j documentation for warm-up purpose:

MATCH (n)

OPTIONAL MATCH (n)−[r]−>()

RETURN count (n . prop) + count (r . prop) ;

The property prop is fictitious and is used to force the optimizer to search for a node or edge

with a property named like that, so that all nodes and edges, and relative properties, are

accessed.

Another way to perform the warm-up is by means of a stored procedure provided by the

APOC package [8], which displayed minor execution times for the same purpose on some quick

tests performed in a second moment.

The implemented warm-up query for OrientDB is the one reported here:

SELECT COUNT(c o d i c e f i s c a l e)

FROM Ente rp r i s e

LIMIT 11000000

It only loads nodes because other attempts on loading edges and connected nodes gave some

java.lang.OutOfMemoryError exceptions. OrientDB does not provide a suggested query for

such purpose, and also does not talk about warm-up as a suggested operation.

For PostgreSQL the pg prewarm function has been used, which was called on both tables for

their loading in main memory.

SELECT pg prewarm (‘ companies ’) ;

SELECT pg prewarm (‘ memberships ’) ;

The times required to perform the warm-up is shown in Figure 5.1. In particular, we show the

average value of twenty executions; with a confidence interval that corresponds to the standard

deviation value.

Some tests have been done to compare the times obtained with and without the warm-

up: OrientDB did not shown benefits by a warm-up performed with such query; while the

112 Chapter 5. Evaluation and comparison of Graph Databases

Figure 5.1: Warm-up cache, times chart

(a) Comparison on a light query (b) Comparison on a heavy query

Figure 5.2: Warm-up quick study

others shown benefits in query execution times. For example, Figures 5.2a and 5.2b show how

performance changes with and without warm-up in two sample queries where complexity varies.

As it can be seen, ArangoDB clearly shows big differences on execution times because it has

to build indexes. Neo4j and PostgreSQL show some benefits. OrientDB instead seems to not

cherish from the warm-up implemented with such query; in fact, in one case it shows reduced

time with it, but on another case it performed worse. Please note that the time values are

given in logarithmic scale. Anyway, such results should only be taken as indicative of the size

of time required for such phase.

As an estimate of the memory usage for such phase, we looked at the results of the top Linux

command. The resulting consumption is shown in Figure 5.3. By looking at the chart, and

by considering how ArangoDB works, it is clear that ArangoDB is the DBMS that more needs

RAM for working. While the other DBMSs store indexes on disk and load them (or portions of

them) to RAM when needed, ArangoDB would like to construct and keep its indexes entirely in

RAM. On one hand, it is true that indexes typically weights less than the amount of data they

are defined on, and thus do not add so much load to the system with respect to the one already

5.5. Performance comparison 113

Figure 5.3: Warm-up cache, memory chart

due to data itself. On the other hand, it is clear that on very large datasets, this approach

would cause performance degradation if indexes do not entirely fit in main memory.

5.5 Performance comparison

In this section we will present the queries we used for the performance comparison of the various

DBMSs involved. For each query we will explain what data it searches; how it is implemented;

and we will show some charts that show the time required for their execution.

During the work, several queries have been implemented and tested for the four DBMSs. Here

we will report some of the most significant ones.

The queries we will see can be distinct in four categories: those about the search of one spe-

cific node; those working just on a node’s neighbours; those that constitute multilevel traversals

starting from a given node; and those involving two nodes. Such query typologies were chosen

because we are interested on searching for the nodes that are somehow linked to the given node;

and also for reasoning about the troubles that would come by realizing such queries via SQL

in a relational database.

The queries had been implemented by means of the official query languages that the DBMSs

provide; thus for ArangoDB we used AQL; for Neo4j we used Cypher; for OrientDB we used

its extended SQL; and for PostgreSQL we used its implemented version of SQL. The reasons

for such choice are:

• they are the most documented way for expressing queries by the official documentation

sites;

• they are the suggested way of querying according to the DBMSs themselves;

114 Chapter 5. Evaluation and comparison of Graph Databases

• we want to understand peculiarities and differences among such query languages; in par-

ticular by comparing them with SQL;

• the majority of the questions asked on coding forums (like StackOverflow etc) seemed to

be about these form of query implementation.

We then avoided queries’ formulation by means of the native APIs right from start - or by

means of procedures developed with the provided programming languages - because we think

that the first approach should be made by means of the query language that is suggested by

the database itself (which is also the solution typically subjected to the best optimization). In

any case, the implementation of the queries directly from the native APIs or similar approaches

would not have brought for us particular simplifications, given the fact that each API is written

differently, and thus we would the same way have to study four different “languages”. In

addition, provided query languages are typically declarative and hence more intuitive then the

other ways for expressing the queries. One “simplifying” possibility for queries’ implementation

would have been the usage of the Gremlin API from TinkerPop: by using it, the same query

would have been valid for more than a graph DBMS. Both ArangoDB, Neo4j and OrientDB

support this “industry” and “unofficial” standard; even though only OrientDB directly supports

it without the need of additional libraries or plug-ins. However, such common characteristic

has been discovered only later during the study, and since it requires additional libraries, and

also because its usage would go away from the solution which is optimized by the DBMS (i.e.

the provided query language); such queries implementation had been discarded. In addition,

a quick analysis displayed that traversal constraints about nodes or edges visiting cannot be

expressed.

Each query typology will be performed on three different nodes. Such nodes were chosen so that

there is one node that represents “light-weight” workload for such query; one that represents an

intermediate value; and one that represents a “heavy-weight” situation. For example, for the

query about retrieving the direct neighbours of a node (get direct neighbors), the light situation

is given by a node that has few edges connected to it; the medium case is given by a node with

a good number of neighbours; the heavy case is given by a node that has a very large number

of direct connections. However, since the light-weight situation for a query may not be light-

weight for another, a node is not inherently light for all the query types; and thus the nodes

may vary among the queries.

Note that, in some cases, we will refer to the node (or better, the codice fiscale value which

identifies it) as “small” for the light-weight situation; “large” for the heavy situation; and

“medium” for the intermediate case.

Thee approach followed for the execution of the queries is the following:

• only one server at a time is up and working;

• the execution is managed by means of bash scripts purposely implemented, which launch

the queries through the official shell tools provided;

5.5. Performance comparison 115

• queries are launched sequentially, so there are not concurrent queries;

• we collect the times for the execution of the query at server-side rather then at client-side,

so that network transport times are discarded;

• we perform a warm-up of the cache for all the DBMSs before starting querying them, in

order to have an equal start situation for every database;

• we collect 20 samples per node for each query type, so 60 samples per query type;

• the 60 samples are taken consecutively: 20 for the first node, 20 for the second and 20

for the third;

• after the same query have been executed, the service is restarted and the warm-up is

performed again before passing to the new query typology.

Such approach allows to get an estimate of both the time required by the first time a given

query is executed, and by the time required at operating speed. In particular, we will see that

there is notable difference between the times for the first execution and the following executions.

We also quickly tested the execution of the queries in a cyclic manner, that is by changing the

query (type and node) at each time without shutting down the server for 20 times for the same

query, but the execution times displayed very close values.

We now see which are the queries used for the performance tests. The node ‘00102681419’

will be used to graphically explain the queries. We will not show the queries’ results because

of privacy restrictions on the dataset; in addition, eventual codice fiscale values have been

substituted by fictitious values.

The collection of implemented and tested queries is the following:

• single match by cf

• get direct fathers

• get direct fathers only cfs

• get direct neighbors

• get distinct descendants and level

• get distinct descendants and level only cfs

• count distinct ancestors per level

• get common descendants

• get common ancestors

• get shortest directed path

In particular, for some of the queries, we implemented a version that only returns the

codice fiscale value (instead of the values for all the attributes) in order to analyze how much

the retrieval of all values influences the execution time of the query.

In addition, some quick queries about global graph information computation have been imple-

mented, like the search for root nodes, or the count of the outgoing edges for each node, or the

search for the diameter of the graph, etc. However, as already stated, graph databases are not

116 Chapter 5. Evaluation and comparison of Graph Databases

the right instrument for doing such computations; and in fact their executions were requiring

so much time that we aborted them.

5.5.1 single match by cf

The query searches for the particular node which is identified by the given codice fiscale value;

it thus corresponds to: “search the enterprise that has this codice fiscale”. The database will

thus return a single node record and should exploit the index defined on such property for the

resolution.

With ArangoDB’s AQL the query is written as shown below:

LET s e a r c h c f = ‘00102681419 ’

FOR v IN Ente rp r i s e

FILTER v . key == s e a r c h c f

RETURN { ‘ vertex ’ : v }

As explained in Section 5.3, we mapped the value of the codice fiscale attribute to the key

property, which is already indexed, so rather then using a new index for searching on the

codice fiscale property, we perform the search directly by the identifier. It can also be noted,

by looking at the RESULT statement, how AQL allows to handle and force in a simple way a

JSON structure for the results of the query. Note that, rather then defining the codice fiscale

value by means of a LET statement, we could simply have written it on its place of use.

With Neo4j’s Cypher the query is written as shown below:

MATCH (e : Ente rp r i s e { c o d i c e f i s c a l e : ‘00102681419 ’})
RETURN e ;

Cypher does not use the SELECT keyword, typical of SQL, but substitutes it with the MATCH

keyword, because it is used to match graph patterns.

In OrientDB’s Extended SQL the query is written as shown below:

SELECT ∗
FROM Ente rp r i s e

WHERE c o d i c e f i s c a l e = ‘00102681419 ’

which is “identical” to the query implemented for PostgreSQL:

5.5. Performance comparison 117

(a) First query

(b) Following queries

Figure 5.4: Query single match by cf charts

118 Chapter 5. Evaluation and comparison of Graph Databases

SELECT ∗
FROM companies and memberships . companies

WHERE c o d i c e f i s c a l e = ‘00102681419 ’

The times required to answer such query for the three selected enterprises are shown in Figure

5.4. Time values are displayed in a logarithmic scale so that both small and big values can

be seen clearly. Note that even in this case we tested the query on three values, although the

classification in small/medium/large does not hold because, being all the values indexed, any

value brings the same workload to the database.

The obtained execution times show that, for any DBMS, the first execution of the query requires

way longer than the following ones. Such behaviour was expected in absence of warm-up;

however it is shown even in such case. In order to better study the two situations we preferred

to split the chart in two sub-charts, where in the first one we show the time required by the first

execution, and in the second one we show the average time and the standard deviation value

for the remaining executions. In this way we avoid extremely big error bars due to the great

difference between the first execution time and the following. In addition, with this method we

better get an estimate of the different times required by the two situations.

We thus see that, for this quite “standard query”, the time required is typically little and

quite aligned among the DBMSs, except for Neo4j which takes generally more than the others

both during the first query and the remaining ones. Anyway, for Neo4j the time went from

260-300ms for the first query to 16-18ms for the average value of the following ones; so there

is great difference in execution times. The other DBMSs also shown a reduction of about an

order of magnitude between the time of the first query and the average value of the following.

There seems to be some room for improvement on this kind of query for Neo4j; the study of a

different data model design maybe would have brought better results.

From the chart we can also appreciate the fact that right from the 2nd execution of the query,

to the 20th, the execution times are very similar; as can be seen by the short error bars.

5.5.2 get direct fathers

With this query we ask for the nodes which are direct fathers of the node identified by the given

codice fiscale. This corresponds to the search for “the enterprises which own equity shares of

the given enterprise”. The situation, for the example node of codice fiscale ‘00102681419’ is the

one shown in Figure 5.5 which has been taken by the query result viewer provided by the web

interface of Neo4j.

With AQL the query is implemented as shown below:

5.5. Performance comparison 119

Figure 5.5: Fathers of the node with codice fiscale = ‘00102681419’

LET sta r tVer t ex = ‘ Ente rp r i s e /00102681419 ’

LET minLevel = 1

LET maxLevel = 1

FOR v

IN minLevel . . maxLevel

INBOUND star tVer t ex

GRAPH ‘ enterpr ises and members Graph ’

LIMIT 200000

RETURN { ‘ vertex ’ : v }

Here we see the AQL Traversal query structure cited in 3.2.1. In particular we search among

the vertexes by following “inbound” edges, with the max depth value set to 1. The string that

follows the GRAPH keyword is the name of the named graph defined by the collection that

contains equity participation edges. Since our dataset will not have more than an edge defined

on the same node pairs with a given direction, we are sure that each father node is already

distinct. However, forcing the check can be done by adding the DISTINCT keyword after

the RETURN keyword; or by defining an additional OPTIONS row with a unique constraint

parameter for all vertexes visited. We will see such topic on following queries. Finally, we

impose a very high LIMIT value just to stop the query when it seems to be retrieving too much

nodes.

With Cypher the query is written as shown below:

MATCH (startNode : Ente rp r i s e { c o d i c e f i s c a l e :

‘00102681419 ’})<−[m:MEMBEROF]−(f a th e r : Ente rp r i s e)

RETURN fa th e r

LIMIT 200000;

120 Chapter 5. Evaluation and comparison of Graph Databases

In Cypher we search for a pattern made of an edge of the kind ‘MEMBER OF’ that connects

the anchor node (“startNode”) with another node (“father”), and we return such father node.

Again, checking that there are not duplicate nodes in the result set can simply be done by

adding a DISTINCT keyword after the RETURN keyword.

With OrientDB’s SQL the query is implemented as shown below:

SELECT expand (in (‘ member of ’))

FROM Ente rp r i s e

WHERE c o d i c e f i s c a l e = ‘00102681419 ’

LIMIT 200000

which is very similar to a standard SQL query. The in() function is the one that returns the

nodes reachable by following incoming edges in the opposite direction. The expand() function

is called on such nodes in order to obtain the values for all the properties of the nodes retrieved.

The in() function, indeed, returns the RID values for the records on interest, and not the full list

of records’ property values. The DISTINCT keyword may be used to force uniqueness among

results as general SQL; however when a list of results is expanded like here, the DISTINCT

does not work. An alternative method is by using the MATCH statement; with it the query

would become like shown below and results uniqueness would be automatically granted:

MATCH { c l a s s : Enterpr i se , as : s ta r t node , where : (c o d i c e f i s c a l e =

‘00102681419 ’) } . in (‘ member of ’) { as : f a t h e r }
RETURN fa th e r

LIMIT 200000

However, by the nature of our dataset, we used the query implemented with the SELECT

statement for performance tests.

In PostgreSQL the query is written as shown below:

SELECT ∗
FROM companies and memberships . memberships AS memb

INNER JOIN

companies and memberships . companies AS comp

ON memb. s o c i o = comp . c o d i c e f i s c a l e

WHERE par t e c i pa ta = ‘00102681419 ’

LIMIT 200000;

We start the query directly on the table containing the relationships among enterprises, and

we then need to perform a JOIN with the anagraphical table in order to retrieve the values for

5.5. Performance comparison 121

(a) First query

(b) Following queries

Figure 5.6: Query get direct fathers charts

122 Chapter 5. Evaluation and comparison of Graph Databases

all the fields. Again, the DISTINCT keyword is not needed, however it could be used on the

right of the SELECT keyword, and may be defined only on the codice fiscale field by using the

DISTINCT ON (...) clause.

The number of result nodes for the enterprise with low number of direct father (S) is 4; for

the intermediate case (M) the number is 418; for the case with a big number of nodes involved

(L) is 6067. The times required to resolve such query for the three situations are shown in

Figure 5.6. We see that ArangoDB needs less time than the others both for the first and for

the following executions; we also see that there is not a big difference on the required times by

PostgreSQL. In fact, here we are asking to traverse edges only a single time, and this is done

well by a relational database because we already start the query on the relationships table; we

only have to detect those partecipata values linked to the socio given, and then perform a JOIN

for such found values.

In the second chart we see that ArangoDB goes under the millisecond value. It could seems

that the result caching mechanism is applied, however we checked and it was not turned on.

Also, in the second chart, the bars for PostgreSQL show comparable execution times to the

times required by the graph DBMSs for both the small, medium and large amount of results

retrieved.

5.5.3 get direct fathers only cfs

This query is analogous to the previous one, however this time we only return the codice fiscale

values of the reached nodes. This is done to study how the lightening of the results affects the

execution time.

In ArangoDB the query is implemented as shown below:

LET sta r tVer t ex = ‘ Ente rp r i s e /00102681419 ’

LET minLevel = 1

LET maxLevel = 1

FOR v

IN minLevel . . maxLevel

INBOUND star tVer t ex

GRAPH ‘ enterpr ises and members Graph ’

LIMIT 200000

RETURN { ‘ vertex ’ : v . c o d i c e f i s c a l e }

The limitation on the property values to return is done within the RETURN statement, as last

operation.

In Neo4j the query is implemented as shown below:

5.5. Performance comparison 123

(a) First query

(b) Following queries

Figure 5.7: Query get direct fathers only cfs charts

124 Chapter 5. Evaluation and comparison of Graph Databases

MATCH (startNode : Ente rp r i s e { c o d i c e f i s c a l e :

‘00102681419 ’})<−[m:MEMBEROF]−(f a th e r : Ente rp r i s e)

RETURN fa th e r . c o d i c e f i s c a l e

LIMIT 200000;

Even with Cypher the query remains the same and it changes only within the RETURN section.

In OrientDB the query is written as shown below:

SELECT in (‘ member of ’) . c o d i c e f i s c a l e

FROM Ente rp r i s e

WHERE c o d i c e f i s c a l e = ‘00102681419 ’

LIMIT 200000

The only change with respect to the previous query version is the selection of the property of

interest at SELECT time.

In PostgreSQL the query is implemented as shown below:

SELECT so c i o

FROM companies and memberships . memberships

WHERE par t e c i pa ta = ‘00102681419 ’

LIMIT 200000;

This time we do not need to perform a JOIN with the table containing enterprises information.

The times required to resolve such query for the three enterprises are shown in Figure 5.7. The

query has obviously been executed on the same three codice fiscale values of the previous case.

It can be seen that this time PostgreSQL works way better than before and always better than

the graph DBMSs on the first query execution. We see also that again ArangoDB seems to

have a very pushed form of caching, which allows it to have such execution times at operating

speed after the first execution.

5.5.4 get direct neighbors

The query searches for the enterprises directly connected to the enterprise given, regardless of

the direction of the participation edge. It thus collects only the nodes reachable by traversing

a single edge. The example with the node ‘00102681419’ is shown in Figure 5.8.

With AQL the query is written as shown below:

5.5. Performance comparison 125

Figure 5.8: Neighbors of the node with codice fiscale = ‘00102681419’

LET sta r tVer t ex = ‘ Ente rp r i s e /00102681419 ’

LET minLevel = 1

LET maxLevel = 1

FOR v

IN minLevel . . maxLevel

ANY sta r tVer t ex

GRAPH ‘ enterpr ises and members Graph ’

OPTIONS { un iqueVer t i c e s : ‘ g loba l ’}
LIMIT 200000

RETURN { ‘ vertex ’ : v }

The query remains similar to the previous one, it only changes the INBOUND word with ANY.

With Cypher the query is written as shown below:

MATCH (e : Ente rp r i s e { c o d i c e f i s c a l e :

‘00102681419 ’})−[m:MEMBEROF]−(ne ighbor : Ente rp r i s e)

RETURN DISTINCT neighbor

LIMIT 200000;

Again the query is very similar to the previous one. The lack of direction is encoded by the

absence of the angular bracket which denotes the edge direction.

In OrientDB the query is implemented as shown below:

126 Chapter 5. Evaluation and comparison of Graph Databases

SELECT expand (both (‘ member of ’))

FROM Ente rp r i s e

WHERE c o d i c e f i s c a l e = ‘00102681419 ’

LIMIT 200000

Here we force to traverse edges in both directions by invoking the function both().

In PostgreSQL the query is written as shown below. Two temporary tables are used for collect-

ing separately the records which have a participation on the given enterprise, and the records

which are participated by such enterprise. While for the three graph DBMSs the query realiza-

tion remained simple even when both directions have to be traversed, here the query became a

little bit more complex.

CREATE TEMPORARY TABLE IF NOT EXISTS d i r e c t c h i l d r e n AS

SELECT ∗
FROM companies and memberships . memberships AS memb

INNER JOIN

companies and memberships . companies AS comp

ON memb. pa r t e c i pa ta = comp . c o d i c e f i s c a l e

WHERE so c i o = ‘00102681419 ’

LIMIT 200000;

CREATE TEMPORARY TABLE IF NOT EXISTS d i r e c t f a t h e r s AS

SELECT ∗
FROM companies and memberships . memberships AS memb

INNER JOIN

companies and memberships . companies AS comp

ON memb. s o c i o = comp . c o d i c e f i s c a l e

WHERE par t e c i pa ta = ‘00102681419 ’

LIMIT 200000;

SELECT ∗ FROM d i r e c t c h i l d r e n

UNION

SELECT ∗ FROM d i r e c t f a t h e r s ;

In this query we separately compute the child and father records, and we perform an union

between the two temporary tables used to collect such records.

We used the two temporary tables for readability reasons, however this may implies some

additional operations which could slow down the execution speed; so they could be removed

and their bodies could be directly used by the UNION operation.

The number of result nodes for the enterprise with low number of direct father (S) is 5; for the

intermediate case (M) the number is 120; for the case with a big number of nodes involved (L)

5.5. Performance comparison 127

(a) First query

(b) Following queries

Figure 5.9: Query get direct neighbors charts

128 Chapter 5. Evaluation and comparison of Graph Databases

is 1815. The times required to resolve such query for the three situations are shown in Figure

5.9. Even this time, even though we retrieve all fields’ values for each record, PostgreSQL

responds in less time than the other DBMSs.

5.5.5 get distinct descendants and level

The query searches for the distinct descendant nodes of the node with the given codice fiscale

value; it thus corresponds asking for “all direct and indirect participations of the given enter-

prise”. The query then collects all the nodes reachable by traversing outgoing edges, till the

deepest level; however, we want to avoid duplicate records on the result set. In addition, we also

want to obtain the minimum distance from the anchor node to the each retrieved descendant

Figure 5.10: Descendants of the node with codice fiscale = ‘00102681419’

The descendants of the node ‘00102681419’ is shown in Figure 5.10, where the anchor node is

the one to the left.

Let’s proceed with some steps in order to understand how to face such query. Suppose we

want to count the descendants of the node ‘00102681419’. We may think to obtain the number

12 (or 11 if we want to exclude the initial node); however, if we count all the results obtained, we

get the number 33. In Figure 5.10 indeed we can see that there are two source of multiple paths

from the anchor node to some of the descendant nodes: one is due to the loop on the initial

node; the other is due to the fact that from the node whose codice fiscale is ‘01706331419’, and

the node whose codice fiscale is ‘02126680517’, there are two paths. The first situation implies

that all nodes can be reached not only by one path, but by two different paths, which are

different only for the presence of the initial loop edge at the beginning. The second situation

implies that the nodes following ‘02126680517’ are reachable by two paths; but because of the

initial loop, such nodes are in the end reachable by 4 different paths. We should then specify

a DISTINCT clause on the returned result set. As already said, this can be done by simply

writing DISTINCT after the RETURN keyword for both AQL and Cypher. In addition, the

same could be done by writing DISTINCT after the SELECT keyword in OrientDB’s SQL. For

PostgreSQL, instead, it is a bit more complex, because in order to traverse a variable number

5.5. Performance comparison 129

of depths we made use of a CTE. We do not have a classical SELECT statement, and then we

can only impose the DISTINCT clause on a SELECT statement that follows (i.e. embeds) the

WITH RECURSIVE statement. We will see the query structure soon when we will show the

implemented query.

Anyway, a first problem on such approach is that with AQL, Cypher and OrientDB’s SQL,

it is not possible to specify on what element impose the DISTINCT if more than one element is

returned. So if we would like to return additional information beside the descendant nodes, the

DISTINCT would take both the terms as elements over which impose the uniqueness constraint.

This generally holds also for SQL, even though with PostgreSQL there is the possibility to

specify over which fields impose the constraint by using the DISTINCT ON (...) clause, so

that it is possible to not include some of the fields returned on the constraint. A workaround

for such problem would be to add a GROUP BY row to the query, so that the desired element

is returned only once. However, when such statement is used, an aggregate of the remaining

fields values would be created; so if (like in this case) one wants to select only the minimum

value for such aggregates, additional filtering operations should be added to the query.

In any case, to leverage on the DISTINCT clause for uniqueness imposition is not the best

way to realize queries when we work with complex graphs. Indeed, the DISTINCT filtering

works only at the last step of the query execution, i.e. it scans all the obtained results and

returns multiple occurrences of the same element only once; the GROUP BY approach, on the

other hand, would behave the same way. Going back to the query that searches for all the

descendants of a given node, if a lot of nodes are traversed while performing the query, and

if a lot of interconnections are present among such nodes, then a lot of multiple paths for the

result nodes would be present, and the query would work multiple times on the same nodes

and, only at the final step, it would limit the nodes to be returned by filtering them. This is not

highlighted on nodes with few descendants; however, when we have a more complex situation,

the effects are well visible. The best approach would be to restrict the traversal of the graph so

that nodes uniqueness is ensured while traversing and with “global scope”. In this way, as soon

as a node is detected as duplicate, it would not been added to the result set and the path that

was being constructed by the exploration would not be further expanded, rather it would be

discarded. In addition, such approach would bring to a temporary data set - populated while

executing the query - which is reduced in space.

Such problem arises by the fact that the default traversal behavior of the graph databases

given is to ensure edges (or nodes) uniqueness on path scope; while in this query we would like

to impose nodes uniqueness at global scope.

The other component of the query is the search for the length of the minimum shortest path

from the initial node to each (distinct) descendant returned. The query thus simulates the

Dijkstra’s algorithm for the computation of the shortest paths from a given source node to all

the reachable nodes.

The invocation of the shortest path function (provided by the three graph query languages)

from the given node to all its descendants would be impractical with a large number of de-

130 Chapter 5. Evaluation and comparison of Graph Databases

scendant nodes. Rather, we could achieve our goal in a single query by properly working on

the exploration phase. In order to do this, we need to change another thing from the default

traversal approach: the exploration order. The simplest way to obtain the computation of

the shortest path from a start node to a destination node, indeed, is by exploring the graph in

breadth-first order and by returning the length of the first path found during the exploration. If

the data domain would have been a tree, no multiple paths for the same node would be present.

However, in graphs, there both may be cycles (paths that pass through the same node/edge

more than once) and multiple ways for reaching the same node by coming from the same initial

node. While the uniqueness constraint on node/edges visits with path scope resolves the cycles

avoidance problem, the problem of avoiding multiple visits on a global scope would not be faced

efficiently if there are no ways to declare it directly during the graph exploration phase.

The two key ingredients for this query are then: the modification of the exploration order (set

to Breadth-First); and the uniqueness constraint (set for nodes with global scope).

In AQL the query is implemented as shown below:

LET sta r tVer t ex = ‘ Ente rp r i s e /00102681419 ’

LET minLevel = 1

LET maxLevel = 999

FOR v , e , p

IN minLevel . . maxLevel

OUTBOUND star tVer t ex

GRAPH ‘ enterpr ises and members Graph ’

OPTIONS { b f s : true , un iqueVer t i c e s : ‘ g loba l ’}
LET l e v e l = (LENGTH(p . edges [∗]))

LIMIT 200000

RETURN { ‘ vertex ’ : v , ‘ l e v e l ’ : l e v e l }

The AQL Traversal syntax expects at most three parameters after the FOR keyword, which

are variable names for - respectively - vertex, edge, and path elements. Such variables can be

used within the query, as shown for example by the row where the computation of the path

length is performed. In addition, the bfs OPTION set to true is the one which changes the

exploration approach. A very high max depth level has been specified so that no possible paths

are cut away while exploring the graph. Anyway, by the characteristics of the dataset, such

value could be set way more smaller (like 50 or 100) and may be used like a safety limit in

those cases where the query seems to have started working too much,maybe because of some

unexpected data situations.

In Cypher the query would be implemented as shown below:

5.5. Performance comparison 131

MATCH path = (startNode : Ente rp r i s e { c o d i c e f i s c a l e :

‘00102681419 ’})−[m:MEMBEROF∗1..999]−>(descendant : Ente rp r i s e)

WITH MIN(LENGTH(path)) AS l e v e l , descendant

RETURN l ev e l , descendant

ORDER BY l e v e l

LIMIT 200000;

The query can be distinct in three components: in the MATCH phase we define the graph

patterns to be retrieved, which are variable length paths made of outgoing edges; then it

follows a WITH statement, which is used for performing some aggregate functions and where

the variables used in successive phases should be reported; and then it follows a RETURN

statement. The WITH statement was added only to allow the ordering based on the depth

value found. The part of the query where the majority of the amount of work is executed

corresponds to the MATCH phase. In Cypher it is not possible to define how the query should

be resolved; in particular it is not possible to change both the uniqueness constraint and the

exploration order. This implies that the databases works in depth-first order and with edge

uniqueness at path scope; and it computes all the possible paths before proceeding to the second

phase where the minimum length path is selected for each descendant node. This implies that

when a particularly heavy situation is found around a given node - i.e. there are a lot of nodes

and multiple paths to some of its internal (and thus also leaf nodes) - the query may not answer

in useful time. The only way to force the different traversal constraints we need is by using

the Java API provided, which is called Traversal API. The query (which is part of a purposely

implemented Java class) is shown below:

132 Chapter 5. Evaluation and comparison of Graph Databases

i n t r e su l t sCounte r = 0 ;

Map<Str ing , Object> p r op e r t i e s ;

t ry (Transact ion tx = graphDb . beginTx ()) // execute with in a t r an sa c t i on

{
// Find the source node

sourceNode = graphDb . findNode (Labels . Enterpr i se , ” c o d i c e f i s c a l e ” , c f) ;

// Descr ibe how to r e t r i e v e the de s i r ed nodes

re su l tNodes = graphDb . t r a v e r s a lD e s c r i p t i o n ()

. b r eadthF i r s t ()

. r e l a t i o n s h i p s (Relat ionsh ipTypes .MEMBEROF, D i r e c t i on .OUTGOING)

. eva lua to r (Evaluators . e x c l udeS ta r tPo s i t i on ())

. un iqueness (Uniqueness .NODEGLOBAL) ;

t r a v e r s e r = resu l tNodes . t r a v e r s e (sourceNode) ;

// Extract the r e s u l t

f o r (Path path : t r a v e r s e r)

{
St r i ngBu i l d e r sb = new St r ingBu i l d e r () ;

sb . append (” l e v e l : ” + path . l ength () + ” , ”) ;

p r op e r t i e s = path . endNode () . g e tA l lP r op e r t i e s () ;

i n t i t e r a t o rP o s i t i o n = 0 ;

f o r (Map. Entry<Str ing , Object> entry : p r op e r t i e s . entrySet ()) {
// put a l l p r op e r t i e s on the r e s u l t s t r i n g

sb . append (entry . getKey () + ” : ” + entry . getValue ()) ;

i f (i t e r a t o rP o s i t i o n == prop e r t i e s . entrySet () . s i z e () − 1) {
sb . append (” ;\n”) ;

}
e l s e {

sb . append (” , ”) ;

}
++i t e r a t o rP o s i t i o n ;

}
++resu l t sCounte r ;

// p r i n t s i n g l e node p r op e r t i e s

System . out . p r i n t (sb . t oS t r i ng ()) ;

}
}

The query must be executed within a transaction and is composed of: an initial section where

the starting node is searched; a section where it is described how the traversal must be per-

formed; and a following section where the query is executed with a lazy-evaluation approach,

i.e. the actual traversal is performed lazily each time the next() method of the iterator of the

Traverser is invoked. This also means that the full traversal is not fully performed if the next()

method is not invoked for all the possible times [79]. Then, for each possible path, the values

of the descendants’ properties (and the length of the path) are retrieved, collected, and at the

end printed. The core of the query is the query description section: there the breadth-first

approach can be specified, as long as the uniqueness constraint.

Note that all implemented Neo4j’s queries with the Traversal API are preceded by a call to

5.5. Performance comparison 133

the query that performs the warm-up of the cache.

In OrientDB the query may be based on a query structure made like:

SELECT expand (descendant)

FROM (

MATCH { c l a s s : Enterpr i se , as : s ta r t node , where : (c o d i c e f i s c a l e =

‘00102681419 ’) } . out (‘ member of ’) { as : descendant , whi l e : ($depth + 1

<= 999) }
RETURN descendant

LIMIT 200000

)

Such query exploits the suggested command for the implementation of graph traversals, which

is MATCH. However, it works in depth-first order, so the global uniqueness constraint may

return a wrong depth value. Another formulation should then be used, which is the one that

follows:

SELECT $depth AS l e v e l , ∗
FROM (

TRAVERSE out (‘ member of ’)

FROM (

SELECT ∗
FROM Ente rp r i s e

WHERE c o d i c e f i s c a l e = ‘00102681419 ’

)

MAXDEPTH 999

LIMIT 200000

STRATEGY BREADTH FIRST

)

ORDER BY l e v e l

The query is made of a SELECT statement with a nested TRAVERSE statement. The TRA-

VERSE statement is the one which describes how to retrieve data, while the outer SELECT

statement only selects the data to be returned. Within the TRAVERSE statement we define

the traversing direction by using the out() method; the starting node (which is retrieved by

its codice fiscale value); a maximum exploration depth; a maximum number of nodes to limit

eventual query’s perpetual explorations; and the exploration order. At the end we exploit the

$depth system variable for the length of the path, and we return the results ordered by it.

Within the query there misses the definition of the uniqueness constraint; this is due to the

134 Chapter 5. Evaluation and comparison of Graph Databases

fact that OrientDB natively imposes vertices uniqueness at global scope when the TRAVERSE

statement is used.

In PostgreSQL the query is written as shown below. The query uses a CTE for recursively

adding rows that represent the direct and indirect participated enterprise records found while

traversing outgoing relationships. The WITH RECURSIVE statement is composed of two

sections: the first it the statical section, which is executed just one time, as the first operation;

the second sections holds the sub-query that has to be executed recursively until some stop

conditions are met, or all reachable records have been explored.

The fields of the CTE are:

• socio: the leftmost field of the table containing the relationships between companies; it

corresponds to the source of the relationship.

• partecipata: the rightmost field of the same table; it corresponds to the destination of a

relationship.

• depth: the number of relationships traversed for the current path.

• path: an array of strings containing the codice fiscale values for the records visited during

each path traversed.

• alreadyVisited : a flag field that signals the fact that the analyzed enterprise record have

already been visited within the same path; it highlights then the presence of cycles within

it.

In the first section, the CTE is initialized with the records of the table “memberships” where

the socio field contains the codice fiscale given; in this way, the nodes reachable by means of a

single outgoing edge are collected, which are the direct children of the given enterprise “node”.

The depth value is initialized to 1 for such new rows, the path is updated with the starting

enterprise, and the cycle flag is set to false.

In the second section of the WITH RECURSIVE statement there is specified the sub-query

to be executed recursively on data collected within the CTE. In particular, a (hidden) JOIN

between the memberships table and the current CTE is performed, where the fields for the

JOIN are the partecipata field of the CTE and the socio field of the membership table. In

this way, new records are searched from the memberships table, which are those representing

participation edges that start from the nodes that have been collected during the previous phase

of the recursive call. An additional edge is then traversed starting from the nodes previously

found, and the reached codice fiscale values are added to the CTE itself.

5.5. Performance comparison 135

WITH RECURSIVE t r av e r s e ou t go i ng edg e s (soc io , par tec ipata , depth , path ,

a l r e adyV i s i t ed) AS (

SELECT soc io , par tec ipata , 1 , ARRAY[s o c i o] : : cha rac t e r (16) [] , f a l s e

FROM companies and memberships . memberships

WHERE so c i o = ‘00102681419 ’

UNION ALL

SELECT cur r en t . soc io , cu r r en t . par tec ipata , p r ev i ou s . depth + 1 ,

(path | | cu r r en t . s o c i o) : : cha rac t e r (16) [] ,

c u r r en t . s o c i o = ANY(path)

FROM companies and memberships . memberships AS current ,

t r av e r s e ou t go i ng edg e s AS pr ev i ou s

WHERE cur r en t . s o c i o = prev i ou s . pa r t e c i pa ta

AND prev i ou s . depth + 1 <= 30 −− BE CAREFUL: do not use a too

high depth value !

AND cur r en t . pa r t e c i pa ta != cu r r en t . s o c i o −− avoid immediate

c y c l e s

AND NOT prev i ou s . a l r e adyV i s i t ed

) ,

c l eaned descendant s AS (

SELECT DISTINCT ON (par t e c i pa ta) par tec ipata , depth −− s e l e c t the

f i r s t occurrence o f the pa i r (CF, depth)

FROM trav e r s e ou t go i ng edg e s

WHERE NOT a l r e adyV i s i t ed

ORDER BY partec ipata , depth −− s e l e c t the pa i r with minimum depth

value

LIMIT 200000

)

SELECT ∗
FROM cleaned descendant s AS c d

JOIN

companies and memberships . companies AS comp

ON c d . pa r t e c i pa ta = comp . c o d i c e f i s c a l e

ORDER BY depth −− order the l i s t o f descendants accord ing to the depth

value

The new records are composed of the socio and partecipata values retrieved from the member-

ships relation; the incremented value for the depth, the concatenation of a new codice fiscale

value to the path string, and the detection of a cycle within the path. Such new records will be

then used for the next iteration of the sub-query. However, some checks are performed at each

iteration with respect to the maximum exploration depth allowed; to the avoidance of imme-

diate cycles within the extracted nodes; and with respect to the absence of cycles during the

136 Chapter 5. Evaluation and comparison of Graph Databases

previous iteration, so that useless work is not computed at all. (Note that the example provided

by the official documentation of PostgreSQL instead computes the presence of a cycle only at

the current stage, when maybe useless computations could already had been performed).

The WITH RECURSIVE block is followed by a WITH statement, which collects some of the

data extracted on a separate CTE, so that it can be used by a successive SELECT query. Within

this new CTE are collected distinct records belonging to the previous CTE. The combination

of ORDER BY and DISTINCT allows to select the first occurrence of the pairs (partecipata,

depth) (i.e. the one with minimum depth value) for each partecipata value. The next SELECT

query then globally orders the pairs by means of the depth value and performs a JOIN with

the anagraphical table so that all field values are given for each descendant enterprise record

reached.

The query thus simulates a traversal which starts from a given node and proceeds in breadth-

first order; such exploration order is given not by the filtering and ordering a-posteriori of the

results obtained, but properly by the way the WITH RECURSIVE query proceeds during the

execution.

The number of result nodes for the enterprise with low number of descendants (S) is 12; for the

intermediate case (M) the number is 76; for the case with a big number of nodes involved (L)

is 14037. The time values shown in Figure 5.11 are related to the times obtained by using the

Java query for Neo4j, rather than the Cypher query. In fact, the times taken by the Cypher

query for the same three nodes (S), (M) and (L) are the ones displayed in Figure 5.12. Actually,

the end time for the L case with the path uniqueness constraint (Cypher) is undefined because

after several minutes we stopped the execution. The comparison between the path uniqueness

and the global uniqueness constraints is showed only for Neo4j but holds also for the others.

As it can be seen in Figure 5.11, while PostgreSQL answers in times quite similar to the

graph databases for the S and M cases, for the L case the difference becomes more evident, in

fact there is an order of magnitude of difference between them.

In general, and in particular way for PostgreSQL, the more the levels, the nodes per level, and

the interconnections among such nodes; the more the memory and the time required for the

execution of the query.

Anyway, the main reason why the relational query takes so much time is due to the fact that the

global uniqueness on enterprise records is imposed only at a posteriori, and not while traversing

the simulated graph. There is no way to realize a global uniqueness constraint by using the

WITH RECURSIVE statement. One approach could be the one that makes use of a temporary

table for collecting the socio values visited; each time a new record is retrieved by the recursive

phase, it would then be assured that it is added to the CTE only if it is not already present

within such auxiliary table. However, it is not possible to create or update temporary tables

within a WITH RECURSIVE statement, so the proposed approach cannot be implemented.

One may think that another solution may be the one that, instead of using a temporary table,

uses a sting which collects the socio values, as it is done by the path string. However, every

5.5. Performance comparison 137

(a) First query

(b) Following queries

Figure 5.11: Query get distinct descendants and level charts

138 Chapter 5. Evaluation and comparison of Graph Databases

(a) First query (b) Other queries

Figure 5.12: Quick study of path uniqueness vs. global uniqueness.

path string is a value bound to each row of the CTE, so it is local to the records and not

global for the entire table. So again even this approach is not valid. One possibility could be

to analyze the CTE itself for checking that the reached value has not been already inserted in

previous rows. However such approach has not been tried.

There are two alternative ways to overcome such limits of the WITH RECURSIVE state-

ment, so that both breadth-first and global uniqueness are ensured, which are the implementa-

tion of a quite complex stored procedure, or the implementation of an algorithm developed with

an high-level programming language which continuously queries the database. Such algorithm

would asks, step by step, which are the edges to traverse at each iteration; and would handle

the aspects about result storage, cycles detection, global constraints, exploration order, etc.

However, such approaches have not been tested.

The other component that enhance the time required by PostgreSQL to answer to the query

is that all temporary data generated by the execution of the query are placed on disk [133]. In

fact, while the amount of RAM remains reduced during the execution (about 180MB), the disk

space is heavily used as support for the elaboration. During this query, the peak of disk space

used was of about 7GB. The other DBMSs instead managed to keep temporary data on RAM,

and - by doing a quick check with the top Linux command - we typically have that ArangoDB

uses a lot of RAM for keeping the indexes (about 5.4GB), while the other DBMSs require less

RAM, and the one which typically needs less of it is OrientDB; in fact Neo4j used 2.4GB of

RAM, while OrientDB used 220MB (without cache warm-up).

Note the fact that the global uniqueness constraint not only meets the requirement of returning

just once each descendant, but also avoids to explore multiple times some of the graph areas

that could be reached several times with a local uniqueness constraint by different paths. We

will explain this with more details in Section 6.

We also studied the similar query that retrieves only the codice fiscale values for each node. The

query structure is identical to the previous one, the only change is on the results returned at

the final step of its execution (just like for the query get direct fathers only cfs). The current

query is performed on the same codice fiscale values as previous and the times required are

5.5. Performance comparison 139

(a) First query

(b) Following queries

Figure 5.13: Query get distinct descendants and level only cfs charts

140 Chapter 5. Evaluation and comparison of Graph Databases

shown in Figure 5.13.

As it can be seen, the times required to resolve the query are generally smaller for all the

analyzed DBMSs with respect to the previous case.

5.5.6 count distinct ancestors per level

Suppose we want to get some statistic measures about the surrounding area of a node, and that

we are interested in obtaining the number of nodes which are one hop distant from a specified

node - i.e. those reachable by one (maybe directed) edge - then those two hops distant, etc.

The query may seem simple: in fact it would consist on the count of the length values for all

the paths obtained; in this case the paths are made of only ingoing edges. The example with

the node ‘13371752902’ is shown in Figure 5.14. The starting node is the one to the right, we

then want a result which states that at level 1 we have one node, at level 2 again one node, at

level 3 we have two nodes, and so on.

Figure 5.14: Ancestors of the node with codice fiscale = ‘13371752902’

Such queries would be, for example, written like:

LET sta r tVer t ex = ‘ Ente rp r i s e /00102681419 ’

LET minLevel = 1

LET maxLevel = 999

FOR v , e , p

IN minLevel . . maxLevel

INBOUND star tVer t ex

GRAPH ‘ enterpr ises and members Graph ’

COLLECT l e v e l = LENGTH(p . edges [∗]) INTO v e r t i c e s p e r l e v e l

LIMIT 200000

RETURN { ’ l e v e l ’ : l e v e l , ‘ count ’ : LENGTH(v e r t i c e s p e r l e v e l) }

5.5. Performance comparison 141

with AQL, and with Cypher like:

MATCH p = (e : Ente rp r i s e { c o d i c e f i s c a l e :

‘00102681419 ’})<−[m:MEMBEROF∗1 . . 999] − (ance s to r : Ente rp r i s e)

WITH MIN(LENGTH(p)) AS l e v e l , ance s to r . c o d i c e f i s c a l e AS ance s t o r s

RETURN l ev e l , SIZE(COLLECT(ance s t o r s)) AS ancestors number

ORDER BY l e v e l

LIMIT 200000;

However, these queries would return the following counting values: one node at level 1; one

node at level 2; two nodes at level 3; but three nodes at level 4, fifteen nodes at level 5, and 11

nodes at level 6; while one may expect, by rapidly looking at the figure, to get at most 5 levels

and with the sum of the counting numbers to 17. In addition, the given numbers for each level

are referred to the case where a uniqueness constraint is defined on vertexes and with path

scope; if the constraint would be defined on edges with path scope, the number would be even

incremented by the presence of the loop on the ‘00102681419’ node.

The queries respond correctly for the way they are written, but not as one may have thought

the initial query. They count, in fact, the different lengths of all the possible paths that can

be found. However, if the original question was not simply the one given before, but “get the

distribution, on the various depth levels, of the distinct ancestors of the given node”, here one

wants to know how many of the distinct ancestors are placed only one hop distant, how many

are instead placed two levels distant without considering those who were already counted at

the first level, and so on.

Again, if this second one is the query of interest (as will be for us) a depth-first approach

with “local” uniqueness would not answer to the query; in fact it gives the results previously

reported. The query has to be resolved with global uniqueness constraint for nodes - so that

nodes are considered only once - and with a breadth-first exploration - so that only the smallest

distance is considered. So, for the example node provided, we would like to obtain a result made

like this:

level ancestors number
1 1
2 1
3 2
4 2
5 11

Table 5.2: Result example for query count distinct ancestors per level

In AQL, the query is thus written like:

142 Chapter 5. Evaluation and comparison of Graph Databases

LET sta r tVer t ex = ‘ Ente rp r i s e /00102681419 ’

LET minLevel = 1

LET maxLevel = 999

FOR v , e , p

IN minLevel . . maxLevel

INBOUND

GRAPH ‘ enterpr ises and members Graph ’

OPTIONS { b f s : true , un iqueVer t i c e s : ‘ g loba l ’}
COLLECT l e v e l = LENGTH(p . edges [∗]) INTO v e r t i c e s p e r l e v e l

LIMIT 200000

RETURN { ‘ l e v e l ’ : l e v e l , ‘ count ’ : LENGTH(v e r t i c e s p e r l e v e l) }

In Neo4j the Traversal API should be used, the query structure remains the same of the query

about the search of the descendant nodes.

HashMap<Integer , Integer> nodPerLev = new HashMap<Integer , Integer >() ;

S t r i ngBu i l d e r sb = new St r ingBu i l d e r () ;

t ry (Transact ion tx = graphDb . beginTx ()) // execute with in a t r an sa c t i on

{
// Find the source node

sourceNode = graphDb . findNode (Labels . Enterpr i se , ” c o d i c e f i s c a l e ” , c f) ;

// Descr ibe how to r e t r i e v e the de s i r ed nodes

re su l tNodes = graphDb . t r a v e r s a lD e s c r i p t i o n ()

. b r eadthF i r s t ()

. r e l a t i o n s h i p s (Relat ionsh ipTypes .MEMBEROF, D i r e c t i on .INCOMING)

. eva lua to r (Evaluators . e x c l udeS ta r tPo s i t i on ())

. un iqueness (Uniqueness .NODEGLOBAL) ;

t r a v e r s e r = resu l tNodes . t r a v e r s e (sourceNode) ;

// Extract the r e s u l t

f o r (Path path : t r a v e r s e r) {
++resu l t sCounte r ;

// f o r each r e s u l t node , update the depth counter

In t eg e r previousCounter = getPreviousCounter (nodPerLev , path . l ength ()

) ;

nodPerLev . put ((In t eg e r) path . l ength () , previousCounter + 1) ;

}
// p r in t count ing r e s u l t

f o r (Map. Entry<Integer , Integer> entry : nodPerLev . entrySet ()) {
sb . append (” l e v e l : ” + entry . getKey () + ” , count : ” +

entry . getValue () + ”\n”) ;

}
}
[. . .]

p r i va t e s t a t i c In t eg e r getPreviousCounter (HashMap<Integer , Integer> map,

In t eg e r key) {
map . get (key) == nu l l ? re turn 0 : re turn (In t eg e r) (map . get (key)) ;

}

5.5. Performance comparison 143

A HashMap object is used to store the number of descendants found at the different depth

values: the key is the depth; the value is the count for such depth level.

In OrientDB the query is implemented as shown below. We again use the TRAVERSE state-

ment so that the breadth-first strategy can be forced; in addition the counting of the distinct

ancestors is performed on an outer SELECT statement.

SELECT l ev e l , l i s t (c o d i c e f i s c a l e) . s i z e () AS ance s to r s count

FROM (

SELECT c o d i c e f i s c a l e , $depth AS l e v e l

FROM (

TRAVERSE in (‘ member of ’)

FROM (SELECT FROM Ente rp r i s e WHERE c o d i c e f i s c a l e = ‘00102681419 ’)

MAXDEPTH 999

LIMIT 200000

STRATEGY BREADTH FIRST

)

WHERE $depth > 0)

GROUP BY l e v e l

ORDER BY l e v e l

The query for PostgreSQL is written as follow:

144 Chapter 5. Evaluation and comparison of Graph Databases

(a) First query

(b) Following queries

Figure 5.15: Query count distinct ancestors per level charts

5.5. Performance comparison 145

WITH RECURSIVE t r a v e r s e i n g o i n g ed g e s (soc io , par tec ipata , depth , path ,

a l r e adyV i s i t ed) AS (

SELECT soc io , par tec ipata , 1 , ARRAY[pa r t e c i pa ta] : : cha rac t e r (16) [] , f a l s e

FROM companies and memberships . memberships

WHERE par t e c i pa ta = ‘00102681419 ’

UNION ALL

SELECT cur r en t . soc io , cu r r en t . par tec ipata , p r ev i ou s . depth + 1 ,

(path | | cu r r en t . pa r t e c i pa ta) : : cha rac t e r (16) [] ,

c u r r en t . pa r t e c i pa ta = ANY(path)

FROM companies and memberships . memberships AS current ,

t r a v e r s e i n g o i n g ed g e s AS pr ev i ou s

WHERE cur r en t . pa r t e c i pa ta = prev i ou s . s o c i o

AND prev i ou s . depth + 1 <= 30

AND cur r en t . pa r t e c i pa ta != cu r r en t . s o c i o

AND NOT prev i ou s . a l r e adyV i s i t ed

) ,

c l e an ed anc e s t o r s AS (

SELECT DISTINCT ON (s o c i o) soc io , depth

FROM t r av e r s e i n g o i n g ed g e s

WHERE NOT a l r e adyV i s i t ed

ORDER BY soc io , depth −− take on top the pa i r s (soc io , depth) with sma l l e s t

depth va lue s

LIMIT 2000000

)

SELECT depth , count (s o c i o) AS members count

FROM c l e an ed anc e s t o r s

GROUP BY depth

ORDER BY depth ;

The core structure of the query remains the WITH RECURSIVE statement; however some

additional operations are performed on the following query statements so that the request is

met. Again, the distinct filter is only applied after the full exploration has been performed; so

potential useless computations will be elaborated.

Such queries allow then to count the nodes only once, and to place them at the nearest level

possible to the initial node.

The queries are performed on a node where the number of levels (with the sense here ex-

plained) is 1 and with about 5 ancestors (S); on another node with 3 levels and with about 100

ancestors (M), and on a node with 29 levels and about 20000 ancestors (L). The times required

for their executions are shown in Figure 5.15. We see that OrientDB takes more time than

the others on the first execution,and the same holds for the next, meaning that probably some

optimization may be done on the query implemented or on the counting function. We also see

that Neo4j goes way better than the others on the heavy situation (L).

146 Chapter 5. Evaluation and comparison of Graph Databases

5.5.7 get common descendants

The query searches for the enterprises that are directly and indirectly participated by two

given enterprises. In a single pass, such query answers then to the need of looking at whether

there are some enterprises participated by both the two enterprises analyzed; and in such

case, to obtain a list of them. The example with the two nodes ‘FLSBLN55L65G482J’ and

‘BTSSRM48K54D321A’ is shown in Figure 5.16.

Figure 5.16: Common descendants of the nodes with codice fiscale ‘FLSBLN55L65G482J’ and
‘BTSSRM48K54D321A’.

The first thought approach was based on the intersection of the two sets of descendants. How-

ever, a second approach has been thought, whose basic idea is the following: if it was possible

to efficiently obtain which is the pivotal node (or nodes) - i.e. the nearest node in common

of both the descendants of the two nodes - then we may apply the descendant search for such

node and obtain the list of descendants. In the example provided with Figure 5.16, the pivotal

node would be ‘00102681419’.

However, the problem with this approach is that in order to obtain the pivotal node(s), we

have to find and intersect the two lists of descendant nodes. So we perform the computations

for the entire query only for the computation of the single node, which is a waste if we later

use such node for the search of its descendants. The main reason of its infeasibility is due to

the fact that such pivotal node may be more than one level distant from the source nodes; and

also, the distances from the two nodes would in general be different. The only case where the

approach here reported would be efficient is when the pivotal node is one hop distant from both

the two nodes, that is it is child of both of them, like in Figure 5.16. In this way, the intersection

with a (hopefully) restricted amount of nodes would lead to an efficient individuation of such

node. However, the general case do not allow to proceed this way, neither allows to iteratively

proceed level by level for both nodes so that the intersection of the two result nodes is not null,

because, as already stated, it is not ensured that the node has the same distance from the two

initial nodes. So such approach was discarded, and the simple intersection between the two list

has been implemented.

5.5. Performance comparison 147

(a) First query

(b) Following queries

Figure 5.17: Query get common descendants charts

148 Chapter 5. Evaluation and comparison of Graph Databases

With AQL the query is written like:

LET f i r s tV e r t e x = ‘ Ente rp r i s e /00210880225 ’

LET secondVertex = ‘ Ente rp r i s e /00487520223 ’

FOR common descendants

IN INTERSECTION (

(

FOR ve r t i c e s 1 IN 1 . . 9 9 9

OUTBOUND f i r s tV e r t e x

GRAPH ‘ enterpr ises and members Graph ’

LIMIT 200000

RETURN ve r t i c e s 1

) ,

(

FOR ve r t i c e s 2 IN 1 . . 9 9 9

OUTBOUND secondVertex

GRAPH ‘ enterpr ises and members Graph ’

LIMIT 200000

RETURN ve r t i c e s 2

)

)

RETURN common descendants

An intersection is performed on the result sets of the two separate descendants collections; in

addition all values for nodes properties are printed.

With Neo4j the query is implemented in Java as shown below:

5.5. Performance comparison 149

Set<Str ing> s e t1 = new HashSet<Str ing >() ;

Set<Str ing> s e t2 = new HashSet<Str ing >() ;

t ry (Transact ion tx = graphDb . beginTx ()) {
// Find the source node 1 and de s c r i b e how to r e t r i e v e the de s i r ed nodes

sourceNode1 = graphDb . findNode (Labels . Enterpr i s e , ” c o d i c e f i s c a l e ” , c f 1) ;

r e su l tNodes1 = graphDb . t r a v e r s a lD e s c r i p t i o n ()

. b r eadthF i r s t ()

. r e l a t i o n s h i p s (Relat ionsh ipTypes .MEMBEROF, Di r e c t i on .OUTGOING)

. eva lua to r (Evaluators . a l l ())

. un iqueness (Uniqueness .NODEGLOBAL) ;

t r a v e r s e r 1 = resu l tNodes1 . t r a v e r s e (sourceNode1) ;

[. . .] // The same f o r the second node

// Extract r e s u l t s f o r the f i r s t node

f o r (Path path : t r a v e r s e r 1) {
St r ing c fValue = (St r ing) path . endNode () . getProperty (” c o d i c e f i s c a l e ”) ;

++resu l t sCounte r1 ;

s e t1 . add (c fValue) ;

}
[. . .] // The same f o r the second node

}
// I n t e r s e c t s e t s

s e t1 . r e t a i nA l l (s e t2) ;

// Prepare the r e s u l t s t r i n g

i n t inte r sec tedCount = 0 ;

S t r i ngBu i l d e r sb = new St r i ngBu i l d e r () ;

sb . append (” ”) ;

f o r (S t r ing element : s e t1) {
sb . append (element) ;

++inte r sec tedCount ;

i f (in te r sec tedCount == se t1 . s i z e ()) sb . append (” ;\n”) ;

e l s e sb . append (” , ”) ;

}

Again, the query collects separately two sets of codice fiscale values, related to the descendants

of the two nodes; at the end, the intersection of the two sets is performed. However, only the

value of the codice fiscale property is returned by such algorithm.

In OrientDB the query is implemented as shown below:

150 Chapter 5. Evaluation and comparison of Graph Databases

SELECT EXPAND($c)

l e t $a = (

TRAVERSE out (‘ member of ’)

FROM (

SELECT FROM Ente rp r i s e WHERE c o d i c e f i s c a l e = ‘01855720155 ’

)

MAXDEPTH 999

LIMIT 200000

STRATEGY BREADTH FIRST

) ,

$b = (

TRAVERSE out (‘ member of ’)

FROM (

SELECT FROM Ente rp r i s e WHERE c o d i c e f i s c a l e = ‘02935970984 ’

)

MAXDEPTH 999

LIMIT 200000

STRATEGY BREADTH FIRST

) ,

$c = INTERSECT($a , $b)

The query thus performs an intersection between the two sets of RIDs for the descendants

collected, and then it expands those RIDs so that all properties values for each node are

displayed.

In PostgreSQL the query is implemented as shown below.

5.5. Performance comparison 151

WITH RECURSIVE t r av e r s e ou t g o i n g edg e s 1 (soc io , par tec ipata , depth , path , a l r e adyV i s i t ed) AS (

SELECT soc io , par tec ipata , 1 , ARRAY[s o c i o] : : cha rac t e r (16) [] , f a l s e

FROM companies and memberships . memberships

WHERE so c i o = ‘01706330519 ’

UNION ALL

SELECT cur r en t . soc io , cu r r en t . par tec ipata , p r e v i ou s 1 . depth + 1 ,

(path | | cu r r en t . s o c i o) : : cha rac t e r (16) [] ,

c u r r en t . s o c i o = ANY(path)

FROM companies and memberships . memberships AS current , t r a v e r s e ou t g o i n g edg e s 1 AS

p r ev i ou s 1

WHERE cur r en t . s o c i o = pr ev i ou s 1 . pa r t e c i pa ta

AND pr ev i ou s 1 . depth + 1 <= 30

AND cur r en t . pa r t e c i pa ta != cu r r en t . s o c i o

AND NOT prev i ou s 1 . a l r e adyV i s i t ed

) ,

t r a v e r s e ou t g o i n g edg e s 2 (soc io , par tec ipata , depth , path , a l r e adyV i s i t ed) AS (

SELECT soc io , par tec ipata , 1 , ARRAY[s o c i o] : : cha rac t e r (16) [] , f a l s e

FROM companies and memberships . memberships

WHERE so c i o = ‘01706500517 ’

UNION ALL

SELECT cur r en t . soc io , cu r r en t . par tec ipata , p r e v i ou s 2 . depth + 1 ,

(path | | cu r r en t . s o c i o) : : cha rac t e r (16) [] ,

c u r r en t . s o c i o = ANY(path)

FROM companies and memberships . memberships AS current , t r a v e r s e ou t g o i n g edg e s 2 AS

p r ev i ou s 2

WHERE cur r en t . s o c i o = pr ev i ou s 2 . pa r t e c i pa ta

AND pr ev i ou s 2 . depth + 1 <= 30

AND cur r en t . pa r t e c i pa ta != cu r r en t . s o c i o

AND NOT prev i ou s 2 . a l r e adyV i s i t ed

) ,

c l eaned de s cendant s 1 AS (

SELECT DISTINCT ON (par t e c i pa ta) par tec ipata , depth

FROM trav e r s e ou t g o i n g edg e s 1

WHERE NOT a l r e adyV i s i t ed

ORDER BY partec ipata , depth

LIMIT 200000

) ,

f i n a l d e s c e n d a n t s l i s t 1 AS (

SELECT depth , pa r t e c i pa ta AS s u b s i d i a r i e s

FROM cleaned des cendant s 1

ORDER BY depth

) ,

c l eaned de s cendant s 2 AS (

SELECT DISTINCT ON (par t e c i pa ta) par tec ipata , depth

FROM trav e r s e ou t g o i n g edg e s 2

WHERE NOT a l r e adyV i s i t ed

ORDER BY partec ipata , depth

LIMIT 200000

) ,

f i n a l d e s c e n d a n t s l i s t 2 AS (

SELECT depth , pa r t e c i pa ta AS s u b s i d i a r i e s

FROM cleaned de scendant s 2

ORDER BY depth

) ,

i n t e r s e c t ed de s c endan t s AS (

SELECT s u b s i d i a r i e s FROM f i n a l d e s c e n d a n t s l i s t 1

INTERSECT

SELECT s u b s i d i a r i e s FROM f i n a l d e s c e n d a n t s l i s t 2

)

SELECT ∗
FROM in t e r s e c t ed de s c endan t s AS i d

INNER JOIN

companies and memberships . companies AS comp

ON i d . s u b s i d i a r i e s = comp . c o d i c e f i s c a l e ;

152 Chapter 5. Evaluation and comparison of Graph Databases

We followed the approach used in previous query for the exploration of the graph; we save the

two descendants lists in two CTEs and, at the end, we perform the intersection of them.

The number of common nodes for the “small” case (S) is 6; for the intermediate case (M) the

number is 84; for the “large” case (L) the number is 8728. The times required to resolve such

query for the three situations are shown in Figure 5.17. We see that Neo4j and OrientDB are

aligned on the first execution, and a pattern with Neo4j which performs better than OrientDB

can be seen at operating speed. ArangoDB on the other hand seems to show some difficulties

on the heavy node. PostgreSQL shows good performance at operating speed for the cases S

and M; however for the L case it responds an order of magnitude later than the worst graph

database, and three orders of magnitude later than the best.

We did a quick study on the memory consumption also for this query. Even in this case,

PostgreSQL uses few RAM (about 70MB) and places its temporary data on disk, consuming

about 3GB of space, which is clearly released at the end of the execution. This time we have

that both Neo4j and OrientDB use about 2.5GB of RAM, while ArangoDB remains at its

5.4GB.

5.5.8 get common ancestors

Here the queries are identical to the previous ones, it only changes the direction of the ex-

ploration. Note, however, that while for graph databases such thing is achieved by simply

changing the direction keyword within the query, for SQL it have to be changed the fields for

the JOINs and the field over which search the given codice fiscale value at the initial step of

the recursive statement (i.e. it must be searched on the partecipata field instead of the socio

field). In addition, also the policies for path and alreadyVisited fields should be “inverted”.

The number of common nodes for the “small” case (S) is 26; for the intermediate case (M) the

number is 140; for the “large” case (L) the number is 19548. The times required to resolve such

query for the three situations are shown in Figure 5.18. Again, Neo4j is the one which performs

better on the heavy case; on the other hand ArangoDB performs well on the remaining cases.

5.5.9 get shortest directed path

The query searches for the shortest path, made of only outgoing edges, from a given node

to another given node. The example for the pair (‘00102681419’, ‘02086091417’) is shown in

Figure 5.19.

With AQL the query is implemented as shown below:

5.5. Performance comparison 153

(a) First query

(b) Following queries

Figure 5.18: Query get common ancestors charts

Figure 5.19: Shortest (directed) path from the node ‘00102681419’ to the node ‘02086091417’.

154 Chapter 5. Evaluation and comparison of Graph Databases

LET sta r tVer t ex = ‘ Ente rp r i s e /80147930150 ’

LET targetVertex = ‘ Ente rp r i s e /08800160964 ’

LET path = (

FOR vertex , edge

IN OUTBOUND

SHORTEST PATH sta r tVer t ex TO targetVertex

GRAPH ‘ enterpr ises and members Graph ’

RETURN vertex

)

RETURN { ‘ path ’ : path , ‘ length ’ : LENGTH(path) − 1 }

The syntax is not the same of the AQL Traversal; in fact, it is a new syntax designed for this

specific purpose. In this query structure we obviously specify the edges directions, the two

extreme nodes of the path, and the named graph. At the end, we also return the length of

the path, which is decremented by one because the LENGTH() function, applied to a path,

substantially counts the number of the vertexes; while we preferred to count the length of the

path in terms of edges.

With Cypher the query is written as shown below:

OPTIONAL MATCH p = shortes tPath ((startCompany : Ente rp r i s e { c o d i c e f i s c a l e :

‘80147930150 ’ })−[e :MEMBEROF∗ . .999]−>(targetCompany : Ente rp r i s e {
c o d i c e f i s c a l e : ‘08800160964 ’ }))

RETURN p , LENGTH(p) ;

The OPTIONAL MATCH statement is used so that the result contains a null if there are not

paths found. The path to be searched is defined as usual, however the function shortestPath(),

called on the path pattern specified, is the way by which Neo4j knows that is has to compute

and return only the shortest path. Again, together with the path, we also return its length.

In OrientDB the query is implemented as shown below:

SELECT expand (sho r t e s t pa th)

FROM (

SELECT shorte s tPath (

(SELECT FROM Ente rp r i s e WHERE c o d i c e f i s c a l e = ‘80147930150 ’) ,

(SELECT FROM Ente rp r i s e WHERE c o d i c e f i s c a l e = ‘08800160964 ’) ,

‘OUT’ ,

‘member of ’ ,

{”maxDepth ” : 30}
) AS sho r t e s t pa th

)

Similarly to ArangoDB, also in OrientDB there is a specific syntax for searching the shortest

path, which is encoded as a function call with specified arguments. Such arguments are about

5.5. Performance comparison 155

the two involved nodes (which are searched by their codice fiscale value rather than passing

their RIDs); the edge directions, the edge type, and a parameter specifying the max length for

the path. Since such functions returns a list of RIDs, the expand() function is called on it by

an outer SELECT statement.

In PostgreSQL the query is written as shown below.

WITH RECURSIVE search path (src company denom , dst company denom , path CFs ,

hops , c y c l e d e t e c t e d) AS

(

SELECT

src company denom ,

’ n o t a l r e ady r e t r i e v ed ’ : : varchar (305) ,

ARRAY[src company cf , dst company cf] : : cha rac t e r (16) [] ,

1 ,

s rc company cf = dst company cf

FROM

companies and memberships . company memberships view

WHERE

src company cf = ‘08800160964 ’

UNION ALL

SELECT

f . src company denom ,

d . dst company denom ,

(path CFs | | d . dst company cf) : : cha rac t e r (16) [] ,

f . hops + 1 ,

d . dst company cf = ANY(f . path CFs)

FROM

companies and memberships . company memberships view d ,

search path f

WHERE

f . path CFs [a r r ay l eng th (path CFs , 1)] = d . src company cf

AND NOT f . c y c l e d e t e c t e d

)

SELECT ∗
FROM search path

WHERE path CFs [1] = ‘06194870017 ’ AND path CFs [a r r ay l eng th (path CFs , 1)] =

‘03747000408 ’

ORDER BY hops −− t h i s o rde r s paths found by number o f hops

LIMIT 1 ; −− t h i s s e l e c t s only the f i r s t path

The query uses a view defined so that, together with the codice fiscale, also the denominazione

value is collected. It uses the WITH RECURSIVE statement and expands all the paths that

start from the given node, checking that no cycles are present. At the end, it selects the path

which reaches the desired node. It clearly is sub-optimal, because it does not stop if one of the

156 Chapter 5. Evaluation and comparison of Graph Databases

(a) First query

(b) Following queries

Figure 5.20: Query get shortest directed path charts.

5.5. Performance comparison 157

explored path already computed reaches the desired node; so one possible optimization may be

this one. Such optimization may be done by initializing an additional field, called destination,

to the codice fiscale value of the destination node; and by initializing another new field reached

to ‘false’. At each recursive step, thus for each new codice fiscale retrieved, if it is equal to the

value on the destination field (which remains the same for each iteration) then the reached field

may be set to ‘true’ and then a check on such field would stop the exploration. However, it

would only stop the exploration on the current path found, and the expansion of other paths

would be performed. Again the lack of global information does not allow to stop the exploration

based on run-time results, and thus does not allow to implement the algorithms of graph theory

that face such problem.

Obviously, in alternative to the view, we could have worked only on the relationships table, as

done in previous queries, and thus the path would have been made of codice fiscale values.

CREATE VIEW companies and memberships . company memberships view AS

SELECT

company 1 . c o d i c e f i s c a l e AS src company cf ,

company 1 . denominazione AS src company denom ,

company 2 . c o d i c e f i s c a l e AS dst company cf ,

company 2 . denominazione AS dst company denom

FROM

companies and memberships . companies AS company 1

JOIN companies and memberships . memberships AS memb ON

(company 1 . c o d i c e f i s c a l e = memb. s o c i o)

JOIN companies and memberships . companies AS company 2 ON

(memb. pa r t e c i pa ta = company 2 . c o d i c e f i s c a l e) ;

The length of the shortest path in the lightweight case (S) is 5; in the intermediate case (M)

the number is 120; in the heavy case (L) is 1815. The times required to resolve such query

for the three situations are shown in Figure 5.20. It emerges that PostgreSQL, even though

the query is suboptimal, performs well on both S and M cases and on both first execution and

following executions; however, for the heavy case (L), the query displays its inefficiency. On

the other hand, ArangoDB performs better than the others on all cases, apart from the L case

at operating speed, given that Neo4j goes faster.

Even here, PostgreSQL do not uses big amounts of RAM (about 180MB), rather uses a quite

big amount of disk space (about 4.5GB). ArangoDB as usual uses 5.4GB of RAM due to the

indexes kept in memory; Neo4j uses about 2.8GB of RAM and OrientDB about 2.2GB.

158 Chapter 5. Evaluation and comparison of Graph Databases

5.5.10 Summary

Warm-up

The first thing that stands out is that, despite we performed a preliminary warm-up of the

cache, for all the databases we see a great difference between the times of the first execution

of a query, and the times of the following executions. This means that an additional form of

“cache level” should be present, which goes beyond the caching of the full data collection. We

suppose this is given by both the fact that data of interest is brought to a “higher level” of

cache (in Java it may means that data is considered fresh by the garbage collector), and a query

plan caching.

While it is unclear whether ArangoDB and OrientDB implement a query plan caching mech-

anism (we instead do know they implement a result cache mechanism [30, 86], which we have

disabled); we know that Neo4j implements it, and it can be disabled. On the other hand, we

know that PostgreSQL implements a query plan caching mechanism, but it is only applied

when queries are written with prepared statements or procedures, as explained in Section 3.2.4.

Query times

By looking at the charts, it emerges that ArangoDB generally performs better then the others,

especially for the (S) and (M) cases.For the (L) cases, instead, Neo4j seems to work better.

However we are talking about a graph database (ArangoDB) which slightly goes far from the

philosophy of “durability-for-everything” of relational databases and also other graph databases;

rather it goes to the direction of an “in-memory” database. The main reasons for its better

performance for the (S) and (M) cases is probably due to the fact that, being written in C++,

it allocates main memory so that data is effectively always kept available. With Neo4j and

OrientDB, instead, being written in Java, the garbage collection may consider such data “old”

at a certain moment after the warm-up; and thus such data may not be “ready” when the query

asks for them. So one critical configuration parameter for further tuning Neo4j and OrientDB

would regards the JVM configurations for the Garbage Collector. The main reason for the

better performance of Neo4j in the heavy case (L) is probably due to the fact that index (or

similar forms of) lookups are completely avoided due to the presence of the pointers to the

linked data of interest.

In addition, it can be seen that a typical pattern can be recognized, which is the fact that

often happens that Neo4j and OrientDB are quite “paired”, especially for (S) and (M) cases.

For the (L) cases, instead, sometimes goes better Neo4j and other times goes better OrientDB.

One important aspect is that PostgreSQL typically performs well when we talk about (S) and

(M) cases, or when we talk about the basic queries of searching nodes in few levels of distance.

On the other hand, it takes more time than the others when it has to work with a big amount

5.5. Performance comparison 159

of connected data (L).

Query writing

In our opinion, Cypher is the most intuitive language for graph queries development; its graph

pattern matching syntax is the easiest way to write a query on a graph.

AQL, even though it also is a declarative language, it displays a syntax which let it seems

near to a procedural language. In particular, it does not work on pattern matching like Cypher,

rather it is focused on handling data collections. This is surely due to its multi-model nature,

where documents and collections represent the way by which data is conceptually organized.

However, AQL was the only query language that allowed to formulate all queries chosen; so it

seemed to be the one with greater power of expressiveness.

On the other hand, the extended SQL of OrientDB clearly has the benefit of being near to

the SQL language we are all familiar with; however the possibility to express graph queries by

means of three different statements can cause some confusion. However, apart from this aspect,

another weak point is that it often exposes on results the internal identifiers of the records,

while one typically prefers a result made of valuable data. In addition, for what I saw, there

is no way to perform an interrogation (with the MATCH or TRAVERSAL statements) which

is targeted to only a specific level of depth. The suggested method for MATCH provided in

documentation (that is by imposing a couple of where and while clauses which restrict the valid

depth values) seemed not to work, because it returned all the results till the max depth level

specified.

For what regards SQL, it is not a graph query language, and in this domain such aspect is

felt very well. It provides a way for working with tree-structured and graph-structured data,

however such method is suboptimal due to the difficulties on defining traversal conditions. We

think that there are limited possibilities for writing better graph queries with SQL than the

way provided by our queries. The enhancement would be brought by implementing them via

(quite complex) PL/pgSQL stored procedures, or by high-level languages which would have to

manage all the query logic.

We also highlight that, as soon as we start to perform traversal queries on a relational table

- both with a fixed number of edges traversed, and with a parametric number - the queries’

bodies become very large. So while the same operations can be requested by a graph query

language, for a relational database several rows have to be written so that a similar operation is

described. This is then one of the reasons why graph databases could be taken in consideration

when an application works on graph data: the simplified implementation of queries can bring

reduced development times; reduced probability of mistakes; and also leave more room for

reasoning about other and more complex queries. In this way, the graph query language could

become a starting point for the exploration of new query possibilities, which with a relational

database may have been less visible.

160 Chapter 5. Evaluation and comparison of Graph Databases

For what concerns the implementation given for some of the Neo4j’s queries, we recognize that

the java code provided by us can be significantly improved. One particularly costly operation is

the concatenation of strings made within some appending operations done on the StringBuilder

object. The highlighting of such bottleneck emerged only on a later moment. Other improve-

ments could be done on the choice of the data-structures used for storing other kind of data

results (like the counting of different ancestors per level). Such improvements are suggested

based on a particular attention on the dynamics of the Java garbage collection.

We however conclude by stating that APIs are generally more powerful and versatile than the

provided query languages. This seems to be trivial, but it is not: only by testing them it can be

discovered the presence of eventual pitfalls or limits, or again the complexity degree for their

usage. The provided query languages, however, are the most rapid way for performing queries,

most of all for those which display a restrained level of complexity.

Chapter 6

Displaying the resulting subgraph of a

query

In this chapter we will discuss about how to handle the problem of being able to reconstruct

the graph structure of the result set of a query.

Queries shown in the Chapter 5 lose the graph structure of the result. Consider the query

where the descendants of a node are searched: the result is made of a flat list of vertexes; the

information about involved edges (or paths), and thus the structure of the graph, is not present.

In order to allow an application - which receives data from the database - to be able to render

the resulting subgraph of a query, some additional information should be returned. The fact

of being able to return enough data so that it is possible to draw the graph structure among

the result nodes obtained, in fact, would be of interest for some InfoCamere applications like

BRACCO and ri.visual.

The first approach that could come in mind is to return, together with the descendant nodes

found, the paths which reach them. Note that, in a general situation, for the same descendant

node there may be multiple paths that end on it; thus for each node we need to return every ex-

isting path so that we do not lose some of the edges. This time we are then in a situation that is

different from the one of get distinct descendants and level query, because multiple paths to the

same node have to be detected and returned, and not discarded. Because of this, one may think

that, this time, there is no need to expressly force a breadth-first exploration order, and that the

default behavior (depth-first order with unique edge/vertex per path) may work well. This is

generally not true because of the same reasons of the query get distinct descendants and level :

in graph portions where the situation is quite complex - both in terms of nodes number, and

in terms of interconnections among them - the approach may again become impractical; in

particular, the query may not end in useful time. So the following Cypher statement:

161

162 Chapter 6. Displaying the resulting subgraph of a query

MATCH path = (startNode : Ente rp r i s e { c o d i c e f i s c a l e :

‘00102681419 ’})−[m:MEMBEROF∗1..999]−>(descendant : Ente rp r i s e)

RETURN descendant , path

LIMIT 200000;

will response in acceptable time for those nodes that do not have so much interconnected

nodes; however, for the heavy situation (L) of the query get distinct descendants and level,

such Cypher statement launches a query that does not end even after minutes.

The approach provided by the get distinct descendants and level query was to force a global

uniqueness constraint for vertices; however, such solution would not be valid for the current

query. In fact, such constraint implies that, if a second path is found to pass through a node

already seen by a previously computed path, the second path would not be returned. Please take

in mind that, in simple terms, paths are iteratively constructed by adding pieces (edges/nodes)

to the path found in the previous iteration; and are not rebuilt from the initial vertex each

time, even if they are returned on the result like that. However, by using such constraint we

lose some of the paths present within the source graph; so another approach has to be followed.

Let’s see it with the help of some figures. Suppose we have a situation like the one showed in

Figure 6.1, which can be seen as the resulting subgraph made of the descendants of the A node.

Figure 6.1: Example figure for a subgraph of descendants.

Suppose we do not have any kind of constraints defined for the exploration of the graph; the

paths obtained by the two traversal strategies would be like the ones showed in Figures 6.2

163

Figure 6.2: DFS order on the example subgraph.

Figure 6.3: BFS order on the example subgraph.

164 Chapter 6. Displaying the resulting subgraph of a query

and 6.3. Because of the fork, two paths reach the each node from D to H ; the only thing that

changes between the two approaches is the order by which paths are found.

Now suppose there is a further edge that goes from the E node to the F node. Because of

it, the subgraph made of the nodes F, G and H (and related edges) would be explored a third

time. And now suppose we have another edge on A, which goes to itself; then the number of

the overall possible paths would become twice the previous number, and the subgraph (F,G,H)

would be explored a fourth time. Without constraints, we soon end up in a situation where a

lot of graph areas are traversed multiple times, even though only the initial part of the paths

changes. There are then some computations that could be reduced. Furthermore, note that

the complete absence of constraints would bring the query to never end, because with the

hypothetical initial cycle on the A node would generate an infinite number of paths, because

multiple loops on such edge may be done.

By forcing the vertexes uniqueness with path scope, the situations with cycles (detected

by the presence of the same node more then a time on the path retrieved) are avoided. So,

supposing to only have the loop on the A node as a modification of the situation showed in

Figure 6.1, such constraint would generate, instead of the infinite number of the previous case,

the same number of results as the one showed by the two Figures 6.2 and 6.3. In this way,

however, we again explore the subgraph (D...H) as many times as the number of different paths

that reach D.

On the other hand, a global uniqueness constraint for vertexes would have avoided the

exploration of the edges from number 8 to 12 (both included) for the DFS case; and the edges

[4,7,8,11,12] for the BFS case. This because D has already been visited during a previous phase

of the exploration. Such thing implies that, for node D, only one path would be returned; and

then the edge from C to D would be lost, together with the path that goes from A to D. In

addition, also for nodes “under” D will be returned with a single path.

So we are in the situation where:

• the lack of constraints brings endless query execution if cycles are present;

• the uniqueness constraint on vertexes at “path level” allows to retrieve all the paths to

each single descendant node, avoids cycles, but it performs computation of paths also on

already explored sub-graphs, which cause huge workload in complex situations;

• the uniqueness constraint on vertexes at “global level” avoids the exploration of already

visited graph regions; however only the first path found is returned for each descendant.

None of the previous constraints allows to also maintain the graph structure on the result set

while answering in reasonable time.

The solution is then to reason about the adoption of a constraint on edges.

By using an edge uniqueness constraint at “path level”, we would avoid all paths that are

made of cycles. However, these cycles are a subclass of the cycles avoided by the constraint

on vertexes; in fact, it avoids only cycles where the same edge is found twice within the path,

which basically consists on finding two times the two extremal vertexes of such edge. With

165

reference to Figure 6.1, we than have that the number of paths found is the same shown by the

two Figures 6.2 and 6.3. If the hypothetical looping edge would be present on the A node, it

would only double the number of total paths, but the query would end its execution. So again,

this constraint ensures the query to not cycle indefinitely; however it explores multiple times

all subgraph areas reachable by multiple paths.

In order to avoid multiple visits on the subgraph made of nodes D,...,H , the edge constraint

should be imposed at “global level”. Indeed, only the “edge visits” from 1 to 8 would be

explored in Figure 6.2; and similarly, edges 7,8,11,12 would not be visited in Figure 6.3. What

changes, with respect to the case of global uniqueness on vertexes, is that the edge from C to

D is, this time, not only traversed, but also returned.

Since this approach also returns the “missing edge”, which was the one from C to D, we now

have that we return not all paths, but all edges; and by having all edges we are then able to

reconstruct the graph structure of the result. In fact, if for each descendant node we have the

information about what are the father nodes from which paths come to it, we can draw the edges

from such father nodes to the descendant, and by iteratively doing the same on its fathers, we

will end up with the reconstruction of the underlying linking structure. Furthermore, in order

to not lose the properties defined on edges, rather then returning what we call “the previous

node”, we may return the last edge found, so that both nodes and edge properties are present

in the result set.

Summarizing, we then have two ways to get enough data on the result set so that the linking

information is preserved, which are:

• returning all paths, for each descendant node, by forcing the uniqueness constraint for

nodes at “path level”;

• returning all last edges, for each descendant node, by forcing the uniqueness constraint

for edges at “global level”.

The advantage of returning the entire paths is that the single descendant node already has the

information about all the paths that reach it, and thus eventual property values defined on the

edges of the path would be already present. In this way, successive elaborations would cherish

the fact that such data do not have to be rebuilt, so computations on entire paths would be

quick.

In contrast, the advantages of returning the second-last node (or the last edge, so that also

edge properties are given) are about a great speedup of the query’s execution time and a great

lightening of the resulting data. However, the disadvantage of this approach is that, if the

reconstruction of the paths to the source node is of interest, it would require additional work

before such information is available.

An additional observation is the following: if it could be possible to express more than one

uniqueness constraint, we could then restrict even more the exploration. The main interest for

this would be about using the global constraint for edges, and the path constraint for nodes.

166 Chapter 6. Displaying the resulting subgraph of a query

This would even more reduce the result set by discarding those paths that present some cycles

(if the purpose of the query desires to avoid them by the result set).

Let’s now see what happens by combining the different constraints on the subgraph made of

the descendants of the node ‘00102681419’, showed in Figure 5.10. By supposing it is possible

to define more than one constraint, and since there are three definable constraints for nodes,

three for edges, and two exploration strategies, the number of combinations is 3× 3× 2 = 18.

Strategy Uniqueness on edges Uniqueness on nodes Number of results
BFS | DFS none none infinite
BFS | DFS path none 33
BFS | DFS global none 13
BFS | DFS path | none path 16
BFS | DFS global path 12
BFS | DFS global | path | none global 11

Table 6.1: Constraints combinations on node ‘00102681419’

Let’s now see how the query for returning the “previous node” can be implemented.

The default exploration approach for ArangoDB is by using a depth-first order, the uniqueness

constraint with “path scope” for edges, and none uniqueness constraint for vertexes. AQL

allows to define the three kinds of constraint presented so far for both edges and nodes, the

exploration order, and also allows to define both uniqueness constraints on edges and vertexes

together.

LET sta r tVer t ex = ‘ Ente rp r i s e /00102681419 ’

LET minLevel = 1

LET maxLevel = 999

FOR v , e , p

IN minLevel . . maxLevel

OUTBOUND star tVer t ex

GRAPH ‘ enterpr ises and members Graph ’

OPTIONS { b f s : true , uniqueEdges : ‘ g loba l ’}
//OPTIONS { b f s : true , uniqueEdges : ‘ g loba l ’ , un iqueVer t i c e s :

‘ path ’}
LIMIT 200000

RETURN { ’ descendant ’ : v , ‘ prev ious node ’ : p . v e r t i c e s [−2]}
//RETURN { ’ descendant ’ : v , ‘ prev ious node ’ : p . edges [−1]}

The commented rows show that it is possible to force more than one constraint, and also show

how to return the last edge instead of the previous node.

167

Talking about Neo4j, its default exploration strategy, as already explained, is in depth-first and

with path uniqueness constraint for nodes. Cypher only allows to define queries which work

like this; by using the Java Traversal API however the following constraints can be set:

• NODE GLOBAL: A node cannot be traversed more than once.

• NODE LEVEL: Entities on the same level are guaranteed to be unique.

• NODE PATH: For each returned node there’s a unique path from the start node to it.

• NODE RECENT: This is like NODE GLOBAL, but only guarantees uniqueness among

the most recent visited nodes, with a configurable count.

• NONE: No restrictions.

• RELATIONSHIP GLOBAL: A relationship cannot be traversed more than once, whereas

nodes can.

• RELATIONSHIP LEVEL: Entities on the same level are guaranteed to be unique.

• RELATIONSHIP PATH: For each returned node there’s a (relationship wise) unique path

from the start node to it.

• RELATIONSHIP RECENT: Same as for NODE RECENT, but for relationships [78].

It seems that only one constraint can be used at a time.

The Cypher code snippet reported at the beginning of this section shows how to retrieve all

paths. For the retrieval of descendant nodes and their previous nodes, the query is written as

showed below.

168 Chapter 6. Displaying the resulting subgraph of a query

t ry (Transact ion tx = graphDb . beginTx ()) // execute with in a t r an sa c t i on

{
// Find the source node

sourceNode = graphDb . findNode (Labels . Enterpr i se , ” c o d i c e f i s c a l e ” , c f) ;

// Descr ibe how to r e t r i e v e the de s i r ed nodes

re su l tNodes = graphDb . t r a v e r s a lD e s c r i p t i o n ()

. b r eadthF i r s t ()

. r e l a t i o n s h i p s (Relat ionsh ipTypes .MEMBEROF, D i r e c t i on .OUTGOING

)

. eva lua to r (Evaluators . e x c l udeS ta r tPo s i t i on ()) // DO NOT TURN

i t to . a l l () , because you w i l l get a Nul lPo interExcept ion !

. un iqueness (Uniqueness .RELATIONSHIP GLOBAL) ;

t r a v e r s e r = resu l tNodes . t r a v e r s e (sourceNode) ;

// Extract the r e s u l t

f o r (Path path : t r a v e r s e r)

{
St r i ngBu i l d e r sb = new St r ingBu i l d e r () ;

sb . append (” path l ength : ” + path . l ength () + ” , c o d i c e f i s c a l e : ” +

path . endNode () . getProperty (” c o d i c e f i s c a l e ”) + ” , prev ious node : ”

+ path . l a s tRe l a t i o n s h i p () . getStartNode () . getProperty (

” c o d i c e f i s c a l e ”) + ”\n”) ;
++re su l t sCounte r ;

System . out . p r i n t (sb . t oS t r i ng ()) ;

}
}

Here it is also showed how to eventually access properties defined on the last edge.

OrientDB, when using MATCH or TRAVERSE statements, imposes global uniqueness to ver-

texes; so it is not possible to collect all previous nodes for each descendant, because only the

first retrieved one is returned. The other query way, that is by using the SELECT statement,

would return nodes without checking their uniqueness; however, it presents all the drawbacks

already explained for its usage in graph traversal queries.

A quick search about the topic has been done also on Java Graph and Traversal API docu-

mentation pages [89, 93] and also on Gremlin documentation [129, 130]. However, at the time

of writing, its seems there are not methods that allow to specify, while performing the traversal,

different kinds of constraint (as done by Noe4j). So the implementation of this kind of query

would require some efforts for the developer.

In PostgreSQL, since we did not found a way to express global constraints while writing SQL

queries, the implemented way for returning the pairs (descendant, previousnode) is by exploit-

ing the traversal part of the queries explained before, and to collect, during the exploration,

the previous node for each node found. However, such information was already collected by

the socio field, so we only had to return its value together with the partecipata value repre-

169

senting the descendant node reached. However such query implements cycles avoidance, which

corresponds to unique vertex per path as already explained, so some of the results would not

be returned. The strategy for cycles avoidance, on the other hand, cannot be removed because

the execution would loop indefinitely.

Resuming, two ways for returning the graph structure in a query result are possible. The first

is the one that returns all the paths from the initial node to the reached node; this can be done

with both DFS or BFS approach, and with ‘none’ or ‘path’ uniqueness constraint defined on

vertexes. The second is the one that returns only the last edge of the path that reaches such

node; this can be done by both DFS or BFS approach, and with ‘global’ uniqueness constraint

defined on edges, with the eventual ‘path’ constraint on vertexes.

If path objects are returned by the query languages, they typically already contain, struc-

tured in a JSON format, all data about traversed nodes and edges. Actually, OrientDB returns

its internal identifiers (RIDs) when the $path system variable is returned, so one has to expand

such list, which in turn will returns only vertexes, so a more complex query should be imple-

mented in order to have both vertexes and edges data.

As obvious, when we use a different approach for the implementation of the query (such

as a Java native API or stored procedures), the developer has to give a JSON format to the

obtained results, so that its transport can be done effectively and the application can again

exploit such result structure for extracting data.

170 Chapter 6. Displaying the resulting subgraph of a query

Chapter 7

Conclusions

The main goals of this work where to investigate the field of graph databases, to understand

their peculiarities and to compare them with the well established relational database. In par-

ticular, we were interested in evaluating how they would perform on a dataset that represents

relationships among companies. The attention was focused on gaining fast query responses; on

the ease of development of queries; and on looking for new opportunities that such technology

may bring.

For these purposes, we started by giving some notions about graph databases’ characteris-

tics, we analyzed their data models, and we looked at the differences between them and graph

computing engines. We also analyzed, with a good level of detail, what are the fundamental

characteristics of three of the currently available graph database products. We then tested

them on a real dataset, with the additional comparison with a relational database, so that we

have an overview of their performance differences. Now, we gather the conclusions of our work.

We start this chapter by giving a quick assessment of the main topics of interest for the four

DBMSs compared; we then report the main conclusions of the work; we give some final consid-

erations on the performance results obtained; and at the end we give some hints about future

developments.

7.1 DBMSs assessment

We will assign some grades for each DBMS compared, with regards on the following topics:

performance, expressiveness of query languages, provided APIs, resources consumption, licens-

ing, data import time, and documentation quality. At the end, we will resume the assessment

by summing such values, with double weight for the grade related to the performance obtained

at query time. Grades will range from 1 to 10, were 10 is better. The value which represents

the “sufficiency” is 6.

171

172 Chapter 7. Conclusions

By looking at the performance showed by the three graph databases, we could state that

ArangoDB typically answers to the query in less time than the others, especially for the (S)

and (M) cases. Sometimes the difference is of an order of magnitude; other times (like for

the get common descendants query) we have seen that on the “heavy node” (L) it performs

worse than the others. In any case, we could say that a pattern made like this can be seen on

most of the queries: ArangoDB performs better; Noe4j and OrientDB are quite aligned, even

though OrientDB typically performs better than Neo4j on simple queries, while Neo4j typically

performs better on complex queries and on queries that follow the first one; and PostgreSQL

varies its performance accordingly to the query typology, but for the heavy cases (L) it typically

requires more time than the others. For these reasons, we assign the grade 9 to ArangoDB, 8

to Neo4j, 7 to OrientDB, and 5 to PostgreSQL.

However, the results obtained should be taken with a good measure of care. In fact, the times

collected are dependant of first of all the implementation of the query; then on the dataset;

then on the configuration of each database server; and then on the hardware architecture.

Talking about query languages, in all three, with different weights, can be seen the influence of

SQL; however they are quite different from each other and this aspect made the formulation of

the same query for each of them a bit hard.

We saw that AQL is the most complete graph query language; Cypher is the most intuitive;

OrientDB’SQL is near to the standard SQL and adds some traversal statements (even though

the development of queries is sometimes not immediate); and PostgreSQL’s SQL needs very

big query bodies when a traversal is specified.

For these reasons, we assign the grade 9 to AQL, 8 to Cypher, 7 to OrientDB’s SQL and 5

to PostgreSQL’ SQL.

For what regards the APIs provided by the DBMSs, while both Neo4j and OrientDB can run

embedded in a JVM instance and accessed by their native Java API, ArangoDB (being written

in C++ and JavaScript) cannot. However, with ArangoDB Foxx and the possibility to define

JavaScript user functions which extends AQL, it can be implemented procedures performed

directly within the database, as provided by the other two graph databases. However while

AQL is more about database access and queries management, user defined functions are the

provided way for implementing more complex queries. Also Noe4j and OrientDB allow to define

stored procedures and functions.

The only API which we have seen quite in depth is the one provided by Neo4j, which is

simple and well structured; it also provides methods for the definition of graph traversal with

different constraints. The API provided by OrientDB is heavily based on TinkerPop Gremlin,

which seems not to provide a way for quickly forcing the uniqueness constraints we have seen

on our queries. As seen, ArangoDB, Neo4j and OrientDB all provide also a HTTP API, so

that the database can be accessed and queried remotely.

For PostgreSQL, even here there is not full access to the native library of the DBMS. However,

it provides the possibility of implementing stored procedures or to access the database by several

7.1. DBMSs assessment 173

API drivers.

For the reasons given above, we assess with the grade 7 ArangoDB, with the grade 9 Noe4j,

with the grade 8 OrientDB and with the grade 7 PostgreSQL.

As for as the disk space usage is concerned, we have seen that Neo4j and PostgreSQL are the

ones that need less disk space for storing data. However, PostgreSQL needs quite big amount

of disk space when solving complex queries on heavy data situations. ArangoDB is the third

classified for disk space usage, and OrientDB is the fourth.

For these reasons, we assign the grade 9 to ArangoDB, the grade 10 to Neo4j, and the grade

8 to both OrientDB and PostgreSQL.

For what concerns the RAM usage, we have seen that ArangoDB is the one that most heavily

needs enough RAM for being well operative; then we have Neo4j and OrientDB; and at the

end we have PostgreSQL, which typically requires less RAM than the others.

For these reasons, ArangoDB is assessed with 7, Noe4j and OrientDB with 9, and PostgreSQL

with 10.

Another important aspect is licensing. We did not reported licensing prices, however we have

seen what are the licenses for the products’ usage. All three graph databases provide a commu-

nity edition of their product which allow free use, however ArangoDB and OrientDB license such

edition with the Apache v2 license (so that it can be used also for commercial purposes); while

Neo4j releases it under the GPL v3 license, which blocks the usage for commercial purposes.

We have seen that they also come with an Enterprise edition with additional features, commer-

cial license and comes with a subscription fee. Within this field, we can say that ArangoDB

and OrientDB have pricing quite aligned and below the price required by Neo4j. PostgreSQL

instead is released under a BSD-like license, which allows free use of it for both non-commercial

and commercial purposes.

For these reasons, the grades are: 9 for ArangoDB and OrientDB, 7 for Neo4j and 10 to

PostgreSQL.

We now assess the time required for the import of data. We have seen that ArangoDB, Neo4j

and PostgreSQL required comparable time and under the 10 minutes threshold; while OrientDB

required a lot more. However, not sure if this may be due to our mistakes, we do not assign a

too low grade to OrientDB.

The grades are then 10 to ArangoDB, Neo4j and PostgreSQL, and 7 to OrientDB.

The last relevant aspect here considered is the documentation quality. We perceived a good

quality for both the documentations of Neo4j and PostgreSQL; even though they could be even

enriched by more examples. A good documentation is also the one provided by ArangoDB,

it gives less material than the others, but it is clear and well-structured anyway. For the

documentation of OrientDB we perceived a bit of confusion, it could be structured better and

some mistakes on the example code snippets reported would help in reducing confusion.

174 Chapter 7. Conclusions

Because of the reasons provided, we assess ArangoDB’s documentation with the grade 9;

Neo4j’s and PostgreSQL’s documentation with 10; and OrientDB’s documentation with 8.

ArangoDB Neo4j OrientDB PostgreSQL
Query performance (2x) 9 8 7 5
Query language 9 8 7 5
API 7 9 8 7
Disk space usage 9 10 8 8
RAM usage 7 9 9 10
Licensing 9 7 9 10
Import time 10 10 7 10
Documentation 9 10 8 10
TOTAL 78 79 70 70

Table 7.1: Assessment table of the compared DBMSs.

We see that Neo4j reached the highest score, even though ArangoDB is under it for a single

point. ArangoDB wins in performance, while Neo4j generally wins on the majority of the

remaining aspects. OrientDB is ranked third among the graph databases; and it is penalized

for the reduced expressiveness and ease-of-use of its query language, for the documentation and

the import time, which lead to be ranked equally with PostgreSQL.

Anyway, these assessments may be considered quite subjective, so again such values should

be taken critically.

7.2 Main conclusions

Rather than simply competing for what is the DBMS better ranked, we would like to highlight

some other points. The most important thing that should emerge by this work is that graph

databases effectively help when working with graph data, and the main contributes to this are

the purposely designed storage techniques, and the functionality given by the query languages

(or the APIs) provided. The storage techniques designed for working with graph data, in

fact, bring good performance on such domain; the functionality provided by the graph query

languages (or the APIs) bring a better management of the typical graph exploration problems.

In particular, we saw that the possibility to define the order and the constraints for the traversal

operation brings significant added value to the DBMS, because it makes possible to explore

the graph in an efficient way and by avoiding those problematic situations that may arise on a

graph domain. This aspect becomes even more important when, as seen in Chapter 6, a query

that returns a big portion of the graph is performed.

Talking about the results obtained, we state that: based on the dataset given, the kinds

of query chosen, the ways by which queries have been implemented, the configuration of the

servers given, the configuration of the machine given, and the testing policy, graph databases

7.3. Final considerations 175

generally perform better than the relational database, especially for complex queries on heavy

data situations.

Resuming, we conclude that:

• since graph databases directly store relationships among entities with a dedicated con-

struct, and since they provide an efficient way to link them to the entities, they avoid

those costly operations (JOINs) that relational databases have to perform at query-time

to reconstruct them.

• graph databases show to be useful in terms of performance, especially for complex traver-

sal queries on complex graphs; i.e. when a big amount of nodes are heavily connected.

• graph databases show to be useful in queries development: the provide query languages

facilitate the implementation of the queries on graph data and are generally thought to

handle graph-related problems.

• for simple queries, a relational database is good enough: both in performance and in

queries simplicity.

• graph databases are not the right choice for queries that consider the whole graph; graph

computing engines are the appropriate solution for it.

7.3 Final considerations

The query times obtained show good performance results by a high point of view. However,

they are dependant on the configuration parameters and the hardware specifics. So relative

improvements within the performance of the DBMSs may be possible with different configura-

tions. The first two aspects where to search for better performance should be on the DBMSs’

configuration and on sizing the available RAM.

Better configurations may be provided for the servers; our not deep knowledge on the field

may have brought to not the best configurations possible. Some test with different configura-

tions would be useful for understanding the best configuration possible for each product with

the dataset provided.

Talking about RAM sizing, we saw that the most heavy database requires about 6 GB of

space for data, indexes and other potentially useful files. Given that current costs for RAM are

not so high and also continuously lowering, the deployment of a machine with 8GB of RAM

could entirely contain “all graph” data without prohibitive costs. About 1GB would be left to

the OS, and the other 1GB would be used for additional indexes on other attributes often used

(like the denominazione field, over which a full-text index or similar should be created).

An alternative solution to the employment of a lower amount of RAM would be the one that

uses a SSD disk for the persistent storage. This way, even if the graph is not entirely present

in cache at query moment, it will be retrieved with short delays. However, given the fact that

also queries are not simple first-level neighbours investigation, and that they may perform the

176 Chapter 7. Conclusions

retrieval of a big amount of nodes - also involving filtering and sorting - the adoption of the

solution with a bigger RAM size should help in reaching the interrogation result more quickly.

The last operation that could be done for speeding up queries’ execution is the employ-

ment of a CPU with a bigger operating frequency. While having a bigger number of threads

would help in speeding up simultaneous queries, the enhancement on the CPU frequency would

speed-up the execution of each single query.

In any case, the small growth rate of the dataset shown so far (and the nature of the data

treated) permits the solution with a big enough RAM to be applied without those worries

that are typical of those scenarios where the dataset may be subjected to a huge and improvise

growth. So the solution adopted for the deployment of an application based on graph databases

would quite surely follow this approach.

However, we are confident that the obtained results already show what is the order of magnitude

of the queries’ execution times presented for such dataset.

7.4 Future developments

The future developments of this work will be about studying and sizing the best architecture for

the deployment of a graph database at the basis of some existing applications. Supposing the

deployment for BRACCO - that is the application we currently have more information about

the dataset, its behaviour and the kind of users that access it - we propose how its architecture

could be changed so that a graph database may be employed.

The current approach followed by the application expects that data come from XML files

generated by insert/update/delete operations performed on the Italian Business Register. Such

files are then elaborated and data are extracted and stored on a relational database. Our pro-

posal is to use the same architecture but by substituting the relational database with a graph

database. Another approach would be to keep the relational database and use a wrapper for

the synchronization of its data to the graph database; this in fact would probably be the sim-

plest solution, given the fact that there already exist some wrapping techniques for relational

databases which allow the synchronization to other databases. In addition, for example, Ori-

entDB already provides such tool with the name of Teleporter [97]. However, we are confident

that the same import operations performed with the relational database can be applied to a

graph database, so we would save a machine instance dedicated to the relational database.

We have seen that the complete import of the entire dataset requires some minutes for

ArangoDB and Neo4j; while for OrientDB required a lot more. Since the main operations

would influence relationships updates, rather than nodes updates, the proposed solution is by

updating only the new data without the need of a complete import. However, this approach

have to be tested before its deployment.

Quick tests on full-text indexes on the denominazione property have been executed, and

7.4. Future developments 177

their usage implies the need of more disk space for Neo4j and OrientDB, while more RAM

space for ArangoDB, because even this kind of index is not persistent, but kept in main mem-

ory.

On the other hand, the data growth rate of the dataset is quite limited, so the proposed

solution is the one that uses a machine with about 8GB-10GB of RAM, so that there is room

for additional data to be cached, and also for letting space for data growth.

Talking about the disk space required, we propose a solution with at least 10GB of space, so

that again there is room for the additional indexes created (if persistent) and the future data

growth.

However, it is also typically recommended that WAL records are stored on a different disk

than the disk used to store the DB content. In this way data I/O operations would not be

interrupted by WAL I/O operations [96]. Because of this, another disk should be provided.

However, due to the amount of RAM and the solution with two separate disks, we do not

consider necessary to have them made with SSD technology.

The number of users allowed to perform the access to the database and the number of queries

per second are quite limited, so one single instance server should probably fits the requirements.

However, some information about the existing relational architecture would help in sizing such

aspect.

In addition, since such application takes data from an external source, that the queries are

only read operations, and that the number of queries per second is quite limited, we do not

feel the need of a complex distributed architecture. For high availability purposes, we could

however deploy a master-slave architecture made of one master and one (or two) slaves.

The application would then benefits from the performance provided by a graph database,

and by the additional potentialities for queries development provided by their query languages.

The other immediate future development would be the inclusion of the equity participation

shares on the edges that connect relationships, so that new queries working on such values

would be implemented.

Another interesting aspect correlated to graph data that may became a future development is

the usage of a graph computing engine for the implementation of queries which collect some

statistics measure related to the entire graph, like the average number of outgoing edges per

node; or the length of the longest path; or the number of root nodes; etc. Such information

would represent an added value to the application that would be working with such graph data.

Another important aspect is the one related to RDF. Indeed, since InfoCamere releases every

day a lot of title searches about enterprises, the release of some of their basic information (like

codice fiscale, denominazione, cittadinanza, and whether or not it is out-of-business) in the

RDF format would bring enhanced value to the information it holds and to the information it

gives available to the public. The release of such basic information would bring a step forward

to the enhancement of the Linked Data movement, and would also allow the implementation

178 Chapter 7. Conclusions

of new web-sites or application products that employ such data and gives them an additional

dimension to the tabular and flat structure of a classical document. In this way, it would be

made quicker and enriched the reading of a title search, because links to other cited enterprises

would lead to web-pages (or other kind of documents) holding the basic information about

them; so that data would easily be explorable, and would be kept fresh and updated.

In addition, such technology may be useful in the context of the realization of a European

Business Register, where basic information about enterprises’ relationships would be shared

and linked by the business registers of each country; so that it would be possible to realize a

web of connections that goes beyond the country borders.

There already exists an effort for providing a sort of European Business Register, which is

EBR.org. However, such web-site is a portal that simply addresses each query to the business

register of the target country, so there is not a unified database, but a unified access method

for more databases. The RDF solution would instead bring a sort of database for those basic

information that could be freely provided so that the exploration of the data, belonging to

different countries, would be improved.

http://www.ebr.org/

Bibliography

[1] “DB-ENGINES.com”. http://db-engines.com/en/. [Online; accessed 29-March-2017].

[2] “Discussion on ArangoDB and index-free adjacency”. https://groups.google.com/

forum/#!topic/arangodb/xO0qIcZ6h60. [Online; accessed 29-March-2017].

[3] Alice Hertel, J. B., and Stuckenschmidt, H. “RDF Storage and Re-

trieval Systems”. http://publications.wim.uni-mannheim.de/informatik/lski/

Hertel08RDFStorage.pdf. [Online; accessed 29-March-2017].

[4] Amazon. “What is NoSQL?”. https://aws.amazon.com/it/nosql/graph/. [Online;

accessed 5-February-2017].

[5] Amgad Agoub, Felix Kunde, M. K. “Potential of Graph Databases in Representing

and Enriching Standardized Geodata”. https://www.researchgate.net/publication/

305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_

Standardized_Geodata. [Online; accessed 29-March-2017].

[6] Andy Seaborne, P. C. “Two graph data models : RDF

and Property Graphs”. http://www.slideshare.net/andyseaborne/

two-graph-data-models-rdf-and-property-graphs. [Online; accessed 29-March-

2017].

[7] Angles, R., and Gutierrez, C. “An introduction to Graph Data Management”. 2015.

[8] APOC. “APOC user guide”. https://neo4j-contrib.github.io/

neo4j-apoc-procedures/. [Online; accessed 29-March-2017].

[9] ArangoDB. “AQL documentation”. https://docs.arangodb.com/3.0/AQL/index.

html. [Online; accessed 21-February-2017].

[10] ArangoDB. “ArangoDB 3.1 documentation - Indexing”. https://docs.arangodb.

com/3.1/Manual/Indexing/VertexCentric.html. [Online; accessed 7-February-2017].

[11] ArangoDB. “ArangoDB Cookbook - Importing Data”. https://docs.arangodb.

com/cookbook/Administration/ImportingData.html. [Online; accessed 12-December-

2016].

179

http://db-engines.com/en/
https://groups.google.com/forum/#!topic/arangodb/xO0qIcZ6h60
https://groups.google.com/forum/#!topic/arangodb/xO0qIcZ6h60
http://publications.wim.uni-mannheim.de/informatik/lski/Hertel08RDFStorage.pdf
http://publications.wim.uni-mannheim.de/informatik/lski/Hertel08RDFStorage.pdf
https://aws.amazon.com/it/nosql/graph/
https://www.researchgate.net/publication/305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_Standardized_Geodata
https://www.researchgate.net/publication/305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_Standardized_Geodata
https://www.researchgate.net/publication/305701542_Potential_of_Graph_Databases_in_Representing_and_Enriching_Standardized_Geodata
http://www.slideshare.net/andyseaborne/two-graph-data-models-rdf-and-property-graphs
http://www.slideshare.net/andyseaborne/two-graph-data-models-rdf-and-property-graphs
https://neo4j-contrib.github.io/neo4j-apoc-procedures/
https://neo4j-contrib.github.io/neo4j-apoc-procedures/
https://docs.arangodb.com/3.0/AQL/index.html
https://docs.arangodb.com/3.0/AQL/index.html
https://docs.arangodb.com/3.1/Manual/Indexing/VertexCentric.html
https://docs.arangodb.com/3.1/Manual/Indexing/VertexCentric.html
https://docs.arangodb.com/cookbook/Administration/ImportingData.html
https://docs.arangodb.com/cookbook/Administration/ImportingData.html

180 BIBLIOGRAPHY

[12] ArangoDB. “ArangoDB documentation - 3.0 Release Notes”. https://docs.

arangodb.com/3.0/Manual/ReleaseNotes/NewFeatures30.html. [Online; accessed 17-

December-2016].

[13] ArangoDB. “ArangoDB documentation - Arangoimp”. https://docs.arangodb.com/

2.8/HttpBulkImports/Arangoimp.html. [Online; accessed 7-March-2017].

[14] ArangoDB. “ArangoDB documentation - Architecture”. https://docs.arangodb.

com/3.0/Manual/Architecture/. [Online; accessed 25-February-2017].

[15] ArangoDB. “ArangoDB documentation - Data modeling”. https://docs.arangodb.

com/3.0/Manual/DataModeling/index.html. [Online; accessed 17-November-2016].

[16] ArangoDB. “ArangoDB documentation - Getting started”. https://docs.arangodb.

com/3.0/Manual/GettingStarted/index.html. [Online; accessed 17-November-2016].

[17] ArangoDB. “ArangoDB documentation - Graphs”. https://docs.arangodb.com/3.

0/Manual/Graphs/index.html. [Online; accessed 12-December-2016].

[18] ArangoDB. “ArangoDB documentation - Joins”. https://docs.arangodb.com/3.0/

AQL/Examples/Join.html. [Online; accessed 22-February-2017].

[19] ArangoDB. “ArangoDB documentation - Naming conventions”. https://docs.

arangodb.com/3.0/Manual/DataModeling/NamingConventions/. [Online; accessed 7-

March-2017].

[20] ArangoDB. “ArangoDB documentation - Transactions”. https://docs.arangodb.

com/3.0/Manual/Transactions/index.html. [Online; accessed 05-December-2016].

[21] ArangoDB. “ArangoDB documentation - Traversal”. https://docs.arangodb.com/

3.0/AQL/Graphs/Traversals.html. [Online; accessed 7-March-2017].

[22] ArangoDB. “ArangoDB FAQ”. https://www.arangodb.com/documentation/faq/.

[Online; accessed 19-December-2016].

[23] ArangoDB. “ArangoDB GitHub - 3.0 VelocyPack”. https://github.com/arangodb/

velocypack. [Online; accessed 17-December-2016].

[24] ArangoDB. “ArangoDB GitHub - 3.0 VelocyPack Readme”. https://github.com/

arangodb/velocypack/blob/master/VelocyPack.md. [Online; accessed 17-December-

2016].

[25] ArangoDB. “ArangoDB subscription page”. https://www.arangodb.com/

subscriptions/. [Online; accessed 15-November-2016].

[26] ArangoDB. “ArangoDB website - Why ArangoDB”. https://www.arangodb.com/

why-arangodb/multi-model/. [Online; accessed 12-December-2016].

https://docs.arangodb.com/3.0/Manual/ReleaseNotes/NewFeatures30.html
https://docs.arangodb.com/3.0/Manual/ReleaseNotes/NewFeatures30.html
https://docs.arangodb.com/2.8/HttpBulkImports/Arangoimp.html
https://docs.arangodb.com/2.8/HttpBulkImports/Arangoimp.html
https://docs.arangodb.com/3.0/Manual/Architecture/
https://docs.arangodb.com/3.0/Manual/Architecture/
https://docs.arangodb.com/3.0/Manual/DataModeling/index.html
https://docs.arangodb.com/3.0/Manual/DataModeling/index.html
https://docs.arangodb.com/3.0/Manual/GettingStarted/index.html
https://docs.arangodb.com/3.0/Manual/GettingStarted/index.html
https://docs.arangodb.com/3.0/Manual/Graphs/index.html
https://docs.arangodb.com/3.0/Manual/Graphs/index.html
https://docs.arangodb.com/3.0/AQL/Examples/Join.html
https://docs.arangodb.com/3.0/AQL/Examples/Join.html
https://docs.arangodb.com/3.0/Manual/DataModeling/NamingConventions/
https://docs.arangodb.com/3.0/Manual/DataModeling/NamingConventions/
https://docs.arangodb.com/3.0/Manual/Transactions/index.html
https://docs.arangodb.com/3.0/Manual/Transactions/index.html
https://docs.arangodb.com/3.0/AQL/Graphs/Traversals.html
https://docs.arangodb.com/3.0/AQL/Graphs/Traversals.html
https://www.arangodb.com/documentation/faq/
https://github.com/arangodb/velocypack
https://github.com/arangodb/velocypack
https://github.com/arangodb/velocypack/blob/master/VelocyPack.md
https://github.com/arangodb/velocypack/blob/master/VelocyPack.md
https://www.arangodb.com/subscriptions/
https://www.arangodb.com/subscriptions/
https://www.arangodb.com/why-arangodb/multi-model/
https://www.arangodb.com/why-arangodb/multi-model/

BIBLIOGRAPHY 181

[27] ArangoDB. “GitHub project - ArangoDB & Blueprints”. https://github.com/

arangodb/blueprints-arangodb-graph. [Online; accessed 6-March-2017].

[28] ArangoDB. “Graph Functions”. https://docs.arangodb.com/3.0/Manual/Graphs/

GeneralGraphs/Functions.html. [Online; accessed 26-February-2017].

[29] ArangoDB. “Issue #392 - Gremlin graph queries for REST”. https://github.com/

arangodb/arangodb/issues/392. [Online; accessed 6-March-2017].

[30] ArangoDB. “The AQL query result cache”. https://docs.arangodb.com/3.0/AQL/

ExecutionAndPerformance/QueryCache.html. [Online; accessed 6-March-2017].

[31] Babcock, D. “CS 360 - Analysis of Algorithms - Graph Theory”. http://

ycpcs.github.io/cs360-spring2015/lectures/lecture15.html. [Online; accessed

22-January-2017].

[32] Beckett, D. “What does SPARQL stand for?”. http://lists.w3.org/Archives/

Public/semantic-web/2011Oct/0041.html, 2011. [Online; accessed 2-November-2016].

[33] Belaid, R. “Introduction to PostgreSQL physical storage”. http://rachbelaid.com/

introduction-to-postgres-physical-storage/. [Online; accessed 17-February-2017].

[34] Bloor, R. “The Graph Database and the RDF Database”. http://insideanalysis.

com/2015/01/the-graph-database-and-the-rdf-database/, 2015. [Online; accessed

2-November-2016].

[35] B.N., M. “Understanding caching in Postgres - An in-depth guide”. https://

madusudanan.com/blog/understanding-postgres-caching-in-depth/. [Online; ac-

cessed 22-February-2017].

[36] Brandt, A. “GitHub project - ArangoDB & Gremlin”. https://github.com/

arangodb/blueprints-arangodb-graph/wiki/Gremlin. [Online; accessed 6-March-

2017].

[37] DataStax. “DataStax Acquires Aurelius, The Experts

Behind TitanDB”. http://www.datastax.com/2015/02/

datastax-acquires-aurelius-the-experts-behind-titandb. [Online; accessed

27-February-2017].

[38] David C. Faye, Olivier Curé, G. B. “A survey of RDF storage approaches”. Revue

Africaine de la Recherche en Informatique et Math´ematiques Appliquées, INRIA, 2012,

15, pp.11-35, hal-01299496.

[39] Donald Feinberg, N. H. “IT Market Clock for Database Management Systems, 2014”.

https://www.gartner.com/doc/3100219/making-big-data-normal-graph. [Online;

accessed 1-March-2017].

https://github.com/arangodb/blueprints-arangodb-graph
https://github.com/arangodb/blueprints-arangodb-graph
https://docs.arangodb.com/3.0/Manual/Graphs/GeneralGraphs/Functions.html
https://docs.arangodb.com/3.0/Manual/Graphs/GeneralGraphs/Functions.html
https://github.com/arangodb/arangodb/issues/392
https://github.com/arangodb/arangodb/issues/392
https://docs.arangodb.com/3.0/AQL/ExecutionAndPerformance/QueryCache.html
https://docs.arangodb.com/3.0/AQL/ExecutionAndPerformance/QueryCache.html
http://ycpcs.github.io/cs360-spring2015/lectures/lecture15.html
http://ycpcs.github.io/cs360-spring2015/lectures/lecture15.html
http://lists.w3.org/Archives/Public/semantic-web/2011Oct/0041.html
http://lists.w3.org/Archives/Public/semantic-web/2011Oct/0041.html
http://rachbelaid.com/introduction-to-postgres-physical-storage/
http://rachbelaid.com/introduction-to-postgres-physical-storage/
http://insideanalysis.com/2015/01/the-graph-database-and-the-rdf-database/
http://insideanalysis.com/2015/01/the-graph-database-and-the-rdf-database/
https://madusudanan.com/blog/understanding-postgres-caching-in-depth/
https://madusudanan.com/blog/understanding-postgres-caching-in-depth/
https://github.com/arangodb/blueprints-arangodb-graph/wiki/Gremlin
https://github.com/arangodb/blueprints-arangodb-graph/wiki/Gremlin
http://www.datastax.com/2015/02/datastax-acquires-aurelius-the-experts-behind-titandb
http://www.datastax.com/2015/02/datastax-acquires-aurelius-the-experts-behind-titandb
https://www.gartner.com/doc/3100219/making-big-data-normal-graph

182 BIBLIOGRAPHY

[40] Everett, N. “Investigate ArangoDB for Wikidata Query”. https://phabricator.

wikimedia.org/T88549. [Online; accessed 28-March-2017].

[41] Ferro, N. Databases course lectures. Department of Information Engineering - Univer-

sity of Padua, 2014/2015.

[42] G, I. S. “Introduction of Graph Database”. http://systemg.research.ibm.com/

database.html. [Online; accessed 20-February-2017].

[43] Gordon, D. “Warm the cache to improve perfor-

mance from cold start”. https://neo4j.com/developer/kb/

warm-the-cache-to-improve-performance-from-cold-start/. [Online; accessed

10-March-2017].

[44] Heath, T. “Linked Data - Connect Distributed Data across the Web”. http:

//linkeddata.org/. [Online; accessed 17-January-2017].

[45] Herman, I. “W3C Semantic Web FAQ”. https://www.w3.org/RDF/FAQ. [Online;

accessed 28-January-2017].

[46] Hironobu, S. “The Internals of PostgreSQL - for database administrators and system

developers”. http://www.interdb.jp/pg/pgsql01.html. [Online; accessed 26-February-

2017].

[47] HypergraphDB. “HypergraphDB Web Site”. http://hypergraphdb.org/. [Online;

accessed 10-January-2017].

[48] Ian Robinson, J. W., and Eifrem, E. “Graph Databases”, 2nd ed. O’Reilly, 2015.

[49] InfoCamere. “Cos’è il Registro Imprese”. http://www.registroimprese.it/en/web/

guest/il-registro-imprese-e-altre-banche-dati#page=registro-imprese. [On-

line; accessed 14-January-2017].

[50] InfoCamere. “InfoCamere - Sistema Camerale”. http://www.infocamere.it/

sistema-camerale. [Online; accessed 14-January-2017].

[51] Javastaff.com. “Intervista a Luca Garulli”. http://www.javastaff.com/2007/12/

11/intervista-a-luca-garulli/. [Online; accessed 24-February-2017].

[52] Jeffrey Dean, S. G. “MapReduce: Simplified Data Processing on Large Clusters”.

https://research.google.com/archive/mapreduce-osdi04.pdf. [Online; accessed 3-

March-2017].

[53] John E. Savage, M. G. W. “Heuristics for Parallel Graph-Partitioning”. http:

//dl.acm.org/citation.cfm?id=864816. [Online; accessed 23-February-2017].

https://phabricator.wikimedia.org/T88549
https://phabricator.wikimedia.org/T88549
http://systemg.research.ibm.com/database.html
http://systemg.research.ibm.com/database.html
https://neo4j.com/developer/kb/warm-the-cache-to-improve-performance-from-cold-start/
https://neo4j.com/developer/kb/warm-the-cache-to-improve-performance-from-cold-start/
http://linkeddata.org/
http://linkeddata.org/
https://www.w3.org/RDF/FAQ
http://www.interdb.jp/pg/pgsql01.html
http://hypergraphdb.org/
http://www.registroimprese.it/en/web/guest/il-registro-imprese-e-altre-banche-dati#page=registro-imprese
http://www.registroimprese.it/en/web/guest/il-registro-imprese-e-altre-banche-dati#page=registro-imprese
http://www.infocamere.it/sistema-camerale
http://www.infocamere.it/sistema-camerale
http://www.javastaff.com/2007/12/11/intervista-a-luca-garulli/
http://www.javastaff.com/2007/12/11/intervista-a-luca-garulli/
https://research.google.com/archive/mapreduce-osdi04.pdf
http://dl.acm.org/citation.cfm?id=864816
http://dl.acm.org/citation.cfm?id=864816

BIBLIOGRAPHY 183

[54] Lovinger, R. “RDF and OWL”. https://www.slideshare.net/rlovinger/

rdf-and-owl. [Online; accessed 27-March-2017].

[55] Marcus Cobden, Jennifer Black, N. G. L. C., and Shadbolt, N. “A Research

Agenda for Linked Closed Data”. http://eprints.soton.ac.uk/272711/. [Online; ac-

cessed 17-January-2017].

[56] Marek Ciglan, A. A., and Hluchy, L. “Benchmarking traversal operations over

graph databases”. http://ieeexplore.ieee.org/document/6313678/. [Online; ac-

cessed 15-January-2017].

[57] Mark A. Beyer, N. H. “Making Big Data Normal With Graph

Analysis for the Masses”. https://www.gartner.com/doc/2852717/

it-market-clock-database-management. [Online; accessed 1-March-2017].

[58] Max Schmachtenberg, Christian Bizer, A. J., and Cyganiak, R. “Linking

Open Data cloud diagram 2014”. http://lod-cloud.net/. [Online; accessed 23-January-

2017].

[59] Momjian, B. “PostgreSQL: Introduction and Concepts”. Addison Wesley, 2001.

[60] Mullane, G. S. “PostgreSQL mailing list - Database Caching”. https://www.

postgresql.org/message-id/E16gYpD-0007KY-00@mclean.mail.mindspring.net.

[Online; accessed 22-February-2017].

[61] Neo4j. “Compare editions”. https://neo4j.com/editions/. [Online; accessed 2-

February-2017].

[62] Neo4j. “Data modeling”. https://neo4j.com/developer/guide-data-modeling/.

[Online; accessed 2-February-2017].

[63] Neo4j. “Neo4j - Licensing”. https://neo4j.com/licensing/. [Online; accessed 27-

February-2017].

[64] Neo4j. “Neo4j documentation - Clustering”. https://neo4j.com/docs/

operations-manual/current/clustering/. [Online; accessed 23-February-2017].

[65] Neo4j. “Neo4j documentation - Constraints”. http://neo4j.com/docs/

developer-manual/current/cypher/schema/constraints/. [Online; accessed 8-

March-2017].

[66] Neo4j. “Neo4j documentation - Cypher”. http://neo4j.com/docs/

developer-manual/3.0/cypher/. [Online; accessed 11-December-2016].

[67] Neo4j. “Neo4j documentation - Importing CSV Data into Neo4j”. https://neo4j.com/

developer/guide-import-csv/. [Online; accessed 8-March-2017].

https://www.slideshare.net/rlovinger/rdf-and-owl
https://www.slideshare.net/rlovinger/rdf-and-owl
http://eprints.soton.ac.uk/272711/
http://ieeexplore.ieee.org/document/6313678/
https://www.gartner.com/doc/2852717/it-market-clock-database-management
https://www.gartner.com/doc/2852717/it-market-clock-database-management
http://lod-cloud.net/
https://www.postgresql.org/message-id/E16gYpD-0007KY-00@mclean.mail.mindspring.net
https://www.postgresql.org/message-id/E16gYpD-0007KY-00@mclean.mail.mindspring.net
https://neo4j.com/editions/
https://neo4j.com/developer/guide-data-modeling/
https://neo4j.com/licensing/
https://neo4j.com/docs/operations-manual/current/clustering/
https://neo4j.com/docs/operations-manual/current/clustering/
http://neo4j.com/docs/developer-manual/current/cypher/schema/constraints/
http://neo4j.com/docs/developer-manual/current/cypher/schema/constraints/
http://neo4j.com/docs/developer-manual/3.0/cypher/
http://neo4j.com/docs/developer-manual/3.0/cypher/
https://neo4j.com/developer/guide-import-csv/
https://neo4j.com/developer/guide-import-csv/

184 BIBLIOGRAPHY

[68] Neo4j. “Neo4j documentation - Indexes”. http://neo4j.com/docs/

developer-manual/current/cypher/schema/index/. [Online; accessed 8-March-

2017].

[69] Neo4j. “Neo4j documentation - Performance”. https://neo4j.com/docs/

operations-manual/current/performance/. [Online; accessed 21-February-2017].

[70] Neo4j. “Neo4j documentation - Query Tuning”. https://neo4j.com/docs/

developer-manual/current/cypher/query-tuning/. [Online; accessed 26-February-

2017].

[71] Neo4j. “Neo4j documentation - Transactional Cypher HTTP endpoint”. https://

neo4j.com/docs/developer-manual/current/http-api/#http-api-transactional.

[Online; accessed 20-February-2017].

[72] Neo4j. “Neo4j documentation - Transactions”. https://neo4j.com/docs/

developer-manual/current/cypher/introduction/transactions/. [Online; accessed

20-February-2017].

[73] Neo4j. “Neo4j documentation - Use the Import tool”. https://neo4j.com/docs/

operations-manual/current/tutorial/import-tool/. [Online; accessed 8-March-

2017].

[74] Neo4j. “Neo4j download page”. https://neo4j.com/download/. [Online; accessed

15-November-2016].

[75] Neo4j. “Neo4j Java API documentation - org.neo4j.graphdb.index”. http:

//neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/index/

package-summary.html. [Online; accessed 8-March-2017].

[76] Neo4j. “Neo4j Java API documentation - Relationship”. http://neo4j.com/docs/

java-reference/current/javadocs/org/neo4j/graphdb/Relationship.html. [On-

line; accessed 20-February-2017].

[77] Neo4j. “Neo4j Java API documentation - Transaction”. https://neo4j.com/docs/

java-reference/current/javadocs/org/neo4j/graphdb/Transaction.html. [On-

line; accessed 20-February-2017].

[78] Neo4j. “Neo4j Traversal API documentation - Uniqueness”. http://neo4j.com/docs/

java-reference/current/javadocs/org/neo4j/graphdb/traversal/Uniqueness.

html. [Online; accessed 18-March-2017].

[79] Neo4j. “Traversal framework Java API”. https://neo4j.com/docs/java-reference/

current/#tutorial-traversal. [Online; accessed 20-January-2017].

http://neo4j.com/docs/developer-manual/current/cypher/schema/index/
http://neo4j.com/docs/developer-manual/current/cypher/schema/index/
https://neo4j.com/docs/operations-manual/current/performance/
https://neo4j.com/docs/operations-manual/current/performance/
https://neo4j.com/docs/developer-manual/current/cypher/query-tuning/
https://neo4j.com/docs/developer-manual/current/cypher/query-tuning/
https://neo4j.com/docs/developer-manual/current/http-api/#http-api-transactional
https://neo4j.com/docs/developer-manual/current/http-api/#http-api-transactional
https://neo4j.com/docs/developer-manual/current/cypher/introduction/transactions/
https://neo4j.com/docs/developer-manual/current/cypher/introduction/transactions/
https://neo4j.com/docs/operations-manual/current/tutorial/import-tool/
https://neo4j.com/docs/operations-manual/current/tutorial/import-tool/
https://neo4j.com/download/
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/index/package-summary.html
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/index/package-summary.html
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/index/package-summary.html
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/Relationship.html
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/Relationship.html
https://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/Transaction.html
https://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/Transaction.html
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html
http://neo4j.com/docs/java-reference/current/javadocs/org/neo4j/graphdb/traversal/Uniqueness.html
https://neo4j.com/docs/java-reference/current/#tutorial-traversal
https://neo4j.com/docs/java-reference/current/#tutorial-traversal

BIBLIOGRAPHY 185

[80] Neubauer, P. “Should I learn Cypher or Gremlin for

operating a Neo4j database?”. https://www.quora.com/

Should-I-learn-Cypher-or-Gremlin-for-operating-a-Neo4j-database. [On-

line; accessed 6-March-2017].

[81] Noel Yuhanna, Boris Evelson, B. H. E. J. “TechRadar™: Enterprise DBMS, Q1

2014”. https://www.forrester.com/report/TechRadar+Enterprise+DBMS+Q1+2014/

-/E-RES106801. [Online; accessed 1-March-2017].

[82] Novet, J. “DataStax acquires Aurelius, the startup behind the

Titan graph database”. http://venturebeat.com/2015/02/03/

datastax-acquires-aurelius-the-startup-behind-the-titan-graph-database/.

[Online; accessed 27-February-2017].

[83] OrientDB. “Find the right solution for your business needs”. http://orientdb.com/

support/. [Online; accessed 5-February-2017].

[84] OrientDB. “OrientDB documentation - Caching”. http://orientdb.com/docs/2.2.

x/Caching.html. [Online; accessed 22-February-2017].

[85] OrientDB. “OrientDB documentation - Clusters”. http://orientdb.com/docs/2.2.

x/Tutorial-Clusters.html. [Online; accessed 08-January-2017].

[86] OrientDB. “OrientDB documentation - Command cache”. http://orientdb.com/

docs/2.2.x/Command-Cache.html. [Online; accessed 22-February-2017].

[87] OrientDB. “OrientDB documentation - Data modeling”. http://orientdb.com/docs/

2.2.x/Tutorial-Document-and-graph-model.html. [Online; accessed 09-December-

2016].

[88] OrientDB. “OrientDB documentation - ETL”. http://orientdb.com/docs/2.2/

ETL-Introduction.html. [Online; accessed 8-March-2017].

[89] OrientDB. “OrientDB documentation - Graph API”. http://orientdb.com/docs/2.

2/Graph-Database-Tinkerpop.html. [Online; accessed 6-March-2017].

[90] OrientDB. “OrientDB documentation - Graph Batch Insert”. http://orientdb.com/

docs/2.2.x/Graph-Batch-Insert.html. [Online; accessed 27-February-2017].

[91] OrientDB. “OrientDB documentation - Graph Schema”. http://orientdb.com/docs/

2.2/Graph-Schema.html. [Online; accessed 20-February-2017].

[92] OrientDB. “OrientDB documentation - Gremlin”. http://orientdb.com/docs/2.2/

Gremlin.html. [Online; accessed 6-March-2017].

[93] OrientDB. “OrientDB documentation - Java Traverse”. http://orientdb.com/docs/

2.2.x/Java-Traverse.html. [Online; accessed 18-March-2017].

https://www.quora.com/Should-I-learn-Cypher-or-Gremlin-for-operating-a-Neo4j-database
https://www.quora.com/Should-I-learn-Cypher-or-Gremlin-for-operating-a-Neo4j-database
https://www.forrester.com/report/TechRadar+Enterprise+DBMS+Q1+2014/-/E-RES106801
https://www.forrester.com/report/TechRadar+Enterprise+DBMS+Q1+2014/-/E-RES106801
http://venturebeat.com/2015/02/03/datastax-acquires-aurelius-the-startup-behind-the-titan-graph-database/
http://venturebeat.com/2015/02/03/datastax-acquires-aurelius-the-startup-behind-the-titan-graph-database/
http://orientdb.com/support/
http://orientdb.com/support/
http://orientdb.com/docs/2.2.x/Caching.html
http://orientdb.com/docs/2.2.x/Caching.html
http://orientdb.com/docs/2.2.x/Tutorial-Clusters.html
http://orientdb.com/docs/2.2.x/Tutorial-Clusters.html
http://orientdb.com/docs/2.2.x/Command-Cache.html
http://orientdb.com/docs/2.2.x/Command-Cache.html
http://orientdb.com/docs/2.2.x/Tutorial-Document-and-graph-model.html
http://orientdb.com/docs/2.2.x/Tutorial-Document-and-graph-model.html
http://orientdb.com/docs/2.2/ETL-Introduction.html
http://orientdb.com/docs/2.2/ETL-Introduction.html
http://orientdb.com/docs/2.2/Graph-Database-Tinkerpop.html
http://orientdb.com/docs/2.2/Graph-Database-Tinkerpop.html
http://orientdb.com/docs/2.2.x/Graph-Batch-Insert.html
http://orientdb.com/docs/2.2.x/Graph-Batch-Insert.html
http://orientdb.com/docs/2.2/Graph-Schema.html
http://orientdb.com/docs/2.2/Graph-Schema.html
http://orientdb.com/docs/2.2/Gremlin.html
http://orientdb.com/docs/2.2/Gremlin.html
http://orientdb.com/docs/2.2.x/Java-Traverse.html
http://orientdb.com/docs/2.2.x/Java-Traverse.html

186 BIBLIOGRAPHY

[94] OrientDB. “OrientDB documentation - Performance Tuning”. http://orientdb.com/

docs/2.2.x/Performance-Tuning.html. [Online; accessed 7-March-2017].

[95] OrientDB. “OrientDB documentation - SQL reference”. http://orientdb.com/docs/

2.2/SQL.html. [Online; accessed 13-December-2016].

[96] OrientDB. “OrientDB documentation - Storages”. http://orientdb.com/docs/2.2.

x/Paginated-Local-Storage.html. [Online; accessed 13-January-2017].

[97] OrientDB. “OrientDB documentation - Teleporter”. http://orientdb.com/docs/2.

2.x/Teleporter-Home.html. [Online; accessed 23-March-2017].

[98] OrientDB. “OrientDB documentation - Transactions”. http://orientdb.com/docs/

2.2/Transactions.html. [Online; accessed 20-February-2017].

[99] OrientDB. “OrientDB Enterprise”. http://orientdb.com/orientdb-enterprise/.

[Online; accessed 5-February-2017].

[100] Philip Rathle, K. R. “Webinar: Large Scale Graph Processing with

IBM Power Systems & Neo4j”. https://www.slideshare.net/neo4j/

webinar-large-scale-graph-processing-with-ibm-power-systems-neo4j. [Online;

accessed 1-March-2017].

[101] Planetmath.org. “Hypergraph”. http://planetmath.org/hypergraph. [Online; ac-

cessed 15-December-2016].

[102] PostgreSQL. “PostgreSQL discussion thread - Monitoring query plan cache”. https://

www.postgresql.org/message-id/549564E4.4060800%40aule.net. [Online; accessed

11-March-2017].

[103] PostgreSQL. “PostgreSQL documentation - Conformance”. https://www.

postgresql.org/docs/9.6/static/features.html. [Online; accessed 21-February-

2017].

[104] PostgreSQL. “PostgreSQL documentation - Planner/Optimizer”. https://www.

postgresql.org/docs/9.6/static/planner-optimizer.html. [Online; accessed 26-

February-2017].

[105] PostgreSQL. “PostgreSQL documentation - PL/pgSQL Under the Hood”.

https://www.postgresql.org/docs/current/static/plpgsql-implementation.

html#PLPGSQL-PLAN-CACHING. [Online; accessed 6-March-2017].

[106] PostgreSQL. “PostgreSQL documentation - PREPARE”. https://www.postgresql.

org/docs/current/static/sql-prepare.html. [Online; accessed 6-March-2017].

http://orientdb.com/docs/2.2.x/Performance-Tuning.html
http://orientdb.com/docs/2.2.x/Performance-Tuning.html
http://orientdb.com/docs/2.2/SQL.html
http://orientdb.com/docs/2.2/SQL.html
http://orientdb.com/docs/2.2.x/Paginated-Local-Storage.html
http://orientdb.com/docs/2.2.x/Paginated-Local-Storage.html
http://orientdb.com/docs/2.2.x/Teleporter-Home.html
http://orientdb.com/docs/2.2.x/Teleporter-Home.html
http://orientdb.com/docs/2.2/Transactions.html
http://orientdb.com/docs/2.2/Transactions.html
http://orientdb.com/orientdb-enterprise/
https://www.slideshare.net/neo4j/webinar-large-scale-graph-processing-with-ibm-power-systems-neo4j
https://www.slideshare.net/neo4j/webinar-large-scale-graph-processing-with-ibm-power-systems-neo4j
http://planetmath.org/hypergraph
https://www.postgresql.org/message-id/549564E4.4060800%40aule.net
https://www.postgresql.org/message-id/549564E4.4060800%40aule.net
https://www.postgresql.org/docs/9.6/static/features.html
https://www.postgresql.org/docs/9.6/static/features.html
https://www.postgresql.org/docs/9.6/static/planner-optimizer.html
https://www.postgresql.org/docs/9.6/static/planner-optimizer.html
https://www.postgresql.org/docs/current/static/plpgsql-implementation.html#PLPGSQL-PLAN-CACHING
https://www.postgresql.org/docs/current/static/plpgsql-implementation.html#PLPGSQL-PLAN-CACHING
https://www.postgresql.org/docs/current/static/sql-prepare.html
https://www.postgresql.org/docs/current/static/sql-prepare.html

BIBLIOGRAPHY 187

[107] PostgreSQL. “PostgreSQL documentation - Resource Consumption”. https://

www.postgresql.org/docs/current/static/runtime-config-resource.html. [On-

line; accessed 22-February-2017].

[108] PostgreSQL. “PostgreSQL documentation - What is”. https://www.postgresql.

org/docs/9.6/static/intro-whatis.html. [Online; accessed 15-February-2017].

[109] PostgreSQL. “PostgreSQL documentation - WITH Queries”. https://

www.postgresql.org/docs/9.6/static/queries-with.html. [Online; accessed 21-

February-2017].

[110] PostgreSQL. “PostgreSQL Query Cache released”. https://www.postgresql.org/

about/news/1296/. [Online; accessed 6-March-2017].

[111] PostgreSQL. “PostgreSQL Wiki - Tuning your PostgreSQL server”. https://

wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server. [Online; accessed 22-

February-2017].

[112] Programmazione.it. “Guida all’utilizzo di OrientDB”. http://www.

programmazione.it/index.php?entity=eitem&idItem=46036. [Offline; last access

12-December-2016].

[113] Raghavendra. “Caching in PostgreSQL”. http://raghavt.blogspot.it/2012/04/

caching-in-postgresql.html. [Online; accessed 29-March-2017].

[114] Rodriguez, M. A. “Graph Databases: Trends in the Web of Data”. http://www.

slideshare.net/slidarko/graph-databases-trends-in-the-web-of-data/. [On-

line; accessed 10-January-2017].

[115] Sakr, S. “Processing large-scale graph data: A guide to current technology”. https://

www.ibm.com/developerworks/library/os-giraph/. [Online; accessed 3-March-2017].

[116] Salim Jouili, V. V. “An empirical comparison of graph databases”. http://

ieeexplore.ieee.org/document/6693403/. [Online; accessed 15-January-2017].

[117] Sasaki, B. M. “Graph Databases for Beginners: Other Graph Data Technologies”.

https://neo4j.com/blog/other-graph-database-technologies/, 2015. [Online; ac-

cessed 2-November-2016].

[118] Smith, G. “Inside the PostgreSQL Shared Buffer Cache”. https://2ndquadrant.com/

media/pdfs/talks/InsideBufferCache.pdf. [Online; accessed 22-February-2017].

[119] Sotiris Beis, Manos Schinas, S. P. A. P. L. G. e. a. “Performance

benchmark between popular graph databases.”. https://github.com/socialsensor/

graphdb-benchmarks. [Online; accessed 15-January-2017].

https://www.postgresql.org/docs/current/static/runtime-config-resource.html
https://www.postgresql.org/docs/current/static/runtime-config-resource.html
https://www.postgresql.org/docs/9.6/static/intro-whatis.html
https://www.postgresql.org/docs/9.6/static/intro-whatis.html
https://www.postgresql.org/docs/9.6/static/queries-with.html
https://www.postgresql.org/docs/9.6/static/queries-with.html
https://www.postgresql.org/about/news/1296/
https://www.postgresql.org/about/news/1296/
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.programmazione.it/index.php?entity=eitem&idItem=46036
http://www.programmazione.it/index.php?entity=eitem&idItem=46036
http://raghavt.blogspot.it/2012/04/caching-in-postgresql.html
http://raghavt.blogspot.it/2012/04/caching-in-postgresql.html
http://www.slideshare.net/slidarko/graph-databases-trends-in-the-web-of-data/
http://www.slideshare.net/slidarko/graph-databases-trends-in-the-web-of-data/
https://www.ibm.com/developerworks/library/os-giraph/
https://www.ibm.com/developerworks/library/os-giraph/
http://ieeexplore.ieee.org/document/6693403/
http://ieeexplore.ieee.org/document/6693403/
https://neo4j.com/blog/other-graph-database-technologies/
https://2ndquadrant.com/media/pdfs/talks/InsideBufferCache.pdf
https://2ndquadrant.com/media/pdfs/talks/InsideBufferCache.pdf
https://github.com/socialsensor/graphdb-benchmarks
https://github.com/socialsensor/graphdb-benchmarks

188 BIBLIOGRAPHY

[120] Spark, A. “GraphX Programming Guide”. http://spark.apache.org/docs/latest/

graphx-programming-guide.html#pregel-api. [Online; accessed 3-March-2017].

[121] Tesoriero, C. “Getting started with OrientDB”. Packt Publishing, 2013.

[122] Thomas H. Cormen, Charles E. Leiserson, R. L. R., and Stein, C. “Introduc-

tion to Algorithms”, 3rd ed. The MIT Press, 2009.

[123] Tim Baker, Tharindi Hapuarachchi, B. B. “The future is graph shaped”. https:

//blogs.thomsonreuters.com/answerson/future-graph-shaped/. [Online; accessed

1-March-2017].

[124] Tim Berners-Lee, J. H., and Lassila, O. “The Semantic Web”. Scientific American,

2001.

[125] TinkerPop. “Blueprints”. https://github.com/tinkerpop/blueprints/wiki. [On-

line; accessed 2-March-2017].

[126] TinkerPop. “Gremlin”. http://tinkerpop.apache.org/gremlin.html. [Online; ac-

cessed 2-March-2017].

[127] TinkerPop, A. “Apache TinkerPop website”. http://tinkerpop.apache.org/. [On-

line; accessed 14-December-2016].

[128] TinkerPop, A. “Neo4j-Gremlin”. http://tinkerpop.apache.org/docs/current/

reference/#neo4j-gremlin. [Online; accessed 6-March-2017].

[129] TinkerPop, A. “TinkerPop documentation”. http://tinkerpop.apache.org/docs/

current/reference/. [Online; accessed 2-March-2017].

[130] TinkerPop, A. “TinkerPop Recipes”. http://tinkerpop.apache.org/docs/

current/recipes/. [Online; accessed 18-March-2017].

[131] Tom Heath, C. B. “Linked Data - Evolving the Web into a Global Data Space”. Morgan

& Claypool Publishers, 2013.

[132] Toyotaro Suzumura, M. D. “XGDBench: A Bench-

marking Platform for Graph Stores in Exascale Clouds”.

https://docs.google.com/viewer?a=v&pid=sites&srcid=

ZGVmYXVsdGRvbWFpbnx0b2t5b3RlY2hzdXp1bXVyYWxhYmVuZ3xneDoyMGRiOGFlM2Y2OGY5Mzhj.

[Online; accessed 15-January-2017].

[133] Trylks. “PostgreSQL temporary table cache in memory?”. http://stackoverflow.

com/questions/14162917/postgresql-temporary-table-cache-in-memory. [Online;

accessed 29-March-2017].

http://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
http://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
https://blogs.thomsonreuters.com/answerson/future-graph-shaped/
https://blogs.thomsonreuters.com/answerson/future-graph-shaped/
https://github.com/tinkerpop/blueprints/wiki
http://tinkerpop.apache.org/gremlin.html
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/docs/current/reference/#neo4j-gremlin
http://tinkerpop.apache.org/docs/current/reference/#neo4j-gremlin
http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/recipes/
http://tinkerpop.apache.org/docs/current/recipes/
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0b2t5b3RlY2hzdXp1bXVyYWxhYmVuZ3xneDoyMGRiOGFlM2Y2OGY5Mzhj
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0b2t5b3RlY2hzdXp1bXVyYWxhYmVuZ3xneDoyMGRiOGFlM2Y2OGY5Mzhj
http://stackoverflow.com/questions/14162917/postgresql-temporary-table-cache-in-memory
http://stackoverflow.com/questions/14162917/postgresql-temporary-table-cache-in-memory

BIBLIOGRAPHY 189

[134] Virtuoso. “Virtuoso FAQ”. https://virtuoso.openlinksw.com/virt_faq/. [Online;

accessed 27-February-2017].

[135] Virtuoso. “Virtuoso web page”. https://virtuoso.openlinksw.com/. [Online; ac-

cessed 27-February-2017].

[136] W3C. “Data”. https://www.w3.org/standards/semanticweb/data. [Online; accessed

28-January-2017].

[137] W3C. “Inference”. https://www.w3.org/standards/semanticweb/inference. [On-

line; accessed 28-January-2017].

[138] W3C. “LargeTripleStores”. https://www.w3.org/wiki/LargeTripleStores. [Online;

accessed 16-January-2017].

[139] W3C. “Ontologies”. https://www.w3.org/standards/semanticweb/ontology.html.

[Online; accessed 28-January-2017].

[140] W3C. “OWL Web Ontology Language”. https://www.w3.org/TR/owl-features/. [On-

line; accessed 27-March-2017].

[141] W3C. “Primer”. https://www.w3.org/TR/rdf11-primer/. [Online; accessed 2-

February-2017].

[142] W3C. “RDF Store Benchmarking”. https://www.w3.org/wiki/

RdfStoreBenchmarking. [Online; accessed 16-January-2017].

[143] W3C. “SPARQL Query Language for RDF”. https://www.w3.org/TR/

rdf-sparql-query/. [Online; accessed 15-December-2016].

[144] W3C. “RDF”. https://www.w3.org/RDF/, 2014. [Online; accessed 15-December-2016].

[145] W3C. “RDF concepts”. https://www.w3.org/TR/2014/

REC-rdf11-concepts-20140225/#data-model, 2014. [Online; accessed 15-December-

2016].

[146] W3C. “RDF syntax”. https://www.w3.org/TR/2014/

REC-rdf-syntax-grammar-20140225/, 2014. [Online; accessed 15-December-2016].

[147] Weinberger, C. “Benchmark: PostgreSQL, MongoDB, Neo4j,

OrientDB and ArangoDB”. https://www.arangodb.com/2015/10/

benchmark-postgresql-mongodb-arangodb/. [Online; accessed 28-February-2017].

[148] Weinberger, C. “Index Free Adjacency or Hybrid Indexes

for Graph Databases”. https://www.arangodb.com/2016/04/

index-free-adjacency-hybrid-indexes-graph-databases/. [Online; accessed

09-January-2017].

https://virtuoso.openlinksw.com/virt_faq/
https://virtuoso.openlinksw.com/
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/inference
https://www.w3.org/wiki/LargeTripleStores
https://www.w3.org/standards/semanticweb/ontology.html
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/wiki/RdfStoreBenchmarking
https://www.w3.org/wiki/RdfStoreBenchmarking
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/RDF/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#data-model
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#data-model
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/
https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/

190 BIBLIOGRAPHY

[149] Weinberger, C. “Native multi-model can compete with pure document and graph

databases”. https://www.arangodb.com/2015/06/multi-model-benchmark/. [Online;

accessed 10-March-2017].

[150] Weinberger, C. “Performance comparison between ArangoDB, Mon-

goDB, Neo4j and OrientDB”. https://www.arangodb.com/2015/06/

performance-comparison-between-arangodb-mongodb-neo4j-and-orientdb/.

[Online; accessed 28-February-2017].

[151] Wiese, L. “Advanced Data Management: For SQL, NoSQL, Cloud and Distributed

Databases.”. Walter de Gruyter GmbH & Co KG., 2015.

[152] Wikipedia. “Apache Spark”. https://en.wikipedia.org/wiki/Apache_Spark. [On-

line; accessed 3-March-2017].

[153] Wikipedia. “Breadth-first search”. https://en.wikipedia.org/wiki/

Breadth-first_search. [Online; accessed 1-March-2017].

[154] Wikipedia. “Depth-first search”. https://en.wikipedia.org/wiki/Depth-first_

search. [Online; accessed 1-March-2017].

[155] Wikipedia. “Graph partition”. https://en.wikipedia.org/wiki/Graph_partition.

[Online; accessed 23-February-2017].

[156] Wikipedia. “Hypergraph”. https://en.wikipedia.org/wiki/Hypergraph. [Online;

accessed 15-December-2016].

[157] Wikipedia. “Triplestore”. https://en.wikipedia.org/wiki/Triplestore. [Online;

accessed 16-January-2017].

[158] Wikipedia. “Graph database”. https://en.wikipedia.org/wiki/Graph_database,

2016. [Online; accessed 2-November-2016].

[159] Wikipedia. “SPARQL”. https://en.wikipedia.org/wiki/SPARQL, 2016. [Online;

accessed 2-November-2016].

[160] Wolpe, T. “DataStax snaps up Aurelius and its Titan team

to build new graph database”. http://www.zdnet.com/article/

datastax-snaps-up-aurelius-and-its-titan-team-to-build-new-graph-database/.

[Online; accessed 27-February-2017].

[161] Yalamarthi, V. “Regarding Multiple collections for ArangoDB Graph Queries”. https:

//groups.google.com/forum/#!topic/arangodb/_sHmi6ifMJM. [Online; accessed 7-

March-2017].

https://www.arangodb.com/2015/06/multi-model-benchmark/
https://www.arangodb.com/2015/06/performance-comparison-between-arangodb-mongodb-neo4j-and-orientdb/
https://www.arangodb.com/2015/06/performance-comparison-between-arangodb-mongodb-neo4j-and-orientdb/
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Graph_partition
https://en.wikipedia.org/wiki/Hypergraph
https://en.wikipedia.org/wiki/Triplestore
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/SPARQL
http://www.zdnet.com/article/datastax-snaps-up-aurelius-and-its-titan-team-to-build-new-graph-database/
http://www.zdnet.com/article/datastax-snaps-up-aurelius-and-its-titan-team-to-build-new-graph-database/
https://groups.google.com/forum/#!topic/arangodb/_sHmi6ifMJM
https://groups.google.com/forum/#!topic/arangodb/_sHmi6ifMJM

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

	

	
	
	
	
	
	
	

	

	
	
	
	

	
	
	
	

	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	

