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Abstract

The interaction with robotic devices by means of physiological human sig-
nals has become of great interest in the last years because of its capability of
catching human intention of movement and translating it into similar move-
ment performed by robotic devices, i.e. humanoids. In this way, the robot
can emulate or simulate living biological organisms and using patterns com-
ing from human muscular-skeleton structure makes the behavior of humanoid
autonomous robots more natural, robust and e�cient.

This thesis evaluates the use of a probabilistic model, namely Gaussian
Mixture Model (GMM), trained through Electromyography (EMG) signals
to estimate the bending angle of a single human joint. Electromyography
measures the electrical activity in muscles as a product of contraction. Usu-
ally, Surface Electromyography (sEMG) signals are preferred because of their
capability of extracting information in a less invasive way. Our goal is to cre-
ate a general model based on the data coming from di�erent subjects. The
aim is to enable every person using the model to control a robot without any
additional train phase or in a very short one. Tests on the whole system are
performed on new, unseen data collected from several people. The goodness
of the estimated data is evaluated by means of Normalized Mean Square
Error (NMSE) and correlation coe�cient.

In this thesis, there are several parameters needed to be handle in order
to create a very robust model, like the number of Gaussian components, the
channels used for building the model and the size of the training set. As a
�rst step, we performed an o�ine evaluation of the signals, so the time has
been used as input to build a stationary model. The achieved results show
that our framework can work well in both accuracy and computational time,
even with data collected from di�erent subjects.

More intensive tests has been performed by using also a noisier dataset.
At the beginning, the results were very poor, so it has been used an algorithm
called Dynamic Time Warping (DTW), this method can adapt the input
signals to a reference one. The use of the DTW algorithm allows us to
considerably improved the initial results and to correctly follow the desired
trajectory.

After proving the goodness of the model o�ine, it has been considered
the possibility of trying it online by using Daubechies wavelet function db2
applied to EMG signals. This con�guration, has been proved e�ectively on
the single-subject case in a previous work. Even in this case, we improved the
original framework by adding a phase of normalization and smoothing of the
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signal after the construction of the wavelet. Our solution is able to generalize
the approach to the subject-independent case by signi�cantly improving the
obtained results even in several real tests.

Finally, has been developed a C++ software capable of interfacing with
a real robot by using Robot Operating System (ROS) modules. The whole
procedure has been tested on a humanoid and a manipulator robot by remap-
ping the human motion to the robotic platform in order to verify the proper
execution of the original movement. An Aldebaran NAO robot and a Comau
Smart5 SiX has been used for testing purposes.
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Chapter 1

Introduction

1.1 Goal of the Thesis

The interaction with robotic devices by means of physiological human sig-
nals has become of great interest in the last years because of the capability of
catching human intention of movement and translate it in a coherent move-
ment performed by a robotic platform. If we think at the intention of move-
ment as a cognitive process used by human to accomplish an actual motion,
therefore this information is likely shared by many subjects. Several studies
have been done about models built on a single subject [28] [45], for example
estimating forces by tuning the model parameters to �t the motion of a par-
ticular person (subject-speci�c). On the other hand, executing a particular
task intuitively leads to some constraints that could be extracted by look-
ing to di�erent interpretations of this task to obtain a subject-independent
model. The few attempts in literature showed the possibility of creating a
multiuser interface able to adapt to novel users (subject-independent) [47].
This thesis evaluates the use of a widely spread learning technique like Gaus-
sian Mixture Model (GMM) [11] [48] trained through Surface Electromyogra-
phy (sEMG) [5] signals coming from human subjects to actuate the knee and
the wrist joint of di�erent robot devices. Both stationary and non-stationary
models have been built. The former explicitly used time as input data and
processed information o�ine, while in the latter, we applied Wavelet Trans-
form to use the model online. The goodness of the proposed framework has
been tested by means of data collected from three di�erent dataset involving
various joints.

13



14 1.2. State of the Art

1.2 State of the Art

During the last years the interest in comprehending the physiological bases
of human and animal movement has increased from a biomechanical and
neurophysiological point of view. Up to now it is not possible to connect
the mechanism which occurs at the neurophysiological level with the one
that occurs at the musculoskeletal level in the human being. Some inter-
national projects have tried to study how intellective activity performs the
motor functions in an adaptive way [1]. Despite the di�culties of the prob-
lem, the capability of catching human intention of movement is very relevant
as well as its translation in an analogous movement performed by a robot,
usually humanoids. In this way, the robot can emulate or simulate biologi-
cal organisms. Using patterns coming directly from human musculoskeletal
structure makes the humanoid behavior more natural, robust and e�cient.
These techniques can �nd several practical applications in order to achieve
robust and intuitive human-machine interfaces [55], such as the creation of
wearable devices like prosthesis or exoskeletons.

More than others, Electromyography-driven musculoskeletal modeling has
been used to develop intuitive Human-Machine Interfaces (HMI) for the pro-
portional and simultaneous control of multiple Degrees of Freedom (DOFs) in
orthotic and prosthetic devices. Electromyography (EMG) measures electri-
cal activity in response to a nerve stimulation of the muscle, this stimulation
generates electrical activity in the muscle, which in turn causes contraction.
Particularly relevant are the sEMG , they give less accurate results than
the classical EMG, but have the advantage of being utilized in a simple and
not invasive way. This is ideal in the prosthesis or exoskeleton control. In
literature, several di�erent ways to extract structural features from the infor-
mation coming from EMG signals has been proposed by extracting structural
characteristics from a single sEMG channel, but also simultaneously from dif-
ferent channels to build a cross-channel pattern. Di�erent methods has been
used for the extraction of the single feature, depending on the domain:

• Time domain (linear envelope [76], mean absolute value, root mean
square [19], zero crossings, slope sign changes, waveform length [34],
wave complexity [70], log-detector [32], histogram [77]);

• Frequency domain (power spectral moments [39], power spectral den-
sity [26], spectral magnitude averages [24], short time Fourier trans-
form, median frequency [7], cepstrum [49], short time Thompson trans-
form [24]);

• Time and frequency domain (wavelet packet transform [25], discrete
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wavelet transform [61]).

For the simultaneous extraction of features from multiple channels for the
determination of time-invariant features representing the principles of muscle
coordination has been realized two techniques:

• Feature projection, transform a multi-channel input in a subspace of
smaller dimension (NMF [56], PCA [6], ICA, fuzzy clustering [3], LDA,
orthogonal fuzzy neighborhood discriminant analysis [38], self organiz-
ing feature maps);

• Spatial �ltering, decorrelate the channels (common spatio-spectral pat-
tern [33], multiresolution muscle synergy analysis [36]).

During the information decoding, control schemes has been used which
use one dataset for training the system and build a way to map the syner-
gies between the EMG signals and their e�ect on human limb. Most of the
literature deals with the correct classi�cation and execution of a certain num-
ber of pre-determined movements with linear (Linear Discriminant Analysis,
Linear time invariant models, Non-negative matrix factorization) or not lin-
ear controller (Support vector machines, Arti�cial neural networks, Gaussian
mixture models and K-nearest neighbors). These kind of techniques reach
very accurate results in determining the actions performed by individuals
from their EMG. Despite the good results, with the classi�cation techniques
it is only possible to determine the type of movement, not the trajectory. The
majority of the studies focus on classi�cation problems, yet there are some
researches regarding regression techniques. Usually, the regression is used for
a continuous and proportional control of humanoid robots. Complications
due to cross-talk of the sensors and amplitude cancellation make this type of
model generally used in test with a single degree of freedom, however recent
studies have begun to use this kind of models also to simultaneously control
more degrees of freedom.

The aim of the creation of subject-independent models is the extraction
of speci�c characteristic of the EMG signal which let the merging of data
coming from multiple subjects in order to obtain a general model and not
one built ad-hoc for a certain subject. This goal isn't easy to achieve because
of the great variability of EMG signals. Furthermore, the di�erences between
di�erent people give even worst results than the natural deterioration of the
signal. In the last years has been proposed a few attempts for the realiza-
tion of a subject-independent model which have shown promising results.
Orabona et al. [57] proposed a way to give the patients a pre-trained model,
which will be subsequently re�ned and adapted to the speci�c subject so as
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to shorten the length of the train phase. Castellini et al. [14] wanted to reach
the same goal as well, but tried to reach it doing an analysis of cross-subject
models: the model was built on data from a subject and then tested on data
from another. Even Gibson et al. [29] have dealt with the problem of shorten
the training phase required when a new user wants to use the system. Also
in this case, the objective was to create a classi�er able to recognize dif-
ferent movements. The results are very promising, the classi�er is able to
obtain an accuracy of 79 ± 6.6 %. Matsubara et al. [47] have developed a
multi-user interface which can classify di�erent movements using a bilinear
model, achieving an accuracy of 73 %. Khushaba [37] wanted to obtain a
multi-user interface capable of adapting to new users while maintaining good
performances so he built a framework to implement style-independent trans-
formations by using the canonical correlation analysis (CCA). The studies in
this �eld are few and relatively recent, furthermore they have focused almost
solely on the classi�cation of the signal, but it still has been done no concrete
study based on regression. This fact leaves chances for many other promising
solutions.

The goal of this thesis is to develop a subject-independent probabilistic
framework based on Robot-Learning techniques in order to obtain the con-
tinuous regression of the motion trajectories of the robot starting directly
from human physiological data (sEMG) of several subjects. It has been built
a model based on Gaussian Mixture, created from the EMG signals collected
by di�erent people, the goal is to create a general model based on the data
of di�erent subjects, which can be used by every person without any train
or with a very short one. Once the model was built, has been tested the
ability of the framework in the estimation of a joint bending angle by using
as input EMG signals coming from several channels with a Gaussian Mixture
Regression (Gaussian Mixture Regression (GMR)) algorithm. For the fea-
ture extraction has been used two widespread techniques: at �rst full wave
recti�cation, �ltering and normalization for the realization of a model which
will be used o�ine, considering the whole signal representing the movement
and at each instant associating the corresponding bending angle and the
EMG values for each channel. Then, the model has been tested also with
an alternative approach to overcome the limitation of the previous frame-
work so as it is possible to use it also online: Wavelet Transform [18], in
fact, Wavelet Transform allows to consider only a small window of the whole
signal. By using this technique, the model is able to compute the synthesis
value representing the signal just after a single raw sample has been collected.

A probabilistic framework based on Mixture of Gaussians (MoG) distri-
butions only require a reduced number of parameters to be kept, resulting
in lightweight models. Furthermore, a GMM/GMR probabilistic framework
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requires low training data to achieve good results. It also provides fast re-
gression that perfectly matches with the use on an online application. This
model has been tested on three di�erent datasets involving di�erent joints,
from both upper and lower limbs.



Chapter 2

Physiological Signals

2.1 Electromyography

The Electromyography (EMG) is a widely used technique for recording the
electrical activity produced by skeletal muscles. Skeletal muscles are a form
of striated muscle tissue which is under the control of the somatic nervous
system; that is to say, it is voluntarily controlled. It is one of three ma-
jor muscle types, the others being cardiac and smooth muscle. As their
name suggests, most skeletal muscles are attached to bones by bundles of
collagen �bers known as tendons. The EMG measures muscle response or
electrical activity in response to a nerve's stimulation of the muscle. Muscles
are stimulated by signals from nerve cells called Motor Neurons (MN). This
stimulation generates electrical activity in the muscle, which in turn causes
contraction. The number of �bers per motor unit varies by the kind of move-
ment for which it is intended. EMG signals derive from potential generated
through muscular unit activation.

Figure 2.1: EMG acquisition

18
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EMG testing has a variety of clinical and biomedical applications. EMG
is used as a diagnostics tool for identifying neuromuscular diseases, or as a
research tool for studying kinesiology and disorders of motor control. EMG
signals are also used as a control signal for prosthetic devices such as pros-
thetic hands, arms and lower limbs.

The EMG can be recorded basically in two di�erent ways: invasive (in-
tramuscular EMG) or non-invasive (sEMG). Surface EMG assesses muscle
function by recording muscle activity from the surface above the muscle on
the skin. Surface electrodes are able to provide only a limited assessment
of the muscle activity. sEMG can be recorded by a pair of electrodes or
by a more complex array of multiple electrodes. More than one electrode
is needed because EMG recordings display the potential di�erence (voltage
di�erence) between two separate electrodes.

Figure 2.2: Surface EMG

Intramuscular EMG can be performed using a variety of di�erent types
of recording electrodes. The simplest approach is a monopolar needle elec-
trode. This can be a �ne wire inserted into a muscle with a surface electrode
as a reference or two �ne wires inserted into muscle referenced to each other
as it is possible to see on Figure 2.1. After assessing resting and insertional
activity, the electromyographer assess the activity of muscle during volun-
tary contraction. Each electrode track gives only a very local picture of the
activity of the whole muscle. Because skeletal muscles di�er in the inner
structure, the electrode has to be placed at various locations to obtain an
accurate study.

As previously said, EMG signals could be used to control prosthetic de-
vices. In this case, the EMG signals are used to build a model of a certain
movement. The intramuscular EMG is very invasive and could be extremely
constraining in everyday life to control a prosthesis, so for this kind of appli-
cation is better to use surface EMG (sEMG), although they give less accurate
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Figure 2.3: Intramuscular EMG

results than intramuscular EMG.

In biomechanics, three applications dominate the use of the surface EMG
signal: its use as an indicator of the initiation of muscle activation, its rela-
tionship to the force produced by a muscle, and its use as an index of fatigue
processes occurring within a muscle [22]. As an indicator of the initiation of
muscle activity, the signal can provide the timing sequence of one or more
muscles performing a task, such as during gait or in the maintenance of
erect posture. Another important application of the EMG signal is to pro-
vide information about the force contribution of individual muscles as well
as groups of muscles. Use in the individual muscle provides the greater at-
traction. The resultant muscular moment acting on a joint during a speci�c
task is only in exceptionally rare cases due to one muscle. Thus, in the vast
majority of cases of interest, the ability to determine noninvasively the force
contribution of individual muscles provides an enormous advantage, partic-
ularly when biomechanical models are developed to describe the workings of
a segment of the musculoskeletal system.

Electromyography is a seductive muse because it provides easy access
to physiological processes that cause the muscle to generate force, produce
movement and accomplish the countless functions that allow us to interact
with the world around us. Moreover, if it is chosen to use the sEMG, the
signal can be collected in a noninvasive way. The current state of surface
electromyography is enigmatic. It provides many important and useful ap-
plications, but it has many limitations that must be understood, considered,
and eventually removed. Nonetheless, judicious applications of known facts
can ensure the �delity of the EMG signal, reduce crosstalk, and provide suf-
�cient stationarity in the signal; normalization of the signal amplitude may
remove the in�uence of many other variables.

Possible limitations in the use of EMG signals are due to the fact that this
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kind of signals are very sensitive to variations, even in the same person, such
as muscle fatigue, small shifts of the sensors, physiological (such as the skin
impedance or the amount of fat), and psychological factors. The recorded
signal from a certain subject deteriorates and changes considerably over time,
so it is even harder build a subject-independent model.

The �gure shows a schematic diagram of the factors that a�ect the EMG
signals and how these factors interact among them and in�uences one an-
other.

Figure 2.4: Factors that a�ect the EMG signals

EMG signals have to be pre-processed before they can be used. First of
all the signal is decomposed, since EMG signals are essentially made up of su-
perimposed motor unit action potentials (MUAPs) from several motor units,
for a thorough analysis, the measured EMG signals can be decomposed into
their constituent MUAPs. MUAPs from di�erent motor units tend to have
di�erent characteristic shapes, while MUAPs recorded by the same electrode
from the same motor unit are typically similar. Notably MUAP size and
shape depend on where the electrode is located with respect to the �bers
and so can appear to be di�erent if the electrode moves position. Then
the signal is recti�ed, recti�cation is the translation of the raw EMG signal
to a single polarity frequency (usually positive). The purpose of rectifying
a signal is to ensure the raw signal does not average zero, due to the raw
EMG signal having positive and negative components. It facilitates the sig-
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nals and process and calculates the mean, integration and the Fast Fourier
Transform (FFT).

2.2 Dataset

The model has been tested with three di�erent dataset. The �rst two in-
cluded data from the knee joint, while the second one included data from the
�ngers and the wrist. Working with data from both lower and upper limbs
gave us the possibility of testing our model and his goodness in di�erent sit-
uations. Furthermore, the structure of the two dataset is quite di�erent, in
the �rst one few subjects performed many repetitions of the same movement,
while in the latter many subjects repeated some movement a much smaller
number of times. This let us analyze di�erent aspects, for example for the
�rst dataset we studied the number of repetitions needed for obtaining a
good model, for the second one we observed the variability of the subjects.

2.2.1 First Dataset

In the �rst dataset [52], three healthy subjects (S1 - S3; age 30 ± 4; one
female) were asked to naturally kick a ball from a sitting position (Figure 2.5).
EMG signals were acquired with an active 8-channel wireless EMG system
at 1000 Hz. The eight EMG electrodes were placed on the left leg of each
subject in order to cover the principal muscular groups active during the kick
task. The recorded muscles were: Rectus femoris, Vastus lateralis, Vastus
medialis, Tibialis anterior, Gastrocnemius lateralis, Gastrocnemius medialis,
Biceps femoris caput longus, Peroneus longus (Figure 2.6). Synchronously to
the EMG signals, it has been recorded the kinematics of the left leg by means
of an optoelectronic system. Six retro re�ecting markers were placed on the
subjects leg and six infrared digital cameras recorded the marker positions
at 60 Hz during the whole recording session. The kinematic of the knee-joint
angle was computed from the position of the markers placed on the leg at
each time instant t. Each person repeated the same movement about 70
times.

2.2.2 Second Dataset

This database contains 11 samples of subject with some abnormality in the
knee previously diagnostic and 11 of healthy subjects. These data was
collected with the equipment Biometrics DataLOG MWX8 electromiogra-
phy and goniometry. The data were collected at the Batallón de sanidad
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Figure 2.5: Performing of the kick movement

Figure 2.6: Muscles of the leg



24 2.2. Dataset

(BASAN) Universidad Militar Nueva Granada, Bogotá.
22 male subjects, 11 with di�erent abnormalities in the knee previously

diagnostic has been studied in three di�erent exercises for analysis in mus-
cular behavior in relation with the knee, march, extension of the leg from
sitting position and the �exion of the knee standing up.

The acquisition process was made with 4 electrodes on following mus-
cles: vastus internus, semitendinosus, biceps femoris and rectus femoris. For
recording the data has been used datalog MWX8 of Biometrics company,
with 8 analog channels and 4 digital, 4 for sEMG samples and 1 for gonime-
try. They were acquired directly from the equipment of MWX8, stored on
internal memory and transmitted in real time to software Datalog on com-
puter through bluetooth, with 14 bits of resolution and frequency sample of
1000Hz.

Has been used four electrodes for each data series. Each set contains 3
to 5 repetitions of each exercise proposed.

2.2.3 Third Dataset

The third dataset comes from the Ninapro (Non Invasive Adaptive Pros-
thetics) database [8] [30]. The goal of the Ninapro project is to build a
robust and complete dataset, made with data collected from many di�erent
subjects, which perform several hand and wrist movements. The database
aims at allowing worldwide research groups to study the relationship between
sEMG, hand/arm kinematics, dynamics and clinical parameters using the
same dataset, so as it is possible to compare the classi�cation and regression
performances with various techniques.

The database contains data obtained from 40 intact subjects (28 males,
12 females; 34 right handed, 6 left handed; age 29.9 ± 3.9). Each subject
performed 50 di�erent movements shown in Figure 2.9, each one was repeated
six times. Di�erent kind of movement were performed, including the �exion
of the �ngers, the movement of the wrist and several every day activities,
like the grasping of di�erent objects. In this study we focused on the wrist
�exion and extension, because of his analogy with the knee bending.

During the exercises performed using the Cyberglove II, the intact sub-
jects were asked to mimic movies of movement shown on the screen of the lap-
top with their right hand. Hand kinematics was measured using a 22-sensor
CyberGlove II (CyberGlove Systems LLC, www.cyberglovesystems.com), a
motion capture data glove, instrumented with joint-angle measurements. In
addition to the CyberGlove, a standard commercially available 2-axis IS40
inclinometer (Fritz Kübler GmbH, www.kuebler.com) was �xed to the sub-
ject's wrist to measure the wrist orientation. This inclinometer has a range
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Figure 2.7: Acquisition procedure scheme. The subjects are asked to mimic
movies of movement shown on the screen of the laptop. The sEMG signal
is recorded through up to 12 electrodes and can be used to test methods to
control robotic hand prostheses naturally.

Figure 2.8: Placement of the 12 electrodes on the arm and Acquisition setup
for the (a) discrete movement and (b) force exercises.
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Figure 2.9: Movements and force patterns divided by exercise. Exercise A
(light blue): 12 basic movements of the �ngers; Exercise B (red): 8 isometric
and isotonic hand con�gurations and 9 basic movements of the wrist; Exer-
cise C (green): 23 grasping and functional movements (everyday objects are
presented to the subject for grasping, in order to mimic daily-life actions);
Exercise D (purple): 9 force patterns; Rest position (white).
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of 120 and a resolution of less than 0.15. Hand dynamics was measured using
the Finger-Force Linear Sensor (FFLS), employing strain gauge sensors to de-
tect �exion and extension forces of all �ngers, plus abduction and adduction
of the thumb. Muscular activity was measured using Delsys double di�eren-
tial sEMG electrodes. sEMG signals were sampled at a rate of 2 kHz with a
baseline noise of less than 750 nV RMS. These electrodes also integrate a 3-
axes accelerometer sampled at 148 Hz. Eight electrodes were equally spaced
around the forearm at the height of the radio-humeral joint; two electrodes
were placed on the main activity spots of the �exor digitorum super�cialis
and of the extensor digitorum super�cialis, two electrodes were also placed on
the main activity spots of the biceps brachii and of the triceps brachii. Data
from the CyberGlove were transmitted over a Bluetooth-tunneled serial port
at slightly less than 25 Hz; data from the inclinometer and the FFLS were
acquired at 100 Hz using a National Instruments data acquisition card (NI-
DAQ PCMCIA 6024E, 12-bit resolution); the Delsys base station received
the sEMG and accelerometer streams via an ad-hoc wireless network and
relayed the data via a standard USB connection to the laptop. Each data
sample provided by each sensor was associated to an accurate timestamp
using Windows performance counters.



Chapter 3

Signal Analysis

In order to be processed, the EMG signals have to be elaborated so as to
highlight the muscular activation during the kick tasks. For the online and
o�ine EMG elaboration has been used two di�erent approaches to process
EMG signals. While the elaboration for the o�ine model is quite standard
and extensively used and described in literature, for the online elaboration
the feature extraction has been performed through Wavelet Transform [18].

3.1 Basic Signal Analysis

For the stationary model, EMG data was processed by means of signal recti-
�cation and smoothing in order to highlight the muscular activation during
the kick tasks. This method is widely exploited in literature to denoise EMG
signals and extract useful information and features for classi�cation purposes.
In brief:the raw 8-channel EMG signals were high-pass �ltered (zero-phase
digital �lter, 4 th order Butterworth, 30 Hz cut-o� frequency) to remove
artifacts; then, signals were full-wave recti�ed and low-pass �ltered (4 th or-
der Butterworth, 6 Hz cut-o� frequency). Signal processing was performed
in MATLAB 8.0. For the second dataset, the data were synchronized (all
streams were supersampled to the highest sampling frequency 2 kHz or 100
Hz, using linear interpolation or nearest-neighbour interpolation), relabelled
(erroneous movement labels have been corrected by applying a generalized
likelihood ratio algorithm o�ine, which realigns the movement boundaries
by maximizing the likelihood of a rest-movement-rest sequence) and �ltered
(shift the signal to a "standard" one and apply a dynamic time warping to
adjust the amplitude of the various signals with a dynamic time warping
algorithm). The results of this operation are shown in Figure 3.1.

28
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Figure 3.1: Example of a basic signal analysis on a EMG signal.

3.2 Wavelet

The o�ine elaboration of the EMG signals is very limiting, because in this
way the model is not usable for real life applications. It is very interesting
the possibility of elaborating the signal online, so as to let the exoskeleton
moving in an integral way with the subject leg, or let the prosthesis follow
almost immediately the human thought.

Regrettably, training a Gaussian Mixture Model only with the EMG sig-
nals and the angle of the joint without using the time, yields to weak results.
The major drawback is that both slow and fast changing properties of sEMG
signals are relevant to the analyzing task. Slow variations provide infor-
mation related to the body movements and tissue properties while the fast
variations of signal are useful to understand the muscle activity and motor
recruitment itself.

Some widespread techniques adopted for pattern recognition are Fourier
Transform [73], Integral Absolute Value (IAV), variance and zero crossing
[43], Mean Average Value (MAV) [46], Rooted Mean Square (RMS), Mean
Power Frequency (MPF) [41], or as proposed in [62] full wave recti�cation,
�ltering and normalization. The major drawback of these transformation
methods, especially fast and short-term Fourier Transform, is that they as-
sume signal to be stationary [35]. Alternative approaches based on Wavelet
Transform have more e�ective results since EMG signals are nonstationary.
Daubechies adopted Wavelet Transform to analyze time series that contain
non-stationary power at many di�erent frequencies [21]. Laterza [42] showed
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thatWavelet Transform is a valuable alternative to represent time frequency
signals. His work highlighted several advantages. In fact, Wavelet Trans-
form are a linear multiresolution representation of the original signal without
crossterms a�ections. While Guglielminotti [31] found out the good match-
ing properties between an EMG signal and its Wavelet shapes. Recent works
reinforced advantages in using Wavelet Transform for EMG analysis [61] [58].
In particular, Chowdhury [15] emphasized the good results obtained when
adopting Daubechies functions by investigating and analyzing various re-
search studies on Wavelet Transform. Moreover, Wavelet information can be
synthesized to obtain a more compact representation by using statistical fea-
tures as stated by Subasi [68] [67]. Advantages of this technique are linearity,
multiresolution representation and being una�ected by cross terms. Better
results are obtained when wavelet shape matches the shape of the EMG as
it achieves a good energy localization in the time-scale plane.

3.2.1 Wavelet Transform

A wavelet is a wave-like oscillation with an amplitude that begins at zero,
increases, and then decreases back to zero. It can typically be visualized as
a "brief oscillation" like one might see recorded by a seismograph or heart
monitor. Generally, wavelets are purposefully crafted to have speci�c proper-
ties that make them useful for signal processing. Wavelets can be combined,
using a reverse, shift, multiply and integrate technique called convolution,
with portions of a known signal to extract information from the unknown
signal.

Wavelet Transform [18], in a similar way as Fourier Transform, has been
used in numerous applications about processing and analysis of signals. Both
these tools are used to look at the frequency components, anyway Wavelet
Transform preserves the temporal aspect of the signal without resolution
limits in frequency. Therefore, Wavelet analysis is able to extract signal
information regarding both time and frequency. From a mathematical point
of view, Wavelet transform is similar to Fourier transform with the exception
that instead of using a basis composed by sine and cosine it uses particular
functions that satisfy certain mathematical rules. Moreover, wavelet analysis
allows to locate signal information both in time and in frequency and can be
applied in a useful manner in a wide window of time as well as in a closer
one.

Wavelet transform is a spectral estimation technique in which any general
function can be expressed as an in�nite series of wavelets. The basic idea
underlying wavelet analysis consists of expressing a signal as a linear com-
bination of a particular set of functions (wavelet transform, Wavelet Trans-



3.2. Wavelet 31

form (Wavelet Transform)) 3.1, obtained by shifting and dilating one single
function called a mother wavelet (ψ(t)) by means of a scaling function (φ(t)).

f [n] =
1√
M

∑
k

Wφ[j0, k]φj0,k[n] +
1√
M

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n] (3.1)

The decomposition of the signal leads to a set of coe�cients called wavelet
coe�cients. Therefore the signal can be reconstructed as a linear combination
of the wavelet functions weighted by the wavelet coe�cients. In order to
obtain an exact reconstruction of the signal, adequate number of coe�cients
must be computed. TheWavelet Transform can be thought of as an extension
of the classic Fourier transform, except that, instead of working on a single
scale (time or frequency), it works on a multi-scale basis. This multi-scale
feature of the Wavelet Transform allows the decomposition of a signal into a
number of scales, each scale representing a particular coarseness of the signal
under study.

The mother wavelet is scaled and translated to provide multi-resolution
analysis: wide wavelets are used for low frequencies, while narrow wavelets do
the work at high frequencies. Wavelet transform method is divided into two
types: Discrete Wavelet Transform (DWT) and continuous wavelet transform
(Continuous Wavelet Transform (CWT)). DWT was selected in this study
because of the concentration in real-time engineering applications. DWT
is a technique that iteratively transforms an interested signal into multi-
resolution subsets of coe�cients. Like the conventional time-frequency anal-
ysis, the DWT transforms the EMG signal with a suitable wavelet basis
function (WF).

Wavelet transform is considered a �exible and general technique because
there is a wide variety of wavelet functions which could be used. Moreover,
anyone can design his own wavelet function according to his needs, provided
that some mathematical constraints are satis�ed. Depending on the kind
of signal, one can use Discrete Wavelet Transform (DWT) or Continuous
Wavelet Transform (CWT).

As a mathematical tool, wavelets can be used to extract information
from many di�erent kinds of data. Sets of wavelets are generally needed to
analyze data fully. A set of "complementary" wavelets will decompose data
without gaps or overlap so that the decomposition process is mathematically
reversible. Thus, sets of complementary wavelets are useful in wavelet based
compression/decompression algorithms where it is desirable to recover the
original information with minimal loss.

Wavelet Transform lead us di�erent frequency components getting the
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most signi�cant information of EMG signal spending less time and compu-
tation.

In the feature extraction stage, numerous di�erent methods can be used
so that several di�erent features can be extracted from the same raw data.

All wavelet transforms may be considered forms of time-frequency repre-
sentation for continuous-time (analog) signals and so are related to harmonic
analysis.

A complete and detailed description of Wavelet Transform and its sup-
porting theory can be found in [18] and [64].

3.2.2 Choice of the best mother wavelet

A previous study [72] shows that the selection of the mother wavelet is par-
ticularly important because every mother wavelet yields to di�erent results
even when applied to the same signal. Chowdhury [15] successfully used
Daubechies family (db) function to analyze sEMG signals. His research
focused on the processing of sEMG and its use in di�erent applications.
The signal was process by means of some speci�c functions (db2, db4, db6,
db44 and db45) at decomposition level 4 in order to maintain the maximum
amount of information. In a similar study, Phinyomark [58] was able to
�nd good results by using db7 as mother wavelet. Wavelet Transform leads
to a series of values representing the considered signal through a speci�c
mother wavelet. In this study, we would like to synthesize the information
provided by Wavelet Transform in a single value representing the wavelet
decomposition as already tested in several works [26][11][13]. Mean Average
Value (MAV) and Rooted Mean Square (RMS) methods have been selected
due the good results reached in the literature.

By looking at the good performances in both accuracy and time obtained
for subject-speci�c cases by Valentini et al [72], has been selected the db2
mother wavelet from the Daubechies family for representing the input EMGs
through a series of M coe�cients. Synthesizing the coe�cients provided by
Wavelet Transform (Wavelet Transform) to a single value representing the
wavelet decomposition allows us to compare di�erent signals. The synthesis
function should guarantee a certain level of smoothness in order to avoid
suddenly changes from one instant to another and being fast enough to be
computed online. MAV 3.2 represents a good candidate since the results
achieved in [72].

MAV =
1

M

M∑
k=1

|xk| (3.2)
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Figure 3.2: Row EMG signal and after the feature extraction by means of
Wavelet Transform

3.3 Smoothing and Normalization

Usually the wavelet transform applied to an EMG channel are very jagged. A
model built on this kind of data gives poor results because the great variabil-
ity of the signals results in poor model performances. The Wavelet Transform
of the EMG channels are smoothed and normalized in order to obtain better
and more robust models.

The smoothing function used is provided by MATLAB which smooths
the data using a moving average �lter. The average of the S = 10% of the
data points available within the windows is computed to smooth the data at
the instant t. This process is equivalent to lowpass �ltering with the response
of the smoothing given by

ys(t) =
1

2N + 1

S∑
k=1

y(t− k) (3.3)

Where ys(t) is the smoothed value for the ith data point, N is the number
of neighboring data points on either side of ys(t), and 2N + 1 is the span.
A moving average �lter smooths data by replacing each data point with the
average of the neighboring data points de�ned within the span.

The smoothing function used smooths the data using the loess method.
It performs a local regression using weighted linear least squares and a 2nd
degree polynomial model.
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In the Figure 3.3 is shown the Wavelet Transform of a EMG channel
before and after the smoothing.

Figure 3.3: Wavelet Transform of a EMG channel before and after the
smoothing.

Often the signals of a certain subject have di�erent amplitude than the
others, a normalization process has been introduced to regularize the EMG
signals. The normalization phase has been executed o�ine for the training
dataset by using the relative maximum within the processed trial. During the
testing procedure, the mean of the maximums collected during the training
has been used as normalization factor, when no data were available on a
subject. While we used the mean of the maximums within the trials of the
speci�c subject, with at least 10 attempts collected.

3.4 Dynamic Time Warping

Shift is a common occurrence in data analysis. Many analytical techniques
yield data where the same phenomena may yield variations at di�erent po-
sitions or may have di�erent durations depending on the speci�c analyti-
cal conditions. Analogously, the measurements for the single samples can
have di�erent time scales or axes, or the sample vectors may have di�erent
lengths (e.g. di�erent batch lengths in industrial processes). Warping is one
of the numerous pretreatment methods that have been proposed to correct
for shifts, conditioning data for multilinear models for exploratory purposes
as well as quantitative determination by alignment of the shifted variables.
If data are not brought to a form where the observed variables of the samples
under analysis express similar attributes, the required assumption for using
bi- and multilinear modeling, namely that like variables represent similar
phenomena in all samples, is violated.
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Figure 3.4: Graphic example of the DTW algorithm.

Two di�erent warping algorithms have received much attention in recent
years for the alignment of time trajectories. The �rst method, termed DTW,
was initially devised for aligning frequency spectra of words pronounced by
di�erent speakers for recognition purposes. The more recent approach for
aligning signals, termed Correlation Optimized Warping (COW), was pro-
posed in 1998 as a means to correct chromatograms for shifts in the time
axis prior to multivariate modeling [71].

3.4.1 DTW Algorithm

Dynamic time warping nonlinearly warps the two trajectories in such a way
that similar events are aligned and a minimum distance between them is
obtained. The algorithm in recent years it has found application in chro-
matography, in batch process monitoring and in gene expression studies. In
time series analysis, DTW is an algorithm for measuring similarity between
two temporal sequences which may vary in time or speed. For instance,
similarities in walking patterns could be detected using DTW, even if one
person was walking faster than the other, or if there were accelerations and
decelerations during the course of an observation. DTW has been applied
to temporal sequences of video, audio, and graphics data. Indeed, any data
which can be turned into a linear sequence can be analyzed with DTW. A
well known application has been automatic speech recognition, to cope with
di�erent speaking speeds. Other applications include speaker recognition and
online signature recognition. Also it is seen that it can be used in partial
shape matching application.

In general, DTW is a method that calculates an optimal match between
two given sequences (e.g. time series) with certain restrictions. The sequences
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are "warped" non-linearly in the time dimension to determine a measure
of their similarity independent of certain non-linear variations in the time
dimension. This sequence alignment method is often used in time series
classi�cation. Although DTW measures a distance-like quantity between
two given sequences, it doesn't guarantee the triangle inequality to hold.

Computing the DTW requires O(N2) in general and, unfortunately, can-
not be used in real time, because it needs all the data at the beginning of
the computation.

Figure 3.5: A graphic and a numeric example of the DTW algorithm.

In our case the DTW algorithm has been tested with several combination
of parameters to �nd out the best result. An example is shown in Figure 3.6

Figure 3.6: DTW on the angle of the knee with di�erent parameters.



Chapter 4

Gaussian Mixture

At the IAS-Lab (Intelligent Autonomous System Laboratory of University
of Padua), Michieletto et al. [52] developed a probabilistic framework which
estimates the knee bending angle based on a GMM-GMR. This framework
was able to correlate EMG signals to the corresponding joint angles matching
them through acquisition time.

This thesis aims to explore the use of a Gaussian Mixture Model (GMM)
for estimation of single-joint angle with data collected from multiple subjects.
A Gaussian Mixture Regression (GMR) technique is then used to retrieve the
data from the trained model. This approach enables an autonomous extrac-
tion of the task-related information encoded in EMG signals, without loss
of generality. Moreover, such a probabilistic framework based on Mixture
of Gaussians (MoG) distributions only require a reduced number of param-
eters to be kept, resulting in lightweight models. In the past, several groups
exploited MoG, and in particular GMM, as a method to encode EMG in-
formation. Chu et al. [17] were able to recognize EMG patterns related to
hand motion in ten di�erent subjects by means of a GMM classi�er. Suresh
et al. [69] exploited a combination of EMG and GMM as a signature for
people identi�cation. Furthermore, a GMM/GMR probabilistic framework
requires less training data to achieve good results and provides faster re-
gression with respect to other echniques usually used in the �eld of EMG
pattern recognition (e.g., Neural Networks (NN) [75]). In particular, Fukuda
et al. [27] proposed a Feedforward Neural Network (FNN) that achieves per-
formances comparable to GMM, but with a large manual tuning e�ort and
with the drawback of high sensitivity to the speci�c case study. For these
reasons, a GMM probabilistic framework has been already widely adopted in
robotic applications [50], Robot Learning from Demonstration (RLfD) [10]
[13], sound categorization [59], grasp modeling [60] and action recognition
[44].

37
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4.1 Gaussian Mixture Model

Gaussian Mixture Model is a parametric probability density function rep-
resented as a weighted sum of Gaussian component densities. GMMs are
commonly used as a parametric model of the probability distribution of
continuous measurements or features in a biometric system, such as vocal-
tract related spectral features in a speaker recognition system. GMM pa-
rameters are estimated from training data using the iterative Expectation-
Maximization (EM) [23] algorithm or Maximum A Posteriori (MAP) estima-
tion from a well-trained prior model.

Figure 4.1: Example of GMM. Every green oval is a n-dimensional gaussian

The stochastic approach of the GMM is the ideal to address the high
variability of the input EMG signals. Information extracted from EMG was
used as input of a Gaussian Mixture Model (GMM) to estimate its correlation
with the knee bending angle α.

The aim of GMM is to obtain the weighted sum of K Gaussian com-
ponents which best approximates the input dataset representing the set of
kick trials used for the training. For example, in the �rst dataset the total
number of data samples was N = nT , where n is the number of trials used
to train the system, and T = 2000 is the number of observations acquired
during each trial. A single data in input at the framework in the o�ine case
is described in Equation 4.1.

ζj = {t, ξ(t), α(t)} ∈ RD ξ(t) = {ξc, f(t)}c=1,...,C (4.1)

where:

• t ∈ R is the time elapsed from the beginning of the trial (ms);

• ξc(t) ∈ R is the cth EMG channel at the time instant t and f is one of
MAV,RMS or VAR;
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• ξ(t) ∈ RC is the set of considered channels, 1 ≤ |ξ| ≤ 8, at the time
instant t;

• α(t) ∈ R is the knee bending angle at the time instant t;

• 3 ≤ D ≤ 10 is the dimensionality of the problem.

In the online case, a single data in input at the framework is described in
Equation 4.2.

ζj = {t, ξ, α} ∈ RD ξ = {ξc}c=1,...,C (4.2)

where:

• ξc ∈ R is the cth EMG channel;

• ξ ∈ RC is the set of considered channels, 1 ≤ |ξ| ≤ 8;

• α ∈ R is the knee bending angle;

• 2 ≤ D ≤ 9 is the dimensionality of the problem.

4.2 Expectation Maximization

The GMM was trained through the Expectation-Maximization (EM) algo-
rithm, resulting in a probability distribution of the train dataset later used
to perform the regression of the knee angle.

In statistics,EM algorithm is an iterative method for �nding maximum
likelihood or maximum a posteriori (MAP) estimates of parameters in statis-
tical models, where the model depends on unobserved latent variables. The
EM iteration alternates between performing an expectation (E) step, which
creates a function for the expectation of the log-likelihood evaluated using
the current estimate for the parameters, and a maximization (M) step, which
computes parameters maximizing the expected log-likelihood found on the E
step. These parameter-estimates are then used to determine the distribution
of the latent variables in the next E step.

The EM algorithm is used to �nd (locally) maximum likelihood param-
eters of a statistical model in cases where the equations cannot be solved
directly. Typically these models involve latent variables in addition to un-
known parameters and known data observations. That is, either there are
missing values among the data, or the model can be formulated more simply
by assuming the existence of additional unobserved data points. For exam-
ple, a mixture model can be described more simply by assuming that each
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observed data point has a corresponding unobserved data point, or latent
variable, specifying the mixture component that each data point belongs to.

Figure 4.2: Example of the EM algorithm. The red and yellow ovals show
how the algorithm adapt to the data (the red and yellow crosses)

The EM algorithm proceeds from the observation that the following is a
way to solve these two sets of equations numerically. One can simply pick
arbitrary values for one of the two sets of unknowns, use them to estimate
the second set, then use these new values to �nd a better estimate of the
�rst set, and then keep alternating between the two until the resulting values
both converge to �xed points. It's not obvious that this will work at all, but
in fact it can be proven that in this particular context it does, and that the
derivative of the likelihood is (arbitrarily close to) zero at that point, which
in turn means that the point is either a maximum or a saddle point. In
general there may be multiple maxima, and there is no guarantee that the
global maximum will be found. Some likelihoods also have singularities in
them, i.e. nonsensical maxima. For example, one of the "solutions" that may
be found by EM in a mixture model involves setting one of the components
to have zero variance and the mean parameter for the same component to
be equal to one of the data points.

The Expectation-Maximization algorithm iteratively estimates the opti-
mal parameters θ = (πk, µk,Σk) that characterizes theK mixtures composing
the GMM. The algorithm can be separated in two cyclic phases: Expec-
tation and Maximization. The EM loop stops when the increment of the
log-likelihood L =

∑N
j=1 log (p (ζj|θ)) at each iteration becomes smaller than

a de�ned threshold ε, given by L(t+1)
L(t)

< ε.

The Expectation step (E-step) is described as follows:

pk,j(t+ 1) =
πk(t)N (ζj;µk(t),Σk(t))∑K
i=1 πi(t)N (ζj;µi(t),Σi(t))

(4.3)
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and the Maximization step (M-step) is computed according to:

πk(t+ 1) =
1

N

N∑
i=1

pk,j(t+ 1) (4.4)

µk(t+ 1) =

∑N
i=1 pk,j(t+ 1)ξj∑N
i=1 pk,j(t+ 1)

Σk(t+ 1) =

∑N
i=1 pk,j(t+ 1)(ζj − µk(t+ 1))(ζj − µk(t+ 1))>∑N

i=1 pk,j(t+ 1)

The algorithm optimizes the parameters of the K Gaussian components
by maintaining a monotone increasing likelihood during the local search of
the maximum. This approach enables an autonomous extraction of the kick
characteristic EMG signal while still maintaining an appropriate generaliza-
tion.

Finally, the resulting probability density function is computed:

p (ζj) =
K∑
k=1

πkN (ζj;µk,Σk) (4.5)

where:

• πk are priors probabilities;

• N (ζj;µk,Σk) are Gaussian distribution de�ned by µk and Σk, respec-
tively mean vector and covariance matrix of the k-th distribution.

The main drawback in the learning process lies in the EM requirement of
a prior speci�cation for the model complexity (i.e., the number of components
K). On one hand, an overestimation of this parameter might lead to over-
�tting and, consequently, to a poor generalization; on the other hand, an
underestimation will result to poor regression performances. To deal with
this issue we introduced an entropy based selection of the best number of
components, K, in the GMM.

Several entropy based model selection techniques has been proposed in lit-
erature (e.g. Bayesian Information Criterion (BIC) [63], Akaike Information
Criterion (AIC) [4], Minimum Description Length (MDL) [9] and Minimum
Message Length (MML) [74]). Although, in [16] the authors proposed a spe-
ci�c criteria to estimate the value of the K parameter in the case of EMG
signals, in this work we preferred a more standard approach based on BIC. In
our experiments the whole learning process has been repeated with di�erent
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GMM complexities by using BIC (Equation 4.6) as index of model quality
with respect to the number of components K.

SBIC = −2L+ np logN (4.6)

where:

• L =
∑N

j=1 log (p (ζj|θ)) is the log-likelihood for the considered model θ;

• np = (K − 1) + K(D + 1
2
D(D + 1)) is the number of free parameters

required for a mixture of K components with full covariance matrix.

The log-likelihood measures how well the model �ts the data, while the
second term is introduced to avoid data over�tting and maintain the model
general enough. In our experiments the best BIC value was obtained with
K = 15 components.

4.3 Regression

In statistics, regression analysis is a statistical process for estimating the
relationships among variables. It includes many techniques for modeling and
analyzing several variables, when the focus is on the relationship between a
dependent variable and one or more independent variables (or 'predictors').
More speci�cally, regression analysis helps one understand how the typical
value of the dependent variable (or 'criterion variable') changes when any one
of the independent variables is varied, while the other independent variables
are held �xed. Most commonly, regression analysis estimates the conditional
expectation of the dependent variable given the independent variables. In
all cases, the estimation target is a function of the independent variables
called the regression function. In regression analysis, it is also of interest to
characterize the variation of the dependent variable around the regression
function which can be described by a probability distribution.

Regression analysis is widely used for prediction and forecasting, where
its use has substantial overlap with the �eld of machine learning. Regression
analysis is also used to understand which among the independent variables
are related to the dependent variable, and to explore the forms of these
relationships.

Many techniques for carrying out regression analysis have been developed.
Familiar methods such as linear regression and ordinary least squares regres-
sion are parametric, in that the regression function is de�ned in terms of a
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Figure 4.3: Example of regression on data. The red line represent the input
data, while the blue line represent the smooth estimated movement computed
starting from EMG signals.

�nite number of unknown parameters that are estimated from the data. Non-
parametric regression refers to techniques that allow the regression function
to lie in a speci�ed set of functions, which may be in�nite-dimensional.

The performance of regression analysis methods in practice depends on
the form of the data generating process, and how it relates to the regression
approach being used. Since the true form of the data-generating process is
generally not known, regression analysis often depends to some extent on
making assumptions about this process. These assumptions are sometimes
testable if a su�cient quantity of data is available. Regression models for pre-
diction are often useful even when the assumptions are moderately violated,
although they may not perform optimally. However, in many applications,
especially with small e�ects or questions of causality based on observational
data, regression methods can give misleading results.

In a narrower sense, regression may refer speci�cally to the estimation of
continuous response variables, as opposed to the discrete response variables
used in classi�cation. Typical applications of the analysis of EMG signals
have the purpose of classify di�erent movements. The Gaussian Mixture Re-
gression (GMR) has been used to retrieve a smooth generalized version of the
signal encoded in the associated GMM. So that, the conditional expectation
of the joint angle α̂ is calculated from the consecutive temporal value t and
the EMG signals ξ known a priori. As we already said, the k-th Gaussian
component is de�ned by the parameters (πk, µk, Σk), where:

µk = {µp,k µα,k} Σk =

[
Σp,k Σpα,k

Σαp,k Σα,k

]
(4.7)

with µp and Σp respectively the mean and the covariance of the known
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a priori information. The conditional expectation and its covariance can be
estimated o�ine respectively using Equation 4.8 and 4.9.

α̂ = E [α |t, ξ ] =
K∑
k=1

βkα̂k (4.8)

Σ̂s = Cov [α |t, ξ ] =
K∑
k=1

β2
kΣ̂α,k (4.9)

where:

• βk =
πkN(t,ξc|µp,k,Σp,k )∑K
j=1N (t,ξc|µp,j ,Σp,j )

is the weight of the k-th Gaussian component

through the mixture;

• α̂k = E [αk |t, ξ ] = µα,k + Σαp,k (Σp,k)
−1 ({t, ξ} − µp,k) is the conditional

expectation of αk given {t, ξ};

• Σ̂α,k = Cov [αk |t, ξ ] = Σα,k + Σαp,k (Σp,k)
−1 Σpα,k is the conditional

covariance of αk given {t, ξ}.

While, for the online analysis of the movement, the conditional expec-
tation and its covariance can be estimated respectively using Equation 4.10
and 4.11.

α̂ = E [α |ξ ] =
K∑
k=1

βkα̂k (4.10)

Σ̂s = Cov [α |ξ ] =
K∑
k=1

β2
kΣ̂α,k (4.11)

where:

• βk =
πkN(ξc|µp,k,Σp,k )∑K
j=1N (ξc|µp,j ,Σp,j )

is the weight of the k-th Gaussian component

through the mixture;

• α̂k = E [αk |ξ ] = µα,k + Σαp,k (Σp,k)
−1 ({ξ} − µp,k) is the conditional

expectation of αk given {ξ};

• Σ̂α,k = Cov [αk |ξ ] = Σα,k + Σαp,k (Σp,k)
−1 Σpα,k is the conditional co-

variance of αk given {ξ}.

Thus, the generalized form of the motions ζ̂ = {t, ξ, α̂} (ζ̂ = {ξ, α̂} for
the online analysis) required only the weight, mean and covariance of the
Gaussian components calculated through the EM algorithm.
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4.4 Error estimation

In order to evaluate the e�ectiveness of the GMM-based system has been
used two di�erent techniques. Originally we exploited the Normalized Mean
Square Error (NMSE) in order to evaluate the e�ectiveness of the GMM-
based system. The selected function measures the Goodness of Fit (GoF)
by using as metric the NMSE between test and reference data, in our case
α̂ (the data estimated through the GMR) and α (the angle calculated by
means of the motion capture system):

GoFNMSE(t) = 1− MSE(α̂(t))

MSE(E[α(t)])
(4.12)

with:

• t, temporal instant from the beginning of the trial (ms);

• α̂(t), estimated angle at the instant t;

• MSE(x(t)) = ‖α(t)− x(t)‖2, where α(t) angle calculated through the
motion capture at the instant t;

• E[α(t)], mean along the time of the angles given by the motion capture.

By using this formula, the GoF costs vary between −∞ (bad �t) to 1
(perfect �t). The idea is to obtain a value representing the goodness of �t
and not the error from the real value. Moreover, in this case, zero represents
the value reached from a straight line in �tting the reference.

Later we changed metric, using the correlation coe�cient, also known as
the Pearson product-moment correlation coe�cient. It is a measure of the
linear correlation between two variables X and Y, giving a value between +1
and -1 inclusive, where 1 is total positive correlation, 0 is no correlation, and
-1 is total negative correlation. It is widely used in the sciences as a measure
of the degree of linear dependence between two variables.

Pearson's correlation coe�cient is the covariance of the two variables
divided by the product of their standard deviations.

Pearson's correlation coe�cient when applied to a population is com-
monly represented by the Greek letter ρ (rho). The formula for ρ is:

ρX,Y =
cov(X, Y )

σXσY
(4.13)

where:

• cov is the covariance;
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• σX is the standard deviation of X.

The formula for ρ can be expressed in terms of mean and expectation.
Since

cov(X, Y ) = E[(X − µX)(Y − µY )] (4.14)

Then the formula for ρ can also be written as

ρX,Y =
E[(X − µX)(Y − µY )]

σXsigmaY
(4.15)

where:

• cov and σX are de�ned as above;

• µX is the mean of X;

• E is the expectation.

The correlation coe�cient ranges from -1 to 1. A value of 1 implies that
a linear equation describes the relationship between X and Y perfectly, with
all data points lying on a line for which Y increases as X increases. A value
of -1 implies that all data points lie on a line for which Y decreases as X
increases. A value of 0 implies that there is no linear correlation between the
variables.

More generally, the correlation coe�cient is positive if Xi and Yi tend to
be simultaneously greater than, or simultaneously less than, their respective
means. The correlation coe�cient is negative if Xi and Yi tend to lie on
opposite sides of their respective means. Moreover, the stronger is either
tendency, the larger is the absolute value of the correlation coe�cient.

4.5 Incremental Learning of Gaussian Mixture

Model

EM algorithm has been widely used for learning Gaussian Mixture Models
(GMM) in applications involving static data where GMM learning is a one-
time process only and incremental learning is not much of a desired feature.
In many practical applications, learning GMM from dynamic streams of data
requires incremental learning for practicality and e�ciently. It is in such sce-
narios where traditional approaches towards EM clustering have signi�cant
shortcomings. The requirement that number of clusters be speci�ed has seri-
ous problems associated with it in dynamic data scenarios. In those scenarios
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there is no way by which one could identify number of clusters beforehand.
Furthermore, accuracy of EM algorithm is greatly dependent on the way it
is initialized. Most of the traditional approaches for initialization can not
insure optimal accuracy within speci�c time constraints.

This is the so called unsupervised incremental learning, which considers
building a model, seen as a set of concepts of the environment describing
a data �ow, where each data point is just instantaneously available to the
learning system. In this case, the learning system needs to take into account
these instantaneous data to update its model of the environment. An im-
portant issue in unsupervised incremental learning is the stability-plasticity
dilemma, i.e., whether a new presented data point must be assimilated in the
current model or cause a structural change in the model to accommodate the
new information that it bears, i.e., a new concept.

Figure 4.4: Example of the IGMM. The gaussians are not estimated ex-novo
at every repetition of the algorithm, but they are adapted to new data.

The EM algorithm, for instance, follows the mixture distribution ap-
proach for probabilistic modeling. This algorithm proceeds in two steps: an
estimation step (E) that computes the probabilistic membership (the pos-
terior probability) of every data to each component of the mixture model
based on a current hypothesis (a set of parameters), followed by a maximiza-
tion step (M) that updates the parameters of the current hypothesis based
on the maximization of the likelihood of the data. Here the number of con-
cepts is �xed and must be known at the start of the learning process. The
parameters of each distribution are computed through the usual statistical
point estimators, a batch-mode approach which considers that the complete
training set is previously known and �xed. As the EM algorithm, IGMM
also follows the mixture distribution modeling [12] [20] [2] [40]. However,
its model can be e�ectively expanded with new components (i.e. concepts)
as new relevant information is identi�ed in the data �ow. Moreover, IGMM
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adjusts the parameters of each distribution after the presentation of every
single data point according to recursive equations that are approximate in-
cremental counterparts of the batch-mode update equations used by the EM
algorithm.

Two main issues arise in the attempt to solve the problem of unsuper-
vised incremental learning: how to tackle the stability-plasticity dilemma
and how to update the values of distribution parameters as new data points
are sequentially acquired. IGMM handles the stability-plasticity dilemma by
means of a novelty criterion based on the likelihood of the mixture compo-
nents. The IGMM algorithm converges after the presentation of few training
samples and does not require a prede�ned number of Gaussian distributions.

4.5.1 Incremental Gaussian Mixture Model

IGMM assumes that the probability density of the input data p(x) can be
modeled by a linear combination of component densities p(x|j) corresponding
to independent probabilistic processes, in the form

p(x)
M∑
j=1

p(x|j)p(j) (4.16)

This representation is called a mixture model and the coe�cients p(j)
are called the mixing parameters, related to the prior probability of x having
been generated from component j of the mixture. The priors are adjusted
to satisfy the constraints

M∑
j=1

p(j) = 10 ≤ p(j) ≤ 1 (4.17)

Similarly, the component density functions p(x|j) are normalized so that∫
p(x|j)dx = 1 (4.18)

The probability of observing vector x = (x1, ..., xi, ..., xD) belonging to
the jth mixture component, is computed by a multivariate normal Gaussian,
with mean µj and covariance matrix Cj:

p(x|j) =
1

(2π)(D/2)
√
|Cj|

exp{−1

2
(x− µj)TC−1

j (x− µj)} (4.19)
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IGMM adopts an incremental mixture distribution model, having special
means to control the number of mixture components that e�ectively repre-
sent the so far presented data. The goal is modeling environments whose
overall dynamics can be described by a set of persistent concepts which will
be incrementally learned and represented by a set of mixture components.
So, it has been introduced a novelty criterion to overcome the problem of
the model complexity selection, related to the decision whether a new com-
ponent should be added to the current model. The mixture model starts
with a single component with unity prior, centered at the �rst input data,
with a baseline covariance matrix speci�ed by default. New components are
added by demand. IGMM uses a minimum likelihood criterion to recognize a
vector x as belonging to a mixture component. For each incoming data point
the algorithm veri�es whether it minimally �ts any mixture component. A
data point x is not recognized as belonging to a mixture component j if its
probability p(x|j) is lower than a previously speci�ed novelty threshold. In
this case, p(x|j) is interpreted as a likelihood function of the jth mixture
component. If x is rejected by all density components, it means that it bears
new information, a new component is added to the model, appropriately
adjusting its parameters.

A new mixture component is created when the instantaneous data point
x = (x1, ..., xi, ..., xD0) matches the novelty criterion written as

p(x|j) < τnov

(2π)(D/2)
√
|Cj|
∀j (4.20)

An instantaneous data point that does not match the novelty criterion
needs to be assimilated by the current mixture distribution, causing an up-
date in the values of its parameters due to the information it bears. IGMM
follows an incremental version for the usual iterative process to estimate the
parameters of a mixture model based on two steps: an estimation step (E)
and a maximization step (M). The update process begins computing the pos-
terior probabilities of component membership for the data point, p(j|x), the
estimation step. These can be obtained through Bayes' theorem.

The posterior probabilities can then be used to compute new estimates
for the values of the mean vector µnewi and covariance matrix Cnew

j of each
component density p(x|j), and the priors pnew(j) in the maximization step.
Next, will be derived the recursive equations used by IGMM to successively
estimate these parameters.

The parameters θ = (θ1, ..., θM)T , corresponding to the means, µj, co-
variances matrices, Cj, and priors p(j) of a mixture model involving D-
dimensional Gaussian distributions p(x|j), can be estimated from a data
sequence of t vectors, X = x1, ..., xn, ..., xt assumed to be drawn indepen-



50 4.5. Incremental Learning of Gaussian Mixture Model

dently from this mixture distribution. The estimates of the parameters are
random vectors whose statistical proprieties are obtained from their joint
density function. Starting from an initial �guess�, each observation vector is
used to update the estimates according to a successive estimation procedure,
basing on the maximization of the likelihood of the data. The likelihood of θ
for the givenX, L(θ), is the joint probability density of the whole data stream
X. The technique of maximum likelihood sets the value of θ by maximizing
L(θ).

The mean vector and the covariance matrix are estimated following the
natural conjugate technique. Moreover when the probability density of the
input data is a Gaussian Mixture Model withM components, an observation
xt is probabilistic assigned to a distribution j by the corresponding posterior
probability p(j|xt). In this case, the equivalent number of samples used to
compute the parameter estimates of the jth distribution component corre-
sponds to the sum of posterior probabilities that the data presented so far
were generated from component j, the 0th-order data moment for j. IGMM
stores this summation as the variable spj which is periodically restarted to
avoid an eventual saturation. The recursive equations used by IGMM to
update the model distributions are:

spj = spj + p(j|x) (4.21)

µj = muj +
p(j|x)

spj
(x−muj) (4.22)

Cj = Cj−(µj−µoldj )(µj−µoldj )T +
p(j|x)

spj
(x−muj)[(x−muj)(x−muj)T −Cj]

(4.23)

p(j) =
spj∑M
q=1 spq

(4.24)

where p(j|x) µoldj refers to the value of µj at time t − 1 (i.e., before
updating). These update equations continuously compute an instantaneous
approximation of the parameters that represent the mixture distribution.

The IGMM algorithm has just two con�guration parameters, σini and
τnov. The σini parameter is not critical, the τnov parameter, on the other
hand, is more critical and must be de�ned carefully. It indicates how distant
x must be from µj to be consider a non-member of j. For instance, τnov =
0.01 indicates that p(x|j) must be lower than one percent of the probability
in the center of the Gaussian for x be considered a non-member of j. If
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τnov < 0.01, few pattern units will be created and the regression will be
coarse. If τnov > 0.01, more pattern units will be created and consequently
the regression will be more precise. In the limit, if τnov = 1 one unit per
training pattern will be created.



Chapter 5

Interfacing with the real robot

The framework described has been tested in a real situation controlling two
di�erent robots using a Robot Operating System (ROS) [51] based system,
namely al Aldebaran NAO [54] and a Comau Smart5 SiX [53]. The software
is able to simulate generation of EMG, to compute signal analysis and to tell
robot the position to set. For each step there is a dedicated ROS node which
performs its task through reception and dispatch of ROS messages. Figure 4.1
shows blocks which form the framework, starting from EMG signals, passing
through features extraction, until robot motion. The chart shows how it is
possible to modify and separate each step according to needs; for example if
we want to change the humanoid robot, or if we want to use a di�erent kind
of model. When robots are used to replicate human movements it should
be carefully checked whether motors and joints allow to perform motion the
same way. In the case of knee joint there are not particular problems since
NAO limits almost match ones of a human being, but could arise some if
for example are considered also hip and ankle joint. Comau Smart5 SiX has
been used for testing the third dataset, i. e. the one which involved wrist
motion. The limits of the Smart5 SiX are less strict than the limits of a
human wrist, so there is no need of controls to check if the motion overcome
the human constraints.

5.1 NAO Robot

NAO is a 58-cm tall humanoid robot producted by Aldebaran, intended to be
a friendly companion around the house, the great interactivity of the robot
makes him really endearing and loveable.

While waiting to be ready for home use, NAO became a star in the world
of education. In more than 70 countries, he was used in computer and science

52
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classes, from primary school through to university. Thanks to NAO, students
can learn programming in a fun and practical way. They can program him to
walk, catch small objects and even dance! He then conquered communities
of developers, who recognised him as a powerful and incredibly expressive
medium for creating applications.

Figure 5.1: Aldebaran Nao

NAO has unique combination of hardware and software: he consists of
sensors, motors and software driven by NAOqi, its dedicated operating sys-
tem. Movement libraries are available through graphics tools such as Chore-
graphe and other advanced programming software. They allow users to create
elaborate behaviors, access the data acquired by the sensors and control the
robot.

NAO has:

• Body with 25 degrees of freedom (DOF) whose key elements are electric
motors and actuators;

• Sensor network: two cameras, four directional microphones, sonar range�nder,
two IR emitters and receivers, one inertial board, nine tactile sensors
and eight pressure sensors;

• Various communication devices, including voice synthesizer, LED lights
and 2 high-�delity speakers

• Intel ATOM 1,6ghz CPU (located in the head) that runs a Linux kernel
and supports Aldebaran's proprietary middleware (NAOqi);
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• Second CPU (located in the torso);

• 48.6-watt-hour battery that provides NAO with 1.5 or more hours of
autonomy, depending on usage.

This combination of technologies gives NAO the ability to detect its sur-
roundings. Now it must interpret what it detected. This is where the em-
bedded software in NAO's head comes in. Aldebaran created a dedicated
operating system, NAOqi, allowing the small humanoid to understand and
interpret the data received by its sensors.

5.1.1 Omnidirectional walking

NAO's walking uses a simple dynamic model (linear inverse pendulum) and
quadratic programming. It is stabilized using feedback from joint sensors.
This makes walking robust and resistant to small disturbances and torso
oscillations in the frontal and lateral planes are absorbed. NAO can walk on
a variety of �oor surfaces, such as carpeted, tiled and wooden �oors. NAO
can transition between these surfaces while walking.

5.1.2 Whole body motion

NAO's motion module is based on generalized inverse kinematics, which han-
dles Cartesian coordinates, joint control, balance, redundancy and task pri-
ority. This means that when asking NAO to extend its arm, it bends over
because its arms and leg joints are taken into account. NAO will stop its
movement to maintain balance.

5.1.3 Fall Manager

The Fall Manager protects NAO when it falls. Its main function is to detect
when NAO's center of mass (CoM) shifts outside the support polygon. The
support polygon is determined by the position of the foot or feet in contact
with the ground. When a fall is detected, all motion tasks are killed and,
depending on the direction, NAO's arms assume protective positioning, the
CoM is lowered and robot sti�ness is reduced to zero.

5.2 Smart SiX

Smart5 SiX robots, the smallest within the Comau range, boast an excep-
tionally compact design particularly suitable for all operations that require
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Figure 5.2: Aldebaran Nao

fast movement and a high degree of repeatability. Smart5 SiX range features
a model exclusively dedicated to arc welding: the Smart5 SiX ARC, designed
to optimise movement speci�cally for arc welding. This model features an
integrated �tting solution which involves the passage of the cables through
the robot base.

Figure 5.3: Comau Smart5 SiX

The main robot characteristics are listed below:

• Pre-engineered for use with a variety of optional devices;
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• Oil lubrication for all the reducers, with the exception of axes 5 and 6
which are lubricated with grease;

• Possibility of connecting electrical and pneumatic services to the fore-
arm;

• Reduced wrist dimensions enable high capacity orientation in small
spaces;

• High repeatability;

• Robot protection level is IP65;

• no speci�c devices for axis compensation.

The handling of the axes is controlled by brushless motors with direct
transmission of the motion to axes 1-2-3-4, by means of mechanical geared
reduction units, whereas for axes 5-6 the transmission is by belt to a Har-
monic Drive type reduction unit. The main robot �ttings include:

• A speci�c welding dressing;

• An internal pneumatic line with upper connection on the back of the
forearm;

• Wiring that comprises a service line with a connector on the upper
plate next to the pneumatic connection;

• Flat surfaces and threaded holes on the upper part of the forearm that
can be used to assemble �xtures (servovalves, transformer, etc.).

A speci�c out�tting is available with the Smart SiX robot for arc welding,
including the welding wire coil, wire-puller, torch and equipment on the robot

The robot consists of an anthropomorphic structure with 6 degrees of
freedom. It is anchored to the �oor by means of a steel plate and bolts. The
robot has a �xed base on which the column with the axis 2 gear reducer
rotates around the vertical axis (axis 1). An arm connects axis 2 to the
forearm and includes the reducers of axes 3-4-5-6; the wrist is located at
the end of the forearm. The robot axes are equipped with software limit
stop (programmable) and /or mechanical shock absorber stops supplied as
standard or on request. The strokes of the main axes (axes 1-2-3) can be
limited by means of additional mechanical shock absorber stops, according
to speci�c application requirements
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Figure 5.4: Comau Smart5 SiX operating area

5.3 ROS

The Robot Operating System (ROS) is a �exible framework for writing robot
software. It is a collection of tools, libraries and conventions that aim to
simplify the task of creating complex and robust robot behavior across a wide
variety of robotic platforms. Creating truly robust, general-purpose robot
software is hard. From the robot's perspective, problems that seem trivial
to humans often vary wildly between instances of tasks and environments.
Dealing with these variations is so hard that no single individual, laboratory,
or institution can hope to do it on their own.

As a result, ROS was built from the ground up to encourage collabora-
tive robotics software development. For example, one laboratory might have
experts in mapping indoor environments and could contribute a world-class
system for producing maps. Another group might have experts at using maps
to navigate and yet another group might have discovered a computer vision
approach that works well for recognizing small objects in clutter. ROS was
designed speci�cally for groups like these to collaborate and build upon each
other's work.

ROS is a large project with many ancestors and contributors. The need
for an open-ended collaboration framework was felt by many people in the
robotics research community and many projects have been created towards
this goal. Various e�orts at Stanford University in the mid-2000s involving
integrative, embodied AI, such as the STanford AI Robot (STAIR) and the
Personal Robots (PR) program, created in-house prototypes of �exible, dy-
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Figure 5.5: ROS logo

namic software systems intended for robotics use. In 2007, Willow Garage,
a nearby visionary robotics incubator, provided signi�cant resources to ex-
tend these concepts much further and create well-tested implementations.
The e�ort was boosted by countless researchers who contributed their time
and expertise to both the core ROS ideas and to its fundamental software
packages. Throughout, the software was developed in the open using the
permissive BSD open-source license and gradually has become a widely-used
platform in the robotics research community.

From the start, ROS was developed at multiple institutions and for multi-
ple robots, including many institutions who received PR2 robots fromWillow
Garage. Although it would have been far simpler for all contributors to place
their code on the same servers, over the years, the "federated" model has
emerged as one of the great strengths of the ROS ecosystem. Any group can
start their own ROS code repository on their own servers and they maintain
full ownership and control of it. They don't need anyone's permission. If
they choose to make their repository publicly available, they can receive the
recognition and credit they deserve for their achievements and bene�t from
speci�c technical feedback and improvements like all open source software
projects.

The ROS ecosystem now consists of tens of thousands of users worldwide,
working in domains ranging from tabletop hobby projects to large industrial
automation systems.

ROS was designed to be as distributed and modular as possible, so that
users can use as much or as little of ROS as they desire, the modularity of
ROS allows the user to pick and choose which parts are useful and which
parts have to be implemented.

The distributed nature of ROS also fosters a large community of user-
contributed packages that add a lot of value on top of the core ROS system.
At last count there were over 3,000 packages in the ROS ecosystem and that
is only the ROS packages that people have taken the time to announce to
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the public. These packages range in �delity, covering everything from proof-
of-concept implementations of new algorithms to industrial-quality drivers
and capabilities. The ROS user community builds on top of a common
infrastructure to provide an integration point that o�ers access to hardware
drivers, generic robot capabilities, development tools, useful external libraries
and more.

Over the past several years, ROS has grown to include a large community
of users worldwide. Historically, the majority of the users were in research
labs, but increasingly we are seeing adoption in the commercial sector, par-
ticularly in industrial and service robotics.

Figure 5.6: What ROS can do

5.3.1 Communications Infrastructure

At the lowest level, ROS o�ers a message passing interface that provides
inter-process communication and is commonly referred to as a middleware.

The ROS middleware provides these facilities:

• Publish/subscribe anonymous message passing;

• Recording and playback of messages

• Request/response remote procedure calls

• Distributed parameter system
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5.3.1.1 Message Passing

A communication system is often one of the �rst needs to arise when imple-
menting a new robot application. ROS's built-in and well-tested messaging
system saves time by managing the details of communication between dis-
tributed nodes via the anonymous publish/subscribe mechanism as shown in
5.7. Another bene�t of using a message passing system is that it forces the
user to implement clear interfaces between the nodes in the system, thereby
improving encapsulation and promoting code reuse. The structure of these
message interfaces is de�ned in the message IDL (Interface Description Lan-
guage).

Figure 5.7: Message passing in ROS

5.3.1.2 Recording and Playback of Messages

Because the publish/subscribe system is anonymous and asynchronous, the
data can be easily captured and replayed without any changes to code. Say
you have Task A that reads data from a sensor and you are developing Task
B that processes the data produced by Task A. ROS makes it easy to capture
the data published by Task A to a �le and then republish that data from
the �le at a later time. The message-passing abstraction allows Task B to
be agnostic with respect to the source of the data, which could be Task A or
the log �le. This is a powerful design pattern that can signi�cantly reduce
the development e�ort and promote �exibility and modularity in the system.
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5.3.1.3 Remote Procedure Calls

The asynchronous nature of publish/subscribe messaging works for many
communication needs in robotics, but sometimes is needed a synchronous
request/response interactions between processes. The ROS middleware pro-
vides this capability using services. Like topics, the data being sent between
processes in a service call are de�ned with the same simple message IDL.

The ROS middleware also provides a way for tasks to share con�guration
information through a global key-value store (Distributed Parameter Sys-
tem). This system allows the user to easily modify the task settings and
even allows tasks to change the con�guration of other tasks.

5.3.2 Robot-Speci�c Features

In addition to the core middleware components, ROS provides common
robot-speci�c libraries and tools that will get the robot up and running
quickly. Here are just a few of the robot-speci�c capabilities that ROS pro-
vides:

• Standard Message De�nitions for Robots;

• Robot Geometry Library;

• Robot Description Language;

• Preemptable Remote Procedure Calls;

• Diagnostics;

• Pose Estimation;

• Localization;

• Mapping;

• Navigation.

5.3.2.1 Standard Robot Messages

Years of community discussion and development have led to a set of standard
message formats that cover most of the common use cases in robotics. There
are message de�nitions for geometric concepts like poses, transforms and
vectors; for sensors like cameras, IMUs and lasers; and for navigation data
like odometry, paths and maps; among many others. By using these standard
messages in the application, the code will interoperate seamlessly with the
rest of the ROS ecosystem, from development tools to libraries of capabilities.
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5.3.2.2 Robot Geometry Library

A common challenge in many robotics projects is keeping track of where
di�erent parts of the robot are with respect to each other. For example, if
you want to combine data from a camera with data from a laser, you need to
know where each sensor is, in some common frame of reference. This issue
is especially important for humanoid robots with many moving parts. This
problem has been addressed in ROS with the tf (transform) library, which
will keep track of where everything is in the robot system.

Designed with e�ciency in mind, the tf library has been used to manage
coordinate transform data for robots with more than one hundred degrees
of freedom and update rates of hundreds of Hertz. The tf library allows the
user to de�ne both static transforms, such as a camera that is �xed to a
mobile base and dynamic transforms, such as a joint in a robot arm. It is
possible to transform sensor data between any pair of coordinate frames in
the system. The tf library handles the fact that the producers and consumers
of this information may be distributed across the network and the fact that
the information is updated at varying rates.

5.3.2.3 Robot Description Language

Another common robotics problem that ROS solves is how to describe the
robot in a machine-readable way. ROS provides a set of tools for describing
and modeling the robot so that it can be understood by the rest of the
ROS system, including tf, robot state publisher and rviz. The format for
describing the robot in ROS is URDF (Uni�ed Robot Description Format),
which consists of an XML document in which the user describes the physical
properties of the robot, from the lengths of limbs and sizes of wheels to the
locations of sensors and the visual appearance of each part of the robot.

Once de�ned in this way, the robot can be easily used with the tf library,
rendered in three dimensions for nice visualizations and used with simulators
and motion planners.

5.3.2.4 Preemptable Remote Procedure Calls

While topics (anonymous publish/subscribe) and services (remote procedure
calls) cover most of the communication use cases in robotics, sometimes the
user need to initiate a goal-seeking behavior, monitor its progress, be able to
preempt it along the way and receive noti�cation when it is complete. ROS
provides actions for this purpose. Actions are like services except they can
report progress before returning the �nal response and they can be preempted
by the caller. So, for example, you can instruct your robot to navigate to some
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location, monitor its progress as it attempts to get there, stop or redirect it
along the way and be told when it has succeeded (or failed). An action is a
powerful concept that is used throughout the ROS ecosystem.

5.3.2.5 Diagnostics

ROS provides a standard way to produce, collect and aggregate diagnostics
about the robot so that, at a glance, the user can quickly see the state of the
robot and determine how to address issues as they arise.

5.3.2.6 Pose Estimation, Localization and Navigation

ROS also provides some "batteries included" capabilities that help the users
get started on their robotics project. There are ROS packages that solve
basic robotics problems like pose estimation, localization in a map, building
a map and even mobile navigation.

5.3.3 Tools

One of the strongest features of ROS is the powerful development toolset.
These tools support introspecting, debugging, plotting and visualizing the
state of the system being developed. The underlying publish/subscribe mech-
anism allows the user to spontaneously introspect the data �owing through
the system, making it easy to comprehend and debug issues as they occur.
The ROS tools take advantage of this introspection capability through an
extensive collection of graphical and command line utilities that simplify
development and debugging.

5.3.3.1 rviz

Perhaps the most well-known tool in ROS, rviz provides general purpose,
three-dimensional visualization of many sensor data types and any URDF-
described robot.

rviz can visualize many of the common message types provided in ROS,
such as laser scans, three-dimensional point clouds and camera images. It
also uses information from the tf library to show all of the sensor data in
a common coordinate frame, together with a three-dimensional rendering of
the robot. Visualizing all of the data in the same application not only looks
impressive, but also allows the user to quickly see what the robot sees and
identify problems such as sensor misalignments or robot model inaccuracies.
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5.3.3.2 rqt

ROS provides rqt, a Qt-based framework for developing graphical interfaces
for the robot. Anyone can create custom interfaces by composing and con-
�guring the extensive library of built-in rqt plugins into tabbed, split-screen
and other layouts. The users can also introduce new interface components
by writing their own rqt plugins.

The rqt_graph plugin provides introspection and visualization of a live
ROS system, showing nodes and the connections between them and allowing
the user to easily debug and understand their running system and how it is
structured.

With the rqt plot_plugin, it is possible to monitor encoders, voltages, or
anything that can be represented as a number that varies over time.

For monitoring and using topics, there are the rqt_topic and rqt_publisher
plugins. The former lets the user monitor and introspect any number of top-
ics being published within the system. The latter allows to publish messages
to any topic, facilitating ad hoc experimentation with the system.

For data logging and playback, ROS uses the bag format. Bag �les can
be created and accessed graphically via the rqt_bag plugin. This plugin
can record data to bags, play back selected topics from a bag and visualize
the contents of a bag, including display of images and plotting of numerical
values over time.

5.4 Robot Simulation

In order to test the goodness of the model on a real robot, the �rst step
is connecting to it. For the NAO robot communication is done through
TCP/IP, so the IP address of the robot must be set after switching on the
robot.

After connecting the computer to the robot all the sensors will activate
and all the joints will became sti�. Then NAO will be placed in a certain
stable, initial position (in this case a sitting position).

At this point we could start to communicate with the robot.

In this simulation we will not have a real person to which are connected
sEMG sensors in order to collect electromyographic data. This would be
a very interesting simulation, but building up the whole system would be
too complicated, since in the IAS Lab there is not the necessary equipment.
Furthermore this is not the main goal of the thesis. To simulate the online
collection of the data, a ROS node will simulate generation of signals as if
they were instantly acquired. The node, named emg_generator, reads from
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a con�guration �le the path where the �le containing signals is stored, it
loads it and publishes a message with EMG values at a frequency rate equal
to the original acquisition one. The message will contain the EMG signals
from the previously selected channels. When there are no more values to be
published it sends a message with fake values to tell listening node that the
signal is �nished.

There is an other node which listen to EMG messages and connect to
robot. It is namedmodel2motion_wlt. It listens to EMG messages, compute
wavelet transform and then publish to the robot the bending angle of the
selected joint.

model2motion_wlt also handles the load of the GMM model. Every
time a new sEMG value is received by the callback, the new portion of
signal is elaborated through the function computeRegression which returns
the corresponding angle. Due to normal imperfections of estimation, values
resulting from regression must be managed in order to eliminate noise and
oscillations. The position sent to the robot is the mean of the last twenty
angles computed.

Humanoid robots are built to resemble human beings but mechanical
components like motors and materials cause some limits to behavior repli-
cation. Human and NAO capabilities are di�erent depending on the joint
considered. For example the motion of the knee joint is almost identical and
the only di�erence is about the minimum and maximum reachable angles.
Instead, for the motion of the Comau Smart5 SiX, the limits in the wrist
movement exceeds the limits of the human wrist, so there is no need of ver-
ifying them. However, is possible to store the limits of the robot joints in
a YAML Ain't Markup Language (YAML) �le and, during the execution,
check that they are not exceeded.

Parameters for both nodes model2motion and emg_generator can be set
through a YAML �le.

Once NAO is ready to perform actions, the node model2motion_wlt can
be run. When robot is in position, the simulation of the EMG signals can be
started.



Chapter 6

Experimental Results

The three dataset described in the previous chapters have been analyzed
through di�erent aspects, depending on their characteristics.

6.1 Dataset 1

The �rst dataset, as previously said, is composed by many repetitions of the
same movement (about 60) performed by three subjects. This con�guration
is ideal to study how the model adapts to a new subject and after how many
repetitions the model �ts to a new subject.

The sEMG signals were collected from eight di�erent channels and for
every movement were considered 2000 samples. Building a model takes time
and, of course, more trials and channels are used, more time is needed to
build the model. These two variables have to been examined in order to
detect the best trade o� between the goodness of the model and the time
needed to build it.

The main goal of this part of the project was to detect the best combina-
tion of the parameters to build the most robust model. First the dataset has
been used to build a model o�ine, with the classic Gaussian Mixture Model.
Then has been tried the incremental GMM to see if the results were compa-
rable with the classic version. Finally has been checked the goodness of the
online GMM with the feature extraction performed by wavelet transform.

In all the cases the results were satisfying, though the better results were
obtained with the o�ine classic version of GMM.

For sake of simplicity, the three subjects studied in this dataset are re-
ferred to as S1 for the �rst subject (a man), S2 for the second subject (a
man) and S3 for the third subject (a woman).

The sEMG signals were recorded with sensors placed in correspondence
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of eight muscles:

Muscle Short Name
Rectus femoris Ch1
Vastus lateralis Ch2
Vastus medialis Ch3
Tibialis anterior Ch4

Gastrocnemius lateralis Ch5
Gastrocnemius medialis Ch6

Biceps femoris caput longus Ch7
Peroneus longus Ch8

Table 6.1: Abbreviation of the muscles whence are collected sEMG signals

6.1.1 O�ine analysis [66]

GMM have been trained with data from couple of subjects (S1+S2, S1+S3,
S2+S3). For every couple, di�erent sizes of training set have been considered
(10, 30, 60, 120), half from the �rst subject and half from the second one. For
the testing phase, has been used 10 trials coming from the remaining subject
in order to verify the generality of the model. The described procedure
has been applied to all the collected EMG channels, so as to detect which
channels bring the most information.

Figure 6.1 represents the GoF computed for the couple S1+S2 and tested
on S3 varying the EMG channel and the number of data used for training,
while Figure 6.2 shows the same thing for the subjects S1+S3 tested on
S2. Figure 6.3 shows a comparison of the results of GoF of all the possible
combination of subjects with the model built with 60 trials used as train.

Results showed a good estimation even with few input data for almost
all the channels. Increasing the cardinality of the training set we generally
obtained similar or better performance with some exceptions. In fact, it was
worth to use a number of trials varying between 30 and 60 in order to obtain
more stable results during the testing phase, while using a greater number of
trials raised signi�cantly the time for model training without any apparent
bene�t in e�ciency.

As it is possible to see, the results are all quite good. For the model build
on S1 and S2 the poor results for Ch2, Ch5 and Ch6 are due to acquisition
problem for those particular channels.

Looking at the whole set of results, they were generally quite similar,
except for speci�c channels in some rare cases. As regards the best EMG
channels, generally Ch1, Ch2, Ch3 and Ch7 were the muscles bringing most
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Figure 6.1: GoF values from every channel related to the number of trials
used as train for subjects S1+S2

Figure 6.2: GoF values from every channel related to the number of trials
used as train for subjects S1+S3

Figure 6.3: Comparison of the GoF values from every channel for all the
subjects with 60 trials used as train
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information. In fact, the GoF for the EMG channels related to these muscles
resulted between the most informative even in subject-speci�c models for all
the three subjects. Moreover, the cited muscles are the principal actors of
the considered movement from a biological point of view.

Coherently, tests showed that the best trade o� in terms of both stability
and e�ciency has been obtained using three out four of the already cited
EMG channels (GoF = 0.9257 for Ch1+Ch2+Ch3 and GoF = 0.9409 for
Ch1+Ch2+Ch7). Using more than three channels is unnecessary because it
leads to an over�tting of the system. On the other hand using less than three
channels gives results not enough safe, in fact a little problem on acquisition
of just one channel could compromise the �nal result, as shown for the model
build on S1 and S2 and tested on S3.

6.1.1.1 Leave One Out

The model has then been studied in a leave-one-out way (Leave One Out
(LOO)), in which it has been built on n− 1 subjects and tested on the nth
subject. First the model is built with 60 observations, half from the �rst
subject and half from the second one. The model is then tested on 10 trials
of the third, unknown, subject. Then, these observations are added to the
train data and a new model is built with 70 trials, 30 from the �rst subject,
30 from the second subject and 10 from the third subject. The new model
is then tested on 10 new trials of the third subject and so on. In this way is
possible to simulate the �tting of the model on a new subject and and study
after how many repetitions the model is able to adapt to the data of a new
person.

Figure 6.4: LOO test of the model while adapting to a new subject

As it is possible to see on Figure 6.4 after about 20 repetitions the model
is able to �t quite well to a new subject.
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6.1.1.2 Comparison between subject-independent and multi-subject

model

6.2 compare the results between subject-speci�c and subject independent
models regarding the most informative EMG channels. The subject-independent
model for the subject Sn has been trained on all subjects except Sn and tested
on Sn (n = 1, 2, 3), using a leave-one-out approach.

Sometimes the subject-independent model shows even better results than
the single subject one. In other cases the results were poorer in the subject-
independent model, this happens when the same channel gives di�erent per-
formances for the two single subjects.

Subject S1 S2 S3
Speci�c 0.9238 0.9700 0.9570

Independent 0.8887 0.9214 0.8733

Table 6.2: GoF values comparing results from subject-speci�c and subject-
independent models.

6.1.1.3 IGMM

The same study described on the previous section has been repeated building
the Gaussian Mixture Model in a incremental way. In this case the results
were a few poorer but the time needed to build it is reduced considerably.

Figure 6.5: LOO test of the IGMM while adapting to a new subject
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6.1.2 Online analysis [65]

In this dataset, the high number of repetitions of the same movement (about
60) performed by three subjects gave us the possibility to study the adap-
tation performances of the model adapts to a novel person. The 3 most
signi�cant channels have been selected, according to the results coming from
the preliminary study. The selected channels (1, 2 and 8) recorded the ac-
tivity of the muscles Rectus femoris, Vastus lateralis and Peroneus longus.

The db2 mother wavelet and MAV synthesis feature have been applied to
the raw signal provided from every single channel. The resulting values have
been associated to the corresponding bending angle along time. A model
for each channel has been trained and GMR have been used to retrieve the
estimated bending angle to be compared with a testing set. The 3 channels
o�ering the best performances have been selected in order to obtain similar
models. The number of channels has been de�ned by looking at minimum set
of channels resulting with a signi�cant correlation coe�cient for the speci�c
dataset.

Again, a leave-one-out approach has been adopted by building the model
on 30 trials coming from 2 subjects and tested on the remaining one. We
obtained 3 models on the movement trained by using a total of 60 repetitions.
For analyzing the model adaptation, the data of every subject has been
divided in blocks of 10 repetitions. In fact, 10 repetitions bring a good
amount of information to the system, good enough to add a substantial
contribute to the previous model. In the �rst part of the analysis, the di�erent
blocks of movements of a certain subject are used to test the model built on
the other two subjects. This is represented in the 6.6 by the red lines. The
blue line, instead, shows a model tested, respectively, on the same data of
the previous case, but using an updated model with the previous testing data
added to the training set. In this way the model is updated with the data
from the third subject. As the new data are added to the model, the results
improved, giving generally better results with respect to the �rst part of the
analysis.

When the testing data showed more variability, the model generally de-
crease its performances, but in a long term perspective the adaptation char-
acteristics of the proposed framework could solve the problems demonstrated
with some subject with the NinaPro dataset.

6.1.3 Final comparison

In the Figure 6.7 is possible to see a comparison between all the techniques
described. As it is possible to see, the classic GMM o�ine approach gives
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Figure 6.6: Correlation and Standard Deviation for the model of a kicking
movement. The red line represent the results of the model built on two
subjects and tested on di�erent data from the third subject, without updating
the model. The blue line represent the results of the model tested on the
same data than the previous case, but updating the model with the data of
the third person.

the best results, while the online approach gives poorer results. This is not
surprising given that in the wavelet approach time is not considered and, of
course, time brings a lot of information, which are useful in the building of
the model.

The worsening of the results with 110 trials used as train is due to poor
data added to the model. The classic version on the GMM is more resistant
to rapid deterioration and adapts less quickly to new data, while the wavelet
approach is more sensitive to changes in the train data.

Figure 6.7: Comparison of the various techniques on the model built on S1
and S2 with LOO approach
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6.2 Dataset 2

The dataset contains data of three movements, but only two has been an-
alyzed. This dataset has been chosen because its movements involved the
same joints of the �rst dataset. It also involved more subjects than the pre-
vious dataset. The dataset has been tested in a leave-one-out way, in which
the �rst 40 trials are used for training the model and the last three ones are
used for testing the model. Unfortunately this dataset is not as good as the
other one, in fact the movements were performed with di�erent velocities and
this led to very poor performances as is shown in Figure 6.9.

Figure 6.8: Di�erent speeds for the same movement

To improve the results it is possible to use the DTW algorithm described
in a previous chapter. After applying the algorithm the results change con-
siderably as it is possible to see on Figure 6.9.

Figure 6.9: Knee angle before and after the application of the DTW algorithm

The model built on row data gave really poor performances, which in-
crease impressively after the application of the DTW algorithm as it is pos-
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sible to see on Figure 6.10.

Figure 6.10: GoF of the model built on row data and after applying DTW
algorithm

6.3 Dataset 3

In order to obtain comparable results between the considered dataset has
been applied a series of standardizing approaches. A similar number of sam-
ples (' 2000) for trial has been considered by down-sampling of one tenth the
information available in the NinaPro database, while the other two databases
already had a similar number of samples. We look at the most informative
EMG channels by conducting a preparatory study. The objective of the
study was to select an equal number of muscles connected to the performed
movement by means of a quantitative measure of the in�uence in the move-
ment of each considered channel. As for the �rst dataset, to the signal of
every channel has been applied the db2 mother wavelet and MAV synthesis
feature, associating the resulting values to the corresponding bending angle
along time.

The 3 channels o�ering the best performances have been selected in or-
der to obtain similar models. The number of channels has been de�ned by
looking at minimum set of channels resulting with a signi�cant correlation
coe�cient for the speci�c dataset. It is worth to notice that more channels
could be considered for this dataset, resulting in more accurate estimation.
Anyway, a subset of the signi�cant channels have been selected to simplify
the comparison with the models produced with the �rst dataset, for which
only 3 channels were actually correlated to the motion.

The high number of subjects involved in this dataset is ideal to analyze
the robustness of the proposed framework. Two di�erent movements of upper
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limbs, and in particular the wrist, i.e. �exion (Movement 13) and extension
(Movement 14), have been selected between the di�erent movement contained
in the dataset. They are simple and involve a single joint movement. The
purpose of this choice is to focus on subject-independent model more than
on the complexity of the motion. The 3 most signi�cant channels have been
selected, according to the results coming from the preliminary study. The
selected channels (3, 5 and 7) brought information from muscles around the
forearm. A leave-one-out approach has been adopted by building the model
on 39 subjects and tested on the remaining one. We obtained 40 models for
each movement to be tested on the 6 repetitions of the testing subject. The
mean and the standard deviation of the correlation coe�cient computed from
the comparison of 6 estimated bending trajectories with the actual measured
angles have been plotted in Fig. 2 and Fig. 3.

The results showed a good correlation resulting from the created GMM/GMR
framework. Both the movements reached a statistically signi�cant mean
correlation coe�cient (ρα, α̂ ≥ 0.7), with a lower result for Movement 14
(6.12) (ρα, α̂ = 0.7117) and quite consistent result for Movement 13 (6.11)
(ρα, α̂ = 0.8224).

Figure 6.11: Correlation and Standard Deviation for the model of a wrist
�exion movement. The model was built on n− i subjects and tested on the
ith

The model have showed low performances on some speci�c subjects, prob-
ably due to a di�erent interpretation of the task with respect to the remain-
der of the users. This problem could probably be solved by considering an
higher number of repetitions performed by the same individual, leading to a
less mechanical movement.
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Figure 6.12: Correlation and Standard Deviation for the model of a wrist
extension movement. The model was built on n − i subjects and tested on
the ith



Chapter 7

Conclusions

7.1 Discussion

This thesis proposed a method to estimate online a single joint angle for
both upper and lower limbs. A Gaussian Mixture Model was built on Surface
Electromyography signals from di�erent dataset, while joint angles related to
new, unseen Surface Electromyography data has been estimated by means of
Gaussian Mixture Regression. The online version of the proposed framework
used Wavelet Transform to estimate the bending angle starting only from
a small portion of the whole signal. An o�ine version of the framework
considering the entire evolution of the signal has been used as basis of our
work.

The model was able to obtain signi�cant results on new, unseen data, with
great variability of subjects and few repetitions of the movements. More-
over, we obtained good results even with di�erent movements of the same
joint (Correlation Coe�cient 0.8224 on average for wrist �exion and 0.7117
on average for wrist extension). Furthermore, we prove that is possible to
improve the model adapting it to the data of a new subject, since this gave
better results than without updating the model.

This means that it is possible to extract common features from data com-
ing from multiple subjects. Of course the results obtained on the subject-
independent model are not as good as the subject-speci�c case, but there
are many possible ways to improve the quality of the signals. In fact, data
collected from di�erent subjects might be noisier than single-subject's sig-
nals, but useful processing tools such as DTW algorithm, smoothing and
normalization could signi�cantly improve the goodness of our model.

The fact that this approach give good results with both subject-speci�c
and subject-independent models created online and o�ine tells us that it is
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a good way to estimate this kind of physiological data.
The estimated joint angles have been remapped onto a robotic joint in

order to online control two kind of robots: a manipulator for testing upper
limbs and a humanoid for testing lower limbs. Testing the model on di�erent
dataset involving di�erent movements and with di�erent kind of robots de�-
nitely proves that the regression of a single joint bending angle is e�ectively
achievable via Gaussian Mixture Model.

7.2 Future work

Despite the good results obtained in a quite new �eld which and with few
proposed solutions, there are a lot of possible improvements. An interesting
study will involve data of amputee subjects or with mobility disorders in
order to test how the model change, since prostheses are not destined to
healthy subjects and, of course, non-healthy people have even di�erent ways
of performing simple tasks like kicking a ball or walking.

Furthermore, part of this study regarded the selection of the channels
and their number. Little changes in the position of the sensors could a�ect
the goodness of the signal and, consequently, the goodness of the model. As
further work, it would be interesting to perform an adaptive and dynamic
selection of the features, adapting them to the performance obtained by the
model.

We also want to study new and more fast methods to increase the relia-
bility of the data with better smoothing and normalization techniques.

Moreover, controlling just one joint is very limited, it will be of great
interest increase the control framework to multiple joints and perform a more
depth study about the potentials of the incremental version of GMM. It will
be very challenging studying the number of training trials needed by a new
subject when using the system, to let the model �t to him.

As the robotics devices are intended to work with the humans, it is impor-
tant to manage the safety of the users, handling all the potentially dangerous
situations in which, for example, the prosthesis stops working or make a mis-
take computing the model.

A lot of work can be done about this interesting topic and, since this is
just the beginning of the researches on this �eld, a lot of improvements can
be reached. Let the robot learning from human demonstrations seams quite
a science �ctional topic, but it is not, and the fact that this research could
help people with some kind of disability to live in a better way is even more
satisfying and incredible.
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