
Cryptanalysis of Hash Functions

Sebastiano Degan

Kongens Lyngby 2012

DTU Matematik
Danmarks Tekniske Universitet
Matematiktorvet, Building 303B
DK-2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
Fax +45 4588 1399
MAT-INSTADM@mat.dtu.dk
http://www.mat.dtu.dk/

Summary

Despite recent breakthrough discoveries of practical collision attacks against MD5
[WY05, SLdW07], the latter is still very widely used. The main reason is likely
as follows: When it comes to practical applications, retro-compatibility is a de-
sirable property; furthermore, some protocols only require preimage resistance.
Hence, research on preimage attacks and the security margin of hash functions
against them is well motivated, especially if those hash functions are in practical
use.

The aim of this thesis is to evaluate the applicability of the recently developed
biclique [KRS11] to the preimage attack performed by Sasaki and Aoki in [SA09].
This led to a slightly improved time complexity of 2121.3 compression function
evaluations and a greatly improved memory complexity of 220.7 32-bit memory
words. Thanks to this reasonable memory requirement, an attack faster than
brute force can be actually implemented, though its execution time would still
be infeasible.

ii

Preface

This thesis was prepared at the Department of Mathematics at the Technical
University of Denmark under the supervision of Professor Christian Rechberger,
in ful�lment of the requirements for acquiring a M.Sc. in Mathematical Mod-
elling and Computation at the Technical University of Denmark and a Laurea
Magistrale in Ingegneria Informatica at the University of Padua in the frame of
TIME double-degree program.

The thesis deals with the cryptanalysis of hash functions, with a focus on MD5.
It consists of an overview of cryptanalytic techniques concerning Meet-in-the-
Middle attacks, which have recently received increasing attention. Some of those
techniques will be further extended and applied in new contexts, thus improving
known preimage attacks on MD5.

Lyngby, 31-August-2012

iv

Sebastiano Degan

v

vi Contents

Contents

Summary i

Preface iii

1 Introduction 1

1.1 Hash Functions and Their Applications 1
1.2 Attacks on Hash Functions . 6
1.3 Brief History of MD5 . 7
1.4 Contribution of this Thesis . 9

1.4.1 Thesis Organization . 9

I An Overview of Cryptanalytic Techniques 11

2 MD5 Description 13

2.1 Design Principles . 13
2.1.1 Merkle�Damgård Construction 14
2.1.2 Compression Function . 15

2.2 MD5 Hashing Algorithm . 17
2.2.1 Compression Function . 17
2.2.2 Message Padding . 18

3 Meet-in-the-Middle Framework 19

3.1 Basic MitM Attack . 19
3.2 Beyond Double Encryption Schemes 21

3.2.1 Splice-and-Cut . 21
3.2.2 Bicliques . 23

viii CONTENTS

4 Preimage Attacks on Hash Functions 29

4.1 From Ciphers to Compression Functions 29
4.2 From Compression Functions to Hash Functions 30

4.2.1 Converting Pseudo-Preimages to Preimages 30
4.2.2 Expandable Messages . 31
4.2.3 MTPP: Multi-Target Pseudo-Preimage 32

4.3 Matching Techniques . 36
4.4 One-Block Preimages . 39

4.4.1 Fixed CV and Splice-and-Cut 39

II Improved Attacks on MD5 41

5 Pseudo-Preimage and Preimage Attacks on MD5 43

5.1 Attack Outline . 43
5.2 Matching . 44

5.2.1 Candidates Generation . 45
5.2.2 Matching Procedure . 47

5.3 Biclique . 48
5.3.1 Absorption Properties in Boolean Functions 48
5.3.2 Trails Interaction and Absorption Properties 49
5.3.3 Trails Description . 50
5.3.4 Construction Algorithm 52

5.4 Padding . 54
5.5 Attack Algorithm . 55

5.5.1 Complexity Analysis . 57
5.6 Conversion to Preimage . 59

6 Pseudo-Preimage and Preimage Attacks on MD5: Two Variants 61

6.1 Variant I: Biclique E�ciency 1.0 61
6.2 Variant II: Optimized Biclique 66

6.2.1 Biclique optimization . 67
6.2.2 Complexity Analysis . 69

7 One-Block Preimage on MD5 71

7.1 Attack Outline . 71
7.2 Matching . 72

7.2.1 Matching Procedure . 74
7.3 Biclique . 74

7.3.1 Trails Description . 75
7.3.2 Construction Algorithm 77

7.4 Attack Algorithm . 79
7.4.1 Complexity Analysis . 80

CONTENTS ix

8 Attacks Comparison and Conclusions 83

8.1 Pseudo-Preimages . 83
8.2 Preimages . 85
8.3 One-Block Preimages . 86
8.4 Conclusions . 86

A Biclique 89

A.1 Biclique construction . 89
A.1.1 Notation . 89
A.1.2 States initialization . 90
A.1.3 Forward trail . 90
A.1.4 Backward Trail 1 . 92
A.1.5 Backward trail 2 . 93
A.1.6 Trails interaction . 95

B Biclique with Local Collision 101

B.1 Biclique construction . 101
B.1.1 Notation . 101
B.1.2 States initialization . 102
B.1.3 Forward trail . 103
B.1.4 Backward Trail . 106
B.1.5 Trails interaction . 108

C MD5 Parameters 111

Bibliography 113

x CONTENTS

Chapter 1

Introduction

The word cryptanalysis refers to a research activity on a particular crypto-
graphic component aiming to discover any weakness capable of compromising
the security of the latter. It consists of both an evaluation of the applicability of
known cryptanalytic techniques and the development of new ones when possible
and/or necessary. Hash functions will be the target of the techniques presented
in this thesis, with a focus on MD5.

1.1 Hash Functions and Their Applications

Here hash functions are de�ned together with some examples of their applica-
tions, motivating the need for the security requirements listed below.

2 Introduction

Definition 1.1 (Cryptographic Hash Function)
A cryptographic hash function H is a function mapping arbitrary binary strings
into binary strings of �xed length:

H : {0, 1}∗ −→ {0, 1}n
x 7−→ H(x)

H(x) is commonly referred to as message hash, message digest, hash or digest.
Furthermore, for H to be considered secure, the following properties must
hold:

Security Property 1 (Collision Resistance)
It is di�cult to �nd distinct x, x′ ∈ {0, 1}∗ such that:

H(x) = H(x′)

Security Property 2 (Second Preimage Resistance)
Given x ∈ {0, 1}∗, it is di�cult to �nd x′ ∈ {0, 1}∗, x′ 6= x such that:

H(x) = H(x′)

Security Property 3 (Preimage Resistance)
Given y ∈ {0, 1}n, it is di�cult to �nd x ∈ {0, 1}∗ such that:

H(x) = y

A

x′ H

x H

H(x) = H(x′)

Figure 1.1: Collision Attack

1.1 Hash Functions and Their Applications 3

A

x′ H

x H

H(x) = H(x′)

Figure 1.2: 2nd Preimage Attack

A

y

x H H(x) = y

Figure 1.3: Preimage Attack

1.1.0.1 Safe Password Storage

One of the most common ways users validate their credentials is by providing
a secret password. As a consequence, this sensitive information must be stored
so that:

• It cannot be accessed by unauthorized entities.

• It is available for veri�cation.

Exploiting access control lists and/or other similar features provided by the
operating system is certainly a good idea; however, it is possible to add another
layer of security by using hash functions. Instead of saving the password itself,
the following value is stored:

{salt,H(salt||password)}

Figure 1.4: Safe Password Storage - salt is a random value for each entry.

4 Introduction

When a user enters his password, the value H(salt||password) is computed and
compared with the stored one; if they match, the password is correct. Using
this scheme, even if an attacker gains access to the information in Figure 1.4,
the secrecy of the password will not be compromised since he will not be able to
compute a valid password thanks to the preimage resistance of H. Furthermore,
the use of a salt prevents common passwords to be detected.

1.1.0.2 Message Authentication

There is more to cryptography than encryption and con�dentiality issues: Be-
ing able to determine by whom a particular message was generated is equally
important. This goal can be achieved through a process calledmessage authenti-
cation. Message authentication protocols can use either public key cryptography
or symmetric key cryptography, in both cases hash functions are likely to be a
fundamental building block.

In Figure 1.5 message authentication is achieved using symmetric key cryptog-
raphy: A and B share the secret K = (K1,K2) and use it to generate a Message
Authentication Code (MAC).

Example of MAC codes

{
MACK(m) = H(K1||m||K2)
MACK(m) = H(K1||H(m||K2))

A
(m,MACK(m))−−−−−−−−−−→ B

Figure 1.5: Message Authentication - Symmetric Key

When B receives the message, he can check that it was indeed created by A by
computing MACK(m) and comparing it with the one provided. Since the key
is known only to A and B, if the two MACs are equal then A must have created
the message.

In Figure 1.6 message authentication is achieved using public key cryptography
and digital signatures. The encryption algorithm is applied to the digest of the
message rather than the message itself, this approach has two advantages:

• Encryption and decryption in public key cryptography are usually compu-
tationally expensive procedures, hash functions allow them to be applied
on a �xed-size input, which is easier to handle.

1.1 Hash Functions and Their Applications 5

• Hash functions disrupt any mathematical property linked to the particular
primitive used. In RSA, for example, the encryption of the product is the
product of the encryptions.

A
(m,decA(H(m)))−−−−−−−−−−−→ B

Figure 1.6: Message Authentication - Public Key

Once B receives the message, he can check its authenticity by verifying that
H(m) = encA(decA(H(m)); since only A knows her own private key, she must
be the one who signed the message.

In this context, all of the security properties are crucial: A preimage or second
preimage attack would allow to construct a message m′ such that H(m′) =
H(m), hence it would appear as A had signed it. The importance of collision
resistance arises when A is asked to sign documents created by third parties:
An attacker could create two di�erent messages with the same hash, then he
would ask A to sign one of them and reuse the same signature for the other.

1.1.0.3 Randomness in Cryptography

Random numbers are extensively used in cryptography and the security of many
systems depends on the availability of good sources of randomness. One example
is key generation: If the probability distribution is not uniform, an attacker could
exploit this fact in order to speed-up the key recovery procedure by testing only
the most likely keys.

Hardware random number generators are devices exploiting particular physical
phenomena, such as thermal noise, which according to our understanding of
physics may be considered as random processes. These devices are not always
practical due to their price or limited throughput; for these reasons, pseudo-
random number generators are used instead. These latter are deterministic
procedures capable of generating random-looking bit-streams, which can be dis-
tinguished from real random bits only with a huge computational e�ort. One
way to construct such procedures is by using hash functions as showed in Figure
1.7.

6 Introduction



H(seed+ 0) = r0

H(seed+ 1) = r1

H(seed+ 2) = r2

· · ·
H(seed+ c) = rc

· · ·

Figure 1.7: PRNG - The concatenation r0||r1||r2|| . . . ||rc|| . . . gives a random-
looking stream of bits. Each sequence is de�ned by a seed, which must be
carefully chosen and possibly random.

By combining both HRNG and PRGN, it is possible to generate real random
seeds with the former and a long pseudo-random bit-stream with the latter, thus
solving the throughput problem while keeping a reasonable security margin.

1.2 Attacks on Hash Functions

According to the de�nitions of the security requirements, it is not clear what
should be considered an attack and what should not. This sort of gray line is
due to the use of the sentence "it must be di�cult to" without specifying how
to measure the di�culty of a procedure.

The reason why the sentence "it must not be possible to" is not used is because
it is always possible to compute preimages and collisions for any hash function.
Let us consider a hash function H with n-bit-long digest:

Collisions Thanks to the birthday paradox, it is su�cient to examine a set of
2
n
2 random messages in order to �nd a collision among them with high

probability.

Preimages Random messages can be tested until the correct digest is found,
after 2n trials the correct digest is obtained with high probability.

Since these procedures do not depend on particular weaknesses of the hash
function but rather on its very de�nition, their performances are considered the
standard against which other attacks are compared. Hence, a preimage attack
can be de�ned as any procedure requiring less than 2n hash evaluations (or an
equivalent workload) to be performed. Similarly, a collision attack can be de�ned
as any procedure requiring less than 2

n
2 hash evaluations to be performed.

1.3 Brief History of MD5 7

1.3 Brief History of MD5

MD5 was �rst introduced in 1991 by Ronald L. Rivest and intended to be a
replacement to MD4, which allowed for fast implementation both in hardware
and in software but whose design had shown some weaknesses [dBB91]. Despite
being slightly more complex, MD5 is still very similar to MD4.

Collisions In [dBB93] Boer and Bosselaers provided an algorithm capable of
�ning a pseudo-collision 1 within minutes. The security implications were not
clear and in a subsequent report [Rob94] Robshaw commented as follows:

"As it stands, the pseudo-collision arises from initializing the four-
word bu�er at the start of MD5 to two di�erent values. These values
di�er only in the MSB of each of the four words. The same message
is used for both sets of bu�er values and the same message digest
is obtained. A far more serious �aw would be if it were possible to
choose one initial starting value for the bu�er, not necessarily the
one given in the algorithm, and then choose two di�erent messages,
perhaps di�ering in only a few bits of one word, so that the same
message digest is obtained."

Three years later Dobberin achieved exactly this [Dob96].

In 2004 Wang et al. discovered actual collisions [WFLY04], their method could
be extended to other hash functions such as SHA-0 and RIPEMD and these are
the main characteristics of the attack on MD5:

• Uses di�erential cryptanalysis.

• Colliding messages are 128 bytes long and random-looking.

• Works for any initialization vector.

• At the time of discovery, collisions could be computed within one or two
hours.

1A pseudo-collision is a collision obtained for two di�erent initialization vectors, see Chapter

2

8 Introduction

By exploiting this attack, it is possible to create two colliding messagesMA and
MB such that:

MA = M1||McA||M2

MB = M1||McB ||M2

Where M1 and M2 are arbitrary while McA and McB are generated by the at-
tack algorithm. Such a degree of freedom and the computational feasibility of
the attack allowed for practical applications: It was possible to generate collid-
ing text documents [DL05], executables [Dia05] and also public key certi�cates
[LWdW05].

In the following years the e�ciency of the attack was further improved, by 2006
it was possible to obtain collisions on a regular notebook pc in less than a
minute [Kli06]. In 2007 a new type of collision called chosen-pre�x collision was
discovered [SLdW07], this was a way more powerful attack capable of making
two arbitrary messages collide by appending a 718-byte-long random-looking
message, which means that it is possible to create two colliding messages MA

and MB such that:
MA = M1||McA||M3

MB = M2||McB ||M3

Where M1, M2 and M3 are arbitrary while McA and McB are generated by
the attack algorithm. In order to prove the hazards of such an attack, in 2008
a group of researchers succeeded in creating a rouge CA certi�cate [SSA+09],
clearly showing that MD5 should not be used anymore in public key certi�cates.

Preimages During recent years, Sasaki and Aoki provided several attacks
on step-reduced versions of MD5, and in 2008 they came up with an optimized
procedure for a brute force approach [AS08]. Finally, in 2009 they presented an
algorithm that can be considered a theoretical attack on full MD5 [SA09]; one of
the major contributions of their work is the so-called initial structure, which is
a generalization of local collisions. Despite being an important breakthrough,
the attack does not represent an immediate threat to preimage resistance for
the following reasons:

• The speed-up is very limited.

• Memory complexity is too high to allow for an e�cient implementation
of the attack.

• The length of the preimage cannot be chosen.

1.4 Contribution of this Thesis 9

Current Situation MD5 should be considered broken for any application re-
quiring collision resistance, such as public key certi�cates. Its use is generally
discouraged, however, due to the lack of relevant attacks and other practical
reasons such as its speed as well as retro-compatibility with previous protocols,
it is still widespread in contexts requiring only preimage resistance.

1.4 Contribution of this Thesis

Inspiration In [KRS11] a new cryptanalytic tool called biclique was intro-
duced in the framework of Meet-in-the-Middle attacks, it has been used to at-
tack both block ciphers and hash functions and it makes use of di�erential
cryptanalysis. Since an initial structure is in some way analogous to a biclique,
it is natural to ask whether the latter can be applied to MD5 and what kind of
improvements, if any, it is possible to obtain on the attack discovered by Sasaki
and Aoki.

Original Work In this thesis, MD5 is attacked with a MitM approach using
bicliques instead of initial structures. Some issues arisen during this process
suggested that it was possible and convenient to generalize the concept of bi-
cliques, thus leading to the de�nition of bigraphs. Bicliques and bigraphs proved
to be easily applicable in the context of Multi-Target Pseudo-Preimage attacks
[Leu08, MR07]. Furthemore, bicliques have been applied together with local
collisions in order to obtain one-block preimages.

Results Known attacks on MD5 are improved: Theoretically, the estimated
time complexity of a pseudo-preimage attack is about 2115 compression function
evaluations whereas a preimage requires 2121.3 compression function evaluations;
the respective memory complexities are 219.8 and 220.7 32-bit words. Thanks
to this reasonable memory requirement, an attack faster than brute force can
be actually implemented, though its execution time would still be infeasible. A
new optimized brute force procedure for one-block preimages is discovered as
well, with a time and memory complexity of 2126.4 and 210.3, respectively.

1.4.1 Thesis Organization

In the �rst part of the thesis, Chapter 2 describes the design principles at the
core of many hash functions as well as how those principles are implemented by

10 Introduction

MD5; Chapter 3 introduces Meet-in-the-Middle attacks on block ciphers together
with a series of enhancements while Chapter 4 presents the natural extension of
those attacks to hash functions, together with further improvements on Meet-
in-the-Middle attacks.

In the second part of the thesis, Chapter 5 presents a preimage attack on MD5

using bigraphs and MTPP techniques; Chapter 6 describes two variants of the
attack, allowing for a comparison between bicliques and bigraphs; Chapter 7
presents an optimized brute force procedure for one-block preimages. Finally,
Chapter 8 summarizes the results and compares them with the best attacks
known for MD5.

Part I

An Overview of Cryptanalytic

Techniques

Chapter 2

MD5 Description

2.1 Design Principles

Whenever a cryptographic primitive is designed, it must be possible to provide
compelling arguments for its security. This can be done mainly in two ways:

• Establishing an equivalence between breaking the system and some di�-
cult computational problem.

• Failure of cryptanalysis techniques to provide relevant attacks.

Ideally, the �rst way is the most elegant since there are many well studied
computational problems for which no e�cient solution is known. Hash functions
allowing such equivalences to be proven are called provably secure hash functions.
Throughout the years several hash functions of this type have been proposed,
like [Dam87, Gir87, Gib91] in the late '80-early '90 or the more recent [LMPR08,
CLS06, AFS96]. However, when practical aspects are considered, speed is a key
factor and good performances often cannot be achieved together with provable
security, or can be achieved only on particular architectures.

14 MD5 Description

2.1.1 Merkle�Damgård Construction

One of the main issues in providing security proofs/arguments for hash functions
is dealing with arbitrarily long input strings. With this problem in mind, in
[Dam89] Damgård introduced a new way of constructing hash functions based
on the following components:

Definition 2.1 (Compression Function)
A compression function C is a function:

C : {0, 1}n × {0, 1}l −→ {0, 1}n
(CV,M) 7−→ C(CV,M)

CV and M are referred to as chaining value and message block, respectively.

Definition 2.2 (MD-Compliant Padding)
A MD-Compliant Padding is a function:

pad : {0, 1}∗ −→
{
{0, 1}l

}∗
M 7−→ pad(M)

such that ∀ M1,M2,M ∈ {0, 1}∗:

1. M is a pre�x of pad(M)

2. |M1| = |M2| ⇒ |pad(M1)| = |pad(M2)|

3. M1 6= M2 ⇒ The last message block of pad(M1) is di�erent from the
last message block of pad(M2)

Remark In the original work of Damgård the padding rule was less generic,
this extension is due to Bellare in [GB01, § 8.5].

These two elements, together with a constant IV called initialization vector,
de�ne a hashing algorithm in the following way:

pad(M) = M ′ = (M1,M2,M3, · · · ,MN), |Mi| = l H0 = IV
Hi = C(Hi−1,Mi)
H(M) = HN

(2.1)

A graphic description is given in Figure 2.1: The padding ofM returns a message

2.1 Design Principles 15

M ′ whose length is a multiple of l, the latter is then split into message blocks
of the right size and fed to the compression functions. The output of the last
compression step is possibly further processed.

Message

pad

IV

M1

C

M2

C

· · ·

· · ·

MN

C fin H

Figure 2.1: Merkle�Damgård Construction

The reason why this design is so interesting and used in practice, is that if
security properties 1, 2 and 3 hold for the compression function, then they hold
for the resulting hash function as well. This clearly simpli�es the e�ort required
for the design and cryptanalysis of hash functions, allowing cryptographers to
focus the attention on a much simpler component operating on �xed-size strings.

2.1.2 Compression Function

In the following, some of the most common ways to construct/describe com-
pression functions are presented. They all make use of this component:

Definition 2.3 (Block Cipher)
A block cipher or cipher E is a family of permutations indexed by a set of keys
K, mapping a set of plaintexts P onto a set of ciphertexts C:

E : K × P −→ C
(k,m) 7−→ Ek(m) = c

The inverse permutation (Ek)−1 will be denoted as Dk.

It must be clear though, that the concept of block cipher is used as a purely
descriptive mean and it does not imply that every compression function uses it.

16 MD5 Description

Definition 2.4 (Davies�Meyer Mode)
A Davies�Meyer compression function is a function

C(CV,M) = EM (CV) �M

where E is a cipher and � is a group operation.

Definition 2.5 (Matyas�Meyer�Oseas Mode)
A Matyas�Meyer�Oseas compression function is a function

C(CV,M) = Eg(CV)(M) �M

where E is a cipher, � is a group operation and g() is a function formatting
CV so that it can be used as a key for E.

Definition 2.6 (Miyaguchi�Preneel Mode)
A Miyaguchi�Preneel compression function is a function

C(CV,M) = Eg(CV)(M) �M � CV

where E is a cipher, � is a group operation and g() is a function formatting
CV so that it can be used as a key for E.

Remark In all three cases, � is referred to as feed forward.

M
E

CV

CV g E

M

CV g E

M

Figure 2.2: Davies�Meyer, Matyas�Meyer�Oseas and Miyaguchi�Preneel com-
pression functions.

2.2 MD5 Hashing Algorithm 17

2.2 MD5 Hashing Algorithm

Cryptographic hash function MD5 adopts a Merkle�Damgård design, so it is en-
tirely speci�ed by its compression function, a padding rule and an initialization
vector.

2.2.1 Compression Function

The compression function can be viewed as a Davies�Meyer compression func-
tion operating on 512-bit-long message blocks and 128-bit-long chaining values.

C : {0, 1}128 × {0, 1}512 −→ {0, 1}128

(CV,M) 7−→ EM (CV) � CV

Analogously to the Merkle�Damgård construction, cipher E operates by iterat-
ing a simple step several times, updating an internal state after each iteration.
The chaining value is divided into four 32-bit registers and forms the initial
internal state, the �nal internal state constitutes the cipher output.

{0, 1}4×32 3 (Q−3, Q0, Q−1, Q−2) = CV ∈ {0, 1}128

The whole computation is divided into 4 rounds, which are further subdivided
into 16 steps each. Each step uses a portion of the message block and operates
by mixing modular addition, rotations and Boolean functions, see Figure 2.3.

{0, 1}16×32 3 (m0,m1,m2, . . . ,m15) = M ∈ {0, 1}512

Qi+1 =
[
Qi−3 + ki +mπ(i) + Φi(Qi, Qi−1, Qi−2)

]
<<<si

+Qi, 0 ≤ i < 63

The rule π governing how the message block is used at each step is calledmessage
expansion. In MD5 the message expansion is composed of four permutations of
the message words mi; each permutation is assigned to a round. Finally, the
group operation � is a register-wise modular addition.

� : {0, 1}4×32 × {0, 1}4×32 −→ {0, 1}4×32

((a, b, c, d), (a′, b′, c′, d′)) 7−→ (a+ a′, b+ b′, c+ c′, d+ d′) mod 232

Step constants ki, si, Boolean functions Φi and the message expansion π are
de�ned in Appendix C.

18 MD5 Description

Φi

Qi−3 Qi Qi−1 Qi−2

Qi−2 Qi+1 Qi Qi−1

<<< si

32-bit registers

Bitwise Boolean function

32-bit modular addition

32-bit left rotate

ki

mπ(i)

Figure 2.3: MD5 i-th Compression Step

2.2.2 Message Padding

Let M be the message to be padded and L its length expressed in bits. The
padding rule, also called MD strengthening or length padding is the following:

Algorithm 2.1 MD Strengthening

Input:

A binary string M of length L
Output:

A padded binary string M ′

Description:

1: M ′ ←M
2: M ′ ←M ′||1
3: t← min{x | (L+ 1 + x) = 448 mod 521}
4: M ′ ←M ′||0t
5: Let llow and lhigh be 32-bit values such that the binary representation of L

mod 264 is lhigh||llow
6: M ′ ←M ′||llow||lhigh
7: return M ′

Chapter 3

Meet-in-the-Middle

Framework

A MitM attack was used in [DH77] by Di�e and Hellman to show that double
encryption under two di�erent keys does not double the security level. In this
chapter MitM is explained together with a series of techniques capable of ex-
tending its applicability beyond double encryption schemes and/or step-reduced
ciphers.

3.1 Basic MitM Attack

Let us assume K = K1 × K2 and Ek = E1
k1
◦ E2

k2
, in other words: E is the

composition of two ciphers whose keys are independent of each other. Let us
now consider a couple (m,Ek(m)), the computation of the ciphertext is split as
follows:

m
k1−−→
E1

c′
k2−−→
E2

c

This implies that an attacker, given m and c, can perform the following compu-
tations:

20 Meet-in-the-Middle Framework

 m
k1−−→
E1

v1 ∀ k1 ∈ K1

c
k2−−→
D2

v2 ∀ k2 ∈ K2

If a match between any of the v1 and any of the v2 is found, the corresponding
key (k1, k2) encrypts m to c. The attack procedure is formally described in
Algorithm 3.1 and graphically represented in Figure 3.1.

Algorithm 3.1 MitM Key Recovery Algorithm

Input:

A (plaintext,ciphertext) couple (m, c)
Output:

Keys k such that Ek(m) = c

Description:

1: for all k1 ∈ K1 do

2: v1 ← E1
k1

(m)
3: Store v1 in a table
4: end for

5: for all k2 ∈ K2 do

6: v2 ← D2
k2

(c)
7: Check whether v2 matches any of the v1

8: end for

9: return all (k1, k2) for which there was a match

In the remainder of the thesis, E1, D2, v1 and v2 will be referred to as forward
chunk, backward chunk, forward candidate and backward candidate, respectively.

Attack Complexity The attack requires O(|K1| + |K2|) encryptions and
O(|K1|) memory.

m

E1
k1

forward chunk

=
?

D2
k2

backward chunk

c

Figure 3.1: Key Recovery Through Meet-in-the-Middle

3.2 Beyond Double Encryption Schemes 21

3.2 Beyond Double Encryption Schemes

Being able to partition the set of keys as indicated in Section 3.1 is rather
unlikely, even with step-reduced ciphers. A far more common situation is a
partitioning K = K1×K2×K3 and Ek = E1

k1,k3
◦E2

k2,k3
, where the two ciphers

are independent of each other with respect to a portion of the key. The key
recovery procedure in this case is outlined in Algorithm 3.2.

Algorithm 3.2 MitM Key Recovery Algorithm

Input:

A (plaintext,ciphertext) couple (m, c)
Output:

Keys k such that Ek(m) = c

Description:

1: for all k3 ∈ K3 do

2: for all k1 ∈ K1 do

3: v1 ← E1
k1,k3

(m)
4: Store v1 in a table
5: end for

6: for all k2 ∈ K2 do

7: v2 ← D2
k2,k3

(c)
8: Check whether v2 matches any of the v1

9: end for

10: end for

11: return all (k1, k2, k3) for which there was a match

Attack Complexity The attack requires O(|K3|(|K1| + |K2|)) encryptions
and O(|K1|) memory.

3.2.1 Splice-and-Cut

Splice-and-Cut is a more general MitM type of attack introduced by Merkle and
Hellman in [MH81] in order to argue that triple encryption under two di�erent
keys does not double the security level. The term was used for the �rst time
by Sasaki and Aoki in [AS08], where this technique has been extended to hash
functions. In [WRG+11] it has been applied for the �rst time on a cipher not
making use of triple encryption.

22 Meet-in-the-Middle Framework

Splice-and-Cut works by considering the computations performed by the cipher
as a loop, this comes at a cost: An oracle is needed to perform the attack. Let
us assume that it is possible write Ek as E1

k1,k3
◦ E2

k2,k3
◦ E3

k1,k3
and to obtain

encryptions of arbitrary plaintexts, the following attack is then possible:

Algorithm 3.3 MitM + Splice-and-Cut Key Recovery Algorithm

Input:

An oracle O encrypting messages with a secret key k
Output:

Set of keys containing k

Description:

1: for all k3 ∈ K3 do

2: Randomly choose a starting state s
3: for all k2 ∈ K2 do

4: v2 ← E2
k2,k3

(s)
5: Store v2 in a table
6: end for

7: for all k1 ∈ K1 do

8: m← D1
k1,k3

(s)
9: c← O(m)
10: v1 ← D3

k1,k3
(c)

11: Check whether v1 matches any of the v2

12: end for

13: end for

14: return all (k1, k2, k3) for which there was a match

Attack Complexity The attack requires O(|K3|(|K1| + |K2|)) encryptions,
O(|K2|) memory and |K3||K1| calls to the oracle.

3.2 Beyond Double Encryption Schemes 23

s

E2
k2,k3

match?

D1
k1,k3

O

D3
k1,k3

Figure 3.2: MitM + Splice-and-Cut

3.2.2 Bicliques

Bicliques are a recently developed cryptanalytic tool [KRS11] used to solve
a problem that can be informally described as "chunk overlapping". Let us
assume that for a key partitioning K = K1 ×K2 ×K3 the correspondent cipher
partitioning is Ek = E1

k1,k3
◦ fk ◦ E2

k2,k3
◦ E3

k1,k3
. The issue in this case is that

since f depends on both k1 and k2, the computations are not divided into two
independent parts.

If a MitM attack as described in Section 3.2.1 were to be performed, two starting
states Q and P would be needed:

 Q
k1,k3−−−→
D1

m
O−→ c

k1,k3−−−→
D3

v1 ∀ k1 ∈ K1

P
k2,k3−−−→
E2

v2 ∀ k2 ∈ K2

(3.1)

However, f cannot be neglected, and for any matching pair (v1, v2) it would be

24 Meet-in-the-Middle Framework

necessary to verify that:
fk1,k2,k3(Q) = P (3.2)

which unless f is independent of the key cannot be true for every couple (k1, k2).
This implies that if there is any possibility of achieving (3.2) for every couple of
keys, the starting states Q and P have to be chosen as a function of k1 and k2.
However, since the computations in (3.1) have to be independent of each other,
the only possibility is to pick Q as a function of k1 and P as a function of k2.
This leads quite naturally to the following de�nition:

Definition 3.1 (Sub-Cipher)
Let E be a cipher and its set of keys K be divided as K′ × Kf , a cipher f is
called a sub-cipher of E if there exist ciphers E1 and E2 such that:

Ek = E1
k ◦ fkf ◦ E2

k

Definition 3.2 (Biclique)
Let f be a sub-cipher of E and N = {N [i, j]} be a subset of Kf . A biclique
of dimension d over f for N is a pair of sets {Qi} and {Pj} of 2d states each
such that

Qi
N [i,j]−−−−→
f

Pj , ∀i, j

If such a construction were possible, computations in (3.1) could be modi�ed in
order to take the biclique into account: Qk1

k1,k3−−−→
D1

m
O−→ c

k1,k3−−−→
D3

v1 ∀ k1 ∈ K1

Pk2

k2,k3−−−→
E2

v2 ∀ k2 ∈ K2

(3.3)

Hence, for any matching pair (v1, v2) the following would be true by de�nition:

fk1,k2,k3(Qk1) = Pk2

3.2 Beyond Double Encryption Schemes 25

fk1,k2,k3

E2
k2,k3

D1
k1,k3

O

D3
k1,k3

match?

fk1,k2,k3

{P0, P1, P2, P3, P4}

{Q0, Q1, Q2, Q3, Q4}

Figure 3.3: Biclique used in the Splice-and-Cut framework. When starting
states and keys are properly initialized, the resulting structure assures that
fi,j,k3(Qi) = Pj ∀ i, j.

26 Meet-in-the-Middle Framework

3.2.2.1 Construction Algorithms

By adopting a di�erential view, bicliques can also be considered as a two sets
of di�erential trails together with a couple of starting states:


{∗ N [∗,j]−−−−→

f
∆j | ∀j}

{∆i
N [i,∗]←−−−−
f−1

∗ | ∀i}

(Q0, P0)

(3.4)

With this information, it is possible to construct a biclique according to De�ni-
tion 3.2:

{Pj = P0 + ∆j | ∀j}
{Qi = Q0 + ∆i | ∀i}

Assuming that the trails simultaneously hold, the biclique property is satis�ed:

Q0 + ∆i
N [i,j]−−−−→
f

P0 + ∆j ∀ i, j

This implies that any construction algorithm can exploit insights from di�eren-
tial cryptanalysis in order to provide trails in (3.4).

3.2.2.2 Di�erential Trails and Bigraphs

Since di�erential cryptanalysis is well known, cryptographic primitives are specif-
ically designed to withstand it. This is usually done by mixing several type of
operations, thus introducing strong non-linearities and achieving the so-called
avalanche e�ect. The latter can be informally de�ned as the tendency of a func-
tion to output signi�cantly di�erent values even if only a small portion of its
input is modi�ed. For these reasons, when the biclique dimension is high and f
is a relatively large portion of the cipher, �nding di�erential trails as indicated
in (3.4) is not an easy task.

By allowing the biclique property not to be always satis�ed, namely:

∃ i, j such that fN [i,j](Q0 + ∆i) 6= P0 + ∆j

3.2 Beyond Double Encryption Schemes 27

De�nition 3.2 can be made less restrictive.

Definition 3.3 (Bigraph) Let f be a sub-cipher of E, and N =
{N [i, j]} be a subset of Kf . A biclique of dimension d1 × d2 and e�ciency e
over f for N is a pair of sets {Qi} and {Pj} of 2d1 and 2d2 states respectively
such that ∣∣∣∣{(i, j) : Qi

N [i,j]−−−−→
f

Pj

}∣∣∣∣
2d1+d2

= e (3.5)

Remark The biclique e�ciency represents the probability of the biclique
property being satis�ed for a uniformly random couple (i, j):

e = Prob
[
fN [i,j](Qi) = Pj

]

Biclique E�ciency and Attack Complexity If the procedure outlined in
(3.3) needs to be repeated T times before �nding a match, then T

e repetitions
are needed in order to �nd a match and satisfy the biclique property. Hence,
the time complexity increases by a factor 1

e whereas the memory complexity
remains unchanged.

28 Meet-in-the-Middle Framework

Chapter 4

Preimage Attacks on Hash

Functions

This chapter shows how MitM techniques for block ciphers can be used to attack
hash functions, assuming these latter adopt a Merkle�Damgård design and a
Davies-Meyer mode for the compression function. The notation is modi�ed
accordingly: M and M will be used in place of K and k.

Furthermore, if not otherwise speci�ed, H denotes the hash function being at-
tacked and C its compression function.

4.1 From Ciphers to Compression Functions

A key recovery attack on a cipher can be easily transformed into a preimage
attack on the compression function: Since H = C(CV,M) = EM (CV) � CV ,
�nding a preimage is equivalent to �nding any keyM such that C = EM (CV) =
H � CV .

No Need for an Oracle In this setting, there is a strong relation between
the chaining value, the cipher output and the message digest, namely:

C � CV = H

30 Preimage Attacks on Hash Functions

This means that in order to use Splice-and-Cut, the need for an oracle mentioned
in Section 3.2.1 translates to the need to freely choose the chaining value. This
implies that the attack will obtain a pseudo-preimage, where the term "pseudo"
indicates that a di�erent initialization vector must be used in order to get the
desired digest.

4.2 From Compression Functions to Hash Func-

tions

4.2.1 Converting Pseudo-Preimages to Preimages

[MvOV96, Fact 9.99] describes a way to convert pseudo-preimage attacks into
preimage attacks; the procedure is generic in the sense that it does not depend
on the way a pseudo-preimage is obtained as long as the length speci�ed in the
padding is known in advance. The algorithm is based on a MitM approach and
it works as follows:

Algorithm 4.1 Conversion of Pseudo-Preimages to Preimage

Input:

A hash function H with n-bit-long digest
A pseudo-preimage attack A of time complexity 2s

A target hash h
Output:

A preimage for h

Description:

1: Run A(h) 2
n−s

2 times and store its output
2: Let b be the extra message blocks necessary to satisfy the padding
3: Freely choose the �rst b− 1 message blocks.
4: CV ← H(M1||M2|| · · · ||Mb−1)
5: while no match do
6: Mb ← random()

7: Check if C(CV,Mb) matches any of the stored chaining values
8: end while

9: Let (CVj ,Mj) be the matched pseudo-preimage
10: return M1||M2|| · · · ||Mb||Mj

4.2 From Compression Functions to Hash Functions 31

Attack Complexity 2
n+s

2 iterations of the while loop are necessary to ob-
tain a match with high probability, which means 2

n+s
2 calls to the compression

function. The cost of obtaining 2
n−s

2 pseudo-preimages is 2
n+s

2 , the total is then
2
n+s

2 +1 + (b− 1) compression function evaluations. Furthermore, O(n−s2) extra
memory is required to store the pseudo-preimages.

4.2.2 Expandable Messages

Some attacks do not allow to choose the length speci�ed in the padding, so
Algorithm 4.1 is unlikely to produce a message correctly padded. However, it
is possible to produce arbitrarily long messages all yielding the same hash by
using the following property of compression functions:

Definition 4.1 (Fixed-Point)
A �xed-point for a compression function C is a couple (CV,M) such that
C(CV,M) = CV .

For a Davies-Meyer compression function it is particularly easy to compute a
�xed-point, although there is no control over the chaining value: Let C(CV,M) =
EM (CV) � M , in order to obtain the correspondent chaining value forming a
�xed-point it is su�cient to compute CV = DM (0)1.

Exploiting Fixed-Points Let us assume that for a message M = M0||M1,
M1 is a �xed-point with respect to its chaining value CV = C(IV,M0); this
implies that any message M ′ = M0||(M1)i will have the same hash as M .
Algorithm 4.2 shows how to create such messages.

1"0" is the zero with respect to "�".

32 Preimage Attacks on Hash Functions

Algorithm 4.2 Generation of Expandable Messages

Input:

A Davies-Meyer compression function C with n-bit long hash
Output:

An expandable message (M0||Me)

Description:

1: Compute C(IV,M) for 2
n
2 random messages and store the results

2: while (no match) do
3: Compute a �xed point (CV,Me)
4: Check if CV matches any of the stored hashes
5: end while

6: return a matching couple (M ||Me)

Attack Complexity In order to obtain a matching with high probability the
loop must iterate 2

n
2 times, for a total complexity of 2

n
2 +2

n
2 = 2

n
2 +1 evaluations

of the compression function. O(2
n
2) memory is needed as well.

Availability of Fixed-Points If �xed-points are not easily computable, [KS05]
provides a general procedure to obtain expandable messages.

4.2.3 MTPP: Multi-Target Pseudo-Preimage

Algorithm 4.1 involves many repetitions of a pseudo-preimage attack, this im-
plies that a growing number of pseudo-preimages is potentially available repe-
tition after repetition. MTPP techniques aim at exploiting this fact in order
to speed-up the preimage search, hence improving the total complexity of the
attack.

4.2.3.1 General Overview

Let us consider the following algorithm:

4.2 From Compression Functions to Hash Functions 33

Algorithm 4.3 MTPP Algorithm

Input:

A target hash H0

A algorithm A returning a pseudo-preimage for one of the speci�ed targets
An integer k
Output:

A list containing 2k pseudo-preimages and the original target H0

Description:

1: H ← {H0}
2: T ← {H0}
3: while |H| ≤ 2k do
4: (CV,M)← A(H)
5: H ← H∪ {CV }
6: T ← H ∪ {(CV,M)}
7: end while

8: return T

As the list T of pseudo-preimages gets built, it is possible to organize it in a
tree structure with the following properties:

1. Every node is labelled by a target hash.

2. Every edge is labelled by a message.

3. If a node Hi is connected to its parent Hj by an edge M , then
C(Hi,M) = Hj .

4. The concatenation of all the messages found in the path between any
node Hi and the root node H0 yields a pseudo-preimage with respect to
H0 when Hi is used as chaining value.

Such a structure is be called layered hash tree [Leu08], an example of it is shown
in Figure 4.1: It provides 2k pseudo-preimages of variable length for the speci�ed
target hash H0. In order to deal with variable length preimages it is possible to
use expandable messages, see Algorithm 4.4.

The whole attack procedure is now more complex, but if the attack algorithm A
is capable of taking advantage of multiple targets, the construction of 2k pseudo-
preimages needed for the conversion will be less computationally expensive.

34 Preimage Attacks on Hash Functions

H6
M6 H5 M5

H7 M7
H2

M2

H4
M4

H0

H8
M8

H3
M3 H1

M1

Pseudo-Preimages for H0:

1. (H1, M1)

2. (H2, M2)

3. (H3, M3||M1)

4. (H4, M4||M2)

5. (H5, M5||M2)

6. (H6, M6||M5||M2)

7. (H7, M7||M4||M2)

8. (H8, M8||M4||M2)

Figure 4.1: This tree provides 9 possible targets for a new attack and 8 pseudo-
preimages of variable length.

Algorithm 4.4 Conversion of Pseudo-Preimages to Preimage using MTPP

Input:

A hash function H with n-bit long digest
A pseudo-preimage attack A exploiting MTPP
A target hash h
An integer k
An expandable message (M0||Me)

Output:

A preimage

Description:

1: Generate a layered hash tree for 2k targets using algorithm A
2: CV ← H(M0||Me)
3: while no match do
4: M ← random()

5: Check if C(CV,M) matches any of the stored targets
6: end while

7: Let M1||M2|| · · · ||Mb be the correspondent message for the matched target
8: Let i be the extra message blocks needed to satisfy the padding
9: return M0||(Me)i||M ||M1||M2|| · · · ||Mb

4.2 From Compression Functions to Hash Functions 35

Attack Complexity In order to obtain a matching with high probability the
loop must iterate 2n−k times, for a total complexity of

CA + 2n−k

evaluations of the compression function, where CA represents the complexity of
obtaining 2k targets using A. Furthemore, O(2k) extra memory is required to
store the layered hash tree.

4.2.3.2 MTPP: Some Examples

Preimages on MD4 In [Leu08] the author presents an algorithm performing
a partial pseudo-preimage attack on MD4, namely: given a target hash H, the
algorithm �nds a couple (CV,M) such that a part of md4(CV,M) is equal to
H. The remaining bits are random, so the algorithm is repeated until there is a
full match. If many targets are available, assuming they di�er only in the part
on which the algorithm has no control, the probability of matching at least one
of them is higher.

MitM In [GLRW10] MTPP is introduced in the framework of Meet-in-the-
Middle attacks, in this case multiple targets have no direct impact on the match-
ing probability but can be exploited to increase the number of candidates com-
puted: QM1

M1,M3−−−−→
D1

CV −−−−−−−→
C=H�CV

C
M1,M3−−−−→
D3

v1 ∀ (M1, H) ∈M1 ×H

PM2

M2,M3−−−−→
E2

v2 ∀ M2 ∈M2

By rede�ning M1 and M2 and using the extra targets available, it is possible
to compute more candidates for each chunk and lower the attack complexity,
see Figure 4.2.

36 Preimage Attacks on Hash Functions

︸ ︷︷ ︸
|M′2| = 2d+ k

2

︸ ︷︷ ︸
|M′1| = 2d−

k
2

︷ ︸︸ ︷|H| = 2k
2d+ k

2 × 2d+ k
2

Figure 4.2: When 2k targets are available, the number of possible couplings for
the candidates becomes 22d+k. In this example d = 2 and k = 2.

MTPP and Bicliques In Section 3.2.2.2 it was mentioned that a high bi-
clique dimension may have negative e�ects on the e�ciency; hence, when 2k

targets are available, depending on which chunk includes the feed forward, it is
possible to rede�ne either M1 or M2 so that the number of candidates stays
constant and the biclique dimension decreases (see Figure 4.3). This will result
in a higher biclique e�ciency and lower time complexity of the attack.

︸ ︷︷ ︸
|M2| = 2d

︸ ︷︷ ︸
|M′1| = 2d−k

︷ ︸︸ ︷|H| = 2k
2d × 2d

Figure 4.3: In this example d = 3 and k = 2, the biclique dimension goes from
d× d to d× (d− k).

4.3 Matching Techniques

Let us assume that for a partitioningM =M1 ×M2 the correspondent cipher
partitioning is EM = E1

M1
◦ fM1,M2 ◦ E2

M2
. This setting is similar to the one

4.3 Matching Techniques 37

introduced in Section 3.2.2: In that situation, where E1 was the backward chunk
and E2 was the forward chunk, the problem was how to choose the initial states.

Now the dual problem is considered, where forward chunk and backward chunk
are swapped, hence the issue is how to perform the matching given that f cannot
be computed due to its dependency on both M1 and M2:

CV
M1−−→
E1

v′1
M2,M1←−−−→
f

v′2
M2←−−
E2

C

This problem can be addressed by using techniques called partial matching and
partial �xing. The main idea behind them can be traced back to [CE85] but
their names are due to Sasaki and Aoki, who successfully applied them to MD5 in
[AS08] and [SA09], where they also introduced partial �xing for unknown carry
behaviour.

Partial Matching As described in Section 2.1.2, MD5 works by iterating a
simple set of operations which update an internal state. This is not just a
peculiarity of MD5, other hash functions such as MD4, SHA-0, SHA-1, SHA-2 and
RIPEMD are similarly de�ned. The compression step often does not update the
whole internal state, but rather only a portion of it, hence several iterations are
needed before the internal state is completely refreshed. This means that at any
point in the computation it is possible to know the value of part of the internal
state several steps ahead, without the need to actually computes those steps.
Hence it is possible to partially match v′1 and v′2 if f does not include too many
steps.

Partial Fixing Even without the knowledge of part of the message, it might
still be possible to compute parts of f to some extent, namely:

v′1
?,M1−−−→
f

v1

v′2
M2,?−−−→
f−1

v2

(4.1)

where v1 and v2 are two partially known states. The name "partial �xing"
derives from the fact that even if backward and forward chunks are independent
of bigger parts of the message, those parts are kept �x on purpose so that (4.1)
can be computed.

Unknown Carry Behaviour When considering bitwise Boolean operations,
it is rather easy to carry out the computations in Equations 4.1 since it is

38 Preimage Attacks on Hash Functions

always possible to compute a part of the output, provided all inputs are known
for the correspondent bit positions. Slightly more complex is the case of modular
addition, where carries generated by unknown parts of the input can propagate
and possibly a�ect the whole result. Whenever the partial evaluation of f
presents such ambiguities, it is possible to carry on the computations for both
possibilities and check later on which one is correct, see Figure 4.4.

? ? 1 0 1 1 ? ? +

? 0 0 1 1 ? ? ? =

? ? 0 0 0 ? ? ? or ? ? 0 0 1 ? ? ?

Figure 4.4: 8-bit Modular Addition - In this example two results are computed
in order to account for a possible carry propagation.

Let c1 and c2 be the number of ambiguities in the computation of a candidate
for the forward chunk and backward chunk, respectively. This implies that if
|M1| = 2d1 and |M2| = 2d2 , then there will be 2d1+c1 forward candidates and
2d2+c2 backward candidates.

Verifying the Match All these techniques allow for new con�gurations of the
chunks, but require additional work in order to check whether a partial match
is indeed a full match. Since this will be done by actually computing f for every
couple of candidates that partially match, it is necessary that this does not
happen for too many couples, otherwise the complexity will be extremely close to
brute force. Let us assume for example that dm bits of the candidates v1 and v2

can be matched, i.e. they represent the same portions of the same internal state:
If the compression function behaves randomly enough, the (partial) matching
probability is 2−dm , so if |M1| = |M2| = 2d the extra work required by the
matching procedure is :

22d−dmCf

where Cf is the complexity of computing f .

4.4 One-Block Preimages 39

4.4 One-Block Preimages

Preimages that �t into a single message block are called one-block preimages and
are particularly interesting for password retrieval (see Section 1.1.0.1). However,
as a consequence of this restriction, any pseudo-preimage attack is useless since
its conversion to a preimage attack with the methods described in this chapter
would yield messages of at least two blocks.

4.4.1 Fixed CV and Splice-and-Cut

As explained in Section 4.1, when using a Splice-and-Cut approach it is not
possible to �x the chaining value. This is true in general, but there are techniques
that can overcome this issue.

Definition 4.2 (Local Collision)
A local collision is a collision happening for the internal state of the compres-
sion function.

Remark The use of local collisions can be traced back to [CJ98]

When performing the attack outlined in Figure 3.3, the chaining value is ob-
tained by the following computations:

CV = D1
M1,M3

(QM1) (4.2)

Where QM1 is the starting state given by the biclique for the correspondent
message di�erence. Since both QM1 and D

1 depend onM1, so does the chaining
value. Hence, su�cient conditions for CV to be �xed are the following:

Condition 4.3 D1
M1,M3

is independent of M1.

Condition 4.4 QM1 is independent of M1.

Condition 4.3 can be ful�lled by properly rede�ning the chunks, Condition 4.4
implies that the di�erential trails in the biclique have to have the following from:

40 Preimage Attacks on Hash Functions


{∗ N [∗,j]−−−−→

f
∆j | ∀j}

{0 N [i,∗]←−−−−
f
∗ | ∀i}

(4.3)

The second set of trails in (4.3) represents a local collision. If such a construction
were possible, the following starting states would be obtained:

{Pj = P0 + ∆j | ∀j}
{Qi = Q0| ∀i}

Hence, Equation 4.2 would be independent of M1. Now, assuming that it is
possible to choose M3 so that D1

M3
(Q0) gives the right chaining value, the

attack can be carried out as described in Section 3.2.1, and the result will be a
one-block preimage.

Part II

Improved Attacks on MD5

Chapter 5

Pseudo-Preimage and

Preimage Attacks on MD5

This chapter shows how the techniques discussed in the �rst part of this thesis
can be implemented into a pseudo-preimage attack on MD5 and the correspondent
conversion algorithm.

Section 5.1 provides a high-level description of the attack, Sections 5.2, 5.3 and
5.4 focus respectively on matching, biclique and padding. Sections 5.5 and 5.6
provide an attack algorithm and a conversion algorithm together with their
complexity analysis.

5.1 Attack Outline

M1 and M2 are bit positions [31 − 24, 8 − 0] and [31 − 15] of message words
m6 and m14, respectively. This determines position and length of the chunks,
biclique and matching part:

44 Pseudo-Preimage and Preimage Attacks on MD5

Forward Chunk Steps 18, 19, 20, . . . , 42 (25 in total)

Backward Chunk Steps 13, 12, 11, . . . , 0, 1, 63, 62, . . . , 51 (27 in total)

Biclique Steps 14, 15, 16, 17 (4 in total)

Matching Steps 43, 44, 45, . . . , 50 (8 in total)

Matching of Q44 and Q45 covering steps 43-50

Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49

Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50

Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50 Q51

Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48

Biclique covering steps 14-17

Q12 + ∆12(m6) Q16 + ∆16(m14)

Q13 + ∆13(m6) Q17 + ∆17(m14)

Q14 + ∆14(m6) Q18 + ∆18(m14)

Q11 + ∆11(m6) Q15 + ∆15(m14)

Backward

chunk
Forward chunk

Backward

chunk

m6 m14 m6 m14 m14 m6 m14 m6

CV H

Round 1 Round 2 Round 3 Round 4

Figure 5.1: Attack Outline - Green background indicates computations a�ected
by M1, brown background indicates computations a�ected by M2 and blue
background indicates computations a�ected by both of them.

5.2 Matching

This section describes how forward and backward candidates can be computed
and provides a procedure checking whether a partial match is indeed a full
match.

5.2 Matching 45

5.2.1 Candidates Generation

In the case of MD5, the compression function updates the internal state 32 bits
at a time, this implies that it is possible to skip up to 3 compression steps
and perform the matching only on one 32-bit register instead of the full 128-
bit internal state. Furthermore, since parts of m14 and m6 are �xed, it is also
possible to carry on the computations when one of those words is used in the
compression step, as described in Section 4.3.

Sections 5.2.1.1 and 5.2.1.2 show step by step how candidates are computed; in
order to do so, the following notation is introduced:

• A[x− y] indicates the value of bit positions [x− y] of A.

• A[x−y] indicates that only A[x− y] is known.

• A[x−y]×z indicates that only A[x − y] is known, and because of uncer-
tainties on the carries there are z possible values for it.

5.2.1.1 Backward Candidates

Backward candidates consist of two partially known states, namely: Q44[14−9]
and Q45[14− 0].

Step 50

Q47 = (Q51 −Q50)>>>15 − Φ50(Q50, Q49, Q48)−m[14−0]
14 − k50 =

= [(Q51 −Q50)>>>15 − Φ50(Q50, Q49, Q48)−m14 − k50][14−0]

Step 49

Q46 = (Q50 −Q49)>>>10 − Φ49(Q49, Q48, Q
[14−0]
47)−m7 − k49 =

= (Q50 −Q49)>>>10 − Φ49(Q49, Q48, Q47)[14−0] −m7 − k49 =

= [(Q50 −Q49)>>>10 − Φ49(Q49, Q48, Q47)−m7 − k49][14−0]

46 Pseudo-Preimage and Preimage Attacks on MD5

Step 48

Q45 = (Q49 −Q48)>>>6 − Φ48(Q48, Q
[14−0]
47 , Q

[14−0]
46)−m0 − k48 =

= (Q49 −Q48)>>>6 − Φ48(Q48, Q47, Q46)[14−0] −m0 − k48 =

= [(Q49 −Q48)>>>6 − Φ48(Q48, Q47, Q46)−m0 − k48][14−0]

Step 47

Q44 = (Q48 −Q[14−0]
47)>>>23 − Φ47(Q[14−0]

47 , Q
[14−0]
46 , Q

[14−0]
45)−m2 − k47 =

= [(Q48 −Q47)>>>23][23−9] − Φ47(Q47, Q46, Q45)[14−0] −m2 − k47 =

= [(Q48 −Q47)>>>23 − Φ47(Q47, Q46, Q45)−m2 − k47][14−9]×21

Complexity Analysis Steps 50,49 and 48 have to be computed only once
since there is no uncertainty about the carry, whereas step 47 has to be computed
for the two possible carry patterns. The complexity of generating backward
candidates is then:

Cbc =
3
64

+ 21 1
64

=
5
64

(5.1)

compression function evaluations and 21 candidates are generated.

5.2.1.2 Forward Candidates

Forward candidates consist of two partially known states, namely: Q44[14 − 0]
and Q45[14− 4].

Step 43

Q44 = Q43 +
[
Q40 + Φ43(Q43, Q42, Q41) + k43 +m

[23−9]
6

]
<<<23

=

= Q43 +
{

[Q40 + Φ43(Q43, Q42, Q41) + k43 +m6]<<<23

}[14−0]×21

=

=
{
Q43 + [Q40 + Φ43(Q43, Q42, Q41) + k43 +m6]<<<23

}[14−0]×21

5.2 Matching 47

Step 44

Q45 = Q
[14−0]×21

44 +
[
Q41 + Φ44(Q[14−0]×21

44 , Q43, Q42) + k44 +m9

]
<<<4

=

= Q
[14−0]×21

44 +
{

[Q41 + Φ44(Q44, Q43, Q42) + k44 +m9]<<<4

}[18−4]×21

=

=
{
Q44 + [Q41 + Φ44(Q44, Q43, Q42) + k44 +m9]<<<4

}[14−4]×22

Complexity Analysis Step 43 has to be computed for two possible carry pat-
terns and step 44 has to be computed for four possible patterns. The complexity
is then

Cfc = 21 1
64

+ 22 1
64

=
6
64

(5.2)

compression function evaluations and 22 candidates are generated.

5.2.2 Matching Procedure

Once a couple of candidates partially match, i.e. forward and backward candi-
dates for Q44[14− 9] and Q45[14− 4] have the same value, Algorithm 5.1 need
to be run in order to check for a full match.

Algorithm 5.1 Matching Procedure

Input:

A couple of message words (m14,m6) for which there is a partial match
State (Q40, Q43, Q42, Q41) correspondent to m14

State (Q48, Q51, Q50, Q49) correspondent to m6

Candidate (Q44[14− 0], Q45[14− 4]) correspondent to m14

Candidate (Q44[14− 9], Q45[14− 0]) correspondent to m6

Output:

true in case of full match, false otherwise.

Description:

1: /* If any of the checks fail, the algorithm will stop and return false */
2: Fully Compute Q44 (step 43)
3: Check carry hypothesis of forward candidate Q44[14− 0]
4: Fully Compute Q45 (step 44)
5: Check carry hypothesis of forward candidate Q45[14− 4]
6: Check for further matching of backward candidate Q45[3− 0]
7: Fully Compute remaining steps (45 to 50)
8: Check for full match on state (Q48, Q51, Q50, Q49)
9: return true

48 Pseudo-Preimage and Preimage Attacks on MD5

Complexity Analysis Carry hypotheses are correct with probability 2−1 and
a matching on Q45[3−0] will happen with probability 2−4, the expected running
time is then:

Cmatch =
(

1
64

)
2−1 +

(
2
64

)
2−1(1− 2−5) +

(
8
64

)
2−6 = 2−5 51

64
(5.3)

compression function evaluations.

5.3 Biclique

This section provides a high-level description of the di�erential trails and the
construction algorithm for the biclique. A complete proof of their soundness
and an accurate computation of the biclique e�ciency is provided in Appendix
A.

5.3.1 Absorption Properties in Boolean Functions

In Boolean algebra the following relations are called absorption properties:

a ∨ (a ∧ b) = a
a ∧ (a ∨ b) = a

On some Boolean functions, these particular relations between inputs and out-
puts are often exploited in order to obtain di�erential trails that are simpler
and/or hold with higher probability. Table 5.1 shows some examples of absorp-
tion properties for the Boolean functions used in MD5 and other hash functions
as well.

1st Absorption 2nd Absorption 3rd Absorption

IF IF(X,C,C) = C IF(0, X,C) = C IF(1,C, X) = C

IF3 IF3(X,C, 0) = C IF3(C, X,1) = C IF3(C,C, X) = C

ONX ONX(X,C, 0) = ¬C - ONX(1,C, X) = ¬C

Table 5.1: Absorption properties for IF,IF3 and ONX. X can be any n-bit value,
C is a constant, 1 = 1n and 0 = 0n

Since all these functions operate bitwise, it is possible to exploit several absorp-
tion properties at the same time, each acting on a di�erent part of the input.

5.3 Biclique 49

This technique was used by Sasaki and Aoki in [SA09] for the construction of
the initial structure, they called it cross absorption properties.

5.3.2 Trails Interaction and Absorption Properties

Let us consider the Boolean function

IF (X,Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)

and the problem of achieving IF (X,Y, Z) = Z even ifX and Y are not constant:
This is possible if and only if (X ∧Y) = (X ∧Z), which translated in equations
on single bits gives:

[xi ∧ yi = xi ∧ zi ∀i]⇔ [yi = zi ∀i such that xi = 1] (5.4)

This means that if a particular X has k zeroes in its binary representation, there
exist 2k values of Y verifying (5.4). Hence, assuming that X and Y span form
0 to 2n − 1, the number of couples (X,Y) such that IF (X,Y, Z) = Z is:

n∑
k=0

(
n

k

)
2k = 3n

So, if X and Y are uniformly random values, the absorption probability is:

pabs =
(

3
4

)n

Z :z7z6z5z4z3z2z1z0

¬X : 0 1 0 0 1 1 0 1

Y :z7 y z5z4 y y z1 y

X : 1 0 1 1 0 0 1 0

∧

∧

(¬X ∧ Z) : 0 z6 0 0 z3z2 0 z0

(X ∧ Y) :z7 0 z5z4 0 0 z1 0

∧ IF (X, Y, Z) :z7z6z5z4z3z2z1z0

Figure 5.2: Example of absorption when X,Y,X are 8 bits variables. X = 0x4d

⇒ there are 24 possible values for Y that assure absorption.

50 Pseudo-Preimage and Preimage Attacks on MD5

5.3.3 Trails Description

Di�erential trails are de�ned with respect to modular addition, hence, rota-
tions and boolean functions are a source of non-linearities. These latter will be
handled by properly initializing states and messages so that:

• Rotations can be considered as multiplications or divisions.

• Boolean functions absorb di�erences.

• Backward and forward trails a�ect di�erent portions of the states.

Figure 5.3 provides a visual description of the biclique.

5.3 Biclique 51

Φ17 depends only on
the forward trail

Φ16

Q14

Q15

Q16

Φ15

Q13

Q14

Q15

Φ14 depends only on
the backward trail

b32 b8c15b9 c32 b8c24

Q11 Q14 Q13 Q12k14
Φ14m14

<<<17

b8c24 c14f18 b8c15b9 c32

Q12 Q15 Q14 Q13k15
Φ15m15

<<<22

c32 c14f18 c14f18 b8c15b9

Q13 Q16 Q15 Q14k16
Φ16m1

<<<5

b8c15b9 f32 c14f18 c14f18

Q14 Q17 Q16 Q15k17
Φ17m6

<<<9

c14f18 f32 f32 c14f18

Q15 Q18 Q17 Q16

Figure 5.3: Biclique for Steps 14-17 - Above each state its con�guration is
indicated. Notations like fxcybz mean that x bits are possibly a�ected by the
forward trail, followed by y constant bits and z bits possibly a�ected by the back-
ward trail. On the right side, Φ functions and their inputs: Colours white, green,
brown, blue and oblique lines indicate respectively constant parts, in�uence of
backward trail, in�uence of forward trail, in�uence of both and absorption of
di�erences.

Trails Interaction and Biclique E�ciency Φ15 is supposed to absorb dif-
ferences of both the forward trail and a part of the backward trail. Forward
trail a�ects bits [17 − 0] of Q15 and backward trail a�ects bits [8 − 0] of Q14;
hence, for what concerns the nine least signi�cant bits, this is the same situation

52 Pseudo-Preimage and Preimage Attacks on MD5

depicted in Section 5.3.2. As result, the biclique e�ciency is1:

e =
(

3
4

)9

(5.5)

5.3.4 Construction Algorithm

The procedure used to construct the biclique, presented in Algorithm 5.2, can
be divided into three parts:

Message and State Initialization [Lines 2-6]
The starting state (Q11, Q14, Q13, Q12) is initialized so that the di�erential
trails behave as expected.

Forward Trail [First Loop]
For every possible di�erence on m14, the correspondent starting state
(Q15, Q18, Q17, Q16) is found by computing steps 14 to 17, assuming that
at step 15 absorption takes place.

Backward Trail [Second Loop]
For every possible di�erence on m6, the correspondent starting state
(Q11, Q14, Q13, Q12) is found by computing the inverse steps 17 to 14,
assuming that at step 15 absorption takes place.

1The exact e�ciency is slightly lower because of a non-linear interaction due to the rotation

at step 14, see Appendix A

5.3 Biclique 53

Algorithm 5.2 Biclique construction

Input:

None
Output:

Arrays of starting states Q[] and P []

Description:

1: /* Any non-initialized variable can be freely chosen */
2: Q13[17− 0]← 0x1ff

3: Q14[17− 0]← 0x1ff

4: Q12 ← −(Φ15(Q14, Q14, Q13) +m15 + k15)
5: Q11 ← −(Φ15(Q14, Q13, Q12) +m14 + k14)
6: Q[0]← (Q11, Q14, Q13, Q12)
7: for (i = 0; i < 217; i+ +) do
8: ∆m14

F ← 215i
9: CurrentState ← Q[0]
10: Compute steps 14 to 17, assuming Φ15[8− 0] = Q13[8− 0]
11: P [i]← CurrentState
12: end for

13: for (i = 0; i < 29; i+ +) do
14: for (j = 0; j < 28; j + +) do
15: ∆m14

B ← i+ 224j
16: CurrentState ← P [0]
17: Compute inverse steps 17 to 14, assuming Φ15[8− 0] = Q13[8− 0]
18: Q[29j + i]← CurrentState
19: end for

20: end for

21: return (Q[], P [])

Complexity Analysis The biclique consists of 4 steps, which have to be
computed 217 times both ways. Time complexity is then

Cbiclique =
8
64

217 (5.6)

compression function evaluations. For what concern memory complexity, two
lists of 217 internal states each have to be stored, for a total of 220 32-bit memory
words.

54 Pseudo-Preimage and Preimage Attacks on MD5

5.4 Padding

According to the MD5 padding rule (see Section 2.2.2), the shortest padding is
appended when the length L of the message is congruent 447 mod 512. In this
case the padding is just 65 bits long and it a�ects the last message block in the
following way:

• m13[31] = 1

• m14[8− 0] = 447

• m15 and remaining parts of m14 must be chosen according to L

The �rst two conditions can be easily veri�ed since the attacker is allowed to
choose those bit values, the third condition needs more attention since m14[31−
15] is not known in advance.

Fixing the Padding When pseudo-preimages are converted to a pre-image,
2K of them are computed using the technique described in Section 4.2.3, which
means that a pseudo-preimage can be as long as 2K message blocks, the last
of which has to be 447 bits long according to the padding. So, the maximum
length of a pseudo-preimage obtained by the attack is

512× (2K − 1) + 447

The length speci�ed in the padding must be bigger than that: This can be
obtained by picking m15[x] = 1 such that

232+x > 512× (2K − 1) + 447

When the number of extra message blocks needed is known, expandable mes-
sages can be used to �ll the gap.

Table 5.2 shows how message words can be properly initialized in order to have
a correct padding, since for this particular attack K = 8 it is su�cient to pick
m15[0] = 1.

5.5 Attack Algorithm 55

m13 x 1
m14 x 1 1 0 1 1 1 1 1 1
m15 x 1

Table 5.2: Initialization of m13,m14 and m15 - Bit positions marked x indicate
that the value can bee freely chosen or otherwise determined by the attack
algorithm.

5.5 Attack Algorithm

The procedure used to attack MD5, presented in Algorithm 5.2, can be divided
into the following parts:

MTPP Initialization [Lines 1-4]
Sets M1, M2 and M3 are de�ned according to the number of targets
available. In particular, M1 is chosen so that |M1| × |H| = 217 and the
biclique e�ciency increases.

MitM Initialization [Lines 6-7]
Before each iteration of the repeat loop, the message block is reinitialized
and a biclique is built.

Backward Computations [Lines 9-15]
For every (M1, H) ∈ M1 × H, backward candidates are computed and
stored.

Forward Computations [Lines 19-21]
For every M2 ∈M2, forward candidates are computed.

Candidates Testing [Lines 22-27]
Determines whether or not a partial match yields a pseudo-preimage.

56 Pseudo-Preimage and Preimage Attacks on MD5

Algorithm 5.3 MTPP Attack

Input:

A list of 2k targets H = {H0, H1, . . . ,H2k−1}
Output:

A pseudo-preimage (CV,M) for one of the targets

Description:

1: x← (8− k)

2: M1
def
= bit positions [31− 24] and [x− 0] of m6

3: M2
def
= bit positions [31− 15] of m14

4: M3
def
= remaining parts of the message block

5: repeat

6: Randomly initialize M3 but satisfy the padding
7: Build biclique
8: for all M1 ∈M1 do

9: Q← starting state corresponding to M1

10: CV ← D1
M1,M3

(Q)
11: for all H ∈ H do

12: C ← H 	 CV
13: v′1 ← D3

M1,M3
(c)

14: Generate candidates v1

15: Store (v1, v
′
1,M1)

16: end for

17: end for

18: for all M2 ∈M2 do

19: P ← starting state corresponding to M2

20: v′2 ← E2
M2,M3

(P)
21: Generate candidates v2

22: if partial match then

23: Check for full match
24: end if

25: if full match then
26: Check biclique property
27: end if

28: end for

29: until a preimage is found
30: return any (M1,M2,M3) for which there is a full match and the biclique

property is satis�ed

5.5 Attack Algorithm 57

5.5.1 Complexity Analysis

Both time complexity and memory complexity are analysed, the former is mea-
sured in compression functions evaluations and the latter in 32-bit words. When
not explicitly speci�ed, the term complexity always refers to time complexity.

Biclique Construction [Line 7]
Four compression steps need to be computed |M2| times in the forward direction
and |M1| times in the backward direction:

Cbiclique =
4
64

217 +
4
64

217−k

Furthermore, two lists of 217 and 217−k full states are stored, hence the memory
complexity is:

4× (217 + 217−k) = 219 + 219−k

For what concerns the e�ciency, when 2k targets are available the trails interac-
tion a�ects only the (9−k) least signi�cant bits of Φ15, resulting in an e�ciency
of:

ek =
(

3
4

)9−k

Backward Computations [Lines 9-15]
A part of the backward chunk is computed |M1| = 217−k times, whereas the
second part is computed |M1| × |H| = 217 times. For sake of simplicity, this is
considered equivalent to 217 full computations of the chunk, which is composed
of 27 steps. This, together with the generation of the candidates, has a total
complexity of

217Cb = 217

(
27
64

+ Cbc

)
= 217 32

64
(5.7)

obtained using Equation (5.1).

Furthermore, at each iteration two candidates are stored together with a full
state and a message word, hence the memory complexity is

217+1 × 6 = 3× 219

58 Pseudo-Preimage and Preimage Attacks on MD5

Forward Computations [Lines 19-21]
25 compression steps are computed and 22 candidates are generated. Since this
procedure is repeated |M2| = 217 times, the complexity is:

217Cf = 217

(
25
64

+ Cfc

)
= 217 31

64
(5.8)

obtained using Equation (5.2).

No memory is needed.

Matching Procedure and Biclique Property Veri�cation [Lines 22-27]
Throughout one iteration of the repeat loop, 217+2 forward candidates and
217+1 backward candidates are generated, for a total of 234+3 possible couplings.
Since the matching probability is 2−17, for 217+3 couples the matching procedure
need to be run, hence the resulting complexity is

217+3Cmatch = 217+3

(
2−5 51

64

)
= 217 12.75

64
< 217 13

64
(5.9)

Amongst the 217+3 partially matched couples, only for 217 of them the carry
hypotheses are correct. Furthermore, since the probability of a full match is
2−111, the biclique property need to be veri�ed on 2−94 of them on average.
The complexity of such a procedure is negligible.

No memory is needed.

Total Complexity To sum up, the complexity of one iteration of the repeat
loop is:

Cloop = Cbiclique + 217(Cf + Cb) + 217+3Cmatch <

< 217 80
64

+ 217−k 4
64

As argued before, during one execution of the repeat loop, 234+3 couples of
candidates are generated. Only for 234ek of them the carry hypotheses are
correct and the biclique property hold. So, in order to obtain a pseudo-preimage
with high probability, the loop needs to be repeated 294 1

ek
times, for a total

complexity of:

Cppi(k) =
294

ek
Cloop = 2111

(
80
64

+ 2−k
4
64

)(
4
3

)(9−k)

(5.10)

5.6 Conversion to Preimage 59

For what concerns the total memory complexity, the only steps requiring mem-
ory are biclique construction and backward candidates generation, for total of

219 + 219−k + 3× 219 = 221 + 219−k

Table 5.3 shows the attack complexities for di�erent k.

Available Targets Time Complexity Memory Complexity

20 2115.1 221.3

21 2114.7 221.2

22 2114.2 221.1

23 2113.8 221.0

24 2113.4 221.0

25 2113.0 221.0

26 2112.6 221.0

27 2112.2 221.0

28 2111.7 221.0

29 2111.3 221.0

Table 5.3: Complexity of a Multi-Target-Pseudo-Preimage Attack

5.6 Conversion to Preimage

Equation 5.10 gives the complexity of computing one pseudo-preimage when 2k

targets are available. In order to double them, the complexity is

2kCppi(k) = 2111

(
2k

80
64

+
4
64

)(
4
3

)(9−k)

So, in order to obtain 2K targets starting from a single one, the total complexity
is

K−1∑
k=0

[
2kCppi(k)

]
= 2111

(
4
3

)9 K−1∑
k=0

[
80
64

(
3
2

)k
+

4
64

(
3
4

)k]
=

= 2112 80
64

(
4
3

)9
[(

3
2

)K
− 1

]
+ 2113 4

64

(
4
3

)9
[

1−
(

3
4

)K]

60 Pseudo-Preimage and Preimage Attacks on MD5

Eventually, to get a preimage with high probability other 2128−K hashes need to
be computed (see Algorithm 4.4); the lowest complexity is obtained with K = 8
and it is

2112 80
64

(
4
3

)9
[(

3
2

)8

− 1

]
+ 2113 4

64

(
4
3

)9
[

1−
(

3
4

)8
]

+ 2120 ≈ 2121.4 (5.11)

For what concerns memory complexity, this procedure requires 20 × 28 extra
memory in order to store the presudo-preimages, which is negligible with respect
to the memory complexity of the pseudo-preimage attack.

Time Complexity Memory Complexity

2121.4 221.3

Table 5.4: Preimage Attack with MTPP Approach

Chapter 6

Pseudo-Preimage and

Preimage Attacks on MD5:

Two Variants

Two variants of the attack described in the previous chapter are now presented;
the aim of both of them is to increase the biclique e�ciency by reducing its
dimension: One variant will always achieve an e�ciency of 1, whereas the other
one will still allow the e�ciency to be less than 1.

6.1 Variant I: Biclique E�ciency 1.0

A biclique e�ciency of 1 can always be achieved regardless of the number of
available targets: It is su�cient to rede�neM1 andM2 so that there is no trail
interaction in the biclique. Algorithm 6.1 shows how this this can be done.

62 Pseudo-Preimage and Preimage Attacks on MD5: Two Variants

Algorithm 6.1 MTPP Attack - Variant I

Input:

A list of 2k targets H = {H0, H1, . . . ,H2k−1}
Output:

A pseudo-preimage (CV,M) for one of the targets

Description:

1: if k is even then

2: x← (3− k
2)

3: y ← (19− k
2)

4: else

5: x← (3− k−1
2)

6: y ← (19− k−1
2)

7: end if

8: M1
def
= bit positions [31− 24] and [x− 0] of m6

9: M2
def
= bit positions [31− y] of m14

10: M3
def
= remaining parts of message block

11: /* From now on, apart from the missing veri�cation of the biclique property,
the attack algorithm is identical */

12: repeat

13: Randomly initialize M3 but satisfy the padding
14: Build biclique
15: for all M1 ∈M1 do

16: QM1 ← starting state corresponding to M1

17: CV ← D1
M1,M3

(Q)
18: for all H ∈ H do

19: C ← H � CV
20: v′1 ← D3

M1,M3
(c)

21: Generate candidates v1

22: Store (v1, v
′
1,M1)

23: end for

24: end for

25: for all M2 ∈M2 do

26: PM2 ← starting state corresponding to M2

27: v′2 ← E2
M2,M3

(P).
28: Generate candidates v2

29: if partial match then

30: Check for full match
31: end if

32: end for

33: until a preimage is found
34: return (M1,M2,M3) for which there is a full match.

6.1 Variant I: Biclique E�ciency 1.0 63

6.1.0.1 Complexity Analisys

Both time complexity and memory complexity are reanalysed, the former is
measured in compression functions evaluations and the latter in 32-bit words.
When not explicitly speci�ed, the term complexity always refers to time com-
plexity.

During the analysis, variables hk and rk will be used:

k = 2× hk + rk , 0 ≤ rk < 2 and hk ≥ 0

Biclique Construction [Line 14]
Four steps have to be computed for |M1| = 212+kh times in the backward
direction and |M2| = 213+kh times in the forward direction:

Cbiclique =
4
64

213+hk
4
64

212−hk ≤ 6
64

213+hk (6.1)

Furthermore, the starting states of the biclique need 215+hk + 214−hk memory
to be stored.

For what concerns the e�ciency, M1 and M2 are de�ned so that there is no
trail interaction in Φ15, hence the e�ciency is 1.

Backward Computations [Lines 16-22]
A part of the backward chunk is computed |M1| = 212−hk times, whereas the
second part is computed |M1| × |H| = 212+hk+rk times. For sake of simplicity,
this is considered equivalent to 212+hk+rk full computations of the chunk, which
is composed of 27 steps. This, together with the generation of the candidates,
has a total complexity of

212+hk+rkCb = 212+hk+rk

(
27
64

+ Cbc

)
= 212+hk+rk

32
64

(6.2)

Furthermore, at each iteration two candidates are stored together with a full
state and a message words, hence the memory complexity is

212+hk+rk+1 × 6 = 3× 214+hk+rk

64 Pseudo-Preimage and Preimage Attacks on MD5: Two Variants

Forward Computations [Lines 26-28]
25 compression steps are computed and 22 candidates are generated. Since this
procedure is repeated |M2| = 213+hk times, the complexity is:

213+hkCf = 213+hk

(
25
64

+ Cfc

)
= 213+hk

31
64

(6.3)

No memory is needed.

Matching Procedure [Lines 29-31]
Throughout one iteration of the repeat loop, 213+hk+2 forward candidates and
212+hk+rk+1 backward candidates are generated, for a total of 225+k+3 possi-
ble couplings. Since the matching probability is 2−17, for 28+k+3 couples the
matching procedure need to be run, hence the resulting complexity is

28+k+3Cmatch = 28+k+3

(
2−5 51

64

)
= 28+k 12.75

64
< 28+k 13

64
(6.4)

No memory is needed.

Total Complexity To sum up, the complexity of one iteration of the repeat
loop is:

Cloop(k) = Cbiclique + 213+hkCf + 212+hk+rkCb + 28+k+3Cmatch <

< 213+hk
6
64

+ 213+hk
31
64

+ 212+hk+rk
32
64

+ 28+k 13
64

=

= 213+hk
37
64

+ 212+hk+rk
32
64

+ 28+k 13
64

During one execution of the loop, 225+k+3 couples of candidates are generated.
Only for 225+k of them the carry hypotheses are correct. So, in order to obtain
a pseudo-preimage with high probability, the loop needs to be repeated 2103−k

times, for a total complexity of:

Cppi(k) = 2103−kCloop(k) = 2116−k+hk
37
64

+ 2115−k+hk+rk
32
64

+ 2111 13
64

(6.5)

For what concerns the total memory complexity, the only steps requiring mem-
ory are biclique construction and backward candidates generation, for total of

215+hk + 214−hk + 3× 214+hk+rk

6.1 Variant I: Biclique E�ciency 1.0 65

Table 6.1 shows the attack complexities for di�erent k.

Available Targets Time Complexity Memory Complexity

20 2115.7 216.6

21 2115.1 217.2

22 2114.7 217.4

23 2114.1 218.0

24 2113.8 218.4

25 2113.2 219.0

26 2112.8 219.3

27 2112.2 220.0

28 2111.9 220.3

29 2111.3 221.0

Table 6.1: Complexity of a Multi-Target-Pseudo-Preimage Attack - Variant I

Conversion to Preimage Equation 6.5 gives the complexity of computing
one pseudo-preimage when 2k targets are available. In order to double them,
the complexity is

2kCppi(k)

So, in order to obtain 2K targets starting from a single one, the total complexity
is:

K−1∑
k=0

[
2kCppi(k)

]
=
K−1∑
k=0

[
2116+hk

37
64

+ 2115+hk+rk
32
64

+ 2111+k 13
64

]
=

=

K
2 −1∑
h=0

(
2116+h 53

64

)
+

K
2 −1∑
h=0

(
2116+h 79

64

)
+
K−1∑
k=0

(
2111+k 13

64

)
=

=

K
2 −1∑
h=0

(
2117+h 66

64

)
+
K−1∑
k=0

(
2111+k 13

64

)

= 2117 66
64

(2
K
2 − 1) + 2111 13

64
(2K − 1)

66 Pseudo-Preimage and Preimage Attacks on MD5: Two Variants

Eventually, to get a preimage with high probability, other 2128−K hashes need
to be computed (see Algorithm 4.4); the lowest complexity is obtained with
K = 8 and it is:

2117 66
64

(24 − 1) + 2111 13
64

(28 − 1) + 2120 = 2121.5 (6.6)

For what concerns memory complexity, this procedure requires 20 × 28 extra
memory in order to store the presudo-preimages, which is negligible with respect
to the memory complexity of the pseudo-preimage attack.

Time Complexity Memory Complexity

2121.5 220.0

Table 6.2: Preimage Attack with MTPP Approach - Variant I

6.2 Variant II: Optimized Biclique

The biclique e�ciency is greatly a�ected by the 9-bit trail interaction in Φ15.
For the trails not to interact, these two equivalent conditions must be ful�lled:

Condition 6.1 Whenever Q15[8−0] has a one at some bit position, Q14[8−
0] must have a one at the same position

Condition 6.2 Whenever Q14[8−0] has a zero at some bit position, Q15[8−
0] must have a zero at the same position

This implies that the lower the hamming weight of Q15[8 − 0], the higher the
number of non-interacting Q14[8− 0]; similarly, the higher the hamming weight
of Q14[8 − 0] the higher the number of non-interacting Q15[8 − 0]. The idea,
graphically represented in Figure 6.1, is then to reduce the number of computed
candidates by �ltering away those di�erences responsible for low e�ciency. If
the gain in e�ciency is enough to compensate for the loss of candidates, the
overall complexity will be lower.

6.2 Variant II: Optimized Biclique 67

optimize

Figure 6.1: The biclique on the left has an e�ciency of el = 36
64 = 0.5625, the

one on the right of er = 30
36 = 0.83. Let Cr be the complexity of the attack

when using the biclique on the right, when the other one is used instead, the
complexity is Cr = Cl

el
er

8
6 = Cl

9
10

.

6.2.1 Biclique optimization

Let us assume that only di�erences capable of granting these properties are
applied:

Condition 6.3 Q15[8− 0] has hamming weight ≤ 9− k.

Condition 6.4 Q14[8− 0] has hamming weight ≥ k.

This means that instead of using the whole range of 217 possible di�erences on
each side, only

28
9∑
i=k

(
9
i

)
of them are used. This a�ects the number of candidates on each side by a factor

28
∑9
i=k

(
9
i

)
217

=
∑9
i=k

(
9
i

)
29

The latter can be generalized for the case when the interaction a�ects n bits,
giving:

cn,k =
∑n
i=k

(
n
i

)
2n

(6.7)

68 Pseudo-Preimage and Preimage Attacks on MD5: Two Variants

Recomputing Biclique E�ciency In order to compute the e�ciency it is
convenient to distinguish two cases:

Case 1 If Q15[8−0] has hamming weight (9−h) ≥ k, because of Condition 6.1
any non-interacting Q14[8−0] will have t = (9−h) ones in �xed positions,
hence its hamming weight will be ≥ t ≥ k. This implies that Condition
6.4 is already ful�lled and the remaining bits can be freely chosen, giving
2h possible values.

Case 2 If Q15[8 − 0] has hamming weight (9 − h) < k, any non-interacting
Q14[8 − 0] will have t = (9 − h) ones in �xed positions, since t < k

Condition 6.4 requires other k − t ones to be present, giving
∑h
i=k−t

(
h
i

)
possible values instead of 2h.

The total number of couples verifying the biclique property is then:

9∑
h=k

28

(
9
h

)28
h∑

i=max(0,k−t)

(
h

i

)
The latter can be generalized for the case when the interaction a�ects n bits,
giving a biclique e�ciency of:

∑n
h=k

(
n
h

) [∑h
i=max(0,k−t)

(
h
i

)]
[∑n

i=k

(
n
i

)]2 (6.8)

Hence, this new approach a�ects the biclique e�ciency by a factor

bn,k =

∑n
h=k

(
n
h

) [∑h
i=max(0,k−t)

(
h
i

)]
[∑n

i=k

(
n
i

)]2 22n

3n
(6.9)

Results The complexity of one iteration of the repeat loop in Algorithm 5.5
is the sum of:

• Biclique construction

• Forward and backward computations

• Matching procedure

• Biclique property veri�cation (negligible)

6.2 Variant II: Optimized Biclique 69

Time complexities of biclique construction, forward and backward computations
are a�ected by a factor cn,k, since they are linear with respect to |M1| and |M2|.
The complexity of the matching procedure will be a�ected by a factor c2n,k, since
it is linear with respect to |M1| × |M2|. Hence, assuming that the matching
does not contribute signi�cantly to the total complexity, the cost of one iteration
of the loop changes approximately by a factor cn,k.

Furthermore, due to the loss of candidates and the increased biclique e�ciency,
the loop must iterate 1

bn,kc2n,k
times more, so the total complexity is a�ected by

a factor

gn,k =
cn,k

bn,kc2n,k
=

1
bn,kcn,k

Hence, by combining Equations 6.7 and 6.9, the following formula is obtained:

gn,k =
3n∑n

h=k

[(
n
h

) (∑h
i=max(0,k−t)

(
h
i

))] ∑n
i=k

(
n
i

)
2n

(6.10)

Then, by minimizing Equation 6.10 as a function of k, the best trade-o� between
increased biclique e�ciency and reduced number of candidates is found. Optimal
values are listed in Table 6.3

n kopt gn,kopt log2(gn,kopt)
1 0 1.000 0.000
2 1 0.964 −0.052
3 1 0.945 −0.082
4 2 0.884 −0.178
5 3 0.862 −0.214
6 3 0.821 −0.285
7 4 0.765 −0.386
8 5 0.736 −0.442
9 5 0.704 −0.507

Table 6.3: Values of kopt for several length of interaction.

6.2.2 Complexity Analysis

How the modi�ed biclique a�ects the time complexity has already been com-
puted; for what concerns memory complexity, memory is needed to store the

70 Pseudo-Preimage and Preimage Attacks on MD5: Two Variants

starting states provided by the biclique and the table containing the backward
candidates, which are a�ected by a factor cn,k and c2n,k respectively.

Tables 6.4 and 6.5 show the complexity of pseudo-preimage attacks and preimage
attack when the biclique is optimized according to Table 6.3.

Available Targets Time Complexity Memory Complexity

20 2114.6 219.8

21 2114.2 218.9

22 2113.9 219.5

23 2113.5 220.0

24 2113.2 219.4

25 2112.8 220.1

26 2112.5 220.7

27 2112.1 220.3

28 2111.7 221.0

29 2111.3 221.0

Table 6.4: Complexity of a Multi-Target-Pseudo-Preimage Attack - Variant II

Time Complexity Memory Complexity

2121.3 220.7

Table 6.5: Preimage Attack with MTPP Approach - Variant II

Chapter 7

One-Block Preimage on MD5

This chapter describes an optimized brute force attack for one-block preimages
on MD5. The attack is based on the technique presented in Section 4.4.1 and the
brute force approach originates from an ine�cient matching procedure; an anal-
ogous matching technique was applied to AES in [BKR11]. Section 7.1 provides
a high-level description of the attack, Sections 7.2 and 7.3 focus respectively on
matching and biclique. Section 7.4 provides an attack algorithm together with
its complexity analysis.

7.1 Attack Outline

M1 is constituted by bit positions [15− 9] of m12 together with message words
m8 and m9, which will be de�ned as a function of m12 in order to obtain a local
collision (see Section 7.3). M2 is constituted by bit positions [19 − 13] of m7.
This determines position and length of the chunks, biclique and matching part:

72 One-Block Preimage on MD5

Forward Chunk Steps 13, 14, 15, . . . , 23 (11 in total)

Backward Chunk Steps 63, 62, 61, . . . , 50 (14 in total)

Biclique Steps 7, 8, 9, 10, 11, 12 (6 in total)

Matching Steps 24, 25, 26, . . . , 49 (26 in total)

Bruteforce matching of Q44 covering steps 23-49

Q21 Q42 Q43 Q44 Q45 Q46 Q47 Q48

Q22 Q43 Q44 Q45 Q46 Q47 Q48 Q49

Q23 Q44 Q45 Q46 Q47 Q48 Q49 Q50

Q20 Q41 Q42 Q43 Q44 Q45 Q46 Q47

bruteforce

Biclique covering steps 7-12

Q5 Q11 + ∆11(m7)

Q6 Q12 + ∆12(m7)

Q7 Q13 + ∆13(m7)

Q4 Q10 + ∆11(m7)

Forward

chunk

Backward

chunk
CV H

Round 1 Round 2 Round 3 Round 4

Figure 7.1: Attack Outline - Green, brown and blue background indicate com-
putations a�ected byM1,M2 and both of them, respectively.

7.2 Matching

Due to the length of the matching part, the techniques described in Section 4.3
cannot provide an e�cient matching procedure; however, they can be used to
reduce the number of steps to be covered by the brute force approach.

Section 7.2.0.1 shows step by step how candidates are computed; in order to do
so, the following notation is introduced:

7.2 Matching 73

• A[x− y] indicates the value of bit positions [x− y] of A.

• A[x−y] indicates that only A[x− y] is known.

• A[x−y]×z indicates that only A[x − y] is known, and because of uncer-
tainties on the carries there are z possible values for it.

7.2.0.1 Backward Candidates

Backward candidate consists of a partially known state, namely: Q44[12 − 0].
During the computation, even though m7 is mostly �xed, only its least signi�-
cant part is used.

Step 49

Q46 = (Q50 −Q49)>>>10 − Φ49(Q49, Q48, Q47)−m[12−0]
7 − k49 =

= [(Q50 −Q49)>>>10 − Φ49(Q49, Q48, Q47)−m7 − k49][12−0] =

Step 48

Q45 = (Q49 −Q48)>>>6 − Φ48(Q48, Q47, Q
[12−0]
46)−m0 − k48 =

= [(Q49 −Q48)>>>6 − Φ48(Q48, Q47, Q46)−m0 − k48][12−0]

Step 47

Q44 = (Q48 −Q47)>>>23 − Φ47(Q47, Q
[12−0]
46 , Q

[12−0]
45)−m2 − k47

= [(Q48 −Q47)>>>23 − Φ47(Q47, Q46, Q45)−m2 − k47][12−0]

Complexity Analysis Three compression steps have to be computed without
any ambiguity on the carries, the complexity is then

Cfc =
3
64

(7.1)

compression function evaluations and 1 candidate is generated.

74 One-Block Preimage on MD5

7.2.1 Matching Procedure

The matching procedure has to be executed for every M1 and M2, bringing the
total complexity extremely close to naive brute force.

Algorithm 7.1 Matching Procedure

Input:

A couple (M1,M2)
State (Q20, Q23, Q22, Q21) correspondent to M2

State (Q47, Q50, Q49, Q48) correspondent to M1

Candidate Q44[12− 0] correspondent to M1

Output:

true in case of full match, false otherwise.

Description:

1: /* If any of the checks fail, the algorithm will stop and return false */
2: Obtain Q44 by computing steps 24 to 43
3: Check for a partial match on the backward candidate Q44[12− 0]
4: Compute steps 44 to 49
5: Check for further matching on full state (Q47, Q50, Q49, Q48)
6: return true

Complexity Analysis A matching on Q44 will happen with probability 2−13,
the expected running time is then:

Cmatch =
20
64

(1− 2−13) +
26
64

2−13 (7.2)

compression function evaluations.

7.3 Biclique

This section provides a construction algorithm for the biclique and a high level
description of the di�erential trails. A complete proof of their soundness and
an accurate computation of the biclique e�ciency is provided in Appendix B.

7.3 Biclique 75

7.3.1 Trails Description

Di�erential trails are de�ned with respect to modular addition, hence, rota-
tions and boolean functions are a source of non-linearities. These latter will be
handled by properly initializing states and messages so that:

• Rotations can be considered as multiplications or divisions.

• Boolean functions absorb di�erences.

• Forward and backward trails a�ect di�erent portions of the states.

Figure 7.2 provides a visual description of the trails.

Backward Trail As explained in Section 4.4.1, the backward trail has to from
a local collision. The type of local collision used here has already been applied
to MD5 in [SA08] and it requires the freedom to modify three message words
mπ(i), mπ(i+1) and mπ(i+4):

1. At step (i+ 4) the di�erence is generated by mπ(i+4).

2. At steps (i+ 4), (i+ 3) and (i+ 2) the di�erence propagation is stopped
by exploiting absorption properties of the boolean functions.

3. At steps (i+ 1) and i the di�erence propagation is stopped by exploiting
absorption properties of the boolean functions and message words mπ(i+1)

and mπ(i).

Forward Trail Other than non interfering with the backward trail, the for-
ward trail does not have to ful�l any particular requirement.

76 One-Block Preimage on MD5

Φ8

Q6

Q7

Q8

Φ9

Q7

Q8

Q9

Φ10

Q8

Q9

Q10

Φ11

Q9

Q10

Q11

c32 c32 c32 c32

Q4 Q7 Q6 Q5k7
Φ7m7

<<<22

c32 c22f7c3 c32 c32

Q5 Q8 Q7 Q6k8
Φ8m8

<<<7

c32 c12b8c2f7c3 c22f7c3 c32

Q6 Q9 Q8 Q7k9
Φ9m9

<<<12

c32 c21f8c3 c12b8c2f7c3 c22f7c3

Q7 Q10 Q9 Q8k10
Φ10m10

<<<17

c22f7c3 f12c9f8c3 c21f8c3 c12b8c2f7c3

Q8 Q11 Q10 Q9k11
Φ11m11

<<<22

c12b8c2f7c3 f32 f12c9f8c3 c21f8c3

Q9 Q12 Q11 Q10k12
Φ12m12

<<<7

c21f8c3 f32 f32 f12c9f8c3

Q10 Q13 Q12 Q11

Figure 7.2: Biclique for Steps 7-12 - Above each state its con�guration is in-
dicated. Notations like fxcybz mean that x bits are possibly a�ected by the
forward trail, followed by y constant bits and z bits possibly a�ected by the
backward trail. On the right side, the Φ functions and their inputs: Colours
white, green, brown, blue and oblique lines indicate respectively constant parts,
in�uence of backward trail, in�uence of forward trail, in�uence of both and
absorption of di�erences.

7.3 Biclique 77

7.3.2 Construction Algorithm

The procedure used to construct the biclique, presented in Algorithm 7.2, can
be divided into three parts:

Message and State Initialization [Lines 2-12]
The starting state (Q4, Q7, Q6, Q5) and message words m7, m9 and m10

are initialized so that the di�erential trails behave as expected.

Forward Trail [First Loop]
For every possible di�erence on m7, the correspondent starting state
(Q10, Q13, Q12, Q11) is found by computing steps 7 to 12.

Backward Trail [Second Loop]
Nothing to do: Thanks to the local collision, the starting state is the same
regardless of the value of m12.

78 One-Block Preimage on MD5

Algorithm 7.2 Biclique construction

Input:

None
Output:

Arrays of starting states Q[] and P []

Description:

1: /* Any non-initialized variable can be freely chosen */
2: Q8[9− 3]← 0x0

3: Q9[9− 3]← 0x0

4: Q9[19]← 0x1

5: Q9[10]← Q8[10]
6: Q10[10]← 0x1

7: Q10[19− 12]← 0x0

8: Q11[10]← 0x1

9: Q11[19− 12]← 0xff

10: Choose m10 so that:
Q7[9− 3] = 0x7f
Q7[19− 12] = Q7[19− 12]
(Q7 + Φ10(Q10, Q9, Q8) +m10 + k10)[31] = 0

11: Choose m9 so that Q6[9− 3] = 0x7f
12: Choose m7 so that (Q4 + Φ7(Q7, Q6, Q5) +m7 + k7)[31] = 0
13: Q[0]← (Q4, Q7, Q6, Q5)
14: for (i = 0; i < 27; i+ +) do
15: ∆m7

F ← 213i
16: CurrentState ← Q[0]
17: Compute Steps 14 to 12
18: P [i]← CurrentState
19: end for

20: for (i = 0; i < 27; i+ +) do
21: Q[i]← Q[0]
22: end for

23: return (Q[], P [])

Complexity Analysis The biclique consists of 6 steps, which have to be
computed only for the forward trail since the backward trail constitutes a local
collision. The time complexity is then

Cbiclique =
6
64

27 (7.3)

compression function evaluations. For what concern memory complexity, again
because of the local collision, only one list of 27 internal states each has to be

7.4 Attack Algorithm 79

stored, for a total of 29 32-bit memory words.

7.4 Attack Algorithm

The procedure used to attack MD5, presented in Algorithm 7.4, can be divided
into the following parts:

MitM Initialization [Lines 2-4]
Before each iteration of the repeat loop, the message block is reinitialized
and a biclique is built.

Backward Computations [Lines 6-9]
For every m12, message words m9 and m8 are chosen so that the local
collision is achieved. Backward candidates are then computed and stored.

Forward Computations [Lines 12-14]
For every m7, forward candidates are computed.

Candidates Testing [Line 15]
Determines which couples of candidates fully match.

80 One-Block Preimage on MD5

Algorithm 7.3 One-Block Preimage

Input:

A target hash H
Output:

A one-block preimage M for H

Description:

1: repeat

2: Randomly initialize M3 but assure that:
padding is satis�ed
D1
M3

(Q) = IV
3: Build biclique
4: C ← H 	 IV
5: for (i = 0; i < 27; i+ +) do

6: ∆m12
B ← 212i; ∆m9

B ← i; ∆m8
B ← −25i

7: v′2 ← D3
M1,M3

(C)
8: Generate candidates v2 from v′2
9: Store (v2, v

′
2,M1) in a table

10: end for

11: for all (i = 0; i < 27; i+ +) do
12: ∆m7

F ← 23i
13: P ← starting state corresponding to M2

14: v′1 ← E2
M2,M3

(P)
15: Run matching procedure
16: end for

17: until a preimage is found
18: return any (M1,M2,M3) for which there was a full match

7.4.1 Complexity Analysis

Both time complexity and memory complexity are analysed, the former is mea-
sured in compression functions evaluations and the latter in 32-bit words. When
not explicitly speci�ed, the term complexity always refers to time complexity.

Biclique Construction [Line 3]
As showed in Section 7.3.2, a biclique can be built in time

Cbiclique =
6
64

27

and requires 29 memory.

7.4 Attack Algorithm 81

Backward Computations [Lines 6-9]
For all 27 possible choices of M1, 14 compression steps are computed and 1
candidate is generated, for total a complexity of:

27Cb = 27

(
14
64

+ Cbc

)
= 27 17

64
(7.4)

Furthermore, a candidate needs to be stored at each iteration, together with a
full state and the corresponding M1. This requires 6× 27 = 3× 28 memory.

Forward Computations [Lines 12-14]
For all 27 possible choices of M2, 11 compression steps are computed:

27Cf = 27 11
64

(7.5)

No memory is needed.

Matching Procedure [Line 15]
For all 214 possible choices of (M1,M2) the matching procedure is performed:

214Cmatch = 214

(
20
64

+
6
64

2−13

)
=

20
64

214 +
6
64

21 (7.6)

No memory is needed.

Total Complexity The total complexity is dominated by the brute force
matching, giving:

Cloop = Cbiclique + 27(Cb + Cf) + 27Cmatch =

= 6
6427 + 27 17

64 + 27 11
64 + 20

64214 + 6
6421 ≈ 20

64214
(7.7)

During one execution of the repeat loop, 214 couples of candidates are checked
for matching. Hence, In order to obtain a full match the loop need to be iterated
2114 times, for a total complexity of:

Cpi = 2114Cloop =
20
64

2128 ≈ 2126.4 (7.8)

82 One-Block Preimage on MD5

For what concerns the total memory complexity, the only steps requiring mem-
ory are biclique construction and backward candidates generation, for total of

29 + 3× 28 = 210.3

Time Complexity Memory Complexity

2126.4 210.3

Table 7.1: One-Block Preimage Attack with Optimized Brute Force.

Chapter 8

Attacks Comparison and

Conclusions

In the second part of this thesis several attacks have been presented, this chapter
divides them into three categories: pseudo-preimage, preimage and one-block
preimage. In each category the attacks are compared with the best known
results for MD5, namely: [SA09] for pseudo-preimages and preimages and [AS08]
for one-block preimages. As usual, time and memory complexities are measured
in compression functions evaluations and 32-bit memory words, respectively.

8.1 Pseudo-Preimages

Three pseudo-preimage attacks were presented in this thesis, all of them are
based on the same attack:

• Section 5.5: Standard variation (bigraph).

• Section 6.1: Variation I (biclique).

• Section 6.2: Variation II (optimized bigraph).

Table 8.1 compares these attacks with the result of Sasaki and Aoki in [SA09].

84 Attacks Comparison and Conclusions

Attack Time Complexity Memory Complexity

Section 5.5 2115.1 221.3

Section 6.1 2115.7 216.6

Section 6.2 2114.6 219.8

[SA09] 2116.9 248.4

Table 8.1: Comparison of Pseudo-Preimage Attacks

Thanks to the reduced biclique dimension, both variants of the attack presented
in Chapter 5 have a lower memory complexity; however, the optimized biclique
allows Variant II to achieve a better time complexity as well.

MTPP

The three variants of the attack can exploit multiple targets, Figures 8.1 and
8.2 compare their performances in di�erent situations.

0 1 2 3 4 5 6 7 8 9
109

110

111

112

113

114

115

116

117

PPI Attacks Comparison

Time Complexity

Standard

Variant I

Variant II

Available Targets = 2^x

T
im

e
 C

o
m

p
le

xi
ty

 =
 2

^y

Figure 8.1: MTPP Time Complexity

8.2 Preimages 85

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

PPI Attacks Comparison

Memory Complexity

Standard

Variant I

Variant II

Available Targets = 2^x

M
e

m
o

ry
 C

o
m

p
le

xi
ty

 =
 2

^y

Figure 8.2: MTPP Memory Complexity

8.2 Preimages

All pseudo-preimage attacks compared in the previous section can be converted
to preimage attacks using the standard MitM conversion oulined in Algorithm
4.1, whereas the three presented in this thesis can exploit MTTP techniques and
Algorithm 4.4 as well. Table 8.2, compares the performances of the di�erent
attacks and di�erent conversion methods.

Attack Time Complexity Memory Complexity

Section 5.5 [MitM] 2122.6 221.3

Section 6.1[MitM] 2122.9 216.6

Section 6.2 [MitM] 2122.3 219.8

[SA09] [MitM] 2123.4 248.4

Section 5.5 [MTPP] 2121.4 221.3

Section 6.1[MTPP] 2121.5 220.0

Section 6.2[MTPP] 2121.3 220.7

Table 8.2: Comparison of Preimage Attacks

86 Attacks Comparison and Conclusions

For what concerns MitM conversion, all attacks maintain the same characteris-
tics of the original pseudo-preimage attacks; when using MTPP, however, the
complexities are really similar.

The reason for this is the way a layered hash tree is built: 2k pseudo-preimages
are computed when 2k targets are available for k = 0, 1, . . . ,K − 1, hence the
average number of available targets while computing a pseudo-preimage is

1
2K

K−1∑
k=0

2k2k =
1

2K
4K − 1

3
≈ 2K−1.6

This implies that most of the attacks are performed when many targets are
already available, which is precisely the condition when all variants have similar
performances.

8.3 One-Block Preimages

This is the last attack presented in this thesis and it will be compared to the
optimized brute force in [AS08].

Attack Time Complexity Memory Complexity

Section 7.4 2126.4 210.3

[AS08] 2127.0 negligible

Table 8.3: Comparison of One-Block Preimage Attacks

8.4 Conclusions

The only known preimage attack on full MD5 was [SA09], whose practical appli-
cations are limited by the following issues:

8.4 Conclusions 87

• Time complexity too high.

• Memory complexity too high to allow for an e�cient implementation of
the attack.

• The length of the preimage cannot be chosen.

The attack presented in Section 5.5 and its variants solve the problem of the
memory complexity and slightly improve the time complexity. The reduced
memory requirement is due to the use of bicliques, whereas their extension to
bigraphs and application in the context of MTPP techniques allowed for modest
improvements on the time complexity. However, two issues still remain:

Time Complexity If the attack performance is assumed to be bounded by the
birthday paradox, |M1| = |M2| = 217 implies that the time complexity
cannot be lower than ≈ 2111, still too high be of practical use. On the other
hand, further increasing the size of M1 and M2 would lead to problems
on the matching which cannot be addressed by the techniques presented
in this thesis; �nding di�erential trails would be harder as well.

Preimage Length Message word m14 cannot be freely chosen, so the attacker
cannot decide the length of the preimage. On the other end, other con�g-
urations of the chunks will have worse performances due to the number of
steps to be covered by either the matching procedure or the biclique.

For what concerns one-block preimages, the only known attack on full MD5 was
the optimized brutefoce in [AS08]. The attack presented in this thesis is still an
optimization over bruteforce, the time complexity is slightly lower whereas the
memory complexity is higher but still feasible for an e�cient implementation.
However, none of the attacks can be of practical use due to their high time
complexity.

88 Attacks Comparison and Conclusions

Appendix A

Biclique

A.1 Biclique construction

Here a detailed description of the biclique covering steps 14-17 is given. Each
di�erential trail is �rst analysed independently, then it is either shown that
they do not interfere with each other or computed exactly for what couples of
di�erences they do interfere.

A.1.1 Notation

• F stands for forward trail, related to bits [31− 15] of m14.

• B1 stands for backward trail one, related to bits [31− 24] of m6.

• B2 stands for backward trail two, related to bits [8− 0] of m6.

• BT stands for backward trails, related to bits [31− 24] and [8− 0] of m6.

• ∆T represents the di�erence introduced in the trail T , which could be
F ,B,B1 or B2.

• ∆n
T represents the di�erence at state Qn when a di�erence ∆T is intro-

duced.

90 Biclique

• ∆Φn
T represents the di�erence at the output of Φn when a di�erence ∆T

is introduced.

• The value of state n when no di�erences are applied is indicated with Qn,
when those di�erences are considered, the notations Qn + ∆n

T or QTn are
used instead.

A.1.2 States initialization

States Q11, Q12, Q13, Q14 and message words m14,m15,m1,m6 can be freely
chosen provided the following equations be veri�ed:

Q13[17− 0] = 00000000111111111 (A.1)

Q14[17− 0] = 00000000111111111 (A.2)

Q12 = −(Φ15(Q14, Q14, Q13) +m15 + k15) (A.3)

Q11 = −(Φ14(Q14, Q13, Q12) +m14 + k14) (A.4)

Equations A.4 together with A.3 gives:

Q12 = −(Φ15(Q14, Q14, Q13) +m15 + k15) =
= −(Φ15(Q15, Q14, Q13) +m15 + k15) (A.5)

Hence
Q14 = Q15 = Q16 (A.6)

A.1.3 Forward trail

A.1.3.1 Step 14

QF15 = Q14 +
[
Q11 + Φ14(Q14, Q13, Q12) +m14 + 215∆F + k14

]
<<<17

=

= Q14 +
[
215∆F

]
>>>15

=

A.1 Biclique construction 91

= Q14 + ∆F

Where the �rst equation is the MD5 step, the second equation is true thanks to
(A.4) and the last one is true since ∆F ∈ {0, 1, 2, · · · , 217 − 1} and hence does
not generate any carry previous to the shift. So we have:

∆15
F = ∆F (A.7)

Furthermore, thanks to (A.2) only Q15[17, 0] is a�ected by the di�erence.

A.1.3.2 Step 15

QF16 = Q15 + ∆15
F +

[
Q12 + Φ15(QF15, Q14, Q13) +m15 + k15

]
<<<22

=

= Q15 + ∆15
F + [Q12 + Φ15(Q15, Q14, Q13) +m15 + k15]<<<22 =

= Q15 + ∆15
F + [0]<<<22

Where the �rst equation is the MD5 step, the second equation is true thanks to
(A.1),(A.2) and the absorption properties of Φ15. The last one is true thanks
to (A.3) and (A.6). So we have:

∆16
F = ∆15

F (A.8)

Furthermore QF16 = QF15.

A.1.3.3 Step 16

QF17 = Q16 +∆16
F +

[
Q13 + Φ16(Q16 + ∆16

F , Q15 + ∆15
F , Q14) +m1 + k16

]
<<<5

=

= Q16 + ∆16
F +

[
Q13 + ∆16

F + Φ16(Q16, Q15, Q14) +m1 + k16

]
<<<5

Where the �rst equation is the MD5 step and the second equation is true thanks
to the the fact that QF15 = QF16 and the absorption properties of Φ16. Now,
depending on whether or not ∆16

F generates a carry previous to the shift and
how far it propagates, we have:

∆17
F =


∆16
F + 25∆16

F carry no further than bit 26

∆16
F + 25∆16

F + 1 carry between bits 27-31

∆16
F + 25∆16

F + 1− 25 carry past bit 31

(A.9)

92 Biclique

A.1.3.4 Step 17

QF18 = QF17 +
[
Q14 + Φ17(QF17, Q

F
16, Q

F
15) +m6 + k17

]
<<<9

=

= Q17 + ∆17
F +

[
Q14 + Φ17(Q17, Q16, Q15) + ∆Φ17

F +m6 + k17

]
<<<9

Where the �rst equation is the MD5 step and the second equation is true by
de�nition. However, in order to compute ∆Φ17

F it is necessary to know the value
of the states QF17, Q

F
16 and QF15. Like in the previous step, knowing whether a

carry will be generated and how far it will propagate, it is possible to write a
formula to predict the di�erence on Q18

A.1.4 Backward Trail 1

A.1.4.1 Step 17

QB1
14 = [Q18 −Q17]>>>9 − Φ17(Q17, Q16, Q15)− (m6 + 224∆B1)− k17

Where the �rst equation is the MD5 inverse step and ∆B1 ∈ {0, 1, 2, · · · , 28− 1}.
So clearly we have:

∆14
B1 = −224∆B1 (A.10)

Furthermore only Q14[31, 24] is a�ected by the di�erence.

A.1.4.2 Step 16

QB1
13 = [Q17 −Q16]>>>5 − Φ16(Q16, Q15, Q

B1
14)−m1 − k16 =

= [Q17 −Q16]>>>5 − Φ16(Q16, Q15, Q14)−m1 − k16

Where the �rst equation is the MD5 inverse step and the second one is true
thanks to the fact that Q15 = Q16 and the absorption properties of Φ16. Hence:

∆13
B1 = 0 (A.11)

A.1.4.3 Step 15

QB1
12 = [Q16 −Q15]>>>22 − Φ15(Q15, Q

B1
14 , Q13)−m15 − k15 =

= [Q16 −Q15]>>>22 − (Φ15(Q15, Q14, Q13) + ∆Φ15
B1)−m15 − k15

A.1 Biclique construction 93

Where the �rst equation is the MD5 inverse step and the second equation is true
by de�nition. However, in order to compute ∆Φ15

B1 it is necessary to know the
value of Q15[31, 24], QB1

14 [31, 24] and Q13[31, 24]. So we have:

∆12
B1 = −∆Φ15

B1 (A.12)

Furthermore only Q12[31, 24] is a�ected by the di�erence.

A.1.4.4 Step 14

QB1
11 =

[
Q15 −QB1

14

]
>>>17

− Φ14(QB1
14 , Q13, Q

B1
12)−m14 − k14 =

= [Q15 − (Q14 + ∆14
B1)]>>>17 − Φ14(QB1

14 , Q13, Q
B1
12)−m14 − k14 =

= [−∆14
B1]>>>17 − Φ14(QB1

14 , Q13, Q
B1
12)−m14 − k14 =

= [224∆B1]>>>17 − Φ14(QB1
14 , Q13, Q

B1
12)−m14 − k14 =

= 27∆B1 − Φ14(QB1
14 , Q13, Q

B1
12)−m14 − k14 =

= 27∆B1 − (Φ14(Q14, Q13, Q12) + ∆Φ14
B1)−m14 − k14 =

=
[
Q15 − (Q14 + ∆14

B1)
]
>>>17

− (Φ14(Q14, Q13, Q12) + ∆Φ14
B1)−m14 − k14 =

Where the �rst equation is the MD5 inverse step, the second equation is true by
de�nition, the third one is true because Q15 = Q14, the fourth one is true thanks
to (A.10), the �fth one is true since no carry is generated previous to the shift
and the sixth one is true by de�nition. However, in order to compute ∆Φ14

B1 it is
necessary to know the value of QB1

14 [31, 24], Q13[31, 24] and QB1
12 [31, 24]. Hence:

∆11
B1 = 27∆B1 −∆Φ14

B1 (A.13)

A.1.5 Backward trail 2

A.1.5.1 Step 17

QB2
14 = [Q18 −Q17]>>>9 − Φ17(Q17, Q16, Q15)− (m6 + ∆B2)− k17

Where the �rst equation is the MD5 inverse step and ∆B2 ∈ {0, 1, 2, · · · , 29− 1}.
So clearly we have:

∆14
B2 = −∆B2 (A.14)

Furthermore, thanks to (A.2) the di�erence will a�ect only Q14[8, 0].

94 Biclique

A.1.5.2 Step 16

QB2
13 = [Q17 −Q16]>>>5 − Φ16(Q16, Q15, Q

B2
14)−m1 − k16 =

= [Q17 −Q16]>>>5 − Φ16(Q16, Q15, Q14)−m1 − k16

Where the �rst equation is the MD5 inverse step and the second one is true
thanks to the fact that Q15 = Q16 and the absorption properties of Φ16. So:

∆13
B2 = 0 (A.15)

A.1.5.3 Step 15

QB2
12 = [Q16 −Q15]>>>22 − Φ15(Q15, Q

B2
14 , Q13)−m15 − k15 =

= [Q16 −Q15]>>>22 − Φ15(Q15, Q14, Q13)−m15 − k15

Where the �rst equation is the MD5 inverse step and the second one is true
assuming that the di�erence is absorbed. So we have:

∆12
B2 = 0 (A.16)

A.1.5.4 Step 14

QB2
11 =

[
Q15 −QB2

14

]
<<<15

− Φ14(QB2
14 , Q13, Q12)−m14 − k14 =

=
[
Q15 − (Q14 + ∆B2

14)
]
<<<15

− Φ14(QB2
14 , Q13, Q12)−m14 − k14 =

=
[
−∆B2

14

]
<<<15

− Φ14(QB2
14 , Q13, Q12)−m14 − k14 =

= [∆B2]<<<15 − Φ14(QB2
14 , Q13, Q12)−m14 − k14 =

= 215∆B2 − Φ14(QB2
14 , Q13, Q12)−m14 − k15 =

= 215∆B2 − (Φ14(Q14, Q13, Q12) + ∆Φ14
B2)−m14 − k14

Where the �rst equation is the MD5 inverse step, the second equation is true
by de�nition, the third one is true because Q15 = Q14, the fourth one is true
thanks to (A.14), the �fth one is true since no carry past position 16 is generated
previous to the shift and the sixth one is true by de�nition. However, in order
to compute ∆Φ14

B2 it is necessary to know the value of QB2
14 [8, 0], Q13[8, 0] and

Q12[8, 0]. Hence:
∆11
B2 = 215∆B2 −∆Φ14

B2 (A.17)

A.1 Biclique construction 95

A.1.6 Trails interaction

Here each step is analysed when both trails are active.

A.1.6.1 Step 14

Backward trails

QB11 =
[
QF15 −QB14

]
<<<15

− Φ14(QB14, Q
B
13, Q

B
12)−m14 − k14 =

=
[
Q15 + ∆F

15 − (Q14 + ∆B
14)
]
<<<15

− Φ14(QB14, Q
B
13, Q

B
12)−m14 − k14 =

=
[
Q15 + ∆F

15 − (Q14 + ∆B
14)
]
<<<15

− Φ14(QB14, Q13, Q
B1
12)−m14 − k14 =

=
[
∆F

15 −∆B
14

]
<<<15

− Φ14(QB14, Q13, Q
B1
12)−m14 − k14 =

=
[
∆F + 224∆B1 + ∆B2

]
<<<15

− Φ14(QB14, Q13, Q
B1
12)−m14 − k14

Where the �rst equation is the MD5 inverse step, the second equation is true by
de�nition, the third one is true since Q13 is not a�ected by any trail and Q12 is
a�ected only by B1, the fourth one is true because Q15 = Q14, the �fth one is
true thanks to (A.14), (A.10) and (A.7).

Now, the following facts:

• QB14[8, 0], Q13[8, 0] and QB1
12 [8, 0] are independent of B1 and F

• QB14[31, 24], Q13[31, 24] and QB1
12 [31, 24] are independent of B2 and F

allow us to compute ∆Φ14
B1 and ∆Φ14

B2 independently of the other trails. So we
can write:

QB11 =
[
∆F + 224∆B1 + ∆B2

]
<<<15

−(Φ14(Q14, Q13, Q12)+∆Φ14
B1 +∆Φ14

B2)−m14−k15 =

= [∆F + ∆B2]<<<15 +27∆B1− (Φ14(Q14, Q13, Q12)+∆Φ14
B1 +∆Φ14

B2)−m14−k15

where the last equation is true since ∆F + ∆B2 < 218 and 224∆B2 < 232 − 224,
so there are no carries past bit 31. Now, if we assume that ∆F + ∆B2 < 217

there cannot be a carry past bit 16, so we can write:

QB11 = 215∆F +215∆B2+27∆B1−(Φ14(Q14, Q13, Q12)+∆Φ14
B1 +∆Φ14

B2)−m14−k15

To sum up, ∆B1
11 is always correct, whereas for ∆B2

11 to be correct we must have
∆F + ∆B2 < 217.

96 Biclique

Forward trail

QF15 = QB14 +
[
QB11 + Φ(QB14, Q

B
13, Q

B
12) + (m14 + 215∆F) + k14

]
>>>15

Exactly like before, we can write Φ(QB14, Q
B
13, Q

B
12) as Φ(Q14, Q13, Q12)+∆Φ14

B1 +
∆Φ14
B2 obtaining:

QF15 = QB14+
[
QB11 + Φ(Q14, Q13, Q12) + ∆Φ14

B1 + ∆Φ14
B2 + (m14 + 215∆F) + k14

]
>>>15

=

= QB14+
[
Q11 + ∆B

11 + Φ(Q14, Q13, Q12) + ∆Φ14
B1 + ∆Φ14

B2 + (m14 + 215∆F) + k14

]
>>>15

=

= QB14 +
[
∆B

11 + ∆Φ14
B1 + ∆Φ14

B2 + 215∆F

]
>>>15

=

= QB14 +
[
27∆B1 + 215∆B2 + 215∆F

]
>>>15

=

Where the �rst equation is the MD5 step, the second equation is true by de�nition,
the third one is true thanks to (A.4) and the fourth one is obtained using
equations (A.10) and (A.14). Now, for what concerns 27∆B1 +215∆B2 +215∆F ,
the �rst term a�ects only bits 14-7 whereas the last two a�ects bits 31-15, thus
they do not interact with carries. Assuming now that (215∆B2 + 215∆F) < 232

we can write:
QF15 = QB14 +

[
27∆B1

]
>>>15

+ ∆B2 + ∆F

To sum up, ∆F
15 is correct whenever ∆B2 + ∆F < 217

A.1.6.2 Step 15

Backward Trail 1

QB1
12 =

[
Q16 −QF15

]
>>>22

− Φ15(QF15, Q
B
14, Q13)−m15 − k15 =

=
[
Q16 −QF15

]
>>>22

− (Φ15(QF15, Q
B2
14 , Q13) + ∆B1

Φ15
−m15)− k15

Where the �rst equation is the MD5 inverse step and the second one is true
since QB14[31, 24] is a�ected exclusively by BT1 and QF15[31, 24] and Q13[31, 24]
are constant. Hence ∆B1

Φ15
can be computed independently of the other trails.

Backward Trail 2 & Forward Trail

Φ15(QF15, Q
B2
14 , Q13)[17, 0] = Φ15(Q15, Q14, Q13)[17, 0]

A.1 Biclique construction 97

If the equation above is veri�ed, then trails do not interact and the predicted
di�erences are correct. Since Q14[17 − 9] and Q13[17 − 9] are not a�ected by
any trail and are equal to each other, we always have Φ(QF15, Q

B2
14 , Q13)[17, 9] =

Φ(Q15, Q14, Q13)[17, 9]. For the remaining bits, as explained in Section 5.3.2,
given 29 possible con�guration for QF15[8, 0] and 29 possible con�gurations for
QB2

14 [8, 0] we have absorption for

9∑
i=0

(
n

i

)
2i = 39

couples of con�gurations. This number, however, does not consider that some
couples might fail because of step 14. The question is then: among all the
couples of di�erences that would be absorbed, how many do not verify the
conditions necessary at step 14?

Observation 1 For a couple (∆F ,∆B) to fail at step 14 we must have ∆B2+
∆F ≥ 217 and since ∆B2 < 29, it must be ∆F [16, 9] = 11111111.

Observation 2 When a couple (∆F ,∆B) fail at step 14, an unwanted carry
is generated at position 17 of QF15, on the other hand, this implies that QF15[8, 0]
is always correctly predicted.

Observation 3 QF15[8, 0] = (∆F − 1) mod 29.

Observation 4 QB2
14 [8, 0] = ∆B2[8, 0].

Now let us assume that the �rst one in the binary representation of ∆F is at
position 3:

∆F [8, 0] = b8b7b6b5b41000

and let
∆B2[8, 0] = c8c7c6c5c4c3c2c1c0

Because of Observation 3 we have QF15[8, 0] = b8b7b6b5b40111 and Observation
4 tells us that for the di�erence to be absorbed it must be:

bi = 1⇒ ci = 0

c0 = c1 = c2 = 0

on the other hand, for the carry to generate and propagate and it must be

c3 = 1

bi = 0⇒ ci = 1

98 Biclique

A generalization of this example shows that for every ∆F > (217 − 29) there
exist only one ∆B2 capable of absorbing the di�erence at step 15 and generating
a carry at step 14, this implies that the answer to the previous question is 29−1,
and the total number of valid couples of di�erences is:

(2839 − (29 − 1))28

The last thing to check is that QF16 = QF15:

QF16 = QF15 +
[
QB1

12 + Φ(QF15, Q
B
14, Q13) +m15 + k15

]
<<<22

=

= QF15 +
[
QB1

12 + Φ(Q15, Q
B1
14 , Q13) +m15 + k15

]
<<<22

=

= QF15 +
[
Q12 + ∆12

B1 + Φ(Q15, Q14, Q13) + ∆Φ15
B1 +m15 + k15

]
<<<22

=

= QF15 + [0]<<<22

Where the �rst equation is the MD5 step, the second equation is true assuming
that absorption is successful, the third step is true by de�nition and the fourth
step is true thanks to equations(A.3) and (A.16).

A.1.6.3 Step 16

Backward & Forward Trails

QB13 =
[
QF17 −QF16

]
>>>5

− Φ16(QF16, Q
F
15, Q

B
14)−m1 − k16

QF17 = QF16 +
[
Q13 + Φ16(QF16, Q

F
15, Q

B
14) +m1 + k16

]
<<<5

Since QF15 = QF16 di�erences are absorbed by Φ16:

QB13 =
[
QF17 −QF16

]
>>>5

− Φ16(QF16, Q
F
15, Q14)−m1 − k16

QF17 = QF16 +
[
Q13 + Φ16(QF16, Q

F
15, Q14) +m1 + k16

]
<<<5

hence there is no interaction between trails.

A.1.6.4 Step 17

Backward trails The di�erence is directly introduced by m6.

A.1 Biclique construction 99

Forward trail

Q18 = QF17 +
[
QB14 + Φ(QF17, Q

F
16, Q

F
15) + (m6 + 224∆B1 + ∆B2) + k17

]
<<<9

=

= QF17 +
[
Q14 + Φ(QF17, Q

F
16, Q

F
15) +m6 + k17

]
<<<9

Where the �rst equation is the MD5 step and the second one is true thanks to
equations A.10 and A.14. So the way di�erences propagate is independent of
the backward trails.

100 Biclique

Appendix B

Biclique with Local Collision

B.1 Biclique construction

Here a detailed description of the biclique covering steps 7-12 is given. Each
di�erential trail is �rst analysed independently, then it is shown that they do
not interfere with each other.

B.1.1 Notation

• F stands for forward trail, related to free bits 19− 13 of m7.

• B stands for backward trails, related to free bits 15− 9 of m12.

• ∆T represents the di�erence introduced in the trail T , which could be
F ,B,B1 or B2.

• ∆mi
T represents the di�erence in message word mi when a di�erence ∆T

is introduced.

• ∆n
T represents the di�erence at state Qn when a di�erence ∆T is intro-

duced.

• ∆Φn
T represents the di�erence at the output of Φn when a di�erence ∆T

is introduced.

102 Biclique with Local Collision

• The value of state n when no di�erences are applied is indicated with Qn,
when those di�erences are considered, the notations Qn + ∆n

T or QTn are
used instead.

B.1.2 States initialization

States Q11, Q12, Q13, Q14 and message words m14,m15,m1,m6 can be freely
chosen provided the following equations be veri�ed:

Q6[9− 3] = 1111111 (B.1)

Q7[10− 3] = 11111111 (B.2)

Q8[9− 3] = 0000000 (B.3)

Q9[9− 3] = 0000000 (B.4)

Q9[19] = 1 (B.5)

Q9[10] = Q8[10] (B.6)

Q8[12− 9] = Q7[12− 9] (B.7)

Q10[10] = 0 (B.8)

Q10[19− 12] = 00000000 (B.9)

Q11[7] = 0 (B.10)

B.1 Biclique construction 103

Q11[19− 12] = 11111111 (B.11)

(Q4 + Φ7(Q7, Q6, Q5) +m7 + k7)[31] = 0 (B.12)

(Q7 + Φ10(Q10, Q9, Q8) +m10 + k10)[31] = 0 (B.13)

(Q9 −Q8)[31] = 0 (B.14)

(Q10 −Q9)[31] = 0 (B.15)

B.1.3 Forward trail

B.1.3.1 Step 7

QF8 = Q7 +
[
Q4 + Φ7(Q7, Q6, Q5) +m7 + 213∆F + k7

]
<<<22

=

= Q7 + [Q4 + Φ7(Q7, Q6, Q5) +m7 + k7]>>>10 + 23∆F

Where the �rst equation is the MD5 step and ∆F ∈ {0, 1, 2, · · · , 27 − 1}, the
second equation is true thanks to (B.12), so any carry generated by 213∆F

cannot propagate past bit position 31 previous to the shift. Hence:

∆8
F = 23∆F (B.16)

Furthermore, thanks to (B.3) only Q8[9− 3] is a�ected by the di�erence.

B.1.3.2 Step 8

QF9 = QF8 +
[
Q5 + Φ8(QF8 , Q7, Q6) +m8 + k8

]
<<<7

=

= QF8 + [Q5 + Φ8(Q8, Q7, Q6) +m8 + k8]<<<7 =

= Q8 + ∆8
F + [Q5 + Φ8(Q8, Q7, Q6) +m8 + k8]<<<7

104 Biclique with Local Collision

Where the �rst equation is the MD5 step, the second equation is true thanks
to (B.1),(B.2) and the absorption properties of Φ8. The last one is true by
de�nition. So we have:

∆9
F = ∆8

F = 23∆F (B.17)

Furthermore, thanks to (B.4) and (B.6) onlyQ9[9−3] is a�ected by the di�erence
and QF8 [10− 3] = QF9 [10− 3].

B.1.3.3 Step 9

QF10 = QF9 +
[
Q6 + Φ9(QF9 , Q

F
8 , Q7) +m9 + k9

]
<<<12

=

= QF9 + [Q6 + Φ9(Q9, Q8, Q7) +m9 + k9]<<<12 =

= Q9 + ∆9
F + [Q6 + Φ9(Q9, Q8, Q7) +m9 + k9]<<<12

Where the �rst equation is the MD5 step, the second equation is true thanks to
the the fact that QF8 [10− 3] = QF9 [10− 3], (B.2) and the absorption properties
of Φ9. The third equation is true by deifnition, hence

∆10
F = ∆9

F = 23∆F (B.18)

Furthermore, thanks to (B.8) only Q10[10, 3] is a�ected by the di�erence.

B.1.3.4 Step 10

QF11 = QF10 +
[
Q7 + Φ10(QF10, Q

F
9 , Q

F
8) +m10 + k10

]
<<<17

=

= Q10 + ∆10
F +

[
Q7 + Φ10(QF10, Q

F
9 , Q

F
8) +m10 + k10

]
<<<17

=

= Q10 + ∆10
F +

[
Q7 + Φ10(Q10, Q9, Q8) + 23∆F +m10 + k10

]
<<<17

=

= Q10 + ∆10
F + 220∆F + [Q7 + Φ10(Q10, Q9, Q8) +m10 + k10]<<<17 =

Where the �rst equation is the MD5 step, the second one is true by de�nition,
the third one is true thanks to the fact that QF9 [10−3] = QF8 [10−3], (B.17) and
the absorption properties of Φ10 and the fourth one is true thanks to (B.13), so
any carry generated by 23∆F cannot propagate past position 31 previous to the
shift. Hence:

∆11
F = 23∆F + 220∆F (B.19)

B.1 Biclique construction 105

Furthermore, thanks to (B.10) Q11[19, 11] is not a�ected by the di�erence.

B.1.3.5 Step 11

QF12 = QF11 +
[
QF8 + Φ11(QF11, Q

F
10, Q

F
9) +m11 + k11

]
<<<22

=

= Q11 + ∆11
F +

[
QF8 + Φ11(QF11, Q

F
10, Q

F
9) +m11 + k11

]
<<<22

=

= Q11 + ∆11
F +

[
QF8 + Φ11(Q11, Q10, Q9) + ∆Φ11

F +m11 + k11

]
<<<22

=

= Q11 + ∆11
F +

[
Q8 + 23∆F + Φ11(Q11, Q10, Q9) + ∆Φ11

F +m11 + k11

]
<<<22

Where the �rst equation is the MD5 step and the second three are true by def-
inition. Knowing whether a carry will be generated by 23∆F + ∆Φ11

F and how
far it will propagate before the shift, it is possible to write a formula to predict
the di�erence on Q12

B.1.3.6 Step 12

QF13 = QF12 +
[
QF9 + Φ12(QF12, Q

F
11, Q

F
10) +m12 + k12

]
<<<7

=

= Q12 + ∆12
F +

[
QF9 + Φ12(QF12, Q

F
11, Q

F
10) +m12 + k12

]
<<<7

=

= Q12 + ∆12
F +

[
QF9 + Φ12(Q12, Q11, Q10) + ∆Φ12

F +m12 + k12

]
<<<7

=

= Q12 + ∆12
F +

[
Q9 + 23∆F + Φ12(Q11, Q10, Q9) + ∆Φ12

F +m12 + k12

]
<<<7

Where the �rst equation is the MD5 step and the second three are true by def-
inition. Knowing whether a carry will be generated by 23∆F + ∆Φ12

F and how
far it will propagate before the shift, it is possible to write a formula to predict
the di�erence on Q13

106 Biclique with Local Collision

B.1.4 Backward Trail

B.1.4.1 Step 12

QB9 = [Q13 −Q12]>>>7 − Φ12(Q12, Q11, Q10)− (m12 + 212∆B)− k12

Where the �rst equation is the MD5 inverse step and ∆B ∈ {0, 1, 2, · · · , 27 − 1}.
Hence:

∆9
B = −212∆B (B.20)

Furthermore, thanks to (B.5) only Q9[19, 12] is a�ected by the di�erence.

B.1.4.2 Step 11

QB8 = [Q12 −Q11]>>>22 − Φ11(Q11, Q10, Q
B
9)−m11 − k11 =

= [Q12 −Q11]>>>22 − Φ11(Q11, Q10, Q9)−m11 − k11

Where the �rst equation is the MD5 inverse step and the second one is true
thanks to (B.11) and the absorption properties of Φ11. Hence:

∆8
B = 0 (B.21)

B.1.4.3 Step 10

QB7 = [Q11 −Q10]>>>17 − Φ10(Q10, Q
B
9 , Q8)−m10 − k10 =

= [Q11 −Q10]>>>17 − Φ10(Q10, Q9, Q8)−m10 − k10

Where the �rst equation is the MD5 inverse step and the second one is true
thanks to (B.9) and the absorption properties of Φ10. Hence:

∆7
B = 0 (B.22)

B.1.4.4 Step 9

QB6 =
[
Q10 −QB9

]
>>>12

− Φ9(QB9 , Q8, Q7)− (m9 + ∆m9
B)− k9 =

=
[
Q10 −QB9

]
>>>12

− Φ9(Q9, Q8, Q7)− (m9 + ∆m9
B)− k9 =

=
[
Q10 − (Q9 + ∆9

B)
]
>>>12

− Φ9(Q9, Q8, Q7)− (m9 + ∆m9
B)− k9 =

B.1 Biclique construction 107

=
[
Q10 −Q9 + 212∆B

]
>>>12

− Φ9(Q9, Q8, Q7)− (m9 + ∆m9
B)− k9 =

= [Q10 −Q9]>>>12 + ∆B − Φ9(Q9, Q8, Q7)− (m9 + ∆m9
B)− k9

Where the �rst equation is the MD5 step, the second equation is true thanks to
(B.7) and the absorption properties of Φ9, third and fourth ones are true by
de�nition and the �fth one is true thanks to (B.15), so any carry generated by
212∆B cannot propagate past bit 31 before the shift. Hence, by picking

∆m9
B = ∆B (B.23)

no di�erence will a�ect Q6

∆6
B = 0 (B.24)

B.1.4.5 Step 8

QB5 =
[
QB9 −Q8

]
>>>7

− Φ8(Q8, Q7, Q6)− (m8 + ∆m8
B)− k8 =

=
[
Q9 + ∆9

B −Q8

]
>>>7

− Φ8(Q8, Q7, Q6)− (m8 + ∆m8
B)− k8 =

=
[
Q9 − 212∆B −Q8

]
>>>7

− Φ8(Q8, Q7, Q6)− (m8 + ∆m8
B)− k8 =

= [Q9 −Q8]>>>7 − 25∆B − Φ8(Q8, Q7, Q6)− (m8 + ∆m8
B)− k8 =

Where the �rst equation is the MD5 step, second and third ones are true by
de�nition and the fourth one is true thanks to (B.14), so any carry generated
by 212∆B cannot propagate past bit 31 before the shift. Hence, by picking

∆m8
B = −25∆B (B.25)

no di�erence will a�ect Q5

∆5
B = 0 (B.26)

B.1.4.6 Step 7

Q4 = [Q8 −Q7]>>>22 − Φ7(Q7, Q6, Q5)−m7 − k7

∆4
B = 0 (B.27)

108 Biclique with Local Collision

B.1.5 Trails interaction

Here each step is analysed when both trails are active.

B.1.5.1 Step 7

QF8 = Q7 +
[
Q4 + Φ7(Q7, Q6, Q5) +m7 + 213∆F + k7

]
<<<22

Only the forward trail in�uences this step.

B.1.5.2 Step 8

Forward Trail

QF,B9 = QF8 +
[
Q5 + Φ8(QF8 , Q7, Q6) + (m8 + ∆m8

B) + k8

]
<<<7

=

= QF8 + [Q5 + Φ8(Q8, Q7, Q6) + (m8 + ∆m8
B) + k8]<<<7 =

= Q8 + ∆8
F + [Q5 + Φ8(Q8, Q7, Q6) + (m8 + ∆m8

B) + k8]<<<7

Where the �rst equation is the MD5 step, the second equation is true thanks
to (B.1),(B.2) and the absorption properties of Φ8. The last one is true by
de�nition. Hence the forward trail is not a�ected by the backward trail.

Backward Trail

QB5 =
[
QF,B9 −QF8

]
>>>7

− Φ8(QF8 , Q7, Q6)− (m8 + ∆m8
B)− k8 =

=
[
QF,B9 −QF8

]
>>>7

− Φ8(Q8, Q7, Q6)− (m8 + ∆m8
B)− k8 =

=
[
(Q9 + ∆9

F + ∆9
B)− (Q8 + ∆8

F)
]
>>>7

−Φ8(Q8, Q7, Q6)− (m8 +∆m8
B)−k8 =

=
[
Q9 + ∆9

B −Q8

]
>>>7

− Φ8(Q8, Q7, Q6)− (m8 + ∆m8
B)− k8

Where the �rst equation is the MD5 step, the second equation is true thanks
to (B.1),(B.2) and the absorption properties of Φ8, the third one is true by
de�nition, and the last one is true thanks to (B.17). Hence the backward trail
is not a�ected by the forward trail.

B.1 Biclique construction 109

B.1.5.3 Step 9

Forward Trail

QF10 = QF,B9 +
[
Q6 + Φ9(QF,B9 , QF8 , Q7) + (m9 + ∆m9

B) + k9

]
<<<12

=

= QF,B9 +
[
Q6 + Φ9(QB9 , Q8, Q7) + (m9 + ∆m9

B)
]
<<<12

=

= QB9 + ∆9
F +

[
Q6 + Φ9(QB9 , Q8, Q7) + (m9 + ∆m9

B)
]
<<<12

Where the �rst equation is the MD5 step and the second equation is true thanks
to the following facts:

• Forward and backward trails a�ects di�erent parts of Q9.

• QF,B9 [10− 3] = QF9 [9− 3] = QF,B8 [9− 3]

• Absorption properties of Φ9 and (B.2).

The third step is true by de�nition.

Backward Trail

QB6 =
[
QF10 −Q

B,F
9

]
>>>12

− Φ9(QB,F9 , QF8 , Q7)− (m9 + ∆m9
B)− k9 =

=
[
QF10 −Q

B,F
9

]
>>>12

− Φ9(QB9 , Q8, Q7)− (m9 + ∆m9
B)− k9 =

=
[
QF10 −Q

B,F
9

]
>>>12

− Φ9(Q9, Q8, Q7)− (m9 + ∆m9
B)− k9 =

=
[
Q10 −QB9

]
>>>12

− Φ9(Q9, Q8, Q7)− (m9 + ∆m9
B)− k9

Where the �rst equation is the MD5 step, the second equation is true thanks
to the same reasoning made for the forward trail, the third equation is true
thanks to B.7 and the absorption properties of Φ9 and the last one is true since
∆F

10 = ∆F
9 .

110 Biclique with Local Collision

B.1.5.4 Step 10

QF11 = QF10 +
[
Q7 + Φ10(QF10, Q

F,B
9 , QF8) +m10 + k10

]
<<<17

=

= QF10 +
[
Q7 + Φ10(QF10, Q

F
9 , Q

F
8) +m10 + k10

]
<<<17

Where the �rst equation is the MD5 inverse step and the second one is true
thanks to (B.9) and the cross absorption properties of of Φ10. Hence there is no
interaction.

B.1.5.5 Step 11

QF12 = QF11 +
[
Q8 + Φ11(QF11, Q

F
10, Q

F,B
9) +m11 + k11

]
<<<22

=

= QF11 +
[
Q8 + Φ11(QF11, Q

F
10, Q

F
9) +m11 + k11

]
<<<22

Where the �rst equation is the MD5 inverse step and the second one is true
thanks to (B.11) and the cross absorption properties of of Φ11. Hence there is
no interaction.

B.1.5.6 Step 12

QF13 = QF12 +
[
QF,B9 + Φ12(QF12, Q

F
11, Q

F
10) +m12 + 212∆B + k12

]
<<<22

=

= QF12 +
[
QF9 + ∆9

B + Φ12(QF12, Q
F
11, Q

F
10) +m12 + 212∆B + k12

]
<<<22

=

= QF12 +
[
QF9 + Φ12(QF12, Q

F
11, Q

F
10) +m12 + k12

]
<<<7

Where the �rst equation is the MD5 step, the second one is true by de�nition
and the third one thanks to (B.20). Hence there is no trail interaction.

Appendix C

MD5 Parameters

IV−3 IV0 IV−1 IV−3

IV: 0x67452301 0xefcdab89 0x98badcfe 0x10325476

Table C.1: MD5 Initialization Vector

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Round 1

π(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Round 2

π(i) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Round 3

π(i) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Round 4

π(i) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Table C.2: MD5 Message Expansion

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Round 1

si 7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Round 2

si 5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Round 3

si 4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Round 4

si 6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21

Table C.3: MD5 Rotation Indices

112 MD5 Parameters

Round 1 Φi(X,Y, Z) = IF(X,Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
Round 2 Φi(X,Y, Z) = IF3(X,Y, Z) = (Z ∧X) ∨ (¬Z ∧ Y)
Round 3 Φi(X,Y, Z) = XOR(X,Y, Z) = X ⊕ Y ⊕ Z
Round 4 Φi(X,Y, Z) = ONX(X,Y, Z) = Y ⊕ (X ∨ ¬Z)

Table C.4: MD5 Boolean Functions

k0 = 0xd76aa478 k1 = 0xe8c7b756 k2 = 0x242070db k3 = 0xc1bdceee

k4 = 0xf57c0faf k5 = 0x4787c62a k6 = 0xa8304613 k7 = 0xfd469501

k8 = 0x698098d8 k9 = 0x8b44f7af k10 = 0xffff5bb1 k11 = 0x895cd7be

k12 = 0x6b901122 k13 = 0xfd987193 k14 = 0xa679438e k15 = 0x49b40821

k16 = 0xf61e2562 k17 = 0xc040b340 k18 = 0x265e5a51 k19 = 0xe9b6c7aa

k20 = 0xd62f105d k21 = 0x02441453 k22 = 0xd8a1e681 k23 = 0xe7d3fbc8

k24 = 0x21e1cde6 k25 = 0xc33707d6 k26 = 0xf4d50d87 k27 = 0x455a14ed

k28 = 0xa9e3e905 k29 = 0xfcefa3f8 k30 = 0x676f02d9 k31 = 0x8d2a4c8a

k32 = 0xfffa3942 k33 = 0x8771f681 k34 = 0x6d9d6122 k35 = 0xfde5380c

k36 = 0xa4beea44 k37 = 0x4bdecfa9 k38 = 0xf6bb4b60 k39 = 0xbebfbc70

k40 = 0x289b7ec6 k41 = 0xeaa127fa k42 = 0xd4ef3085 k43 = 0x04881d05

k44 = 0xd9d4d039 k45 = 0xe6db99e5 k46 = 0x1fa27cf8 k47 = 0xc4ac5665

k48 = 0xf4292244 k49 = 0x432aff97 k50 = 0xab9423a7 k51 = 0xfc93a039

k52 = 0x655b59c3 k53 = 0x8f0ccc92 k54 = 0xffeff47d k55 = 0x85845dd1

k56 = 0x6fa87e4f k57 = 0xfe2ce6e0 k58 = 0xa3014314 k59 = 0x4e0811a1

k60 = 0xf7537e82 k61 = 0xbd3af235 k62 = 0x2ad7d2bb k63 = 0xeb86d391

Table C.5: MD5 Step Constants

Bibliography

[Abe10] Masayuki Abe, editor. Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Singapore, December
5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer
Science. Springer, 2010.

[AFS96] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A fast
provably secure cryptographic hash function. In Proceedings of
the 2 nd Conference on Object-Oriented Technology and Systems
(COOTS'96), Usenix Association, pages 9�7, 1996.

[AKS09] Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors.
Selected Areas in Cryptography, 15th International Workshop, SAC
2008, Sackville, New Brunswick, Canada, August 14-15, Revised
Selected Papers, volume 5381 of Lecture Notes in Computer Science.
Springer, 2009.

[AS08] Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4,
63-step MD5 and more. In Avanzi et al. [AKS09], pages 103�119.

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rech-
berger. Biclique cryptanalysis of the full aes. In Dong Hoon Lee
and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture
Notes in Computer Science, pages 344�371. Springer, 2011.

[CE85] David Chaum and Jan-Hendrik Evertse. Crytanalysis of des with
a reduced number of rounds: Sequences of linear factors in block
ciphers. In Hugh C. Williams, editor, CRYPTO, volume 218 of
Lecture Notes in Computer Science, pages 192�211. Springer, 1985.

114 BIBLIOGRAPHY

[CJ98] Florent Chabaud and Antoine Joux. Di�erential collisions in sha-0.
In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes
in Computer Science, pages 56�71. Springer, 1998.

[CLS06] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an ef-
�cient and provable collision-resistant hash function. In Vaudenay
[Vau06], pages 165�182.

[CP88] David Chaum and Wyn L. Price, editors. Advances in Cryptology
- EUROCRYPT '87, Workshop on the Theory and Application of
of Cryptographic Techniques, Amsterdam, The Netherlands, April
13-15, 1987, Proceedings, volume 304 of Lecture Notes in Computer
Science. Springer, 1988.

[Cra05] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer
Science. Springer, 2005.

[Dam87] Ivan Damgård. Collision free hash functions and public key signa-
ture schemes. In Chaum and Price [CP88], pages 203�216.

[Dam89] Ivan Damgård. A design principle for hash functions. In Gilles Bras-
sard, editor, CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 416�427. Springer, 1989.

[dBB91] Bert den Boer and Antoon Bosselaers. An attack on the last two
rounds of MD4. In Feigenbaum [Fei92], pages 194�203.

[dBB93] Bert den Boer and Antoon Bosselaers. Collisions for the compressin
function of MD5. In Helleseth [Hel94], pages 293�304.

[DH77] W. Di�e and M. E. Hellman. Special feature exhaustive cryptanal-
ysis of the NBS data encryption standard. Computer, 10(6):74�84,
June 1977.

[Dia05] Eduardo Diaz. Exploiting MD5 collisions in
C#. http://www.codeproject.com/Articles/11643/

Exploiting-MD5-collisions-in-C, 2005.

[DL05] Magnus Daum and Stefan Lucks. The poisoned message at-
tack. https://th.informatik.uni-mannheim.de/people/lucks/
HashCollisions/, 2005.

[Dob96] Hans Dobbertin. Cryptanalysis of MD5 compress. Lecture Notes in
Computer Science, 1039:53�69, 1996.

http://www.codeproject.com/Articles/11643/Exploiting-MD5-collisions-in-C
http://www.codeproject.com/Articles/11643/Exploiting-MD5-collisions-in-C
https://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
https://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

BIBLIOGRAPHY 115

[Fei92] Joan Feigenbaum, editor. Advances in Cryptology - CRYPTO '91,
11th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1991, Proceedings, volume 576 of
Lecture Notes in Computer Science. Springer, 1992.

[GB01] Sha� Goldwasser and Mihir Bellare. Lecture notes on cryptography,
2001.

[Gib91] J.K. Gibson. Discrete logarithm hash function that is collision free
and one way. Computers and Digital Techniques, IEE Proceedings
E, 138(6):407 � 410, nov 1991.

[Gir87] Marc Girault. Hash-functions using modulo-n operations. In Chaum
and Price [CP88], pages 217�226.

[GLRW10] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang.
Advanced Meet-in-the-Middle preimage attacks: First results on full
Tiger, and improved results on MD4 and SHA-2. In Abe [Abe10],
pages 56�75.

[Hel94] Tor Helleseth, editor. Advances in Cryptology - EUROCRYPT '93,
Workshop on the Theory and Application of of Cryptographic Tech-
niques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765
of Lecture Notes in Computer Science. Springer, 1994.

[Jou09] Antoine Joux, editor. Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings, volume 5479 of Lecture Notes in Computer Sci-
ence. Springer, 2009.

[Kli06] Vlastimil Klima. Tunnels in hash functions: MD5 collisions within
a minute. IACR Cryptology ePrint Archive, 2006:105, 2006.

[KRS11] Dmitry Khovratovich, Christian Rechberger, and Alexandra
Savelieva. Bicliques for preimages: Attacks on Skein-512 and the
SHA-2 family. IACR Cryptology ePrint Archive, 2011:286, 2011.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash
functions for much less than 2n work. In Cramer [Cra05], pages
474�490.

[Leu08] Gaëtan Leurent. MD4 is Not One-Way. In Nyberg [Nyb08], pages
412�428.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon
Rosen. SWIFFT: A modest proposal for FFT hashing. In Nyberg
[Nyb08], pages 54�72.

116 BIBLIOGRAPHY

[LWdW05] Arjen K. Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding
x.509 certi�cates. IACR Cryptology ePrint Archive, 2005:67, 2005.

[MH81] Ralph C. Merkle and Martin E. Hellman. On the security of multiple
encryption. Commun. ACM, 24(7):465�467, 1981.

[MR07] Florian Mendel and Vincent Rijmen. Weaknesses in the has-v com-
pression function. In Kil-Hyun Nam and Gwangsoo Rhee, editors,
ICISC, volume 4817 of Lecture Notes in Computer Science, pages
335�345. Springer, 2007.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[Nyb08] Kaisa Nyberg, editor. Fast Software Encryption, 15th Interna-
tional Workshop, FSE 2008, Lausanne, Switzerland, February 10-
13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in
Computer Science. Springer, 2008.

[Rob94] Matt Robshaw. On pseudo-collisions in MD5. Technical report,
RSA Laboratories, July 1994. Technical Report TR-102, version
1.1.

[SA08] Yu Sasaki and Kazumaro Aoki. Preimage attacks on step-reduced
md5. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP,
volume 5107 of Lecture Notes in Computer Science, pages 282�296.
Springer, 2008.

[SA09] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5
faster than exhaustive search. In Joux [Jou09], pages 134�152.

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-
pre�x collisions for MD5 and colliding X.509 certi�cates for di�erent
identities. In Moni Naor, editor, EUROCRYPT, volume 4515 of
Lecture Notes in Computer Science, pages 1�22. Springer, 2007.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra,
David Molnar, Dag Arne Osvik, and Benne Weger. Short chosen-
pre�x collisions for md5 and the creation of a rogue ca certi�cate.
In Proceedings of the 29th Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO '09, pages 55�69, Berlin,
Heidelberg, 2009. Springer-Verlag.

[Vau06] Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in
Computer Science. Springer, 2006.

BIBLIOGRAPHY 117

[WFLY04] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Col-
lisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD.
IACR Cryptology ePrint Archive, 2004:199, 2004.

[WRG+11] Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong
Wang, and San Ling. Improved meet-in-the-middle cryptanalysis of
KTANTAN. In Proceedings of the 16th Australasian conference on
Information security and privacy, ACISP'11, pages 433�438, Berlin,
Heidelberg, 2011. Springer-Verlag.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash
functions. In Cramer [Cra05], pages 19�35.

	Summary
	Preface
	1 Introduction
	1.1 Hash Functions and Their Applications
	1.2 Attacks on Hash Functions
	1.3 Brief History of MD5
	1.4 Contribution of this Thesis
	1.4.1 Thesis Organization

	I An Overview of Cryptanalytic Techniques
	2 MD5 Description
	2.1 Design Principles
	2.1.1 Merkle–Damgård Construction
	2.1.2 Compression Function

	2.2 MD5 Hashing Algorithm
	2.2.1 Compression Function
	2.2.2 Message Padding

	3 Meet-in-the-Middle Framework
	3.1 Basic MitM Attack
	3.2 Beyond Double Encryption Schemes
	3.2.1 Splice-and-Cut
	3.2.2 Bicliques

	4 Preimage Attacks on Hash Functions
	4.1 From Ciphers to Compression Functions
	4.2 From Compression Functions to Hash Functions
	4.2.1 Converting Pseudo-Preimages to Preimages
	4.2.2 Expandable Messages
	4.2.3 MTPP: Multi-Target Pseudo-Preimage

	4.3 Matching Techniques
	4.4 One-Block Preimages
	4.4.1 Fixed CV and Splice-and-Cut

	II Improved Attacks on MD5
	5 Pseudo-Preimage and Preimage Attacks on MD5
	5.1 Attack Outline
	5.2 Matching
	5.2.1 Candidates Generation
	5.2.2 Matching Procedure

	5.3 Biclique
	5.3.1 Absorption Properties in Boolean Functions
	5.3.2 Trails Interaction and Absorption Properties
	5.3.3 Trails Description
	5.3.4 Construction Algorithm

	5.4 Padding
	5.5 Attack Algorithm
	5.5.1 Complexity Analysis

	5.6 Conversion to Preimage

	6 Pseudo-Preimage and Preimage Attacks on MD5: Two Variants
	6.1 Variant I: Biclique Efficiency 1.0
	6.2 Variant II: Optimized Biclique
	6.2.1 Biclique optimization
	6.2.2 Complexity Analysis

	7 One-Block Preimage on MD5
	7.1 Attack Outline
	7.2 Matching
	7.2.1 Matching Procedure

	7.3 Biclique
	7.3.1 Trails Description
	7.3.2 Construction Algorithm

	7.4 Attack Algorithm
	7.4.1 Complexity Analysis

	8 Attacks Comparison and Conclusions
	8.1 Pseudo-Preimages
	8.2 Preimages
	8.3 One-Block Preimages
	8.4 Conclusions

	A Biclique
	A.1 Biclique construction
	A.1.1 Notation
	A.1.2 States initialization
	A.1.3 Forward trail
	A.1.4 Backward Trail 1
	A.1.5 Backward trail 2
	A.1.6 Trails interaction

	B Biclique with Local Collision
	B.1 Biclique construction
	B.1.1 Notation
	B.1.2 States initialization
	B.1.3 Forward trail
	B.1.4 Backward Trail
	B.1.5 Trails interaction

	C MD5 Parameters
	Bibliography

