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The intuitive mind is a sacred gift

and the rational mind is a faithful servant.

We have created a society that honors the servant

and has forgotten the gift.

-Albert Einstein





Abstract

In order to design and certificate an airplane, the unsteady aerodynamic response

imposed by different loads and the system stability must be accurately measured.

Since the cruise velocity of modern commercial aircrafts is in the transonic flight

regime some nonlinearities can occur due to the shock wave motion and the sepa-

rated flow on the wings surfaces. Nowadays, computational fluid dynamics (CFD)

codes are employed to study complex aerodynamic as well as aeroelastic problems.

However, using these codes computational costs are still too high, especially for

preliminary design phases and for a coupled structural/aerodynamic analysis. On

the other hand, the established techniques for the aeroelastic analysis are usually

based on the potential flow theory, which is unable to accurately capture the non-

linearities present in the flow field. Both problems can be solved using the reduced

order models (ROMs) with the aim to reduce the computational effort and to cap-

ture the principal nonlinearities. Hence, only a limited number of CFD simulations

are needed in order to train the ROM. Afterwards, the model can be employed

to study different input signals like air turbulence and to build a fluid-structure

model.

In this thesis, a radial basis function neural network (RBF-NN) will be used as

well as a local linear model tree (LOLIMOT) algorithm of the existing AER-ROM

MATLAB-Toolbox as nonlinear unsteady aerodynamic modeling.

Particular emphasis will be given to nonlinear aeroelastic analysis, where the non-

linear ROM will be coupled to a structural model in order to study the persistent

periodical neutrally stable solutions, called Limit Cycle Oscillation (LCO). In this

field, the NLR7301 supercritical aerofoil will be analysed with the existing ROMs

to determine the behaviour of the LCOs that occurs in the transonic regime. Fi-

nally, the properties of the obtained LCOs will be compared with those detected

in literature using the CFD, in order to determine the accuracy of the application

of the ROMs.





Sommario

In fase di progettazione e di certificazione di un velivolo, i carichi aerodinamici

non stazionari agenti sul sistema e la stabilità del sistema stesso devono essere

accuratamente misurati. Poiché la velocità di crociera dei moderni aeromobili da

trasporto è nel regime di volo transonico, possono insorgere non linearità dovute al

movimento delle onde d’urto e separazioni di flusso sulla superficie alare. Ad oggi,

per studiare le complessità apportate dall’aerodinamica e dall’aeroelasticità, sono

stati abitualmente impiegati metodi della fluidodinamica computazionale, Com-

putational Fluid Dynamics (CFD). Tuttavia, utilizzando questi metodi i tempi di

simulazione sono ancora troppo elevati, particolarmente per le fasi di progettazione

preliminare e per lo studio della risposta di un sistema aerodinamico-strutturale

accoppiato. D’altra parte, le tecniche oramai affermate per l’analisi aeroelastica

sono solitamente basate sul metodo della teoria del flusso a potenziale, le quali

non sono in grado di catturare adeguatamente le non linearità presenti nel campo

di moto. Entrambi i problemi possono essere risolti impiegando modelli di ordine

ridotto, Reduced Order Models (ROMs), con lo scopo di ridurre il carico computa-

zionale e catturare le principali non linearità. Pertanto, in questo modo, saranno

necessarie soltanto un numero limitato di simulazioni CFD, utilizzate per allenare

la rete neurale del modello di ordine ridotto. Successivamente il modello potrà

essere impiegato per lo studio di differenti segnali d’ingresso, come una turbolenza

dell’aria, e per costruire un modello fluidodinamico-strutturale.

In questa tesi, come modelli di ordine ridotto, verranno utilizzati una rete neurale

che ricorre a una funzione radiale come funzione di base, Radial Basis Function

(RBF), ed un algoritmo lineare locale, Local Linear Model Tree Algorithm (LOLI-

MOT).

Particolare attenzione sarà data all’analisi di stabilità di un sistema aeroelasti-

co, dove il modello non lineare di ordine ridotto verrà accoppiato ad un modello

strutturale per studiare la risposta periodica neutralmente stabile chiamata ciclo

limite, Limit Cycle Oscillation (LCO). In questo campo, il profilo alare supercriti-

co NLR7301 verrà testato con i modelli di ordine ridotto proposti per determinare

il comportamento delle oscillazioni di ciclo limite che si instaurano nel regime



transonico. Infine, le proprietà delle oscillazioni di ciclo limite ottenute saran-

no comparate con quelle ottenute in letteratura mediante simulazioni CFD per

determinare l’accuratezza dell’applicazione di sistemi dei ordine ridotto.
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Chapter 1
Introduction

Nowadays, most modern commercial transport aircrafts, as well as fighter

planes, operate in a transonic flow regime. Hence, there is the need to stimu-

late these conditions during the design phases using methods that can accurately

simulate the aerodynamic conditions and the behaviours that aerodynamics drives

on the structure. This kind of interaction leads to the so called aeroelasticity, which

describes the relation between the aerodynamic, the inertia and elastic forces for

a flexible structure. This subject can be summarized by the classical Collar aeroe-

lastic triangle, Figure 1.1, which shows how the fundamental aeroelastic phenom-

ena result from the interaction of three types of forces. Two fundamental types of

aeroelastic problem occur. One involves the interaction of aerodynamic and elastic

forces and it takes the name of static aeroelasticity, which considers the nonoscil-

latory effects of the aerodynamic forces acting on a flexible structure and leads

to phenomena like divergence and control reversal. The second class of problems

involves the inertia of the structure as well as aerodynamic and elastic forces and

it is called dynamic aeroelasticity. Dynamic loading system induces oscillations of

structural components. When the natural or resonant frequency of the component

is in the region of the frequency of the applied loads, then the amplitude of the

oscillations may diverge causing failure (flutter). Also, the presence of fluctuating

loads is a fatigue hazard. In this group are included flutter, buffeting and limit

cycle oscillations (LCO). The aeroelastic phenomena can be summarized in the

1
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Figure 1.1: Collar aeroelastic triangle

form of a ”tree”, as in Figure 1.2, [38, 12, 39].

In this work only the nonlinear aeroelastic response of the system will be treated,

especially the amplitude limit cycle oscillation (LCO), which can be considered

as bounded flutter. This phenomenon arises from classical nonlinearities, as cu-

bic spring, free play, hysteresis and control surface and occurs primarily in the

transonic flight regime or at a large angle of attack. Some researchers believe

that the LCO is a purely aerodynamic phenomenon, due to transonic shock os-

cillation and shock induced flow separation, which is sometimes referred to the

transonic shock/separation (TSS) model suggested by Edwards [18]. The physical

understanding of the LCO is of technical interest for an accurate prediction of the

nonlinear response of the system and to extend the operational flight regime. In

order to design a safe structure, it is obvious that the LCOs have to be of suf-

ficiently small amplitudes so that the structure does not fail under this kind of

vibration exceeding its ultimate load limit. Hence, the study of the limit cycle
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Figure 1.2: Aeroelastic ”tree”

oscillations becomes a fatigue problem.

LCOs have been studied in Tang et al. [7] and Vio et al. [15] using computational

fluid dynamics (CFD) codes. However, these kinds of codes involve millions of de-

gree of freedom, which limit their applications in optimal design. CFD codes are

system of Partial differential Equation (PDE) that can be discretized and solved

with numerical algorithms, but with a high computational cost, even with today’s

powerful computers [6].

Reduced Order Models (ROMs) are a set of numerical structures that allow to

construct and reproduce a nonlinear system with a small number of degrees of

freedom (DOF). Thus, they can give a simple formulation of the generic nonlinear

problem, once they are able to capture the main fundamental dynamics embedded

in the system [6, 27]. In the last year the uses of ROMs have increased in the anal-

ysis of physical system, because numerical simulations have two main problems.

The direct simulation (CFD) can provide a detailed response of the system, but

such results don’t help the user to understand the physics of the problem better.

Furthermore, without powerful computers, the simulations of large scale problems

remain unworkable in various design phases, where fast simulations are needed

[12].

Reduced order models help to capture physical phenomena, like limit cycle oscil-

lation behaviour mantaining a low number of DOF [12]. Using a ROM is possible
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Figure 1.3: Flow chart of a reduced order analysis

to provide an accurate description of the system’s dynamic with a lower computa-

tional cost than that required by a direct simulation. Hence, such order reduction

models project the full order system, with a high number of DOFs, into a much

smaller space, which can reproduce the fundamental dynamics of the system [6, 11],

as shown in Figure 1.3.

In order to reduce the computational effort different methods for modeling non-

linear system with few DOF have been developed during the last years. However,

most of the ROM proposed to predict the aerodynamic behaviour are for lin-

ear models, like the proper orthogonal decomposition (POD) [10, 11], first order

Volterra series [8] and autoregressive with exogeneous input model (ARX) [40].

This means that the ROM behaves like a linear system near the reference solu-

tion, in which the aerodynamic load is proportional to the structural motion.

Modern airplanes that flight near the transonic domain requires special attention

during the design phase, because of nonlinearity. The potential based methods are

not adequate when strong shocks are present in the flow field and in this situation

the Euler’s model is required. In case of very strong shocks the latter model can’t

be used, because it neglects the effect of thermal conductivity. Another more com-
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plex case is the viscous case with the possibility of large flow separation [1]. All

these cases can be predicted by high fidelity CFD codes. However, coupling the

CFD with a structural solver for the aeroelastic analysis can be expensive from the

computational point of view, even with high-performance computers. Moreover,

during the conceptual and preliminary design phases of an aircraft several simple

models are required to predict the dynamic response of the system using a little

computational effort.

In the current thesis, in order to capture the nonlinear behaviour of the system and

reduce the design computational cost, several reduced order models has been con-

structed using the radial basis function (RBF) neural network model, as suggested

by Zhang et al. [39], and the local linear model tree algorithm (LOLIMOT). The

aerodynamic reduced order models are then coupled to the structural dynamics

permitting a fast simulation of the resulting nonlinear aeroelastic system, which

will be employed for the LCOs study.
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Chapter 2
Theoretical Basis

Fluid dynamics and its relative properties, as well as structural dynamics are

the theoretical basis of this work.

The characteristics of a viscous flow are described by the Navier-Stokes equations,

which can be solved at high computational costs. In order to reduce the computa-

tional effort and hence the time required for the flow solution, the Euler model has

been used, which considers the flow inviscid, without any viscous effect. In section

2.1.1, the fundamental equations and the relevant differences of the Navier-Stokes

and the Euler equations are presented.

During the fluid dynamics study, in order to obtain the forces on the aerofoil, sev-

eral steady and unsteady simulations have been employed. These fluid dynamics

computations are performed with the AER-Eu solver from the Institute of Aero-

dynamics and Fluid Mechanics of the Technische Universität München.

In this chapter the theory of the steady aerodynamics will be introduced, as well

as the unsteady aerodynamics. The steady CFD solution is necessary as a starting

point of the unsteady simulations.

One of the principal aims of this work is to reduce the computational cost of the

CFD simulations building a reduced order model (ROM), which can well approx-

imate the response of the model obtained by the CFD simulations. The design of

a ROM can be built using different kinds of models. Section 2.4 describes several

approaches to obtain a reduced model based on neural networks. In this section
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two approaches of different neural networks used in this thesis and their respective

drawbacks and benefits will be presented. Using a ROM, the unsteady simulations

performed previously with the CFD, can be carried out with a lower computational

effort.

Finally the non-linear aerodynamic of the ROM and a structural model are cou-

pled in order to study the aeroelastic effects. Hence, the structural dynamics and

especially the step that leads to the interaction between the aerodynamic and the

structural part, i.e the generalized aerodynamic forces (GAF) obtained by the neu-

ral network, will be explained.

In the last section 2.5 will be introduced the aeroelasticity of an aircraft and the

phenomena that described the non-linear aeroelasticity, like the limit cycle oscil-

lations (LCO).

2.1 Fluid dynamics

The fundamental aspects of viscous flow are described by the Navier-Stokes

equations, probably the most pivotal equations in theoretical fluid dynamics. How-

ever, as it is well known, the Navier-Stokes equations can be solved at a high

computational cost, which is achieved with powerful computers. Furthermore, a

specific CFD-grid is necessary, which takes time to be built well, because the wall

boundary layer should be much better refined than a grid for the Euler equations.

Therefore, various empirical models of turbulence have been developed so that

solutions to the Navier-Stokes equations can be made computationally tractable.

The simplest form of aerodynamic modelling, the so-called inviscid flow, assumes

that there are no effects from the viscosity of the air. This assumption implies that

the flow passing an aerofoil, even on the surface, incurs no friction. In practice,

viscosity does have an effect on the flow and this is most notably demonstrated by

the presence of the boundary layer, where the flow slows down from the velocity

in the free stream to zero velocity on the surface. Hence, omitting or neglecting

the viscous terms, one obtains the Euler equations, which can be solved at a lower

computational cost [1, 5].
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Figure 2.1: Fluid dynamics equations

A common simplification is to assume that the density of the air is constant (i.e.

incompressible) throughout the flow, and this is valid for flows where M < 0.3

[17]. This simplification permits to treat the Euler equations with the potential

flow theory, simplifying once more the set of equations. Beyond this Mach num-

ber, compressibility effects need to be taken into account and the density will vary

through the flow field. Much of this work is realized using Mach numbers mostly

in the transonic domain, so the potential flow theory will not be used.

2.1.1 Navier-Stokes and Euler equations

The Navier-Stokes system of equations, which describes the general viscous

flow, can be written using the Einstein summation convention as follows [1]:

• Continuity equation:

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.1)
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• Momentum conservation equation:

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρfi with i = 1, 2, 3 (2.2)

• Energy conservation equation:

∂E

∂t
+

(uiE)

∂xi
= −∂(uip)

∂xi
+
∂(uiτij)

∂xj
+ ρfiui−

∂qi
∂xi

with i = 1, 2, 3 (2.3)

To complete this set of equations, a further material independent equation is still

needed. The air is considered as an ideal gas and therefore the state relation

(Equation 2.4) is used, which binds the pressure p with the density ρ and the

temperature T .

p = ρRT (2.4)

With these equations, turbulence, boundary layer effects as well as thermal trans-

fer can be modeled. To reduce the computational costs, turbulence can be modeled

with the Reynolds-Averaged Navier-Stokes (RANS) equations. They can be de-

rived from the Navier-Stokes equations, replacing the velocity by the sum of an

averaged term and a time-varying term. This yields new terms, which can be

gathered in the Reynolds stress tensor [1, 37, 28].

The Euler equations can be derived from the Navier-Stokes equations. The fol-

lowing assumptions have to be made [5]:

• the fluid is inviscid τij = 0

• there is no bulk force fb,i = 0

• there is no thermal transfer (adiabatic) qi = 0

For these conditions, the governing equations are the three-dimensional Euler equa-

tions and may be expressed in strong conservation form as:

∂~q

∂t
+
∂~ai
∂xi

with i = 1, 2, 3 (2.5)
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where

~q =



ρ

ρu1

ρu2

ρu3

E


~a1 =



ρu1

ρu21 + p

ρu1u2

ρu1u3

u1(E + p)


(2.6)

~a2 =



ρu2

ρu2u1

ρu22 + p

ρu2u3

u2(E + p)


~a3 =



ρu3

ρu1u3

ρu2u3

ρu23 + p

u3(E + p)



And as for the Navier-Stokes equations, if a perfect gas is assumed, the necessary

closing condition is given by the equation of state (equation 2.4). To ensure the

generality of the solution it is practical to use non-dimensional quantities. The

dimensionless parameters that characterize the unsteadiness of the problem are

summarized below [9]:

• dimensionless time:

τ ∗ =
u∞t

lref
=
Ma∞

√
k

lref

√
p∞
ρ∞
· t (2.7)

• reduced frequency:

kred =
lref · ω
u∞

=
lref · 2πf
u∞

=
lref

Ma∞
√
k

√
ρ∞
p∞
· 2πf (2.8)

2.1.2 Steady aerodynamics

Aircrafts are able to fly because the lift generated by the airflow over the wings

and horizontal tail surfaces supports their weight. For a flexible aircraft, these lift
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Figure 2.2: Flow around an aerofoil at a small angle of incidence [17]

forces give rise to deflections in the aerodynamic shape, which in turn change the

characteristics of the airflow, hence leading to aeroelastic phenomena and affecting

the dynamics loads, [17]. An understanding of how aerodynamic flows around an

aerofoil or a surface during flight is very important in order to be able to develop

mathematical models that describe the aeroelastic behaviour.

Only a brief introduction of steady aerodynamics will be exposed here.

From Anderson [1], a steady flow is a flow where the flow field is invariant with

time.

Hence, in a flow field that follows the law of the steady aerodynamic in any point

of the flow it is possible to continuously observe the same constant values for the

pressure p, the density ρ, the vector of the velocity V and the temperature T .

More theoretical information is detailed in Anderson [1].

Figure 2.2 shows streamlines for an aerofoil at a small positive angle of incidence α.

Lift occurs because the flow is deflected downwards by the aerofoil. This leads to

a faster flow over the upper surface. This difference in speeds is due to the aerofoil

shape. From Bernoulli’s equations, see Anderson [1], for a velocity V > V∞ the

pressure becomes P < P∞, so an increase in velocity leads to a suction in the flow

field, whereas for a velocity V < V∞ the pressure becomes P > P∞ so a decrease

in velocity leads to a compression in the flow field. Finally for a velocity V = V∞

the pressure remains P = P∞ and there is no change in the flow field.

It is common to describe the pressure distribution in terms of the non-dimensional
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Figure 2.3: Typical pressure distribution for an aerofoil at a small angle of incidence [17]

pressure coefficient Cp, which is defined for a point in the flow as

Cp =
P − P∞
1
2
ρV 2
∞

(2.9)

which is the measure of the ratio of the local static pressure on the aerofoil to

the free stream dynamic pressure. For clarity, the Cp distribution on a symmetric

aerofoil at an angle of incidence below stall is plotted in Figure 2.3. It is common

to present the pressure distribution on both surfaces in relation with the non-

dimensional factor x/c, as shown in Figure 2.4, where the lift is dominated by

suction on the upper surface due to the faster flow velocity on this surface [17].

The pressure distribution acting over the surface gives rise to a total force, whose

resultant acts on a point of the chord called centre of pressure. During the flight

condition the angle of incidence α changes, then the pressure distribution changes;

this leads to a repositioning of the centre of pressure. This change leads to a

difficulties due to the continual recalculation of the force and moments that act

on the aerofoil [17]. For this reason, the net force is replaced by two resultant

orthogonal forces (lift and drag) and a moment (pitching moment). It is usual

to use coefficients which relate the above quantities to the dynamic pressure and

chord for a unit span aerofoil (two-dimensional case), so the lift, drag and moment

coefficients are defined as [1, 17]:

CL =
L

1
2
ρV 2c

(Lift) (2.10)
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Figure 2.4: Pressure coefficient representation for a symmetric aerofoil [17]

CD =
D

1
2
ρV 2c

(Drag) (2.11)

CM =
M

1
2
ρV 2c2

(Pitching Moment) (2.12)

where c is the aerofoil chord.

2.1.3 Unsteady aerodynamics

For flutter, manoeuvre and gust response analyses the behaviour of the aero-

dynamic flow field on the aerofoil surfaces under dynamic motion is required and

it is necessary to include these effects upon the resulting forces and moments of

the steady aerodynamics. These unsteady effects are an outcome of the changing
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Figure 2.5: Flow patterns around aerofoils and wings in sub-transonic and transonic flows

without boundary layer separation [28]

circulation and wake acting upon a moving aerofoil, and can have a considerable

influence upon the resulting aerodynamic forces and moments [17].

By definition, see Anderson[1], an unsteady flow is a flow where the flow field vari-

ables, presented in section 2.1.2, at any given point are changing with time.

This work will focus particularly on the unsteady aerodynamic in the transonic

flow, which is the crucial regime for the aeroelastic analysis.

A flow is considered transonic if both subsonic and supersonic regions exist near

the body at the same time. For example, if an aircraft is flying at a subsonic speed

(M∞ < 1), local regions of supersonic flow will form on the wing surface if the

flight Mach number is above the so-called critical Mach number Mcr for the wing.

The critical Mach number depends on the shape, thickness, and attitude of the

wing-body combination, but typically falls in the range 0.6− 1.2 for most aircraft

under steady flight conditions such as cruise.

For more details see Bendiksen [28].

Transonic flutter of aircraft wings is dominated by the inherent nonlinearities in

the unsteady transonic flow, resulting from moving shocks on the wing surface

and from shock-boundary layer interactions. At transonic flight local regions of

supersonic flow exist on and near the wing surface, as shown in Figure 2.5 and 2.6.

It can be seen how at the aft end of these regions, the flow is decelerated to sub-
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Figure 2.6: Steady Euler-CFD analysis of the NLR7301 supercritical aerofoil at Ma∞ = 0.753

and an angle of attack α = 0.0

sonic speeds through a nearly surface-normal shock wave. As the wing deforms in

response to unsteady loads, the supersonic regions grow and shrink with the wing

motion; thus, the shocks move along the wing surface, changing in intensity and

position and possibly vanishing over part of the oscillation cycle. These moving

shocks play an important role for the highly nonlinear aerodynamic behaviours

observed in the transonic regime. In order to model an aeroelastic system with

mixed subsonic-supersonic flow field with moving shocks, nonlinear field equations

are required [28]. The modeling of unsteady transonic flow is shown in hierarchal

order in Figure 2.7, based on the physical fidelity of the approximations involved.

For flutter calculations, the general unsteady aerodynamic behaviour in the time

domain is rarely used, since the motion at a single oscillation frequency is of more

interest. For example, with an aerofoil oscillating in pitch at frequency ω, and

applying the convolution approach using Wagner’s function to obtain the lift time

history, the effect of varying the frequency is shown in Figure 2.8. Compared to

the quasi-steady lift values, there is a reduction in the magnitude of the lift and an
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Figure 2.7: Unsteady aerodynamic modeling hierarchy in computational fluid dynamics and

aeroelasticity [28]

Figure 2.8: Unsteady lift for an oscillating aerofoil at different reduced frequencies [17]
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introduction of a phase lag between the aerofoil motion and the unsteady forces.

These two effects are a function of the dimensionless frequency parameter ν defined

as

ν =
ωc

V
(2.13)

which can be interpreted as the number of oscillations undergone by the aerofoil

during the time taken for the airflow to travel across the chord of the aerofoil,

multiplied by 2π. However, often the so-called reduced frequency k is used, equation

2.8.

2.1.4 CFD Solver

Unsteady transonic flow calculations are much more difficult than subsonic or

supersonic flow calculations. First, the governing partial differential equations are

nonlinear. Second, the flow field is of a mixed type, with embedded subsonic and

supersonic regions. Third, the extent of the embedded supersonic or subsonic re-

gions are time-varying, as are the moving shocks, and must be determined in a

time-accurate manner as part of the solution.

The CFD-solver used in the current work is the AER-Eu solver from the Institute

of Aerodynamics and Fluid Mechanics of the Technische Universität München,

which will be discussed in the following. Since it is not the main subject of this

work, the explanation will remain coincise (more informations in Kreiselmaier [9]

and Fleischer [5]). The coordinate system and the grid used for the computation

have to be adapted to the geometry of the wing or aerofoil. Indeed, the cartesian

coordinate system would require interpolations on the structural boundaries to en-

force the boundary conditions. Hence, the Euler or Navier-Stokes equations have

to be transformed into curvilinear coordinates which are adapted to the geometry.

The AER-Eu solver uses the finite volume method on the given grid, that offers

the possibility to perform computations in the subsonic and supersonic domain, as

well as in the transonic domain. In fact, the method assumes the field quantities

to be concentrated in the kernel of each cell. This yields a conservative set of

equations that allows to take shocks into account. The five partial equation are
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Figure 2.9: Representation of the adapted grid in the cartesian (x, y, z) and curvilinear (ξ, η,

ζ) coordinate system [5]
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Table 2.1: Advantages and drawbacks of implicit and explicit temporal integration schemes

according to Fleischer [5]

Explicit time integration Implicit time integration

easy to implement time and resource consuming

implementation

biggest time step limited by CFL-number no time step limitation

tends to be unstable good convergence and stability

solved approximately with the flux difference splitting method, under the assump-

tion that the flux in one direction does not affect the flux in the other directions.

Discontinuities at the interfaces and compression shocks are then accurately de-

scribed. However, continuous transformations can in some cases be represented

as expansion shocks, which breaks the entropy condition. Therefore, additional

equations have been implemented in order to take the entropy changes caused by

the shocks into account.

Another aspect of the numerical solver is the time discretization. For steady prob-

lems, pseudo-time will be iterated until a steady state is reached. For transient

problems, one has to iterate over the real time in addition to the inner iterations

over pseudo-time (dual time stepping).

Implicit and explicit temporal integration schemes are available in the CFD solver.

Explicit temporal integration is realised with Runge-Kutta schemes and implicit

temporal integration is based on the LU-SSOR scheme. Implicit and explicit

schemes have both advantages and drawbacks, which are explained in Table 2.1.

To reduce computational costs, only implicit schemes will be used for the CFD

simulation here. In addition to the flow field equations and initial conditions, sev-

eral boundary conditions have to be specified (physical boundary conditions like

far-field velocity, no-slip condition, Euler wall condition and numerical boundary

conditions like symmetry conditions, grid blocks, etc.).
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2.2 Structural Dynamics

In the following section the structural model that will be coupled with the

unsteady aerodynamic model for aeroelastic analysis will be outlined. Especially,

the modal transformation of the structural model that leads to the state space

form used subsequently in the fluid-structure interaction will be outlined.

2.2.1 Modal Transformation

In modern aeroelastic analysis, the structure of a flexible aircraft is usually dis-

cretized using the Finite-Element method (FEM). The initial finite-element model

in physical space is often transferred into modal coordinates in order to reduce

the degrees of freedom. The well-known equations of motion for a multi-modal

structural system can be written as [17, 31]:

MMM~̈y +DDD~̇y +KKK~y = ~f (2.14)

where MMM , DDD and KKK are the mass, damping and stiffness matrices of the structure,

while ~y is the displacement field and ~f represents the external forces applied on the

structure. Assuming a harmonic displacement field it can write the displacement,

the velocity and the acceleration in a complexity notation as

~y = ~Φexp(jωt) (2.15)

~̇y = jω~Φexp(jωt) (2.16)

~̈y = −ω2~Φexp(jωt) (2.17)

Hence eq. 2.14 can be written as

[−ω2MMM + jωDDD +KKK]~Φ = ~f (2.18)
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The mass and stiffness matrices are yielded by the FEM analysis, whereas the

damping matrix can be derived from experimental data or can be assumed as a

linear combination of both mass and stiffness matrix, such as

CCC = αMMM + βKKK (2.19)

where α and β are scalar coefficients.

However, for the modal analysis, only the free vibrations of the undamped structure

are of interest, so the damping term as well as the external forces will be omitted.

With these simplification the preceding equation becomes

[−ω2MMM +KKK]~Φ = ~0 (2.20)

so

KKK~Φ = ω2MMM~Φ (2.21)

Equation 2.21 represents an eigenvalue problem, where ω is the so-called undamped

natural frequency of the system and ~Φ is the eigenvector. Both, MMM and KKK are

positive symmetric matrices of ranks inferior to the number of degrees of freedom

of the problem. For each degrees of freedom (DoF) there exists a set of n linear

independent vectors ~Φi and a set of scalars ωi:

KKK ~Φi = ω2
iMMM

~Φi (2.22)

~ΦT
i′KKK

~Φi = δi′imiω
2
i (2.23)

with the modal masses mi, the Kronecker delta δii′ and i, i′ = 1, 2, ..., n.

In practical applications, a number n < nDOF of eigenvectors are chosen [32], thus

the displacement vector can be written as

~y =
n∑
i=1

αi(t) ~Φi (2.24)
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where αi are the modal amplitudes, which can be gathered in the modal vector ~q =

[α1, ..., αn]T . Substituting equation 2.24 in equation 2.14, neglecting the damping

term, and pre-multiplying by ~ΦT
i′ yields

miα̈i +miωiαi = ~Φi′
T ~f i = 1, ..., n (2.25)

Now it has n independent single degrees of freedom equations. The number of the

eigenvectors n remains relatively small in comparison to the number of degrees

of freedom (DoF) of the initial model, but large enough to accurately depict the

displacement of the structure. The so-called modal matrix is defined as the matrix

having the mode shapes as columns:

ΦΦΦ = [ ~Φ1
~Φ2 ... ~Φn] (2.26)

hence equation 2.24 reads as

~y = ΦΦΦ~q (2.27)

Now substituting ~y of equation 2.27 in equation 2.14 and pre-multiplying by the

transponse of the modal matrix yields

ΦΦΦTMΦMΦMΦ~̈q + ΦΦΦTKΦKΦKΦ~q = ΦΦΦT ~f (2.28)

or

MMM~̈q +KKK~q = ~fgen (2.29)

where MMM and KKK are known as the modal mass matrix and the modal stiffness

matrix. The generalized external forces (modal force vector) are the external forces

transposed into the modal space ~fgen = ΦΦΦT ~f . The statement of orthogonality with

respect to the mass matrix is expressed as MMM = ΦΦΦTMMMΦΦΦ = IIIn.

When the damping matrix DDD is known, equation 2.29 becomes

MMM~̈q +DDD~̇q +KKK~q = ~fgen (2.30)

where DDD = ΦΦΦTDDDΦΦΦ is the modal damping matrix.

More detailed information about the structural dynamics can be found in Lot [32]

or in Wright and Cooper [17].
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2.2.2 State-Space Model

For numerical purposes, Equation 2.30 can be transformed into a first order

vectorial differential equation. A state variable is defined as

~x =

[
~q

~̇q

]
(2.31)

so the Equation 2.30 can be written, according to Zhang et al. [39], as

~̇x =

[
000n IIIn

−MMM−1KKK −MMM−1DDD

]
︸ ︷︷ ︸

AAA

~x+

[
000n

IIIn

]
︸ ︷︷ ︸

BBB

~fgen (2.32)

This notation allows to implement easier numerical time integration models for

coupling purpose.

Hence, the equation that denotes the state-space form is:

~̇x = AAA~x+BBB~u (2.33)

~̇y = CCC~x+DDD~u (2.34)

where ~u is the input vector, ~y the output vector and fgen the generalized external

forces vector.

2.3 Generalized Aerodynamic Forces (GAF)

Usually, to study the unsteady aerodynamic, there is a way to represent the

aerodynamic forces applied to the structure (~fgen,i). Considered only time domain

formulation, an element of the generalized aerodynamic forces vector in relation

to the i-th modal displacement can be written as

~fgen,i(t) = q∞ ·
∫
S

cp(t) · ~Φi
~dS (2.35)

where q∞ is the dynamic pressure of the free stream, ~dS is a surface element, cp

the pressure coefficient and ~Φi is the i-th modal vector.
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2.4 Neural Network

Artificial neural networks were originally motivated by the biological struc-

tures in the brains of humans and animals, which are extremely powerful for such

tasks as information processing, learning and adaptation. The most important

characteristics of neural networks are [27]:

• large number of simple units

• highly parallel units

• strongly connected units

• robustness against the failure of single units

• learning from data

These properties make artificial neural networks well suited for fast hardware im-

plementation.

The engineer’s interest is to develop a universal tool for problem-solving inspired

by the impressive examples of nature but without any pretension to model biolog-

ical neural networks. For these reasons, neural networks are a possible method to

derive the unsteady aerodynamic forces. In the case of the prediction of aerody-

namic forces, a CFD computation with prescribed structural deformations has to

be performed to yield the data to train the network.

In order to study the unsteady aerodynamic, several approaches with different

neural networks (NNs) can be employed.

In the following section the differences and mechanism of the different NNs will be

briefly introduced. But for more information see Nelles [27] and Haykin [34].

2.4.1 Radial Basis Function Networks (RBF)

The radial basis function (RBF) network utilizes a radial construction mecha-

nism.

The construction of a radial basis function network, in its basis form, involves
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Figure 2.10: The i-th neuron of an RBF network

three layers with entirely different roles. The input layer is made up of source

nodes (sensory units) that connect the network to its environment. The second

layer, the hidden layer, applies a nonlinear transformation from the input space to

the hidden space, which is of high dimensionality. A pattern-classification prob-

lem cast in a high-dimensional space is more likely to be linearly separable than

in a low-dimensional space; hence, this is the reason for frequently making the

dimension of the hidden space in a RBF high. Another point is the fact that the

dimension of the hidden space is directly related to the capacity of the network

to approximate a smooth input-output mapping; the higher the dimension of the

hidden space, the more accurate the approximation will be, according to Niyogi

[29].

In Figure 2.10 a neuron of a RBF network is shown.

The operation of a neuron can be split into two parts:

• The distance of the input vector u = [u1, u2, ..., up]
T to the center vector

ci = [ci1, ci2, ..., cip]
T with respect to the norm matrix

∑
i

is calculated.

• The scalar distance x is transformed by the nonlinear activation function

g(x).

Figure 2.10 shows, for a Gaussian activation function, how the hidden layer pa-

rameters influence the basis function, where the typical Gaussian function can be
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Figure 2.11: A radial basis function network. p is the number of inputs and M the number of

hidden layer neurons

written as

g(x) = exp(−1

2
x2) (2.36)

The distance xi is calculated using the center ci and norm matrix
∑

i
, which are

the hidden layer parameters of the i-th RBF neuron:

xi = ‖u− ci‖∑i
=

√
(u− ci)T

∑
i
(u− ci) (2.37)

The basis function of a Gaussian RBF network can be written as

Φi(u, θ
(nl)
i ) = exp

(
− 1

2
‖u− ci‖2∑

i

)
(2.38)

where the hidden layer parameter vector θ
(nl)
i consists of the center vector coordi-

nates and the entries of the norm matrix.

If several RBF neurons are used in parallel and are connected to an output neu-

ron the radial basis function network is obtained, Figure 2.11. In basis function

formulation the RBF network can be written as

ŷ =
M∑
i=0

wiΦi(‖u− ci‖∑
i
) with Φ0 = 1 (2.39)
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with the output layer weights wi. Hence, the output ŷ is a linear combination of

M radial basis functions weighted by the wi coefficients, where M is the number

of hidden layer neurons. The centers are nonlinear parameters of the hidden layer

neurons and determine the position of the basis functions. The standard deviations

are nonlinear parameters of the hidden layer neurons and determine the widths

and rotations of the basis functions.

During the training of the network the most suited parameters are optimized and

selected. Different strategies can be used for training a RBF network. Most of these

strategies determine the hidden layer parameters first, and subsequently the output

layer weights are estimated by least squares approaches (RAWN). Alternatively, as

it has been suggested by Chen [33], an orthogonal least squares algorithm (OLS)1

can be applied. Thus, from the knowledge of input/output, the parameters of

the network will be tuned or optimized, as far as the output predicted by the

network is accurate in order to evaluate the solution carried out by the CFD.

More information about the different training strategies are explained in Nelles

[27].

The most important properties of RBF presented in Nelles [27] are:

• Interpolation behaviour tends to possess ”dips” when the standard deviations

of some RBFs are chosen too small.

• Extrapolation behaviour tends to zeros because the activation functions are

typically local.

• Accuracy is typically medium because more neurons than the other NNs

model are required for the same accuracy.

• Smoothness depends on the chosen activation function.

• Sensitivity to noise is low.

• Parameter optimization is fast.

1The approach based on the orthogonal least squares (OLS) algorithm is an efficient supervised

learning approach for choosing the basis function centers.
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Figure 2.12: Local linear neuro-fuzzy model

• Training speed strictly depends on the training method used.

• Evaluation speed is medium because many neurons are required for a good

accuracy.

• Incorporation of prior knowledge is possible because the parameters can be

interpreted.

2.4.2 Local Linear Neuro-Fuzzy Models

”The local linear modeling approach is based on a divide and conquer strat-

egy. A complex modeling problem is divided into a number of smaller and simpler

subproblems, which are solved independently by identifying simple linear models”,

Nelles [27]. The most important behaviour for the success of the local linear ap-

proach is the division strategy of the original complex problem.

The network structure of a local linear neuro-fuzzy model is shown in Figure 2.12.

Each neuron carries out two tasks. First, it realizes a local linear model (LLM) and

second, it realizes an associated validity function that determines the region of va-



30 Theoretical Basis

lidity of the LLM. In Figure 2.12, where the structure of the whole LLM is depicted,

the different LLM associated to the hidden neurons M (LLM1, LLM2, ..., LLMM)

are represented.

Hence, the final outputs of the LLMs are:

ŷ = wi0 + wi1u1 + ...+ wipup (2.40)

where wij denote the LLM parameters for neuron i.

Any model input u = [u1 u2 ... up]
T is normalized by a validity function such that

M∑
i=1

Φi(u) = 1 (2.41)

where M is the number of the neurons. This property is of fundamental relevance

in order to interpret the Φi as validity functions because it ensures that the con-

tributions of all local linear models sum up to 100%.

Considering equation 2.41 the output becomes

ŷ =
M∑
i=1

(wi0 + wi1u1 + ...+ wipup)Φi(u) (2.42)

From equation 2.42 the whole network output is calculated as a weighted sum of

the single outputs of each local linear models. The validity functions are typically

chosen as normalized Gaussians and depends on the center cij and the dimension

of the individual standard deviations σij. This validity functions are also called

activation functions since they control the activity of the LLMs. One of the most

important tasks is to choose the optimal standard deviation for the LLM model.

For example, the nonlinear function in Figure 2.13 is approximated by a network

with four neurons, the same centers and different standard deviations. Small

standard deviations lead to a non smooth network output, Figure 2.13 b). With

a medium value for the standard deviation the smoothness of the model output is

better, Figure 2.13 c). Instead, using high standard deviation, the validity function

becomes wide and the maximum value decreases, Figure 2.13 d).

In this context, there are two special cases to consider [27]:
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Figure 2.13: Local linear neuro-fuzzy model: a) function to be approximated and local linear

models, b) small, c) medium, d) large standard deviation. [27]
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• σ → 0: as the standard deviation tends to zero, the validity function becomes

step-like, Figure 2.13 b). In this case for any input only a single local linear

model is active and this leads to a non smooth output.

• σ → ∞: as the standard deviation tends to infinity, the validity functions

become constant with an amplitude of 1/M and all the models are active for

each input because the validity functions are too wide.

Obviously, a compromise must be found and it is strictly dependent on the specific

case.

2.4.3 Local Linear Model Tree Algorithm (LOLIMOT)

”LOLIMOT is an incremental tree-construction algorithm that partitions the

input space by axis-orthogonal splits” [27]. Each iteration increases the number of

the sub-models by adding a new rule or local linear model to the old model, like

an incremental or growing algorithm [27].

In each step of this growing algorithm there are two main tasks:

• The validity function belonging to the considered partitioning of the input

space is computed.

• A local weighted least squares technique optimizes the rule corresponding to

the i-th step.

In each iteration the validity functions that correspond to the actual partition-

ing of the input space are computed, as in Figure 2.14, and the corresponding

rules consequents are optimized by a local weighted least square technique. The

proportionality factor between the rectangles’ extension and the standard devia-

tions is a fixed parameter, that has to be selected by the user. There is not a fixed

optimal value, but the common value in use is [27]:

kσ =
1

3
(2.43)

In the LOLIMOT algorithm the standard deviations are calculated as follows:

σij = kσ ·∆ij (2.44)
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Figure 2.14: Sub-division of the LOLIMOT model and the respective extension of the hyper-

rectangle ∆ij [27]

where ∆ij denotes the extension of the hyperrectangle of local model i in dimen-

sion uj, as in Figure 2.14.

LOLIMOT Algorithm. The algorithm consists of an outer and inner loop

split in four main steps [27]:

1. Initial model: Construct the validity function for the initially given input

space and use the local weighted least square algorithm to estimate the LLM

parameters.

2. Find the worst LLM: The worst Local Linear Model is defined according to

local loss function, max(Ii):

Ii =
N∑
j=1

e2(j)Φi(u(j)) (2.45)

This LLM is selected to be refined.

3. Check and construct all divisions: The hyperrectangle of the worst LLM is

split into two halves with the axis-orthogonal split in all dimensions. For each
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division some several steps are carried out, like construction of the multidi-

mensional membership functions (MSFs) for the hyperrectangle, construc-

tion of a validity function, local estimation of the parameters for the new

LLM and calculation of the loss function for the overall model considered

after the division.

4. Find the best division: Finally, the best division for the new neuron have to

be find from the previous step and must be added in order to increment the

number of LLMs.

In step 3 a fundamental task has been spoken about: the local estimation of the

parameters. The idea behind the local estimation is to consider the optimiza-

tion of the parameters relative to the specific iteration as an individual problem.

Hence, the parameters for the new local linear model generated by the algorithm

are estimated separately. The major advantage of local estimation is its low com-

putational complexity and regularization effect.

From Nelles [27], local estimation seems to be superior to global estimation in

terms of:

• Fast training

• Regularization effect

• Higher flexibility

The overall local model quality depends on the training data distribution. The

complexity of LOLIMOT grows linearly with the number of neurons. Figure 2.15

illustrates the first five iterations of the LOLIMOT algorithm for a two-dimensional

input space (p = 2), whereas Figure 2.16 illustrates an example of the LOLIMOT

approximation in the first seven iterations. It’s possible to see how increasingly

the iterations, and hence the number of the sub-models, improve the function ap-

proximation.

So far, the only parameter that has to be chosen by the user before starting

LOLIMOT is the smoothness kσ of the model. It is very important to understand

the influence of this parameter on the model quality. To explain the changes in
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Figure 2.15: Operation of the LOLIMOT algorithm in the first five iterations for a two-

dimensional input space (p = 2) [27]
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Figure 2.16: Example of the first seven LOLIMOT iterations for one-dimensional function

approximation. [27]
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Figure 2.17: Smoothness optimization: a) before optimization, b) after optimization. [27]

the approximation made by a different choice of the smoothness parameter we

can take an example from Nelles [27]. Figure 2.17 shows the approximation of a

sine function obtained by the LOLIMOT algorithm with M = 8 iterations and

the better quality for an approximation obtained after the optimization of kσ. As

for equation 2.43, the smoothness parameter was chosen a priori as kσ = 1/3. A

subsequent nonlinear optimization of kσ yields the optimal smoothness parame-

ter k
(opt)
σ = 0.53. This kind of optimization requires higher computational effort.

Hence, usually it is more efficient to accept slightly more rules and avoid the non-

linear optimization of kσ. Of course, this tradeoff between model complexity and

training time is problem dependent.

2.4.4 Non-Linear System Identification

A fundamental task of the reduced order model (ROM) is the modeling of

dynamic system, since an unsteady flow with a large amplitude of shock wave

motion or flow separation is a typical nonlinear dynamic system. In such a case

the network should be able to learn the evolution path of a general system from

the input-output data. This kind of memory is obtained through a delay applied

to the hidden neurons. The network process the input together with the input

delays and the output delays. Hence, the input layer is now composed by a set
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Figure 2.18: Example of a single-input single-output model with a delay-order of two for a

RBF-NN, Winter and Breitsamter [23]

of input data and a set of delayed output and input from the hidden neurons.

A fully connected recurrent neural network feedbacks all the neurons output of

an hypothetical step i-th to the input layer of the step i + 1, as in Figure 2.18,

whereas a partially connected recurrent neural network feedbacks only a fraction of

this neurons outputs. The number of the maximum delayed input-output samples

must be chosen by the user, but the effective number of the delays changes in each

time step and depends on the network optimization. The scheme of a recursive

RBF neural network is shown in Figure 2.18 and its corresponding function can

be written, according to [39], as

{ŷk}T = f(uk−1, uk−2, ..., uk−m, ŷk−1, ŷk−2, ..., ŷk−n) (2.46)

where f is a nonlinear function, u is the vector of the system inputs (generalized

structural coordinate vector), and ŷ is the vector of the system outputs (generalized

aerodynamic force vector). m and n are respectively the delay orders of the input

and the output that are determined by the user.

The use of the delay in the model leads to some drawbacks according to Winter

[22]:

• The use of the delayed input-output can lead to a failure accumulation and

an instability of the system.

• This method depends strictly on the quality of the training data and the

training process.
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Figure 2.19: Non-linear system approach scheme for a local linear-neuro fuzzy model

• The time step for application of NN must be the same used in the training

data.

This section is only an introduction to the approaches to evaluate the non-linear

system. A recurrent neural network with RBF is only one of the different ap-

proaches that can be used. This recurrent RBF can be interpreted as a nonlinear

version of the AutoRegressive model with eXogenous input (ARX) identification

technique, and can be also defined as Nonlinear AutoRegressive model with eX-

ogenous input (NARX).

Figure 2.19 summarizes the mechanism adopted by a local linear neuro-fuzzy

model, like the LOLIMOT, to evaluate a non-linear system using m dynamic

delay-orders for the inputs and n delay-orders for the output.

The selection of the delay-orders and the respective results will be explained in

chapter 5.

More information can be found in Haykin [34] and Nelles [27].
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2.5 Non-linear Aeroelasticity

Aeroelasticity is the science that concerns the interaction of aerodynamic, elas-

tic and inertial forces. Static or linear aeroelasticity effects result from the in-

teraction between aerodynamic and inertial forces, whereas dynamic or nonlinear

aeroelastic effects occur by the interaction of all the three forces.

The most important aeroelastic phenomena, as flutter and divergence, can poten-

tially lead to structural failure. In order to ensure the structural integrity, aircraft

structural designs have to be made heavier (the so-called aeroelastic penalty), [38].

Non-linear effects can appear through aerodynamic, structural or control system

mechanisms. In the transonic regime, aerodynamic nonlinearity can occur due to

the movement of shockwaves on the aerofoil surface. Structural non-linearity de-

pends on the cubic stiffness, such as interaction of engine pylon and wing interface

or freeplay caused by the flap/wing interaction. Control systems are also causes

of aeroelastic non-linearities due to the non-linear control laws [16, 25].

This work will focus only on the nonlinear aerodynamic phenomena, like Limit

Cycle Oscillations (LCOs).

In this field previous studies have pointed out some important characteristics of

the transonic flutter phenomena [35]:

• Transonic dip

• Limit cycle oscillations (LCO)

Figure 2.20 shows a typical plot of the flutter speed versus Mach number, and it

can be seen that in the transonic region there is a dramatic reduction in the flutter

speed. The area of this plot where the Mach number leads to a drastic reduction

of the flutter velocity is called transonic ”dip”.

Limit cycle oscillations are a peculiar phenomenon encountered only in the anal-

ysis of nonlinear dynamic systems and are related to flutter phenomena. Indeed,

flutter is considered to be a violent unstable vibration, whereas LCO can be de-

scribed as a bounded flutter.

LCOs can be associated to the formation of large vortical flow structures, as in the
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Figure 2.20: Example of transonic dip related to the flutter velocity and the Mach number

case of low speed and high angle of attack flow regime or associated with moving

shocks in the transonic regime.

One of the advantages of studying theoretical models is that each of the several

possible physical phenomena that lead to LCO can be studied separately. Consid-

ering only the effects of an inviscid flow, as the Euler model used in this work, the

principal effects of interest is the relatively large motion of the shock wave as the

amplitude of the pitch motion of the aerofoil becomes sufficiently large. This mo-

tion leads to a movement of the center of pressure with the amplitude that may lead

to LCO rather than the catastrophic exponentially growing oscillations predicted

by time linearized aerodynamic models. For dynamically non-linear aerodynamic

models it is different, because these allow larger and more general shock motions,

including the appearance and disappearance of shocks during a cycle of aerofoil

motion [25, 16, 17, 7, 24].

A limit cycle oscillation is characterized by sustained periodic oscillations that nei-

ther increase nor decrease in amplitude along the time for a given flight condition,

see Figure 2.21. The high frequency and large amplitude motion of an LCO can

lead to the loss of the structural integrity in different parts of the aircraft and can

lead to a damage caused by the fatigue accumulated. Therefore, the prediction

of this kind of non-linearity is of fundamental importance during the design of a
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Figure 2.21: Example of limit cycle oscillations (LCO) [17]

modern aircraft [25, 17].

There are some examples of documented LCOs occurring on full-size aircraft. On

the F-16 and F-18 fighter aircraft, LCOs have been observed for a wide range of

different store combinations, i.e. missiles, [25, 4, 30].

The undamped and large-amplitude oscillations lead to a reduction in the fatigue

life of certain components and hence can cause an early substitution of the compo-

nent or a more frequent inspection. Both possible solutions add additional costs to

the aircraft maintenance. Furthermore, when the stores under the LCOs motion

are missiles or other weapons, it is possible to have the lock of the weapons or

the separation from the wing of the fighter aircraft. Finally, the LCOs can lead to

unwanted effects to the pilot, insofar the workload increases as well as the level of

the fatigue and stress of the pilot himself.



Chapter 3
Training and Validation Signals

In this chapter the signals used during the unsteady analysis (AER-Eu simu-

lation and ROM simulation) will be discussed. In this context the fundamental

importance of the training signal, which has to be built to lead to an efficient

trained model, will be explained. The training process is a key point of the work,

which influences the response of the reduced order model and the behaviour of

the LCOs during the aeroelastic simulation. Subsequently, the signals that have

been employed to validate the reduced order model are considered. The validation

phase will be used to verify the quality of the ROMs obtained using the different

training signals.

3.1 Training Signal for Identification Task

The input training signal is the only datum that can play an important role in

system identification, because it is the only possibility to build a trained system

that can well approximate the response of the model.

In the linear system identification, the training signal must posses different char-

acteristics [27]:

• The signal range must be fixed between a minimum and a maximum value

• The measurement time is always limited
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(a) Step signal (b) PRBS signal

Figure 3.1: Example of training signals for linear system identification

For the design of the input signal the purpose of the model is relevant and leads

to a specific training signal with specific properties.

In linear system identification the signals used for training the model have the

same amplitude and often the same frequency. These two properties have to be

chosen in order to satisfy the purpose of the considered model. An example of

training signals for linear system identification is shown in Figure 3.1. Figure 3.1(a)

depicts a step series signal with a fixed amplitude and frequency, called rectangular

signal, according to [27]. In Figure 3.1(b) a pseudo random binary signal (PRBS)

is showed, which imitates white noise in discrete time with a deterministic signal,

according to [27] and [42]. For example, in the aerodynamic field, this kind of

signals can be chosen as identification signals for steady aerodynamic analysis.

Instead, the design of the training signal for the identification of a non-linear

system is more decisive than for linear models because the non-linear dynamic

models are significantly more complex and the data require more information [27].

In many practical situations, saving computational time is of extreme importance;

hence, the training signal must not contain too much information to identify a

black box model that is capable of describing the system in all situations. This

underlines the importance of the prior knowledge in order to select only the relevant

information for the training data.

Therefore, for a black box modeling the training signal is the most relevant source

of information. If the signal does not excite all the frequencies and amplitudes of
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interest, the response of the resulting ROM will not be capable of approximating

the response as a full order model that used the CFD. Thus, the design of the

training signal is a key step in the construction of a ROM. Independently of the

chosen model architecture, the quality of the signal determines an upper bound

on the accuracy achieved by the model. According to Nelles [27] the main issues

that influence the design of the excitation signal are:

• Purpose of modeling : the purpose of the modeling should be specified. For

example, a model utilized for the steady aerodynamic analysis must have a

training signal with some constant values, or a model utilized for the control

should be most accurate near the crossover frequency. Instead, in this work,

the only behaviour of interest is the nonlinear aerodynamic effects. Hence,

the input signal can be completely unsteady, without constant parts.

• Maximum length of the training data set : the length of the signal could be

very high. However, the length should be a tradeoff between the number

of information contained in the training data and the computational effort.

The length of the signal must contain the appropriate number of information

to allow a good interpretation of the system.

• Range of input signal : the signal should be built using all the operating

properties that might occur in real operations. It is important that the data

covers the limits of the input range because model extrapolation is much

more inaccurate than interpolation.

An improvement in the CFD unsteady aerodynamic analysis is to involve simulta-

neous excitation of the structural modes of the system. Thus allows the computa-

tion of the unsteady aerodynamic state-space model using a single CFD execution,

independently of the number of structural modes.

In the situation where the goal is the simultaneous excitation of a multiple-input

multiple-output (MIMO) system, system identification techniques dictate that the

nature of the input functions used to excite the system must be properly defined.

Another important point to keep in mind when defining these input functions is

that these functions need to be different, in some sense, from each other. This
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makes sense since, if the excitation inputs are identical and they are applied si-

multaneously, it becomes practically impossible for any system identification al-

gorithm to relate the effects of one input on a given output. With respect to

unsteady aerodynamic MIMO system, these individual impulse responses corre-

spond to time-domain generalized aerodynamic forces (GAF) [41].

Following the guidelines presented previously three signals have been considered

for non-linear system identification:

• Amplitude-modulated pseudo-random binary signal (APRBS)

• Sinusoidal input with random amplitude and frequency

• Totally random signal

To build these signals, in aeroelasticity, the reduced frequency kred, equation 2.8

is widely used, which is a non-dimensional frequency. Hence, the time domain

frequencies of interest have been turned into the reduced frequencies in order to

design a signal based on kred. For the design of the input signal a frequency analysis

based on the Power Spectral Density (PSD) has been used. The power spectrum

of a signal describes how the variance of the data is distributed over the frequency

components [32]. The spectrum helps to decompose the content of the signal into

the different frequencies present in that process.

Furthermore, the ROM simulation works using a non-dimensional time step, which

is defined by:

∆τ = M∞ ·
√
k ·
√
p∞
ρ∞
·∆t (3.1)

where M∞ is the Mach number, k is the isentropic coefficient, p∞ and ρ∞ are the

pressure and density of the free-stream and ∆t is the physical time step in the

time domain.
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3.1.1 Amplitude-Modulated Pseudo-Random Binary

Signal (APRBS)

The amplitude-modulated pseudo-random binary signal (APRBS) is an exten-

sion of the PRBS signal. The PRBS is inappropriate for non-linear systems because

there is no information about the system behaviour for the input amplitudes be-

sides the two values of the range chosen, for example -1 and 1 for the PRBS in

Figure 3.1(b). A possible solution is to extend the PRBS to different amplitudes,

giving to each step of the PRBS a different random amplitude chosen from a range

imposed by the user. Finally, the frequency is influenced by the hold time of each

step throughout the signal. For this reason the minimum hold time must to be

set by the user in order to excite the chosen range of frequency. The main advan-

tage using the APRBS in relation to the PRBS is the large spectrum of excited

frequencies and amplitudes. The APRBS employed in this work for identification

task is represented in Figure 3.2 with its respective PSD.

3.1.2 Random Sinusoidal Signal (RSS)

The random sinusoidal signal is generated by a series of sinusoidal waves, which

randomly change amplitude and frequency each period. The frequency is chosen

from a range specified by the user and the amplitude in the range of interest for the

specific case. In this work a range of amplitude of -1.05 and 1.05 is employed for

the current signal in order to approximate a test signal with an amplitude range

between -1 and 1. If a range of -1 and 1 for the training signal had been chosen,

probably the maximum amplitude would be less than 1. This is why the selected

range of the amplitude is bigger than 1. When the frequency has been chosen

from the specified range, it is held constant for one period. Then the frequency

is chosen again and the process continues. With this kind of signal most of the

frequencies and amplitudes of interest should be excited. Figure 3.3 depicts this

kind of signal and the respective PSD. In this case the reduced frequency is chosen

in a range between 0.1 and 0.5. This choice will be explained in chapter 5.
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(a) APRBS in non-dimensional time domain

(b) APRBS signal PSD

Figure 3.2: APRBS signal for the first mode used for non-linear system identification
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(a) Sinusoidal signal with randomly amplitudes and frequencies in the non-dimensional time

domain

(b) PSD of the random sinusoidal signal

Figure 3.3: Sinusoidal signal with random amplitudes and frequencies used for the first mode
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(a) Random signal in the non-dimensional time domain

(b) Random signal PSD

Figure 3.4: Random signal for the first mode used for non-linear system identification

3.1.3 Random Signal

The last signal chosen to train the ROM is a totally random signal, which

seems, as the APRBS and the random sinusoidal signal, to be able to be employed

as a training signal. The random signal changes random the frequency and the

amplitude from range defined a priori. This signal is very similar to the RSS one.

The only difference is related to the irregularity of the signal due to the thin peaks,

whereas the RSS is smoother. Figure 3.4 shows the random signal used for the

identification purpose.
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3.2 Validation Signal

The test signals designed in this work have been used for the validation phase

of the reduced order model. To guarantee that the system has been trained in

the right manner, different types of signals have been tested with the reduced

frequency and the amplitude in the range of the training signal. The three signals

selected for the validation phase are:

• Sinusoidal signal.

• Generic signal.

• Turbulence excitation signal.

3.2.1 Sinusoidal Signal

The sinusoidal signal has been chosen as the preliminary test for the trained

ROM, because the signal has constant amplitude and frequency and for this reason

should be easier to interpret by the ROM. Both, the amplitude and the frequency,

have been chosen in the range of the training signal. Figure 3.5 shows an example

of the sinusoidal signal suited for the validation phase. The signal selected has

a constant amplitude of 0.6 and a reduced frequency of 0.24, as shown in Figure

3.5(b).

3.2.2 Generic Signal

For testing the ROM model, another interesting signal is the generic excitation

[23]. This signal is an amplified frequency-modulated vibration signal as shown in

Figure 3.6. The amplitude and frequency increase along the time step, up to an

amplitude of 1 for both modes. With this signal it is possible to test the response

of the ROM when it is excited with different amplitudes and frequencies. Using the
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(a) Sinusoidal signal in the non-dimensional time domain

(b) Sinusoidal signal PSD

Figure 3.5: Sinusoidal signal for the first mode (validation phase)
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(a) Generic signal in the non-dimensional time domain [23]

(b) Generic signal PSD

Figure 3.6: Generic signal (validation phase)

sinusoidal test signal and the generic signal the ROM is tested only with smooth

signals. Therefore, the third signal selected for the validation phase is a random

signal.

3.2.3 Turbulence Excitations

It is well known that, during the flight, aircrafts encounter atmospheric turbu-

lence of varying degree of severity. Turbulence may be considered as the movement
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Figure 3.7: Aircraft encountering a vertical gust [17]

of the air through which the aircraft passes, which changes the effective incidence

of the aerodynamic surfaces. The component of the velocity of the air that is nor-

mal to the flight path, as illustrated in Figure 3.7, causes sudden changes in the lift

forces and hence a dynamic response of the aircraft involving flexible deformation.

The response of the aircraft to the turbulence may give rise to discomfort for pas-

sengers and the crew and will introduce internal loads that need to be considered

during the design for aircraft safety [17].

Turbulence, although a complicated phenomenon, is normally considered for de-

sign purposes in one of two idealized categories, namely [17]:

• Discrete gust, where the gust velocity varies in a deterministic manner, often

in the form of a ’1-cosine’ shape.

• Continuous turbulence, where the gust velocity is assumed to vary in a ran-

dom manner.

The difference between the two types of turbulence may be seen in Figure 3.8.

Gust and turbulence may be vertical, lateral or at any orientation to the flight

path, but each direction is normally treated separately. Thus, for a symmetric air-
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Figure 3.8: Continuous and discrete turbulence [17]

craft, a vertical gust will give rise to heave/pitch motions, whereas a lateral gust

will cause sideslip/yaw/roll motions [17]. In this work, to simplify the simulation,

only the vertical gust has been treated, which leads to a heave/pitch motion of

the aerofoil. Furthermore, only the continuous turbulence has been considered,

because it can be treated as a random signal.

Continuous turbulence is represented by a random variation in the velocity of the

air normal to the flight path of the aircraft. The treatment of random continuous

turbulence usually requires calculations to be performed in the frequency domain

using a power spectral density (PSD). In this thesis the turbulence has been ap-

proximated by a random signal, which excites the aerofoil heave/pitch motions.

Figure 3.9 depicts the random signal that has been used to stimulate the ROM

model and the respective PSD.
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(a) Turbulence excitation in the non-dimensional time domain

(b) Turbulence PSD

Figure 3.9: Turbulence excitation for the first mode (validation phase)



Chapter 4
Coupling of Structural Dynamics

with Fluid Dynamics

In computational aeroelasticity fluid forces must be communicated to a struc-

tural grid and the resulting deflections of this grid must be communicated back

to the aerodynamic mesh. Usually this is complicated, because the number of

nodes in the CFD mesh is higher than the number of nodes in the structural grid.

Thus, to obtain the equivalent accuracy the CFD mesh has more nodes than the

structural grid.

An efficient and accurate coupling method is therefore critical in developing a cou-

pled CFD-CSD methods [25].

A typical coupled fluid structure analysis diagram is shown in Figure 4.1. For

every time step, one needs to map the surface loads from the CFD mesh onto the

structural grid to obtain the forces on the CSD grid system, which are then used

to obtain the displacements on the CSD grid. Maintaining accuracy in the data

exchange process is very important in order to obtain correct aeroelastic results.

The complexity of the coupled system increases and therefore the computational

effort increases in turn. Several techniques exist to carry out these interpola-

tions/extrapolations, i.e. infinite-plate splines (IPS) or thin-plate splines (TPS),

see Kamakoti [31]. All these methods well approximate the response of the aeroe-

lastic model; however, the whole computational time involves the effort for the
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Figure 4.1: Coupled fluid-structure flow diagram

CFD unsteady simulations and the CFD-CSD simulations. For this reason other

methods that can well approximate the aeroelastic solution and reduce consider-

ably the computational effort have been developed.

In order to satisfy these requirements, the reduced order model can be coupled

with the structure. The resulting aeroelastic system should be able to predict the

main non-linearities of the flow, thus the LCO can be computed using a more

compact model than the coupled CFD-CSD model.

A coupled fluid-structure simulation algorithm can be used to integrate the equa-

tion 2.33 of the structure in state-space form in the time domain along with any

unsteady flow solver or ROM to determine the characteristics of the coupled aeroe-

lastic system.

In this chapter several schemes used to integrate equation 2.33 in the time domain

will be used.

4.1 Time Marching Methods

4.1.1 Euler Methods

The first order-method is one of the basic time integration schemes. It is an

explicit method and therefore it is easier to implement. The equations of the Euler
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method reads as

~̇xk =
~xk − ~xk−1

∆t
(4.1)

~xk = ~xk−1 + ∆t(AAA~xk−1 +BBB~uk−1) (4.2)

where ∆t is the time step chosen by the user in the previous unsteady simulation,

~u is the input vector, ~x is the state vector and k refers to the k-th time step. The

main drawback of this method is that it tends to be unstable for not small enough

time steps [37].

In order to avoid this problem in this work other approaches have been used.

4.1.2 Hybrid Linear Multistep Scheme

Referring to Zhang [39], a type of second-order hybrid linear multistep scheme

for coupled fluid-structure simulation is used to integrate Equation 2.33 in the

time domain. This scheme is based on the second order implicit Adams Linear

Multistep Scheme (IALM) involving a predictor step and a corrector step.

~xpred,k = ~xk−1+
∆t

2
(3AAA~xk−1−AAA~xk−2)+

∆t

2
(3BBB~uk−1−BBB~uk−2) (predictor) (4.3)

~xk = ~xk−1 +
∆t

2
(AAA~xk−1−AAA~xpred,k) +

∆t

2
(BBB~uk−1−BBB~upred,k) (corrector) (4.4)

where ~upred,k denotes the input at time step k yielded by the predicted state vector

~xpred,k. For instance, the input vector of the structural model is the vector of the

generalized forces, which are coupled to the modal displacements vector contained

in the state vector. With this scheme, the aerodynamic loads will be evaluated

twice at each time step; once for the corrector step and then for the computation

of the actual loads yielded by the deformation that has just been provided by the

scheme.
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The Hybrid Linear Multistep Scheme (HLM) has been obtained once extrapolating

the aerodynamic loads of the k−th corrector step from several prior values:

~uk = 2~uk−1 − ~uk−2 (4.5)

and the second order HLM scheme reads

~xpred,k = ~xk−1 +
∆t

2
(3AAA~xk−1 −AAA~xk−2) +

∆t

2
(3BBB~uk−1 −BBB~uk−2) (4.6)

~xk = ~xk−1 +
∆t

2
(AAA~xk−1 +AAA~xpred,k) +

∆t

2
(3BBB~uk−1 −BBB~uk−2) (4.7)

The same method can be applied with the following fourth order extrapolation:

~uk = 4~uk−1 − 6~uk−2 + 4~uk−3 − ~uk−4 (4.8)

Using the second order implicit IALM scheme as basis the 4th order HLM scheme

can be obtained:

~xpred,k = ~xk−1 +
∆t

24
(55AAA~xk−1 − 59AAA~xk−2 + 37AAA~xk−3 − 9AAA~xk−4)+

+
∆t

2
(55BBB~xk−1 − 59BBB~xk−2 + 37BBB~xk−3 − 9BBB~xk−4) (4.9)

~xk = ~xk−1 +
∆t

24
(9AAA~xpred,k + 19AAA~xk−1 − 5AAA~xk−2 +AAA~xk−3)+

+
∆t

2
(55BBB~uk−1 − 59BBB~uk−2 + 37BBB~uk−3 − 9BBB~uk−4) (4.10)

The HLM schemes of 2nd and 4th order don’t require any evaluation of the aero-

dynamic forces in the corrector step. The implicit IALM scheme has been turned

into an explicit scheme, yet using a predictor-corrector procedure. The superior ac-

curacy, stability and computational efficiency of the scheme are also demonstrated

in Zhang [39].
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4.2 Coupling of a Non-Linear ROM with the Struc-

tural Model

As already introduced in section 2.4.4 a neural network capable of predicting

the non-linear effects introduced by the aerodynamic has to take into account the

delay inputs and the delay outputs of the system. The neural network used in

this work provides at each time step an evaluation of the generalized aerodynamic

forces (GAFs), taking several previous values m of inputs (modal displacements)

and outputs n (GAFs) into account.

During the coupled simulation the time step is fixed by the non-dimensional time

step used in the neural network, because the neural network does not involve any

integration scheme and therefore there is no possibility to choose another ∆τ . The

dimensionless time step ∆τ is linked to the physical time step as follows:

∆t = ∆τ ·
√

ρ∞
p∞ · k

· 1

Ma∞
(4.11)

where ρ∞ and p∞ are the density and the pressure of the free stream. The com-

puted time step ∆t will be used for the time integration of the structural model.

First, the matrices of the state-space model form of the structural model AAA and BBB

will be computed in order to get the parameters to solve the algorithm based on

the state-space model equations.

The modal displacements contained in ~xk are derived from prior values of the

structural state vector and generalized aerodynamic forces using the HLM proce-

dure:

~xk = f(AAA,BBB, ~xk−1, ~xk−2, ..., ~xk−m, ~fgen,k−1, ~fgen,k−2, ..., ~fgen,k−n) (4.12)

Under the assumption that the coupled system is at rest before the beginning of

the simulation, the initialisation values are all set to the corresponding steady-

state values. Thus, initial values for the ~fgen,1 and ~fgen,2 have to be chosen from

the AER-Eu CFD steady aerodynamic simulations. Subsequently the modal dis-

placements will be scaled with values computed by the Lehrstuhl für Aerodynamik

und Strömungsmechanik in order to obtain the real displacements.
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Figure 4.2: Coupling of a structural model with a ROM at time step k for a first order time

integration scheme

The neural network function used in the coupled code will be referred as a function

net and permits to compute the generalized aerodynamic forces. The input of this

function consists of a vector input containing the current modal displacement vec-

tor as well as its m previous instances and the n previous values of the generalized

aerodynamic forces computed by the ROM. It yields the generalized aerodynamic

forces vector at the current time step:

~fgen,k = net([~qk, ~qk−1, ..., ~qk−m, ~fgen,k−1, ..., ~fgen,k−n]T ) (4.13)

This procedure is repeated for a number of time steps N chosen by the user.

Figure 4.2 shows a flow scheme of the entire model used to obtain the non-linear

aeroelastic response of the system at time step k for a first order time integration

scheme.

Coupling the ROM with the structural dynamics allows to decrease the computa-

tional time with respect to the standard CFD-CSD simulation.



Chapter 5
Results and Discussion

5.1 Test Case: NLR 7301 Supercritical Aerofoil

A conventional wing is rounded on top and flat on the bottom. The super-

critical wing is flatter on the top, rounded on the bottom, and the upper trailing

edge is accented with a downward curve to restore lift lost by flattening the upper

surface.

When an aircraft is flying at what is called critical speed, air flowing across the

top and eventually the bottom of the wing moves faster and creates a shock wave.

This shock wave causes the smooth flow of air hugging the upper surface of the

wing to separate from the wing and create turbulence. The air becomes unsteady

and churning, and drag increases. This increases fuel consumption and it can also

cause vibrations. Supercritical wings (SCW) have a flat-on-top ”upside down”

look. As air moves across the top of the SCW, it does not speed up nearly as

much as over a curved upper surface. This delays the onset of the shock wave and

also reduces aerodynamic drag associated with boundary layer separation. Lift

that is lost with less curvature on the upper surface of the wing is regained by

adding more curvature to the upper trailing edge. Now the aircraft can cruise at a

higher speed and fly up into the supercritical range and with less drag, the aircraft

is using less fuel than it would otherwise consume [3].

The NLR7301 supercritical aerofoil section is shown in Figure 5.1. This geometry
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Figure 5.1: Geometry of the NLR7301 aerofoil [37]

has already been investigated in the context of nonlinear aeroelastic analysis, see

Weber et al. [36], Harris [3] and Tang et al. [20]. It has a maximum thickness of

16.5% at 35% of the chord length and a maximum camber of 1.7% at 75% of the

chord length. Figure 5.2 depicts a simplified model of the two-degree-of-freedom

test set-up. The two-dimensional wing has a chord length of 0.3 m (c = 0.3 m)

and a span of 1 m (b = 1 m). The plunge spring and the pitch spring are attached

to the same c/4 position. The corresponding two-degree-of-freedom equation of

motion of the set-up reads as [20][
mh −sα
−sα Ic/4

][
ḧ

α̈

]
+

[
Dh 0

0 Dα

][
ḣ

α̇

]
+

[
Kh 0

0 Kα

][
h

α− α0

]
=

[
L(t)

M(t)

]
(5.1)

where mh is the total mass, Ic/4 is the mass moment of inertia about c/4, sα is

the static unbalance, Dh and Dα are the damping factors of the plunge motion

(h) and the pitch motion (α), Kh and Kα are the stiffness of the plunge spring

and the pitch spring, and L(t) and M(t) are the aerodynamic lift and moment,

respectively, in Newton and Newton-meter.

5.2 NLR 7301 Aerofoil Modal Analysis

For the modal analysis, the 2-dimensional wing1 is considered, which is exposed

in section 5.1. This section is subjected to a plunge h and a pitch α motion in the

plane containing the section, which represent the torsional and bending motion of

1The wing is 3-dimensional, but its geometry is a simple extrusion of the NLR7301 aerofoil.
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Figure 5.2: Two degree of freedom dynamic model [36]

the wing, governed by the lift L and pitching moment M respectively. From Figure

5.2 it can be seen how the system is characterized by a spring-damper system for

the plunge motion (Kh and Dh) and one for the pitch motion (Kα and Dα).

The numerical values of the parameters used in the structure equation 5.1 of the

NLR7301 can be found in Table A.1. These parameters referred to Weber et al.

[36] and Tang et al. [20] experimental data.

Applying the modal transformation described in section 2.2 to equation 5.1 and

solving using MATLAB the modal parameters listed in Table 5.1 has been found.

From Table 5.2 it can be seen that the values computed with MATLAB are differ-

ent from those computed in Tang et al. [20]. Since the values differ in very small

percentage, these are considered acceptable.

The diagonal values of the modal stiffness matrix correspond to the squared values

of the undamped natural frequencies of the plunge and the pitch motions, respec-

tively ωh = 205.6 rad/s and ωα = 298.35 rad/s. Hence, the structural equation
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Table 5.1: Modal parameters of the NLR7301 aerofoil obtained with MATLAB

Matrix Variable MATLAB

Modal matrix ΦΦΦ

[
−0.1741 0.0985

0.9139 3.4009

]
Modal mass matrix MMM III2

Modal stiffness matrix KKK

[
4.2272 · 104 0

0 8.9010 · 104

]

Modal damping matrix DDD

[
2.6785 −0.8102

−0.8102 3.0835

]

Table 5.2: Modal matrix of the NLR7301 aerofoil obtained with MATLAB compared with the

modal matrix computed in Tang et al. [20]

Matrix Variable MATLAB Tang et al.

Modal matrix ΦΦΦ

[
−0.1741 0.0985

0.9139 3.4009

] [
−0.1735 0.1004

0.9277 3.4030

]
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becomes

[III]{q̈̈q̈q}+

[
2ωhξh 0

0 2ωαξα

]
{q̇̇q̇q}+

[
ω2
h 0

0 ω2
α

]
{qqq} = ΦΦΦT

{
L(t)

M(t)

}
(5.2)

where ξh and ξα are the plunge and pitch damping ratios.

5.3 NLR 7301 Aerodynamic Analysis

In the following section, the aspects relative the NLR7301 steady aerodynamic

analysis will be presented. The CFD grid will be introduced and the steady simu-

lations exploited with the AER-Eu code will be analysed and compared with those

computed in literature.

5.3.1 CFD Grid

The grid used for the CFD computations has been built by the aerodynamic

department of the TUM with the ICEM CFD software. The grid is suited for

Euler computation; hence, the quality of the grid is less refined, especially near

the wall. A low quality grid can cause several numerical errors and thus influence

the results of the CFD computation. However, a grid of good quality for complex

geometry can be a very time-demanding task, since many parameters have to be

taken into account.

A 2-D and 3-D view of the mesh that has been provided are depicted in Figure

5.3 and 5.4.

5.3.2 Steady Simulation Results

In order to evaluate the approximation of the Euler equations for the airflow

on the NLR7301 aerofoil and in order to have a starting condition for the unsteady

simulation a steady-state simulation is necessary.

The NLR7301 aerofoil offers a distinct nonlinear aerodynamic behaviour in the

transonic flight regime due to the presence of a strong shock. For this reason,

different Mach numbers have been tested to find the proper condition where the
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Figure 5.3: Grid used for the Euler computations of the airflow around the NLR7301 aerofoil

Figure 5.4: 3-D view of the grid used for the Euler computations of the airflow around the

NLR7301 aerofoil
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shock wave occurs. According to Weber et al. [36] and Tang et al. [20] the first

choice is a Mach number of 0.753 and an angle of attack of 0.6 deg. In this manner

it is possible to compare the results of the experimental test performed in Weber

et al. [36] with the results of the AER-Eu software using the Euler equations.

Figure 5.5 depicts the difference of the pressure distribution (Cp) on the aerofoil

between the experimental data measured in Weber et al. [36] and the data obtained

from the AER-Eu code, whereas Figure 5.7 shows the distribution of the Mach

number around the aerofoil. From the figure it is clearly visible how, at Ma∞ =

0.753 for the Euler case, the flow on the upper side is more accelerated than in

the experiment, so the pressure coefficient is lower and the lift coefficient slightly

overestimated. Furthermore, the location of the predicted shock is behind the

measured one. According to Tang et al. [20], it appears to be impossible to match

both the measured strength and location of the shock using the Euler equations.

Only using viscous models it is possible to approximate the experimental steady-

state solution, as it is shown in Figure 5.6. In Tang et al. [20], two viscous

computations are performed, one with the Degani-Schiff modified Baldwin-Lomax

turbulence model (B-L-D-S) and the other with the Spalart-Allmaras turbulence

model (S-A).

Despite these differences, Euler computation will be used for this work because of

the lower computational effort compared to the Navier-Stokes simulation and the

capacity to capture the nonlinear aerodynamic phenomena.

In order to verify at which Mach number the shock occurs and the behaviour of

the airflow around the aerofoil two other steady simulations are then performed

using a Mach number of Ma∞ = 0.5 and Ma∞ = 0.9 with an angle of attack of

0.0 deg.

The steady solution of the wing at Ma∞ = 0.5 and α = 0.0 deg, depicted in

Figure 5.8, shows that the shock wave is not present due to the subsonic Mach

number. Thus, the airflow does not meet the shock wave phenomenon. For the

Euler computation at Ma∞ = 0.753 and α = 0.0 deg, a compression shock on

the upper side of the aerofoil can be clearly seen from Figure 5.9(a), whereas a

compression shock, with a different location on the aerofoil, on the upper and
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Figure 5.5: Pressure coefficient distribution of the steady-state on the NLR7301 aerofoil with

a free stream Mach number Ma∞ = 0.753 and an angle of attack α = 0.6 deg

Figure 5.6: Pressure coefficient distribution of the steady-state on the NLR7301 aerofoil with a

free stream Mach number Ma∞ = 0.753 and an angle of attack α = 0.6 deg performed by Tang

et al. [20]
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Figure 5.7: Steady simulation of the NLR7301 at Ma∞ = 0.753 and α = 0.6 deg

Figure 5.8: Steady simulation of the NLR7301 at Ma∞ = 0.5 and α = 0.0 deg
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lower surface can be seen in Figure 5.9(b) at Ma∞ = 0.9 and α = 0.0 deg. Figure

5.9 shows that for both the Mach number considered the shock phenomenon is

encountered.

Furthermore, Figure 5.10 depicts the pressure distribution on the aerofoil for the

three different Mach numbers tested at α = 0.0 deg using the Euler equations.

For this reason, in this work only Mach numbers of Ma∞ = 0.9 and Ma∞ = 0.753

with α = 0.0 deg and α = 0.6 deg will be considered in order to study the nonlinear

phenomena caused by the shocks and subsequently to compare the data obtained

with α = 0.6 deg with the experimental/numerical results obtained in Weber et

al. [36] and Tang et al. [20].

5.4 ROMs Training and Validation Phase

Using the training signals exposed previously, chapter 3, it is possible to train

the reduced order models in order to evaluate the response of the aerodynamic

system to the simultaneously superimposed modal deflection.

Thanks to the modal analysis performed in section 5.2, the values of the un-

damped natural frequencies of the plunge and pitch motions have been found,

approximately 33 Hz for the first mode and 47 Hz for the second mode.

As explained in chapter 3, using the values of the undamped natural frequencies

it is possible to find the approximate values of the reduced frequencies that can

be used to design the training signals for the NLR7301 aerofoil model. Hence,

the frequencies of the training signals will be centered on these values in order

to capture the aeroelastic phenomena, like Limit Cycle Oscillations (LCO), which

occur near these frequencies according to the experimental data of Weber et al.

[36] and Tang et al. [20].

As introduced, in the aeroelastic analysis the reduced frequency is used to study

the LCO phenomena. Thus, from equation 2.8 with p∞ = 101325 Pa, ρ∞ = 1.225

Kg/m3, T∞ = 288.15 K, k = 1.4, lref = 0.3 and Ma∞ = 0.753 the first and the

second reduced frequencies of the two modes are respectively kred1 = 0.24 and

kred2 = 0.34, where lref is the reference aerodynamic length of the aerofoil. In
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(a) Ma∞ = 0.753 and α = 0.0 deg

(b) Ma∞ = 0.9 and α = 0.0 deg

Figure 5.9: Steady simulation of the NLR7301
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Figure 5.10: Pressure coefficient distribution of the steady-state on the NLR7301 aerofoil with

α = 0.0 deg

this work, it has been chosen to design the training signals around the reduced

frequency of the two modes in order to reduce the CFD computational effort. A

training signal that has a wide range of frequencies needs a lot of time in terms of

computational effort for the CFD simulation.

During the unsteady AER-Eu simulation, the 2 DOF aerofoil is forced in rigid

plunge and pitch motion with the training input designed in chapter 3. Thus, the

CFD simulation represents a purely unsteady aerodynamic problem since no mass

and stiffness characteristics of the aeroelastic system are specified and the aerofoil

is treated like a rigid body. The aerodynamic system to be identified is character-

ized by two inputs and two outputs as a Multi Input Multi Output (MIMO) model.

Successively, the CFD data obtained can be used for the training process of the

ROM.

Figure 5.11 represents the schematic role of the RBF or LOLIMOT as aerody-

namic ROM.

After the model has been trained, it has been possible to validate it with one or
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Figure 5.11: Scheme of the MIMO ROM model

more of the validation signals presented in chapter 3 in order to verify the response

of the system.

To summarize the discussed reduced order methods outlined in section 2.4, a com-

posite of the multidisciplinary approaches is given in Figure 5.12. The AER-Eu

code starts from the results of the steady simulation, with the Mach number and

the angle of attack chosen a priori, and solves the unsteady simulation using the

designed input signal for the modal displacements. As a result of the particu-

lar AER-Eu simulation, the time-series of the generalized force vector fgen(τ) is

obtained. Figure 5.12 depicts the output of the unsteady ROM simulation as a

function of the nondimensional time given by equation 3.1. The neural networks

for the reduced order models selected in this thesis are the Radial Basis Function

Network (RBF) and the Local Linear Model Tree Algorithm (LOLIMOT), which

have been implemented by Dipl.-Ing. Maximilian Winter. In order to select the

intrinsic parameters of both models preliminary simulations with the parameters

commonly used in literature have been done. Table 5.3 shows the main parameters

selected in this work after preliminary attempts.

In the following simulations, 70% of the chosen training signal is considered as the

training set for conditioning the nonlinear RBF-ROM and LOLIMOT-ROM, as

suggested by Winter and Breitsamter. The remaining 30% of the data is exploited

for verification purposes in order to realize a stable and accurate model.

Furthermore, the present work uses the orthogonal least squares (OLS) method as

training procedure for the RBF-NN. The procedure chooses radial basis function
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Figure 5.12: Scheme of the RBF-ROM method
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centers one by one in a rational way until an adequate network has been con-

structed. The OLS method can be employed as a forward regression procedure to

select a suitable set of centers (regressors) from a large set of candidates. At each

step of the regression, the increment to the explained variance of the desired out-

put is maximized. This rational approach provides an efficient learning algorithm

for fitting adequate RBF networks [33].

Instead, for the LOLIMOT algorithm, it has been chosen a maximum number of

local linear models (LLMs) of 5. In this manner, it has been reached a trade off

between the computational effort and the maximum error, which no decrease em-

ploying higher number of LLMs. The delays input and output have been chosen in

order to avoid some kind of instability that might show up if too high delays orders

are selected. Figure 5.13, 5.14 and 5.15 depict the maximum mean squared error

relative to the input-output delay order choice. In these figures, the maximum

mean squared error for the two generalized aerodynamic forces captured by the

ROMs is shown, whereas an empty space has been left when the system becomes

numerically unstable due to the higher delay order. For example, from Figure

5.13(a), it is possible to see how the system becomes unstable already for a lower

input-output delay order, respectively m = 3 and n = 3. This kind of instability

is due to the properties of the APRBS training signal, which induces some kind

of numerical instability in the code. Probably, the multiple plateau are not so

suited for a dynamic system, but they are better for a linear system. Although

using the RBF-ROM with the APRBS signal the system becomes unstable, using

the LOLIMOT-ROM the system is stable even with high delay orders. Thus, Fig-

ure 5.16, underlines the input-output delay and the respective mean squared error

orders for each ROM and training signal that lead to a smaller maximum mean

squared error. From the figure it’s clear how using a random signal for training

purpose leads to an error of the order of 10−6 for both the generalized aerodynamic

forces.
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Table 5.3: Relevant parameters of the ROM used in this work

Parameters RBF-NN LOLIMOT

Selection of training data Random Random

Set of training data 70% 70%

Radial basis function Gauss function /

Sigma-range 10−2 ÷ 106 /

kσ / 1
3

Splitting ratio / 2

LLM / 5

(a) RBF-ROM mean squared error (b) LOLIMOT-ROM mean squared error

Figure 5.13: Maximum mean squared error relative to the input-output delay order chosen for

a ROM trained with the APRBS signal
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(a) RBF-ROM mean squared error (b) LOLIMOT-ROM mean squared error

Figure 5.14: Maximum mean squared error relative to the input-output delay order chosen for

a ROM trained with the random sinusoidal signal

(a) RBF-ROM mean squared error (b) LOLIMOT-ROM mean squared error

Figure 5.15: Maximum mean squared error relative to the input-output delay order chosen for

a ROM trained with the random signal
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(a) ROM trained with the APRBS signal (b) ROM trained with the random sinusoidal

signal

(c) ROM trained with the random signal

Figure 5.16: Maximum mean squared error relative to the optimal input-output delay order

chosen for the either ROM
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(a) APRBS signal for the first modal displace-

ment

(b) APRBS signal for the second modal dis-

placement

(c) APRBS PSD for the first modal displace-

ment

(d) APRBS PSD for the second modal displace-

ment

Figure 5.17: APRBS training signal

5.4.1 APRBS Training

As suggested by Nelles [27] and Winter and Breitsamter [22], the first training

signal selected is the APRBS. For the MIMO model there are two different inputs

that represent the first and the second modal displacement. Figure 5.17 shows

the two modal displacements and the relative PSD. From the figure it can be seen

how the reduced frequency of both displacements is chosen in the range between

0 and 0.7 in order to decrease the computational effort and involve the reduced

frequencies of the undamped NLR7301 aerofoil.

The APRBS signal has been used to train both the reduced order models chosen

in this work. Figure 5.18 shows the response of the system of the two generalized

aerodynamic forces for the RBF-ROM trained with an APRBS signal and tested
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with the same signal. Instead, Figure 5.19 depicts the response of the LOLIMOT-

ROM. In this case, the LOLIMOT-ROM shows better agreement for the trained

system for both the generalized aerodynamic forces, as it was demonstrated pre-

viously in Figure 5.13. This should suggest a better approximation of the results

during the validation phase.

In order to verify that the system has been well trained and hence verify the capac-

ity of the APRBS to be a good training signal for a dynamic system, the reduced

order models have been tested with the three different signals proposed in chap-

ter 3. The three signals that have been built for the 2-DOF model are shown in

Figure 5.20, 5.21 and 5.22. The reasons for the choice of these three signals have

already been explained in chapter 3. Also here, for all validation signals a reduced

frequency kred in the range of the training signal has been assumed in order to

allow to the model to approximate the tested signals.

The simple sinusoidal signal with fixed amplitude and frequency has been chosen

as the basis to validate the ROM. In this manner it is possible to understand if the

model has been trained accurately for the purpose of this work, see Figure 5.23.

Both models can approximate the first generalized aerodynamic force fgen,1 well,

whereas for the second generalized aerodynamic force fgen,2 the model appears less

fit to approximate the results obtained by the AER-Eu CFD simulations.

More problems occur if the model is tested with a signal that changes both the

amplitude and the frequency, like the generic signal and the random/turbulence

signal. Figure 5.24 and 5.25 show the response of the system tested with these

signals.

Studying the response of the two models employed here and trained with the

APRBS, it is possible to see how the LOLIMOT-ROM model is more stable than

the RBF-ROM and has the capacity to approximate the results of the CFD better.

5.4.2 Random Sinusoidal Signal Training

In this work it has been chosen to build a random sinusoidal signal for training

purpose insofar as this signal has the property to change both the frequency and
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(a) fgen,1 for the APRBS signal response

(b) fgen,2 for the APRBS signal response

Figure 5.18: Simulation of the system using the RBF-ROM trained with the APRBS
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(a) fgen,1 for the APRBS signal response

(b) fgen,2 for the APRBS signal response

Figure 5.19: Simulation on the system using the LOLIMOT-ROM trained with the APRBS
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(a) Sinusoidal signal for the first modal displacement

(b) Sinusoidal signal for the second modal displacement

(c) Sinusoidal PSD for the first modal dis-

placement

(d) Sinusoidal PSD for the second modal dis-

placement

Figure 5.20: Sinusoidal signal for the modal validation
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(a) Generic signal for the first modal displacement [21]

(b) Generic signal for the second modal displacement [21]

(c) PSD of the generic signal for the first modal

displacement

(d) PSD of the generic signal for the second

modal displacement

Figure 5.21: Generic signal for the modal validation according to Winter and Breitsamter [21]
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(a) Random signal for the first modal displacement

(b) Random signal for the second modal displacement

(c) Random signal PSD for the first modal dis-

placement

(d) Random signal PSD for the second modal

displacement

Figure 5.22: Random signal for the model validation
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.23: Response of the RBF-ROM and LOLIMOT-ROM trained with the APRBS and

tested with the sinusoidal signal
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.24: Response of the RBF-ROM and LOLIMOT-ROM trained with the APRBS and

tested with the generic signal
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.25: Response of the RBF-ROM and LOLIMOT-ROM trained with the APRBS and

tested with the random/turbulence signal
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the amplitude during its length. This behaviour is of fundamental relevance be-

cause the system can be trained for more than one frequency and one amplitude, as

in the APRBS. The amount of frequencies and amplitudes inside the signal strictly

depends on its length. Here, the length is a trade off between the desired frequen-

cies and amplitudes and the computational effort. Figure 5.26 depicts the random

sinusoidal signal and the respective PSD, which is in the range of kred ∈ [0, 0.8]

with a slight difference from the two modal displacements. The frequency of the

first modal displacement q1 is centred around kred,1 = 0.24, whereas the frequency

of the second modal displacement q2 is centred around kred,2 = 0.34. Furthermore,

this signal has less constant values, like plateaus, compared to the APRBS. Thus,

it seems to be more suited for the unsteady problem, because can trained the

model with more frequencies and amplitudes in a shorter length saving computa-

tional effort.

The simulations on the training signal for the two ROM proposals are depicted

in Figure 5.27 and 5.28. As for the APRBS training, the LOLIMOT-ROM is

more stable than the RBF-ROM. With the LOLIMOT is possible to use higher

input-output delay orders without losing stability. Regardless, in this case the

RBF-ROM can better approximate the results from the CFD for both the gener-

alized aerodynamic forces.

The same validation signals used for the APRBS training have been employed here

and the results can be seen in Figures 5.29, 5.30, and 5.31.

With the random sinusoidal signal, in relation to the LOLIMOT-ROM, the RBF-

ROM approximates extremely well the CFD results of the first generalized aerody-

namic forces fgen,1 and very well the second generalized aerodynamic forces fgen,2.

As it is expected, compared to the APRBS training, the random sinusoidal signal

gives better results in the approximation of the nonlinear solution.

5.4.3 Random Training

As the random sinusoidal signal, the random signal has the property to sweep

a broad range of frequencies and amplitudes. The only difference is related to

the regularity of the signal. Whereas the random signal presents different thin
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(a) Random sinusoidal signal for the first modal displacement

(b) Random sinusoidal signal for the second modal displacement

(c) Random sinusoidal signal PSD for the first

modal displacement

(d) Random sinusoidal signal PSD for the sec-

ond modal displacement

Figure 5.26: Random sinusoidal training signal
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(a) fgen,1 for the random sinusoidal signal response

(b) fgen,2 for the random sinusoidal signal response

Figure 5.27: Simulation of the system using the RBF-ROM trained with the random sinusoidal

signal
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(a) fgen,1 for an random sinusoidal signal response

(b) fgen,2 for an random sinusoidal signal response

Figure 5.28: Simulation of the system using the LOLIMOT-ROM trained with the random

sinusoidal signal
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.29: Response of the RBF-ROM and LOLIMOT-ROM trained with the random sinu-

soidal signal and tested with the sinusoidal signal
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.30: Response of the RBF-ROM and LOLIMOT-ROM trained with the random sinu-

soidal signal and tested with the generic signal
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.31: Response of the RBF-ROM and LOLIMOT-ROM trained with the random sinu-

soidal signal and tested with the random/turbulence signal
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peaks with a corresponding discontinuous derivative, the random sinusoidal signal

is smoother, with discontinuity only from a period to another. Here, a trade off

between the length of the signal and the computational effort has also been done.

For this reason the frequencies employed for the two modal displacements are cen-

tered around the natural undamped frequencies of the two eigenmodes. Figure

5.32 depicts the random training signal and the respective PSD.

The reduced frequency of the first modal displacement is in the range of kred,1 ∈
[0, 0.7], whereas for the second mode is in the range of kred,2 ∈ [0, 0.8].

Figure 5.33 and 5.34 depict the response of the system to the training signal

respectively for the RBF-ROM and for the LOLIMOT-ROM. In this case both

models extremely well approximate the first and the second generalized aerody-

namic forces with a maximum squared error of the order of 10−6. Probably, the

totally random behaviour of the signal is more suited to approximate the response

of the system and using the random signal more frequencies and amplitudes can

be introduced in a shorter length.

From Figure 5.35 it can be seen how the RBF-ROM is more suited than the

LOLIMOT-ROM to approximate the sinusoidal signal with a model trained with

the random signal. Especially, the second generalized aerodynamic forces fgen,2

shows better results using the RBF-ROM.

The stability properties of the LOLIMOT-ROM can be seen from Figure 5.36,

where the RBF-ROM is unable to approximate all the response of the system due

to the instability of the model, even using small order input-output delays. This

could depends on the range of frequencies and amplitudes of the random training

signal. Certainly, employing a longer signal the system could well approximate the

generic signal.

The good behaviours of the ROM trained with a random signal are depicted again

in Figure 5.37 for the approximation of the random/turbulence test signal. In this

case no instability problems occur and both ROMs can approximate well the CFD

results, especially the RBF-ROM.

Hence, a ROM trained with a random signal shows better ability to approximate

the correct response of the system and could be used to study a random signal,
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(a) Random signal for the first modal displacement

(b) Random signal for the second modal displacement

(c) PSD of the random signal for the first modal

displacement

(d) PSD of the random signal for the second

modal displacement

Figure 5.32: Random training signal
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(a) fgen,1 for the random signal response

(b) fgen,2 for the random signal response

Figure 5.33: Simulation of the system using the RBF-ROM trained with the random signal
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(a) fgen,1 for an random sinusoidal signal response

(b) fgen,2 for an random sinusoida signal response

Figure 5.34: Simulation of the system using the LOLIMOT-ROM trained with the random

signal
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like a turbulence.

In order to test the potential of the random trained ROM it was decided to use

the random sinusoidal training signal as validation signal. This signal is longer

than the previous validation signal and hence it contains more frequencies and

amplitudes. For these reasons, the approximation of this signal should be a tough

task. From Figure 5.38 it is clearly visible how the model can approximate the

random sinusoidal signal, even if the random signal has not got smooth peaks.

Some errors occur during the approximation of fgen,2, but this depends on the

frequencies and amplitudes used in the training signal and the trade off for saving

the computational effort. Choosing a longer training signal with more information

should lead to a better approximation.

The main advantage to employ a reduced order model is the possibility to reduce

the computational effort produced by the CFD aerodynamic simulations, main-

taining approximately the same accuracy. To obtain the generalized aerodynamic

forces and hence the response of the system relative to a specific input signal,

a lot of CFD simulations are needed. The computational time to carry out the

aerodynamic simulation using the CFD is shown in Table 5.4. The CFD compu-

tation has been performed on a computer with an Intel®XEON E3-1220 CPU

with 3.10 GHz, 7.7 GB of RAM and a Linux operating system version 2.6.32. This

time is relatively low compared to a CFD simulation, which employs the Navier-

Stoker equations or a turbulence model. As matter of fact, in this work the Euler

equations have been used for solving the aerodynamic problem. Furthermore, the

frequency of the employed signal has been set near the undamped natural frequen-

cies of the structural model in order to obtain a shorter signal. All these factors

are liable to keep the computational time low. As it is depicted in Table 5.4 and

5.5, using a ROM the computational effort decreases at least of 3 orders of mag-

nitude compared to the same CFD simulation. For example, taking into account

the random sinusoidal signal (RSS) simulation, the computational time is of 9916

s with the CFD and only 0.627 s using the RBF-ROM already trained. The time

saving is more than 15000 times compared to a standard CFD simulation. Taking

into account the time for the training process of the ROM, the total simulation
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.35: Response of the RBF-ROM and LOLIMOT-ROM trained with the random signal

and tested with the sinusoidal signal
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.36: Response of the RBF-ROM and LOLIMOT-ROM trained with the random signal

and tested with the generic signal
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(a) fgen,1 of the RBF-ROM

(b) fgen,2 of the RBF-ROM

(c) fgen,1 of the LOLIMOT-ROM

(d) fgen,2 of the LOLIMOT-ROM

Figure 5.37: Response of the RBF-ROM and LOLIMOT-ROM trained with the random signal

and tested with the random/turbulence signal



106 Results and Discussion

(a) fgen,1

(b) fgen,2

Figure 5.38: Response of the RBF-ROM trained with the random signal and tested with the

random sinusoidal signal used previously for the training phase
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Table 5.4: CPU simulation time using CFD

Signal CFD simulation time (s)

APRBS 6032

RSS 9916

Random 8995

Sinusoidal 5102

Generic 10846

Random/Turbulence 4921

Table 5.5: CPU time for training and simulation process using a ROM

Signal Training time (s) Simulation time (s)

RBF LOLIMOT RBF LOLIMOT

APRBS 15.29 208.55 0.4708 0.9318

RSS 19.45 74.91 0.627 1.0483

Random 18.87 131.39 0.55169 1.365

Sinusoidal 0.9686 1.3926

General 1.04 1.7133

Random/Turbulence 0.8429 1.4

time is approximately 20 s, 495 times faster than CFD. Whereas, comparing the

RBF-ROM with the LOLIMOT-ROM Table 5.5 shows that the RBF is approx-

imately 3.75 times faster than the LOLIMOT. Thus, with the LOLIMOT it is

possible to achieve more stability, but losing computational effort.
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5.5 NLR 7301 Aeroelastic Analysis

In the transonic regime, limit cycle oscillations (LCOs) have been observed in

several aircrafts in flight, wind tunnel aeroelastic tests and nonlinear transonic

flutter calculations. Wind tunnel flutter tests near the transonic dip at DLR in

Göttingen on the NLR7301 supercritical aerofoil have demonstrated the presence

of multiple LCOs with different amplitudes, coexisting at the same Mach number

and angle of attack [2, 14, 28].

For subsonic regimes, the post-flutter response of the aerofoil is composed by oscil-

lations with grow in time amplitude. On the other hand, for transonic regimes, the

amplitude of the oscillations grows since a constant oscillation has been reached

due to the displacement of the shock waves which reduces the divergence. It has

been observed that the displacement and the change in intensity of the shock waves

modify the pressure distribution in a manner that is favourable for the damping

response [28]. Hence, as demonstrated by Kousen and Bendiksen [19], post-flutter

response presents oscillations with high but steady amplitude.

In this thesis, in order to study the nonlinear response of the system a coupled

fluid-structure model based on ROMs has been employed, whose structure has

been introduced in chapter 4. Here, only the solutions with the smallest mean

squared error, obtained from the ROM, will be used in the coupled system for

the aeroelastic analysis. Previously, the potential of the random sinusoidal signal

and the random signal has been seen. Thus, it has been chosen to use the ROMs

trained with these two signals, so that these models can well capture the nonlin-

earities of the system.

Hence, the ROM used in the aeroelastic simulation is the RBF-NN trained with a

random signal for the nonlinear simulation with α = 0.0 deg and with a random

sinusoidal signal for the simulation with α = 0.6 deg. The RBF-NN has been

trained with the OLS procedure employing a delay input order m = 3 and a delay

output order n = 2, whereas the other NN parameters are the same used previ-

ously and summarized in Table 5.3. From the following analysis it will be possible

to see how both signals can capture the nonlinearities well.

Referring to Tang et al. [20], a transonic LCO at a Mach number of 0.768 in two
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Table 5.6: Flow parameters for the aeroelastic analysis in order to compare the results with

Tang et al. [20]

Parameters Unit Value

Ma∞ 0.753

α deg 0.6

V∞ m · s−1 254.7

ρ∞ kg ·m−3 1.225

k 1.4

R J · kg−1 ·K−1 287.0

degrees of freedom is experimentally observed at a free-stream velocity of 254.7

m/s. In Tang et al. [20], in order to use flow conditions, which best meet the

wind tunnel conditions in the computations with different flow models, a Mach

number of 0.753 and an angle of attack of 0.6 have been chosen. In this work the

same parameters used in Tang et al. [20] will be employed only to compare the

behaviour of the LCOs and the reliability of the aeroelastic model built in this

work and based on ROMs.

A secondary analysis will be exploited using a Mach number of 0.753 and 0.9 with

an angle of attack of 0.0°.
Thus, employing a ROM model coupled with a structural model based on the hy-

brid linear multistep scheme of 2nd order the aeroelastic analysis will be exploited.

The HLM of 2nd and 4th order seem to be more stable than the Euler method of

1st order. Thus, the choice to use this kind of algorithm for the coupling.

Table 5.6 shows the flow parameters used in this simulation in order to compare

the results with the results obtained in Tang et al. [20], where the CFD-CSD

coupled simulation has been used. The results are depicted in Figure 5.39 and are

summarized in Table 5.7. These values are further compared with the aeroelas-

tic experimental data of Knipfer et al. [2]. As it can be seen from Figure 5.39,

the LCO phenomenon is encountered and the amplitude of the plunge and pitch

motions, respectively 12.45 mm and 2.55°, are near those computed in Tang. The
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(a) Left: Time series of the heave h motion. Right: Corresponding phase-space representation

(b) Left: Time series of the pitch α motion. Right: Corresponding phase-space representation

(c) PSD of the heave motion

Figure 5.39: LCO captured during the aeroelastic analysis using Ma∞ = 0.753, α = 0.6° and

V∞ = 254.7 m/s
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Table 5.7: Results of the aeroelastic simulation using a ROM compared with those obtained in

Tang et al. [20] with CFD and Knipfer et al. [2] in the experiment

Simulation Plunge amplitude Pitch amplitude Frequency

ah (mm) aα (deg) f (Hz)

ROM-HLM2 (thesis) 12.45 2.55 34.5

Single-block grid (Tang et al. [20]) 11.2 3.72 34.5

B-L-S-D model (Tang et al. [20]) 4 2 32.2

Experiment (Knipfer et al. [2]) 0.65 0.18 32.85

heave amplitudes show good agreements with the single-block grid model employed

in Tang, whereas they are higher than the amplitudes computed using a turbulent

model (B-L-S-D) or with the experimental data. These results agree with those

discovered in Tang, where it was shown that the LCO amplitude predicted by the

viscous computations is less than 1
3

of that predicted by the inviscid computation

(Euler model). Thus, using a viscous model the LCO amplitude will be limited

and the results will be much closer to the experimental data. Although the am-

plitude of the LCO computed employing a turbulent model is much closer to the

experimental data, there is anyway an error of one order of magnitude. This is pos-

sible because the wind tunnel wall boundary conditions and the three-dimensional

aerodynamic effect are neglected in the computation [20].

Figure 5.39(c) depicts the PSD of the heave/pitch motion. In this case, the pre-

dicted frequency of 34.5 Hz shows good agreement with that predicted in Tang.

Hence, the reduced model is able to capture the right frequency of the aeroelastic

nonlinearities, even using a model with lower degrees of freedom than the full order

model used in the CFD computation.

Thus, using a ROM coupled with a structural model it is possible to capture the

principal nonlinearities of the system and reduce the computational effort. Indeed,

employing this efficient model the elapsed CPU time for the aeroelastic simulation

is approximately 20.1 s. Hence, for a whole aerodynamic-aeroelastic analysis, it

must take into account the CFD computational time in order to obtain the train-
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Table 5.8: LCOs measured using Ma∞ = 0.753, α = 0.0° and increasing the free-stream velocity

V∞

Free-stream velocity Plunge amplitude Pitch amplitude

V∞ (m/s) ah (mm) aα (deg)

238 8.1 1.88

250 8.9 2.13

280 8.93 2.18

ing signal for the ROM (9916 s), the training and simulation time for the ROM

(19.42 s) and the computational time for the coupled system (20.1 s), obtaining a

total simulation time of 9955.52 s.

In order to understand the behaviour of the LCOs in the transonic flight regime,

several simulations with different parameters have been carried out. The free-

stream velocity and the Mach number have been altered to show how the flow

parameters can modify the response of the nonlinear system, especially of the

LCOs.

In the next simulations the angle of attack will be set to 0.0°.
For a Mach number, Ma∞ = 0.753, the LCOs occur for a free-stream velocity of

V∞ = VLCO(Ma∞ = 0.753, α = 0.0) = 238 m/s, Figure 5.40. Compared Figure

5.39 with Figure 5.40, only a slightly difference in the shape of the captured LCOs

can be observed and it depends by the trained signal.

The phase-space representations of the LCO prove how the oscillations of the

plunge and pitch motions reach a stable-limited condition.

Using the same flow conditions and increasing the free-stream velocity the am-

plitude of the heave motion should be increasing, as it is shown in Toumit and

Darracq [35]. Thus, in Table 5.8 the increase in amplitude relative to an increment

in the free-stream velocity is summarized.

Increasing the free-stream velocity another behaviour occurs. The number of os-

cillations necessary to reach the LCO depends on V∞, as it is depicted in Figure

5.41. The higher the free-stream velocity, the faster the limit cycle oscillation is
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(a) Left: Time series of the heave h motion. Right: Corresponding phase-space representation

(b) Left: Time series of the pitch α motion. Right: Corresponding phase-space representation

(c) PSD of the heave motion

Figure 5.40: LCO captured during the aeroelastic analysis using Ma∞ = 0.753, α = 0.0° and

V∞ = 238 m/s
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reached.

Another property of the LCOs is the capacity to follow the self-induced motion

even with the introduction of a forced movement. Introducing a pulse movement

of the order of 10−8 in the state-vector of the plunge/pitch motions the results are

shown in Figure 5.42. The results show that the forcing amplitude has no influ-

ence on the nature of the response. The movement is always damped for V∞ =

210 m/s < VLCO and always divergent to a limit cycle for V∞ = VLCO = 238 m/s

and V∞ = 250 m/s > VLCO, even if the disturb is added before the LCO occurs

or when the LCOs have already occurred. The amplitude of the impulse in the

state-vector, 10−8, is sufficient to induce a change in the plunge/pitch motions

to study the response of the aeroelastic system. Choosing an higher amplitude

of the impulse, the system becomes unstable due to numerical instability inside

the coupled code. Considering Figure 5.42(c) it is possible to see how the LCOs

amplitude can be reduced with the introduction of a force. Indeed, in Dietz [13],

it has been demonstrated that LCOs can be reduced or removed by the use of

electrodynamic exciters belonging to the flutter-control system. Thus, it has been

seen that LCOs amplitude can be controlled by relatively small forces.

Because stronger shock waves are encountered at higher Mach numbers, it is ad-

visable to study the properties of the LCOs using a Mach number Ma∞ = 0.9

with the same flow conditions of the previous case. Figure 5.43 and table 5.9

show the properties of the LCOs that occur varying the free-stream velocity. The

free-stream velocity that leads to the LCO condition is V∞ = VLCO = 255 m/s,

higher than the VLCO with Ma∞ = 0.753. Also in this case the amplitude of

the LCOs increases with the increment in the free-stream velocity, Table 5.9.

Compared the LCOs amplitude of the first case, Ma∞ = 0.753, and of the second

case, Ma∞ = 0.9, it is noticeable how the amplitude becomes lower when increas-

ing Mach number. When the Mach number is increasing, the shock waves get

stronger and their damping effect on the structure motion becomes more effective.

A similar property has been showed in Toumit and Darracq [35] for a two degrees

of freedom NACA-64010 aerofoil. Thus, the bifurcation diagrams show in Figure

5.44 give the LCO heave amplitude as a function of the free-stream velocity.
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(a) V∞ = 238 m/s

(b) V∞ = 250 m/s

(c) V∞ = 280 m/s

Figure 5.41: Time to reach the LCO condition increasing the free-stream velocity using Ma∞ =

0.753 and α = 0.0°
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(a) Response of the damped system, V∞ = 210 m/s

(b) Response of the divergent system, V∞ = 238 m/s

(c) Response of the divergent system, V∞ = 250 m/s

Figure 5.42: Different responses of the heave motion with the introduction of a pulse movement

using Ma∞ = 0.753 and α = 0.0°
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(a) Left: Time series of the heave h motion. Right: Corresponding phase-space representation

(b) Left: Time series of the pitch α motion. Right: Corresponding phase-space representation

Figure 5.43: LCO captured during the aeroelastic analysis using Ma∞ = 0.9, α = 0.0° and

V∞ = 255 m/s

Table 5.9: LCOs measured using Ma∞ = 0.9, α = 0.0° and increasing the free-stream velocity

V∞

Free-stream velocity Plunge amplitude Pitch amplitude

V∞ (m/s) ah (mm) aα (deg)

255 3.85 9.4

280 4.2 10.4

310 5.2 10.4
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(a) Bifurcation for Ma∞ = 0.753

(b) Bifurcation for Ma∞ = 0.9

Figure 5.44: NLR7301 bifurcation diagrams for Ma∞ = 0.753 and Ma∞ = 0.9 with α = 0.0°



Chapter 6
Conclusion and Outlook

In this work, starting from several CFD simulations for the training process,

two different reduced order models have been employed in order to approximate the

nonlinear aerodynamic response of the NLR7301 aerofoil in the transonic regime.

Finally, a complete nonlinear aeroelastic analysis based on ROMs has been carried

out with the aim of studying the limit cycle oscillations (LCO).

The aerodynamic reduced order modeling approaches have been presented, as well

as the radial basis function network (RBF) and the local linear model tree algo-

rithm (LOLIMOT). It was demonstrated that both ROMs can adequately capture

the main nonlinearities aerodynamic effects of a phenomenon which has been ob-

tained with a very large dynamic system. Generally, it was shown that the RBF-

NN error in the prediction of the generalized aerodynamic forces is smaller than

the error which occurs employing the LOLIMOT-ROM. The LOLIMOT model

seems to be more suited to approximate the aerodynamic response of a signal

that involves steady values, like plateaus in the APRBS. Nevertheless, using the

LOLIMOT it is possible to adopt higher input-output delays orders, because this

kind of model presents better properties in terms of numerical stability for all the

signals tested in this work. It has been seen that the accuracy of the reduced order

model employed to capture the nonlinear aerodynamic response depends strictly

on the considered system and the efficiency of the training signal. This is why the

training process is a key point in the ROMs building. In this context, the training

119
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signal should have the right amount of informations, amplitudes and frequencies,

in order to design a ROM fitted for the user’s purposes. The use of a training sig-

nal which possesses a lot of information, or more information than needed, leads

to an increase in the computational time. A tradeoff must be achieved by the user.

In this thesis, it was shown how different signals, from those proposed in Nelles

[27], can train the ROM and capture the main aerodynamic nonlinearities better.

Among these, the random signal stands out particularly, managing to approximate

the generalized aerodynamic forces with only a maximum mean squared error of

the order of 10−6. Thus, it has been demonstrated that the employment of a ROM

can approximate the aerodynamic response of the system with a small error. Con-

sequently, the CFD simulations could be reduced, because a well trained ROM

can simulate the response of the system tested with other different signals. In this

context, in the future, it will be possible to employ the ROMs in order to test the

aircraft response to the air turbulence or to other signals which come from exter-

nal/internal environment (gust, control device noise, pilot’s maneouvre [26], etc.).

A first attempt to capture the response of the system imposed by a turbulence has

been realized in this work with good results.

Subsequently, the ROMs employed in this work have been used for a nonlinear

aeroelastic analysis in order to capture the limit cycle oscillations that arise due

to the shocks motion on the aerofoil in the transonic regime. Here, the ROM has

been coupled with a structural solver to build the fluid-structure interaction.

The amplitudes and the frequencies of the LCOs obtained coupling the ROM with

a structural model, which employs a hybrid linear multistep algorithm (HLM),

show good agreements with those computed in Tang et al. [20] with the CFD-

CSD simulation. The amplitudes computed in this work are higher than those

measured in the wind tunnel by Knipfer et al. [2], whereas the frequency of the

LCOs are the same measured in Tang. The much higher amplitudes of the heave

and pitch motion depends strictly on the model used to solve the aerodynamic

model and on real conditions, which occur in the wind tunnel, which have been

neglected in this analysis. In Tang, it was demonstrated that the use of a viscous

model allows to reach values of the heave LCO amplitudes less than 1
3

relative to
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those obtained with the Euler equations. Hence, another development could be

the use of a RANS model as starting condition for the ROM in order to achieve

solutions near the experimental values.

Thus, using a ROM coupled with a structural model, the LCO can well predict

maintaining low the computational effort. As matter of fact, this kind of simu-

lation permits to exploit a nonlinear aeroelastic analysis in few seconds starting

from an already trained ROM.

One of the results of this work has been obtained comparing the LCOs that arise

at different Mach numbers. When the Mach number is increasing, the shock waves

get stronger on the aerofoil surfaces and their damping effect on the structure mo-

tion becomes more effective. Because of that, the heave amplitude of the LCOs

becomes smaller.

Another relevant result has been obtained by increasing the free-stream velocity

at a fixed Mach number. The higher the free-stream velocity, the faster the LCO

is reached, for both the Mach numbers tested. Furthermore, increasing the free-

stream velocity, the amplitude of the heave and pitch LCOs becomes higher getting

the bifurcation diagrams.

Another interesting result has been achieved disturbing the aeroelastic system

when the LCOs have already started. It has been demonstrated that the introduc-

tion of a disturb doesn’t affect the response of the system, which follows the nature

of the motion. In this case, it has been showed that the introduction of a rela-

tively small impulse can control the amplitude of the LCO. Hence, using a control

system it is possible to switch off this kind of nonlinearities reducing the relative

vibration on the system and solving the relative problems. The fatigue life of the

components can be increased reducing the substitution of the components itself

and hence the costs to the aircraft maintenance. Furthermore, the LCOs analysis

can lead to an improvement in the fighter aircraft keeping safe the integrity of the

weapons attached on the wings and reducing the level of fatigue and stress of the

pilot himself.

The efficiency of the presented ROMs is of great interest, since with a limited

computational effort it makes the employment of nonlinear dynamic behaviours
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possible even in the first stages of an aircraft design, keeping practically the same

level of accuracy as the CFD solution. Furthermore, the accurate prediction of

these nonlinearities can be a significant contribution to define a safelight envelope

required by modern aircrafts or a range of working conditions for turbomachines.
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Appendix A
NLR-7301 aerofoil

Table A.1: Parameters of the set-up NLR7301 according to Tang et al. [20]

Parameters Symbol Unit Value

Total mass mh kg 26.64

Mass moment of inertia about the quarter-chord line Ic/4 kg ·m2 0.086

Static unbalance sα kg ·m 0.378

Damping factor of the plunge motion Dh kg · s−1 82.9

Damping factor of the pitch motion Dα kg ·m2 · rad−1 · s−1 0.197

Stiffness of the plunge spring Kh N ·m−1 1.21 · 106

Stiffness of the pitch spring Kα N ·m · rad−1 6.68 · 103

Undamped natural frequencies of the plunge motion ωh rad · /s 205.4

Undamped natural frequencies of the pitch motion ωα rad · /s 299.3

Plunge damping ratios ξh 0.00649

Plunge damping ratios ξα 0.00521

129


	Nomenclature
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Theoretical Basis
	Fluid dynamics
	Navier-Stokes and Euler equations
	Steady aerodynamics
	Unsteady aerodynamics
	CFD Solver

	Structural Dynamics
	Modal Transformation
	State-Space Model

	Generalized Aerodynamic Forces (GAF)
	Neural Network
	Radial Basis Function Networks (RBF)
	Local Linear Neuro-Fuzzy Models
	Local Linear Model Tree Algorithm (LOLIMOT)
	Non-Linear System Identification

	Non-linear Aeroelasticity

	Training and Validation Signals
	Training Signal for Identification Task
	Amplitude-Modulated Pseudo-Random Binary  Signal (APRBS)
	Random Sinusoidal Signal (RSS)
	Random Signal

	Validation Signal
	Sinusoidal Signal
	Generic Signal
	Turbulence Excitations


	Coupling of Structural Dynamics with Fluid Dynamics
	Time Marching Methods
	Euler Methods
	Hybrid Linear Multistep Scheme

	Coupling of a Non-Linear ROM with the Structural Model

	Results and Discussion
	Test Case: NLR 7301 Supercritical Aerofoil
	NLR 7301 Aerofoil Modal Analysis
	NLR 7301 Aerodynamic Analysis
	CFD Grid
	Steady Simulation Results

	ROMs Training and Validation Phase
	APRBS Training
	Random Sinusoidal Signal Training
	Random Training

	NLR 7301 Aeroelastic Analysis

	Conclusion and Outlook
	Bibliography
	NLR-7301 aerofoil

