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A B S T R A C T

An auditory-signal-processing-based feature extraction technique is
presented as front-end for an Automatic Speech Recognition (ASR) sys-
tem. The front-end feature extraction is performed using two auditory
perception models, described in Dau et al. (1996a, 1997a), implemented
to simulate results from different psychoacoustical tests. The main
focus of the thesis is put on the stages of the models dealing with
temporal modulations. This is done because evidence of the crucial
role played by temporal modulations in speech perception and un-
derstanding were confirmed in different studies (e. g. Drullman et al.,
1994a,b; Drullman, 1995) and the investigation of such relevance in
an ASR framework could allow to achieve better understanding of the
complex processes involved in the speech analysis performed by the
human auditory system.

The accuracy results on both clean and noisy utterances from a
speaker-independent, digits-based speech corpus were evaluated for
a control case, given by Mel-Frequency Cepstral Coefficient (MFCC)
features, and for several cases corresponding to modifications applied
to the auditory models. The results with the auditory-based features,
encoded using the Dau et al. (1996a) model, showed better performance
than the ones with MFCC features deriving from an additional noise
robustness, confirming the findings in Tchorz and Kollmeier (1999). No
improvement were apparently achieved using the features extracted
with the Dau et al. (1997a) model, introducing a filterbank in the
modulation domain, compared to the results obtained with the Dau
et al. (1996a) model. However, it was argued that this behavior is likely
to be caused by technical limitation of the framework employed to
perform the ASR experiments.

Finally, an attempt to replicate the results from an ASR study (Kaned-
era et al., 1999) validating the perceptual findings on the importance
of different modulation frequency bands was performed. Some of
the results were confirmed, whilst others were refuted, most likely
because of the difference in the auditory signal-processing between
the two studies.
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1
I N T R O D U C T I O N

Automatic Speech Recognition (ASR) refers to the process of converting
spoken speech into text. From the first approaches to the problem
over than seventy years ago, many improvements have been intro-
duced, especially in the last twenty years thanks to the application
of advanced statistical modeling techniques. Moreover, hardware sys-
tems upgrades together with the implementation of faster and more
efficient algorithms fostered the diffusion of ASR systems in different
areas of interests, as well as the possibility of having nearly real-time
continuous-speech recognizers, which are nevertheless employing very
large dictionaries with hundreds of thousands words.

Both changes in the features encoding processes and in the sta-
tistical modeling are narrowing down the performance gap, usually
described by an accuracy measure, between humans and machines.
In Lippmann (1997), an order-of-magnitude difference was reported
between Human Speech Recognition (HSR) and ASR in several real life
recognition conditions. After more than ten years, besides the men-
tioned improvements, there are still rather big differences between
humans and machines recognition of speech in some critical condi-
tions. The same level of noise robustness observed in HSR experiments
is far from being achieved with the current methods and models em-
ployed in ASR and this could be due to both problems in the feature
extraction procedures developed so far as well as to partially unsuited
modeling paradigms.

In fact, ASR performance breaks down already at conditions and at
Signal to Noise Ratios (SNRs) which only slightly affect human listeners
(Lippmann, 1997; Cui and Alwan, 2005; Zhao and Morgan, 2008; Zhao
et al., 2009; Palomäki et al., 2004). Thus, the idea of modeling speech
processing in a way closer to the actual processing performed by
the human auditory pathway seems to be relevant. Such approaches,
namely auditory signal-processing based feature extraction techniques,
have been already investigated in several studies (e. g. Brown et al.,
2010; Holmberg et al., 2007; Tchorz and Kollmeier, 1999) and have
(sometimes) shown improvements compared to the classic feature
extraction techniques, such as Mel-Frequency Cepstral Coefficients
(MFCCs), Linear Predictive Coding (LPC) or Perceptual Linear Predictive
(PLP) analysis (Davis and Mermelstein, 1980; Markel and Gray, 1976
and Hermansky, 1990 respectively), especially in the case of speech
embedded in noise.

The main focus of the current work is to test a new set of auditory-
based features, and use the results obtained in such a case in compar-
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2 introduction

ison to the results of a standard method (referred to as the baseline
and chosen to be MFCC features). This should allow to systemati-
cally investigate the importance of different processing stages of the
auditory system in the process of decoding speech. Specifically, the
processing of temporal modulations (i. e. the changes of the speech
envelope with time) of speech is investigated with greater detail, due
to the strong importance of these speech attributes observed in several
perceptual tasks (Drullman et al., 1994a,b; Drullman, 1995; Houtgast
and Steeneken, 1985). The investigation performed is the current work
is more oriented toward hearing research. Thus, the new feature en-
coding strategies employing auditory models will be analyzed and
their result will be interpreted to obtain further information about the
importance of the mentioned stages in robust speech perception, more
than just merely aiming to optimizing already existing techniques to
achieve better results.

The first part of the thesis describes the tools practically exploited to
perform the ASR experiments, starting with Chapter 2, that provides
a description of the ASR systems used in the current work, splitting
the discussion in the two traditional subsystems embodied in what
is commonly referred to as a speech recognizer: front- and back-end
(Rabiner, 1989). The front-end used to obtain the reference features,
i. e. the MFCCs which have been used to compute the baseline results,
is described and compared with an other well known method called
RelAtive SpecTrAl (RASTA), Hermansky and Morgan (1994), and with
the different auditory-based feature extraction techniques. The back-
end section describes, in a rather simplified way, how the core of the
recognition system works: the statistical concept of Hidden Markov
Model (HMM) is provided and its usage in ASR explained.

In Chapter 3 of the current work, the auditory models employed to
accomplish the feature extraction are presented and described. Firstly,
the model based on the Dau et al. (1996a) study is presented. The
function of each stage is briefly analyzed and complemented with
figures illustrating the way the signals are processed. Subsequently,
the model based on the Dau et al. (1997a) study is introduced. In both
the cases, particular attention is drawn to the stage operating in the
modulation domain, comprising the diverse versions of filterbanks.

Chapter 4 introduces the concept of auditory-based features and
its usage in ASR. The methods employed to extract the feature vectors
from the Internal Representations (IRs) computed via auditory models
are described and the different problems encountered in this process
(together with the proposed ways to solve them) illustrated. Further-
more, a brief introduction is given of the speech material adopted for
the recognition experiments.

The second part of the thesis introduces and discusses the results of
the current work. Chapter 5 reports the results of several simulations
performed in the current study. It is divided in two parts discussing
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the results of the standard ASR experiments carried out in the first
part of the project, providing the accuracy scores as a function of
the SNR, and the results of a different kind of experiment, inspired
by the work of Kanedera et al. (1999), providing the accuracies as a
function of lower and upper cutoff frequency of a set of band-pass
filters described in the modulation domain.

In Chapter 6, the results collected from the different simulations are
discussed and interpreted in order to provide a meaningful answer to
the problems arisen in the previous sections. Some of the limitation
encountered in the different parts of the employed framework are
discussed and, based on these, some different approaches as well as
new ideas for the continuation of the current work are proposed.

Finally, a summary of the work is provided in Chapter 7.





2
A U T O M AT I C S P E E C H R E C O G N I T I O N

In order to perform the recognition task, a recognizer is required. In
ASR the word recognizer usually denotes the whole system, i. e. the
whole sequence of stages that are gone through in the process of
speech recognition from recording of the speech signal to the output
of the recognized message. The two main parts that can be defined
within a recognizers are the front-end and the back-end. Concisely,
one can refer to the front-end as the part of the system that receives the
audio signal, analyzes and converts it to a suitable format to be further
processed, while the back-end is the actual recognizer mapping words
or phonemes’ sequences to the signal processed in the first part and
testing the modeled responses.

In the current work, a freely available recognizer1 has been em-
ployed, called Hidden Markov Models Toolkit (HTK). The program
offers several tools for manipulating HMMs, the statistical models by
which the actual recognition process is performed. HTK is mainly used
for ASR, but it can be adapted to other problems where HMMs are em-
ployed, such as speech synthesis, written digits or letters recognition
and DNA sequencing. A detailed description of the usage of HMMs for
speech recognition is given, e. g. in Gales and Young (2007). A manual
explaining how the HTK works and is structured can be downloaded
at the HTK’s website (Young et al., 2006).

2.1 front-ends

As previously mentioned, front-end is the word used to describe the
preparatory methods employed by the recognizer to obtain a signal
representation suitable to be further analyzed by the subsequent stages
in ASR. The conversion transforms the audio signal into an alternative
representation, consisting of a collection of features. The extraction of
features, or sets of them composing the so called feature vectors, is a
process required for two main reasons:

a. identifying properties of the speech signal somehow (partially)
hidden in the time domain representation, i. e. enhance aspects
contributing to the phonetic classification of speech;

b. reduce the data size, by leaving out those information which are
not phonetically or perceptually relevant.

The first point states that, although the message carried by the audio
signal is, of course, embedded within the signal itself, several other in-

1 http://htk.eng.cam.ac.uk/
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6 automatic speech recognition

formation are not directly related to the message to be extracted, thus
contributing to introduce variability in the informational-distortion-
free message. Without performing any transformation on the signal’s
samples, the classification process of the different segments extracted
from the message is unfeasible with the methods currently used in
ASR, mainly because the time domain representation of audio signals
suffers from the aforementioned variability. Therefore, as often re-
quired in classification problems, one has to map the original data
to a different dataset which guarantees a robust codification of the
properties to be described. The robustness of the representation, in
the case of ASR tasks, has to be required with respect to a whole set
of different parameters responsible (in different ways) of the high
non-stationarity of the speech signals. Amongst others, one can list
speaker-dependent variabilities given by accent, age, gender etc. . . and
prosody-dependent variabilities, i. e. rhythm, stress and intonation
(Huang et al., 2001).

The second point is related to the computational effort needed to
sustain an ASR system. At the present day, it is not unusual to work
with audio signals sampled at several kHz; for this reason, the amount
of data with such high sampling frequencies is a critical issue, even
considering the high computational power available. If the system
has to be used for real time recognition, data reduction could be a
necessity.

From the early years of ASR to the present day, several methods
of feature extraction have been developed. Some of these methods
have found a wide use in ASR and have been used for the past thirty
years (e. g. MFCCs). These procedures will be referred to as classical
methods. There are some similarities between several of these methods;
most notably is the fact that they employ short-term speech spectral
representations. This is mostly due to the fact that short-term speech
representation approaches were successfully used in speech coding
and compression before to be used in ASR and, considering the good
results obtained in the mentioned fields, they were thought to offer a
good mean to approach the problem of ASR (Hermansky, 1998).

Another important aspect relative to the processes of features en-
coding is given by the insertion of dynamic coefficients (i.e. changes
of the features with time), which will be discussed in greater detail in
one of the following section.

2.1.1 Spectral- and temporal-based feature extraction techniques

As previously pointed out, some of the methods introduced in the
early years of ASR, were originally developed for different purposes
and subsequently found an important application in the field of ASR.
In speech coding and compression procedures a different kind of
information is exploited that in ASR has to be rejected to offer a more
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robust representation of the noise-free signal, like speaker-dependent
cues and environmental information (Hermansky, 1998). Moreover,
some aspects of the classical methods were developed to work with
ASR systems different to those representing the main trend nowadays
(Sakoe and Chiba, 1978; Paliwal, 1999). Amongst others, two widely
used classical approaches are Mel-Frequency Cepstral Coefficients
(MFCCs) and Linear Predictive Coding (LPC).

In the classic approaches to ASR, the preprocessing of the data fed
to the pattern matching systems was mostly realized taking into con-
sideration spectral characteristics of the speech signals. Indeed, some
properties of speech can be recognized in the frequency domain in
an easier way compared to the time domain, e. g. speech voicing or
vowel’s formants (Ladefoged, 2005). Therefore, using the spectral rep-
resentation of speech to extract information about it seems to be a
sensible choice. Such methods rely on the assumption that speech
can be broken down into short frames (which lengths are on the or-
der of a few tens of milliseconds) that are considered stationary and
independent from each others. Such assumptions lead to tractable
and efficiently implementable systems, but it is fairly straightforward
to understand that such hypothesis is not fulfilled in many real life
cases, as they neglect some crucial aspects of speech that are defined
in longer-term temporal intervals (around a few hundredths of mil-
liseconds). See, e. g., Hermansky (1997); Hon and Wang (2000).

Based on this consideration, methods accounting for the temporal
aspects of speech have been developed since the Eighties. Dynamic
cepstral coefficients, introduced in Furui (1986), represent one of the
first attempts used in ASR to include temporal information within the
feature vectors. These coefficients return measures of the changes in
the speech spectrum with time, representing a derivative-like oper-
ation applied on the static (i. e. cepstral) coefficients. The first order
coefficients are usually called velocities or deltas whereas the second
order ones are defined accelerations or delta-deltas. The coefficients’ esti-
mation is often performed employing a regression technique (Furui,
1986); this approach is also implemented by the recognizer adopted in
this work and it will be subsequently described. Dynamic coefficients
are usually employed in ASR where they are used to build augmented
MFCC feature vectors. Appending these coefficients to the static feature
vectors has proved to increase the recognizer performance in many
studies (e. g. Furui, 1986; Rabiner et al., 1988) whereas they were found
to provide worse results when used in isolation, as noted e. g. in Furui
(1986).

Other strategies, lead by the pioneeristic work in Hermansky and
Morgan (1994) back in the Nineties, started to employ solely temporal-
based features of the speech signals, in order to provide robust recog-
nition methods in real life noise conditions, which are likely to bring
severe performance degradation with the classical methods. The RASTA
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method, introduced in Hermansky and Morgan (1994), is one of the
aforementioned techniques and it showed improvements in some
conditions together with some degradation in others. One of the ad-
vantages introduced by this technique, can be understood by carrying
out a simple analysis using concepts of homomorphic signal process-
ing, briefly introduced in Appendix A.1.

2.1.2 Mel-Frequency Cepstral Coefficients

Amongst the number of feature extraction techniques that can be
listed, Mel-Frequency Cepstral Coefficients (MFCCs) will be described
in the following. This is done because MFCCs were selected in this
work to represent the baseline used for comparison. The choice was
made based on the fact that in several other studies, MFCCs were
employed as a baseline to test new features encoding strategies, both
auditory-modeling-based (e. g. Tchorz and Kollmeier, 1999; Holmberg
et al., 2006, 2007; Brown et al., 2010; Jürgens and Brand, 2009) and more
purely signal-processing-oriented approaches (e. g. Batlle et al., 1998;
Paliwal, 1999; Palomäki et al., 2006).

MFCCs can be referred to as a classical encoding approach because it
has been used ever since its introduction in the Eighties in the work
of Davis and Mermelstein (1980). The name Mel-Frequency Cepstral
Coefficients suggests the two key operations performed in this method.
Both the concepts of Mel scale and cepstrum are exploited. The mel-
frequency scale is a (nonlinear) perceptual scale of pitches, introduced
in Stevens et al. (1937). Since perception is taken into consideration, it
means that even though the MFCC method does not attempt to strictly
model the auditory system processing, some meaningful perceptual
measures are implemented. One of the proposed conversion formulæ
between frequencies in Hertz (denoted by f) and frequencies in Mel
(denoted by mel) is given by, Young et al. (2006):

mel = 2595 log10

(
1+

f

700

)
. (2.1)

An approximation of the formula can be done considering an al-
most linear spacing below 1 kHz and an almost logarithmic spacing
above 1 kHz. The filterbank employed in the MFCC method exploits
the mel-frequencies distribution, by an equally spaced set of central
frequencies. An example of the mel-filterbank is shown in the fourth
panel from the top of Fig. 2.1. In the MFCC case, the logarithm is taken
on the different power spectra obtained filtering the power spectra of
the time frames with the mel-filterbank.

The filterbank represents a very rough example (using triangular
overlapping windows) of the auditory filterbank and provides the
mapping of the frames’ powers onto the mel-frequency scale, some-
how mimicking the frequency selectivity of the auditory system. The
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subsequent logarithm function provides the compression of the fil-
terbank’s outputs and it was mainly introduced in combination with
the Discrete Cosine Transform (DCT) to provide a signal-processing
concept very similar to the cepstrum. This was applied since it was
found to be very useful for other speech processing purposes (Kolossa,
2007; Paliwal, 1999). The DCT of the log filterbank amplitudes mj (of
the single time frame) is computed by, Young et al. (2006):

ci =

c
2

N

Ņ

j=0

mj cos
[
πi

N
(j� 0.5)

]
. (2.2)

Only a small number of coefficients ci is usually retained (10 to 14,
e. g. Davis and Mermelstein, 1980; Tchorz and Kollmeier, 1999; Brown
et al., 2010; Holmberg et al., 2007). Further details about the DCT are
provided in Appendix A.2.

A summary of the signal processing steps, whose illustration is
provided in Fig. 2.1, necessary to evaluate MFCCs is the following:

1. segmentation of the signal in a sequence of overlapping frames
(usually 25 ms long, 40% overlap);

2. Fourier Transform (FT) of each frame and mapping of its power
spectrum onto a mel-frequency scale;

3. cepstrum of the frequency warped power spectrum (logarithm
of it followed by DCT).

The procedure of MFCC feature encoding was performed internally
the HTK, via the command HCopy. 14 MFCCs were retained as well as
14 deltas and delta-deltas, for a total number of 42 coefficients per
feature vector. The dynamic coefficients, mentioned in the previous
section, are evaluated via the formula, Young et al. (2006):

dt =

°Θ
θ=1 θ (ct+θ � ct�θ)

2
°Θ
θ=1 θ

2
(2.3)

where dt is the delta coefficient at time t computed using the 2Θ+ 1

frames between ct�Θ and ct+Θ. No energy terms (defined e. g. in
Young et al., 2006) were included as features in the current study,
as they were not in some of the works used as references for the
parametrical tuning of HTK (Brown et al., 2010; Holmberg et al., 2007).
For the same reason, on the other hand, the 0th cepstral coefficients
were included, even though in some works they are referred to as
inaccurate, Picone (1993). Figure 2.2 illustrates the MFCC representation
of a speech signal corresponding to the utterance of the digit sequence
"8601162".

Regarding the decorrelation properties of the DCT, see Appendix A.3,
in Fig. 2.3 it is shown the correlation matrix of the MFCC features shown
in Fig. 2.2.
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Figure 2.1: Illustration of the signal processing steps necessary to evaluate
MFCC features. A detailed explanation can be found in the text.

2.1.3 RASTA method

Another rather popular method in the ASR field is the so called RelA-
tive SpecTrAl (RASTA), introduced in Hermansky and Morgan (1994).
Besides the wide popularity gained by this method, its importance
— regarding this project — consists in the fact that the operations
performed by the RASTA algorithm are similar to the ones performed
by the current auditory model. RASTA was introduced as an evolution
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Figure 2.2: Example of MFCC feature extraction (top) on an utterance of the
digit sequence "8601162" (bottom). The coefficients’ sequence is
given by: 14 MFCCs (c0 to c13), 14 deltas and 14 delta-deltas for a
total of 42 entries.
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Figure 2.3: Correlation matrix of the MFCC features representation in Fig. 2.2.
The high energy concentration in the diagonal and the lower
energy concentration in the off-diagonal area describe the high
degree of uncorrelation between the features.

of the classical spectral oriented methods for ASR, since it is one of the
precursors of the temporal oriented methods. It was developed on the
base of important characteristics that can be observed in real-life (i. e.
somehow corrupted) speech samples. Firstly, by noting that temporal
properties of disturbances affecting speech varies differently from
the temporal properties of the actual speech signals (Hermansky and
Morgan, 1994). In second place, the evidence that the modulation fre-
quencies around 4 Hz were found to be perceptually more important
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than lower or higher frequency in the modulation frequency domain
(see e. g. Drullman et al., 1994a,b, even though in Hermansky and
Morgan, 1994 they refer to previous studies). Based on these general
ideas, the filter developed to be used within the RASTA method had
transfer function:

H(z) = 0.1z4 �
2+ z�1 � z�3 � 2 z�4

1� 0.98 z�1
(2.4)

which can be expressed by the difference equation:

y(ω,k) = 0.2 x(ω,k) + 0.1 x(ω,k� 1)�

0.1 x(ω,k� 3)� 0.2 x(ω,k� 4)+ (2.5)

0.98 y(ω,k� 1).

Figure 2.4 illustrates the frequency response of the filter defined in
Eq. (2.4), showing the bandpass behavior of the frequency response
(Hermansky and Morgan, 1994).
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Figure 2.4: Frequency response of the RASTA filter, showing a band-pass char-
acteristics and a approximately flat response for the frequencies
in the range [2, 10] Hz. Redrawn from (Hermansky and Morgan,
1994).

The steps of the RASTA algorithm can be summarized as follows:

1. computation of the critical-band power spectrum;

2. transformation via compressive static nonlinearity;

3. filtering of the temporal trajectories, using the filter in Eq. (2.4);

4. transformation via expansive static nonlinearity (inverse of the
compressive);
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5. loudness equalization and Stevens’ power law simulation (by
raising the signal to the power 0.33);

6. computation of an all-pole model of the resulting spectrum

For the reasons described in Appendix A.1, a widely used function
employed in the compressive static nonlinearity step is the logarithm.
Although RASTA processing of speech turned out to be very efficient
in presence of convolutional disturbances, its robustness drops for
other kind of noises. Some modifications have been introduced to
improve RASTA performance. In particular, in order to deal with addi-
tive disturbances a slightly modified version of the method has been
proposed, the Jah RelAtive SpecTrAl (J-RASTA), presented in Morgan
and Hermansky (1992); Hermansky and Morgan (1994). The modifica-
tion proposed consists in the introduction of the parameter J in the
log-transformation which multiplies the power spectra in the different
frames.

y = log (1+ Jx) . (2.6)

The value of J depends on some estimates of the SNR, Morgan and
Hermansky (1992). By taking the Taylor expansion of Eq. (2.6), it can
be seen that for J " 1 the function has a quasi-logarithmical behavior;
if J ! 1 the function can be approximated by a linear operator.

In Chapter 6, an explanation of the reasons which have guaranteed
the success of this method for almost the past 20 years are discussed
and used as a mean of comparison with the auditory-based feature
extraction methods.

2.1.4 Auditory-signal-processing-based feature extraction

Conveniently adapted auditory models have been employed in several
studies (e. g. Tchorz and Kollmeier, 1999; Brown et al., 2010; Holmberg
et al., 2006, 2007) to process the audio signal in the correspondent
feature extraction procedures. The auditory models employed in the
different experiments will be discussed in greater detail in Section 4.1
due to the relevance of the auditory-model-based approach for the
current project.

2.2 back-end

In ASR, the back-end is the stage that models the encoded speech
signal and realizes its conversion in a sequence of predefined symbols
(e.g. phonemes, syllables or words) via some kind of deterministic
or statistical model. From the early developments of ASR until the
beginning of the Nineties, there was a strong disagreement regarding
the proper acoustic models to be used. Several different approaches
have been proposed through the years such as Dynamic Time Warping
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(DTW), Artificial Neural Networks (ANNs) and Hidden Markov Models
(HMMs).

Currently, HMMs-based modeling has become one of the most pop-
ular techniques employed in ASR (Morgan et al., 2004). Furthermore,
the toolkit employed in the current work, the HTK (Young et al., 2006),
exploits the concept of HMMs and their application in ASR. Therefore, a
brief introduction to this statistical tool, as well as some words regard-
ing HMMs modeling in ASR will be shortly discussed in the following.

2.2.1 Hidden Markov Models

A complete description of the theory behind HMMs is not the purpose
of this section. However, introducing the topic can be helpful to better
understand why the choice of using HMM for ASR is sensible; moreover,
it will be pointed out one of the characteristics that somehow limited
the application of HTK for the goal of the current project, namely the
constraint on the covariance matrixes.

An HMM can be generally defined as a mathematical model that
can predict the probability with which a given sequence of values
was generated by a state system. Regarding the ASR problem, speech
units (such as phones, phonemes, syllable or words) can be associated
to sets of parameters describing them. These parameters are embed-
ded within a statistical model built from multiple utterances of each
unit. A probabilistic modeling framework allows to obtain a much
more generalizable parametrical representation than using directly the
speech units (or derived sets of their features), Morgan et al. (2004).

The HMM framework applied to ASR relies on a simple (yet approx-
imated) assumption: the possibility of interpreting speech, a highly
nonstationary process per definition, as a sequence of piecewise sta-
tionary processes whose characteristics can be modeled on the base
of short-term observations. Thus, speech units are characterized by
statistical models of collections of stationary speech segments (Morgan
et al., 2004; Bourlard et al., 1996). A summary of other assumption
that have to be taken into account when adopting a statistical HMM

framework is provided in Morgan et al. (2004).
In order to understand the idea behind HMMs, the concept of Markov

model has to be introduced. A Markov model2 is a stochastic model
describing the behavior of a system composed by a set of states,
undergoing state-to-state probabilistic transitions at discrete times,
Rabiner (1989). Unlike other state-based stochastic models, a Markov
model assumes the Markov property specifying that the state qt

2 For speech recognition application the interest is focused on discrete Markov models
or Markov chains.
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occupied at a given time instant t only depends on the value of the
previous state and not on the whole transition history. Thus:

P
[
qt = Sj|qt�1 = Si, . . . ,q0 = Sk

]
= P

[
qt = Sj|qt�1 = Si

]
.
(2.7)

The state transition probabilities given by the right hand side of
Eq. (2.7) are usually denoted as aij, Rabiner (1989).

A Markov model is too restrictive for the purposes of ASR (Rabiner,
1989) and it is required to be generalized to an HMM. In such a case, the
states of the process are hidden, i. e. not observable anymore, and they
are only accessible via observation variables ot stochastically related
to them. In ASR, the observations are usually coarse representations
of short-term power spectra, meaning that the HMMs combines the
model of an observable process accounting for spectral variability
together with an underlying Markov process accounting for temporal
variability. Among the different ways that have been employed to
characterize the distributions of observation variables given a state,
continuous Gaussian Mixture models will be considered, as they are
adopted by the HTK (Young et al., 2006). E. g. the probability bj(ot) of
obtaining the observation ot from the state j is:

bj(ot) = P
[
ot|qt = Sj

]
(2.8)

=
M̧

k=1

cjkN
[
ot,µjk,Σjk

]
(2.9)

where cjk is the kth component of the mixture and

N
[
ot,µjk,Σjk

]
=

1a
2π|Σjk|

e(ot�µjk)TΣ�1(ot�µjk). (2.10)

The parameters µjk and Σjk are, respectively, mean and covariance
of the multivariate distribution. Often, Σjk is constrained to be diago-
nal to reduce the number of parameters and properly train the HMMs

using a smaller amount of training data, Gales and Young (2007). Fur-
thermore, a reduction of the computational load and time is achieved.
Whether diagonal covariance matrixes are used, the observations must
be uncorrelated between each other, otherwise the estimated Σjk will
only represent a poor approximation of the covariance matrix describ-
ing the real probability distribution (Gales and Young, 2007; Young
et al., 2006). As it will later be seen, this represents one of the limita-
tions of the usage of HMMs for ASR (especially with auditory-oriented
features). The quantities A =

 
aij

(
, B =

 
bj(ot)

(
and the initial state

distribution π = tπiu
3 represent the model parameters of an HMM.

By now restricting the possible modeling scenarios to an isolated
word recognition experiment, as it is in the current study, and given

3 Describing the probability of each state to be occupied at the initial time instant.
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T observations O = o1, o2, . . . , oT composing the word wk, the whole
recognition problem can be boiled down to the computation of the
most likely word given the set of observations O, Gales and Young
(2007); Young et al. (2006):

ŵk = arg max
k

tP (wk|O)u (2.11)

where the probability to be maximized can be expressed as:

P (wk|O) =
P (O|wk)P (wk)

P (O)
. (2.12)

Thus, given a set of priors P (wk) and provided an acoustics model
Mk = (Ak,Bk,πk) describing the wordwk, i. e. P (O|Mk) = P (O|wk),
the maximization of P (O|Mk) returns the most likely4 word ŵk. Fig-
ure 2.5 illustrates the concept of ASR by means of an example: the
audio signal from an utterance of the word "yes" (bottom) is con-
verted to its features representation (middle) and each observation is
associated to the most likely phoneme (top).

The ways to actually perform the estimation of model parameters
and probabilities in Eq. (2.12) or the maximization in Eq. (2.11) are
not discussed here but it can just be mentioned that sophisticated
dynamic programming techniques as well as advanced statistical tools
are exploited in the task. Detailed explanations are offered in literature
(e. g. Rabiner, 1989; Young et al., 2006; Gales and Young, 2007).

After a set of HMMs is trained to the provided speech material and
the models have been tested, a measure of the recognition accuracy
is necessary to describe the goodness of the modeling. In the HTK,
given a number N of total units to recognize and after the numbers
of substitution errors (S), deletion errors (D) and insertion errors (I)
are calculated (after dynamic string alignment), they are combined to
obtain the percentage accuracy defined as, Young et al. (2006):

WAcc =
N�D� S� I

N
� 100%. (2.13)

This measure will be employed in all the recognition results shown
in the current study, as it has been used for comparing performance
in several other studies (e. g. Brown et al., 2010; Holmberg et al., 2006;
Tchorz and Kollmeier, 1999)5.

4 In a maximum likelihood sense, for instance.
5 In literature, a related performance measure, called Word Error Rate (WER), is also

employed. WER is defined as the complement of Word Recognition Accuracy (WAcc),
i. e. WER = 1�WAcc.
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Figure 2.5: Schematic example of the main steps undergone during an ASR

process. The signal (bottom) represents an utterance of the word
"yes". It is converted to an MFCC features representation (bottom)
and each observation is then associated with the most likely
phoneme (top). A grammatical constraint, represented by the
forced positioning of a silence at both the beginning and at the end
of the word (denoted by sil), is also illustrated. The probabilities
shown represent how likely is the transition from a state to the
subsequent (or to remain in the same state), i. e. the transition
probabilities aij.





3
A U D I T O RY M O D E L L I N G

The auditory model employed in the current study is a slightly mod-
ified version of the auditory model developed by Dau et al. (1996a)
to simulate the results of different psychoacoustical tasks, such as
spectral and forward masking as well as temporal integration. This
modified version of the Dau et al. (1996a) model will be referred to as
Modulation Low-Pass (MLP) throughout the current work1. It includes
all the stages of the Dau et al. (1996a) model up to the optimal detector,
not considered here since the detection process to be performed in ASR

differs from the one needed in psychoacoustical tests and it is carried
out by the statistical back-end. A subsequent version of the model that
includes a modulation filterbank instead of a single low-pass mod-
ulation filter and is capable of simulating modulation-detection and
modulation-masking experiments, is described in Dau et al. (1997a).
This more recent version (again, the optimal detector is left out) is
employed in some of the tested conditions and will be referred to as
Modulation FilterBank (MFB).

3.1 modulation low-pass

The processing stages of the first two models are here briefly described,
with a visual description designed to guide the reader through the
stages given in Fig. 3.1.

3.1.1 Gammatone filterbank

The first stage of the model accounts for the frequency separation
of sounds performed within the cochlea from the basilar membrane.
Thus, no outer- and middle-ear transfer function are considered. The
frequency-place paradigm is a well known phenomenon of audition,
see Békésy (1949), stating that the Basilar Membrane (BM) acts as a
bank of continuous filters, each tuned to different frequencies within
the range of audible frequencies spanned in a non-linear way.

Unlike the original model presented in Dau et al. (1996a), the current
model implements a Gammatone (GT) filterbank in the form of the one
found in Dau et al. (1997a). GT filter shapes were proven to give better
fits to physiological data and a more efficient computation, Patterson
et al. (1988), even though the model is purely phenomelogical unlike

1 Not to be confused with the acronym often employed to refer to the Multi-Layer
Perceptron architecture of an ANNs. This is pointed out since ANN has been also used
in many ASR studies and the same acronym could generate misunderstanding.

19
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Figure 3.1: Block diagram of the MLP model.

the transmission-line cochlea models. The impulse response of the GT

filters reads:

g(t) = a�1tn�1e�2πbt cos (2πfct) . (3.1)

It can be interpreted as a cosine function shaped by an envelope
decaying with an exponential function and rising from zero with a
power function. The specific factors and parameters define the filters’
properties:

• a is the normalization factor constraining the time integral over
0   t   ∞ of the envelope to 1;

• b is the factor determining the decaying slope of the exponential
factor and can be seen as the duration of the response. It is
closely related to the filter width;

• n is determining the slope of the rising part of the envelope and
is referred to as the order of the filter. A value of n = 4 was
chosen in the current work, Glasberg and Moore (1990);



3.1 modulation low-pass 21

• fc is the center frequency, i. e. the frequency at which the filter is
peaking in the frequency domain.

By taking the Fourier Transform (FT) of g(t) in Eq. (3.1), the Gamma
function (Γ ) is introduced (Slaney, 1993), thus explaining the name
chosen for the filter. In the current case a set of 189 filters have been em-
ployed, whose center frequencies are equally spaced on the Equivalent
Rectangular Bandwidth (ERB) scale and range from 100 to 4000 Hz, the
Nyquist frequency of the audio files of the adopted corpus. Figure 3.3
shows an example of the processing of a speech signal consisting of a
series of five digits (top panel). The second panel from the top repre-
sent the Internal Representation (IR) after passing the signal through
the GT filterbank.

The filterbank output gives an illustration of how the frequency
content of the signal varies with time, and with the spoken digits.
The frequency representation can also be used to visually inspect
some differences and similarities between the speech segments (e. g.
the similar frequency distribution between the utterances of the digit
"one" in the time interval ca. 1.5 to 2 s or the difference with the digit
"zero", at time ca. 1 to 1.5 s). After passing the signal through the GT

filterbank, the processing of the following steps will be applied in
parallel on each one of the frequency channels.

3.1.2 Hair cell transduction

The multiple outputs from the auditory filters represent the informa-
tion about the processed sound in a mechanical form. At this point, in
the auditory system, signals representing mechanical vibrations are
converted to a form that is able to be processed by the higher stages of
the auditory pathway. Thus the place-dependent vibrations of the BM

are converted into neural spikes traveling along the auditory nerve.
The movements of the BM cause the displacement of the Inner-Hair

Cells (IHCs) tips, called stereocilia. This displacement, in turn, opens up
the small gates on the top of the each stereocilium, causing an influx
of positively charged potassium ions (K+), Plack (2005). The positive
charging of the IHC causes the cell depolarization and triggers the
neurotransmitter release in the synaptic cleft between the IHC and the
auditory nerve fiber. Accordingly, an action potentials in the auditory
nerve is created.

The described transduction mechanism only occurs at certain phases
of the BM’s vibration. Thus, the process is often referred to as the phase-
locking property of the inner ear, Plack (2005). Nevertheless, the inner
ear coding is performed simultaneously by a great number of IHCs.
Therefore, a combined informational coding can be achieved, meaning
that if the single cell cannot trigger an action potential each time the
basilar membrane vibration causes the opening of its gates (e. g. due to
the spurs of a pure tone at a frequency f0), the overall spiking pattern
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of a bunch of cells can successfully follow the timing of the input
signal (Smith, 1976; Westerman and Smith, 1984). An illustration of the
concept can be found in Plack (2005, Fig. 4.18). Although considering
the aforementioned mechanism, there is a natural limit to the highest
frequency that can be coded by the IHCs. That is why for the high
frequency content of audio signals, the auditory nerve fibers tend to
phase-lock to the envelope of the signal (and not to the fine structure
anymore).

In order to simulate the mechanical-to-neural signal transduction
via basic signal processing operations, the frequency channels’ con-
tents are half-wave rectified (to mimic the mentioned phase-locking
property) and low-pass filtered using a second order Butterworth
filter with a cut-off frequency of 1000 Hz. Although the latter exhibits
a rather slow roll-off, it reflects the limitation of the phase-locking
phenomenon for frequencies above 1000 Hz. The output after IHC

transduction is shown in the middle panel of Fig. 3.3. It can be seen
how the half-wave rectification causes the only the positive parts of the
frequency channels’ time trajectories to be retained. The low-pass fil-
tering determines an attenuation of the higher frequency components,
i. e. the top part of the auditory spectrogram.

3.1.3 Adaptation stage

The following step, called adaptation in the block diagram, performs
dynamic amplitude compression of the IR. As the name suggests, the
compression is not performed statically (e. g. taking the logarithm of
the amplitudes) but adaptively, meaning that the compressive function
changes with the signal’s characteristics. The stage is necessary to
mimic the adaptive properties of the auditory periphery, Dau et al.
(1996a), and it represent the first inclusion of temporal information
within the model. The presence of this stage accounts for the twofold
ability of the auditory system of being able to detect short gaps of a
few milliseconds duration, as well as integrate the information over
intervals of hundreds of ms.

The implementation consists of five consecutive nonlinear adapta-
tion loops, each one formed by a divider and a low-pass filter whose
cutoff frequency (and therefore the time constant) takes the values
defined in Dau et al. (1996a). The values of such time constants in
Dau et al. (1996a) were chosen to fit measured and simulated data in
forward masking conditions. An important characteristic introduced
by the adaptive loop consists in the application of a non-linear com-
pression depending on the rate of change of the analyzed signal. If
the fluctuations within the input signal are fast compared to the afore-
mentioned time constants, these changes are processed almost linearly.
Therefore, the model produces an emphasis (strictly speaking it does
not perform any compression) of the dynamically changing parts
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(i. e. onsets and offsets) of the signal. When the changes in the signal
are slow compared to the time constants, like in the case of more
stationary segments, a quasi-logarithmic2 compression is performed.

The result of the adaptation loop can be examined from the IR in the
second panel from the bottom of Fig. 3.3, illustrating the enhancement
of the digits’ onsets (except for the central ones which are not separated
by silence) and the compression of some of the peaks spotted within
some of the digits’ utterances (e. g. the two peaks within the third
digit, "zero").

For the reasons that will be listed in following chapters, this stage is
to be considered of great importance for the results obtained in the
current work.

3.1.4 Modulation filtering

Humans perception of modulation, i. e. the sensitivity to the changes
in the signals’ envelopes, has often been studied in the past employ-
ing the concept of Temporal Modulation Transfer Function (TMTF),
introduced in Viemeister (1979). The TMTF is defined as the threshold
(expressed by the minimal modulation depth, or modulation index)
for detecting sinusoidally modulated noise carriers and measured as a
function of the modulation frequency. Data from the threshold detec-
tion experiments were used to derive the low-pass model of human
sensitivity to temporal modulations. In Viemeister (1979) the cutoff
frequency was found to be approximately 64 Hz, associated to a time
constant of 2.5 ms.

Thee low-pass behavior of the filter was also maintained in the
Dau et al. (1996a) model, where the last step is given by a first order
low-pass filter with cutoff frequency, fcut, of 8 Hz, found to be the
optimized parameter to simulate a series of psychoacoustical exper-
iments. The filter operates in the modulation domain, meaning that
it reduces the fast transitions within time trajectories of frequency
channels contents. Fast modulations are attenuated, because experi-
mental data suggest that they are less important than low modulation
frequencies (Dau et al., 1996b) and this is particularly true for speech
perception (Drullman et al., 1994a,b).

The attenuation of fast envelope fluctuations in each frequency
channel, characterizing the IR of audio signals after the processing
of the previous stages, can be seen from the panel on the bottom of
Fig. 3.3, where the time trajectories of the frequency channels within
the auditory spectrogram get smoothed in time.

The combination of the last two stages can be interpreted as a band-
pass transfer function in the modulation domain, i. e. a Modulation

2 The actual relation between input I and output O is O = 2n?
I, where n is the number

of adaptation loops. In case of n = 5, as it is in Dau et al. (1997a), the function
approaches a logarithmic behavior.
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Transfer Function (MTF): the adaptation loops provides low modula-
tion frequency attenuation whilst the low-pass filter introduces high
modulation frequency attenuation. Due to the nonlinearity introduced
by the adaptation stage, the MTF of the model is signal dependent,
Dau et al. (1996a); therefore, a general form of the MTF cannot be found.
However, both in Tchorz and Kollmeier (1999) and Kleinschmidt et al.
(2001), where an adapted version of the Dau et al. (1996a) model for
ASR was employed, the MTF was derived for a sinusoidally amplitude-
modulated tone at 1 kHz. The IR was computed via the auditory model
when such a stimulus was provided and the channel with the greatest
response, i. e. the one centered in 1 kHz, was extracted as the output.
The MTF was then calculated between these two signals.

The result was reproduced in the current work using the same
procedure, even though the details about the actual calculation of the
MTF were not provided in the referenced studies. Among the different
procedure that have been proposed in literature to calculated the MTF

(Goldsworthy and Greenberg, 2004), it was chosen to quantify the the
modulation depths in the two signals and simply divide them. Such an
approach is close to the method proposed in Houtgast and Steeneken
(1985). Due to the onset enhancement caused by the adaptation stage,
the estimation of the modulation depth on the output signal was
performed after the onset response had died out.

The MTF was calculated for three different modulation low-pass
cutoff frequencies: 4, 8 and 1000 Hz. As in Tchorz and Kollmeier
(1999), a second order filter was used for the cutoff frequency in 4 Hz
and a first order one for the remaining two conditions. Figure 3.2
shows the three MTFs. When fcut= 1000 Hz, no attenuation from the
low-pass is provided in the low-frequency range of interest. For the
other two cases, the transfer function shows a band-pass behavior for
the modulation frequencies around 4 Hz, which were found to be
very important frequencies for speech perception as pointed out in
Drullman et al. (1994a,b). In Chapter 6, the role of the MTF band-pass
shape in the improvement of ASR experiment scores will be further
discussed.
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Figure 3.2: Modulation Transfer Function computed with the MLP model be-
tween the output of the channel, extracted from the IR, with center
frequency of 1 kHz and a sinusoidally amplitude-modulated si-
nusoid at 1 kHz input. The result for three different modulation
low-pass cutoff frequencies are shown (solid, dashed and dotted
lines correspond, respectively, to 4, 8 and 1000 Hz).
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Figure 3.3: MLP model computation of the speech utterance of the digit se-
quence "8601162". From the top to the bottom: speech signal,
output of the GT filtering, output of the IHC transduction, re-
sult of the adaptation stage and modulation low-pass filtering
(fcut = 8 Hz).
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3.2 modulation filterbank

The experimental framework that the Dau et al. (1996a) model was
meant to simulate did not regard temporal-modulation related tasks,
but other kind of psychoacoustical tasks such as simultaneous and
forward masking. Therefore, in order to account for other aspects of
the auditory signal processing related to modulations, a bank of mod-
ulation filters was introduced in Dau et al. (1997a). In this way, tasks
such as modulation masking and detection with narrow-band carri-
ers at high center frequencies, which would have not been correctly
modeled by the previous approach, can be correctly simulated.

Modulation filterbank

Hair cell transduction

Adaptation

Gammatone
filterbank

Speech signal

Channel’s output

Figure 3.4: Block diagram of the MFB model.

The improvement was performed by substituting the single low-pass
modulation filter with a modulation filterbank (formed by the low-
pass itself and a series of band-pass filters). The steps to be performed
before the modulation domain operations were retained, with some
minor modifications, see Dau et al. (1996a, 1997a). In this way, the
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DauOCF DauNCF FQNCF

Low-pass
Order 2 3 3

fcut [Hz] 2.5 1 1

Band-pass

Type Resonant Resonant Fixed-Q

Order 1 1 2

5 2 2

fC [Hz] 10 4 4

16.67 8 8

Table 3.1: Different modulation filterbanks employed in the current study. In
all the three cases the low-pass was a Butterworth filter with the
listed characteristics.

updated model both maintains the capabilities of the former version
and also succeeds in modeling the results of modulation experiments.

Moreover, evidence that the model behavior can be motivated by
neurophysiological studies, mentioned for non-human data from
Langner and Schreiner (1988) in Dau et al. (1997b), were found in
following works for humans subjects in Giraud et al. (2000). These
findings were provided by functional magnetic resonance images of
five normal hearing test subjects, taken while stimuli similar to the
ones in Dau et al. (1997a) were presented to the listeners. Giraud et al.’s
study suggests the presence of a hierarchical filterbank distributed
along the auditory pathway, composed by different brain regions sen-
sitive to different modulation frequencies (i. e. a distributed spatial
sensitivity of the brain regions to modulations).

As in the previous case, the model presented in Dau et al. (1997a)
was slightly modified to be used in the current work, leaving out the
optimal detector stage; an illustration is provided in Fig. 3.4. From
now on the original filterbank presented in Dau et al. (1997a) will be
referred to as DauOCF; Table 3.1 lists the characteristics of the DauOCF

while a plot of the filterbank is shown in Fig. 3.5. The output of the
MFB model with the first three modulation channels (i. e. the low-pass
and the first two band-pass filters of DauOCF in Fig. 3.5) is illustrated
in Fig. 3.6. The number of modulation channels, i. e. filters, reflects the
number of 2-D auditory spectrogram (i. e. three in this case).

3.2.1 Alternative filterbanks

The center frequencies and the shapes of the filters derived in Dau
et al. (1997a), were chosen to provide good data fitting, as well as
a minimal computational load with the framework analyzed in the
mentioned study. However, the experiments investigated with the



3.2 modulation filterbank 29

A
tt

en
u

at
io

n
[d

B
]

Modulation frequency [Hz]
0.5 1 2 4 8 16 32 64 128 256

-25

-20

-15

-10

-5

0

5

Figure 3.5: Modulation filterbank with the original central frequencies and
filter bandwidths derived in Dau et al. (1997a). The dashed lines
represent the filters of the Dau et al. (1997a) filterbank left out
from DauOCF (which comprises only the first four filters and it is
illustrated with solid lines).

mentioned model were not dealing with speech signals. Studies from
perceptual data like Drullman et al. (1994a,b) indicated that the modu-
lation frequencies with stronger importance are restricted to a much
smaller interval — approximately 1 to 16 Hz — than the one taken into
consideration in Dau et al. (1997a). Such high modulation frequencies
provides cues when performing other kind of tasks but they seem to
have only a minor importance in the human speech perception.

Therefore, after using the DauOCF filterbank for the first set of exper-
iments, it was chosen to change it both introducing modifications in
the filters’ shapes and in the center frequencies to closely inspect the
smaller modulation frequency range of interest. The center frequencies
have been changed into a new set of values, separated from each other
by one octave and listed in Table 3.1, defining the filterbank referred
to as DauNCF.

Regarding the new filters’ shapes, different strategies have been
taken into consideration: instead of the resonant filters from the origi-
nal model — which do not decay and approach the DC with a constant
attenuation — symmetric filters were implemented, motivated by the
work in Ewert and Dau (2000). Both Butterworth and fixed-Q band-
pass filters were considered.

The digital transfer function of a fixed-Q Infinite Impulse Response
(IIR) filter is given by, Oppenheim and Schafer (1975):

HfQ(s) =
1�α

2

[
1� z�2

1�β (1+α) z�1 +αz�2

]
(3.2)



30 auditory modelling

 

 

Time [s]

F
re

q
u

en
cy

(k
H

z)

0 0.5 1 1.5 2 2.5 3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.25

0.5

1

2

4

0.25

0.5

1

2

4

0.25

0.5

1

2

4

Figure 3.6: Output of the MFB model including the first three channels of
the Dau et al. (1997a) filterbank for the speech utterance of the
digit sequence "8601162". From the top to the bottom the auditory
spectrograms refer, respectively, to the filters: low-pass with fcut =

2.5 Hz and resonant band-pass in 5 and 10 Hz.

where α and β are constants linked to bandwidth and center frequency
of the filter. The frequency responses of the fixed-Q filterbank (referred
to as FQNCF in Table 3.1) are compared with the resonant filters from
Dau et al. (1997a) with new center frequencies (DauNCF) in Fig. 3.7. The
low-pass filter in both the filterbanks had cutoff frequency of 1 Hz. It
has been changed from the one in original case, centered at 2 Hz, to
reduce the overlapping with the first resonant filter.

Due to problems involving the proper interface between the front-
end and the back-end of the ASR system, in a subsequent series of
experiments a set of independent 12th order band-pass and low-pass
Butterworth filters has been implemented. The processing was there-
fore carried out using a single filter at the time. Inspired by the work
done in Kanedera et al. (1999), which proposes a very similar approach,
this new set of filters was employed to confirm the evidence about
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Figure 3.7: Comparison between the frequency responses of the filters from
the new filterbanks. On the top panel, the DauNCF filterbank.
On the lower panel, the FQNCF filterbank (see Table 3.1). The
dashed line represents the third order Butterworth low-pass filter,
fcut= 1 Hz used in both the filterbanks.

the importance of low modulation frequencies for speech recognition
linked to the perceptual results obtained in Drullman et al. (1994a,b).
The filters were built from seven frequency values chosen to be related
by an octave spacing: 03, 1, 2, 4, 8, 16 and 32 Hz. The lower (upper)
cutoff frequency4, defined by fm,l (fm,u), were related to each of the
seven frequencies by a factor 2�

1
6 (2

1
6 ). For instance, the actual cutoff

frequencies for the band [2, 4] Hz were [2 � 2�
1
6 , 4 � 2

1
6 ] Hz. This choice

was made in order to have the different filters overlapping at the seven
octave spaced frequencies at approximately 0 dB (see Fig. 3.8).

All the permutations of the seven frequencies were used to deter-
mine the set of filters of the filterbank (provided that fm,l   fm,u). Thus,
the total number of filters considered, given the nf = 7 frequencies,
was nbins = nf (nf � 1) /2 = 21. When the lower cutoff frequency was
0 Hz, low-pass filters were implemented; for all the other combina-
tions of fm,l and fm,u, band-pass filters were implemented. Given the
spacing between the chosen frequencies, the smallest filters in the con-
sidered set were approximately one octave wide while the broadest
cutoff frequencies’ combinations gave rise to filters with bandwidths

3 0 Hz is not linked to the other values using the octave relation, of course.
4 The cutoff frequencies were defined as the �3 dB attenuation points.
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up to five octaves5. It was chosen to use Butterworth filters, to get the
maximally flat response on the pass-band, even though the roll-off of
such filters is not as steep as other kind of implementations, such as
Chebyshev or Elliptic filters (Oppenheim and Schafer, 1975). However,
a satisfactory compromise on the overlap between adjacent filters
was reached at the implemented order with a small increase in the
computational need.

In Fig. 3.8 is given an illustration of some of the filters employed
(only the narrower of the filterbank, i. e. the ones between two subse-
quent octave spaced values).
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Figure 3.8: Filters from the filterbank employed in the BPE. Only the filters
between two subsequent octave spaced values are shown and
different line styles were used to distinguish the contiguous ones.

5 The five octaves wide filter has cutoffs fm,l = 1 � 2�
1
6 Hz and fm,u = 32 � 2 1

6 Hz. Again,
the 0 Hz frequency is not included in this calculation.



4
M E T H O D S

In this chapter, the methods employed to extract the feature vectors
from the IRs computed via the auditory models will be presented and
a brief introduction will be given of the corpus, i. e. the speech material,
employed for the recognition experiments describing the kind of
utterances, levels, noises and SNRs used throughout the simulations
performed.

4.1 auditory-modeling-based front-ends

One of the main reasons why auditory models have been employed as
front-end for ASR systems is the idea that the speech signal is meant
to be processed by the auditory system. It is plausible to argue that
human speech has evolved in order to optimally exploit different
characteristics of human auditory perception. Thus, it is sensible
to develop a feature extraction strategy emulating the stages of the
human auditory system (Hermansky, 1998).

Many studies have investigated these possibilities (e. g. Brown et al.,
2010; Holmberg et al., 2006; Tchorz and Kollmeier, 1999 among others)
and a common conclusion seems to be the increase of noise robustness
of an auditory-oriented feature representation. Nevertheless, so far,
most of the worldwide feature extraction paradigms for ASR do not
employ the state of the art in auditory modeling research. According
to Hermansky (1998), there are several reasons for this. Among others:

• the possibility that auditory-like features may not be completely
suitable for the statistical models used as back-ends: the fact that
they must be decorrelated in order to be fed to an HMMs based
model, as it will be described later in this section, could be a
limitation to the achievable model accuracy;

• some of the classical feature extraction’s methods have been
employed for a long time and in most of the cases fine paramet-
rical tunings for given tasks have been developed; poorer scores
sometimes obtained with auditory-based methods in certain ex-
periments, could derive from the usage of models not tuned to
the particular tasks;

• some of the stages within the different auditory models could
be not strongly relevant for the recognition task or their imple-
mentation could be somehow unsuitable to represent speech in
ASR; the inclusion of such features could, in principle, degradate
the results;

33
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• the, often, higher computational power needed to go through
the feature encoding process in an auditory based framework
compared to the classical strategies.

In the case of auditory-signal-processing-based features, the encod-
ing strategy has some substantially different aspects from the previ-
ously discussed classical methods. However, some other aspects were
implemented considering their counterpart in the MFCC procedure, in
order to match the constraints imposed by the HMM-based back-end
framework (e. g. the Discrete Cosine Transformation illustrated later).

The first step of the process consists in the computation of the IR of
the speech signal using the auditory model. As previously described,
the auditory model employed in this study emulates, to a certain
extent, the functions of the human auditory system, accounting for
different results observed in psychoacoustical tests.

The IR obtained in the last of the steps of the model calculation
(shown in Fig. 3.3) is further processed in order to meet some require-
ments needed for the features to be used from the HTK.

Although the paradigm employed in the two cases is somehow
similar, there are some notably differences in the way Modulation
Low-Pass (MLP) and Modulation FilterBank (MFB) IRs were processed
in the current study.

4.1.1 Modulation Low-pass

Two main facts have to be accounted for, in order to convert the feature
vectors in a format suitable to be processed by the HTK.

Due to the high time and frequency resolutions of the IRs (respec-
tively in the order of 104 and 102 samples in the considered work), a
reduction in the number of samples for both the domains has to be
performed. The reason of this data compaction is mainly due to com-
putational power problems as well as poorer models generalization
that would arise from high resolution IRs (Hermansky, 1998),

Additionally, the usage of overlapping filters within the auditory
filterbank, returns correlated inter-channel frequency information (i. e.
correlated features). Correlation is a property to be avoided for the
features used in HMM-based ASR systems whether diagonal covariance
matrixes are employed (see Section 2.2). In order to solve both the
mentioned problems, two signal processing steps are implemented:

a. filtering and downsampling via averaging of overlapping win-
dows was used to reduce the time resolution;

b. downsampling in the frequency domain and decorrelation were
both achieved via Discrete Cosine Transform (DCT).

The reduction in the time resolution was simply performed by
averaging the IRs within overlapping frames of the same dimensions
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of the ones considered in the MFCC method: 25 ms long windows
overlapping for the 40% (i. e. 10 ms). This operation decreases the
sampling frequency to 100 Hz (the inverse of the overlap time) after
low-pass filtering the IR by means of a moving average filter. The
choice of the two parameters (as well as the averaging procedure) was
the same performed in other studies (e. g. Brown et al., 2010; Holmberg
et al., 2007; Jankowski et al., 1995). Although the rather slow roll-off
of the moving average filter, some mild attenuation is introduced
on the low-frequency region considered in the different experiments
performed in the current study (32 Hz being the higher limit in the
BPE, see Section 3.2) but it can be considered to be negligible.

The remaining issues were solved employing the DCT operation. As
mentioned in Appendix A.2, the DCT is an approximation of Principal
Components Analysis (PCA); therefore, its computation on the IR re-
turns a set of pseudo-uncorrelated time varying feature vectors. Due
to the energy compaction introduced by the DCT (Khayam, 2003), the
number of coefficients than can be used to describe the feature vectors
is much smaller than in the frequency representation obtained with
the auditory model. As for the MFCCs, 14 coefficients were retained
excluding the energy terms. Additionally, 14 first- and second-order
dynamic coefficients were calculated and appended to the feature
vectors using an approach similar to the ones adopted in other studies
(e. g. Holmberg et al., 2007; Brown et al., 2010).

The role of the DCT in auditory-features-based ASR systems has been
investigated in a set of simulations where no transformation was ap-
plied. The accuracy results have been compared with the ones obtained
when the DCT was correctly performed, as shown in Section 5.1.

Figure 4.1 illustrates the ASR-oriented processing of a speech signal,
showing the IR computed via the MLP (middle panel) and the sequence
of feature vectors after DCT-based decorrelation (bottom panel). It can
be noticed how great part of the energy of each frame is concentrated
at the beginning of the three segments of the feature vectors (i. e.
coefficients 1, 14 and 28). Moreover, the temporal structure of the IR is
somehow maintained, showing peaks in correspondence of the words
onsets. Figure 4.2 illustrates the decorrelation property of the DCT. The
correlation matrixes computed on an IR obtained with the MLP model
before (top panel) and after (bottom panel) this operation show that in
the second case high values are concentrated in a narrow area around
the diagonal (i. e. less correlated variables).

A final clarification is needed about the IRs onsets. Due to the
discussed properties of the adaptation stage, the model enhances the
onsets of the speech signal. In case of utterances corrupted by noise
(which is applied from the very beginning to the very end of the
correspondent clean utterances), an onset emphatization is performed
at the beginning of the IR due to the noise. To exclude this corrupted
part of the model computation, for a first set of simulations of the
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Figure 4.1: Feature extraction from a speech signal processed using the
MLP model. The speech utterance is given by the digit sequence
"8601162", as in Fig. 3.3. From the top to the bottom: speech sig-
nal, output of the MLP model (fcut = 8 Hz) and features vectors
extracted from the IR.

current work the initial 150 ms of the IRs were left out. However, the
removal of the noise was shown to have a negligible effect on the
results1. Thus, in subsequent simulations the onsets were simply left
untouched in the encoded features vectors.

4.1.2 Modulation Filterbank

The process of features encoding from IRs computed using the MFB

model introduced a more challenging problem. Essentially, providing
additional information about the modulation domain is reflected in a

1 The reason of this could arise from the fact that in most of the cases the adaptation to
the noise was achieved before the actual start of the spoken digits within the utterance
(placed on average after 200 ms from the beginning of the recorded signals).
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Figure 4.2: Correlation matrix of an IR obtained with the MLP model before
(top) and after (bottom) DCT. The responses shown in the middle
and bottom panel of Fig. 4.1 were used, respectively. The con-
centration of higher amplitude values along the diagonal reflects
the fact that the features composing the transformed IR are less
correlated than the samples of the untouched IR (which is strongly
correlated as it can be seen by the off-diagonal high amplitude
values on the top figure).

dimensionality increase of the IR, as shown in Fig. 3.6; in such a case
the output varies with time, frequency and modulation frequency.

As for the MLP features encoding, a downsampling operation in the
time domain can be performed to reduce the resolution of the time
samples. However, the second step employed in the previous encoding
strategy cannot be blindly applied. The problem arises for two main
reasons:

1. like the filters in the auditory frequency domain, the filters
composing the modulation filterbank are partially overlapped,
thus introducing additional correlation;

2. a method successfully decorrelating the features in both the
frequency domains, would anyway return a three dimensional
signal which is not suitable to be analyzed by the statistical
back-end chosen for the current work.
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Different approaches have been tried to perform features encoding
of MFB-derived IRs; however, the problem has not been completely
solved. In a first attempt, it was chosen to simply apply the DCT

singularly on the different channels and subsequently merge the
information from the separate channels into a single vector. This
encoding approach, succeeds in decorrelating the information within
the single auditory frequency channels, but it does not take into
consideration the modulation frequency domain. Because of this, the
correlation problem is not solved. The top panel of Fig. 4.3 illustrates
the content of the feature vectors from two different time frames
extracted from the feature representation of a DCT-transformed IR

(shown in the bottom panel of Fig. 3.6). The three channels (separated
using the dashed lines) show rather similar trends between each other
for both the observations. The middle and bottom panels of Fig. 4.3
show, respectively, the cross-correlation between the first channel of the
two feature vectors and the cross-correlation between the two entire
feature vectors. While in the first case the decorrelation is achieved, to a
certain extent, in the second case a rather strong correlation is retained
at lags corresponding to the integer multiple of channel’s coefficients2.
Thus, by placing multiple-channel information within single vectors,
the correlation is reintroduced at the DCT-representation level. For
these reasons, no simulation were carried out with such features. In
the attempt of developing a method satisfying the HTK constraints, a
different encoding strategy was considered.

In a second approach, referred to as Method 1 (M1)3, the decorrela-
tion in both the frequency domains (auditory and modulation) was
performed via a 2-D DCT applied on each time frame. However, the
situation is very similar to the one previously discussed because cor-
relation is reintroduced once the features from different channels are
compacted together. Thus, the decorrelation seem not to be achieved
via 2-D DCT. The problem could be due to the very limited number
of modulation channels for which a redistribution of the energy in a
more compacted form is not achiavable. Nevertheless, M1 has been
employed to encode MFB features in some of the simulations (being
aware of its limitations).

A third approach, referred to as Method 2 (M2), was lastly imple-
mented. A 2-D DCT was applied as in M1. As far as it concern the
vectors encoding, it was chosen to compress the modulation frequency
dimension along time, i. e. the 3-D IR represented as a matrix of size
T �N�M — with T time frames, N frequency samples and M mod-
ulation frequency channels — was resized as a new 2-D matrix of
size (T �M)�N. Essentially, the result can be seen as the 2-D ma-
trix obtained with M1 where, for a fixed time frame, the frequency

2 In the example at the lags l = 42 k, k P [�2, 2].
3 The number notation of the methods only refers to the procedures actually employed

in the simulations. Since the first encoding approach was not tested, it was not
associated to a "method name".
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Figure 4.3: Top: content of the feature vectors from two different time frames
of a DCT-transformed multi-channel IR. Middle: cross-correlation
between the coefficients of the first channel of the two feature
vectors. Bottom: cross correlation between the two feature vectors.

information of two modulation channels mj,k 1 and mj,k2 (j = 1 . . .N,
k 1 �= k2) are placed one after the other in the time domain.

Although this encoding paradigm seemed to be suitable at first, it
was subsequently observed that the use of such representation could
lead to problems in the model characterization. The different nature
of adjacent time frames in this approach (as they derive from different
channels), should not be problematic for the HMM-based recognizer
which assumes independence between adjacent observations. However,
the application of a derivative-like operation on such features could no
longer be suited due to the discontinuities between adjacent frames.



40 methods

Figures 4.4 and 4.5 (top panels) show the result of the features
encoding methods M1 and M2. The difference between the encoding
methods can be noticed by comparing the number of frequency and
time samples. In the proposed simulations M = 3 modulation chan-
nels are considered; therefore, the output of M1 consists of three sets
of 42 coefficients per channel (i. e. a total of 42� 3 = 126 features
per frame), whilst the output of M2 is only made by 42 coefficients
but a triple number of time frames. One can also notice the much
more discontinuous fine structure of the second representation men-
tioned earlier. A measure of the degree of decorrelation introduced
by the DCT in the two methods is given by the correlation matrix, see
Appendix A.3, illustrated in the lower panels of Figs. 4.4 and 4.5.

Although both the methods have been used to perform some exper-
iments, the feature correlation problems encountered in the encoding
process of MFB features suggested that the back-end employed for
this study, i. e. the HTK, was not completely suitable for the ideas
to be investigated. Regarding the current study, it was decided to
move to a different kind of experiment relying on the computation
of single-channel IRs treatable in the same way as the MLP-derived IRs.
Anyway, other approaches to properly encode 3-D IRs — involving
multi-streams models (e. g. Zhao and Morgan, 2008; Zhao et al., 2009)
for used defined features, which HTK seems to only support partly —
that could be employed are briefly discussed in Chapter 6.

4.2 speech material

In ASR certain kinds of speech materials or corpora (singular corpus)
are used to train and test the recognizing system. Several different
corpora have been developed and used in the field of ASR. There exist
a number of aspects distinguishing corpora from one another, see
Harrington (2010). Modern ASR systems are still quite dependent on
the particular task they were built for. Therefore, the choice of the
corpus should be made carefully, considering the kind of experiment
one is working on. The structure of the speech material is one of the
key parameters characterizing a speech corpus; amongst others, in
ASR, one can distinguish corpora based on:

• syllables

• isolated words or digits

• sequence of words digits

• sentences

Some other constraints that can be used to tune the different ASR

systems are, for instance, represented by:

• finite alphabet (e. g. only some categories of words are present
in the corpus)
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Figure 4.4: Top: feature extraction from a speech signal processed using the
MFB model and M1. The speech utterance is "8601162", as in Fig. 3.3.
The 3 modulation channels correspond to the first three filters of
the Dau et al. (1997a) filterbank, i. e. a low-pass with fcut = 2.5 Hz
and resonant band-pass in 5 and 10Hz. Bottom: correlation matrix
of the encoded file, showing the strong correlations (given by the
lines parallel to the diagonal) between features.

• defined grammar (e. g. the presence of a silence before and after
each spoken word)
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Figure 4.5: feature extraction from a speech signal processed using the MFB

model and M2. The speech utterance is "8601162", as in Fig. 3.3.
The correlation between features is lowered compared to the case
in Fig. 4.4 and resembles more the structure obtained for the file
converted using the HTK tool, HCopy, see Fig. 2.3.

In the current work, a simple digit-based corpus has been employed.
The choice has been done to match the speech materials used in other
works investigating ASR performance with auditory-based feature
extraction techniques (i. e. Brown et al., 2010; Holmberg et al., 2007;
Tchorz and Kollmeier, 1999) thus allowing a kind of comparison of
the results.

4.2.1 aurora 2.0

The corpus employed in the current study is the aurora 2.0 Corpus,
described in Pearce and Hirsch (2000). The corpus was designed in
order to evaluate the performance of different speech recognition
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algorithms both in clean and in noisy conditions. The clean speech
samples were extracted from another well known corpus in the field of
ASR: the TIdigits Corpus (Leonard, 1984) which consists of utterances,
spoken by male and female US-American speakers, of isolated digits
(“oh”, “zero” and “one” to “nine”) and sequences up to seven digits.
An important feature of the corpus is its speaker-independency, since
52 male and 52 female speakers were employed to record the speech
material. Therefore, an improvement in the recognition accuracy from
a given features encoding strategy would suggest the robustness
of the method to extract speaker-independent characteristics of the
speech signals. The noisy speech was created by artificially adding
the distortions given by 8 different real scenario noises: suburban train,
babble, car, exhibition hall, restaurant, street, airport and train station. An
additional signal-processing step introduced in the corpus, consists in
the distortion of the signals by two standard frequency characteristics
(G.712 and MIRS), mimicking realistic telecommunication-channel
transfer functions (Pearce and Hirsch, 2000). For each of the noises,
there exist seven SNRs conditions: clean speech (i. e. ∞ dB SNR) and
from 20 to �5 dB SNR in 5 dB steps. The minimum SNR included
in the corpus is somehow higher than average minimum SNRs used
in perceptual tests, such as speech intelligibility tests, because lower
levels will typically lead to extremely poor results Lippmann (1997);
Sroka and Braida (2005).

Only two out of four parts of the database were employed in the
current study: the train folder and the testa folder. The train folder was
used for both clean and multi condition training, the latter referring to
a training procedure for the statistical model performed on both clean
and noisy speech. In the first case, 8440 utterances of the clean folder
were used; in the second case, a total of 8440 utterances were summed
up from 422 utterances for 20 different conditions: five SNRs (clean, 20,
15, 10 and 5 dB) for each of four noise types (subway, babble, car and
exhibition), allowing to train the model using multi condition data.
The testa folder consists of 28 conditions: all the seven SNRs for each of
four noise types (subway, babble, car and exhibition) for a total 28028
utterances (1001 per condition).

It can be noticed that the same noise types are used both in train-
ing and testing the model (this is referred to as matched condition).
Moreover, the same frequency characteristics (G.712) is employed for
both the sets, see Pearce and Hirsch (2000). ASR with mismatched
conditions (both regarding noise types and frequency characteristics)
can be performed using the speech material in the folders testb and
testc of the database, but these two parts were not used in the current
work.

Two main modifications have been applied to the speech corpus:
a level correction and the inclusion of an additional noise condition
(white noise).



44 methods

4.2.2 White noise addition

An additional noise condition was introduced in the testa set, em-
ploying white noise. This was done since white noise has been used
in several psychoacoustics studies (e. g. French and Steinberg, 1945;
Hawkins and Stevens, 1950; Festen and Plomp, 1990) as well as in dif-
ferent ASR works (e. g. Jankowski et al., 1995) and represents a strong
masker (e. g. French and Steinberg, 1945; Hawkins and Stevens, 1950),
thus allowing to test the noise robustness of the feature extraction
paradigm employed in the ASR task.

The noise addition was performed to the clean speech utterances
of the subway noise subset using the same signal-processing steps
employed by the aurora 2.0 Corpus authors, by means of the freely
available C-language script provided in the aurora project website4.
Therefore, both the noise addition and the application of the convolu-
tional distortion (G.712) were carried out in the same way as in the
original study.

The white noise sample was a 70 s long uniformly random dis-
tributed signal with a sampling frequency of 8 kHz and it was created
using the matlab function rand.

4.2.3 Level correction

Another modification performed on the Corpus was related to the
dB RMS levels of the speech data. The Root Mean Square (RMS) values
were computed in dB SPL considering a finite signal, sampled at a
uniform rate and using the convention stating that a pure tone at
100 dB SPL has an RMS value of 1.

The aurora 2.0 Corpus dB RMS levels’ distribution approaches a
Gaussian, as it can be seen in Figure 4.6, and the mean is 92.7 dB RMS.
In order to work with a level closer to the average spoken speech level
(ANSI-S3.5, 1997) and to reflect levels used in other ASR studies (e. g.
Brown et al., 2010; Holmberg et al., 2007) the mean level was shifted
down to 65 dB RMS.

4 http://aurora.hsnr.de/download.html

http://aurora.hsnr.de/download.html
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Figure 4.6: aurora 2.0 Corpus level distribution.





5
R E S U LT S

Two different sets of experiments will be described in this chapter.
The results of several feature extraction procedures involving both the
variation of the Modulation Low-Pass (MLP) model cutoff frequency
fcut in the last stage of the auditory model and the introduction of the
Modulation FilterBank (MFB) model with varying number of filters
and encoding strategies are presented in the first part. In the second
part, the results of an experiment inspired by the Kanedera et al. (1999)
study are discussed. All the results presented in these sections were
computed using the utterances from the aurora 2.0 corpus with mean
level shifted to 65 dB RMS and for all but the initial tested condition the
training was performed both with clean and noisy speech. Moreover,
no variations of the back-end were involved, i. e. no parameters of the
HTK have been varied or fitted throughout all the tests.

5.1 standard experiment results

In order to compute the results of the experiments presented in this
first part, the initial portions of the Internal Representations (IRs)
have been left out due to the noisy onsets, see Section 4.2.1. For
simplicity, the features sets will be referred to with the same name of
the model used to encode them, e. g. MLP features indicates features
extracted from the IRs obtained with the MLP model. Throughout all
the experiments, a value of ∞ for the SNR indicates the clean speech
testing condition.

5.1.1 MLP and MFCC features in clean training conditions

As a first experiment, the results obtained for the baseline (i. e. the
MFCC features) were compared to the ones obtained using features
encoded with the MLP model with the optimal cutoff frequency in
the modulation stage found in Dau et al. (1996a), i. e. fcut = 8 Hz.
Five noise conditions were available for testing. In Fig. 5.1 are shown
the recognition accuracies for the baseline and for the MLP model,
respectively on the left and right panel.

A first thing to notice is the trend of the recognition accuracy as
a function of the SNR. A decrease in the accuracy with the SNR is
what expected in ASR experiments (e. g. Tchorz and Kollmeier, 1999;
Holmberg et al., 2006, 2007) and what will be observed throughout all

47
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Figure 5.1: Clean condition training. Left panel: recognition accuracies ob-
tained with MFCC features. Right panel: recognition accuracies
obtained with the MLP model using fcut = 8 Hz. In both the cases,
five noise conditions were tested: suburban train (#), babble (2),
car (�), exhibition hall (3) and white noise ( ).

the following experiments1. It can be easily seen that the results varies
in a smaller range for the MLP-based case as far as it concerns the four
aurora 2.0 noises. The white noise condition produces the greatest
difference: the results are comparable in the case of the auditory
model based processing whilst they get dramatically worse (up to
approximately 30% at 10 and 5 dB SNR) when computed with the
MFCC baseline. Due to the similarities of the results of the MLP features
for the different noises, they can be characterized using an inter-noise
mean value for each SNR. As mentioned in Section 4.1.1, the features
from the IRs obtained with the MLP model were augmented with their
velocities and accelerations. As noticed in other works (Tchorz and
Kollmeier, 1999; Holmberg et al., 2006) the auditory-modeling-based
features provide a more noise-robust representation, thus leading to
better results, especially at the mid-level SNRs of the corpus (i. e. 20 to
0 dB RMS).

5.1.2 MLP and MFCC features in multi-conditions training

In Fig. 5.2 it is shown the comparison between the same two condi-
tions presented earlier (MFCC and MLP features) using acoustic models
trained in multi-condition. The multi-condition training was intro-

1 In multi-condition training, small improvements were sometimes observed for models
tested in mild SNR conditions, compared to tests in clean-condition.
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duced to investigate the effect of this model adaptation on the MLP

features. Besides the general improvements for MFCC features, ex-
pected considering results from other studies (among others Pearce
and Hirsch, 2000 or Holmberg et al., 2007), it can be seen that the
similarities of inter-noise results for the baseline are extended to lower
SNRs (from 10 to 5 dB) and that for the white noise condition the
difference is narrowed down but still relevant (from 10% up to 35% at
low SNRs).

Regarding the MLP results, an improvement can be noticed at all the
considered SNRs, even though at the lowest values (0 and �5 dB) some
inter-noise variability is introduced compared to the clean training
case. It can be seen that the improvement introduced from the multi-
condition training is smaller than for the MFCC features. In Fig. 5.3
the comparison of the accuracies for MFCC and MLP features averaged
across noises, for clean-trained (left panel) and multi-condition-trained
(right panel) models are shown, indicating the smaller gap between the
two methods when training in multi-condition. This is somehow dif-
ferent from the more constant improvement in the two cases presented
in Holmberg et al. (2007).
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Figure 5.2: Multi-condition training. Left panel: recognition accuracies ob-
tained with MFCC features. Right panel: recognition accuracies
obtained with MLP features using fcut = 8 Hz. In both the cases,
5 noise conditions were tested: suburban train (#), babble (2), car
(�), exhibition hall (3) and white noise ( ).
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Figure 5.3: Left panel: recognition accuracies averaged across the five noises
for each SNR value, obtained for clean-trained HMMs with MFCC

(�) and MLP (#) features. Right panel: same as left panel with the
acoustic models trained in multi-condition.

5.1.3 MLP features encoded with and without performing the DCT

The role of the DCT has been investigated by comparing results ob-
tained with the auditory model (fixing fcut = 8 Hz), in the cases where
the mentioned transformation was either applied or not. Such a condi-
tion was considered to examine the importance of mapping the data to
a different domain in order to fulfill the back-end’s constraints, mainly
the requirement of diagonal covariance matrixes (even though this
process has a poor physical representation, Batlle et al., 1998; Nadeu
et al., 1995).

The left panel of Fig. 5.4 shows that applying the DCT increases the
accuracy scores (up to 15%), thus providing a better acoustics model
for the different words. The two curves show approximately the same
accuracies when tested in clean speech, but the scores degradates
more rapidly with decreasing SNR when no transformation is applied,
as hypothesized in Tchorz and Kollmeier (1999).

In the right panel of Fig. 5.4, the differences in the results with
and without computing the DCT are shown for HMMs trained in multi-
condition, exhibiting a similar trend of the ones obtained for clean-
trained models although the gap between the two curves is narrower.
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Figure 5.4: Left panel: recognition accuracies obtained for clean-trained HMMs

with MLP features obtained with and without performing the DCT

operation (# and �, respectively). Right panel: same as left panel
with the acoustic models trained in multi-condition. The results
are averaged across noise conditions.

5.1.4 MLP features with different cutoff frequencies

Subsequently, the effect of changes in the cutoff frequency of the MLP

model were investigated by comparing accuracy results obtained with
MLP features with fcut taking the values: 2.5, 4, 8 and 20 Hz. The
experiment was carried out to determine the effect of the suppression
of high modulation frequencies from the IR of a speech signal, wich
should provide additional improvements (Tchorz and Kollmeier, 1999;
Hermansky and Morgan, 1994).

The results for clean- and multi-condition-trained models are illus-
trated in Fig. 5.5 (left and right panel, respectively) where it can be
seen that the deviation between the four cases is almost unnoticeable
(all the differences in accuracy are below 3%), suggesting that the
information important to perform recognition is retained in all the
conditions. In Tchorz and Kollmeier (1999), a change in the cutoff was
performed between 4 and 8 Hz, causing a greater difference than the
one obtained in this study. However, in the mentioned study the order
of the filter was changed too.
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Figure 5.5: Left panel: recognition accuracies obtained for clean-trained HMMs

with MLP features obtained for different cutoff frequencies: 2.5,
4, 8 and 20 Hz (2, •, � and #, respectively). Right panel: same
as left panel with the acoustic models trained in multi-condition.
The results are averaged across noise conditions.

5.1.5 MLP features with different filter orders

Due to the apparent invariance shown in the results with different
cutoff frequencies, it was chosen to encode sets of features where
the order of the modulation low-pass filter was changed. This was
done so as to show how influential the removal of information in the
modulation domain is for the results. This simulation was carried out
in a later stage of the study and the cutoff value was not chosen to
be part of the set of cutoffs frequencies used in the other experiment
with MLP features. The cutoff frequency was fixed to 2 Hz since it was
expected to reflect greater degradation in the accuracies as the filter’s
order was increased (from two to twelve in steps of two). Figure 5.6
shows how the results strongly deteriorate as the order gets higher.

5.1.6 MLP and MFCC features with and without dynamic coefficients

Figure 5.7 shows the comparison between the results for MLP and
MFCC features obtained with and without appending the dynamic
coefficients. The modulation low-pass filter of the MLP model was
chosen to be fcut = 4 Hz. The comparison was performed in order to
assess the importance of dynamic coefficients — known to provide
increased robustness with classical encoding methods such as MFCC
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Figure 5.6: Left panel: recognition accuracies obtained for clean-trained HMMs

with MLP features. The cutoff was fixed to 2 Hz and the filter’s
order was set to 2, 4, 6, 8, 10 and 12 (4, 3, 2, •, � and #,
respectively). Right panel: same as left panel with the acoustic
models trained in multi-condition. The results are averaged across
noise conditions.

features (Furui, 1986) — when using auditory-signal-processing-based
features. It can be seen that the introduction of the dynamic coefficients
for MFCC features causes the expected great improvements, whereas it
only induces a mild (though noticeable) improvement of the results
for the MLP features. The outcome of such an experiment supports the
idea that the additional processing performed when calculating the
dynamic coefficients somehow resembles part of the processing within
the MLP model, thus causing a smaller improvement when deltas and
accelerations are used to augment MLP features compared to when
they are combined with MFCC features.

For MFCC features the increase ranges approximately from 5% up
to almost 40% in clean-condition training and from 5% to 15% in
multi-condition training. For MLP features the improvement is more
contained, ranging approximately from 2% to 5% for the clean-trained
models and from 1% to 8% for multi-condition-trained models.

5.1.7 MFB features with different numbers of filters

The first set of simulations performed after the replacement of the
modulation low-pass filter stage were carried out introducing of the
modulation filterbank presented in Dau et al. (1997a), i. e. DauOCF.
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Figure 5.7: Left panel: recognition accuracies obtained for clean-trained HMMs

with MFCC features including (2) and not including (•) dynamic
coefficients and MLP features including (�) and not including (#)
dynamic coefficients. The low-pass modulation filter in the MLP

model had cutoff fcut = 4 Hz. Right panel: same as left panel with
the acoustic models trained in multi-condition. The results are
averaged across noise conditions.

It was chosen to encode the features using an increasing number
of filters to see the differences in recognition accuracy given by the
progressive introduction of other channels information. The features
were encoded from the IRs obtained with one up to four modulation
filters, where the first case represents the single low-pass filtering at
2.5 Hz (from the MLP model) and the last case represents the encoding
of the first four channels using the Dau et al. (1997a) modulation filter-
bank (i. e. low-pass fitler and band-pass filters with center frequencies
in 5, 10 and 16.67 Hz, see Table 3.1). The results are shown in Fig. 5.8
for both clean and multi-condition training. Almost no changes are
introduced using different numbers of filters. Regarding the features
encoding procedure, M1 (described in Section 4.1.2) was employed.
Like for the comparison between MLP features obtained using different
cutoff frequencies, the similarity between the results is somehow unex-
pected considering that a greater amount of information is introduced.
Some of the causes that might be responsible for this results invariance
are discussed in the following chapter.
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Figure 5.8: Left panel: recognition accuracies obtained for clean-trained HMMs

with features encoded using the MFB model, Dau et al. (1997a)
filterbank and the approach M1 with a number of filters ranging
from 1 to 4 (2, •, � and # symbols, respectively). Right panel:
same as left panel with the acoustic models trained in multi-
condition.

5.1.8 MFB features with different center frequencies and encoding methods

The last two conditions investigated changes that have been applied
on both the filterbank and on the encoding methods. In a first ex-
periment the results for MFB features obtained using the filterbank
with resonant filters and new center frequencies, i. e. DauNCF, were
compared with the results for MFB features obtained using the original
filterbank from Dau et al. (1997a), i. e. DauOCF. Only the first two filters
of the filterbanks were employed. Also the encoding methods were dif-
ferent in the two cases: M1 (i. e. multiple channels coefficients stacked
in the same feature vector for each time frame) was employed for
the features encoded with the DauOCF and M2 (i. e. multiple channels
coefficients stacked in separate time frames) was used for the features
encoded with the DauNCF. The introduction of M2 was performed to
investigate how changes in the encoding methods would have affected
the accuracy results. The change of the filterbank was performed to
give more importance to lower modulation-frequency regions than
with the original Dau et al. (1997a) filterbank, keeping in mind the
perceptual results from Drullman et al. (1994a,b). The results are illus-
trated in Figure 5.9, showing that no difference is basically introduced
by the described modification other than a small difference for the
testing condition in clean speech for multi-condition-trained models



56 results

where the two curves are separated by approximately 5%. The gap
gets smaller at 20 dB SNR causing the recognition accuracy to increase
with worse SNR conditions.

In a second tested case, features encoded using the DauNCF filter-
bank were compared with features encoded using the FQNCF (i. e. a
Butterworth low-pass and fixed-Q band-pass filters). The features
were encoded using M2 even though M1 returned slightly better re-
sults, since it was the role of the filter shape, more than the absolute
score that was investigated. Such a change should point out the dif-
ferences in recognition accuracy due to the use of a filterbank where
the band-pass filter does not retain the low-modulation-frequency
energy in the same way as the resonant filters in the Dau et al. (1997a)
filterbank (constant at low frequencies), but strongly attenuates the
DC. Figure 5.10 shows that the changes are very mild but the results
are worse with the new filterbank. Also in this case, an increase in the
accuracy is notice between test in clean speech and in noisy speech at
20 dB SNR.
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Figure 5.9: Left panel: recognition accuracies obtained for clean-trained HMMs

with two different setups. The curve marked with � refers to
features encoded using the MFB model, DauOCF filterbank and the
approach M1. The curve marked with # refers to features encoded
using the MFB model, DauNCF filterbank and the approach M2.
Right panel: same as left panel with the acoustic models trained
in multi-condition.
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Figure 5.10: Left panel: recognition accuracies obtained for clean-trained
HMMs with features encoded using the MFB model, two filters
from the DauNCF filterbank and two filters from the FQNCF filter-
bank (� and # symbols, respectively). The features have been
encoded using the approach M2 in both cases. Right panel: same
as left panel with the acoustic models trained in multi-condition.
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5.2 band pass experiment results

The results obtained in the Band Pass Experiment (BPE) are reported in
this section. Figure 5.11 shows an example of the results obtained from
this set of simulations. Only a single SNR condition is shown, 20 dB SNR,
trained in clean condition. It was chosen for comparison, since it is
the closest condition to the one tested in Kanedera et al. (1999), where
an SNR of 23.7 dB was considered. Moreover, this particular condition
returns a strong non-monotonic behavior for the recognition accuracy
as the band of the filters gets narrower (see e. g. the peaks for the
bands [1, 4] Hz and [2, 8] Hz), which will be motivated later.
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Figure 5.11: Recognition accuracies of the BPE for clean-trained HMMs and an
SNR value of 20 dB, averaged across all the noise conditions.

The BPE has been carried out for all the noise conditions and for
both clean- and multi-condition training. It was preferred to plot the
whole set of results in a different way than Fig. 5.11, to simplify the
understanding of the illustrations. For such a purpose, the results
were chosen to be shown by progressively fixing one of the two
variables (fm,l and fm,u, respectively), thus allowing only the other
cutoff frequency to be varied (i. e. fm,u and fm,l, respectively).
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Figures 5.12 and 5.13 show the results obtained varying fm,u for six
fixed values of fm,l (0, 1, 2, 4, 8 and 16 Hz). The mentioned behavior
regarding Fig. 5.11, can be seen as a non-monotonic increase of the
recognition accuracy. For instance, in the curve obtained fixing fm,l =

1 Hz (denoted by the 3 symbol) a maximum is present for fm,u = 4 Hz
in most of the left panels of Figs. 5.12 and 5.13.

On the other hand, Figs. 5.14 and 5.15 show the results obtained
varying fm,l for six fixed values of fm,u (1, 2, 4, 8, 16 and 32 Hz). In this
case the non-monotonic decrease can be seen when fixing fm,u = 4 Hz
(denoted by the 2 symbol) which has a maximum for fm,l = 1 Hz in
most of the left panels of Figs. 5.14 and 5.15, i. e. the same conditions
described for the other figures.

It is noticed that such effect appears only for the clean-trained
models cases and it is more pronounced at higher SNRs, e. g. panels C
and E of Figs. 5.12 and 5.14. For the multi-condition training case, the
behavior seen in clean training is not observed anymore. The accuracy
simply gets higher as more information from the modulation domain
is retained, giving the highest results for the widest considered band
(the low-pass filter with cutoff 32 Hz).
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Figure 5.12: Recognition accuracies of the BPE as a function of the higher
cutoff frequencies (fm,u) parameterized in the lower cutoff fre-
quency (fm,l). Four conditions (from the top to the bottom, clean
speech, SNR of 20, 15 and 10 dB) tested with HMMs trained in
clean- (left panels) and multi-conditions (right panels) are con-
sidered. The values of the parameter are fm,l P t0, 1, 2, 4, 8, 16u,
corresponding to the symbols 4, 3, 2, •, � and #, respectively.
The scores are averaged across noises.
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Figure 5.13: Recognition accuracies of the BPE as a function of the higher
cutoff frequencies (fm,u) parameterized in the lower cutoff fre-
quency (fm,l). Three conditions (from the top to the bottom, SNR

of 5, 0 and �5 dB) tested with HMMs trained in clean- (left panels)
and multi-conditions (right panels) are considered. The values
of the parameter are fm,l P t0, 1, 2, 4, 8, 16u, corresponding to
the symbols 4, 3, 2, •, � and #, respectively. The scores are
averaged across noises.
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Figure 5.14: Recognition accuracies of the BPE as a function of the lower cutoff
frequencies (fm,l) parameterized in the higher cutoff frequency
(fm,u). Four conditions (from the top to the bottom, clean speech,
SNR of 20, 15 and 10 dB) tested with HMMs trained in clean- (left
panels) and multi-conditions (right panels) are considered. The
values of the parameter are fm,u P t1, 2, 4, 8, 16, 32u, correspond-
ing to the symbols 4, 3, 2, •, � and #, respectively. The scores
are averaged across noises.
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Figure 5.15: Recognition accuracies of the BPE as a function of the lower cutoff
frequencies (fm,l) parameterized in the upper cutoff frequency
(fm,u). Three conditions (from the top to the bottom, SNR of 5,
0 and �5 dB) tested with HMMs trained in clean- (left panels)
and multi-conditions (right panels) are considered. The values
of the parameter are fm,u P t1, 2, 4, 8, 16, 32u, corresponding to
the symbols 4, 3, 2, •, � and #, respectively. The scores are
averaged across noises.





6
D I S C U S S I O N

The results collected in this study will hereby be discussed and com-
pared to already existing studies. These results can be used to give a
rational explanation toward some of the reasons that characterize the
auditory system as a robust speech recognizer.

Although at the beginning of the current project some parametric
tuning was performed in order to enable absolute result comparisons
(i. e. in the actual accuracy scores obtained) with the literature, it was
soon found to be is quite unfeasible. This was due to the great number
of difficult to control parameters playing a role in the final results of the
complex framework of ASR systems. Nevertheless, general behaviors
of the results from previous works, such as relative improvement
between two tested conditions, can be a matter of comparison.

6.1 noise robustness in auditory-model-based automatic
speech recognition

The main advantage introduced by auditory-model-based feature
encoding is the increased noise robustness of the encoded speech rep-
resentations. The ASR experiments carried out in the current work were
performed on speech material corrupted by additive noise (comprising
different real life noise types) as well as by convolutional distortions
introduced by filtering the speech material with a transfer function
simulating a transmission channel. Thus, two of the most common
forms of disturbances that can corrupt speech signals in real life were
taken into account.

The comparison between results obtained with Mel-Frequency Cep-
stral Coefficient (MFCC) features and auditory-model-based features
(Figs. 5.1 to 5.3) shows that the latter provides an improvement both
in clean and in multi-condition training. In the second case, the im-
provements introduced by the auditory-based features computation
are less prominent, suggesting that the role of the adaptation of the
statistical models (not to be confused with the adaptation stage within
the auditory model) given by the multi-condition training is somehow
dominant compared to the improvements introduced by the auditory
model.

Nonetheless, the gap in the results for the clean training condition
between MFCC and MLP features is more than just noticeable. The
reason of the improvement introduced by auditory-like processing
can be associated to the modulation frequency filtering provided
by the adaptation stage and the modulation low-pass filter of the
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auditory model (Tchorz and Kollmeier, 1999) and this concept can be
understood more easily considering other signal processing techniques
usually employ to deal with distortions in ASR.

For instance, Cepstral Mean Subtraction (CMS), Atal (1974), is of-
ten employed (e. g. Hermansky and Morgan, 1994; Holmberg et al.,
2006) when the removal of convolutional distortions is required; as
mentioned in Appendix A.1, such operation can be interpreted as
a (linear) high-pass filtering of the modulation frequencies (i. e. the
time trajectories of the short-term cepstral representation of the speech
signal). The importance of such high-pass filtering can be accounted
for, by noticing that the temporal evolution of several kinds of noise is
slow compared to speech (Nadeu et al., 2001; Hermansky and Morgan,
1994; Bourlard et al., 1996). Hence, the slowly varying envelopes of
these disturbances can be associated with the high energy concentra-
tion in the low-frequency part of the modulation spectrum and these
frequencies can be rejected by the high-pass filter provided by the CMS

technique (Kanedera et al., 1999; Atal, 1974).
The same behavior in the modulation domain can be associated

to the calculation of dynamic coefficients (Hermansky and Morgan,
1994), whereas it is further improved by the RASTA filtering, which
combines the high-pass filter with an additional low-pass filter to
reduce the high-frequency envelope fluctuations (see Section 2.1.3).

6.1.1 Adaptation stage contribution

Similarly to RASTA, the features computation via the Modulation Low-
Pass (MLP) model provides a band-pass shaped Modulation Transfer
Function (MTF), as seen in Section 3.2. For these reasons it can be
argued that the high-pass portion of the MTF obtained with the MLP

model, which is a direct consequence of the adaptation loops, is
responsible for the rejection of convolutional disturbances.

As far as additive noise concerns, low-modulation-frequencies atten-
uation by the adaptation stage is again playing an important role. In
Section 3.1.3, it has been described the twofold behavior of the adap-
tation stage, performing a quasi-logarithmic transformation in case
of slowly varying signal changes and a quasi-linear transformation
in case of fast signal fluctuations. In the first case the additive rela-
tion between noise and speech signal is maintained1 in the frequency
domain (i. e. after the auditory filterbank), but it is subsequently lost
in the following step due to the nonlinearity introduced by the log-
transformation of the two element sum (i. e. noise and speech signal).
In other words, if both signal and noise can be considered to be sta-
tionary within the considered time frame, a distinction in statistical
terms cannot be performed.

1 Due to linearity of the Discrete Fourier Transform (DFT).
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In the second mentioned case, provided a slowly varying additive
noise, the additive relation is maintained due to the linear transforma-
tion applied. Thus, the segregation via high-pass filtering will again
be possible.

6.1.2 Low-pass modulation filter contribution

The robustness of the model discussed so far, was linked with the
processing introduced by the adaptation stage. According to the results
reported in Tchorz and Kollmeier (1999) the modulation low-pass
filtering should also play a role in the final recognition scores since
it should provide a smoother representation of the spectral changes,
thus limiting the short-spectra estimation artifacts, Hermansky and
Morgan (1994). However, the results presented in Fig. 5.5 show a rather
small variability in the accuracy scores obtained with the MLP model
using different cutoff frequencies. This could be interpreted as some
form of independence of the model to the amount of high modulation
frequencies suppressed by the filter, but this is known to be untrue
considering the data in literature regarding speech perception (e. g.
Drullman et al., 1994a,b).

For all the cutoff frequencies tested with the MLP model (i. e. 2.5,
4, 8 and 20 Hz), it must be noticed that a second order low-pass
Butterworth filter was used. The 12 dB/octave roll-off of such a filter
could be shallow enough to retain most of the important information
present in the higher part of the modulation spectrum, thus leading
to very similar accuracy scores. The behavior observed in Tchorz and
Kollmeier (1999) between the cases with cutoffs 4 and 8 Hz show a
greater variability which can be accounted for by considering that
the filter’s order is also varied. This hypothesis is strengthened by
the results presented in Fig. 5.6, where the recognition accuracies
strongly decrease as the filter’s order is increased for a fixed cutoff
frequency (fcut = 2 Hz) due to the rejection of important information.
These data seem to point in the same direction of the conclusions
drawn in Kanedera et al. (1999), where it was shown that in an ASR

framework one can also confirm the perceptual findings about the
importance of the modulation frequencies around the 4-6 Hz band for
speech communications, reported e. g. in Drullman et al. (1994a,b) and
Drullman (1995).

6.1.3 Temporal analysis in ASR

A final aspect to notice, is that the analysis performed on time inter-
vals with duration of approximately one order of magnitude greater
than the time frames lengths (150-200 ms against 10-20 ms) seems to
be the most important factor in the processing carried out within the
ASR oriented framework based model. These time constants roughly



68 discussion

correspond to those adopted in RASTA, dynamical features and CMS

(which can both be somehow seen as special cases of RASTA, Her-
mansky and Morgan, 1994) as well as in the adaptation stage of the
considered auditory model. Therefore, it is sensible that a model built
to simulate temporal effects in the auditory system, such as forward
masking and temporal integration, can also be applied in the field
of ASR because the properties of the real system modeled by such
temporal-oriented approaches seem to be strongly related to those
accounting for robustness in Human Speech Recognition (HSR) pro-
cesses (and ASR, consequently). It is interesting to notice the duality of
this effect referring to a study in which RASTA was used to partially
model some aspects of forward masking experiments (Hermansky
and Pavel, 1998).

Moreover, fundamental speech units like syllables (or syllable-like
units) — which are thought to be very important for speech per-
ception and understanding (Greenberg, 1996) — can be described
in time intervals of similar lengths. Therefore, considering the idea
mentioned earlier about the evolution of the auditory system in order
to exploit the different characteristics of speech (Hermansky, 1998),
the comparability of such time quantities strengthens the assumption
of using longer temporal intervals to extract unique features from
speech signals.

6.2 robustness increase by dynamic coefficients and dct
computation

Figure 5.7 shows the changes in the recognition accuracies for MFCC

and MLP features where the dynamic coefficients are either computed
or not. The derivative-like operation performed to evaluate dynamic
features can be considered as a high-pass filtering in the modulation
domain, Hermansky and Morgan (1994). Thus, the small improvement
given by the inclusion of these coefficients in the MLP case could be
interpreted considering that an additional robustness is introduced by
the fixed (i. e. signal-independent) modulation high-pass filter. Due to
the nonlinearity introduced by the adaptation stage of the auditory
model, the obtained MTF is not fixed and its characteristics, e. g. its
steepness at low frequency, changes with different input signals. For
certain signals it could happen that the high-pass section of the model’s
MTF is not completely suited to remove the low frequency attenuation
corrupting the speech signal. Thus, the additional high-pass filter
could help rejecting the unwanted components. The fact that the
adaptation stage and the dynamic features possess similar behaviors
could also motivate why the improvement obtained when introducing
dynamic coefficients in auditory-based features is smaller than the
improvements shown for MFCC features. In the latter case, temporal
information are not coded within the preprocessing operations and
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the inclusion of the dynamics of the coefficients strongly influences
the results.

Finally, the role of the DCT can be recognized by observing the
results illustrated in Fig. 5.7. The hypothesis of uncorrelated features
must be fulfilled when using the framework employed in the current
study; the DCT applied on the IRs provides a tool to guarantee such a
property. The improvement of the recognition accuracies supports this
fact. The necessity to perform a transformation of the IRs is one of the
reasons suggesting that diagonal-covariance-HMMs might not be the
ideal models to deal with such features (Tchorz and Kollmeier, 1999);
this is because of the unclear physical meaning of the transformed
auditory features (Batlle et al., 1998; Nadeu et al., 1995).

6.3 multiple channel feature encoding

The results obtained introducing the MFB features are now discussed.
Figure 5.8 shows the results for an increasing number of filters in the
filterbank and essentially no difference is introduced by this change.
This behavior was not expected considering the usefulness of the
modulation filterbank concept to describe different temporal aspects
of the auditory system (Dau et al., 1997a; Ewert and Dau, 2000). One
of the causes of this invariance, could be again the too shallow slope
of the filters employed in the filterbank which would retain very
similar information across channels although the center frequencies
are changed. Another cause for this invariance was considered to
be the unfulfillment of the requirement necessary in order to use
diagonal covariance matrixes. In Section 4.1 the encoding procedure
M1 has been described and it was pointed out how, after successfully
achieving feature decorrelation via DCT in the single channels, the
compaction of multiple channel coefficients in single feature vectors
reintroduced features correlation. Thus, performing HMM-based ASR

tasks with such feature vectors introduces a systematic error. However,
it is not simple to quantify the entity of such an error since several
parameters could play a role in it.

The following comparison, presented in Fig. 5.9, shows that similar
results are obtained when both the center frequencies of the filterbank
and the feature encoding method are changed. Thus, both the modifi-
cations seem to be unnecessary to achieve better results. The argument
about the filter’s slopes mentioned earlier for the data about different
MFB filters number could again motivate the similarity in results when
changing the center frequencies. Regarding the encoding method, it is
difficult to estimate how relevant is the improper dynamic-coefficients
encoding (i. e. the problem of computing derivative-like features on
the coefficients obtained with M2) compared to the gain that could
have been achieved by the new frame distribution.
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In the last comparison (Fig. 5.10), from the results obtained with
feature encoded using different filter shapes (DauNCF and FQNCF),
better results are obtained with resonant filters suggesting that they
are preferred to symmetric filters in this framework. The degradation
in recognition accuracy when using fixed-Q filters is very contained
and could be due to the additional attenuation introduced for very
low-modulation frequencies in the range [1, 2] Hz, which was also
shown to be relevant in speech perception (Drullman et al., 1994a,b;
Kanedera et al., 1999).

After all the experiments were concluded and the whole set of
data analyzed, a different cause that accounts for the similarity of the
results for MFB features was considered. It was postulated that the
problem could derive from the intrinsic error made in the attempt of
encoding (and treating) the features from each frame as single feature
vectors. In such a way, the amount of information when considering
multiple filters is increased but it is treated as a single quantity with-
out making distinctions between the different channels. Therefore,
the multi-channel information is somehow "integrated", without ex-
ploiting the possibility to treat the cues that could be enhanced by
each channel separately. For the same reason, it becomes unfeasible
to investigate the contributions of the different channels to the total
recognition accuracy once the results are obtained.

As a consequence, the results from the experiments carried out with
MFB features can be compared to the results of other MFB experiments,
but they are not easily comparable with the results of experiments
based on MLP features earlier described. On the other hand, it could
be expected that using a framework allowing to work with both
MLP and MFB features in the same way, also the change of these
parameters would lead to different results. Different approaches that
would allow to independently consider the information from the
different modulation channels when training the statistical models
were investigated in literature (e. g. Ellis, 2000; Zhao and Morgan,
2008; Zhao et al., 2009), but due to the limited amount of time and
the necessity to employ a different recognizer for such a purpose they
were not implemented in this project.

6.4 band-pass experiment results

Although the processing steps implemented in this work were slightly
different than the ones employed in Kanedera et al. (1999) due to the
auditory processing, the results of the referenced study were expected
to be confirmed since both the approaches exhibited capabilities to-
ward modeling perceptual-like characteristics.

The results obtained for the BPE for the clean training case, partially
reflect the data in Kanedera et al. (1999, Fig. 2). From Fig. 5.11, or
alternatively from the C panels of Figs. 5.12 and 5.14, it can be seen how
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including only part of the information from the modulation domain,
returns better results than using the whole modulation spectrum in
the subsequent processing.

Again, the bands concurring in this effect are those including the
modulation frequencies that were found to be more perceptually
important. In the considered case the peaks in recognition accuracy
were found for fm P [1, 4] Hz and fm P [2, 8] Hz. However, unlike
the results in the mentioned study, the accuracies obtained when
processing the signals with broader filters (i. e. higher fm,u in Fig. 5.11)
than the two mentioned bands show a lower accuracy. Thus, the
inclusion of higher modulation frequency information destructively
contributes to the ASR score. The higher impact of the [1, 4] Hz and
[2, 8] Hz bands is maintained also at lower SNR, with a less pronounced
effect. The different behavior of the described simulations compared
to Kanedera et al.’s results could arise from three main reasons:

1. the low-pass filtering introduced when downsampling the IRs by
averaging (moving average filter);

2. the different preprocessing performed before modulation filter-
ing (auditory model as opposed to the J-RASTA technique);

3. the use of a different recognizer.

The low-pass filtering is introducing some additional attenuation
in the higher part of the modulation spectrum considered in the
experiments (up to 32 Hz). However, such attenuation is rather small
and cannot be accounted for all the introduced changes.

Regarding the second point, it is recalled that the adaptation stage
introduces signal-dependent changes in the MTF; this could account
for a more auditory-based discrimination of the important temporal
modulation bands characterizing the speech signals and therefore
cause the differences between the two cases.

Lastly, in Kanedera et al. (1999) both a DTW- and a HMM-based
system were used. Only part of the data is available for the HMM

recognizer, but they seem to show a similar behavior to the results
obtained in the current study.

An attempt to relate the contributions of the sub-bands which make
up the wider bands (e. g. the relation between the accuracies obtained
from the bands [1, 2] Hz, [2, 4] Hz and the result from the [1, 4] Hz
band) has been made, but only a general behavior could be observed.
Aside from the constructive contribution of the narrowest contiguous
bands (i. e. the 1-octave-wide filters) and the somehow stable values
for results extracted from broader bands (i. e. the top-right corner of
Fig. 5.11), it has not been possible to define a model describing the
details shown in the figure.
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6.5 limitations

One of the main limitations of the framework employed to carry
out the described ASR experiment was given by the impossibility
to perform a feature encoding process completely suitable with the
subsequent back-end. This required to introduce different encoding
approaches which simply brings in more parameters and uncertainty
to consider.

Another practical limitation consisted of the high computational
time and load needed to encode the whole set of files from the two
test sets of the aurora 2.0 corpus (approximately 36000) using the
auditory model. The processing time of each single file was depending
on the encoding procedure, but it was on average between 1 and 3 s
with the computer employed in this work (approximately between
10 to 15 s in a normal workstation). Thus, more than one day was
required to encode each single feature set. The higher computational
need is one of the main drawbacks encountered when working with
auditory models to extract features for ASR experiments (Jankowski
et al., 1995; Hermansky, 1998), therefore limiting their widespread in
applications that require real time computation.

Moreover, as pointed out in Hermansky (1998), it can be sometimes
very confusing to deal with all the parameters that can play a role
in a complete ASR system, leading to a difficulty interpreting the
results and comparing with other studies. In addition to this, it must
be noticed that, although at the present day HMMs represent by far
the most popular technique employed to model speech signal in ASR

(Morgan et al., 2004), many constraint of this approach have been
reported (e. g. Hermansky, 1998; Bourlard et al., 1996). This has to be
kept in mind especially when the encoding methods adopted in the
front-end could be not perfectly suited to an HMM-based back-end.

6.6 outlook

As repeatedly mentioned in the previous sections, a modification of
the statistical model to properly deal with multi-channel IRs could
be done by adopting a back-end designed to perform multi-stream
recognition. Retrospectively, an additional toolkit could have been
employed together with the HTK, which has limited support for multi-
stream recognition when combined with non-standard features2, to
work with MFB features. For instance, the RESPITE CASA Toolkit (CTK)
decoder3 could have been used4. In such a case it would be possible to
recognize utterances in parallel by means of different models trained

2 Standard features are features encoded using algorithms not provided by the HTK,
like the auditory features computed by means of external models.

3 http://spandh.dcs.shef.ac.uk/projects/respite/ctk/notes/releases.html

4 As suggested by Guy J. Brown in a personal communication.

http://spandh.dcs.shef.ac.uk/projects/respite/ctk/notes/releases.html
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on the multiple modulation channels. Subsequently, the obtained pos-
terior probabilities could be used to investigate both the contribution
in recognition from each channel and the combination of multi-stream
information to give the resultant (i. e. recognized using all the chan-
nels information) word sequence. Furthermore, dynamically weighted
bands, depending on the type of noise background, could be used.

Also the results of the BPE provide additional ideas that could be
applied whether a multi-stream recognition paradigm was employed.
If the behavior of the curves obtained fixing one of the two parame-
ters fm,l and fm,u (i. e. the curves in Figs. 5.12 to 5.15) was modeled,
the results in each modulation frequency band could be seen as an
"importance factor" and be used to somehow weigh — in other words,
introducing additional "a priori" knowledge — the multi-stream HMM

models. In such a case, it should also be investigated whether the be-
havior of these "importance factors" of the different frequency bands
is substantially changed in different ASR tasks, e. g. by reproducing
the experiments with different speech materials.

Some final considerations regard the alternative choices of the
speech material. First of all, it could be interesting to introduce a
more systematic way of testing different disturbances. By using speech
corrupted by single types of noise, e. g. an additive noise or a con-
volutional distortion, it would be easier to assess the improvements
relatively to single noise conditions. Moreover, testing the signal with
large word vocabularies (thus relying on phonemes classification tasks)
would be more meaningful for the sake of the comparison with HSR

experiments.





7
C O N C L U S I O N S

An auditory-signal-processing-based approach to extract features for
ASR experiments was described in the current study. Several results
were computed in an attempt to validate previous studies investigating
the use of auditory-like features in ASR as well as to link these results
to perceptual data. Although part of the parameter tuning of the
system was performed to match those employed in other studies, in
order to be able to compare the results obtained, it soon turned out
that such task is more challenging than expected due to a the great
number of parameters to deal with when working with an ASR system.
It was therefore considered to perform the comparisons on the general
behaviors of different encoding strategies, focusing on the relative
changes in the results.

The main property investigated results obtained with different
auditory-like sets of features from different modifications performed
on the last stage of the models presented in Dau et al. (1996a, 1997a),
concerning the filtering of temporal modulations. An increased feature
robustness was achieved by such encoding strategies, compared to a
classical feature extraction technique (i. e. MFCCs), especially in noise-
corrupted speech. The improvement was greater for clean-trained
HMMs compared to multi-condition-trained models.

In a subsequent series of experiments, the influence of changes in the
cutoff frequency of the low-pass modulation filter was investigated and
found to have almost no relevance. This behavior was hypothesized
to be due to the shallow slope of the filters employed in the described
experiments. Evidence of this were also found in a following set of
experiment showing a severe performance degradation obtained by a
progressive increase of the filter’s order.

The computation of the DCT before passing the features to the rec-
ognizer was found to improve the recognition accuracies, as expected
since the features decorrelation was achieved using this operation. A
mild improvement was also shown for MLP features with the intro-
duction of first- and second-order dynamic coefficients as opposed
to the great increase in accuracy when dynamic coefficients are used
with MFCC features. This was justified considering that in the auditory-
based approaches the temporal information is already coded in the
IRs from the steps involving temporal modulation operations.

Experiments including features from multiple modulation chan-
nels were performed and very similar results were obtained as the
number of these channels was varied. This was explained by both
an inadequate choice of the filters’ characteristics employed (which
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were thought to be too shallow toward high frequencies) and the
usage of feature encoding procedures not completely suitable with the
statistical back-end. Regarding the problems of interfacing front-end
and back-end, both the issue deriving from the correlation of the
features employed and the problem caused from the impossibility
of treating the information from different channels separately were
discussed. The results for MFB features obtained using filterbanks with
different characteristics, i. e. filters’ center frequencies and shapes, and
encoding procedures also showed a very low variability. Hence, the
filters’ parameters seemed not to be as crucial as they were expected
to be, within the framework employed to perform ASR experiments in
the current project. It was noticed, however, that when using a system
correctly treating the MFB features, the results could behave differently,
with respect to the parameters mentioned.

Subsequently, an experiment inspired by the work of Kanedera
et al. (1999), to assess the importance of single modulation frequency
bands in the low-modulation-frequency spectrum, was reproduced.
The relevance of the information contained in frequency bands that
were found in literature to be more perceptually significative (Drull-
man et al., 1994a,b; Drullman, 1995) was partially confirmed. This
information was hypothesized to be applicable when performing a
perceptually-oriented weighting of the different frequency bands.

Finally, some ideas that could be developed to deal with the limita-
tions encountered using the described framework were briefly intro-
duced.



A
A P P E N D I X

a.1 homomorphic signal processing and removal of con-
volutional disturbances

Homomorphic processing consists in the usage of some strategies to
convert a given non-linear system into a linear one, in order to be able
to use standard analysis techniques and handle different problems in
a well known and understood way, Oppenheim and Schafer (1975).

Cepstral domain transformations represent an example of this,
Proakis and Manolakis (2007), employing the logarithmic operator to
transform signals (in the considered case speech, but cepstrum has
other areas of interests too) in the log domain where some kind of
operations can be more easily performed (e. g. removal of convolu-
tional disturbances). The cepstrum cf(τ) of a signal f(t) is an operation
introduced in the 60s to analyze the rate of change of a signal’s spec-
trum, Bogert et al. (1963). It results from the (nonlinear) transformation
defined by:

cf(τ) = F
 

log
(
|F tf(t)u |2

)(
(A.1)

where F denotes the Fourier Transform (FT) operator, substituted by
the Discrete Fourier Transform (DFT) operator in the case of digital sig-
nals. Dealing with audio signals, i. e. real valued signals, the external
FT of Eq. (A.1) reduces to Discrete Cosine Transform (DCT), i. e. :

cf(τ) = DCT
 

log
(
|F tf(t)u |2

)(
. (A.2)

Due to its properties, some of which will be briefly introduced in
this section, cepstral techniques can be used to separate (i. e. decon-
volve) different components within speech signals, e. g. speech from
convolutional distortions or vocal tract transfer function from glottal
excitatory signals Gudnason and Brookes (2008). For instance, given
a convolutional disturbance, h(t) acting on a signal x(t) to give the
corresponding degradated signal y(t), it can be written Kolossa (2007):

y(t) = x(t) � h(t)

� (A.3)

Y(ω) = X(ω) �H(ω)

ó log || � ||2

Yl(ω) = Xl(ω) +Hl(ω) (A.4)
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where � denotes the convolution integral operator1. By now taking
the DCT of the new obtained relation, we have (using the linearity
property of the DCT):

DCT
[
Yl(ω)

]
= DCT

[
Xl(ω)

]
+DCT

[
Hl(ω)

]
cy(τ) = cx(τ) + ch(τ). (A.5)

One of the main advantages of using cepstral analysis consists in
the possibility of separating nonstationary zero-mean sources (e. g.
speech) from a stationary source (e. g. the distortion), see e. g. Kanedera
et al. (1999); Hermansky and Morgan (1994); the stationarity of the
distortion can be hypothesized if its statistics vary much slower than
the speech’s ones. In such a case E [ch(τ)] = ch(τ), i. e. ch is stationary
in the considered time range, and due to the zero-mean characteristics
of the speech E [cx(τ)] = 0. Thus:

E
[
cy(τ)

]
= E [cx(τ)] + E [ch(τ)]

= ch(τ)

ó

cy(τ)� E
[
cy(τ)

]
= cx(τ). (A.6)

Equation (A.6) is usually referred to as Cepstral Mean Subtrac-
tion (CMS), Atal (1974), and such a technique is broadly used to remove
convolutional disturbances from corrupted signals (e. g. Holmberg
et al., 2006), somehow representing a way to perform an operation
inverse to convolution. As the name suggests, the main feature of the
CMS consists in the removal of the DC component from the cepstrum
and it can therefore be seen as a high-pass filtering operation, Herman-
sky and Morgan (1994). In a frame oriented framework, the quantity
in the LHT of Eq. (A.6) can be redefined as:

ccms
y (τ,k) = cy(τ)� E

[
cy(τ)

]
= cy(τ,k)� cy(τ)

= cy(τ,k)�
1

N

Ņ

n=1

cy(τ,n). (A.7)

The summation in Eq. (A.7) calculates the mean of the whole pro-
cessed signal, but it is usually substituted by an adaptive estimate of
the cepstral mean in real time implementation, Kolossa (2007). In such
a case, the latter represents a moving average filter (i. e. a low-pass fil-
ter); thus, by subtracting the summation value from cy(τ,k) the result

1 Strictly speaking, the step defined in Eq. (A.3) is not mathematically correct for
the considered case, since it neglects the signal windowing applied to obtain the
frames. However, the assumption would become more accurate if the window length
is chosen to be long enough compared to the impulse response of the distortion,
Stockham et al. (1975). A way to correctly express Eq. (A.3) is given in Avendano and
Hermansky (1997)
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is a high pass filter, which can be used to reject the low frequency part
of the modulation spectrum.

An operation similar to the CMS can be defined by exploiting the ho-
momorphic signal processing steps just described but leaving out the
DCT (see e. g. Hermansky and Morgan, 1994), i. e. to define Eq. (A.7)
by replacing cy(τ), cx(τ) and ch(τ) with Yl(ω), Xl(ω) and Hl(ω), re-
spectively. However, such an operation is not completely suitable for
diagonal covariance HMM-based ASR systems, see Appendix A.3, since
the DCT is needed to introduce the desired features decorrelation
necessary in the mentioned statistical approach.

a.2 discrete cosine transform

The Discrete Cosine Transform (DCT), Ahmed et al. (1974), is a math-
ematical operation related to the Discrete Fourier Transform (DFT)
providing the decomposition of a function as a sum of a finite number
of cosine components oscillating at different frequencies. The usage of
cosine functions instead of complex exponential functions as in the DFT

provides that real signals are mapped into real signals (e. g. Proakis
and Manolakis (2007)). The DCT is employed in many different areas,
e. g. video and image coding as well as audio related applications
(Khayam, 2003), because it offers several useful properties.

Mainly, it provides good decorrelation and energy compaction of
the signals to which it is applied (e. g. Khayam, 2003; Ahmed et al.,
1974). These two properties are linked since the removal of redundan-
cies within the signal, i. e. the decorrelation, allows to characterize
it using a smaller number of samples without having a big loss in
the information. Moreover, decorrelation is required for the features
vectors in order to be further processed by the HMMs-based back-end
in the case the parametric estimation is done considering diagonal
covariance matrices (see Section 2.2).

Additionally, the DCT shares linearity, separability, symmetry and
orthogonality with the DFT. However, unlike the latter, the DCT does
not request to retain the information of both magnitude and phase
since it provides real outputs, Khayam (2003), and it is thus preferred
to DFT in many situations.

It is recalled that the DCT can be seen as an approximation of the
Karhunen-Loève Transform (KLT), also known as Principal Compo-
nents Analysis (PCA), a linear transformation capable of extracting
the so called principal components, i. e. the directions of maximal
variance, out of a set of multivariate observations (Batlle et al., 1998;
Khayam, 2003; Hunt, 1999). As the length of the considered signal
tends to infinity the DCT approaches the KLT. PCA is often exploited to
perform dimensionality reduction, for its optimal property of energy
compaction and thus it is suitable for the purposes of ASR. However, it
is computationally much more expensive than the DCT due to its signal
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dependence. Thus, given the possibility of implementing FFT-based
fast algorithms computing the DCT and the consideration about the
approached optimality in energy compaction and decorrelation, the
DCT seems to be a rather convenient choice in an ASR framework.

There exist several versions and as many definitions of DCT (eight
according to Sanchez et al., 1995). A common definition used in ASR

literature, and the one used in the current work, is referred to as
DCT-II and reads (Young et al., 2006; Ahmed et al., 1974; Khayam,
2003):

ci =

c
2

N

N�1̧

j=0

fj cos
[
πi

N
(j� 0.5)

]
(A.8)

where fj is an N samples 1-D discrete signal.
In some of the experiment it has been necessary to use the DCT on

two dimensional signals. The 1-D formula given in Eq. (A.8) can be
extended to the 2-D DCT definition (Khayam, 2003):

ci,k =

c
2

N

c
2

M

Ņ

j=0

M̧

l=0

fj,l cos
[
πi

N
(j� 0.5)

]
cos
[
πk

N
(l� 0.5)

]
(A.9)

where fj,l is an N�M samples 2-D discrete signal.

a.3 features correlation

As mentioned in Section 2.2, the distributions used to model the
observation data, giving raise to the emission probabilities, in most
of the HMM-based systems are chosen to be multivariate Gaussian
mixtures of uncorrelated variables. Figure A.1 shows an example of
a mixture of two bivariate distributions of the uncorrelated variables
X and Y (i. e. the covariance matrixes of both the components of
the mixture were diagonal as it can be notice from the directions of
maximal variance parallel to the axes). This constraint allows to lower
the number of parameters defining the mixtures distributions and, as
a consequence, to properly train the HMMs using a smaller number
of training data (Young et al., 2006). Furthermore, a reduction of the
computational load and time is achieved.

A measure of the correlation between features is given by the corre-
lation coefficient. According to the definition, the sample correlation
coefficient (also known as Pearson’s r, Sheskin, 2004) between two
variables X and Y (in this case representing two different features of
the feature vector, with sample mean value X and Y respectively) is
given by (Sheskin, 2004):

r =

°n
i=1

(
Xi �X

) (
Yi � Y

)
b°n

i=1

(
Xi �X

)2b°n
i=1

(
Yi � Y

)2 (A.10)
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Figure A.1: Example of a mixture of two bivariate Gaussian distribution of
the uncorrelated variables X and Y. Diagonal covariance matrixes
implies that the directions of maximal variance are orientated
along the axis.

In the case of features vectors with dimension larger than two, like
in the case of ASR, Eq. (A.10) is evaluated for all the combination
between variables (i. e. features). By plotting the matrix containing
the correlation coefficients, one can get a visual description of the
variables’ uncorrelatedness. An uncorrelated set of variables returns
a correlation matrix with ones along the diagonal (i. e. maximum
autocorrelation) and zeros in all the other positions, see Fig. A.2.
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Figure A.2: Correlation matrix from a set of uncorrelated variables. The non-
zero values in the off-diagonal positions derives from the small
number of samples used to obtain the matrix.
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