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Summary 
 
 
This thesis addresses the problem of relative pose determination for on orbit-servicing 
and active debris removal missions in the context of non-cooperative passive 
spacecraft. The problem of relative attitude and position measurements is introduced 
and described, then, a survey of the state-of-the-art instruments and techniques 
employed in current and past space missions follows. Among the possible operative 
scenarios, the case of non-cooperative passive target vehicles is further explored in 
order to demonstrate the advantages of a monocular feature-based technique. The 
thesis introduces and discusses an architecture for model-based pose estimation, 
called SVD method, which adopts newer techniques to perform feature identification 
and matching. By outlining the subsystems of the SVD architecture, the main 
innovations and peculiarities of the method are explained and the results, obtained on 
real images of PRISMA mission’s Tango spacecraft, are summarized. Subsequently, 
a version of the algorithm is implemented and validated with two different datasets. 
The SVD architecture is applied to a larger open dataset of synthetic imagery, thus, 
collecting more statistically relevant data over a variety of images with various 
illumination conditions and background interferences. Mean rotational and 
translational errors are evaluated, as well as the effectiveness of the edge detection 
techniques and the correlation between the success rate of pose determination, the 
identification of target’s region of interest and the combination of geometric groups. 
A further validation test on real experimental images of a 2U-CubeSat mock-up is 
presented. Within the SPARTANS testbed for microsatellite relative dynamics, a 
dataset of images and respective pose reference values are obtained and fed to the 
SVD algorithm.  The results show how the pose initialization success rate consistently 
improves at a shorter range on images without background interference and further 
confirm the validity of the assumption that coupling complex geometrical features 
and simple, uniquely identifiable linear features provides better chances of 
determining a correct pose. The validation process proves the limitations of the SVD 
architecture in terms of relative distances, spacecraft model characteristics, 
environmental conditions and overall feasibility over a more flexible operational 
range, yet it provides sufficiently accurate pose solutions to initialize navigation 
measurements during close proximity operations. 
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Riassunto Esteso 
 
 
Il crescente bisogno di condurre operazioni a corto raggio in contesti spaziali ha 
spinto la ricerca aerospaziale verso lo sviluppo di sistemi autonomi di guida e 
navigazione. Numerose sono le tipologie di missione che prevedono l’avvicinamento 
e il rendezvous tra veicoli con diverse caratteristiche, tra cui missioni in formation 
flying (FF), missioni rivolte alla rimozione di satelliti non più operativi o detriti 
spaziali privi di controllo d’assetto, missioni di servizio per la manutenzione e il 
rifornimento di grandi spacecraft. In ognuno di questi casi, la capacità di un veicolo 
spaziale di integrare un sensore affidabile, veloce e preciso di misura della posa 
relativa, ossia orientazione e posizione, all’interno del proprio sistema di navigazione 
permette di ampliare notevolmente la quantità e la qualità della propria operatività.  

Nella tesi si esplora la possibilità di impiegare una tecnica di misura della posa basata 
su un sistema di visione monoculare nello scenario di un satellite target non 
cooperativo e passivo. Per poter definire una tecnica di misura e un adeguato sensore, 
è fondamentale tener presente caratteristiche fondamentali del target come la 
cooperatività, cioè la capacità di instaurare una comunicazione diretta tra chaser e 
target, la passività, ossia la presenza di predefiniti elementi predisposti alla detezione 
come markers, LEDs, o Corner Cube Reflectors (CCRs) ed infine la conoscenza di 
informazioni a priori quali, ad esempio, la geometria e l’inerzia del satellite così come 
la tipologia di controllo d’assetto. Il primo capitolo della tesi è, perciò, incentrato 
sulla descrizione della varietà di scenari di missione in cui sono necessarie delle 
misure di posa relativa e un resoconto dello stato dell’arte dei sensori e delle tecniche 
impiegate per questo scopo. 

Il secondo capitolo presenta la descrizione dettagliata di un metodo per 
l’inizializzazione delle misure di posa basato sulle acquisizioni di un sistema di 
visione monoculare. Questa tecnica, denominata metodo SVD, è descritta 
nell’articolo “Robust Model-Based Monocular Pose Initialization for 
Noncooperative Spacecraft Rendezvous” di S. Sharma, J. Ventura e S. D’Amico [31]. 
L’articolo contiene un’esposizione teorica dei sottosistemi del metodo SVD e alcuni 
risultati preliminari che giustificano le scelte in termini di composizione 
dell’algoritmo. Questa implementazione dell’inizializzazione della posa comprende, 
in particolare, alcuni miglioramenti rispetto allo stato dell’arte consistenti in: una 
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tecnica di eliminazione dei gradienti deboli è posta in atto per determinare una 
regione d’interesse attorno al target all’interno dell’immagine, la definizione di 
parametri scalabili per la procedura di edge detection, un processo di sintesi delle 
features lineari che le classifica in gruppi concettuali sulla base di condizioni 
geometriche ed infine una consistente riduzione delle possibilità di matching basata 
su una combinazione più intelligente dei gruppi geometrici. I risultati presentati sono 
stati prodotti testando l’algoritmo su un ridotto insieme di immagini reali e artificiali 
del minisatellite Tango, parte della missione PRISMA. 

Il corpo della tesi consiste nell’analisi dei risultati ottenuti dalla validazione 
dell’algoritmo SVD compiuta su due diversi dataset di immagini. La versione 
dell’algoritmo implementata nella tesi presenta alcune differenze rispetto a quella 
proposta nell’articolo originale, in particolare, in termini di risoluzione 
dell’equazione prospettiva dove al metodo EPnP viene sostituito il pose solver 
P3P+RANSAC per una migliore soluzione di posa. Il primo dataset, SPEED, è 
composto da 12000 immagini artificialmente generate del satellite Tango. Il dataset 
presenta una distribuzione normale di orientamenti a posizioni relative, sfondi in cui 
è presente la superficie terrestre e diverse condizioni di illuminazione, dunque, 
consente di definire una base statistica per valutare l’efficacia del metodo SVD. Nel 
terzo capitolo i risultati del test sono riassunti in alcuni grafici: il numero di stime di 
posa corrette e la loro accuratezza è relazionato ad alcuni parametri fondamentali 
come la distanza relativa, il numero di lati correttamente individuati e le combinazioni 
di features.  

Nel quarto capitolo i risultati di un secondo set di immagini sono presentati. Il 
capitolo è diviso in una prima parte che descrive la creazione del dataset, la 
composizione del setup sperimentale all’interno della facility SPARTANS per la 
verifica della dinamica relativa tra minisatelliti e l’adattamento dell’algoritmo SVD 
al nuovo modello. Il setup consiste in un modello semplificato di un 2U-CubeSat, il 
quale ruota attorno ad un asse principale grazie ad uno stadio rotativo, ed una camera 
posta ad una distanza fissa. Come descritto nella seconda parte del capitolo, i risultati 
confermano le considerazioni precedentemente formulate sulle limitazioni del 
metodo SVD per la misura di posa. 

In conclusione, la tesi esamina a fondo le peculiarità del suddetto algoritmo per 
evidenziarne i limiti intrinseci e i principali vantaggi rispetto ad altre tecniche basate 
su sistemi di visione monoculare. Il metodo SVD, infatti, si dimostra corretto nelle 
sue assunzioni, in quanto può ridurre notevolmente il carico computazionale della 
determinazione di posa con una precisione metrica centimetrica e precisione angolare 
nell’ordine del grado, però, a costo di una riduzione della percentuale di successo. In 
aggiunta, l’efficacia dell’algoritmo è fortemente dipendente dalla specifica 
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modellazione geometrica del target e dalla presenza di interferenze di fondo 
nell’immagine.  
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Introduction 
 
 
The increasing need for autonomous rendezvous and proximity operations missions 
has driven the innovation in the field of relative pose measurements. Multiple types 
of current and future missions rely fundamentally on the efficiency of a robust 
guidance and navigation system (GNC), among them some key tasks like active 
debris removal (ADR), formation flying (FF), on-orbit servicing (OOS) require fast, 
reliable and adaptable measurement of relative range, line of sight and pose, i.e., 
orientation and position. The scenarios in which these missions take place can be 
various and the complexity of acquiring relative measurements can greatly increase 
on the basis of the cooperativeness and the passiveness of the target. Consequently, 
state-of-the-art navigation sensors and techniques can differ consistently in relation 
to the status of the target.  

In the absence of a direct communication link between vehicles, a satellite is deemed 
non-cooperative and, besides LIDAR sensors, the most promising technology 
consists in imaging sensors such as monocular and stereo cameras. Given the 
continuous rise of computer vision techniques, the choice of camera pose estimation 
seems optimal in terms of computational cost, power and mass budget, robustness 
and hardware complexity. The implementation of vision-based algorithm is still 
secondary to the use of predefined visual markers which provide constant geometries 
and easily identifiable features to the detection algorithms embedded in the pose 
estimator architecture. In the first section of the thesis a brief overview of sensors and 
technique currently employed to perform relative pose measurements is presented 

In regard to passive non-cooperative spacecrafts, in Chapter 2 an improved technique 
for pose initialization based on monocular systems is suggested. The so called SVD 
method comprises of an image processing section, a feature synthesis subsystem and 
pose solution and refinement. The method is described in S. Sharma, J. Ventura e S. 
D’Amico, “Robust Model-Based Monocular Pose Initialization for Noncooperative 
Spacecraft Rendezvous” [31] and some preliminary results are summarized in the 
paper. The main characteristics of the SVD technique are (1) the possibility to define 
a region of interest and provide a coarse estimation of range and line of sight, (2) an 
adaptable definition of the edge detector parameters, (3) a perceptual classification of 
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the detected segments in high-level groups and (4) a reduction of the search space 
based on the combination of complex and simple elements. 

The main purpose of this thesis consists in elaborating further considerations on the 
effectiveness and the limitations of the SVD pose initialization. The central part of 
the thesis work comprises of the results of two validation tests: the SVD algorithm is 
implemented in the MATLAB software and tested on two different datasets. The first 
dataset expands the data of [31] with 12000 synthetic images of PRISMA mission's 
Tango spacecraft. The variety of attitude and translation values, together with the 
presence of Earth's images in the background, make up an optimal dataset for pose 
initialization testing. The validation results are analysed so to determine the elements 
that affect the success rate of the SVD method. 

Furthermore, a CubeSat model is employed to create a second dataset of real images 
in more limited conditions of illumination and relative pose. The image set and the 
respective true pose values have been created at the SPARTANS testbed for relative 
satellite. The intent of the CubeSat experimental setup is to provide more statistical 
ground to the outcomes of the first validation test and to understand the degree to 
which the pose initialization technique can be improved by reducing the variance of 
some external factors.  
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Chapter 1  

The problem of relative pose 
measurements 

 
In this first chapter it's presented a survey of the state-of-the-art techniques and sensor 
systems employed to perform proximity operations. The discussion begins by 
addressing the scientific and technologic motivations that require the development of 
pose estimation architectures and it continues with a theorical description of the 
problem. The successive paragraphs provide a brief, complete overview of the most 
used navigation sensors and their peculiarities. Lastly, a categorization of the possible 
scenarios of cooperativeness for proximity operations is provided. 

 

1.1 Motivation for relative pose estimation 
 
Since the early stages of space exploration, the concept of rendezvous and proximity 
operations (RPO) has been studied and discussed by space agencies and private 
companies in an attempt to satisfy the continuously growing need for more adaptable, 
ambitious and complex space systems. From the Apollo program for Moon 
exploration to the servicing flights of the Space Shuttle to the assembly of the 
International Space Station (ISS) a number of successful missions have been enabled 
by the execution of relative approaching and cooperative procedures [1]. As it 
obviously appears, all these missions share a common trait: the operations were 
implemented in the context of manned and cooperative spacecrafts and, for this 
reason, the completion of the docking and servicing operations relied heavily on the 
astronaut’s ability, along with the fine tuning of the guidance, navigation and control 
(GNC) system and continuous ground support. 

Nevertheless, the increasing challenges of space exploration and especially the urgent 
need for efficient debris removal techniques has brought to attention the importance 
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of developing and testing autonomous and semi-autonomous rendezvous operations 
for non-cooperative spacecrafts. In almost any of the cross-cutting technologies and 
experimental concepts proposed for the present and next decade by manufacturers, 
satellite operators and space agencies, the execution of autonomous robotic proximity 
operations plays a pivotal role. The proliferation of satellites could unlock 
unthinkable capabilities in the commercial and civil field and, due to the increasing 
number of numerous small satellites constellations, the issues of space pollution, 
debris removal, non-functional spacecraft’s deorbiting and safety rules for docking 
and formation flying will require the space sector to enact a technical revolution by 
promoting a new generation of completely autonomous unmanned systems. 

As indicated by the National Aeronautics and Space Administration (NASA) Office 
of the Chief Technologist in 2011 the advancement of fully autonomous GNC 
systems is a fundamental requirement for the 2011-2021 decade and beyond [2]. The 
expected innovations must follow the following guidelines: 

- Improved Target State Estimation : robust and accurate relative pose 
measurements for cooperative and non-cooperative spacecrafts. 

- Optimality : optimal trajectory planning to minimize energy and fuel 
consumption. 

- Robustness : reliability over orbital perturbations and sensor noise. 

- Real-time and on-board implementation : The algorithm must be sufficiently 
fast and computationally inexpensive. 

- Manoeuvring Precision 

Figure 1.1   Schematic overview of a GNC system for autonomous noncooperative proximity 
operations [3]. 
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A conceptual architecture for a modern GNC system is shown in Fig. 1.1. The input 
measurements acquired by absolute (star trackers, horizon sensors, GPS receivers, 
etc…) and inertial (IMU) attitude sensors are combined with the relative attitude and 
position data as elaborated by a pose estimation algorithm. The algorithm relies on 
the rendezvous sensor suite which can be composed of a variety of different 
instruments, such as LIDAR sensors, radar sensors or stereo and monocular cameras, 
whose peculiarities will be discussed further in the thesis. Consequentially, the data 
is fed to an Extended Kalman Filter which generates navigation information and 
filters measurement noise. The guidance segment is dedicated to the task of planning 
the optimal trajectory to the target while the control segment is divided into a 
parametrization software for attitude control and the on-board actuators, such as 
thrusters and reaction wheels [3]. 

Although most components of the logical architecture presented above have already 
been developed separately for space applications, there is still a technologic gap to be 
closed in order to achieve fully autonomous guidance system and particularly in 
reference non-cooperative pose estimation, which is discussed in the thesis.  

 

1.2 Problem statement 
 

Relative pose estimation is the problem of computing position and attitude of a target 
space object in relation to an active spacecraft that acts as chaser. The issue results in 
identifying unambiguously the orientation of a Target Reference Frame (TRF) with 
respect to a Sensor Reference Frame (SRF) by a set of six orbital parameters 
representing the translational and rotational degrees of freedom. During far and mid-
range operativity, however, given the large distances, only Line of Sight (LOS) and 
relative range measurements are required to ensure mission requirements. A series of 
different maneuvers can be performed by a chaser: coordinated orbiting, translations 
along flight axis, monitoring, station-keeping, close approaching, docking and, 
generally, operations that extend from tens of kilometers to contact. Pose 
determination is a complex task and represents, in any scenario of proximity 
operativity, a key feature to achieve autonomous navigation accurately and safely.  

The quality of relative pose estimation depends fundamentally on the type of 
technological solution employed to provide measurements, the cooperativeness of the 
target and the mission’s scenario. In particular, in the next paragraphs the issue of 
cooperativeness and its influence over mission architecture are discussed. 
Furthermore, a brief survey of instruments and techniques for pose estimation is 
presented. 
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For the problem of pose measurements four reference frames are of interest: the 
chaser body-fixed frame, the sensor frame, the target model frame, the target body-
fixed frame, as shown in Fig. 1.2. 

Chaser and target body-fixed frame usually lie in the center of mass of both satellites 
and their orientation is formally defined by the orbit and attitude control systems. The 
origin of the sensor reference frame OS-XSYSZS depends on the sensor architecture, 
for instance in the case of imaging detectors the camera frame lies in the center of 
perspective projection. Lastly, the target model frame is fixed in respect to the body 
frame and often coincides with it, it is typically determined in relation to fiducial 
markers locations so to allow simpler perspective calculation. Assuming that the 
transformation matrix from the sensor frame to the chaser body frame is known by 
design and similarly the transformation matrix from the target’s model frame to body 
frame, the relative attitude and location data that are required for navigation control 
are composed by the rotation matrix and translation vector which describe the 
transformation from the sensor frame to the target model frame. 

A transformation between reference frames defines unequivocally the pose and it can 
be expressed by a roto-translational matrix. The translation vector 𝑇, as in Eq. (1.1), 
represents the relative position between OS and OM and the rotation matrix 𝑅 is 
determined, as in Eq. (1.2), by a 312 sequence of elemental rotations about three 
linearly independent axis by three angles (ϕ, θ, ψ) according to the Euler angles 
definition. Considered a point in the model frame 𝑃𝑀 = (𝑥𝑀 , 𝑦𝑀 , 𝑧𝑀) and the 

Figure 1.2   Typical reference frames. 
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corresponding point in the sensor frame 𝑃𝑆 = (𝑥𝑆, 𝑦𝑆, 𝑧𝑆), Eq. (1.3) and Eq. (1.4) are 
satisfied and equivalent.  

 

𝑇 = [∆𝑥, ∆𝑦, ∆𝑧]                                                           (1.1) 

𝑅 = 𝑅𝑌(𝜃)𝑅𝑋(𝜑)𝑅𝑍(𝜓)

= (
1 0 0
0 cos 𝜑 sin 𝜑
0 −sin 𝜑 cos 𝜑

) (
cos 𝜃 0 −sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

) (−
cos 𝜓 sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1

) 

                                                                          (1.2) 

𝑃𝑆 = 𝑅 × 𝑃𝑀 + 𝑇                                                          (1.3) 

 

[𝑃𝑆 1] = [𝑃𝑀 1] × (
𝑅 0
𝑇 1

)                                                   (1.4) 

 

1.3 The issue of cooperativeness 
 

The relative pose estimation problem is a challenging priority for the future of 
proximity operations between spacecrafts and a crucial element to its feasibility is the 
cooperativeness of the target. A target is defined non-cooperative if doesn’t provide 
any direct information about its motion and can’t, actively or passively, facilitate 
rendezvous manoeuvring. Obviously, multiple levels of cooperation can be 
distinguished on the basis of prior state knowledge, motion stability, possibility of 
remote control, presence of fiducial markers, ability to implement inter-vehicle 
communications and more.  

As shown in Fig. 1.3, which presents a brief summary of on-orbit servicing missions, 
there is already a successful history of cooperative docking procedures, especially in 
the case of International Space Station’s refurbishment missions. After years of 
continuous development and progress, at the moment the ISS performs docking and 
berthing maneuvers roughly every two months with manned or unmanned vehicles 
that operates in partial autonomy. The fact that several distinct spacecrafts have 
accomplished the goal of approaching and connecting with the Station stands as proof 
that the current state of GNC system for cooperative system is sufficiently mature. 
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Nevertheless, the ISS is an exceptional case since it receives full operational support 
from the ground segment, each docking port is equipped with LIDAR sensors, 
thermal cameras and HD cameras to provide a visual feed to astronauts aboard and, 
also, the ISS is stabilized with three-axis attitude control. 

 

 

Other experimental missions, mostly successful, have been launched in the last 
decades and progressively more advanced and autonomous guidance systems have 
been tested with less cooperative targets, demonstrating how the absence of 
cooperativeness exponentially increases the complexity of servicing operations at 
close proximity and requires intelligent and precise sensors.  

A first attempt at proximity procedures was the DART (Demonstration for 
Autonomous Rendezvous Technology) mission which goal was to perform 
independently an initial approach maneuver, station keeping at 5 m from the target 
and a series of collision avoidance simulations. The target of DART operations is a 
previously released communications satellite (MUBLCOM) orbiting at 775 km of 
altitude, purposefully outfitted for a possible cooperative relative pose estimation. 
DART’s sensor suite is composed by a laser-based optical system that, when coupled 
with dedicated reflectors on the target’s structure, allow for a relatively accurate 
estimation of attitude and position. Furthermore, it receives a continuous GPS 
information stream from the MUBLCOM via an intersatellite UHF communication 
link [5]. Unfortunately, the mission failed to achieve its goals due to guidance errors 

Figure 1.3  Overview of some space missions that execute proximity operation and 
docking procedures [3]. The diagram is updated to 2016. 
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which led to incorrect propellant management and, therefore, to a soft collision 
between the two vehicles. 

After DART mission failures the US AFRL (Air Force Research Laboratory) 
launched XSS-10 in 2003 and shortly after XSS-11, two microsatellites that managed 
to perform inspection tasks and prove automated co-orbiting capabilities. In contrast 
to DART, both spacecrafts were maneuverable from ground control sites and were 
equipped with imaging sensors. While XSS-10 was focused on demonstrating 
navigation around a single Delta-2 second stage burner on a pre-planned course [6], 
XSS-11 successfully orbited multiple satellites during a yearlong life span and 
adopted an advanced autonomous event planner for onboard iterative trajectory 
planning, thus, greatly improving the results of previous missions. Since the XSS-11 
spacecraft had to perform inspections of non-cooperative RSOs (Resident Space 
Object) a main asset of its sensor suite was the Rendezvous Laser Vision (RLV) 
instrument which consisted in an integrated active LIDAR system capable of 
detecting and tracking object [7]. 

In an attempt to further explore the feasibility of a wide range of newly developed 
relative attitude sensors for formation flying, the PRISMA (Prototype Research 
Instruments and Space Mission technology Advancement) spacecraft was launched 
in 2010 [8]. The mission comprises two vehicles: MAIN (also known as Mango), a 
highly maneuverable 3-axis microsatellite with reaction wheel-based attitude 
stabilization and 3-axis ΔV capability with six 1 N hydrazine thrusters, and TARGET 
(also known as Tango), a smaller spacecraft with coarse magnetic attitude control but 
without ΔV capability. Given TARGET’s ability to simulate different degrees of 
cooperativeness, mission requirements were focused on MAIN performing several 
station keeping, approaching and rendezvous tasks in autonomy while correctly 
assessing Tango’s pose with multiple instruments. Along with complex close-loop 
formation flying algorithms, PRISMA’s Mango relied on three fundamental tools for 
relative motion estimation [9]: 

- Differential GPS for precise orbit determination and long-range operations in 
cooperative state. 

- The FFRF (Formation Flying Radio Frequency) metrology subsystem which 
offers sufficiently accurate measurements of position, velocity and line of 
sight, besides intersatellite communication link. 

- A Vision Based Sensor (VBS) consisting of multiple star cameras able to 
identify non-stellar objects and determine both pose and range in non-
cooperative states. 
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The characteristics of these techniques will be discussed in the next paragraph but the 
value of PRISMA’s experimental activities remains, still now, essential to the 
advancement of a variety of future missions where rendezvous and formation flying 
are a necessary prerequisite. In fact, the first part of this thesis originates from the 
work on vision-based pose estimation that follows the results of PRISMA and hinges 
on the data produced in conjunction with the mission. 

 

1.4 State-of-the-art pose estimation sensors 
 

An accurate and trustworthy solution to the pose estimation problem represents a key 
element of any navigation system and it’s crucial for the advancement of GNC 
systems. As mentioned above, the target cooperativeness has an impact on the 
selection of the specific sensor architecture as well as on the pose solver algorithms.  

The rendezvous sensor suite for close proximity operations can be differently 
composed depending on the mission’s complexity and spacecraft’s requirements in 
terms of mass and power budget. Throughout the history of OOS missions various 
technological solutions have been proven to be effective and sufficiently accurate and 
they are described in the following paragraphs. 

1.4.1 Radio Frequency (RF) antennas 

RF metrology has been exploited in early rendezvous missions by space agencies and 
provides range, LOS angles and indirectly relative attitude parameters, while 
operating from a distance of several kilometres down to contact [4]. A fundamental 
limitation to this system was represented by the power and mass requirements, yet 
more recently the FFRF system, tested on PRISMA, proved the feasibility of a low-
budget metrology set-up with a total of 3 Rx/Tx antennas for TARGET and a full 
antenna triplet for MAIN. PRISMA RF subsystem is able to provide relative 
positioning of 2 to 4 satellites in formation flying and consists of one terminal and up 
to 4 antennas for each vehicle in a constellation [10]. 

1.4.2 Global Navigation Satellite System (GNSS) receivers  

Even though this solution is not suitable for deep-space missions, the presence on 
board of GPS receivers and antennas when paired with an intersatellite 
communication link allows for a precise calculation of relative position through the 
Differential GPS or Carrier-phase Differential GPS techniques. The network of 
GNSS satellites offers continuity of signal and global coverage for every spacecraft 
in Low Earth Orbit (LEO) nonetheless, in case of operations within a relative range 
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of 10 m, measurements are greatly affected by the phenomenon of multipath 
interferences and partial occlusion [4]. 

1.4.3 Light Detection and Ranging (LIDAR) 

Every instrument that measures distances by illuminating a target with an infrared 
laser and analysing the backscattered radiation falls under the definition of LIDAR. 
For spaceborne applications, the most common choices for sensors are scanning Lidar 
systems and detecting arrays systems. While the first ones rely on high-speed and 
high-precision optical mechanisms to convey a narrow laser beam and detect the 
reflected light in predetermined pattern, the second ones illuminate the scene with a 
broad laser beam and use a detector array to absorb the backscattered echoes in the 
pixel direction [11]. LIDARs produce sets of 3D data (point clouds) which can be 
elaborated for target tracking and pose estimation.  Regardless of specific weaknesses 
such as having conspicuous power consumption, requiring large amounts of memory 
and computational power on board and having a typically poor spatial resolution, 
LIDARs are robust to operations in any visibility condition, they allow for an easy 
discrimination of the target from the background and, lastly, they provide both 3D 
position and intensity maps. Furthermore, LIDARs can be divided into pulsed and 
continuous-wave (CW) sensors on the basis of light source’s characteristics. CW 
detectors usually operate in close range operations (below 15 m) since, by exploiting 
the phase shift between emitted and absorbed radiations, the measurements suffer 
from the integer ambiguity problem and the accuracy decreases as the inverse of the 
square root of the distance [11]. However, when in the classical triangulated 
configuration, this system can ensure millimeter or even sub-millimeter accuracy 
precision. On the other hand, pulsed LIDARs are Time-Of-Flight (TOF) instruments 
that compute range by means of measuring time delay between radiation emission 
and absorption, given the constant of light speed. TOF sensors represent the optimal 
choice for proximity operations over a large interval of distances, namely, from 1 m 
to several kilometres with an accuracy that varies only as a function of the highest 
achievable time resolution. 

A mentionable example of pose acquisition based on LIDAR is the LIRIS-2 sensor 
mounted on the servicing vehicle ATV-5 to the International Space Station. The 
system records a high-resolution 3D measurement of the ISS during the approach. 
The instrument has been tested in the close range from 1 km down to contact and 
thanks to the presence of dedicated reflectors, the mission has been successfully 
concluded by a correct docking procedure [. 
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1.4.4 Monocular and stereo cameras 

As space vehicles are rapidly evolving towards more compact, efficient and 
intelligent designs the role of imaging sensors has become crucial for pose estimation 
because of their lower hardware complexity, cost and power consumption. Typically, 
infrared cameras are primarily employed to perform LOS measurement at far range 
since the data is too poorly textured for pose determination purposes, whereas sensors 
that work in the visible range (between 0.37 µm and 0.75 µm) offer more reliable 
image quality at various relative distances. Moreover, images are fundamental 
sources of information for supervised applications, such as ground control situational 
awareness and human-in-the-loop operations. Monocular cameras have been proven 
to be suitable for wider operational ranges, especially when coupled with fiducial 
markers and reflecting elements on the target or LEDs emitting visible light installed 
on the chaser. In regard to stereo cameras the feasibility of 3D reconstruction and 
depth resolution for cooperative and non-cooperative spacecrafts has been tested in 
formation flying demonstration missions but accuracy and range are strictly related 
to the baseline which must be maximized with respect to chaser’s dimensions. The 

Figure 1.4  Notional depictions of LIDARs in scanning and 
detector array configuration. [11] 
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main drawback of imaging sensors is their unpredictability when exposed to largely 
variable illumination conditions or to direct light from other celestial bodies, not an 
uncommon scenario in space. Compared to LIDARs, monocular and binocular 
systems provide highly processable and easily readable data, they are less prone to 
mechanical failures and convenient in terms of weight, power consumption and 
required processing power. Even though imagers can singularly lack flexibility in 
various operational contexts due to constant optical proprieties (FOV, focal length, 
pixel density, …), usually rendezvous sensor suite rely on multiple collaborative 
cameras, each one specifically designed to be activated during distinct phases of the 
approach maneuver. 

 

1.5 State-of-the-art pose estimation techniques 
 

As discussed in previous paragraphs the choice of an adequate technological solution 
to this problem is profoundly influenced by three fundamental factors: 

1. Sensor suite composition  
2. Mission requirements  
3. Target cooperativeness 

A wide variety of hardware architectures and navigation algorithms have been 
developed for pose estimation throughout the history of space exploration, yet they 
fall into four separate categories that summarize all the possible scenarios which 
require autonomous operativity [4].  Multiple state-of-the art techniques, divided by 
mission scenario, are presented in the next paragraphs. 

1.5.1 Actively cooperative target 

The definition of actively cooperative target refers to a known vehicle with the ability 
to communicate its orbital parameters and its attitude to other spacecrafts or to a 
common ground segment. In addition to these properties, the target spacecraft is 
usually supposed to be stabilized via autonomous dynamic control or remote ground 
support, thus, requiring accurate and redundant attitude determination sensors and an 
efficient attitude control system. Currently, the vast majority of operating space 
vehicles is equipped with star trackers that guarantee attitude estimation with a 
precision inferior to 10 arcsec and IMUs that, in different configurations, can provide 
accurate inertial navigation at drift rates as low as 0.001°/h, moreover, thrusters and 
reaction wheels provide trustworthy and flexible technologies for motion 
stabilization. Therefore, once a communication link is established, every spacecraft 
can rely on on-board attitude determination to enable relative pose estimation and 
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proximity operations. The scenario of actively cooperative satellites concerns 
typically Formation Flying (FF) missions: whether in trailing configuration or in 
clusters, orbital dissipation tends to alter the required relative position and velocity 
between spacecraft and must be opposed through active orbit control, which has 
progressed towards a more autonomous approach, as space constellation become 
more numerous and require tighter maneuvering. 

Relative pose estimation with RF communication is historically the first elementary 
method to adequately perform rendezvous operations [12]. For instance, the 
approaching and docking of Progress and Soyuz vehicles with Russian space station 
Mir and, later, with the ISS was completed in various missions by establishing radio 
communication between the two manned vehicles and exchanging attitude and 
position information. A fundamental evolution in RF metrology has been tested with 
the FFIORD (Formation Flying In-Orbit Ranging Demonstration) on board of 
PRISMA’s main spacecraft. As reported by J. Harr, M. Delpech et al. [10] the 
experiment aimed at assessing measurement performances while conducting various 
automated activities like standby in safe relative orbit, translation maneuvers in plane 
and cross track, station keeping at multiple distances and collision avoidance. 
Measurements of LOS and range are obtained directly with an approach inspired by 
the GPS system, i.e., each vehicle transmits and receives a GPS C/A navigation signal 
modulated on two S-band carrier frequencies, once transmitted, RF signals firstly 
allow the chaser to formulate a coarse evaluation by means of pseudo-code ranging 
and secondly carrier-phase difference estimations increase accuracy to less than 10 
cm. The intersatellite link also provides the relative clock drift of the platforms and 
attitude data as calculated by on-board sensors. Results from ~75 days of testing 
procedures show that the RF subsystem can achieve, in the range between 3 km and 
30 km, a precision of 2 cm for relative distance measurement and 1° for LOS 
measurement, yet multipath errors produced, respectively, mean errors of 90 cm and 
20° when target elevation on the chaser orbit plane is greater than 35° [15]. 

Figure 1.5  Two satellite FFRF antennas configuration. [15] 



1.  THE PROBLEM OF RELATIVE POSE MEASUREMENTS 25 
 

 

PRISMA’s FFIORD experiment proved that RF pose estimation serves as a 
sufficiently precise and robust technology especially for future formation flying 
missions, nevertheless it’s affected by fundamental disadvantages such as mass and 
power consumption, multipath errors, ionosphere interference and relying on board 
sensors for attitude estimation. 

A robust and effective solution for the problem of relative position and pose 
estimation of active cooperative spacecrafts is represented by GPS based 
measurements. The Global Navigation Satellite System (GNSS) is a satellite 
navigation system that relies on multiple constellations of spacecrafts (GPS, 
GLONASS, Galileo, BeiDou, …)  that provide position data with a continuous global 
coverage. GPS receivers are lightweight, reliable and particularly cost-effective 
instrumentation for LEO missions, in fact, GPS signal can be manipulated through 
various techniques to obtain different levels of accuracy for relative position. 
Differential GPS measurements provides position information with a precision 
inferior to 1 m while Carrier-Phase Differential GPS can further improve on accuracy 
reaching centimetre-level precision [13]. For instance, PRISMA’s MAIN and 
TARGET spacecrafts are equipped with a Phoenix GPS receiver qualified by DLR 
and flight-proven in previous missions (GRACE, CHAMP, Proba-2, …). With a mass 
of 70 g and a power consumption of 0,85 W the receiver is suited for small satellites 
and it offers single-frequency code tracking for the dynamic modelling of relative 
orbits and carrier phase measurements for more precise intersatellite distances [14]. 
GPS signal doesn’t provide attitude estimation therefore any pose determination must 
rely on on-board attitude sensors and communication with the ground segment for 
remote control or space-to-space communication links for autonomous flying. 
Despite its many advantages GNSS based relative positioning is affected by multipath 
errors, signal occlusion, ionosphere interferences and radiation-induced hardware 
failures, for these reasons it can only be suitable for mid/far range proximity 
operations and LEO missions. 

1.5.2  Passively cooperative target 

The most common scenario of On Orbit Servicing missions involves passively 
cooperative target vehicles, i.e., space objects equipped with artificial markers that 
offer different types of visual aid for electro-optical rendezvous sensors.  Vision-
based pose estimation appears to be the most effective in relation to target passiveness 
since it doesn’t require intersatellite data exchange and, as described previously, it 
has a minor impact on power and mass budget. Both in the visible and infrared range 
optical sensors rely on pre-determined markers to be visible and to produce a 
constant, robust response to imaging detection. Given the a priori knowledge of the 
position of a limited number of features in the Target Reference Frame and either the 
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2D coordinates on the sensor’s image plane or the 3D coordinates in the sensor 
reference frame of the same features, it’s possible to retrieve the relative orientation 
between the two vehicles. Fiducial markers must have invariant and easily 
identifiable geometric correlations which can be exploited to calculate coordinates 
and distances among features in the projective space. 

Regarding monocular cameras different techniques have been proposed based on 
various types of fiducial markers. The use of optical sensors to obtain line-of-sight 
vectors has been explored by Junkins et al. [16], in Philip and Ananthasayanam [17] 
and in numerous other related works that explore the feasibility of computer vision 
in space applications. A first example of vision-based pose estimation flew on board 
of the Engineering Test Satellite (ETS-VII) autonomous docking mission where the 
Proximity Operation Sensor provided reliable navigation data in the range between 3 
m and contact, based on the acquisitions by a single camera of seven non-coplanar, 
round shaped passive markers on the surface of the target spacecraft. Also, Ho and 
McClamroch [18] propose a rhombus shaped marker for autonomous soft docking. 
Another technological solution for fiducial markers is represented by Corner Cube 
Reflectors (CCR) which can be precisely built to reflect light at specific wavelengths, 
thus, enabling background-subtraction method to detect markers. In fact, the 
Advanced Video Guidance Sensor on board of DARPA’s Orbital Express mission 
produced light emissions at 808 nm and 845 nm, yet its target’s CCRs only filter the 
former one. By subtracting the resulting intensity images the background radiation, 
which appears in both, is removed and only markers reflections remain. Once 
identified, valid spots are selected as inputs for an Inverse Perspective algorithm [20] 
in order to estimate the relative pose. Mission reports [21] highlight the excellent 
results of this technique at short range: the AVGS subsystem provided an accuracy 
of 0.75 mm (one order of magnitude better than the requirement) while operating in 
mated configuration at a true range of 1.22 m.  

Furthermore, the aforementioned PRISMA experimental spacecraft was equipped 
with the VBS optical subsystem for vision-based pose estimation which is composed 
of four imaging sensors operating, respectively, two star trackers (main and 
redundant), a far range and a short range monocular sensor for relative measurements. 
The system relies on several switchable LEDs mounted on the target spacecraft as 
fiducial markers and exploits their unique geometrical pattern to perform 2D-to-3D 
point matching [8]. The VBS Far Range camera demonstrated to be able to detect and 
track multiple non-stellar objects at distances up to 500 km and provide 
measurements of LOS and relative motion, while the Close Range camera provided 
sufficient resolution to extract the coordinates of luminous elements and detect 
predetermined patterns in order to assess relative attitude and position with an 
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accuracy of 1 cm and 1° for at 10 m range [15]. Although the optical equipment 
includes a pass band filter centered on the LED wavelength, the marker detection 
technique is fundamentally affected by illuminating conditions. 

 

 

Sklair and Gatrell in [22] identify concentric contrasting circles as the optimal 
geometry for passive fiducial markers in relation to space lighting, ease of 
manufacturing and robustness against image distortion. In fact, a set of four stacks of 
two concentring black and white circles is employed to perform close proximity 
operations among the experimental microsatellites of the SPHERES program aboard 
the ISS. Within the SPHERES project, developed by MIT Space Systems Lab, 
Tweddle [23] proposed an algorithm architecture for pose estimation which 
comprises of image processing for fiducial detection, solving the exterior orientation 
problem and filtering the measurements through a Multiplicative Extended Kalman 
Filter (MEKF). In particular the feature detection process revolves around four 
phases: masking the image around a previously tracked location, thresholding the 
image to segment it into black and white regions, implement a blob detection 
algorithm and measuring their geometric properties (perimeter to area ratios, 
eccentricities, areas, relative distances …) to remove the wrong ones and, finally, 
calculating the centroid’s 2D coordinates to feed to the pose solving algorithm. The 
technique ensures an error of less than 0.5 cm for translations of circa 40 cm and a 
maximum error of 4° for rotations of 45° around the vertical axis [24]. 

An alternative approach to pose estimation is provided by 3D measurement sensors 
such as LIDARs and stereocameras, although these techniques are mostly employed 
in the case of non-cooperative spacecrafts due to their operational flexibility. While 

Figure 1.6  SPHERES fiducial markers (left: raw image, right: processed image and markers 
detection). [23] 
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in [25] an algorithm architecture for stereo-vision autonomous navigation at close 
range is presented, yet a specific solution to detection and identification of fiducial 
markers is not addressed, there is a rich literature about Flash LIDAR application in 
proximity operations. A method to create uniquely distinguishable 3D point patterns 
for fiducial LIDAR measurements can be found in [26] and a graph-matching 
algorithm for reflector identification in [27]. In the majority of cases data analysis 
comprises of thresholding and filtering operations to be applied to the LIDAR 
intensity image based on morphology. Thereafter, pose estimation relies on a linear 
formulation of the 3D point pattern aligning problem which has been proved to obtain 
accuracy around 1° and 1 cm at distances from 2 m to 20 m [4]. 

1.5.3 Non-cooperative known target 

Spacecrafts involved in Active Debris Removal (ADR) missions typically belong to 
the category of non-cooperative known vehicles since they are defunct satellites or 
uncontrollable debris devoid of fiducial markers or active communication systems, 
whose structural and optical properties are known and can be at least partially 
reproduced. In this scenario the pose determination process can be divided into an 
initialization phase and a tracking one. Lacking any a-priori knowledge of target 
attitude, the first acquisitions allow estimating the pose parameters by matching 
measurements data with the respective information derived from a target model 
stored on board. The consecutive step, instead, consists of pose tracking algorithms 
that update and refine the stream of relative measurements on the basis of previous 
pose estimates with the goal of providing a more robust and accurate description of 
the target’s motion. 

Generally during the acquisition phase, the feature matching techniques rely on 
approaches, commonly used in computer vision, to extract and characterize geometric 
elements, like corners, lines, shapes and curves, from 2D or 3D point data. The 
SoftPOSIT algorithm [28], based on the Pose from Orthography and Scaling (POS) 
process, is employed to search for image-to-model correspondences, firstly it matches 
feature with a soft-assign technique, then it defines an initial coarse pose estimation 
by means of a scaled orthographic projection and lastly it computes a refined solution 
iteratively. SoftPOSIT can also be applied to lines, producing more consistent 
solutions due to their inherent stability to lightning conditions and invariancy to 
clutter and noise. Feature matching can be performed also with the RANSAC 
(Random Sample Consensus) method as described in [29]. Moreover, Template 
Matching is presented in [30] as a viable solution to identify and match image sections 
by exploiting segmentation and correlation functions based on the sum of absolute 
differences, the normalized cross correlation or the distance transform. Lastly, more 
recent architectures have been tested to apply perceptual feature grouping to the 
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problem and therefore reduce the computational cost of pose estimation while 
ensuring a more robust solution, indeed, the method proposed by Sharma, Ventura 
and D’Amico in [31] is the subject of this thesis and will be broadly discussed in the 
next chapters. Optimal monocular approaches can achieve attitude accuracy close to 
1° and position error close to 1% of the true relative range [4]. 

While 2D feature properties tend to be greatly affected by external factor and difficult 
to associate with a predetermined model dataset, 3D features rea more easily 
identifiable, especially in the case of LIDAR measurements. Given a 3D 
representation of the target, in addition to feature descriptor methods, point cloud 
techniques provide computational time saving and robustness to outliers, distortion 
and noise. Among several algorithms the Iterative Closest Point (ICP) registration 
method is typically used to determine the rigid transformation that aligns two datasets 
by optimizing a cost function, e.g., sum of squared differences between the 
coordinates of matched pair. Furthermore, ICP is easily customized to the specific 
application of interest by modifying some parameters and, in many cases, it has 
proven to determine a correct relative pose with centimetric and sub-degree accuracy 
in position and attitude, respectively. 

1.5.4 Non-cooperative unknown target 

Uncontrolled debris and asteroids, known as Resident Space Objects (RSO), belong 
to the category of non-cooperative unknown targets. Asteroid rendezvous missions 
and debris removal operations represent the most complex and risky scenarios for 
navigation purposes. Pose determination for requires a preliminary monitoring phase 
that involves building a model or a map of the target directly on board using the 
available measurements. In order to accomplish this task, solutions based on 
Simultaneous Localization and Mapping (SLAM), widely explored in robotic vision-
based odometry, are applied. SLAM consists in the real-time process of establishing 
the position of a mobile robot while simultaneously building a map of the unknown 
environment. SLAM techniques have been studied in the last 30 years and have been 
employed successfully on board of Mars rovers to perform local trajectory 
verification and tested in the case of asteroid robot exploration [58]. Even though, 
some fundamental hypothesis must be verified, e.g., quasi-static scene, free-floating 
rigid objects and sensor synchronization, it is possible to adopt feature detection and 
optical flow computational techniques to estimate relative position. Augenstein and 
Rock [32] propose a monocular vision SLAM approach that provides pose tracking 
and shape reconstruction by means of Bayesian filtering and measurement inversion. 
The algorithm operates on the assumption of a constant rotation al velocity. Other 
implementations of the same architecture rely on both 3D sensors and cameras to 
produce combined measurements and, in addition to mapping and tracking the target, 
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can identify its inertia tensor [33]. Finally, the issue of proximity operations with non-
cooperative unknown targets is still considered unsolved due to the lack of 
sufficiently fast and accurate implementations of SLAM, despite the numerous 
possible combinations of sensor suites, filtering processes and dynamic models that 
can be arranged, there isn’t still a consistent and safe method to provide navigation 
data within such mission requirements. 
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Chapter 2 

The SVD architecture for pose 
initialization 

 
The chapter provides a detailed description of a model-based pose initialization 
technique for non-cooperative passive target vehicles. The so-called SVD 
architecture comprises of multiple subsystems for feature detection and synthesis, 
pose solution and refinement and the chapter points out the fundamental instructions 
to implement the algorithm. A summary regarding the preliminary validation results 
of the SVD method, contained in an original study paper, is outlined. 

 

2.1 Architecture overview 
 

One of the most promising and possibly advantageous technologies for on-orbit 
servicing and active debris removal with non-cooperative targets is monocular vision. 
As described in the previous chapter, monocular navigation guarantees fast pose 
determination under low mass and power requirements and can potentially provide 
reliable data for real-time generation of 6 DOF approach trajectory and control update 
if enough computational power is available. While proximity operations missions 
with unknown non-cooperative RSOs still require more precise relative 
measurements for target mapping and, therefore, rely necessarily on a combination 
of LIDAR and optical sensors, there are concrete possibilities for vision-based 
techniques to be robust and accurate enough to be employed singly with known non-
cooperative targets. It’s important to highlight that many algorithms to solve the pose 
problem are inherited from previous studies in computer vision terrestrial 
applications. 
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Vision-based monocular pose estimation architectures generally comprise of three 
fundamental blocks: 

- Image processing 

- Pose solving 

- Pose refinement 

The processes of prefiltering, feature detection and feature matching are part of the 
image processing phase and they ensure the extraction of significant 2D points and 
elements and provide a coarse estimation of target’s range and line of sight. Due to 
the highly variable illumination condition, the high reflectivity of commonly used 
space materials, high contrast and low signal-to-noise ratio image processing is the 
main challenge of pose estimation. The first goal of the processing procedure consists 
in identifying and defining a Region of Interest (ROI) for the observed target, yet 
external factors like the presence of a reflective background (i.e. Earth surface) or the 
lack of sufficient light (i.e. Sun eclipse) can greatly affect the effectiveness of feature 
detection algorithm. Given the variety of conditions under which images are captured, 
the delimitation of a correct ROI allows to avoid quantitative biases in most feature 
detection techniques, since they can be manually tuned for better accuracy. 

State-of-the-art techniques for feature extraction include corners detectors such as 
FAST (Features from Accelerated Segment Test) [34] and Harris [35], extractors 
based on blobs detection like SURF and SIFT, binary robust invariant scalable key-
points (BRISK) detector [36] or various edge detectors (Canny [37], Sobel [38], 
Prewitt [39]) paired with the Hough transform. If the pose estimation algorithm isn’t 
correctly initialized, by means of Kalman filter state prediction or secondary relative 
measurements, the aforementioned techniques can’t consistently discriminate by 
default the true features of the target from background interference and require a 
subsequent verification algorithm to evaluate the correctness of feature 
correspondences between image and model. Dhome et al. [40] proposed a closed-
form solution by combining all the possible sets of three 2D image lines with 3D 
spacecraft model edges, yet more recently other authors have opted for RANSAC 
[41] and soft assign algorithm [42] to reduce the computational burden. Furthermore, 
as described in previous paragraphs, hierarchical view graphs and template matching 
represent more effective pose initialization architectures, however, they rely heavily 
on the presence of an exhaustive database of precomputed renderings of a target’s 
model whose quality, in terms of illumination predictability and variety of conditions 
reproduced, can limit the extent of these approaches. Finally, more flexible solutions 
to the same problem have been proposed, i.e., a combination of background 
subtraction and Gaussian blob detection algorithm or maximal stable extremal 
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regions (MSER) detection [43] with non-maximum suppression (NMS) [44] which 
provide the possibility of identifying multiple spacecrafts in the image. In any case, 
the classical methods for image segmentation and target identification are 
computationally expensive and lack consistency in results. 

Once the correspondences between extracted features and model features are 
assessed, the estimation of the position and orientation of a calibrated camera from n 
3D-to-2D point correspondences is defined as the Perspective-n-Points problem. PnP 
algorithms require a minimum of 6 correspondences for a unique solution but can 
provide a set of 4 ambiguous solution for only 3 correspondences. A wide variety of 
perspective equation solvers have been proposed for the PnP problem with different 
limitations: among the non-iterative solvers the P3P algorithm described in [45] and 
the EPnP method described in [46] are the most commonly used in computer vision 
applications. The P3P approach is based on the smallest subset of control points (n = 
3) that yields a finite number of computed poses and, therefore, it can be employed 
in combination with a RANSAC outlier detection for sets of easily identifiable 
features such as with fiducial markers. Since the computational complexity of 
perspective equation solvers grows exponentially with the number n of matched 
features, the EPnP algorithm, which provides a better accuracy with linear complexity 
O(n), has optimal performances for larger values of n (n > 4) reducing sensitivity to 
noise, without sacrificing computational time. The fundamental difference between 
EPnP and other pose solvers lies in the idea of writing the coordinates of 3D points 
as a weighted sum of 4 virtual control points which, then, are expressed in the camera 
reference frame as linear combinations of a 12x12 matrix eigenvectors, thus reducing 
the problem to a small constant number of quadratic equations to determine the 
correct weights. In addition to point-based pose estimation, recent studies have 
proved the effectiveness of PnL (Perspective-n-Line) algorithms due to the more 
robust invariancy to lighting conditions of edges and lines. Some example of  PnL 
pose solvers are Absolute Subset-based PnL (ASPnL) which performs better for small 
lines [47], Linear formulation PnL (LPnL) [47], a linear pose estimation proposed by 
Ansar and Daniilidis [48] and a method proposed by Mirzaei and Roumeliotis [49]. 

The refinement of the solution is the last step of the pose estimation process and 
implies local or global optimization. In the case of pose initialization, the result of a 
first guess calculation can be optimized through the Newton-Raphson Method for 
iterative minima research. The fit error to minimize is the difference between detected 
features and projected 3D points. A second local optimization technique that derives 
from NRM, the Gauss-Newton algorithm, is introduced along with the EPnP solver 
in order to improve the accuracy of pose estimates by minimizing a sum of squares 
with non-linear regression: the iterative process is performed only over four 
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coefficients to minimize the square difference of control points coordinates in the 
camera reference frame. On a global level, the bundle adjustment (BA) approach 
refines the results of pose tracking in a series of relative estimates by reducing the 
reprojection error in each image. BA optimization relies on the Levenberg-Marquardt 
algorithm to solve linear systems and formulate better values for the camera intrinsic 
parameters and the scene geometry. Lastly, the implementation of an Extended 
Kalman Filter (EKF) architecture for relative navigation allows predictive state 
estimation and noise filtering to contribute to assess the consistency of successive 
position and attitude measurements. 

 

2.2 Algorithm description 
 
The main goal of this thesis is to provide further validation to a robust monocular 
vision-based pose initialization algorithm introduced by S. Sharma, J. Ventura, S. 
D’Amico in “Robust Model-Based Monocular Pose Initialization for Noncooperative 
Spacecraft Rendezvous” [31]. Along with the techniques described in the previous 
paragraph, the so-called SVD architecture suggests interesting innovations to address 
the problem of pose determination for close-range proximity operations in the 
scenario of a known target without fiducial markers. The paper describes the 
algorithm, pointing out the difference with the state-of-the-art techniques and 
comparing performance results among various configurations of feature extractors, 
ROI detection and pose solvers to demonstrate the feasibility of the SVD method. 
The problem of pose initialization consists in computing the rotation matrix 𝑹𝐵𝐶  and 
the translational vector 𝒕𝐶  that describe the transformation between the camera frame 
{𝑪} and the target body frame {𝑩}. Hence, given a point 𝒒𝐵 of the 3D spacecraft’s 
model whose coordinates [ 𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵]𝑇 are expressed in the body reference frame, 
the correspondent point described in the camera frame 𝒓𝐶, its coordinate and its 
projection on the image plane 𝒑 = [𝑢, 𝑣]𝑇 are obtained by using the following 
perspective projection equations: 

 

𝒓𝐶 = [ 𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶]𝑇 = 𝑹𝐵𝐶𝒒𝐵 + 𝒕𝐶                                           (2.1) 

 

𝒑 = [𝑢, 𝑣] = [
𝑥𝐶

 𝑧𝐶
𝑓𝑥 + 𝐶𝑥 ,

𝑦𝐶

 𝑧𝐶
𝑓𝑦 + 𝐶𝑦]                                        (2.2) 
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where 𝑓𝑥 and 𝑓𝑦 represent the focal lengths of the camera and (𝐶𝑥 , 𝐶𝑦)  the principal 
point of the image. Moreover, the camera frame is oriented as shown in Fig. 2.1 with 
the axis 𝐶3 along the boresight,𝐶2 and 𝐶1 aligned with the image frame {𝑃1, 𝑃2} . 

 

 

The structure of the proposed architecture is shown in Fig. 2.2 and an overview of 
the SVD algorithm and the paper’s results is presented in the next paragraphs. 

 

 

 

Figure 2.1   Schematic overview of the pose estimation 
problem with monocular camera [31]. 

Figure 2.2  Architecture of SVD method for pose estimation [31]. 
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2.2.1 Image Processing 

After an initial pre-processing procedure is performed on the raw images to correct 
them for lens distortion, a Gaussian filter is applied to decrease the magnitude of 
image noise and the resulting data is fed as input to the Weak Gradient Elimination 
(WGE) block which is entitled to identify the target’s Region of Interest. Based on 
the hypothesis that, under most illumination conditions, space vehicles present more 
pronounced gradient variations in correspondence with the structure’s edges than the 
background, whether it’s empty or the surface of the planet is visible. The 
computation of the gradient distribution 𝑮 is obtained at all pixel locations by using 
a convolution kernel like the Prewitt operator. As in Eq. 2.3, the horizontal and 
vertical derivative are the product of the convolution operation ∗ between the input 
image 𝑨(𝑢, 𝑣) and two 3x3 matrices that approximate the derivative by means of 
finite differences. The next step consists in thresholding the gradient’s magnitude 
(Eq. 2.4) in order to eliminate the weakest elements in the image. 

 

                        𝐺𝑥 =  [
−1 0 +1
−1 0 +1
−1 0 +1

] ∗ 𝐴         𝐺𝑦 =  [
−1 −1 −1
0 0 0

+1 +1 +1
] ∗ 𝐴       (2.3) 

 

                                         𝐺(𝑢, 𝑣) = √𝐺𝑥
2(𝑢, 𝑣) + 𝐺𝑦

2(𝑢, 𝑣)       (2.4) 

 

The gradient is normalized, sorted in 100 uniformly distributed bins and fitted by an 
exponential probability distribution function (PDF), then, all the pixel which 
correspond to a cumulative distribution inferior to 0.99 are classified as “weak”. Once 
the gradient of weak pixels is set to zero, only the most prominent features in the 
image are left to estimate a ROI. By setting limits to the cumulative distribution 
function (CDF) of the gradient along the vertical and horizontal axes it’s possible to 
identify a rectangular region of interest where the features that yield the strongest 
intensity variations are located. For instance, the ROI limits can be set between 0.025 
and 0.975 to enclose the central 95% of the gradient if a normal distribution is 
assumed.  

The determination of a target’s ROI combined with the knowledge of the spacecraft 
3D model allows a coarse estimation of relative range and LOS. Given the ROI’s 
diagonal length 𝑙𝑅𝑂𝐼 and the characteristic length 𝐿𝐶  of the spacecraft and the focal 
lengths of the camera 𝑓𝑥 and 𝑓𝑦, the range between camera frame and target is defined 
by Eq. 2.5 . Moreover, assuming (𝐶𝑥 , 𝐶𝑦) as the principal point of the image and 
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calculating the ROI’s center (𝐵𝑥 , 𝐵𝑦) the azimuth and elevation angles (𝛼, 𝛽) are 
defined by Eq. 2.6.  

 

                        ‖𝑡𝐶‖2 =  
((𝑓𝑥+𝑓𝑦) 2⁄ )∙𝐿𝐶

𝑙𝑅𝑂𝐼
                (2.5) 

 

𝛼 = tan−1 (
𝐵𝑥−𝐶𝑥

𝑓𝑥
)                                  𝛽 = tan−1 (

𝐵𝑦−𝐶𝑦

𝑓𝑦
)               (2.6) 

 

Lastly, the relative position vector is calculated as follows: 

 

      𝑡𝐶 = [
cos 𝛼 0 −sin 𝛼

0 1 0
sin 𝛼 0 cos 𝛼

] [

1 0 0
0 cos 𝛽 sin 𝛽
0 − sin 𝛽 cos 𝛽

] [
0
0

‖𝑡𝐶‖2

]                   (2.7) 

Thereafter, the SVD image processing algorithm employs a feature extraction 
architecture based on merging two separate streams of data in order to detect different 
elements of the image and provide more robustness to the results. The authors opt for 
edge detection techniques since, as previously explained, linear features show a less 
variable response to illumination. Besides, by pre-emptively determining a ROI, edge 
detectors’ hyperparameters can be automatically tuned to operate on a narrower range 
of possibilities and produce more accurate data to feed to the feature matching 
algorithm. The first stream of features is extrapolated from the filtered gradient image 
by means of a Hough transform. The Hough transform performs a shape identification 
through a voting procedure in a parameter space. In particular, lines are parametrized 
in polar coordinates [𝜌, 𝜃] and the voting procedure selects a series of candidate linear 
objects on the basis of two fundamental parameters: the expected minimum length of 
the segments 𝑙𝑚𝑖𝑛

𝐻  and the maximum gap between points to be considered points of 
the same line 𝜆𝐻 (Eq. 2.8). The choice of correct parameters greatly affects the 
effectiveness of the feature extraction phase both in terms of precision and 
predictivity. To improve the flexibility of the edge detection without manually tuning 
the Hough transform for every image the following relations are imposed: 

 

𝑙𝑚𝑖𝑛
𝐻 =  𝑘1 ∙ 𝑙𝑅𝑂𝐼                           𝜆𝐻 =  𝑘2 ∙ 𝑙𝑅𝑂𝐼                           (2.8) 
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where 𝑘1 and 𝑘2 are numerical coefficients that can be empirically estimated through 
iterative offline testing with simulated datasets and with real images from previous 
close-range approaches.  

A second stream of features is obtained with the application of the Sobel operator to 
the undistorted unfiltered image. The Sobel operator, much like the Prewitt operator, 
employs matrix convolution (Eq. 2.9) to filter and differentiate the intensity 
distribution of the image along the horizontal and vertical axes.  

 

            𝐺𝑥 =  [
−1 0 +1
−2 0 +2
−1 0 +1

] ∗ 𝐴                   𝐺𝑦 =  [
−1 −2 −1
0 0 0

+1 +2 +1
] ∗ 𝐴              (2.9) 

 

Once the edges in the image are identified the Hough transform is implemented again 
to identify the lines that belong to the target vehicle and the hyperparameters 𝑙𝑚𝑖𝑛

𝐻  and 
𝜆𝐻 are adaptively computed as scalar multiples of 𝑙𝑅𝑂𝐼 by the coefficients 𝑘3 and 𝑘4. 
Since the Hough transform is applied to the entirety of the image, only the segments 
whose midpoint lie inside the ROI’s limits are considered valid. 

Moreover, further feature simplification is suggested by Sharma et al. [31] to reduce 
the fragmentation of segments that result from Hough line detection algorithm. As 
shown in Fig. 2.3, the presence of similar adjacent lines indicates the possibility of a 
truncated edge and merging the segments can effectively reduce the uncertainty and 
computational cost of feature matching and pose solving. Hence, certain geometrical 
conditions must be defined to check if two segments can be considered similar and 
merged in a single edge. The paper proposes as conditions of similarity three 
thresholds 𝜃𝑡ℎ, 𝜌𝑡ℎ, 𝑑𝑡ℎ respectively for orientation, radius and distance between the 
farthest endpoint with whom the two groups of detected edges must be tested.  

Finally, the feature detection phase is concluded by merging the two streams of 
features and combining the results. The aim of combining two different edge 
detection procedures is to identify different linear elements of the spacecraft’s 
structure: the first architecture (WGE + Hough) is dedicated to detecting the smaller 
features in the image such as antennas, the second one (Sobel + Hough) is dedicated 
to recognize larger edges instead. The process of merging the streams is carried on 
by testing the similarity of the lines in terms of orientation, radius and distance 
between midpoints. Also, the thresholds that define the condition of similarity can be 
expressed as functions of  𝑙𝑅𝑂𝐼 to make them independent from the relative range. If 
two lines are classified as similar, only the longer one is retained and in the case of 
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intersections, assuming the shorter line is divided in two portions (L1 and L2), only 
the longer section is preserved if  𝐿1 𝐿2 > 0.25⁄ . 

 

 

 

2.2.2 Feature Synthesis and Matching 

The main innovation introduced in the SVD architecture is the perceptual grouping 
method to reduce the number of associable features. Perceptual grouping is the 
process of synthetize all the edges detected in the image into higher-level features by 
checking the validity of geometric relations among the segments. To resolve uniquely 
the pose problem (PnP) a minimum number of six corresponding 2D and 3D points 
are required, thus, the total amount of combinations that compose the search space 
for feature matching is equivalent to: 

 

 (
𝑚
6

) (
𝑛
6

) 6!                                                  (2.10) 

where n and m represent respectively the number of image points and world points. 
Nonetheless, the choice of adopting perceptual grouping is based on the assumption 
that the target’s structure model is sufficiently simple to be decomposed into a subset 
of more or less complex geometric elements. 

The edges are divided into six high-level groups which are, in order of decreasing 
complexity: 

1. Polygonal tetrads 

2. Polygonal triads 

3. Parallel triads 

Figure 2.3   Merging of two truncated edges [31]. 
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4. Parallel pairs 

5. Proximity pairs 

6. Antennas 

The process of feature selection and synthetization is carried on by examining a few 
geometric constraints regarding orientation, distance and length. In fact, two lines are 
identified as a parallel pair if the relative difference in orientation lies within a 
tolerance angle 𝜃𝑚𝑎𝑥 or as a proximity pair if the distance between the closest 
endpoints is shorter than the threshold 𝑑𝑚𝑎𝑥. More complex elements are built by 
association of simpler ones:  two parallel pairs with a shared segment compose a 
parallel triad as well as two proximity pairs make up a polygonal triad and, lastly, 
two polygonal triads with two edges in common are classified as a closed polygonal 
tetrad. Separately, edges with a length shorter than 𝑙𝑚𝑎𝑥 are categorized as antennas. 
A schematic representation of the classes of high-level features are displayed in Fig. 

2.4. Every condition that is established to determine the geometric relations among 
the detected lines can be adaptively tuned as function of  𝑙𝑅𝑂𝐼 and in relation to the 
actual proportions of the spacecraft’s model to improve the algorithm’s robustness to 
range variations. The importance of defining variably complex elements is related to 
the possibility of characterizing accurately both easily identifiable simpler features 
such as antennas and more complex prominent features like solar panel surfaces at 

the same time. Similarly to the image lines, a perceptual grouping technique is applied 
to a wireframe model of the target vehicle in order to obtain the same 3D high-level 
features. 

 

Figure 2.4   High-level feature groups: proximity pair (a), polygonal triad (b), 
polygonal tetrad (c), parallel pair (d), parallel triad (e) [31]. 
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The feature correspondence algorithm proposed by Sharma et al. [31], unlike 
previous view-based pose estimation architecture suggest, doesn’t take into 
consideration all the possible combinations of 3D and 2D elements in the creation of 
a match matrix. Since most of the high-level features don’t provide enough points to 
obtain a unique solution to the PnP problem, only a combination of two of them is 
required to feed as input to the pose solver. The authors propose to achieve an 
effective solution by combining the most complex and the simplest feature groups 
detected, in particular antennas are usually easily identifiable, if present, while closed 
polygonal tetrad like solar panels or large flat surfaces are less prone to the probability 
of accidental detection [50]. Moreover, the number of features is inversely 
proportional to the geometric complexity and this solution drastically reduces the 
search space for pose solvers. All the possible matching combinations are stored in a 
so-called match matrix. 

 

2.2.3 Pose solution and refinement 

The EPnP pose solver is the technique chosen to determine the rotation matrix 𝑹𝐵𝐶  
and the translational vector 𝒕𝐶 . As described previously, EPnP can provide efficient, 
robust and fast pose estimation for a larger number n of features by expressing the 
points as a linear combination of four noncoplanar unknown control points 
𝒄1

𝐶, 𝒄2
𝐶, 𝒄3

𝐶, 𝒄4
𝐶 as in Eq. 2.11. 

 

𝒓𝑖
𝐶 = ∑ 𝛾𝑖𝑗𝒄𝑗

𝐶

4

𝑗=1

     𝑖 = 1,2, …, 

(2.11) 

where  𝒓𝑖
𝐶 = [ 𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶]𝑇 are the 3D points expressed in the camera frame. 

Assuming the validity of the perspective projection equation (Eq. 2.2) for the pinhole 
camera model, the PnP problem is solved by determining the 12 unknown coefficients 
for the control points in a linear system of  2 × 𝑛 equations. For each pair of features 
the equations are the following: 

 

∑ 𝛾𝑖𝑗𝑓𝑥𝒄𝑥𝑗
𝐶 + ∑(𝐶𝑥 − 𝑢𝑖)𝛾𝑖𝑗𝒄𝑧𝑗

𝐶 = 0             𝑖 = 1,2, … , 𝑛

4

𝑗=1

 

4

𝑗=1
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∑ 𝛾𝑖𝑗𝑓𝑦𝒄𝑦𝑗
𝐶 + ∑(𝐶𝑦 − 𝑣𝑖)𝛾𝑖𝑗𝒄𝑧𝑗

𝐶 = 0             𝑖 = 1,2, … , 𝑛

4

𝑗=1

 

4

𝑗=1

 

(2.12) 

Finally, a cumulative reprojection error is defined in Eq. 2.13 to operate as a 
confidence metric and evaluate the accuracy of the pose solver algorithm. 

 

𝐸2𝐷 =
1

𝑛
∑ √[𝑢𝑖 − (

𝑥𝑖
𝐶

𝑧𝑖
𝐶 𝑓𝑥 + 𝐶𝑥)]

2

+ [𝑣𝑖 − (
𝑦𝑖

𝐶

𝑧𝑖
𝐶 𝑓𝑦 + 𝐶𝑦)]

2𝑛

𝑖=1

 

(2.13) 

In regard to the optimization method the authors suggest a Newton-Raphson for the 
five combinations of features with the lowest reprojection error to further refine the 
pose estimates and select the optimal one. A fit error vector 𝑬𝑆 = [𝐸1 … 𝐸𝑛]𝑇 and the 
Jacobian matrix [ 𝑱 ] are calculated at each step of the iterative process and are used 
to update the state variable 𝒙 which contains six unknown parameters, e.g., three 
Euler angles for the rotation matrix 𝜃𝐵𝐶  and three coordinates for the translation 
vector 𝑡𝐶 . 

 

𝐸𝑖 = [𝑢𝑖 − (
𝑥𝑖

𝐶

𝑧𝑖
𝐶 𝑓𝑥 + 𝐶𝑥) , 𝑣𝑖 − (

𝑦𝑖
𝐶

𝑧𝑖
𝐶 𝑓𝑦 + 𝐶𝑦)]     𝑖 = 1,2, … , 𝑛 

(2.14) 

𝒙𝑘+1 = 𝒙𝑘 − (𝑱𝑇𝑱)−1𝑱𝑇𝑬𝑆(𝒙𝑘) 

(2.15) 

 

2.2.4 Preliminary validation 

The proposed SVD architecture is validated on PRISMA mission’s data collected by 
the onboard optical sensor (VBS). As discussed in the previous chapter, the PRISMA 
mission consisted in two separate spacecrafts, MAIN (Mango) and TARGET(Tango), 
with different attitude control ability, that emulate typical scenarios of partially or 
totally noncooperative proximity operations. The validation is conducted on a set of 
real space imagery that portray the Tango vehicle at slightly different ranges and 
orientations with various background. A wireframe model of the target provides a 
description of the basic geometric relations among the edges and their coordinates in 
order to extract the 3D features and organize them in the aforementioned feature 
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groups. A body-fixed reference frame is defined at the center of the bottom surface 
of the vehicle’s body as it’s displayed in Fig. 2.5. The authors define 16 proximal 
pairs, 18 parallel pairs, 12 parallel triads, 6 closed polygonal tetrads, 6 open polygonal 
tetrads, and 5 antennas as 3D features to combine with the elements detected in the 
image. True reference for the relative range estimation is obtained by the Phoenix 
GPS receiver, whereas sun-sensors and magnetometers produce coarse attitude 
measurements, thus reaching an accuracy of 2 cm and 3° (3D rms) [14] for the “true” 
relative pose (𝑹𝑡𝑟𝑢𝑒

𝐵𝐶 , 𝒕𝑡𝑟𝑢𝑒
𝐶 ).The translation error is evaluated as absolute difference 

between the translation vectors and the rotation error is described by three Euler 
angles which describe the rotations around the camera frame axes. Other parameters 
to measure the performances of the SVD architecture employed in the paper are the 
2D reprojection error, the true positive rate TPR and the positive predictive value 
PPV which evaluate respectively the pose solver and the feature detection 
effectiveness. 

 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
∙ 100 

(2.16) 

𝑃𝑃𝑉 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
∙ 100 

(2.17) 

 

The first test revolves around the choice of the optimal feature extractors. The authors 
compare on a set of 142 images of Tango, the PPV and TPR of state-of-the-art 

Figure 2.5   Tango’s 3D wireframe model. [31] 



 44  Tesi di Laurea Magistrale - Pierdomenico Fracchiolla 
 

 

techniques with the WGE algorithm proposed in the paper. The feature detectors 
tested are a combination of Sobel, Canny and Prewitt with the Hough transform, the 
features from accelerated segment test (FAST) technique and a key-point detector 
like BRISK. If the detected edge’s endpoint is located within an Euclidean distance 
of 5 pixel from a true edge endpoint it’s classified as true positive. 

As shown in Fig. 2.6, the WGE architecture has a higher TPR (32.8%) than other 
feature detectors, even though it lacks location precision in respect to Canny and 
Sobel. The performance of WGE are comparable to those of FAST and BRISK in 
terms of positive predictive value, yet the computational time required by WGE is an 
order of magnitude greater. Besides, the WGE algorithm is ten times faster than the 
other edge detectors (Sobel, Canny, …) since it is applied to a more limited image 
area and the search space is reduced, therefore it has better performances on average.  

 

  

Secondly, the WGE algorithm has been tested for ROI detection in comparison to the 
MSER blob detector. MSER allows to define a list of bounding boxes which, 
subsequently, are fed to a non-maximum suppression (NMS) algorithm and confined 
in a single region of interest. The parameters PPV and TPR are defined in relation to 
the true rectangular box that encloses the projected points of the reference true pose. 
The results on the PRISMA dataset demonstrate that the two method are comparable 
in terms of effectiveness, i.e., mean PPV = 85.98% and mean TPR=90.59% for WGE 
and, respectively, 81,77% and 89.45% for MSER+NMS. On the other hand, the weak 
gradient elimination technique is performed in a mean computational time of 0.0878 
s, five time faster than MSER, and can’t identify multiple ROIs. 

Figure 2.6   Mean and standard deviation of PPV and 
TPR for different feature extractors. [31] 
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A third test is performed to evaluate the accuracy of different pose solvers. In Fig. 2.7 
the success rate of multiple PnL algorithm and EPnP is plotted in relation to the 
number of line correspondences, showing clearly how EPnP can provide a 
sufficiently high percentage of accurate estimates even with the lowest number of 
features. Instead, by using a dataset of five synthetic images and simulating variations 
in image noise with a Gaussian filter, the paper proves that the accuracy of EPnP as 
pose solver remains superior to the one of PnL algorithms independently from the 
measurements’ noise. It should be noted that a pose estimate is considered successful 
if  ‖𝐸𝑇‖2 < 30 𝑐𝑚 and ‖𝐸𝑅‖2 < 10° .  

The EPnP architecture proves to be the best solution to the pose estimation problem 
in terms of robustness and success rate, yet the pose outputs can be greatly affected 
by the results of the feature synthesis segment of the SVD architecture. A final test, 
based on a dataset of 25 images, is performed to compare the EPnP algorithm with a 
RANSAC approach. The process of applying random matching hypotheses to the 
detected points and selecting the larger number of inliers that produce the lowest 
reprojection error (RANSAC) provides a pose solution for all the images, yet it 
doesn’t reach the same level of accuracy that the SVD algorithm has in the case of 
high confidence estimates. As reported in Tab. 2.1, the SVD method determines 
successfully the relative pose only in a small percentage of the images with a 
sufficient rotational and translational precision, whereas the RANSAC approach 
gives generally lower accuracy in every pose result. The main limitation of both 
methods is the wrong edge detection and grouping which occurs with partial edges, 
duplicated lines and elements that are not present in the 3D model. Nonetheless, 
RANSAC requires on average a longer computational time than SVD. 

 

 

Table 2.1 Average errors of pose estimates with SVD and RANSAC [31]. 
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Figure 2.7 Average success rate as a function of line 
correspondences for different pose solvers [31]. 
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Chapter 3 

Algorithm validation on 
PRISMA synthetic imagery 

 

The chapter contains the results of a validation test of the SVD pose initialization 
technique based on a set of synthetic imagery of the Tango spacecraft. A report of the 
specificities of the algorithm implemented in the thesis work is presented. Moreover, 
the second part of the chapter is focused on the analysis of the results of the validation 
in terms of accuracy, effectiveness and success rate of the pose estimator.  

 

3.1 Algorithm implementation  
 

The thesis revolves around the implementation and further validation of the SVD 
architecture for pose initialization described in the previous chapter. By following the 
indications contained in [31], a similar version of the algorithm is implemented within 
the MATLAB programming environment and tested on a larger database of synthetic 
images of the PRISMA target vehicle, Tango. The purpose of providing further 
validation consists in determining the feasibility and the range of applicability of this 
pose estimation technique and highlighting the main disadvantages. Moreover, the 
thesis focuses on proposing some possible modifications to the algorithm that would 
improve the perceptual grouping process. Since the aforementioned paper only 
describes some preliminary results for the SVD architecture, providing experimental 
proof for the choice of the ROI detection subsystem, the feature extractor and the 
pose solver, the validation test described in the thesis hinges on the evaluation of the 
method’s performance in a wider range of conditions. The testing is performed to 
assess the effectiveness of pose estimation in relation to various factors: presence of 
composite background, variation in relative distance, number of feature 
correspondences. 
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3.1.1 The SPEED dataset 

The validation test is executed on the Spacecraft Pose Estimation Dataset (SPEED), 
a set of 12000 computer-generated images of the Tango vehicle. As described in [51], 
SPEED is available to the scientific community to perform comparisons and testing 
among state-of-the-art pose estimation methods, the dataset has been released 
publicly in collaboration with the European Space Agency within the KELVINS 
competition [52]. At the Space Rendezvous Laboratory (SLAB) at Stanford 
University the images have been generated by using two integrated sources, the 
Optical Stimulator software and real images of the Earth inherited by the Himawari-
8 geostationary mission observation data. Optical Simulator emulates camera 
properties and renders synthetic images using MATLAB and C++ bindings of 
OpenGL. A randomly uniform distribution of relative positions and attitudes are 
employed to produce diverse views of the target vehicle and improve the quality of 
the dataset. In fact, a random set of rotations, parametrized as unit quaternions, 
translations and bearing angles is calculated by means of a standard normal 
distribution. Relative distances outside the range between 3 m and 50 m are rejected.  

 

 

The background is generated from a series of 72 full-disk Earth actual images, the 
data has been captured by a geostationary meteorological system. The images have a 
100 ∙ 106 pixel resolution, taken over a period of 12 hours and, in order to match the 
scale of the Earth when viewed through the camera, they are cropped and randomly 
distributed among half of the synthetic images. Azimuth and elevation angles for the 
solar illumination are chosen to be combined with illumination of the 72 Earth 

Figure 3.1   A montage of some synthetic images with computer-generated background from 
the SPEED dataset. [51] 
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pictures. The scale of the cropped sections is adjusted to meet the hypothesis of a 
chaser orbiting at an altitude of 700 km and in a nadir-pointing attitude. Lastly, the 
background is blurred by means of Gaussian smoothing function and white noise is 
added to simulate, respectively, the depth of field an shot noise. Some examples of 
the images from the SPEED database are presented in Fig. 3.1. 

The Optical Simulator consists in a virtual reality testbed with a pair of lenses that 
magnify a monitor. High-fidelity, synthetic undistorted scenes of the space 
environment are rendered to the monitor in real-time and closed-loop to stimulate a 
vision-based sensor test article [52]. The camera employed is a Point Grey 
Grasshopper 3, equipped with a Xenoplan 1.9/17 mm lens. The intrinsic properties 
of the camera are described in Tab. 3.1. 

 

Parameter Description Value 

𝑵𝒖 Number of horizontal pixels 1920 

𝑵𝒗 Number of vertical pixels 1200 

𝒇𝒙 Horizontal focal length 17.6 mm 

𝒇𝒚 Vertical focal length 17.6 mm 

𝒅𝒖 Horizontal pixel length 5.86 ·10-3 mm 

𝒅𝒗 Vertical pixel length 5.86 ·10-3 mm 

Table 3.1 Parameters of the camera used to capture the SPEED images. 

 

3.1.2 Tango’s spacecraft model 

A digital structure of Tango spacecraft is reduced to a wireframe model to highlight 
the linear elements of the vehicle that can be easily identified. In Fig. 3.2 the 
computer-generated model and its wireframe equivalent are displayed. The spacecraft 
fundamentally consists in a solar panel (560 × 750 mm), a convex polyhedron 
representing the vehicle body (560 × 550 × 300 mm) and five additional segments, 
representing the RF metrology antennas and intersatellite communication antennas, 
with a length of  204 mm. The body-fixed reference frame for the target is positioned 
at the center of the body bottom surface. Within the wireframe Tango model, the 
following number of high-level features can be detected: 

- 6 polygonal tetrads 
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- 6 polygonal triads  

- 12 parallel triads 

- 18 parallel pairs 

- 16 proximal pairs 

- 5 antennas 

The 3D geometric features and the 3D point coordinates that compose the target 
model are, respectively, defined and computed by applying the same geometric 
conditions employed for the 2D features. 

 

 

3.1.3 The image processing subsystem 

The first block of the pose estimation technique is the image processing subsystem. 
Each image is subjected to a preventive gaussian filtering with the built-in function 
imgaussfilt, then it’s fed as input to the WGE block. Firstly, the image gradient is 
calculated by means of Prewitt operator, secondly the gradient distribution is 
normalized and fitted with an exponential distribution (Eq. 3.1). The distribution is 
limited to the the 1% strongest gradient pixels with a threshold and the remaining 
points are set to zero. Thereafter, vertical and horizontal gradient are determined and 
the respective cumulative distribution functions (CDFs) are computed. After 
selecting a limit percentage for the procedure of ROI detection, such as the central 95 
% of the distribution, the coordinates of a bounding box are selected.  

(a) (b) 

Figure 3.2   A wireframe model (a) and a computer-generated model of PRISMA’s TARGET 
satellite, Tango. 
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𝑦 =
1

𝜇
𝑒

−
𝑥
𝜇 

(3.1) 

In the case of the SPEED data, since half of the images present composite background 
and the detection of a correct ROI is generally limited by the presence of interference, 
the best choice for a gradient range threshold is conservative, in fact the bounding 
box limits are set to 0.05 and 0.95 and, therefore, only the central 90% of the CDF is 
selected. However, restricting the range of detection affects negatively the images 
where the background is empty and for this reason an additional constant, equal to 
5% of the mean edge length of the ROI, is employed to automatically extend the 
region’s boundaries. In this way the stricter threshold for gradient limits is balanced 
by the constant offset in the case of correct ROI identification. 

An example of the effectiveness of the algorithm is shown in Fig. 3.3.  

 

 

The consecutive section of the algorithm offers a first coarse evaluation of the relative 
distance and line of sight angles assuming that the ROI correctly circumscribes the 
target’s figure in the image. The results about the accuracy of the estimations are 
discussed in the next paragraphs. Furthermore, the parameter 𝑙𝑅𝑂𝐼, length of the ROI’s 
diagonal is calculated.  

A first edge detection process is applied to the gradient image by means of the Hough 
transform. Before the application of the transform the gradient outside the region of 
interest is set to zero to make sure that it is only implemented within those limits. In 
MATLAB the Hough transform requires the definition of some hyperparameters such 

Figure 3.3   The cumulative distribution function of the gradient along the image axes (a) and 
the results of the ROI detection process (b). 

(a) (b) 
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as the resolution of 𝜌 and 𝜃, the maximum number of peaks and a minimum threshold 
for their value, while the main geometric constraints that can be defined are the 
minimum length of the line segments 𝑙𝑚𝑖𝑛

𝐻  and the maximum gap between points 𝜆𝐻.  
As set in the proposed algorithm, the lines are identified with a radial resolution of 
0.5 pixel and an angular accuracy of 0.1° over the range [-90 89.9], once the data 
retrieved from the image are represented in polar coordinates a maximum number of 
15 peaks over a threshold of 0.1. The geometric conditions, as suggested in the paper 
[31], are defined as scalar multiples of 𝑙𝑅𝑂𝐼, which acts as a fiducial metrics for the 
scalability of those parameters. The parameters are the following: 

 

𝑙𝑚𝑖𝑛
𝐻 =  0.075 ∙ 𝑙𝑅𝑂𝐼                  𝜆𝐻 =  0.01 ∙ 𝑙𝑅𝑂𝐼                            (3.2) 

 

Consecutively, a section of the algorithm is dedicated to filtering fragmented lines 
and duplicated edges. The authors suggest imposing a similarity condition by means 
of an angular and radial threshold equal to the resolution of the Hough transform, 
instead the necessity for larger limits emerges. In Fig. 3.4 a comparison between the 
result of a selection process with accuracy of 0.5 px and 0.1° and the results when an 
angular limit of 10° and a radial limit equal to 0.1 ∙ 𝑙𝑅𝑂𝐼 is imposed. Clearly larger 
geometric conditions can improve effectively the identification of the spacecraft’s 
true edges. Moreover, a distance threshold equal to half the length of the longer line 
is set to be checked between the midpoints of every pair of segments that respect the 
similarity conditions, given the fact that some antennas can be regarded as duplicated 
edges and even though they aren’t. 

As explained in the previous chapter, the stream of data processed by the Hough 
transform is coupled with a second stream to improve robustness. Hence, the image 
is analysed with the MATLAB function edge  which applies the Sobel operator to the 
undistorted image. The convolution of the image with the operator produces a binary 
image with the location of the detected edges, assuming an intensity threshold equal 
to 0.08. Further filtering is required to eliminate the smaller reflective elements and 
it is provided by the function bwareaopen which removes all the connected 
components (objects) with less than 10 pixels in the binary image. The Hough 
transform is subsequently applied to the totality of the image with the same quality 
parameters of resolution and intensity as the first stream of data, but slightly different 
geometric constraints, i.e.: 
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𝑙𝑚𝑖𝑛
𝐻 =  0.08 ∙ 𝑙𝑅𝑂𝐼                  𝜆𝐻 =  0.02 ∙ 𝑙𝑅𝑂𝐼                             (3.3) 

 

 

By setting similar hyperparameters, the two alternative processes for edge detection 
are expected to identify similar edges, both the longer and contiguous segments of 
the main structure and the shorter singular antennas, contrary to what the authors 
propose in [31], namely, the ROI + Hough procedure would be focused on detecting 
antennas and the Sobel + Hough procedure on detecting longer segments. In this way 
it’s possible to ensure replicability and robustness to all the linear features.  

Firstly, the lines which midpoints are located outside the ROI are rejected, secondly, 
the remaining ones are subjected to a preliminary merging process that unites pairs 

(a) 

(b) 

Figure 3.4   The results of the merging process with different 
geometric thresholds for orientation and radial distance (a,b). 
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of lines that fall within the resolution of the Hough transform (0.1° and 0.5 px). 
Finally, an additional filtering eliminates overlapped shorter lines with the following 
similarity conditions: 

|𝜃1 − 𝜃2| ≤ 10°          

 

|𝜌1 − 𝜌2| ≤ 0.1 ∙ 𝑙𝑅𝑂𝐼 

 

𝑑𝑚𝑖𝑑 ≤ 0.5 ∙ max (𝐿1, 𝐿2)          (3.4) 

 

The results of the Sobel + Hough edge detection are shown in Fig. 3.5. 

The operation of merging the two streams of data is performed with a dedicated script 
by defining similar geometric conditions to the ones mentioned before. Initially, 
among the edges that intersect and overlap only the longer segments are retained, 
thereafter the lines with an absolute difference of 5° in orientation and 0.05 ∙ 𝑙𝑅𝑂𝐼 in 
radial distance are merged together. A supplementary threshold for the distance 
between the farthest endpoints is set in relation to the sum of the lines’ dimensions. 
The results of the combination of streams of features are shown in Fig. 3.6.  

 

Figure 3.6   The edges resulting from the image processing and feature 
extraction subsystem. 
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3.1.4  Feature synthesis and matching 

The feature synthesis subsystem executes the perceptual grouping task within the 
SVD algorithm implementation. The function follows the indications of the paper by 
Sharma et al., yet it introduces some dissimilarities. The proximal pairs are identified 
by thresholding the distance between the closest endpoints with a superior limit 𝑑𝑚𝑎𝑥 
and, in addition, a minimum angular difference 𝜃𝑚𝑖𝑛 between the lines is introduced 
to prevent duplicated edges to be grouped as proximal pair. The following parameters 
are set: 

 

𝑑𝑚𝑎𝑥 = 0.05 ∙ 𝑙𝑅𝑂𝐼                         𝜃𝑚𝑖𝑛 = 10°                                (3.5) 

 

(b) 

(a) 

Figure 3.5   The edges detected by Sobel+Hough before the 
merging process (a) and after (b). 
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Parallel pairs are recognized by checking the absolute difference of orientation angles 
among the detected edges, therefore, a maximum angular gap 𝜃𝑚𝑎𝑥 is required. To 
avoid spurious parallel pairs, it’s helpful to assign other two geometric conditions to 
the radial distance (𝜌𝑚𝑖𝑛) and the minimum ratio between the lines’ lengths (𝜀𝑚𝑖𝑛 =

𝐿𝑚𝑖𝑛 𝐿𝑚𝑎𝑥⁄ ). In fact, given the knowledge of the target’s structure, it’s clearly notable 
that all the 3D parallel segments have equal length and aren’t adjacent, i.e., they don’t 
belong to a common line. The parameters are set as follows: 

 

𝜃𝑚𝑎𝑥 = 10°                 𝜌𝑚𝑖𝑛 = 0.05 ∙ 𝑙𝑅𝑂𝐼                  𝜀𝑚𝑖𝑛 = 0.7                    (3.6) 

 

In regard to antennas, they are selected among the edges that haven’t been associated 
with the group of parallel pairs. A simple criterion is employed to distinguish the 
antennas from other feature: a maximum length equal to 0.15 ∙ 𝑙𝑅𝑂𝐼 is imposed as 
threshold.  

 

 

Parallel triads are individuated by combining parallel pairs with as shared segment, 
as well as polygonal triads are obtained by coupling consecutive proximal pairs. In 
particular, open polygonal triads are tested to determine that the endpoints of the non-
common lines lie on the same side in respect to the central shared segment. This is 
ensured by verifying that the line that passes through the two outer endpoints of the 
triad doesn’t intersect the segment that unites their projections on the shared line. As 
in Fig. 3.8, assuming the segments {1, 2, 3, 4} compose the proximity pairs 

Figure 3.7   The result of antenna’s detection. 
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{(1,2), (1,3), (1,4)}, they can be grouped in 3 polygonal triads 
{(2,1,3), (3,1,4), (2,1,4)}, yet by checking the intersection between the lines (𝑃4𝐴 −

𝑃3𝐵),  (𝑃4𝐴 − 𝑃2𝐵), (𝑃2𝐵 − 𝑃3𝐵) and the respective segments between their 
endpoints’ projections (𝑃4𝐴

′ − 𝑃3𝐵
′ ), (𝑃4𝐴

′ − 𝑃2𝐵
′ ), (𝑃2𝐵

′ − 𝑃3𝐵
′ ), only one combination 

is correctly identified as polygonal triad, i.e., the group (3,1,4) since the non-common 
edges belong to the same semi-plane. 

 

The closed polygonal tetrads are extracted by coupling polygonal triads with two 
segments in common. An example is shown below. 

Consecutively, all the extracted 2D high-level features, grouped by geometric 
affinity, are stored in a database while, consequentially, all the possible 3D high-level 
features are stored in a database of model features. A dedicated MATLAB function 
merges the two sets of features and proceeds to select the detected elements that 
belong to the most complex and the simplest group and combining them with the 
respective 3D features. The only exception is represented by parallel triads which 
provide enough points to ensure a unique solution all by themselves, therefore, they 
are not coupled with a lower complexity group. The totality of combinations is stored 
in a match matrix. 

 

 

P4A 

P4B 

P1A 

P3A 

P1B 

P2A 

P2B P3B 

P’2B
 P’3B

 

P’4A
 1 

2 

3 

4 

Figure 3.8   Schematic representation of the geometric constraints that 
define the polygonal triad configuration. 
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3.1.5 Pose solution and refinement 

The list of matched features is examined completely to individuate the pose solution 
with the lowest reprojection error 𝐸2𝐷, as in Eq. 2.13. Instead of employing the EPnP 
pose solving algorithm and the Newton-Raphson optimization as suggested in the 
paper [31], the implementation of the SVD method whose validation is discussed in 
this thesis relies on a combination of the RANSAC P3P pose solver and non-linear 
optimization to achieve the solution of the perspective-n-point problem. The main 
disadvantages of the EPnP solver consists in its lack of robustness against outliers, 
especially in such cases like the ones explored in this thesis where the number of 
corresponding features is never greater than six and the algorithm incurs frequently 
in inputs with possibly incorrect feature matching and extraction. On the contrary, 
the built-in MATLAB function estimateWorldCameraPose returns orientation and 
position of a calibrated camera by means of a P3P solver [45] coupled with a 
RANSAC algorithm for outlier rejection [53]. The P3P solver relies on three points 
to produce up to four symmetrical solution or less if some geometric and algebraic 
conditions are met, moreover the sample consensus process compares different 
solutions on the basis of total reprojection error and selects the set of points with the 
best accuracy. Furthermore, better accuracy is provided by the function lsqnonlin 
which consists in a Levenberg-Marquardt (LM) non-linear optimization, e.g., a 

Figure 3.9  Combination of two polygonal triads into a polygonal tetrad.   
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damped least-squares method to find local minima [54]. The combinations of high-
level features are fed to the pose solver and the five estimates with the best accuracy 
are subjected to the optimization process and, lastly, the solution with the lowest 
reprojection error is selected. 

In the case of the frame below (Fig. 3.10), the total number of feature 
correspondences to examine is 1920, the procedure that comprises EPnP and Gauss-
Newton optimization requires 6.646 s to produce a correct pose solution with a 
minimum reprojection error equal to 9.505 px, while the P3P+LM pose estimation 
provides the correct solution, given the same combination of features, a polygonal 
tetrad and an antenna, with an optimal error of 1.810 px in a total time of 8.389 s. 
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(c) 

(a) 

Figure 3.10   An example of correct pose initialization is shown. In (a) the combination of 
complex and simple features that leads to the best solution is presented, in (b) it’s possible to 
observe how the reprojected wireframe model matches the vehicle structure and, finally, a 3D 
reconstruction of the relative pose is displayed in (c).  

(b) 
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3.2 Validation results 

The validation process consists in applying the version of the SVD algorithm 
previously described to the entirety of the SPEED data. The main purpose is to 
provide more information regarding the effectiveness of the proposed pose 
initialization technique and assessing the relation among the accuracy of ROI 
detection and pose solution processes and the variables of relative distance and 
orientation. 

Given the true attitude 𝑅𝑡𝑟𝑢𝑒 (rotation matrix) and position vector  𝑇𝑡𝑟𝑢𝑒 and the 
estimated 𝑅𝑒𝑠𝑡 and  𝑇𝑒𝑠𝑡, the main performance metrics are: 

- Rotational accuracy: attitude precision is determined by means of the Euler angles 
representation of the rotation matrix 𝑅𝑑𝑖𝑓𝑓 between the true pose and the estimated 
one. The angles (𝜙, 𝜃, 𝜓) represent, respectively, the errors about the axes of the 
camera reference frame {𝑋𝐶𝐴𝑀 , 𝑌𝐶𝐴𝑀 , 𝑍𝐶𝐴𝑀}. 

 

𝑅𝑑𝑖𝑓𝑓 = 𝑅𝑒𝑠𝑡 ∙ (𝑅𝑡𝑟𝑢𝑒)𝑇 

(3.7) 

𝑅𝑑𝑖𝑓𝑓 ⟺ (𝜙, 𝜃, 𝜓) = 𝐸𝑅𝑅𝑅 

(3.8) 

Moreover, the rotation error can be summarized with the following equations: 

 

𝐸𝑅 = cos−1 (
𝑡𝑟(𝑅𝑑𝑖𝑓𝑓) − 1

2
) 

(3.9) 

- Translational accuracy: the accuracy of the relative position calculation is 
measured as the absolute difference of the vectors 𝑇𝑒𝑠𝑡 and 𝑇𝑡𝑟𝑢𝑒 and summarized 
by its Euclidean norm. 

𝐸𝑅𝑅𝑇 = |𝑇𝑡𝑟𝑢𝑒 − 𝑇𝑒𝑠𝑡| 

(3.10) 

𝐸𝑇 = ‖𝐸𝑅𝑅𝑇‖ 

(3.11) 
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- ROI Intersection over Union (𝐼𝑜𝑈): the IoU measures the accuracy of area 
overlapping between the detected ROI and the true ROI which is determined by 
the limits of the reprojected true model points.  

 

𝐼𝑜𝑈 =
𝐴𝑇𝑃

𝐴𝑇𝑃 + 𝐴𝐹𝑃 + 𝐴𝐹𝑁

 

 (3.12) 

The definition of true positive, false negative and false positive areas, respectively 
𝐴𝑇𝑃, 𝐴𝐹𝑁 and 𝐴𝐹𝑃, is shown in Fig. 3.11. 

 

 

- Percentage of pose solutions (𝑁𝑃𝑜𝑠𝑒): it represents the proportion of successful 
pose solution, whether correct or not, over the totality of attempts.  

- Success rate: the percentage of high-confidence poses in respect to the total 
number of pose outputs. The classification into high-confidence and low-
confidence solution is based on the following thresholds: 

 

‖𝐸𝑇‖2 < 30 𝑐𝑚                       ‖𝐸𝑅‖2 < 10° 

 (3.13) 

- Number of line correspondences (𝑁𝑙𝑖𝑛𝑒𝑠): the number of detected segments that 
match correctly with the true edges of the spacecraft figure. A correct  

Figure 3.11   Class definitions for the evaluation of 
ROI detection performance. [31] 
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- correspondence is found when the distance between detected and true endpoints 
is smaller than 0.025 ∙ 𝑙𝑅𝑂𝐼 . 

- Number of point correspondences (𝑁𝑝𝑜𝑖𝑛𝑡𝑠): the number of correctly detected 
endpoints. With respect to 𝑁𝑙𝑖𝑛𝑒𝑠 , the value of point correspondences considers 
fragmented and partially detected segments. 

- Number of combinations (𝑁𝑐𝑜𝑚𝑏): number of possible matches between 2D and 
3D high-level features that are tested for pose determination. 

- Computational Time (𝑡𝑐𝑜𝑚𝑝): computational time required to obtain a pose 
estimation 

 

The mean results for the SPEED images are summarized in Tab. 3.2. The results 
contained in [31] show that over a simple dataset of 25 images the SVD method 
produced an high-confidence solution only for 5 of them and a pose solution for 13 
of them (Tab. 2.1). The performance of the algorithm is similar to the one exposed 
in the paper in terms of percentage of pose solutions, translational and rotational 
accuracy and computational time, yet there is a clear difference in success rate. 
Unfortunately, the dataset employed in [31] it’s not sufficiently large and diverse to 
provide a reliable evaluation of the algorithm implemented in the thesis, in fact, only 
four images present a composite background and Tango’s attitude and position are 
consistently similar throughout the images. Let it be noted that in accordance with 
the typical limitations of vision-based measurements the accuracy along and around 
the boresight of the camera {𝑍𝐶𝐴𝑀} is greater than for other axes.  

In order to provide a better analysis of the algorithm’s performances two subset of 
the SPEED images will be considered: the first half of the dataset (images from 1 to 
6000) whose images present an empty background will be referred to as SPEED-1 
and the second half which comprises of images with a Earth surface background will 
be referred to as SPEED-2. 

 

Success Rate 7.99 % 

𝑵𝑷𝒐𝒔𝒆 59.42 % 

Mean IoU 49.50 % 

Mean ET [mm] 93.75 

Mean ER  [deg] 2.85 
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Mean ERRT   [mm] [ 9.42   9.66   90.79 ] 

Mean ERRR   [deg] [ 0.77   1.65   1.69 ] 

Median Nlines 1 

Median Npoints 3 

Mean Ncomb 2875 

Mean tcomp  [s] 9.6615 

The results collected in Tab. 3.3 demonstrate how a composite background can 
greatly affect the effectiveness the functionality of the Weak Gradient Elimination 
technique for ROI detection. The presence of Earth’s surface in the background 
produces spurious elements in the gradient binary image and if the filtering process 
fails to eliminate them the limits that define the satellite’s bounding box are 
incorrectly located. An erroneous identification of the target’s ROI translates into the 
implementation of biased geometric hyperparameters for the Hough transform, thus 
leading to a wrong set of detected 2D linear features and a reduced number of point 
and line correspondences. Moreover, the consistent difference between the values of  
𝑁𝑃𝑜𝑠𝑒  and success rate for the two dataset SPEED-1 and SPEED-2 proves the 
dependency of the SVD method’s effectiveness on the correct perceptual feature 
organization, which relies on ROI’s dimensions. Nevertheless, the accuracy of pose 
outputs, both translational and rotational, it’s not affected by the Earth’s background 
interference when the conditions for high-confidence are met. 

Some plots are presented hereinafter to further analyse the variations of performance 
metrics in regard to the main variables of the pose initialization problem, such as 
relative distance, bearing angles, feature combinations and line correspondences. 

 

 

 

Table 3.2   SVD architecture performance metrics. 
The accuracy values refer to high-confidence 
solutions only, while the remaining parameters are 
calculated over the entire dataset. 
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Relative distance is a fundamental variable of pose estimation and, in fact, the quality 
of an algorithm is deemed optimal if its accuracy and robustness are considerably 
predictable over a certain range of operativity. In the case of the SVD architecture the 
variation of  𝐸𝑇 and 𝐸𝑅 along with the increase of range follows a typical pattern for 
vision-based algorithm. As it’s displayed in Fig. 3.12, both the translational and the 
rotational estimation accuracy tend to diminish gradually over the range from 3 m to 
15 m, while the results for longer ranges don’t fit a specific trend given the fact that 
the low number of correct pose solution doesn’t have statistical merit. Together with 
the error, ROI’s IoU metric and pose solver’s success rate decrease according with 
the increase of relative distance between 3 m and 25 m, as shown in Fig. 3.13. 

The relation between the elevation and azimuth angles and the outputs of ROI 
detection and pose estimation is shown in Fig. 3.14. High-confidence solutions and 
correct ROIs are distributed in accordance with the built-in randomly generated 
distribution of SPEED data without any substantial predominance in elevation or 
azimuth.  

In addition to the previous elements, in Fig. 3.15 - 3.16 the results of the SVD 
architecture are evaluated in relation to the various combinations of high-level 

 SPEED-1 dataset SPEED-2 dataset 

Success Rate 8.85 % 4.96 % 

𝑵𝑷𝒐𝒔𝒆 92.62 % 26.22 % 

Mean IoU 82.63 % 16.37 % 

Mean ET [mm] 90.69 113.05 

Mean ER  [deg] 2.94 2.31 

Mean ERRT   [mm] [ 9.36   9.66   87.70 ] [ 9.75   8.93   110.28 ] 

Mean ERRR   [deg] [ 0.78   1.68   1.78 ] [ 0.69   1.49   1.14 ] 

Median Nlines 2 1 

Median Npoints 5 2 

Table  3.3   SVD architecture performance results are summarized in this table. The 
accuracy values refer only to high-confidence solutions, while the remaining parameters are 
calculated over the entire dataset. 
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features. In the first plot the success rate of different combinations is summarized in 
an histogram. Along the horizontal axis the pairs of features are ordered by the 
number of high-confidence solutions provided, from the most common (polygonal 
tetrad and antenna) to the least frequent (proximal pair and antenna). As it can be 
observed the combinations of an antenna with more complex groups such as 
polygonal tetrads and triads and parallel pairs provide commonly more correct pose 
outputs, thus, demonstrating the main hypothesis that combining an easily detectable, 
characteristic, simple feature with a complex, rarer element of the target’s structure 
confers sufficient robustness to pose estimation algorithms while reducing the search 
space.  Besides, translational and rotational accuracy proves to be essentially 
uninfluenced by the type of feature groups employed by the pose solver subsystem. 

 

 

 

 

 

Figure 3.12   Pose estimation translational and rotational errors in 
relation to relative intersatellite range. The shaded regions show the 5, 
25, 75 and 95 percentile values. 
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Figure 3.13   Mean IoU and success rate values in relation to relative intersatellite range. 

Figure 3.14   Distribution of high-confidence pose solutions ROI centers across the 
Field of View. 
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Figure 3.16   Translational and rotational errors of high-confidence 
pose solutions divided by the combinations of geometric features. The 
shaded regions show the 5, 25, 75 and 95 percentile values. 
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In order to completely estimate the validity of the SVD method, a series of plots that 
correlate the efficiency of single subsystems to the final results are presented. 

Fig. 3.17 shows the relation between the precision of the ROI detection process and 
the success rate of the pose solver. The identification of a correct bounding box for 
the target’s shape within the image leads generally to an increased probability of 
producing a high-confidence estimate, since the edge detection process, as well as the 
feature synthesis block, rely on geometric thresholds derived directly from the 
dimensions of the ROI. Fig. 3.18 shows the precision of the estimated coarse range 
in relation to the true relative distance 𝑇𝑡𝑟𝑢𝑒, as calculated after the ROI identification. 
ROI based measurements of range and LOS are sufficiently accurate to provide an 
initial guess for pose refinement and fast, reliable data for medium-range proximity 
navigation. 

Furthermore, Fig. 3.19 displays the variance of the translational and rotational errors 
in regard to the number of line correspondences, while in Fig. 3.20 the success rate 
distribution is plotted against the same variable. The number of true edges (𝑁𝑙𝑖𝑛𝑒𝑠) 
detected by the feature extracting block of the algorithm is a metric of its effectiveness 
which is directly related to the results of the pose solver technique. In the case of the 

Figure 3.15  Pose estimates are divided by feature groups and the respective 
success rate is plotted against the most common combinations. 
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SVD architecture, though, the input to the PnP problem it’s always composed only 
by two geometric groups which amount to a number of five 2D segments at best. 
Hence the performances of the pose initialization in terms of accuracy and success 
rate increase along with the number of line correspondences until a maximum of five 
lines to remain fundamentally unchanged, thereafter, for 𝑁𝑙𝑖𝑛𝑒𝑠 > 5. The same 
conclusions can be drawn as regards the relation between point correspondences and 
success rate for 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 > 10.  

Lastly, Fig. 3.21 shows a set of high-confidence and low-confidence solutions and  
ROI-only estimations for some of the images belonging to the SPEED set. The pose 
initialization technique proves to be successful in a variety of cases with low-light 
conditions, different ranges and attitudes and in the presence of a planetary 
background, yet it lacks sufficient robustness to provide consistently similar results 
in the same conditions. For instance, the images 11483, 9417 and 11965 present a 
composite background due to the presence of Earth’s curvature horizon which affects 
the proper detection of the satellite’s region of interest and introduces the 
identification of spurious edges, yet the SVD architecture produces a correct pose 
solution only in one of them, failing to assess the presence of high-level features in 
the other two. Likewise, both the images 6722 and 9771 show the target in low 
lighting conditions and, despite a better ROI detection, the pose initialization doesn’t 
provide a correct estimate to the first one, while it calculates the pose within the 
confidence error for the second one. 

Additionally, the graphs in Fig. 3.22 show the spatial distribution of the high-
confidence pose across the horizontal and vertical planes of the target reference 
frame. The plots demonstrate the absence of preferential directions for pose 
determination around the axis {𝑍𝑏𝑜𝑑𝑦} and, instead, show that the high-confidence 
solutions are statistically more frequent if the target’s larger surface, either the solar 
panel or the bottom surface of the main body, it’s captured by the camera. Given the 
configuration of the Tango spacecraft, which is composed by two easily identifiable 
polygonal shapes and a series of five antenna asymmetrically arranged parallelly to 
the X-Y plane, and considering that the combination of a polygonal tetrad with an 
antenna offers usually a higher success rate, as shown in Fig. 3.15, it’s reasonable 
that the majority of high-confidence results doesn’t lie on the horizontal plane of the 
spacecraft but it’s distributed along the {𝑍𝑏𝑜𝑑𝑦} axis in both directions. For instance, 
a configuration like the one displayed in Fig. 3.10 is optimal since it allows for an 
easier identification of the antennas and the solar panel at the same time. 
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Figure 3.17   The plot portrays the success rate variation over the percentage of ROI 
overlapping. The ROI detection process, when effective, enables better overall 
performances for the pose initialization algorithm. 

Figure 3.18   The precision of the range coarse estimation is related with IoU of the ROI, 
as shown in the plot. The ROI-based measurements are already sufficiently accurate for a 
60%  area overlapping. 
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Figure  3.19   Success rate plotted against the mean number of correspondences 
between true edges and detected segments. 

Figure 3.20   Translational and rotational errors of high-confidence pose solutions sorted 
by the number of line correspondences. The shaded regions show the 5, 25, 75 and 95 
percentile values. 
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Figure 3.21  Pose initialization results using the SVD algorithm.   
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Figure 3.22   Spatial distribution of high-confidence pose results. 
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Chapter 4 

Algorithm validation on 
experimental imagery 

 
In this chapter an experimental setup for relative pose estimation is presented. After 
implementing and testing the SVD architecture on the SPEED images, further 
validation tests and analysis are conducted to assess the robustness of this method in 
more restricted conditions with a real experimental setup. The process of creating a 
database of images for a CubeSat mock-up in the SPARTANS facility is described. 
Lastly, an analysis of the algorithm’s performance is presented. 

 

4.1 Experimental setup 
A second series of validation tests are conducted with a mini-satellite mock-up, a 
dataset of images captured by a stereo-vision system and a test-bed for satellite 
relative motion detection. The experimental setup is instrumental to define a dataset 
of images and reference attitude and position parameters to measure the performance 
of SVD pose initialization.  

The experimental facility employed to create the dataset is SPARTANS, a testbed for 
satellite relative dynamics, under continuous development by the Center of Studies 
and Activities for Space “G. Colombo” (CISAS) at the University of Padova and 
functional since 2010. The facility has been created to test the accuracy of pose 
estimation techniques and demonstrate the effectiveness of Guidance and Navigation 
Control (GNC) architectures. SPARTANS comprises of: 

- Glass-covered flat surface (2 x 3 m) 

- External Control Station (computer) 

- Two or more Spacecraft Simulators 
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- Global Navigation System  

The facility employs six IR cameras and IR reflective spherical markers, along with 
a dedicated software, to provide a global reference navigation system and assess the 
orientation and translation parameters of the Spacecraft Simulators. The simulators 
consist in an Attitude Module (AM) that provides rotational control by means of 
mechanical gimbals and a Translational Module (TM) that operates along the 2D axis 
of the low-friction glass table by means of an air-cushion system.  

 

 

In order to measure the accuracy of the SVD technique only the Global Navigation 
System has been employed, so to compute the “true” attitude and position values of 
both the satellite prototype and the camera frame by means of a motion capture 
algorithm. As demonstrated in [55], the system computes the degree of freedom 
(DoF) of the simulator with a precision inferior to 0.1° and 1 mm, respectively for 
attitude angles and single-point spatial coordinates, therefore it offers a sufficiently 
good reference estimate of the true pose.  

The satellite mock-up consists in a simplified 1:1 model of a 2U-CubeSat, a common 
format for miniaturized satellites widely used in cost-effective LEO missions. The 
model simulates typical features of CubeSat satellites, such as deployable and body 
mounted solar panels, simple and modular structures and long UHF antennas. Since 
the intent of the CubeSat mock-up is to simulate the appearance of a real vehicle but 
not the functionality, the simplest choice for solar panel is the adoption of printed 
pattern glued to plexiglass plates while in regard to other uncovered surfaces and 
adhesive reflective layer has been used. The prototype is shown in Fig. 4.2.  

Figure 4.1   Overview of the SPARTANS testing 
facility. [55] 
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The model is mounted on a aluminium support that is fixed to a STANDA 8MR190-
90 motorized rotative stage (Fig. 4.3(a)). The rotor is activated by a stepper motor 
which moves a transmission worm gear. The actuator allows to impose a finely 
controlled motion to the CubeSat model and simulate rotation along the main axis of 
the body frame. In order to avoid interference with the target in the foreground, the 
background of the scene is covered with a black low-reflective cloth and the model 
support frame is black painted. 

 

 

Six reflective markers are attached to the assemble of the mock-up and the support 
plate, three at the top of the model and other three on the base. Assuming that the 
mock-up is rigidly fixed to the support frame, the relative position of the six markers 
remains constant (Fig. 4.6). 

Figure 4.2   Back and front face of the CubeSat model with the main solar panel, two 
antennas and three IR reflective markers on the top surface.  

M M

M

M

(a

) 
(b

) 

Figure 4.3   The rotative stage (a) and the ZED camera mounted on its own support frame 
with four reflective markers M0 , M1 , M2 , M3 (b). 

ZED 

camera 
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The camera setup consists in a ZED stereo-camera system rigidly mounted on a 
aluminium frame attached to an adjustable tripod. The stereo-camera main properties 
are summarized in Tab. 4.1. The CubeSat imagery is retrieved by the left camera of 
ZED’s sensor. Four reflective markers are positioned on the camera frame and the 
camera shell and they are employed to determine the attitude and position of the 
sensor in respect to the world coordinates (Fig. 4.3(b)).  

 

ZED stereo-camera 
Specifications 

Image Format (full) 4416 × 1242 𝑝𝑥 

𝑭𝒐𝑽 110° 

Pixel Size 2 µm 

Sensor Size 1 3′′⁄  

Shutter Electronic Synchronized Rolling Shutter 

Baseline 120 mm 
 

 

4.2 Calibration process 
The motion capture system requires an initialization procedure to define a Global 
Reference Frame (GRF) and an operative space where the marker’s detection is 
accomplished. First of all, the six IR cameras are directed towards the center of the 
scene since they are equipped with IR illuminators and the uncertainty of markers 
coordinates is reduced in relation to the number of cameras that detect them. The 
GRF is a local vertical-local horizontal frame defined by a set of physical axes, i.e., 
three sticks oriented in perpendicular directions with markers located at different 
lengths in order to identify them. The global frame calibrator is displayed in Fig. 4.4. 
Once the process of calibration and optimization is automatically implemented, a so-
called World Frame (WF) is determined.  

 

Table 4.1   ZED stereo-camera principal parameters. 
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Referring to the camera and model markers the minimum number to define a unique 
reference frame is three. Given the 3D coordinates of three markers 𝑀0,𝑀1, and 𝑀2, 
two unit vectors are calculated as follows 

 

�̂� = 𝑀0𝑀1̂             �̂� = 𝑀1𝑀2̂ 

(4.1) 

then the linearly independent axes are defined as 

 

�̂� = �̂�                  �̂� = �̂� × �̂�                 �̂� =
𝑝×�̂�

‖𝑝×�̂�‖
 

(4.2) 

And the relative orientation and position is defined as follows: 

 

𝑇 = [𝑀0]                         𝑅 = [�̂�  �̂� �̂�] 

 (4.3) 

Another preliminary procedure must be conducted to calibrate the vision sensor. The 
ZED camera intrinsic parameters are obtained by using the Camera Calibration 
Toolbox [56] provided within the MATLAB software. The calibration algorithm 
requires only a series of checkboard images sparsely distributed across the field of 
view and partially oriented, captured by a stationary point of view. The checkboard 
consists of a set of 5x8 consecutive black and white squares with a width equal to 
110.5 mm. A total of 43 images have been employed to determine the distortion 

Figure 4.4   The calibrating physical frame for the 
Global Reference System. 
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parameters and the intrinsic matrix of the ZED’s left camera. The calibrator software 
identifies automatically the checkboard’s corners (28) in each image and operates a 
least square optimization over the total reprojection error to compute the camera’s 
intrinsic parameters. A threshold for the reprojection error can be set so to avoid 
images with blurring that generally bias the optimization results. The calibration 
procedure provides the results in Tab. 4.2: 

 

ZED left camera 
Parameters 

Image Format 1920 × 1080 px 

Focal Length [ 1396.0  1397.2 ] px 

Principal point [ 1075.2  536.8 ] px 

Radial distortion [ -0.1462  -0.0661  0.0956 ] 

Tangential distortion [ -5.0148·10-4  -2.5563·10-4 ] 

Skew 0 

Mean reprojection error 0.1741 px 

 

 

The calibration of ZED’s left camera and of the global reference frame for the motion 
capture system allows to calculate the transformation matrix between the camera 
support frame, which can be tracked at any moment with the markers detection, and 
the camera frame, as defined according to the pinhole model. The transformation 
matrix which describes uniquely a rotation and translation operation between two 
frames can be calculated by minimizing the reprojection error of a set of well-defined 
points. By retrieving the 3D coordinates of a set of points and the respective 2D 
coordinates on the image plane it’s possible to determine a transformation matrix. In 
particular, since the motion capture detection system provides the 3D coordinates of 
the markers in relation to the World Frame, a Support Frame (SF) can be defined with 
the calculations shown in Eq. 4.1-4.2-4.3 among three of the markers attached to the 
camera support. A number of markers, placed at the centre of the scene, are translated 
across the field of view of the camera, which is in a fixed position, and multiple 
images are captured while the Global Navigation System of SPARTANS tracks the 

Table 4.2   ZED left camera calibration results: intrinsic parameters and 
distortion coefficients. 
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position of the calibration markers and the camera support’s markers (Fig. 4.5). The 
3D coordinates and a set of 30 images are obtained and processed by a dedicated 
calibration function. 

 

The algorithm is based on the paper [59] and consists in three fundamental sections: 
point detection and matching and transformation estimation and a final optimization. 
The main challenge of the calibration process is detecting the markers in the images 
and correctly matching them with the corresponding 3D points. The detection system 
relies on a manual association for initialization and subsequently operates by applying 
a nearest neighbour search based on Euclidean distance between the projected image 
points, derived by a first guess transformation matrix, and a number of circular 
features previously detected on the image with the built-in MATLAB function 
imfindcircles. Given the spherical shape of the markers, their appearance and their 
common geometrical properties their centers are easily identifiable by setting a closed 
range of radial distribution for the circle detection technique. Hence, the matching 
procedure associates 2D camera coordinates to 3D world coordinates, yet the 
calibration is intended to produce the rotation matrix 𝑅𝑆

𝐶 and the translation vector 𝑇𝑆
𝐶  

between CF and SF, therefore, after defining the pose of the Support Frame and 

Z W
 [

m
m

]  

Figure 4.5   The results for the calibration of the transformation matrix between WF and CF. 
On the left the configuration of the Camera Frame, the Support Frame and the World Frame 
with the calibration markers point in red. On the right a montage of the calibration images 
showing the distribution of markers across the field of view of the camera. 
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assuming it’s fixed in relation to the WF, the calibration markers’ coordinates 𝑃𝑊 are 
transformed from world to support as follows: 

 

𝑃𝑆 = 𝑃𝑊 ∙ 𝑅𝑊
𝑆 + 𝑇𝑊

𝑆  

(4.4) 

The function estimateWorldCameraPose employs a P3P+RANSAC algorithm to 
determine the pose parameters between CF and SF and eliminate outliers, if present, 
with a maximum reprojection error of 1 px and a confidence of 99%. The matched 
features detected throughout the calibration images are, then, fed to the optimization 
algorithm that adopts a Levenberg-Marquardt non-linear solution to the least-square 
problem. The procedure adopts the norm of the reprojection error to find local 
minima. The calibration results in an optimal calculation of the rotation matrix 𝑅𝑆

𝐶 
and the translation vector 𝑇𝑆

𝐶  with a mean error of 0.55 px. The pose parameters are, 
then, concatenated with the transformation between SF and WF (Eq. 4.5) in order to 
obtain the true pose of the left camera frame in respect to the motion capture world 
reference.  

 

𝑅𝑊
𝐶 = 𝑅𝑆

𝐶 ∙ 𝑅𝑊
𝑆  

 

𝑇𝑊
𝐶 = (𝑇𝑆

𝐶 − 𝑇𝑆
𝑊) ∙ 𝑅𝑊

𝑆  

(4.5) 

Another calibration is required concerning the transformation matrix between the 
CubeSat Body Frame (BF) and the so-called Model Frame, identified by a 
combination of the six markers attached to the model structure. As previously 
described, three markers are positioned on the top face of the main spacecraft body 
while the remaining three are located on the base of the support frame (Fig. 4.6), 
whereas the Body Frame origin is located at the center of the bottom face of the mock-
up and its axes are oriented as it’s displayed in Fig. 4.7 The main purpose of adopting 
multiple markers is to ensure that at least three points are always detectable and, 
therefore, it’s always possible to define a triplet of linearly independent vectors as 
Model Frame, since occasionally a portion of them isn’t visible by motion capture IR 
cameras or the ZED sensor. Besides, the top markers are positioned closer than the 
bottom ones and a longer baseline between markers improves the precision of the 
pose estimation.  
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The first step consists in elaborating and reconstructing the 3D coordinates of the 
markers from the motion capture data; the SPARTANS software associates tags with 
pre-defined detected features and tracks them to prevent the presence of outliers. 
Nonetheless, rarely the tracking technique fails and tagged elements are swapped 
with outliers, thus, the motion capture data need to be partially reconstructed and 
manually associated with the respective marker points. Concurrently, the markers’ 
image coordinates must be identified and matched through the monocular camera. 
This task is accomplished by a dedicated MATLAB script which employs the same 
technique used with the calibration function. The marker detection is initialized by a 
combination of circular blob detection and nearest neighbour search to provide first 
guess correspondences, thereafter, a computer vision algorithm follows the 2D points 
using a Kanade-Lucas-Tomasi feature-tracking architecture. The tracker substitutes 
the circle detector whether a marker’s view is occluded and it doesn’t appear in 
camera or more markers overlap. The correspondences between image and world 
coordinates are fed to the P3P+RANSAC solver which outputs the relative pose 
between Model Frame and Camera Frame ( 𝑅𝑀

𝐶 , 𝑇𝑀
𝐶  ). 

The successive step involves the determination of the rotation matrix 𝑅𝑀
𝐵  and 

translation vector 𝑇𝑀
𝐵  between BF and MF. The process is twofold: first, the pose 

estimation between the Body Frame and the Camera Frame ( 𝑅𝐶
𝐵, 𝑇𝐶

𝐵  ) is performed 
for manually annotated features for a smaller set of images and secondly, together 
with the results of the previous calibration subsystem the following parameters are 
computed: 

 

𝑅𝑀
𝐵 = 𝑅𝐶

𝐵 ∙ 𝑅𝑀
𝐶  

 

𝑇𝑀
𝐵 = (𝑇𝐶

𝐵 − 𝑇𝐶
𝑀) ∙ 𝑅𝑀

𝐶  

(4.6) 

Assuming the rigidity of the mock-up and its support the pose parameters are constant 
throughout the set of images, consequently, a global optimization process is 
performed to reduce the 3D rms error of the projected mock-up points. The 𝑅𝑀

𝐵  
computation and refinement functions as a non-linear optimization code that selects 
random subset of pose parameters and computes the mean value, thereafter, the set 
of transformation matrix with the lowest 3D rms error is chosen as optimal. 

Given that the 3D coordinates of the wireframe model implemented in the SVD pose 
initialization architecture (Fig. 4.7) are expressed in the Body Frame but only the 
markers which are expressed in the Model Frame can be detected and tracked by the 
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motion capture, therefore it’s necessary to explicate the roto-translation operation 
between the two reference systems.   

Finally, the true pose of the satellite mock-up in respect to the camera frame is 
calculated by applying the following equations 

 

𝑅𝐶
𝐵 = 𝑅𝑀

𝐵 ∙ 𝑅𝑊
𝑀 ∙ 𝑅𝑊

𝐶  

 

𝑇𝐶
𝐵 = (𝑇𝑀

𝐵 − (𝑇𝑊
𝐶 − 𝑇𝑊

𝑀) ∙ 𝑅𝑀
𝑊) ∙ 𝑅𝐶

𝑀 

(4.7) 

where  (𝑅𝑀
𝑊, 𝑇𝑀

𝑊) are computed for different poses by the SPARTANS measurements 
system,  (𝑅𝐶

𝑊, 𝑇𝐶
𝑊) are constant since the camera is fixed and (𝑅𝑀

𝐵 , 𝑇𝑀
𝐵) has been 

calculated by the calibration process. 

 

4.3 Dataset and model generation 
The data collected with the SPARTANS facility are used to test the version of the 
SVD architecture for pose initialization under more restricted conditions than with 
the PRISMA SPEED dataset. Besides, the CubeSat mock-up presents similar 
elements to the Tango spacecraft, such as a large and easily identifiable solar panel 
structure and a simple polyhedral body with distinctive edges. The main difference 
between the two target vehicle is the number of antennas, their configuration and their 
length. The choice for the mock-up dynamics is to impose a simple rotation around 
the 𝑍𝑏𝑜𝑑𝑦 axis and tilting the base toward the source of light. The rotative stage turns 
at a velocity of 800 steps/s that translates to a rotation of 2° per second. The light 
source is positioned on the camera plane at the right of the stereo sensor so that the 
resulting scenario is a spinning satellite with variable light incidence. The relative 
distance between the mock-up and the camera is nearly constant and equal to about 
1.65 m. The relative attitude, instead, varies slightly in relation to the camera 
reference system, in fact, considering that the axis of rotation is tilted at about 60° 
towards the light source. The proposed configuration allows the mock-up to show to 
the camera the larger polygonal tetrad, namely the solar panel, possibly enhancing 
the pose estimation success rate, as determined in the previous chapter.   
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The images are captured at a frame rate of 2 fps with high contrast and low ISO to 
reduce the background noise. A simple synchronization algorithm is implemented by 
comparing the start and finish time of the mock-up motion both for the markers’ 
image coordinates and motion capture measurements so as to determine the true 
relative pose of the CubeSat mock-up. 

The mock-up is built with simple elements: a 100x100x200 mm 3D- printed plastic 
structure is covered by 100x100 mm steel plates and aluminium angle brackets; 
moreover, two 100x100 mm plexiglass plates are positioned on the front face and a 
single 300x200 mm plexiglass plate is attached on the opposite surface to resemble 
an unfolded deployable solar panel; lastly, two 3 mm thick aluminium rods (100 mm 
and 200 mm) are employed to simulate the presence of antennas. 

A wireframe model of the CubeSat is required to identify the 3D high-level features 
needed to perform the pose initialization. The geometric model is built following the 
same indications contained in the paper by Sharma et al. [31], i.e., reducing the 
complexity of the geometry without sacrificing the fidelity of the model. The CubeSat 
mock-up is already a simplified version of a real satellite, yet, the wireframe model 
presented in Fig. 4.7 can be considered a sufficiently accurate schematic 
representation of a 2U-CubeSat.  

Among the linear elements of the CubeSat wireframe model, the following high-level 
3D features have been defined: 

9 270 101 

Figure 4.6   The images are part of the dataset and show the CubeSat model in different stages of 
the rotation. In blue the markers detected by the calibration algorithm through the circular blob 
identification technique. The markers define a Model Frame which is correlated to the true pose of 
the target by means of a calibrated transformation matrix. In green it’s shown the reprojection of 
the wireframe model of the true pose estimation and it can be noted how it fits the target’s figure. 
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- 7 polygonal tetrads 

- 9 polygonal triads  

- 23 parallel triads 

- 24 parallel pairs 

- 20 proximal pairs 

- 2 antennas 

It’s important to notice how the CubeSat mock-up presents a larger number of comple 
geometrical groups and less simple ones in respect to the Tango model, and there is a larger 
set of symmetrical combinations of edges that convey indetermination to the pose solution 
problem. 

 

4.4 Algorithm implementation 

The SVD algorithm is a model-based pose initialization, therefore, it requires model-
specific settings and implementation for each target vehicle and, in the case of the 
proposed experimental setup, the algorithm needed to be tailored to serve the scope 
of correctly determining the relative pose. The main differences between the SVD 
implementation previously described and the one used for the SPEED data are 
presented below. 

Figure 4.7   Wireframe model of the CubeSat mock-up 
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Firstly, the images captured by the ZED left camera require a preliminary cropping 
process to eliminate the background interference of laboratory equipment outside the 
scene. A rectangular mask of 710 × 450 px is defined and employed to restrict the 
area of application of the image processing subsystem.  

The Weak Gradient Elimination technique for ROI detection is implemented and, 
given the absence of Earth-like simulated background for the dataset, a wider range 
for gradient elimination is chosen. The exponential fitting of the gradient distribution 
function computed with the Prewitt operator, is limited by a threshold of 99% and the 
weakest edges are eliminated. The respective cumulative distribution is limited to the 
central 99% of the gradient’s incremental sum along the axes and, as a consequence, 
the limits of the target’s bounding box. 

The edge detection is accomplished by merging the two streams of data obtained by 
the ROI+Hough process and the Sobel+Hough technique, as with SPEED. The 
Hough transform is applied to the image gradient after an ulterior prefiltering that 
eliminates the edges with an intensity inferior to 0.15 (normalized values). The 
resolution set for the edge detection remains equal to 𝜌 = 0.5 𝑝𝑥  and 𝜃 = 0.1° but 
the threshold for peaks is lowered to 0.001. As in Eq. 3.2, the geometric limits for 
line identification are set as follows: 

 

𝑙𝑚𝑖𝑛
𝐻 =  0.15 ∙ 𝑙𝑅𝑂𝐼                  𝜆𝐻 =  0.02 ∙ 𝑙𝑅𝑂𝐼                      (4.8) 

 

The minimum length of the detected segments is greater than for Tango, considering 
the proportion among the shorter edges and the characteristic length of the wireframe 
model. A merging procedure within lines is implemented to filter shorter fragmented 
elements through the application of an angular threshold of 10° and a radial threshold 
of  0.1 ∙ 𝑙𝑅𝑂𝐼. 

As regards the Sobel+Hough stream of data, the process for identifying the true edges 
relies on the same architecture described in the previous chapter. A lower threshold 
for the Sobel operator is set, equal to 0.03, while the Hough transform 
hyperparameters are set as follows: 

 

𝑙𝑚𝑖𝑛
𝐻 =  0.1 ∙ 𝑙𝑅𝑂𝐼                  𝜆𝐻 =  0.02 ∙ 𝑙𝑅𝑂𝐼                    (4.9) 
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The detected edges from the two streams of data are merged, or eliminated if 
overlapped, in relation to midpoint distances, orientation and radius distance. The 
merging process is performed by a dedicated MATLAB script. 

Consecutively, the segments are fed to the perceptual grouping block which arranges 
them in high-level features. The 2D geometric conditions are similar to the one 
employed for SPEED except for the antenna identification. The mock-up antennas 
can’t be discriminated on the basis of length in respect to the remaining edges, 
consequently, alternative methods must be implemented. In fact, the limited variation 
of attitude represented in the dataset and the absence of disturbing elements in the 
background allow to impose the proximity to ROI limits as discriminating condition 
for antenna identification. Practically, distance between detected edges’ endpoints 
and ROI limits is tested and a threshold equal to 0.05 ∙ 𝑙𝑅𝑂𝐼 is imposed to discriminate 
the features. Despite this condition, spurious edges are still classified as antennas, 
hence an evaluation system is devised to rate the segments that meet the first 
condition. Assuming that the antennas’ extremal points are farther away from the 
structure than the remaining points, the candidate features are rated on the basis of 
the sum of the relative Euclidean distance between themselves. This method 
associates the lower sum value to the points and edges that belong to the CubeSat 
main body. Only the two most high-rated edges are classified as antennas.  

In addition to the feature synthesis subsystem, the matching procedure it’s also 
modified due to the lack of asymmetrical elements in the wireframe target model. 
The repetition of similar edges produces multiple identical 3D parallel pairs and 
triads, as well as proximal pairs and polygonal tetrads. Therefore, the presence of 
distinguishable elements like oriented edges (antennas) plays a fundamental role in 
the effectiveness of the pose initialization. A mitigation to the problem comes from 
adding the possibility of considering the combination of parallel triads with antennas. 
Parallel triads are easily and commonly detected in the case of the CubeSat mock-up 
and, although they are sufficient to provide a pose estimation, there are multiple 
correct solutions to the Perspective-n-point problem; only pairing the triad with an 
antenna can reduce the solution space. An example of the results of this technique is 
shown in Fig. 4.8 below. 

Finally, the pose determination and refinement tasks are accomplished by a P3P 
algorithm followed by a non-linear Levenberg-Marquardt optimization, as with the 
SPEED data. 
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4.5 Validation results 
The dataset comprises of 428 images of the CubeSat mock-up and it’s fed to the SVD 
pose initialization algorithm. The overall performance parameters are summarized in 
Tab. 4.3.  

 

Success Rate 37.12 % 

%Pose 96.96 % 

Mean IoU 77.39 % 

Mean ET [mm] 23.02 

Mean ER  [deg] 3.59 

Mean ERRT   [mm] [ 5.90   4.94   20.34 ] 

Mean ERRR   [deg] [ 1.02   2.28   1.96 ] 

Median Nlines 4 

Median Npoints 11 

Mean Ncomb 5556 

Mean tcomp  [s] 11.2604 
 

Table 4.3   SVD architecture 
performance metrics. The 
accuracy values refer to high-
confidence solutions only, while 
the remaining parameters are 
calculated over the entire 
dataset. 

(a) (b) 

Figure 4.8   In (a) the lines obtained through the merging of the detected edges, in (b) the 
segments identified as antennas. One of the antennas is correctly classified while the other 
two are respectively a partial edge and an incorrectly identified segment. 
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Clearly the SVD method proves to be consistently more effective when applied in a 
more limited range of conditions. The success rate it’s five time greater than the one 
observed with the SPEED data and 13 out of 428 images resulted in a ROI-only 
estimation due to an insufficient number of edges or high-level features. The 
algorithm produces a higher number of pose solution (𝑁𝑝𝑜𝑠𝑒) over the totality of data 
with improved ROI detection outputs varying between a minimum of 50 % to a 
maximum of 90 % of overlapping area (IoU). A correct identification of the target’s 
figure bounding box, as previously pointed out, affects positively the number of true 
line correspondences that, in fact, amounts to a mean value of four correct edges. 
Along with a higher 𝑁𝑙𝑖𝑛𝑒𝑠, the number of correspondences between true 3D points 
and detected endpoints is equal to 11, notifying the increase in the edge detection 
process’s effectiveness. Considering percentage values, on average 45 % of the 
detected segments match the model’s true edges and 68 % of their endpoints with the 
true vertices of the CubeSat within the limit of a threshold distance equal to 0.025 ∙

𝑙𝑅𝑂𝐼.  

The rotational and translational accuracy of high-confidence solutions is comparable 
with the error achieved with SPEED’s validation and in accordance with the results 
presented in the SVD paper [31]. In particular, the translational error is greater along 
the camera’s boresight axis 𝑍𝐶𝐴𝑀, as the range in this direction is not directly related 
to the detected lines, in contrast to the position determination along the other 
directions of the camera frame. Nonetheless, the mean error 𝐸𝑇 is lower than the one 
registered with SPEED and this can be easily explained given the fact that the relative 
distance between camera and target is constant and inferior to 3 m. As shown in Fig. 
3.12, a shorter relative range improves the accuracy of the estimation reducing 
steadily the translational error, hence, accordingly, 𝐸𝑇  is equal to 2.3 cm at about 
1.65 m. The rotational precision is, instead, slightly worse than that resulted from the 
previous validation test, even though still lower than 5°. A little bias in the 
measurement’s error can be attributable to the simulated illumination condition of the 
SPARTANS experimental setup. The orientation precision is related, in part, to the 
sharpness of the contrast gradient along the satellite edges, assuming that, as it is for 
the two validation dataset, the Hough transform operates with the same radial and 
angular resolution in the edge detection process. Some elements affect the fidelity of 
the simulated laboratory illumination: (1) the light source consists in a lamplight at 
short distance so the light rays can’t be considered parallel as would happen with 
solar light in a LEO orbit, (2) the black cloth is obviously more reflective than the 
space background and (3) the real edges of the mock-up have an intrinsic uncertainty 
related to the build quality.  
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Furthermore, the number of combination and the computational time are greater than 
in previous results but comparable due to the fact that the number of elements 
belonging to the 3D high-level features is greater for the CubeSat model than Tango’s 
model, thus the number of possible combinations to test for pose determination 
directly increases.  

   

  

  

Figure 4.9   Distribution of high-confidence pose solution in relation to the feature group 
combinations and the respective success rate. 

Figure 4.10   Success rate in relation to the number of line and point true 
correspondences.  
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Figure 4.12   Distribution of high-confidence and low-confidence pose solutions across 
the recorded frames of the CubeSat dataset. The correct estimates are plotted with their 
relative translational and rotational accuracy. 

Figure 4.11   Plot of the success rate against the 2D 
reprojection error of the pose outputs. 
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Figure 4.13   Spatial distribution of high-confidence pose estimates. 
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The Fig. 4.9 shows the distribution of high-confidence pose solutions and the pairs 
of complex and simple geometric features fed to the pose solver. The plot 
demonstrates that combinations which produce correct poses always involve at least 
an antenna feature, since it discriminates uniquely among symmetrically valid poses 
in the solution space. The most common combination is the coupling of parallel triads 
and antennas and the reason why it exceeds in frequency and effectiveness the pair 
composed by polygonal tetrads and antennas, which is successful for the Tango 
vehicle, it’s the fact that the CubeSat model presents numerous triads of parallel 
edges. Let it be noted that this particular combination results in the highest number 
of possible matches to subject to the pose solver and, consequently, it requires a 
longer computational time. Nonetheless, these combinations provide a success rate 
equal to 54,34 %, which is consistently above the average value registered in other 
validation tests. 

In Fig. 4.10 the success rate is correlated to the number of line and point true 
correspondences and, as with the SPEED data, it’s clear how the pose solving 
algorithm outputs more correct poses with the increase of true edge detection. Despite 
this, given the nature of the perceptual grouping technique and the P3P algorithm for 
pose solving the total efficiency of the SVD method reaches an intrinsic limit at about 
40 %. 

In addition to the previous plots, the figure in Fig. 4.11 displays the variance of 
success rate in relation to the reprojection error 𝐸2𝐷. Since the precision of the pose 
estimation is correctly evaluated by computing the absolute difference between 
estimated and true translation vectors and rotation matrices, the reprojection error 
isn’t a trustworthy performance metric but can act as a preliminary metric for the 
continuation of the algorithm. As shown in the plot, values of reprojection error 
inferior to 5 px entail a higher success rate but as 𝐸2𝐷 increases the success rate drops 
rapidly. On the basis of this observation, in order to improve the overall effectiveness 
of the SVD pose initialization within a navigation architecture, a threshold for the 
reprojection error associated with the best pose solutions can be set to break the 
process and reinitialize the pose estimation.  

In Fig. 4.12 and Fig. 4.13 the high-confidence solutions spatial distribution and their 
respective rotational and translational errors are depicted. It can be easily noted how 
there are clear gaps in the distribution and those gaps are correlated to the sides of the 
CubeSat mock-up with the lowest visible area. As it has been noted in the previous 
chapter with the Tango spacecraft, the visibility of clear and easily identifiable 
elements, like large solar panel, ensures a higher probability of resolving exact 
relative poses. As shown in Fig. 4.14, the CubeSat model is depicted from a point of 
view that captures the main solar panel. Given the presence of the panel pattern, a 
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part of the lines that are detected have no correspondence with the wireframe model, 
yet the perceptual organization algorithm provides the correct identification of a 
polygonal triad and an antenna, thus computing the right pose. This example 
demonstrates how the algorithm can overcome the presence of spurious or useless 
edges by applying the feature synthesis technique.  

Lastly, Fig. 4.15 collects some of the results of the SVD method for pose 
initialization, both high-confidence, low-confidence and ROI-only solutions. In the 
case of the images 2, 335, 145 the pose initialization is effectively producing correct 
outputs, while the results in images 211 and 406 are wrong. In particular, the pose 
solution for the image 406 is incorrectly estimated due to multiplicity of solutions 
based on the same match of an antenna and a parallel triad. The image 22 shows how 
the Weak Gradient Elimination technique operates optimally with the illumination 
and background conditions imposed. 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4.14   Results of algorithm subsystems for the frame 46 of the dataset. From left to right, the 
detected lines, the couple of polygonal triad and antennas that produce the optimal solution and the 
model projected on the image after correct pose estimation. 
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Figure 4.15   Some results from the application of the SVD method to the CubeSat dataset. 
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Conclusions 
 
 
The SVD architecture for pose initialization, proposed in [31], whose validation tests 
are presented in this thesis work, has proven to be sufficiently accurate only in a 
limited operational range in terms of relative distance, model geometry and 
environmental conditions. The SVD method addresses the problem of determining 
the relative pose of non-cooperative passive space vehicle, i.e., target spacecraft that 
are not able to establish a communication link with the chaser and it’s not equipped 
with known visual markers. The scenario of non-cooperative passive targets occurs 
frequently in active debris removal (ADR) and on-orbit servicing (OOS) missions 
which involve uncontrolled or defunct spacecrafts. The technique consists in a model-
based feature matching pose initialization process which employs single low-
resolution images captured by a monocular vision system and a known, simplified, 
geometric 3D model of the target to produce, firstly, a coarse measurement of relative 
range, line of sight and, secondly, an accurate estimate of relative orientation and 
position without a priori information.  The technique brings four fundamental 
innovations in the field of monocular feature-based pose estimator: 

- A Weak Gradient Elimination (WGE) procedure is introduced to define the 
target’s region of interest in the image. 

- The hyperparameters of the Hough transform are expressed as scalars of the 
ROI’s dimensions so to provide a more flexible and efficient edge detection. 

- The detected segments are organized and classified in high-level geometric 
features on the basis of endpoints proximity and parallelism  

- The search space for pose determination is greatly reduced by combining the 
most complex and the simplest high-level features detected 

After providing an initial overview on the issues and the state-of-the-art instruments 
employed to determine the relative pose in various operative scenarios and 
highlighting the advantages of the monocular approach, a detailed description of the 
SVD technique is proposed, together with the conclusions drawn in the paper [31]. 
The paper demonstrates the effectiveness of the SVD method with two datasets of 25 
and 142 of PRISMA mission’s Tango spacecraft real images. The results of multiple 
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validation tests prove separately that (1) the gradient-based ROI identification 
outperforms typical blob detectors in terms of accuracy and computational time, (2) 
the combination of Hough transform and WGE produces a higher positive rate of true 
feature correspondences than other edge and feature extractors without requiring a 
great computational cost and (3) the SVD method outputs fewer pose estimates than 
a simple RANSAC procedure but the high-confidence results are consistently more 
accurate than the one provided by random sample consensus. In regard to the 
PRISMA image set the paper shows that only half of the attempt result in a pose 
solution and only 5 out of 12 estimates are correct with mean accuracies of 1.59° and 
0.53 m.  

The main contribution of the thesis is to implement the SVD architecture within the 
MATLAB software and validate it with a larger dataset of synthetic imagery of the 
Tango vehicle and, subsequently, developing a version of the algorithm based on a 
different vehicle and testing the efficiency in that case. Some modifications are 
considered in the specific implementation of the SVD method used in the validation 
tests. Besides the particular characterization of the Hough hyperparameters and the 
addition of geometric conditions for feature organization, the proposed pose solving 
technique, i.e., a EPnP solver followed by a simple Newton-Raphson optimization, is 
discarded and a P3P + RANSAC solver followed by a non-linear Levenberg-
Marquardt optimization. This choice is based on the observation that the number of 
points to solve the perspective equation is always limited to a maximum of six, given 
the coupling of two geometric feature, and that EPnP is greatly affected by outliers 
and collinear points, commonly detected throughout the dataset.  

The synthetic imagery of the SPEED database consists in 12000 frames of a 
computer-generated Tango model with a statistical distribution of attitude and 
position values, as well as a series of cropped Earth background. The application of 
the SVD algorithm has shown its intrinsic limitations with the SPEED data. In fact, 
the percentage of high-confidence solutions it’s reduced to 8% and about 40% of the 
attempts results in ROI-only measurements. The validation shows the dependency of 
the feature matching and classification effectiveness on the correct identification of 
the target’s ROI, which in turn tends to be incorrect in the presence of composite 
background. Nonetheless, accurate pose solutions are estimated with a mean 
precision of 2.85° and 0.09 m, which is comparable to the results in [31]. In particular, 
the accuracy decreases in accordance with the increase of relative distance and it’s 
predominantly distributed along the boresight axis of the camera. The SPEED 
validation proves that the operative range of the SVD method is between 3 m (the 
minimum relative distance of the dataset) and about 15 m. The analysis of high-
confidence solutions’ spatial distribution and the frequency of feature combinations 
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provides a fundamental outcome, i.e., the technique is considerably more effective 
when a large polygonal tetrad, usually a easily identifiable solar panel, and an antenna 
are visible. This proves the basic assumption that the search space for pose 
determination can reasonably be reduced by combining a complex and a simple high-
level feature, yet the method provides a sufficiently robust performance only when 
those features are uniquely identifiable and asymmetrically oriented in relation to the 
target’s body frame. 

The results of the first validation test are expanded and confirmed by the second test 
which involves a CubeSat mock-up mounted on a rotative stage. The dataset is 
acquired at the SPARTANS testbed for relative satellite dynamics and consists in a 
set of 428 images and respective true reference pose values. The CubeSat dataset 
presents more limited conditions such as constant illumination, empty black 
background and close-range operativity (relative distance of ~1.65 m). The results 
show that the absence of background interference translates directly to a higher 
accuracy of the ROI detection process, which, as a consequence, increases the mean 
number of true line correspondences and the success rate of the poses solver. The 
mean success rate is equal to 37 % and the mean error for the high confidence 
solutions have an accuracy of 0.02 m and 3.59°. Let it be noted that each target model 
entails a particular number of 3D features, for instance, the most frequent 
combination in the case of the CubeSat mock-up is the parallel triad, yet for this 
reason, it implies the possibility of symmetrical solution if not paired with a 
discriminating element like an antenna. 

The validation tests address the main limitations of the SVD technique. While 
resulting in sufficiently accurate estimations for the initialization process of a relative 
guidance and navigation system, it lacks an adequate robustness to the variety of 
scenarios present in complex future missions that involve non-cooperative passive 
spacecrafts. The algorithm effectiveness is highly dependent on the geometric 
properties and on the intrinsic complexity of the target's structure. The visual 
recognizability of certain geometric features like polygonal structure and antennas, 
in combination with the asymmetry of their distribution and the detectability of their 
edges, improves consistently the success rate of the algorithm up to 50% of high-
confidence solutions. Regardless of the efficiency, the estimation procedure actually 
reduces the solution search space, thus, allowing the implementation of on-board 
executable and fast software, required by small operative satellites during 
autonomous navigation. Above all, it’s fundamental to highlight how the SVD 
architecture can be optimized by setting breakpoints correlated to the number of 
detected edges or the reprojection error in order to re-initialize the algorithm when 
certain conditions that yield a lower success rate are met. Besides, the pose estimates 
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provided by SVD represent first attempts to compute the relative pose of the target 
and, if integrated with a far- range angles-only navigation system and a pose tracking 
algorithm, it can effectively reduce the uncertainty of the estimation. 

In conclusion, it’s worth noticing that the SVD architecture represents an attempt to 
introduce an intelligent design for the feature detection and matching process within 
the classical Perspective-n-Points problem thereby producing a consistent 
improvement in terms of accuracy and computational time. Following this path, the 
use of convolutional neural networks and machine learning aims at overcoming the 
fundamental limitations of point-based methods and providing surprising accuracy 
and speed combined with an extreme operational flexibility. 
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