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Abstract

The discovery of statistically significant motifs is important in order to make decisions

that are not relying on pure chance. Testing each frequent pattern for statistical sig-

nificance in isolation may lead to a high false discovery rate. In this thesis we study

the statistical properties of some families of motifs of the same length. In particular,

we develop a method for the approximation of the average number of frequent motifs

in the family in a text where each character is independent. We give a bound on the

error of the approximation and show that this bound is loose in practice. We develop

a test through simulation which verifies whether the distribution of the number of fre-

quent motifs can be approximated to a Poisson distribution. We discover that in the

families we studied the real distribution can be approximated only when its average is

significantly less than 1.
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Chapter 1

Introduction

1.1 Data mining and algorithm accuracy

Data mining is playing a very important role in society. Its wide application spectrum,

such as business, medicine, science and engineering, and the availability of large data

repositories make it one of the most important fields of computer science. As data

warehouses get larger and the available computational power grows, there is an ever

increasing interest in extracting more information and knowledge from the data.

The development of efficient data mining algorithms is one of the main topics of research

in the field. Depending on the problem, these algorithms usually have to search the

output space for unusually frequent (or infrequent) elements in the input data. For

example, in the market basket analysis, one of the main problems is to find set of items

(itemsets) that appear in the input transactions with a certain frequency. The classical

algorithms that attempt to solve this problem must face two major issues: the search

space may be exponential in size (compared to the input size); and the definition of

“frequent” is often left to the user through a set of parameters. The latter point is crucial,

because the parameters control both the efficiency and the accuracy of the algorithms.

If the definition of “frequent” is too strict, the algorithm is more conservative, but it

may return few discoveries or none at all. On the other hand, if the definition is too

lax, the algorithm may become too slow, the output can be exponential in the size of

the input, and most of the frequent elements it discovers may be uninteresting, or may

have no meaningful relation with the data.

For these reasons, there is an increasing interest in developing data mining algorithms

that are efficient and retrieve information from the data with a certain accuracy. In

order to do this, the algorithms often make use of additional concepts that reduce the

size of the output. For example, in the market basket analysis, some algorithms focus

on the closed itemsets, which are itemsets whose frequency is strictly higher than the

9



10 Chapter 1 Introduction

ones of their supersets. In this case, if an itemset is not closed, there is a superset

whose frequency is the same as that itemset, and the latter can be used to describe

both events. Similarly, other algorithms focus on finding maximal itemsets, which are

frequent itemsets such that all their supersets are not frequent.

An important concept for any algorithm is the statistical significance of the frequent

elements. An outcome is statistically significant if its occurrence is unlikely to happen

“by chance”. The statistical significance is an interesting property, as it gives additional

confidence on the quality of the result. By establishing a random model that can approx-

imately describe the process that generates the data, and using this random model to

check whether an observed event is unlikely to happen in randomly-generated samples,

we can obtain a substantial confidence on the meaningfulness of statistically significant

results.

The properties of closure and maximality can be verified easily and usually produce well-

defined structures, allowing the algorithms to perform substantial optimizations. On

the other hand, the statistical significance of an element, while theoretically appealing,

introduces new complications to the problem. First of all, the statistical significance

measures are non-monotonic [8], while monotonicity is a desired property for Apriori

algorithms. Then, the evaluation of the statistical significance requires the calculation of

statistics that define the “score” of an element, which measures its statistical significance.

Finally, the random model must be chosen with care.

The discovery of statistically significant elements is nonetheless important in order to

make decisions that are not relying on pure chance. Consequently, the statistical signif-

icance is often employed in recent algorithms.

1.2 Frequent patterns in computational biology

Computational biology is the field that studies the development of theoretical models,

analytical methods and algorithms for the study of biological information. Its broad def-

inition encompasses various disciplines: computer science, applied mathematics, statis-

tics, molecular biology, and so on. It is one of the leading applications of computer

science. The field has grown considerably in the last decades, as new technologies enable

the acquisition of large amounts of biological information, thus constantly introducing

new problems and challenges. The vast family of problems that arise in computational

biology is introduced in [24].

In computational biology, the discovery of interesting patterns in the DNA plays an

important role. The goal is to find recurring patterns in a sequence that may have

special biological functions. Various algorithms have been developed that consider a
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large variety of patterns, from simple sequences to more complex regular expressions,

considering even patterns that allow a certain number of mismatches [13].

As both the size and the number of DNA sequences grow, the interest in efficient algo-

rithms is growing as well. Depending on the family of patterns, the number of frequent

patterns in a text may be polynomial or exponential in the size of the input. Even when

the number of frequent patterns is polynomial, some of them may carry uninteresting or

redundant information. For this reason, recent algorithms apply the concepts of closure

and maximality for the patterns, in order to remove redundancies [7].

Furthermore, there is also a substantial interest in the statistical significance of the

discovered patterns. Depending on the random model, even patterns that share a com-

mon structure may have substantial variations in their expected frequencies. Thus, the

discovered patterns are individually tested for their statistical significance.

There are several works in computational biology that study the statistical significance

of the patterns obtained by sequence mining and sequence similarity algorithms [2, 5,

6, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25]. These works usually focus on

two related metrics to determine the significance: the z-score, which measures how far

is the observed frequency of a pattern from its expectation; and the p-value, which

measures the probability that the frequency of a pattern is greater or equal to the

observed frequency. These statistical tests usually take a limited number of patterns

in consideration, specifically the patterns in the output of the algorithms, and their

significance is usually determined individually through a single statistical hypothesis

test for each returned pattern, which decide whether a pattern is significant according

to a probability threshold.

1.3 Frequent patterns and multiple hypotheses

The evaluation of the statistical significance of frequent patterns “a posteriori”, after

they have been mined from the data, must be done carefully. As the sequence size

increases and the families of events become bigger, some of these events may occur

by chance, even when each event is considered rare individually. This may lead to a

high percentage of false positives, if the significance threshold does not consider the

multiplicity of the hypotheses we are testing.

For example, suppose that in a family F of patterns, each pattern may appear frequent

in a random sequence with probability 10−5, but the family has |F| = 106 patterns.

Then, for the linearity of the expectation, the expected number of frequent patterns

in a random sequence is 10. Thus, if we use an inappropriate level of significance (for

example, α = 0.05), we may consider some patterns as significant even when they are

expected to be frequent due to chance.
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In order to solve this issue, there are some corrections to the significance levels of the

hypothesis tests that can be considered. Some corrections ensure a bound on the prob-

ability of having any false positives (the Familywise Error Rate, or FWER), or a bound

on the expected rate of false positives over the number of positives (False Discovery

Rate, or FDR). The corrections that bound the FWER are often excessively conser-

vative, while the corrections for the FDR may increase the accuracy while returning a

reasonable number of discoveries.

There is also a certain interest in establishing an appropriate frequency such that all

the frequent patterns can be considered statistically significant with a limited FDR.

Finding an appropriate frequency is also important in order to achieve a good trade-off

between efficiency and accuracy. This approach has been developed for the problem of

finding statistically significant itemsets in [9]. In order to establish a frequency threshold

over which any frequent itemset can be considered statistically significant, the method

requires to calculate the p-value for the total number of frequent patterns. In order to

obtain this value, the authors employed the Chen-Stein method, which is a powerful tool

for bounding the error in approximating the real distribution with a Poisson distribution.

The Chen-Stein method has already been applied successfully for the approximation of

the p-value for single patterns and small sets of patterns [15], while its applicability on

large, structured families of patterns seems to be virtually unexplored.

1.4 Objective and results

In section 1.3, we mentioned a recently-developed approach for identifying statistically

significant frequent itemsets, whose details can be found in [9]. The purpose of this work

is to check whether this approach can be also applied for the identification of statistically

significant patterns in genomic sequences.

We are focused on families of patterns with the same length k, and we are interested in

finding some information about the number of frequent patterns of length k: in partic-

ular, we estimate the expected number of frequent patterns, and find some conditions

under which the number of frequent patterns can be approximated to a Poisson approx-

imation through the Chen-Stein method.

In the beginning, we start with the exploration of the current state of the art in the

evaluation of the statistical significance of patterns, and we obtain some specific results

for our families of patterns. We will use these results to approximate the average number

of frequent patterns efficiently.

We obtain an estimation of this average within a certain error bound, and we show

through some simulations that the error bound is very conservative in practice. We

make some considerations on the applicability of the Chen-Stein method for the number
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of frequent patterns through theoretical tools and by simulating random texts that share

some characteristics of the input.

We show that the Poisson approximation is applicable only when the expected number

of frequent patterns is considerably less than 1. When independent random models are

applicable and under certain conditions, we can find reasonable frequency levels such

that the Poisson approximation holds, without the need for simulations.

1.5 Organization of the document

In chapter 2 we introduce the notation used throughout this work, give an introduction to

the statistical significance, present the approach described in [9], define some of the ran-

dom models commonly used in computational biology, and enunciate a theorem obtained

from the Chen-Stein method, which gives a bound on the error made by approximating

the distribution of certain integer random variables to a Poisson distribution.

In chapter 3 we present some known algorithms for the calculation of the exact prob-

ability of occurrence of a single pattern. One of these has been independently studied

and developed, and it will be used for comparison in the next steps. We also report on

the complexity of these algorithms.

In chapter 4 we report some results on the approximation of the p-value for the number

of occurrences of a single pattern, focusing on simple expressions for the error bound.

Some of these results are characterized by little variability among the family of patterns.

In chapter 5, through the results obtained in the previous chapter, we give a good esti-

mate of the average number of frequent patterns with a specific length for independent

models. Subsequently, we approach the issue of finding theoretical estimates for the

approximation error for the distribution of the number of frequent patterns, obtained

from the Chen-Stein method. We consider a näıve approach, which gives an exact value

for the approximation error, as a function of the average and the variance. We also

consider more elaborate approaches, which appear to be theoretically challenging but

can be evaluated experimentally.

In chapter 6 we evaluate the goodness of the results obtained in the previous section

through simulation, in particular to see whether there is room for improvement in the

näıve approach for the approximation error. We simulate a number of large sequences,

from which we obtain an empirical distribution that can be compared to the theoretical

results.

In chapter 7 we summarize the theoretical and empirical results and propose future

developments.





Chapter 2

Preliminaries

2.1 String and motif definitions

DNA sequences can be represented as strings of arbitrary length built on the alphabet

Σ = {A,C,G, T}. A string s of length |s| = k ≥ 0 on the alphabet Σ is a concatenated

sequence of k characters:

s = s[0]s[1] . . . s[k − 1], s[i] ∈ Σ ∀i ∈ {0, . . . , k − 1}

Σ∗ represents the set of all strings in Σ of arbitrary length, while Σk = {s ∈ Σ∗ : |s| = k}
is the set of all strings of length k. Thus

Σ∗ =

∞⋃
k=0

Σk

The symbol ε represents the empty string (|ε| = 0).

Let i, j ∈ {0, . . . , k − 1}. The substring of s from i to j is defined as:

s[i . . . j] =

s[i]s[i+ 1] . . . s[j] if i ≤ j

ε otherwise

We define a motif as a string x defined on the extended alphabet:

x ∈ (Σ ∪ {◦})∗

where ◦ 6∈ Σ is called a wildcard (or don’t care character). If x does not contain any

wildcard, it is called a word or solid block.

We now give some definitions of occurrence and frequency:

15



16 Chapter 2 Preliminaries

Definition 2.1 (Occurrence of a pattern in a text). Given a string s and a motif x

where |s| = l, |x| = k ≤ l, the motif x occurs in string s at position i : 0 ≤ i ≤ l − k if

(s[i+ j] = x[j]) ∨ (x[j] = ◦) ∀j : 0 ≤ j ≤ k − 1.

in this context, s is called a text and x is called a pattern.

For solid blocks, the occurrence condition is simply s[i . . . i+ k − 1] = x.

Definition 2.2 (Number of occurrences). The number of occurrences of x in s is the

number of distinct positions where x occurs in s:

N(x, s) = |{i ∈ {0, . . . , l − k} : x occurs in s at position i}|

Definition 2.3. Let q ∈ N, q > 0. We say that the motif x is frequent with quorum q

in the text s if N(x, s) ≥ q.

In some occasions, the string s will be omitted, and the number of occurrences will be

represented as Nx = N(x, s).

Definition 2.4. Let F ⊆ (Σ ∪ {◦})∗ be a family of motifs. The number of frequent

motifs of the family F in the text s is defined as:

Qq(F , s) = |x ∈ F : N(x, s) ≥ q|

When both the string and the motif family are clear from the context, we may omit

them. We will often use the family F = Σk; in this case, we will use the expression

Qk,q = Qq(Σ
k, s).

2.2 Statistical hypothesis testing

In a simple statistical hypothesis test, we are interested in finding whether our data

is likely to have been generated from a random model. A hypothesis test consists in

formulating a null hypothesis H0 and an alternative hypothesis H1, and then deciding

whether to reject the null hypothesis. Usually, the null hypothesis assumes that the

data is generated from a random variable or random process, with a known probability

distribution, occasionally with a set of parameters that are estimated from the data

itself.

After establishing a null hypothesis, the next step is to provide a suitable test statistic,

which is a function of the data that summarizes its characteristics. The observed value

tobs of the test statistic is then compared to the test statistic T calculated on the random
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process assumed by the null hypothesis. In statistics, various test statistic distributions

have been formulated according to the underlying distribution assumed by the null

hypothesis and the chosen test statistic.

The rejection of the null hypothesis is determined by defining a suitable critical region

C in the space of the possible test statistics, and rejecting the null hypothesis when

tobs ∈ C. The region is chosen such that p = Pr(T ∈ C) ≤ α, where p is the p-value of

the test, while α is the significance level of the test.

The significance level of a test is the probability of rejecting H0 when it is true (also

called Type I error). Its value is chosen arbitrarily before the test, depending on the

application. Common significance levels are α = 0.01, α = 0.02, or α = 0.05.

When tobs 6∈ C, the test “fails to reject” the null hypothesis, which means that the test

cannot reject the hypothesis with an acceptable type I error. It does not mean that H0

is accepted, as the test is not capable of asserting that H0 is true with any confidence.

In data mining, hypothesis testing is used to determine whether an element (for example,

a pattern in a text, or an itemset in a set of transactions) has a high chance of having

a particular role in the data, for example to test whether a group of items is unusually

frequent in the transactions, meaning that they are likely to describe an interesting

phenomenon. Similarly, an unusually frequent pattern in a strand of DNA may carry

biological information. We call these elements “statistically significant”.

2.2.1 Multiple hypothesis testing

Statistical hypothesis testing may be used improperly, especially if we are performing a

number of different hypothesis tests. When we are testing multiple hypotheses to deter-

mine which patterns in a set of frequent patterns in a text are statistically significant,

their multiplicity must be handled with care.

For example, suppose that we find that a pattern x from a certain family that occurs q

times in a text, and under the null hypothesis, the probability for that pattern to occur

at least q times is low, such as p = 10−5. With the standard values of α, we may say that

x is statistically significant. However, if we decided which pattern to test after mining it

from the data, we may end up with some false positives: if there are 106 distinct patterns

in the family with the same p-value as x, we would get that the expected number of

frequent patterns is 10. Thus, we may end up systematically marking some patterns as

statistically significant even when the text is generated according to the null hypothesis.

In order to choose appropriate significance levels for testing multiple hypotheses, some

additional metrics have been defined. We report two of these metrics: the Familywise

Error Rate, which is more common when the number of hypotheses is low; and the False

Discovery Rate, which is suited for data mining algorithms to evaluate the accuracy.
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Definition 2.5 (Familywise Error Rate). Suppose we are testing m hypotheses. Let

H = {H1
0 , . . . ,H

m
0 } be the collection of null hypotheses. The Familywise Error Rate

(FWER) is defined as:

FWER = Pr

(
m⋃
i=1

{
H i

0 is rejected | H i
0 is true

})

Definition 2.6 (False Discovery Rate). Suppose we are testing m hypotheses. Let R

be the number of rejected null hypotheses, and let V the number of Type I errors. Then

the False Discovery Rate is defined as FDR = E[V/R], with V/R = 0 when R = 0.

The easiest way to limit the FWER is the Bonferroni correction:

Definition 2.7 (Bonferroni correction). Suppose we are testing m hypotheses. Let

α ∈ (0, 1). The Bonferroni correction tests each hypothesis i with significance level:

αi =
α

m

The Bonferroni correction limits the FWER through the union bound:

Theorem 2.8. The familywise error rate for m hypothesis tests with significance level

αi = α/m is

FWER ≤
∑
i

αi = α

The main drawback of this method is the very low significance level obtained when the

number of hypotheses is large. In the pattern discovery environment, if we are testing

the family F = Σk, we are potentially testing up to m = 4k hypotheses a priori, while

in practice we only test the patterns that are actually frequent in the text. This may

lead to the discovery of a very limited number of significant patterns. Additionally, a

bound on the FWER does not imply a bound on the FDR.

Another approach increases the power of the tests, while keeping the FDR under a

desired threshold:

Theorem 2.9 (Benjamini and Yekutieli). Suppose we are testing m hypotheses. Let

p(1) ≤ · · · ≤ p(m) be the ordered observed p-values of each test, and let β ∈ (0, 1). Let

l = max

{
i ≥ 0 : p(i) ≤

i

m
∑m

j=1
1
j

β

}

The FDR for the rejection of the tests (1), . . . , (l) is upper bounded by β.

This approach is more selective than the Bonferroni correction for the tests with the

lowest observed p-values, but the significance levels slowly increase after each rejected

hypothesis.
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Kirsch et al. [9] state that this approach can be directly applied to the problem of return-

ing significant frequent itemsets. The procedure can easily be adapted for the frequent

patterns: after choosing an appropriate value for the quorum and mining the frequent

patterns, one needs to calculate the p-value for all the frequent patterns to appear as

frequently as in the input sequence (we can skip infrequent patterns by assuming that

their p-value is 1, obtaining a more selective procedure), sort the values and select the l

patterns with the lowest p-value. One can calculate the p-value with exact algorithms or

with approximated algorithms, depending on the quality of the approximated algorithms

and the time required to test all the frequent patterns. We will explore both possibilities,

evaluating the computation time of an exact algorithm and an approximated algorithm.

However, the quorum value that limits the number of frequent patterns to analyze may

be still required.

Alternatively, the authors suggest an algorithm that can find a quorum value such that

all the frequent patterns can be considered statistically significant.

Quorum threshold for statistically significant patterns Define qmin and qmax

be the minimum quorum and the maximum quorum for which to test the signifi-

cance of the patterns, respectively. The procedure will perform h tests, with h =

blog2(qmax − qmin)c+ 1. For each test i ∈ 0, . . . h− 1 we define the values αi > 0, βi > 0

such that
h−1∑
i=0

αi = α < 1,
h−1∑
i=0

βi = β < 1

We define the null hypotheses

H i
0 = {Qk,qi is drawn from the random variable Qk,qi = Qqi(Σ

k, s)}, qi = qmin + 2i

Where s is a random process that generates strings. We choose the following rejection

condition for the null hypotheses:

{Pr(Qk,qi > Qk,qi) < αi} ∧
{
Qk,qi > (βi)

−1E[Qk,qi ]
}

If at least one of the hypotheses is rejected, we choose q∗ = min{i ≥ 0 : H i
0 is rejected}.

Then, we mark any pattern with frequency of at least q∗ as statistically significant.

The following theorem is an adaptation of the theorem found in [9] that proves the

quality of the procedure.

Theorem 2.10. With confidence 1− α, the FDR of the quorum threshold procedure is

at most β.

In order to apply this procedure, we need the p-value for Qk,qi , or at least an upper

bound obtained through an approximation, and naturally its mean. If we are able to
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find these values efficiently, we can skip the calculation of the p-value of the frequent

patterns and flag all of them as statistically significant. Thus, we are interested in finding

a way to estimate these values.

2.3 Random model

Our null hypotheses assume that the observed test statistic of the input sequence is

likely to be obtained from a string generated by a random model. The definition of an

appropriate random model (and thus, the null hypothesis for the test) is important for

the meaningfulness of the tests.

The model should adequately describe the real process that generates the text, by taking

into account its known properties. When no property is known for the process, the

type and the parameters of the model are typically estimated from the input sequence;

however, if the chosen random model is too complex, the analysis becomes more difficult

and the model may describe too accurately the sample, eventually including its noise

instead of the real process.

Various random models are used in literature. In this document, we work on some simple

models, assuming that the sample space consists of all the strings of the same length as

the observed sequence: Ω = Σl.

2.3.1 Independent random model

Definition 2.11. Let p : Σ → [0, 1], with
∑

e∈Σ p(e) = 1. A random process s ∈ Ω is

an independent random model with probability function p if the random variables

{s[i] : i ∈ {0, . . . , l − 1}} are mutually independent, identically distributed and:

P (s[i] = e) = p(e) ∀e ∈ Σ, i ∈ {0, . . . , l − 1}

Occasionally, with an abuse of notation, we use the probability vector p = (p1, p2, p3, p4),

with p1 = p(A), p2 = p(C), p3 = p(G), p4 = p(T ). When p(e) = 1/|Σ| ∀e ∈ Σ, each

character of the alphabet has the same probability of occurrence in any position of the

string. We call this an independent equiprobable random model.

The advantage of an independent random model is that each position is independent

from the other positions, which reduces the complexity of the analysis. An independent

equiprobable random model is the simplest to analyze, though it does not contain any

characteristic of the samples.
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2.3.2 1-order Markov chain random model

Definition 2.12. Let p : Σ → [0, 1] and T : Σ × Σ → [0, 1], with
∑

e∈Σ p(e) = 1 and∑
f∈Σ T (e, f) = 1 ∀e ∈ Σ. A random process s ∈ Ω is a 1-order Markov chain

random model with initial probability function p and transition function T if:

P (s[0] = e) = p(e) ∀e ∈ Σ

and if:

P (s[i] = ei | s[i− 1] = ei−1, s[i− 2] = ei−2, . . . s[0] = e0) = P (s[i] = ei | s[i− 1] = ei−1)

= T (ei−1, ei)

for any i > 0 and any possible sequence of states e0, . . . , ei ∈ Σ.

In this document we always assume that T (e, f) > 0 ∀e, f ∈ Σ. This implies that the

Markov chain has a single recurring class, and it is stationary, which means there exists

a steady-state probability function π such that
∑

e∈Σ π(e) = 1 and

lim
n→∞

P (s[i+ n] = f | s[i] = e) = π(f) ∀e, f ∈ Σ, i ≥ 0

We also assume that p = π, so that the unconditioned probability is the same for all the

positions: P (s[i] = e) = P (s[0] = e) = p(e) ∀i > 0, e ∈ Σ.

In order to avoid excessive cluttering in the notation, and to reuse some properties of

the Markov chains, with an abuse of notation we will interpret p and π as vectors of |Σ|
elements as we did in the independent models, and we will interpret T as a matrix of

size |Σ| × |Σ|, indexed as:

Tij = T (ei, ej) ∀i, j ∈ {1, . . . , |Σ|}, with Σ = {e1, . . . , e|Σ|}

In this context, π is the steady-state probability vector, while T is the transition matrix.

2.4 The Chen-Stein method

The Chen-Stein method is a powerful tool for calculating an error bound when approxi-

mating the sum of dependent random variables to a Poisson distribution with the same

mean.

In order to determine the error bound, we define the variation distance between two

random variables.
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Definition 2.13. Let Y0,Y1 be two random variables with the same domain D. The

total variation distance between Y0 and Y1 is defined as

‖L(Y0)− L(Y1)‖ = 2 sup
A⊆D

|P (Y0 ∈ A)− P (Y1 ∈ A)|

The variation distance is essentially twice the least upper bound of the error when we

calculate probabilities for the distribution of Y0 by using the distribution of Y1, and

viceversa. This result can be easily applied to the complementary cumulative distribu-

tion function:

|P (Y0 ≥ c)− P (Y1 ≥ c)| ≤ sup
A⊆D

|P (Y0 ∈ A)− P (Y1 ∈ A)|

=
1

2
‖L(Y0)− L(Y1)‖

Let {Xα : α ∈ I} be a set of dependent indicator variables, where I is the set of indices of

the variables. We want to approximate the sum W =
∑

α∈I Xα to a Poisson distribution

with the same mean. For each α, we define the neighborhood set of Xα as a subset of

indices of indicator variables, Bα ⊂ I, with α ∈ Bα. The neighborhood set is arbitrary,

but usually it should contain the indices β such that Xα and Xβ are dependent.

The following theorem shows the role of the neighborhood set in the Poisson approxi-

mation.

Theorem 2.14. Let (Xα : α ∈ I) be a collection of dependent random indicator

variables, where each one denotes the occurrence of an event, with pα = E[Xα]. Let

W =
∑

α∈I Xα be the number of occurrences, and let Z be a Poisson random variable

with E[Z] = E[W] = λ < ∞. Then the total variation distance between Z and W

satisfies:

‖L(Z)− L(W)‖ ≤ 2(b1 + b2 + b3)

where

b1 =
∑
α∈I

∑
β∈Bα

pαpβ

b2 =
∑
α∈I

∑
β∈Bα

E[XαXβ]

b3 =
∑
α∈I

sα

with

sα = E

∣∣∣∣∣∣E
Xα − pα

∣∣∣∣∣∣
∑

β∈I−Bα

Xβ

∣∣∣∣∣∣
≤

∑
J⊆I−Bα

|E [Xα − pα |EJ ]|P (EJ)
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where EJ is the event where the random variables outside the neighborhood assume the

value 1 if and only if their index is in J :

EJ = (Xβ = 1 ∀β ∈ J) ∧ (Xβ = 0 ∀β ∈ I −Bα − J)

Note that when the choice of Bα is such that Xα is independent from {Xβ : β /∈ Bα}, we

have b3 = 0. When possible, we try to use this result in order to have a simple analysis,

but in other cases choosing a smaller neighborhood may be important in order to obtain

smaller errors.





Chapter 3

Probability distribution of the

number of occurrences of a

pattern

This chapter deals with the calculation of the probability that a certain pattern occurs

in a random string at least a certain number of times (which will be called q-occurrence

probability), which is the most common way of evaluating the statistical significance of

a frequent pattern. The exact calculation for solid blocks can rely on dynamic program-

ming or other techniques, such as generating functions.

The problem of calculating the q-occurrence probability in independent models for solid

blocks is defined as follows:

Problem statement Let s be a random string of length l generated by an independent

random model with probability vector p = (pA, pC , pG, pT ). Let x ∈ Σk, where k ≤ l,

and q ∈ N. Calculate

hx(q) = Pr(N(x, s) ≥ q) = Pr(x occurs at least q times in s)

3.1 Finite Markov Chain Imbedding approach

In order to compare the exact probability with the approximated results, we implemented

a simple algorithm based on dynamic programming that can calculate the q-occurrence

probability for a word of length k to appear at least q times in O(kql) time and O(kq)

space, when independent models are used and |Σ| is constant. Additionally, we show

that a small reinterpretation of the algorithm can reduce the dependence on the length

of the text, yielding O((kq)3 log l) time complexity and O((kq)2) space complexity.

25
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Both of these methods are known in literature; the core approach is called Finite Markov

Chain Imbedding (FMCI) [3, 4, 12], which consists on mapping the values i of a random

variable X to a set of states Ci of a Markov chain {Y1, . . .Yn}, such that Pr(X = i) =

Pr(Yn ∈ Ci).

Our procedure has been developed independently. We start from an initial, simple con-

sideration regarding the relation between the probability which we have to estimate and

the evolution of a deterministic finite automaton (DFA) that recognizes q occurrences

of the pattern in a text. We will use this consideration to formulate a recursive formula

for the calculation of the probability, obtaining a dynamic programming algorithm with

O(kql) time complexity.

Subsequently, we notice the similarities between a DFA and a Markov chain under some

conditions. These similarities will bring to the second algorithm, whose time complexity

is O((kq)3 log l).

Initial considerations We now consider the following function, for r ≥ 0, 0 ≤ i ≤ l,

and 0 ≤ j ≤ k − 1:

hx(i, (r, j)) = Pr {x occurs at least r times in s[l − i− j . . . l − 1]

| s[l − i− j . . . l − i− 1] = x[0 . . . j − 1]

∧ s[l − i− j′ . . . l − i− 1] 6= x[0 . . . j′ − 1] ∀j′ > j, j′ < k
}

This function is the probability for x to complete r occurrences in the last i unknown

characters of s, when j is the maximum number of previous characters that match the

first j characters of x, except x itself. Note that hx(q) = hx(l, (q, 0)).

The idea at the base of this function is to study the evolution of a deterministic finite

automaton A = (Q,Σ, δ, q0, F ) that recognizes the language L = {s ∈ Σ∗ : N(x, s) ≥
q}. It is possible to construct such an automaton by defining the set of states Q =

{0, . . . , q} × {0, . . . , |x| − 1}. Each state (r, j) ∈ Q indicates that the automaton has

already recognized q − r occurrences of x, while j is the current number of matched

characters of x, which is the size of the longest suffix of the past input that is also a

prefix of x. The set of final states is F = {(0, j) ∀j ∈ {0, . . . , |x|−1}}, while the transition

function can be precomputed in O(qk|Σ|) time, by extending the Knuth-Morris-Pratt

algorithm.

The KMP algorithm employs a ”partial match” table (also called failure function), which

can be seen as a succint representation of a finite-state automaton that recognizes at

least one occurrence of the pattern in the text. From this table, it is simple to build

an explicit automaton that recognizes q occurrences. A graphical example is shown in

Figure 3.1.
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2,0 2,1 2,2 2,3

A A A

C,T,G

C,T,G C,T,G

C,T,G

3,0 3,1 3,2 3,3

A A A

C,T,G

C,T,G C,T,G

C,T,G

1,0 1,1 1,2 1,3

A A A

C,T,G

C,T,G C,T,G

C,T,G

0,*

A

A

A

*

Figure 3.1: A DFA recognizing texts that contain the pattern “AAAA” three times.
The initial state is (3, 0), while the final states have been condensed in a single absorbing
state (0, ∗). Note that after an occurrence of the pattern, the automaton transitions to
a state that has already recognized 3 characters of the pattern.

Dynamic programming First of all, we show that we can give a recursive definition

of hx(i, (r, j)), and use the limited number of subproblems to develop a simple algorithm

for the q-occurrence probability.

Theorem 3.1.

hx(i, (r, j)) =


1 if r = 0

0 if (r > 0) ∧ (i = 0)∑
c∈Σ pc · hx(i− 1, δ((r, j), c)) if (r > 0) ∧ (i > 0)

where

δ((r, j), c) =


(r, j + 1) if c = x[j] ∧ j < k − 1

(r − 1,LPx(x[1 . . . k − 1])) if c = x[j] ∧ j = k − 1

(r,LPx(x[1 . . . j − 1]c)) if c 6= x[j]

and LPa(b) is the length of the longest prefix of a that is a suffix of b:

LPa(b) = max{ĵ ≤ |b| : a[0 . . . ĵ − 1] = b[|b| − ĵ . . . |b| − 1]}
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Proof. The pattern x always occurs at least 0 times in any string in Σ∗, thus h(i, (0, j)) =

1 ∀i, j. We prove the rest of the recurrence by induction on the values of i.

Base case When i = 0 and r > 0, we cannot complete any occurrence of x with 0

characters, so h(0, (r, j)) = 0 ∀r > 0.

Recursion Suppose that the recurrence holds for i′ ≤ i− 1. We use the total proba-

bility theorem to decompose the definition of hx(i, (r, j)):

hx(i, (r, j)) =
∑
c∈Σ

pcEi,(r,j),c

Where

Ei,(r,j),c = Pr {x occurs at least r times in s[l − i− j . . . l − 1]

| s[l − i− j . . . l − i− 1] = x[0 . . . j − 1]

∧ s[l − i− j′ . . . l − i− 1] 6= x[0 . . . j′ − 1] ∀j′ > j, j′ < k

∧ s[l − i] = c}

We now study the probability Ei,(r,j),c.

Case I When c 6= x[i], we have that x cannot occur in position l − i − j. The next

candidate occurrence position for x is the first position after l − i− j where x matches

the currently determined characters of s, or l − i + 1 if x does not match any of the

determined characters. The condition of Ei,(r,j),c fixes s[l− i− j . . . l− i] = x[0 . . . j− 1]c

and that there are no partial matches that are greater than j. We calculate the next

candidate occurrence by getting the largest possible match for x, which is the largest

value of ĵ ≤ j such that s[l − i− ĵ + 1 . . . l − i] = x[0 . . . ĵ − 1]. This is the definition of

LPx(x[1 . . . j − 1]c). Thus

Ei,(r,j),c = Pr
{
x occurs at least r times in s[l − i− ĵ + 1 . . . l − 1]

| s[l − i− ĵ + 1 . . . l − i] = x[0 . . . ĵ − 1]

∧ s[l − i− j′ + 1 . . . l − i] 6= x[0 . . . j′ − 1] ∀j′ > ĵ, j′ < k
}

= hx(i− 1, (r, ĵ)) = hx(i− 1, δ((r, j), c))
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Case II When c = x[i] and j < k − 1, we do not have an occurrence of x in l − i− j
yet, but the pattern may still occur in this position. We have

Ei,(r,j),c = Pr {x occurs at least r times in s[l − i− j . . . l − 1]

| s[l − i− j . . . l − i] = x[0 . . . j − 1]x[j]

∧ s[l − i− j′ . . . l − i] 6= x[0 . . . j′ − 1]x[j′] ∀j′ > j, j′ < k
}

= hx(i− 1, (r, j + 1)) = hx(i− 1, δ((r, j), c))

Case III When c = x[i] and j = k − 1, then x occurs at position l − i− j. We need

to count r − 1 more occurrences of x in the next positions:

Ei,(r,j),c = Pr {x occurs at least r − 1 times in s[l − i− j + 1 . . . l − 1]

| s[l − i− j . . . l − i] = x}

= Pr {x occurs at least r − 1 times in s[l − (i− 1)− j . . . l − 1]

| s[l − (i− 1)− (j + 1) . . . l − (i− 1)− 1] = x}

We determine a new candidate position by getting the largest value of ĵ < j + 1 such

that s[l − (i − 1) − ĵ . . . l − (i − 1) − 1] = x[0 . . . ĵ − 1]. This is equivalent to ĵ =

LPx(s[l−(i−1)−(j+1)+1 . . . l−(i−1)−1]) = LPx(x[1 . . . (j+1)−1]) = LPx(x[1 . . . k−1]),

where we removed the first known character of s as its position corresponds to the

previously counted occurrence of x. Thus

Ei,(r,j),c = Pr
{
x occurs at least r − 1 times in s[l − (i− 1)− ĵ . . . l − 1]

| s[l − (i− 1)− ĵ . . . l − (i− 1)− 1] = x[0 . . . ĵ − 1]

∧ s[l − (i− 1)− j′ . . . l − (i− 1)− 1] 6= x[0 . . . j′ − 1] ∀j′ > ĵ, j′ < k
}

= hx(i− 1, (r − 1, ĵ)) = hx(i− 1, δ((r, j), c))

In conclusion, for r > 0 and i > 0, we have

hx(i, (r, j)) =
∑
c∈Σ

pcEi,(r,j),c =
∑
c∈Σ

pchx(i− 1, δ((r, j), c))
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Algorithm 1 Dynamic programming algorithm for the calculation of the exact proba-
bility of q-occurrence.

Input: 〈Σ, p, l, x, q〉, where p ∈ [0, 1]|Σ|,
∑

c∈Σ pc = 1 , l ∈ N, x ∈ Σ∗, q ∈ N, q ≤ l−|x|+1

Output: hx(q) = Pr(x occurs at least q times in s)

{Initialize the subproblem matrix}
for r ∈ {1, . . . , q} do

for j ∈ {0, . . . , k − 1} do

M(0, r, j)← 0

end for

end for

for i ∈ {0, . . . , l} do

for j ∈ {0, . . . , k − 1} do

M(i, 0, j)← 1

end for

end for

{i-major scan of the subproblems}
for i ∈ {1, . . . , l} do

for j ∈ {0, . . . , k − 1} do

for r ∈ {1, . . . , q} do

M(i, r, j)← 0

for c ∈ Σ do

M(i, r, j)←M(i, r, j) + pcM(i, δ(r, j))

end for

end for

end for

end for

return M(l, q, 0)

The correctness of this algorithm comes from the previous theorem. The ”i-major”

scan of the algorithm guarantees that each value is computed only when all the values

needed by the recursive definition are already computed. The transition function δ

can be precomputed in O(|Q||Σ|) = O(qk|Σ|) time by using the KMP algorithm. The

time complexity of the algorithm is dominated by the four nested loops that solve each

subproblem. Thus, the complexity of this algorithm is O(lqk|Σ|).

The space required by the matrix is O(lqk), but it can be reduced to O(qk) by keeping

only the current row and the previous row of M , precisely the values of M (̂i, r, j) with

î ∈ i− 1, i.

Transition matrix algorithm When the input characters are i.i.d random variables

with a known distribution, the DFA can be mapped to a Markov chain, with G =
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{g1, . . . , g|G|} = Q as the set of states, y as the initial probability vector with

yi =

1 if gi = (q, 0)

0 otherwise

and a transition matrix D ∈ R|Q|×|Q|, with

Dij =
∑

c∈Σ:δ(gi,c)=gj

pc

We can calculate the final probability for each state after l transition easily:

Pr(Xl = qi) = (pT l)i

Thus, we can implement an alternative algorithm with a time complexity that has a

limited dependence on the length of the sequence.

Algorithm 2 FMCI algorithm for the calculation of the exact probability of q-
occurrence.

Input: 〈Σ, p, l, x, q〉, where p ∈ [0, 1]|Σ|,
∑

c∈Σ pc = 1 , l ∈ N, x ∈ Σ∗, q ∈ N, q ≤ l−|x|+1

Output: hx(q) = Pr(x occurs at least q times in s)

for r1 ∈ {1, . . . , q} do

for j1 ∈ {0, . . . , k − 1} do

v(r1,j1) ← 0

for r2 ∈ {1, . . . , q} do

for j2 ∈ {0, . . . , k − 1} do

T(r1,j1),(r2,j2) ← 0

end for

end for

for c ∈ Σ do

(r2, j2)← δ((r1, j1), c)

T(r1,j1),(r2,j2) ← T(r1,j1),(r2,j2) + pc

end for

end for

end for

v(q,0) ← 1

a← vT l

return
∑

j a(0,j)

The construction of the transition matrix takes O((qk)2 +qk|Σ|) time, while most of the

time is spent in the calculation of the power of this matrix. If we use a näıve algorithm
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for the multiplication, with a divide-and-conquer algorithm for the exponentiation, we

obtain a time complexity of O((qk)3 log l).

Markov models and wildcards Both algorithms can be extended in the Markov

random model case. Suppose that m is the order of the Markov random model. The DFA

that recognizes q occurrences of the pattern is still the same, but in order to determine

the transition probability from one state to another, we need to know the previous m

characters. If j < m, the state of the DFA does not contain this information. In order

to use the same procedure, we need to add more states in the DFA such that each state

determines the last m characters. We can substitute each state (r, j) with a new state

described by the triplet (r, j, y), with y ∈ Σm−j , such that y · x[0 . . . j − 1] describes the

last m characters of the chain. The main issue is that we need a large number of states

to complete the DFA:

|Q| = (k −m)(q + 1) +
m−1∑
j=0

(q + 1)|Σ|m−j ≥ (k −m)(q + 1) + (q + 1)|Σ|m

Thus, the number of states and the time complexity of the algorithm is exponential in m.

Furthermore, the transition function δ must be redesigned so that it adds the necessary

information in the state. In practice, these algorithms (especially the transition matrix

power algorithm) become inefficient unless m is very small, as with 1-order Markov

chains.

We have the same issue if we try to consider patterns that have wildcards. In this case,

the DFA described above must be adapted in order to keep the characters that match a

wildcard in the pattern, and the function LPx that finds the new candidate position must

receive these characters in input. We also lose the O(k) time complexity guaranteed by

the KMP algorithm for the calculation of LPx.

3.2 Related works

This problem is not new in literature, and other approaches have been proposed, in

order to provide exact calculation even for patterns with wildcards or with Markov

chain random models. One approach is given in [25], which considers the number of

occurrences as a sum of random variables that indicate the occurrence of the pattern in

a certain position. The probability of having at least q occurrences is then calculated by

using the inclusion-exclusion principle, by considering all the possible subsets of indicator

variables. The subset are grouped by their size a and their first obligatory occurrence

position b. The sum of all the probabilities for this group is defined as P (a, b). The

authors show that, for specific categories of patterns, the calculation of P (a, b) (hence,

the result) can be done through dynamic programming, with O(l3) time complexity.
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Other works use the mathematical properties of probability generating functions. In

[14] the authors analyze the language containing the texts with exactly q occurrences

of a set of solid patterns, and decompose the language into smaller, basic languages.

These basic languages are associated to probability generating functions with special

properties, which are employed to obtain the mean number of occurrences for each

pattern and the covariance matrix for the pairs of patterns. The authors also consider

the q-occurrence probability for a single pattern, and for solid patterns in an independent

random model they provide a method to calculate the coefficients of a linear recurrence

relation of degree kq on the q-occurrence probability in texts of length l. Then, the l-th

value of the recurrence can be obtained by rewriting the recurrence relation in terms of

matrix multiplication and calculating the l-th power of the recurrence matrix, yielding

a O((kq)3 log l) time complexity. This solution is more complex, and it is trickier to use

with Markov models.

In [5], the authors use the probability generating functions to obtain a recurrence relation

for the probability distribution of Nx(s) for independent equiprobable models, for which

they need only the length of s, the number of occurrences q and the overlap capability of

the solid pattern, which is a vector of positions on which a pattern can overlap with itself.

From the recurrence relation, they obtain an algorithm that calculates the probability

distribution from 0 to q in O(kql) time and O(kq) space. This method is limited to

independent equiprobable models, and it calculates only the probability distribution;

the CDF is calculated by summing each term of the probability distribution from 0 to q.





Chapter 4

Poisson approximation for the

number of occurrences

Our first goal is to determine the error bound on the Poisson approximation of the

distribution of the number of occurrences of a given pattern. These results can be used

to calculate an approximation of the q-occurrence probability of a pattern, and for some

families of patterns under some conditions, they can provide a reasonable approximation

more efficiently than the exact algorithms. Furthermore, when independent models are

used, we can show that the expressions for the approximate q-occurrence probability

and the error bound can be used to estimate the number of frequent patterns, which

will be analytically estimated in the following chapter.

4.1 Preliminary definitions

In order to apply the Chen-Stein theorem, we define the number of occurrences as

N(x, s) =
l−k∑
i=0

ξs(x, i)

where ξs(x, i) = 1 when x occurs in s at position i.

Let s be a random process as one of those described in section 2.3. We define Nx =

N(x, s) which is a random variable obtained from the sum of l− k+ 1 random indicator

variables:

Nx =
l−k∑
i=0

Hx,i Hx,i = ξs(x, i)

35



36 Chapter 4 Poisson approximation for the number of occurrences

Generally, these variables are dependent from each other, but we will show that in most

cases the indicator variables share the same mean, and the number of dependent pairs

is limited.

4.2 Independent equiprobable case

In this section, we assume that the random model for s is an independent equiprobable

random model, with l = |s|. We are given a pattern x of length k, with 1 ≤ k < l,

and we want to calculate E[Nx] and a bound on the error on the approximation of its

distribution to a Poisson random variable.

The calculation of the probability of x to occur in the text in any position is straight-

forward, thanks to the independence of each position:

E[Hx,i] = P (s[i, i+ k − 1] = x[0, k − 1])

= P (s[i] = x[0])P (s[i+ 1] = x[1]) . . . P (s[i+ k − 1] = x[k − 1])

=
1

4k

Consequently, the mean number of occurrences is easy to obtain through the linearity

of the expectation:

µx = E[N(x)] =

l−k∑
i=0

E[Hx,i] =

l−k∑
i=0

1

4k
=
l − k + 1

4k

Note that in this situation, the mean is the same for all the patterns of length k regardless

of their structure, so we can omit the subscript: µx = µ ∀x ∈ Σk.

We define the index set as I = {0, . . . , l− k} and the neighborhood set as Bi = {j ∈ I :

|j − i| < k} ∀i ∈ I. It is easy to show that the neighborhood set includes the indexes of

all the variables that are dependent from Hx,i.

Theorem 4.1. Hx,i is independent from {Hx,j : j ∈ I −Bi}.

Proof. As any position is independent from the others, we just have to show that the

set of occurrences described by {Hx,j : j ∈ I −Bi} does not share any position with the

occurrence of x in i. Suppose that j < i: for the definition of Bi, we have j ≤ i− k, and

j + k − 1 < i. The joint probability of the event Hx,j = 1 and Hx,i=1 is

P (Hx,j = 1 ∧Hx,i = 1) = P (s[j, j + k − 1] = x ∧ s[i, i+ k − 1] = x)

= P (s[j, j + k − 1] = x)P (s[i, i+ k − 1] = x)

= P (Hx,j = 1)P (Hx,i = 1)
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The same approach holds when j > i.

Thanks to the previous theorem, we already know from Theorem 2.14 that b3 = 0. We

now give some bounds for b1 and b2.

Theorem 4.2.

b1 ≤
2k − 1

l − k + 1
µ2

Proof. We simply have to apply the formula for b1, approximate the results by ignoring

the reduced number of neighbors for indices near the beginning or the end of the text,

and apply Theorem 4.1:

b1 =
l−k∑
i=0

∑
j∈Bi

E[Hx,i]E[Hx,j ] =
l−k∑
i=0

∑
j∈Bi

1

42k

≤
l−k∑
i=0

i+k−1∑
j=i−k+1

1

42k
=

l−k∑
i=0

2k − 1

42k

=
(l − k + 1)(2k − 1)

42k
=

2k − 1

l − k + 1
µ2

Our bound on b1 is sharp when l � k, which is usually the case in the discovery of

frequent patterns.

The estimation of b2 requires to evaluate the joint probability of positions where the

pattern may overlap with itself if it occurs in both positions. This event can occur only

if x can partially overlap with itself, that is when a suffix of x corresponds to its own

prefix.

Definition 4.3. A pattern x ∈ Σk is self-overlapping with distance 0 < d < k, or

equivalently, periodic with period d if:

x[d . . . k − 1] = x[0 . . . k − d− 1]

We define the periodicity indicator function as:

εx(d) =

1 if x is periodic with period d

0 otherwise

The periodicity indicator function lets us give a compact form for the joint probability

of Hx,iHx,j :
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Theorem 4.4.

E[Hx,iHx,j ] =

 1
42k

if |j − i| ≥ k

εx(|j − i|) 1
4k+|j−i|

otherwise

Proof. The case |j − i| ≥ k can be obtained directly from the independence of Hx,i and

Hx,j . When d = |j − i| < k, we have that the two events are overlapping. Let j < i; we

have that j < i < j + k < i+ k. Between i and j + k − 1, the two occurrences overlap,

and we need to verify the following conditions for the event to occur:

s[i . . . j + k − 1] = s[j + d . . . j + k − 1] = x[d . . . k − 1]

= s[i . . . i+ k − d− 1] = x[0 . . . k − d− 1]

=⇒ x[d . . . k − 1] = x[0 . . . k − d− 1]

This means that E[Hx,iHx,j ] = 0 when εx(|j − i|) = 0. If the pattern is periodic with

period d, we have:

E[Hx,iHx,j ] = P (s[j . . . j + k − 1] = x ∧ s[i . . . i+ k − 1] = x)

= P (s[j . . . i− 1] = x[0 . . . d− 1] ∧ x[i . . . i+ k − 1] = x)

=
1

4d
1

4k
=

1

4k+d

The same result holds when j > i.

We can now calculate a bound on the value of b2.

Theorem 4.5.

b2 ≤ 2µx

k−1∑
d=1

εx(d)
1

4d

Proof. We simply apply Theorem 4.4 in the formula of b2, following the same procedure

we used for the calculation of b1:

b2 =
∑
i∈I

∑
j∈Bi/{i}

E[Hx,iHx,j ]

=
∑
i∈I

∑
j∈Bi/{i}

εx(|j − i|) 1

4k+|j−i|

≤
∑
i∈I

2

4k

k−1∑
d=1

εx(d)
1

4d

= 2
l − k + 1

4k

k−1∑
d=1

εx(d)
1

4d

= 2µ
k−1∑
d=1

εx(d)
1

4d
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Pattern Average Error (b1 + b2)

AAAAAAAAAA 0.476829 0.317893

AATAATAATA 0.476829 0.015146

AAAAAAAAAT 0.476829 8.64004 · 10−6

AAAAAAAAAAAAAAA 0.000465648 0.000310432

AATAATAATAATAAT 0.000465648 1.47825 · 10−5

AAAAAAAAAAAAAAT 0.000465648 1.25764 · 10−11

AAAAAAAAAAAAAAAAAAAA 4.5473 · 10−7 3.03153 · 10−7

AATAATAATAATAATAATAA 4.5473 · 10−7 1.44359 · 10−8

AAAAAAAAAAAAAAAAAAAT 4.5473 · 10−7 1.61294 · 10−17

Table 4.1: Expected number of occurrences and approximation error bounds for the
occurrence probability of some patterns. The random text of length l = 500000 is
generated in an independent equiprobable model.

The value of b2 depends heavily on the values of the periodicity function εx. Its minimum

value is 0, which occurs when the pattern is aperiodic, while it assumes its maximum

value when the pattern has period 1, in the degenerate case x[0] = x[1] = · · · = x[k− 1],

where:

b2 ≤ 2µ
k−1∑
d=1

1

4d
= 2µ

(1/4)− (1/4k)

1− 1/4
<

2

3
µ

In conclusion, we obtained that in the independent equiprobable case all the patterns

have the same mean µ = (l − k + 1)/4k, while the total Poisson approximation error

bound b1 + b2 lies between 2k−1
l−k+1µ

2 and 2
3µ + 2k−1

l−k+1µ
2. From this result, we can infer

that the error bound is small when the mean is sufficiently low (much less than 1), or for

aperiodic patterns when l� 2kµ2, or equivalently when l� 42k/(2k), thus the patterns

must be adequate with respect to the length of the text.

Some values for the expected number of occurrences and the error bounds on the ap-

proximation are shown in Table 4.1, calculated by using the previous theorems. The

results confirm that the quality of the error bound degrades for patterns with a small

period.

A logarithmic-scale comparison between the Poisson approximation and the exact prob-

ability can be found in Figure 4.1. The figure shows the probability of occurrence for

three different patterns with different periodicity, in an independent equiprobable model.

We can see that the probabilities tend to diverge significantly when the patterns have a

small period compared to the length of the pattern. However, the error bound given in

Table 4.1 largely overestimates the error in the complementary cumulative distribution

function.
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Figure 4.1: Logarithmic scale comparison between the Poisson approximation for the
occurrence probability and the exact probabilities of a 1-periodic pattern, a 3-periodic
pattern and an aperiodic pattern of length k = 10 and k = 20, in a text of length
l = 500000 generated with an independent equiprobable random model.
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4.3 Independent non-equiprobable case

We adapt the previous results for independent random processes with character prob-

ability pe : e ∈ Σ. First of all, we define the probability of an occurrence in position

i:
E[Hx,i] = P (s[i] = x[0])P (s[i+ 1] = x[1]) . . . P (s[i+ k − 1] = x[k − 1])

= px[0]px[1] . . . px[k−1]

The probability is independent from i, so we define px = px[0]px[1] . . . px[k−1]. The mean

number of occurrences can be calculated as usual:

µx = E[Nx] =

l−k∑
i=0

E[Hx,i] =

l−k∑
i=0

px = (l − k + 1)px

We define I = {0, . . . , l − k} and Bi = {j ∈ I : |j − i| < k} ∀i ∈ I, as before. Theorem

4.1 still holds, thus b3 = 0. We can easily adapt the calculation of b1 and b2:

Theorem 4.6.

b1 ≤
2k − 1

l − k + 1
µ2
x

b2 ≤ 2µx

k−1∑
d=1

εx(d) px[0...d−1]

Proof. The calculation of b1 is now straightforward:

b1 =
l−k∑
i=0

∑
j∈Bi

E[Hx,i]E[Hx,j ] =
l−k∑
i=0

∑
j∈Bi

p2
x

≤ (l − k + 1)(2k − 1)p2
x =

2k − 1

l − k + 1
µ2
x

For the calculation of b2:

b2 =
∑
i∈I

∑
j∈Bi/{i}

εx(d) px px[0...d−1]

≤
∑
i∈I

2
k−1∑
d=1

εx(d) px px[0...d−1]

= 2px(l − k + 1)

k−1∑
d=1

εx(d) px[0...d−1]

= 2µx

k−1∑
d=1

εx(d) px[0...d−1]
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In this case, the value of b2 depends both on the periodicity of x and the characters it is

composed of. The worst case is when x[0] = x[1] = · · · = x[k−1] = arg max{pe : e ∈ Σ}.
If we define pmax = max{pe : e ∈ Σ}, we can give a general bound to the value of b2:

b2 ≤ 2µx

k−1∑
d=1

pdmax = 2µx
pmax − pkmax

1− pmax
<

2pmax
1− pmax

µx

4.4 1-order Markov chain

With 1-order Markov chains, we lose the benefit of independence between positions, but

if the transition matrix has certain properties, then we can use a limited neighborhood

while keeping the value of b3 under control.

We assume that the random model is a 1-order Markov chain, with transition matrix T ,

and that the Markov chain has a stationary vector π. We also assume that the initial

probability vector p is equal to the stationary vector. With these conditions, we have

that the probability of occurrence in a certain position is the same for all the positions:

E[Hx,i] = px = P (s[i . . . i+ k − 1] = x)

= P (s[i] = x[0])
k−1∏
j=1

P (s[i+ j] = x[j] | s[i . . . i+ j − 1] = x[0 . . . j − 1])

= P (s[i] = x[0])
k−1∏
j=1

P (s[i+ j] = x[j] | s[i+ j − 1] = x[j − 1])

= (p · T i)x[0]

k−1∏
j=1

Tx[j−1],x[j]

= πx[0]

k−1∏
j=1

Tx[j−1],x[j]

We can obtain the mean number of occurrences as usual:

µx = E[N(x)] = (l − k + 1)px

In general, the joint probability of occurence for two patterns can be calculated as

follows:

Theorem 4.7.

E[Hx,iHx,j ] =


px if i = j

εx(d) pxTx[d−1],x[0]
px[0...d−1]

πx[0]
if d = |j − i| < k, i 6= j

(px)2

πx[0]
(T d−k+1)x[k−1],x[0] if d = |j − i| ≥ k
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Proof. The first case, where i = j, is trivial. Now suppose that j < i, without loss of

generality. In the second case, with 0 < d = |j − i| < k, the two occurrences of x are

overlapping. Thus, the two events can happen simultaneosly only when εx(d) = 1. In

this case, we can see that x occurs in position i and j if and only if x[0 . . . d−1] ·x occurs

in position j. The probability of this event is:

px[0...d−1]·x = πx[0]

(
d−1∏
r=1

Tx[r−1],x[r]

)
Tx[d−1],x[0]

k−1∏
r=1

Tx[r−1],x[r]

= px[0...d−1]Tx[d−1],x[0]

k∏
r=1

Tx[r−1],x[r]

= px[0...d−1]Tx[d−1],x[0]
px
πx[0]

In the third case, the occurrences do not overlap, and as we assumed that T (e, f) >

0 ∀e, f ∈ Σ, this event has a nonzero probability of occurrence. Assuming that j < i,

there are d − k = i − j − k ≥ 0 characters between the two occurrences in the text,

so there are d− k + 1 transitions between the last character of the first occurrence and

the first character of the second occurrence (between s[j + k − 1] and s[i]). The first

occurrence influences the probability of the first character of the second occurrence; the

probability of this event is:

E[Hx,iHx,j ] = px

[
(T d−k+1)x[k−1],x[0]

] k∏
r=1

Tx[r−1],x[r]

= px

[
(T d−k+1)x[k−1],x[0]

] px
πx[0]

=
(px)2

πx[0]

[
(T d−k+1)x[k−1],x[0]

]

In the third case, we have that Hx,i is dependent on Hx,j , unless we have (T d−k+1)x[k−1],x[0] =

πx[0]. However, with some Markov chains, we can assume that the transition probability

converges quickly to the stationary probability. We can use this to limit the size of the

neighborhood set and keep b3 under control.

We now choose a value of ϕ ∈ (0, 1), and we find the minimum value c such that the

transition probabilities after c steps differ from the stationary probability by no more

than ϕ. First of all, we show that further steps will still satisfy the condition.

Theorem 4.8. Let 0 < Tij < 1 ∀i, j, ϕ ∈ (0, 1) and c = min{c′ : |(T c′)ij − πj | < ϕ}.
Then, for any c′ > c:

|(T c′)ij − πj | < ϕ
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Proof. We prove the upper bound (T c
′
)ij < πj + ϕ, by splitting the power of the tran-

sition matrix in two factors, T c
′−cT c then we bound the values for T c and exploit the

stochasticity of the transition matrix, which implies that the rows of any power of T

must sum to 1:
(T c

′
)ij = (T c

′−c T c)ij =
∑
k

(T c
′−c)ik (T c)kj

≤
∑
k

(T c
′−c)ik(πj + ϕ)

= (πj + ϕ)
∑
k

(T c
′−c)ik = πj + ϕ

The same approach holds for the lower bound.

We now define Bi = {j ∈ I : |j − i| ≤ k + c}. We adapt the definition of b3 to our case:

b3 =
l−k∑
i=0

si

with

si = E

∣∣∣∣∣∣E
Hx,i − px

∣∣∣∣∣∣
∑

j∈I−Bi

Hx,j

∣∣∣∣∣∣
≤

∑
J⊆I−Bi

|E [Hx,i − px |EJ ]|P (EJ)

Where EJ is the event where each random variable outside the neighborhood has value

1 if and only if its index is in J . We now show that it is possible to approximate each

term of the summation, regardless of EJ , in order to obtain a bound on b3. Through

this bound, we obtain the following theorem:

Theorem 4.9. Let bmax3 ∈ (0, 1). If we choose ϕ such that:

0 < ϕ ≤ bmax3

3|Σ|k
min{πb : b ∈ Σ}

and define the neighborhood as Bi = {j ∈ I : |j − i| ≤ k + c}, with c = min{c′ :

|(T c′)ij − πj | < ϕ}, then b3 ≤ bmax3 .

Proof. From the hypothesis, we note that there exists a value of R > 0 such that:

ϕ ≤ Rπb ∀b ∈ Σ

Let i ∈ I. In order to evaluate si, we split the event EJ in two events: EJ = EJL∧EJR,

where

EJL = (Hx,β = 1 ∀β ∈ J : β < i) ∧ (Hx,β = 0 ∀β ∈ I −Bα − J : β < i)
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EJR = (Hx,β = 1 ∀β ∈ J : β > i) ∧ (Hx,β = 0 ∀β ∈ I −Bα − J : β > i)

Essentially, EJL and EJR represent the conditioning occurrence events whose positions

are lower or higher than i, respectively. We only consider the indices i such that neither

EJL nor EJR are empty; the results can be easily extended to the other cases.

The purpose is to calculate the conditioned probabilty as:

Pr(Hx,i = 1|EJ) =
Pr(Hx,i = 1 ∧ EJ)

Pr(EJ)

and give an upper bound on the conditional probability by finding an upper bound for

the numerator and a lower bound for the denominator; to do this, we calculate these

probabilities by considering each event in order of position; to avoid considering each

possible configuration of EJL and EJR, we determine the last position that may be

“directly dependent” on EJL, and the first such position in EJR. As we defined the

neighborhood set as Bi = {j ∈ I : |j − i| ≤ k + c}, the positions are γ1 = (i − k − c −
1) + k − 1 = i− c− 2, and γ2 = i+ k + c+ 1, respectively. Subsequently, we apply the

law of total probability.

The joint probability can be expressed as follows:

Pr(Hx,i = 1 ∧ EJ) =
∑
a∈Σ

∑
b∈Σ

Pr(EJL) · Pr(s[γ1] = a | EJL)

· Pr(Hx,i = 1 | (s[γ1] = a) ∧ EJL)

· Pr(s[γ2] = b | Hx,i = 1 ∧ (s[γ1] = a) ∧ EJL)

· Pr(EJR | s[γ2] = b ∧Hx,i = 1 ∧ (s[γ1] = a) ∧ EJL)

We now use the Markov property:

Pr(Hx,i = 1 ∧ EJ) =
∑
a∈Σ

∑
b∈Σ

Pr(EJL) · Pr(s[γ1] = a|EJL)

· Pr(Hx,i = 1|s[γ1] = a)

· Pr(s[γ2] = b|Hx,i = 1)

· Pr(EJR|s[γ2] = b)

We now give some upper bounds to the terms that do not depend on EJ :

Pr(Hx,i = 1|s[γ1] = a) = (T i−γ1)a,x[0]
px
πx[0]

≤ px
πx[0]

(πx[0] + ϕ) = px +
ϕ

πx[0]

Pr(s[γ2] = b|Hx,i = 1) = Pr(s[γ2] = b | s[i+ k − 1] = x[k − 1])

= (T γ2−(i+k−1))x[k−1],b ≤ πb + ϕ
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Finally, we obtain:

Pr(Hx,i = 1 ∧ EJ) ≤
[
px +

ϕ

πx[0]

]∑
a∈Σ

∑
b∈Σ

Pr(EJL) · Pr(x[γ1] = a | EJL)

· (πb + ϕ) · Pr(EJR | s[γ2] = b)

=

[
px +

ϕ

πx[0]

]
Pr(EJL)

∑
b∈Σ

(πb + ϕ) · Pr(EJR | s[γ2] = b)

·
∑
a∈Σ

Pr(x[γ1] = a | EJL)

=

[
px +

ϕ

πx[0]

]
Pr(EJL)

∑
b∈Σ

(πb + ϕ) · Pr(EJR | s[γ2] = b)

≤
[
px +

ϕ

πx[0]

]
Pr(EJL) [(1 +R)Pr(EJR)]

We now need to give an upper bound to the denominator:

Pr(EJ) =
∑
a∈Σ

∑
b∈Σ

Pr(EJL) · Pr(x[γ1] = a | EJL)

· (T γ2−γ1)a,b · Pr(EJR | s[γ2] = b)

≥
∑
a∈Σ

∑
b∈Σ

Pr(EJL) · Pr(x[γ1] = a | EJL)

· (πb − ϕ) · Pr(EJR | s[γ2] = b)

= Pr(EJL)
∑
b∈Σ

(πb − ϕ) · Pr(EJR|s[γ2] = b)

≥ Pr(EJl) [(1−R)Pr(EJR)]

Finally we can obtain the upper bound on the conditioned probability:

Pr(Hx,i = 1|EJ) =
Pr(Hx,i = 1 ∧ EJ)

Pr(EJ)
≤
[
px +

ϕ

πx[0]

]
1 +R

1−R
≤ (px +R)

1 +R

1−R

= px + px
2R

1−R
+R

1 +R

1−R

We can obtain a lower bound with the same procedure:

Pr(Hx,i = 1|EJ) =
Pr(Hx,i = 1 ∧ EJ)

Pr(EJ)
≥
[
px −

ϕ

πx[0]

]
1−R
1 +R

≥ (px −R)
1−R
1 +R

= px − px
2R

1 +R
−R1−R

1 +R
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Thus, the absolute value for the conditional expectation is at most:

|E[Hx,i − px|EJ ]| = |Pr(Hx,i = 1|EJ)− px|

≤ max

{
px

2R

1−R
+R

1 +R

1−R
, px

2R

1 +R
+R

1−R
1 +R

}
≤ R

1−R
(2px + 1 +R)

When R is sufficiently small, we get the approximate bound:

|E[Hx,i − px|EJ ]| ≤ R(2px + 1)

This bound does not depend on EJ , thus:

b3 =
∑
α∈I

sα ≤
∑
x∈Σk

R(2px + 1) = |Σ|kR+ 2R
∑
x∈Σk

px ≤ 3R|Σ|k

Thus, if we want to limit b3 to a specified maximum value bmax3 , we can impose:

ϕ ≤ bmax3

3|Σ|k
min{πb : b ∈ Σ}

4.5 Extension to structured motifs

The Chen-Stein method is flexible, and can also be applied to patterns that contain

wildcards. Its applicability is only limited to how the pattern may self-overlap.

In order to maintain the tractability of the problem, we consider a small family of motifs

in the form w = w1 ◦t w2, where the solid patterns w1, w2 are separated by t wildcard

characters, and |w1| = |w2| = m ≤ t (thus |w| = k = t+ 2m).

The probability of occurence is still the same for each position. With independent

random models, we get:

pw = pw1pw2

And pw = 1/42m for the equiprobable random model. These probabilities are equivalent

to the probabilities obtained by the solid pattern w′ = w1w2. with a With 1-order

Markov chains, the wildcards introduce a slight difference:

pw = pw1(T t+1)w1[m−1],w2[0]
pw2

πw2[0]
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When t is sufficiently large, the probability converges to pw1pw2 . The mean number of

occurrences follows the usual expression: µw = (l − k + 1)pw.

Generally, two occurrences i and j of the same motif are said to be overlapping when

|j − i| < k, and overlapping occurrences are usually dependent on each other. However,

we can see that the pairs of occurrences i, j are independent when each character of any

pattern overlaps only with wildcards of the other pattern. The particular form of the

pattern w lets us define a smaller neighborhood set:

Bi = {j ∈ i : |j − i| < m ∨ t < |j − i| < k}

We now present some bounds for b1 and b2 in independent models. The calculation of

b1 is straightforward:

b1 =
∑
α∈I

∑
β∈Bα

p2
w ≤ (l − k + 1)(6m− 3) · p2

w =
(6m− 3)

l − k + 1
µ2
w ≤

2k − 1

l − k + 1
µ2
w

We can observe that b1 is less than the error bound for a solid pattern x of the same length

as w if their expectations were the same. However, the average number of occurrences of

a solid pattern of length k is generally smaller than the average number of occurrences

of a motif with the same length.

The error bound b2 can be expressed as:

b2 =
∑
α∈I

∑
β∈Bα−{α}

E[Hw,iHw,j ]

where

E[Hw,iHw,j ] =



px if i = j

εw(d) pwpw1[0...d−1]pw2[0...d−1] if d = |j − i| < m, i 6= j

εw(d)pwpw2pw1[0...m+t−d−1] if d = |j − i|, t < d ≤ m+ t

εw(d)pwpw2pw1[k−d...m−1] if d = |j − i|, m+ t < d < k

With the periodicity indicator function defined as:

εw(d) =

1 if (w[i] = w[i+ d]) ∨ (w[i] = ◦) ∨ (w[i+ d] = ◦), ∀ 0 ≤ i ≤ k − d− 1

0 otherwise
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A A A AAA

A A A AAA

A A A AAA

A A A AAA

A A A AAA

a)

b)

c)

d)

d = 2

d = 4

d = 6

d = 8

Figure 4.2: Graphical representation of various possible overlaps. a) Both solid words
w1 and w2 overlap. b) No solid word overlaps. In independent models, these events are
independent. c) The right side of w1 overlaps with the left side of w2. d) The left side
of w1 overlaps with the right side of w2.

By replacing each term of b2 with its definition, ignoring the reduced number of neighbors

for indices near the ends of the text:

b2 =
∑
α∈I

∑
β∈Bα−{α}

E[Hx,iHx,j ]

≤ 2(l − k + 1)

[
m−1∑
d=1

εx(d) pwpw1[0...d−1]pw2[0...d−1]

+

m+t∑
d=t+1

εx(d)pwpw2pw1[0...m+t−d−1]

+
k−1∑

d=m+t+1

εx(d)pwpw2pw1[k−d...m−1]

]

The expression can be simplified in the independent equiprobable model:

b2 ≤ 2(l − k + 1)

[
m−1∑
d=1

εx(d)

42m+2d
+

m+t∑
d=t+1

εx(d)

43m+(m+t−d)
+

k−1∑
d=m+t+1

εx(d)

43m+(m+d−k)

]
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For those patterns that always overlap, such as Am ◦tAm, in the independent equiprob-

able model, we get:

b2 ≤ 2(l − k + 1)

[
m−1∑
d=1

1

42m+2d
+

m+t∑
d=t+1

1

43m+(m+t−d)
+

k−1∑
d=m+t+1

1

43m+(m+d−k)

]

= 2(l − k + 1)

[
1

42m

m−1∑
d=1

1

42d
+

1

43m

m−1∑
d=0

1

4d
+

1

43m

m−1∑
d=1

1

4d

]

≤ 2(l − k + 1)

[
1

42m

1

15
+

1

43m

(
1 +

2

3

)]
= 2(l − k + 1)pw

[
1

15
+

5

3

√
pw

]
= µw

[
2

15
+

10

3

√
pw

]
In this case, the error bound has slightly improved from the solid pattern case, but only

approximately by a constant factor. As for b1, the value of b2 depends on the average

number of occurrences, thus we expect that the error bound is higher than the bound

for a solid pattern with the same length.

4.6 Related works

The problem of studying the probability distribution of the number of occurrences of a

pattern has been extensively studied. In [20], the authors briefly analyze the Poisson

approximation for the number of occurrences of a pattern in Markovian models. The

authors focus on the asymptotic analysis of the error bound: they suppose that the

neighborhood consists of the positions for which there are less than c characters between

the occurrences, and they show that b1 ≤ (l−k+ 1)(2c+ 2k− 3)p2
x, while b2 depends on

the overlap capability and in the worst case b2 = O(lkpx). In their asymptotic framework

with |x| = k = Θ(log n), n→∞, the asymptotic bound for b2 does not converge to 0.

This issue is addressed by evaluating the overlapping occurrences separately. The au-

thors define a clump as a set of overlapping occurrences. The start of the clump is an

occurrence of the pattern that does not overlap with any previous occurrence. If Yi

denotes that a new clump starts in position i, it is easy to show that if |j − i| < k, then

Yi and Yj are mutually exclusive. Thus, the authors show that the number of clumps

can be approximated to a Poisson distribution, with an error of O(lkp2
x) in independent

models. In order to obtain the number of occurrences instead of the number of clumps,

the authors must use the compound Poisson process approximation [1]; for this method,

they need to characterize each clump with its length, thus defining a set of indicator

variables Zi,r that indicate that a clump of r occurrences starts at position i. For some

simple situations shown in [1] and [24], in independent models and when the pattern has

a single principal period (that is, x is periodic only with period d and its multiples), it is
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shown that the number of occurrences can be approximated to the sum of N geometric

random variables, where N is a random variable with a Poisson distribution.

In [20] the general case is considered, including Markovian models and patterns with

more than one principal period. In [15] the method is extended to sets of m words

of various lengths. This extension can be applied to obtain an approximation for the

number of occurrences of a motif.

We used the Poisson approximation directly in our evaluation; the quality of the ap-

proximation depends on the number of occurrences and the overlap capability of the

pattern, but the procedure is simpler and the results we obtained lead to an elegant ap-

proximation for the average number of frequent patterns in independent models, which

is shown in the next chapter.





Chapter 5

Poisson approximation for the

number of frequent patterns

In this chapter we analyze the number of frequent patterns of a given length k in a

random text of given length l. First of all, we justify our interest in the number of

frequent patterns through an example in the discovery of frequent patterns in a text.

Subsequently, we try to obtain some of the values that are required by the procedure

described in 1.3, namely an approximation for the mean and an approximation for the

complementary CDF for the number of frequent patterns. For the approximation of

the mean, we use the results obtained in the previous chapter; for the complementary

CDF, we try to apply the Chen-Stein theorem to the number of frequent patterns, and

develop a simulation that allows us to test the error bounds for any neighborhood.

Finally, we devise a statistical test to compare the empirical distribution obtained from

the simulation to the Poisson distribution, in order to validate the results given by the

Chen-Stein method and evaluate the possibility of further expansions.

5.1 Rationale and example

The work related to the q-occurrence probability of a single pattern is often used in statis-

tical tests to determine whether the observed pattern frequency is significant. However,

as we noted in chapter 1, a frequent pattern may appear significant with a single hy-

pothesis test, even when the expected number of frequent patterns of the same kind is

high.

For example, in an independent random model with l = 106 and k = 10, the average

number of occurrences for any pattern x of length k is µ = (106 − 9)/(410) ≈ 1. For

aperiodic patterns, the error in the Poisson approximation is b1 ≤ (2k−1)µ2/(l−k+1) ≈

53
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2 · 10−5. Thus, the probability for one of those patterns to have at least 7 occurrences

is at most P (Poisson(1) ≥ 7) + b1 ≈ 1.032 · 10−4.

We might then be tempted to consider all the aperiodic patterns that occur at least 7

times in this text to be statistically significant if we set a significance level α = 0.05 and

we test each frequent pattern “a posteriori”. Unfortunately, we can show that there are

at least 2
3 · 4

k aperiodic patterns, and that the expected number of frequent aperiodic

patterns is at least 2
3 · 4

k · (P (Poisson(1) ≥ 7)− b1) ≈ 44.

Reducing the significance level through a Bonferroni correction, if we suppose we are

testing m = 2
3 · 4k patterns, would give a significance level of α/m ≈ 7.15 · 10−8,

which would be insufficient to mark any pattern that appears 7 times as statistically

significant, regardless of how many frequent patterns occur. The Benjamini and Yekutieli

procedure for limiting the FDR, on the other hand, would sort the patterns in increasing

order of p-value: as some of the frequent patterns may occur more than 7 times, the

procedure would start considering these patterns as statistically significant, and increase

its threshold in order to increase the power of the tests while maintaining a chosen FDR.

In section 1.3 we also introduced a new method that can determine a quorum value such

that all the frequent patterns are statistically significant within a chosen FDR. For this

method, we need the mean number of frequent patterns and the p-value for the observed

number of frequent patterns. This drives our search for an approximation for E[Qk,q]

and Pr(Qk,q ≥ n).

5.2 Approximation for the mean

Let Qk,q be a random variable corresponding to the number of patterns of length k that

occur at least q times in a text. We define Xx,q as a random indicator variable, such

that E[Xx,q] = P (Xx,q = 1) = P (Nx ≥ q). Then Qk,q =
∑

x∈Σk Xx,q.

We want to calculate the mean number of occurrences for the number of frequent pat-

terns. We can use the results obtained from the Poisson approximation of the individual

patterns to obtain upper and lower bounds for the average. For the upper bound we

have:
E[Qk,q] =

∑
x∈Σk

E[Xx,q] =
∑
x∈Σk

P (Nx ≥ q)

≤
∑
x∈Σk

[P (Poisson(µx) ≥ q) + b1(x) + b2(x)]

The Poisson approximation gives an absolute error, so we can use it also to get a lower

bound to the mean:

E[Qk,q] ≥
∑
x∈Σk

[P (Poisson(µx) ≥ q)− b1(x)− b2(x)]
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We can separate the three terms of the sum in order to obtain the approximated cumu-

lative q-occurrence probabilities, and the cumulative errors b1 and b2. We define:

M =
∑
x∈Σk

P (Poisson(µx) ≥ q)

and

R = R1 +R2, R1 =
∑
x∈Σk

b1(x), R2 =
∑
x∈Σk

b2(x)

So that we can write in a more compact notation:

|E[Qk,q]−M | ≤ R

5.2.1 Independent equiprobable case

We remind that, in the independent equiprobable case, we have µ = µx = (l − k +

1)/4k ∀x ∈ Σk. Thus, the frequency distribution of each pattern is approximated to

the same Poisson distribution:

M = 4k Pr

{
Poisson

(
l − k + 1

4k

)
≥ q
}

Even the values of b1 are the same for all x, so we obtain:

R1 =
∑
x∈Σk

b1(x) ≤ 4k
2k − 1

l − k + 1
µ2 = (2k − 1)µ

The values of b2 depend on the periodicity of x. If we use the value of b2 in the worst

case, when x has period 1, we would obtain:

R2 =
∑
x∈Σk

b2(x) <
2

3
µ4k =

2

3
(l − k + 1)

This cumulative error bound is O(l) when k is constant, which is excessively large. We

can get a better bound by substituting b2(x) and swapping the summations:
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∑
x∈Σk

b2(x) ≤
∑
x∈Σk

2µ

k−1∑
d=1

εx(d)
1

4d

= 2µ

k−1∑
d=1

∑
x∈Σk

εx(d)
1

4d

= 2µ
k−1∑
d=1

∑
x∈Σk:εx(d)=1

1

4d

= 2µ

k−1∑
d=1

1

4d

∣∣∣{x ∈ Σk : εx(d) = 1}
∣∣∣

The size of the set in the last term is the number of patterns with period d. It is easy

to obtain the following result:

Theorem 5.1. The number of patterns of length k that are periodic with period d is

|Σ|d.

Proof. From Definition 4.3, a pattern x is periodic with period d if

x[d . . . k − 1] = x[0 . . . k − d− 1]

We can rewrite the equivalence as follows:

x[d . . . 2d− 1] = x[0 . . . d− 1]

x[2d . . . 3d− 1] = x[2d− 1 . . . 3d− 1]

· · ·

x[bk/dcd . . . k − 1] = x[(bk/dc − 1)d . . . k − d− 1]

We can easily substitute the right side of each equation:

x[d . . . 2d− 1] = x[0 . . . d− 1]

x[2d . . . 3d− 1] = x[0 . . . d− 1]

· · ·

x[bk/dcd . . . k − 1] = x[0 . . . (k mod d)− 1]

Thus, all the characters of x[d . . . k−1] depend only on x[0 . . . d−1], and all the characters

of x[0 . . . d − 1] are necessary for the determination of x. Thus there is a one-to-one

correspondence between the set of patterns with period d and Σd, and the thesis follows

immediately.
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By applying this result, we obtain:

R2 =
∑
x∈Σk

b2(x) ≤ 2µ
k−1∑
d=1

1

4d
4d ≤ 2(k − 1)µ

Thus, we can estimate the average number of frequent patterns within the cumulative

error bound:

R1 +R2 =
∑
x∈Σk

[b1(x) + b2(x)] ≤ (4k − 3)µ

Note that R2 is almost the same as R1, which means this is asymptotically the best

bound we can get from the Poisson approximations of the individual pattern, as b1 is

the same for all the patterns.

The error bound is independent from the quorum, which means that the theoretical

bound does not scale well: as we increase the quorum, the average decreases (as its

approximation M) while the bound is the same as the q = 1 case. If we want to have a

relative error of at most ε, the parameters must satisfy:

(4k − 3)µ

4kPr [Poisson(µ) ≥ q]
=

4k − 3

l − k + 1

µ2

Pr [Poisson(µ) ≥ q]
≤ ε

This means that as the value of q is increased, we can only accurately estimate the

average number of frequent patterns when such patterns are rare. This is a pessimistic

bound: it is easy to see that the real and approximate q-occurrence probabilities for any

pattern converge to 0 when q is increased, thus the error tends to 0. We will show in some

experiments in the next chapter that the expression is often a good approximation of

E[Qk,q]: in our experiments, the approximation is relatively close to the sample average,

while it tends to underestimate the sample average as q is increased.

5.2.2 Independent non-equiprobable case

In this case, the average frequency of a pattern µx can assume different values for each

pattern. However, all the permutations of x have the same µx. We can use this to reduce

the number of q-occurrence probabilities to calculate.

We can partition the set of patterns in O(k3) classes, such that patterns in the same class

are permutations of each other. We can identify each class with the tuple (kA, kC , kG, kT )

which represents the number of occurrences of each symbol in x (thus, we have kA +

kC + kG + kT = k and ke ≥ 0 ∀e ∈ Σ).
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The occurrence probability of a pattern in the permutation class (kA, kC , kG, kT ) in a

certain position is:

p(kA,kC ,kG,kT ) = pkAA pkCC pkGG pkTT

Through this notation, we obtain the value of M and R1. Both of these values can be

computed by summing O(k3) terms.

M =
∑
x∈Σk

Pr {Poisson(µx) ≥ q}

=
∑

kA,kC ,kG,kT

k!

kA!kC !kG!kT !
Pr
{

Poisson
(
(l − k + 1)p(kA,kC ,kG,kT )

)
≥ q
}

R1 =
∑
x∈Σk

b1(x)

≤
∑
x∈Σk

2k − 1

l − k + 1
µ2
x

= (2k − 1)(l − k + 1)
∑

kA,kC ,kG,kT

k!

kA!kC !kG!kT !
(p(kA,kC ,kG,kT ))

2

The estimation of R2 requires more work:

R2 =
∑
x∈Σk

b2(x)

≤
∑
x∈Σk

2µx

k−1∑
d=1

εx(d)px[0...d−1]

= 2

k−1∑
d=1

∑
x∈Σk:εx(d)=1

µxpx[0...d−1]

The inner summation depends not only on the number of patterns with period d or on

their permutation class, but when d does not divide k, it depends also on the order in

which the characters appear in the first (kmod d) positions. In fact:

R2 ≤ 2

k−1∑
d=1

∑
x∈Σk:εx(d)=1

µxpx[0...d−1]

= 2(l − k + 1)
k−1∑
d=1

∑
x∈Σk:εx(d)=1

px[0...dbk/dc−1] · px[0...(kmod d)−1] · px[0...d−1]

= 2(l − k + 1)
k−1∑
d=1

∑
x∈Σk:εx(d)=1

[px[0...d−1]]
bk/dc+1 · px[0...(kmod d)−1]
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In order to calculate R2 efficiently, we can obtain an upper bound either by ignoring

the last factor completely, or by substituting it with the product of the kmod d highest

probabilities available for the current periodic sequence. In the first case, the formula

becomes:

R2 ≤ 2(l − k + 1)
k−1∑
d=1

∑
(dA,dC ,dG,dT )

d!

dA!dC !dG!dT !
[px[0...d−1]]

bk/dc+1

Whether we choose to ignore the last factor, or we substitute it with the product of the

highest available probabilities, the approximation of R2 requires to sum O(k4) terms,

instead of the O(k3) terms for the computation of M and R1.

5.2.3 Extension to structured motifs

The expression for the bounds of b1 and b2 lead to an easy expression of M , R1 and R2

even for structured motifs of the form described in Section 4.5.

We define the language of all the structured motifs with solid block length m and with

t wildcards:

Lm,t = Σm · {◦t} · Σm = {w1 ◦t w2 : w1, w2 ∈ Σm}

For independent equiprobable models, the approximated average is

M = 42mPr {Poisson (µw) ≥ q}

with µ = l−k+1
42m

.

The calculation of R1 can exploit the independence as usual:

R1 =
∑

w∈Lm,t

b1(w) ≤ 42m 6m− 1

l − k + 1
µ2
w = (6m− 1)µw
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The calculation of R2, on the other hand, has to be decomposed in three families of

possible overlaps:

R2 =
∑

w∈Lm,t

b2(x)

≤
∑

w∈Lm,t

2(l − k + 1)

42m

[
m−1∑
d=1

εw(d)

42d
+

m+t∑
d=t+1

εw(d)

4m+(m+t−d)
+

k−1∑
d=m+t+1

εw(d)

4m+(m+d−k)

]

=
2(l − k + 1)

42m

m−1∑
d=1

∑
w∈Lm,t:εw(d)=1

1

42d

+
m+t∑
d=t+1

∑
w∈Lm,t:εw(d)=1

1

4m+(m+t−d)
+

k−1∑
d=m+t+1

∑
w∈Lm,t:εw(d)=1

1

4m+(m+d−k)



We now need to evaluate the number of patterns that satisfy εw(d) = 1 in the three

terms.

Case d < m: Both w1 and w2 must partially overlap with themselves, thus w1 and w2

must be periodic with period d. There is no other constraint between them, thus the

number of pairs with period d is 42d.

Case t+ 1 < d ≤ m+ t: In this case, a suffix of w1 is overlapping with a prefix of w2.

Once we choose w1, we only need to determine the remanining m+ t− d characters of

w2 that are not overlapped with w1. Thus the number of patterns is 4m+(m+t−d).

Case m + t < d < k: In this case, a prefix of w1 is overlapping with a suffix of w2.

We follow the same procedure as the previous case, and we obtain that the number of

patterns is 4m+(d−m−t) = 4m+(m+d−k).

R2 ≤
2(l − k + 1)

42m

[
m−1∑
d=1

42d

42d
+

m+t∑
d=t+1

4m+(m+t+d)

4m+(m+t−d)
+

k−1∑
d=m+t+1

4m+(m+d−k)

4m+(m+d−k)

]

=
2(l − k + 1)

42m
[m− 1 +m+m− 1] = 2(3m− 2)µx

Thus, the total error bound is

R1 +R2 ≤ (12m− 5)µw = (12m− 5)
l − k + 1

42m
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5.3 Poissonicity of the number of frequent patterns

We illustrated some efficient ways to approximate the expected number of frequent

patterns in a random text under some conditions. Even when these methods are not

directly applicable, such as with Markov chain models where the order of the characters

is very important, we can get an estimate through simulation. A simulation requires

to generate a large amount of texts of the same size l by using the desired random

model, and to extract the number of frequent patterns from all texts and aggregating

the results.

Independently on how we obtained the expectation, we are also interested in checking

whether the number of frequent patterns can be approximated by a Poisson process,

and if so, which conditions the parameters must satisfy.

Let Qk,q =
∑

x∈Σk Xx,q. We want to see if we can approximate it to a Poisson random

variable with mean λ = E[Qk,q], by applying the Chen-Stein method. Unfortunately,

for any pattern pair x, y the events Xx,q and Xy,q are always potentially dependent,

even when the patterns cannot overlap.

For example, suppose that kq = O(l). When a pattern x is frequent, any other pattern

y that does not overlap with x will have a very limited number of positions available,

thus the probability that y is frequent conditioned to the event that x is frequent tends

to reduce dramatically. Conversely, if y can be overlapped almost completely with x,

such as when y[0 . . . k − 2] = x[1 . . . k − 1], then y tends to have a much higher chance

of being frequent when x is frequent.

If we apply the Chen-Stein method by using the neighborhood Bα = I, we obtain:

b1 =
∑
x∈Σk

∑
y∈Σk

E[Xx,q]E[Xy,q] =
∑
x∈Σk

E[Xx,q]
∑
y∈Σk

E[Xy,q] = λ2

b2 =
∑
x∈Σk

∑
y∈Σk,y 6=x

E[Xx,qXy,q] = E

∑
x∈Σk

∑
y∈Σk,y 6=x

Xx,qXy,q


= E

Q2
k,q −

∑
x∈Σk

X2
x,q

 = E

Q2
k,q −

∑
x∈Σk

Xx,q


= E

[
Q2
k,q

]
− λ

The error bound becomes:

b1 + b2 = λ2 + E
[
Q2
k,q

]
− λ = 2λ2 + Var(Qk,q)− λ
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The bound is greater than 1 when λ > 1, even if the variance of Qk,q is small. This

essentially means that the bound is small only when Qk,q > 0 is a rare event, which

restricts the application of the method to a limited number of situations.

5.3.1 Reduced Neighborhood Set

In order to obtain a better error bound, we need to find a neighborhood set such that

the values of b1 and b2 decrease while b3 remains small. Intuitively, the pairs of patterns

that overlap with each other have a positive dependence: when one of the patterns is

frequent, the other pattern may appear in positions that overlap with the occurrences of

the first pattern with higher probability. Keeping these patterns outside their respective

neighborhood may increase the value of b3 substantially.

On the other hand, the pairs of patterns that do not overlap should have a negative

correlation, as one pattern cannot appear in any position that is partially occupied by

the occurrence of the other. However, when k ·q � l, the number of unavailable positions

for a pattern when the other is frequent should be reasonably small, thus we expect that

the probability does not change significantly and b3 remains small.

For this reason, we try to use the reduced neighborhood:

Bx = {y ∈ Σk : x and y can overlap}

The first issue we encounter is that even with a reduced neighborhood, the neighborhood

size is still large:

Theorem 5.2. For k > 2, the number of neighbors of any pattern x is within the

following bounds:
7

16

∣∣∣Σk
∣∣∣ ≤ |Bx| ≤ 2

3

∣∣∣Σk
∣∣∣

Proof. We start by proving the lower bound. The neighborhood of x contains the fol-

lowing patterns:

B(1)
x = {y ∈ Σk : y[0] = x[k − 1] ∨ y[k − 1] = x[0]} ⊂ Bx

With simple set operations, we can calculate its size:

|B(1)
x | = |{y ∈ Σk : y[0] = x[k − 1]}|+ |{y ∈ Σky[k − 1] = x[0]}| +

− |{y ∈ Σk : y[0] = x[k − 1] ∧ y[k − 1] = x[0]}|

=
1

2

∣∣∣Σk
∣∣∣− 1

16

∣∣∣Σk
∣∣∣ =

7

16

∣∣∣Σk
∣∣∣
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For the upper bound, note that Bx is the union of the sets of patterns y that can overlap

with x by a certain number of positions:

Bx =
k⋃
d=1

{y ∈ Σk : y[0, d− 1] = x[k − d, k − 1]}

∪
k⋃
d=1

{y ∈ Σk : y[k − d, k − 1] = x[0, d− 1]}

For symmetry, both terms have the same size. Consequently:

|Bx| ≤ 2

∣∣∣∣∣
k⋃
d=1

{y ∈ Σk : y[0, d− 1] = x[k − d, k − 1]}

∣∣∣∣∣
≤ 2

k∑
d=1

∣∣∣{y ∈ Σk : y[0, d− 1] = x[k − d, k − 1]}
∣∣∣

= 2

k∑
d=1

4k−d = 2

k−1∑
i=0

4d = 2
4k − 1

4− 1
≤ 2

3

∣∣∣Σk
∣∣∣

With a reduced neighborhood of this size, we do not expect big improvements on the

value of b1 and b2. Furthermore, the calculation of b1 and b2 becomes difficult. In

particular, we do not have any closed form expression for the probability that two

generic patterns are frequent.

Another issue is that with this neighborhood, b3 > 0. Finding a non-trivial upper bound

for b3 seems to be challenging. If we reconsider each term of b3:

sα = E

∣∣∣∣∣∣E
Xα − pα

∣∣∣∣∣∣
∑

β∈I−Bα

Xβ

∣∣∣∣∣∣
=

|I−Bα|∑
i=0

∣∣∣∣∣∣E
Xα − pα

∣∣∣∣∣∣
∑

β∈I−Bα

Xβ = i

∣∣∣∣∣∣ · Pr

 ∑
β∈I−Bα

Xβ = i


=

|I−Bα|∑
i=0

∣∣∣∣∣∣Pr

Xα = 1

∣∣∣∣∣∣
∑

β∈I−Bα

Xβ = i

− pα
∣∣∣∣∣∣ · Pr

 ∑
β∈I−Bα

Xβ = i


by analyzing the values sα, we may need a bound to the probability that a certain

number of patterns outside its neighborhood are frequent, and a bound to the conditional

probability.
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5.3.2 Simulation for determining the error bound

Due to the issues that arose in the calculation of the approximation error of Qk,q, we

proceed to estimate these values in various cases by generating random sequences with

the distribution given by the random models, and compare these values to a “goodness

of fit” test, which gives a measure of confidence for the similarity between a theoretical

distribution and an empirical distribution.

One of the issues of the simulation is that we might need a large number of sample

sequences in order to get a reasonable confidence interval. However, with a suitable

number of trials, we can still get an idea about when the distribution can be approxi-

mated to a Poisson distribution.

Our method follows the one proposed in [9]. However, in the frequent itemset case, the

procedures that extract the frequent itemsets with a certain threshold may return an

exponential number of itemsets (up to
(
n
k

)
itemsets). In that context, it is required to

fix an initial support value s̃ in order to limit the number of frequent itemsets.

In our context, there may still be a need to keep the number of frequent patterns to a

reasonable level, but the number of frequent words can be at most polynomial in the

input. In a collection C of ∆ texts, each one of length l, there are O(l∆/q) words of

fixed length k that occur at least q times in one text.

Thus, if ∆ is not too large, or if k is small, we can keep all the frequent patterns we

encounter in memory. In order to insert and access the frequent patterns quickly, we

use a trie to keep the patterns we encounter.

Estimation of b1 We remind the expression of b1:

b1 =
∑
x∈Σk

∑
y∈Bx

E[Xx,q]E[Xy,q]

For the estimation of b1, we would need to estimate the probabilities of all the patterns,

not only those that appear to be frequent. This is independent from the neighborhood.

However, we will assume that those patterns that are not frequent in all the ∆ trials

have an estimated probability of 0. We define

Wq =
⋃
t∈C

Wq,t, Wq,t = {x ∈ Σk : x appears at least q times in t}

for each of these patterns, we calculate the empirical frequency:

fx =
|{t ∈ C : x appears at least q times in t}|

∆
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The calculation of fx for all the patterns can be done as follows. For each value of q

that we want to analyze, we keep a global trie Tq that contains for each pattern the

number of texts in which that pattern occurs q times. For each text t, we build a trie

that contains all the k-words in t with their number of occurrences. Then, we increase

the count in Tq of all the patterns that occur at least q times by scanning the current

trie.

The value of b1 is then estimated as

b̂1 =
∑

x∈Σk∩Wq

∑
y∈Bx∩Wq

fxfy

Thus, we have to calculate at most |Wq|2 products to determine b̂1. In the special case

where the neighborhood is Bx = Σk, we showed that b1 = E2[Qk, q], thus it can be

estimated by the square of the average number of frequent patterns in the text.

Even if we choose Bx = {y ∈ Σk : x and y can overlap}, we showed that the number

of neighbors is |Bx| > 7
16Σk. In addition, if a pattern is frequent, we expect that

its neighbors are more likely to occur than non-neighbor patterns that have the same

unconditioned probability. Thus, it is reasonable to expect that b̂1 will not be much

less than in the case where all pairs of patterns are neighbors. Thus, we can skip the

calculation of b1 when there are too many frequent patterns, as we expect it to be too

large.

Estimation of b2 We remind the expression of b2:

b2 =
∑
x∈Σk

∑
y∈Bx−{x}

E[Xx,qXy,q]

As with b1, for the pairs of patterns where one of them is not frequent, their joint

probabilities are estimated as 0. For the pairs of frequent patterns, we estimate the

probability as:

fx,y =
|{t ∈ C : x and y appear at least q times in t}|

∆
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Instead of repeating this search for each pair of neighboring patterns, we can simply

count the number of frequent neighboring pairs in each text:

b̂2 =
∑
α∈I

∑
β∈Bα−{α}

fx,y

=
1

∆

∑
α∈I

∑
β∈Bα−{α}

|{t ∈ C : x and y appear at least q times in t}|

=
1

∆

∑
t∈C

∑
α∈I

∑
β∈Bα−{α}

1(x and y appear at least q times in t)

This also means that, in order to obtain a value of b̂2 < 1, the average number of frequent

neighboring pairs in each text must be less than 1 (or 0.5, if we count the unordered

pairs).

A practical implication of this result is that we do not need to accumulate the frequent

patterns in a global trie to calculate b̂2. For each text, we build a trie that contains all

the k-words in t with their number of occurrences, then we remove all the patterns in

the trie whose number of occurrences is less than q.

If the neighborhood set is Bx = Σk, we should simply count the number n of frequent

patterns in the text, and the number of neighboring pairs (except the pairs that have

the same pattern twice) is n2 − n. Alternatively, we can use the mean and the variance

directly, as reported at the beginning of this section.

Otherwise, for each pair we need to count the number of frequent patterns in its neigh-

borhood. As with b1, if we expect that the neighborhood of a pattern will probably

contain roughly half the number of frequent patterns, we can skip the calculation of b2

when there are too many frequent patterns.

Estimation of b3 We remind the expression of b3 and use the definition of expectation:

sx =

|Σk−Bx|∑
i=0

∣∣∣∣∣∣Pr

Xx,q = 1

∣∣∣∣∣∣
∑

y∈Σk−Bx

Xy,q = i

− px
∣∣∣∣∣∣ · Pr

 ∑
y∈Σk−Bx

Xy,q = i


The estimation of b3 when a pattern is not independent from those outside its neigh-

borhood requires the calculation of the conditional expectation. Even in this case, we

assume that sx = 0 when x is not a frequent pattern. For each pattern that is frequent in

at least one of the generated text, we calculate its corresponding estimate ŝx as follows:

ŝx =

|I−Bx|∑
i=0

∣∣∣∣f(x,i)+

f(x,i)
− px

∣∣∣∣ · f(x,i)

∆
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Where f(x,i)+ is the number of texts where x is frequent and i patterns outside its

neighborhood are frequent; f(x,i) is the number of texts where i patterns outside the

neighborhood of x are frequent; and px is the ratio between the number of texts where

x is frequent and ∆.

In order to calculate b3, we keep the values of f(x,i) and f(x,i)+ in a map, indexed by the

pattern and the number of frequent patterns outside its neighborhood. Whenever a new

pair is accessed, we initialize the values in the map to 0.

For each frequent pattern and for each random text, we calculate the number i of frequent

non-neighbour patterns of x, we increment f(x,i), and if x is frequent in the text, we also

increment f(x,i)+ . Finally, we calculate b3 by summing the expression
∣∣∣f(x,i)+f(x,i)

− px
∣∣∣ · f(x,i)∆

for each pair in the map.

The complexity of this procedure is considerable, as potentially we have to storeO(|Wq|min(∆, |Wq|))
elements (one for each frequent pattern and for each value of i obtained from each text,

which can be up to the minimum between ∆ and the maximum number of frequent

patterns in any text). Even if we achieve a constant time for accessing each element

with a hash map (assuming that k is constant), we still have to count for each pattern

and for each text the number of frequent patterns outside its neighborhood. A simple

linear scan on the frequent patterns for each text would require O(|Wq| ·
∑

t∈C |Wq,t|)
time.

5.4 Goodness of fit for the Poisson approximation

We saw in section 5.3 that our approaches to approximating Qk,q to a Poisson variable

returned high values of b1 and b2 unless the mean is much less than 1. Even by using

the reduced neighborhood set, we expect to obtain values of b1 and b2 that are not much

less than their counterparts in the complete neighborhood, and we also have to estimate

the value of b3.

We now move to a more practical approach in order to determine whether Qk,q can be

approximated to a Poisson distribution. First of all, we remember that, in a Poisson

distribution with mean λ, the variance is λ. If the estimator of the variance in our

simulations deviates significantly from the average, we can reasonably conclude that

Qk,q cannot be approximated to a Poisson variable.

In addition, even when the estimated variance is close to λ, we can use the Pearson’s

chi-squared test, a more rigorous test.

Pearson’s chi-squared test The Pearson’s chi-squared test is a statistical test for

probability distributions. Suppose we have n random samples drawn independently from
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an unknown probability distribution. We classify the samples into k classes, such that

each value in the domain of the samples is classified in one of those classes. For each

class i, we calculate the empirical frequency fi (
∑k

i=1 fi = 1). We would like to test

whether the unknown distribution can be adequately fitted to a known distribution g,

whose parameters are obtained from some estimators obtained from the samples. The

null hypothesis in this test is

H0 = {the n samples are drawn from g}

For each class, we calculate gi, the theoretical probability that a random variable with

distribution g belongs to class i. The test statistic in a Pearson’s chi-squared test is:

χ̂2 =
k∑
i=1

(fi − ngi)2

ngi

Under the null hypothesis, it can be shown that the distribution of χ̂2 is approximately

distributed as the sum of ν independent, standard normal variables. This distribution

is called chi-squared distribution with ν degrees of freedom, χ2
ν .

The number of degrees of freedom is ν = k− r > 0, where r is the number of constraints

or relations that are used to estimate the values gi from the data. As
∑k

i=1 gi = 1,

there is always at least one constraint, thus r > 1. Usually, r is equal to the number of

parameters of the distribution g that have been estimated from the data, plus one. In

our tests, g is a Poisson distribution with mean λ estimated by the empirical average of

the samples, thus ν = k − 2.

Given the statistical significance α of the test, the rejection region for the test is

C = {x > 0 : Pr(χ2
ν ≥ x) ≤ α}

We reject the null hypothesis when χ̂2 ∈ C, thus when χ̂2 ≥ min{x > 0 : Pr(χ2
ν ≥ x) ≤

α}.

For this kind of tests, we need to classify the samples into k classes. It is advised to

group the data into classes such that the expected frequency ngi for each class is at least

5, in order to avoid excessively skewed results.



Chapter 6

Experimental results

In this chapter, we show the results of simulations that try to validate the results ob-

tained in Chapter 5. The tests have been implemented in a program written in C++,

in order to achieve good memory efficiency and performance. Some operations, such as

the calculation of the CDF of the Poisson distribution and the matrix power, have been

realized with the aid of the Boost libraries 1.

We report some tests on the number of frequent patterns of length k = 10 in a text of

length l = 500000, generated with different random models. We chose these values of

l and k in order to show the behavior of the procedures when the text is long and the

number of patterns that occur at least once in the text is close to |Σk|. These values show

the differences between the random models and between various values of the quorum.

In independent non-equiprobable random models and in 1-order Markov chain random

models, we use the empirical distribution of the human metabotropic glutamate receptor

1 2, from which we obtain the following steady-state probability vector and transition

matrix:

π =
(
pA pC pG pT

)
=
(

0.296322 0.182711 0.189131 0.331836
)

T =


TA,A TA,C TA,G TA,T

TC,A TC,C TC,G TC,T

TG,A TG,C TG,G TG,T

TT,A TT,C TT,G TT,T

 =


0.324454 0.154579 0.222238 0.298729

0.359398 0.225585 0.0318679 0.383149

0.306249 0.185568 0.226014 0.282169

0.230807 0.182599 0.225139 0.361456


1http://www.boost.org/
2http://www.ncbi.nlm.nih.gov/nuccore/NG_012839.1?from=5001&to=414953&report=fasta
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6.1 Sample average and mean estimation

We now compare the average we estimated in section 5.3 to the sample average obtained

from random texts, generated with independent models.

6.1.1 Independent equiprobable model

We remember that the expected average is simply 4kP (Poisson(µ) ≥ q), while the error

bound is at most R ≤ (4k − 3)µ = (4k − 3)(l− k + 1)/4k. In Table 6.1, we can see that

the sample average is always within the error bound. In particular, we observe that the

absolute difference between the two estimations tends to be higher for small values of q.

From Figure 4.1, we know that the relative error for overlapping patterns diverges as the

quorum is increased. However, in this situation, the number of samples is insufficient

and does not allow to measure the difference between the approximated average and the

sample average.

Quorum Approximate average (±17.6427) Sample average

2 87304.7 87300.8

3 13308.3 13306.6

4 1547.12 1545.17

5 145.1 145.067

6 11.395 11.33

7 0.769345 0.796

8 0.0455409 0.045

9 0.00239958 0.004

10 0.000113906 0

Table 6.1: Expected average number of frequent patterns of length k = 10 in a text
of length l = 500000, compared with a sample average of ∆ = 1000 random texts
generated by an independent equiprobable model.

6.1.2 Independent non-equiprobable model

When a non-equiprobable model is assumed for the sample sequence, as we discussed

before, the probability of occurrence for a pattern varies according to the distribution of

the characters in the pattern. Thus, we expect that some patterns have a higher average

number of occurrences, which will influence the average number of frequent patterns.

In Table 6.2, we see that while in the equiprobable case there were no frequent patterns

with at least 10 occurrences, in the non-equiprobable case there are about 43 patterns

with at least 10 occurrences on average.

Another interesting issue is that the cumulative error R has increased, and the relative

difference between the sample average and the estimated average is substantial with
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high quorum values. This behavior is predicted by Figure 4.1, in addition to the fact

that degenerate patterns, such as patterns with period 1, may have a higher probability

than others. In fact, our approximated average tends to underestimate the real average.

Quorum Approximate average (±50.19) Sample average

2 103260 103257

3 32292.3 32289.7

4 10901.2 10895.9

5 3947 3945.5

6 1511.67 1512.9

7 603.75 603.745

8 248.167 248.217

9 103.69 103.696

10 43.5208 43.441

11 18.1498 18.255

12 7.45114 7.429

13 2.98991 3.069

14 1.167 1.256

15 0.441774 0.491

16 0.161969 0.191

17 0.0574894 0.08

18 0.0197592 0.038

19 0.00658009 0.018

20 0.00212472 0.009

21 0.000665784 0.004

22 0.000202616 0.003

23 5.99309e-05 0.003

24 1.72411e-05 0.003

25 4.82715e-06 0.003

Table 6.2: Expected average number of frequent patterns of length k = 10 in a text
of length l = 500000, compared with a sample average of ∆ = 1000 random texts
generated by an independent non-equiprobable model.

6.2 Simulation for determining the error bound

We now show the estimated values of b1, b2 and b3 under independent models and the

1-order Markov chain model. We remember that we skip the calculation of the bound

when we use a reduced neighborhood and the number of neighboring pairs is too large,

and we skip the calculation of b1 and b3 when the estimated value of b2 is greater than

1.

The results for the independent equiprobable model are shown in Table 6.3. The full

neighborhood error bound clearly shows that the bound is exceedingly high when the

average is greater to 1, and even for q = 7, where the value is lower but close to
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1. Additionally, in the reduced neighborhood, we see that the estimated value of b3

constitutes a big part of the error bound.

Full neighborhood Reduced neighborhood

Quorum Sample Avg. b1 + b2 b1 b2 b3
2 87300.8 1.52428e+10

3 13306.6 3.54131e+08

4 1545.17 4.77539e+06

5 145.067 42103.4 11121.4

6 11.33 256.938 67.622

7 0.796 1.28643 0.333924 0.328 0.743814

8 0.045 0.00206802 0.001069 0 0.001912

9 0.004 1.9988e-05 1.2e-05 0 8e-06

10 0 0 0 0 0

Table 6.3: Error bounds for the Poisson approximation for the number of frequent
patterns of length k = 10 in texts of length l = 500000, estimated by using ∆ = 1000
random texts generated by an independent equiprobable model.

The results for the independent non-equiprobable model are shown in Table 6.4. As

shown in the previous section, the average number of frequent patterns is considerably

higher than the average number in the equiprobable case. Thus, when the probabilities

for each character are unbalanced, we expect more frequent pattterns as q is increased.

The error bound for the full neighborhood become interesting when the average number

is less than 0.1. In the reduced neighborhood, the values of b3 are less dominant than

the values in the equiprobable model. However, the error bound of b1 + b2 + b3 is still

remarkably similar to the full neighborhood error bound.

Finally, we consider the results for the 1-order Markov chain, shown in Table 6.5. The

average number of frequent pattern is considerably higher than the average number in

independent models. For the full neighborhood, the error bound is low only when the

average is close to 0.1, as with the independent non-equiprobable case (from which we

obtain that the quorum should be greater than 25 in this case). The value of b3 in

the reduced neighborhood is often substantially lower than the values of b1 and b2, and

there is a slight improvement in the error bound b1 + b2 + b3 when the average number

is close to 1. This might suggest that in 1-order Markov chains, the patterns outside the

neighborhood of the pattern x have a smaller influence on the occurrences of x than in

the other cases.

6.3 Goodness of fit

We now use the Pearson’s chi-square test for the goodness of fit, described in Section 5.4

to determine whether a Poisson approximation fits the data even when the error bound

is high. We remind that the method requires to partition the sample space in classes
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Full neighborhood Reduced neighborhood

Quorum Sample Avg. b1 + b2 b1 b2 b3
2 103257 2.1324e+10

3 32289.7 2.08526e+09

4 10895.9 2.37457e+08

5 3945.5 3.114e+07

6 1512.9 4.58028e+06

7 603.745 729943

8 248.217 123581

9 103.696 21625 9684.22

10 43.441 3815.9 1759.04

11 18.255 680.451 322.552

12 7.429 114.157 55.516

13 3.069 19.7908 9.854

14 1.256 3.33097 1.7

15 0.491 0.561651 0.230693 0.304 0.039182

16 0.191 0.102702 0.035915 0.064 0.004288

17 0.08 0.0104777 0.0063 0.002 0.003936

18 0.038 0.00148059 0.00144 0 8e-06

19 0.018 0.000341694 0.000322 0 4e-06

20 0.009 8.99279e-05 8.1e-05 0 0

21 0.004 1.9988e-05 1.6e-05 0 0

22 0.003 1.1994e-05 9e-06 0 0

23 0.003 1.1994e-05 9e-06 0 0

24 0.003 1.1994e-05 9e-06 0 0

25 0.003 1.1994e-05 9e-06 0 0

Table 6.4: Error bounds for the Poisson approximation for the number of frequent
patterns of length k = 10 in texts of length l = 500000, estimated by using ∆ =
1000 random texts generated by an independent non-equiprobable model, following the
distribution of human grm1.

such that the expected number of samples that belong to the class is at least 5, and

that the empirical value χ̂2 must be tested against a chi-square distribution with n− 2

degrees of freedom, where n is the number of classes.

For each tested quorum value q, we report the sample average, the sample variance, the

number of classes n generated by the procedure that partitions the space, the empirical

value χ̂2, and the value of Pr(χ2
n−2 > χ̂2), where χ2

n−2 is a random variable with a

chi-square distribution with n − 2 degrees of freedom (this value will be called p-value

in this section).

In our tests, the Poisson distribution does not always guarantee to find an appropriate

partition of n > 2 classes that satisfy the condition, especially when q is high and thus

the average number of frequent patterns λ is low. For this reason, when our partition

procedure returns n ≤ 2 classes, we do not report the p-value.
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Full neighborhood Reduced neighborhood

Quorum Sample Avg. b1 + b2 b1 b2 b3
2 116801 2.72851e+10

3 41539.1 3.45099e+09

4 14736.6 4.34345e+08

5 5414.03 5.86296e+07

6 2098.79 8.81266e+06

7 864.218 1.49481e+06

8 377.41 285269

9 175.108 61483.2

10 85.199 14594.9 6022.89

11 43.267 3778.95 1609.66

12 22.964 1070.01 471.294

13 12.59 325.235 147.434

14 7.051 103.286 48.428

15 4.083 35.387 17.29

16 2.405 12.177 6.032

17 1.525 4.79329 2.36

18 0.974 1.91166 0.908084 0.918 0.051532

19 0.632 0.750007 0.38656 0.326 0.030268

20 0.457 0.35124 0.203733 0.136 0.011116

21 0.333 0.163163 0.108799 0.05 0.00151

22 0.263 0.091385 0.068549 0.02 0.003376

23 0.203 0.055385 0.040819 0.012 0.003304

24 0.156 0.0304738 0.024336 0.006 0

25 0.126 0.0199902 0.015876 0.004 0

Table 6.5: Error bounds for the Poisson approximation for the number of frequent
patterns of length k = 10 in texts of length l = 500000, estimated by using ∆ = 1000
random texts generated by an 1-order Markov chain model, following the distribution
of human grm1.

In Table 6.6, we report the results for the independent equiprobable model. In this

case, when q = 2 the approximation is poorly fitting: the variance is significantly lower

than λ, which is the variance of the Poisson distribution, and the p-value is remarkably

small. When q > 2, however, the sample variance is closer to the sample average,

and the p-value is decisely higher than the usual significance values; thus the Poisson

approximation appears to be a decent fit even for some large values of λ in independent

equiprobable models.

In Table 6.7, we report the results for the independent non-equiprobable model. In this

situation, the Poisson approximation performs worse than in the equiprobable model:

the p-values start to be reasonably high when q ≥ 14, or when the average is close or

less than 1. Also the variance seems close to the average for these values of q. We can

conclude that in the non-equiprobable model, when the probabilities differ significantly

from the equiprobable model, the error bound that we obtained from the näıve approach

cannot be improved.
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Quorum Sample Avg. Sample Variance Classes χ̂2 p-value

2 87300.8 47022.8 145 284.682 1.90538e-11

3 13306.6 14966.3 151 188.262 0.0162396

4 1545.17 1811.86 127 143.067 0.128499

5 145.067 159.612 54 53.6492 0.410872

6 11.33 11.5306 18 11.1316 0.801292

7 0.796 0.815199 5 4.385 0.22278

8 0.045 0.043018 2 0.0236524

9 0.004 0.00398799 1 0

10 0 0 1 0

Table 6.6: Goodness of fit for the Poisson approximation for the number of frequent
patterns of length k = 10 in texts of length l = 500000, estimated by using ∆ = 1000
random texts generated by an independent equiprobable random model.

Quorum Sample Avg. Sample Variance Classes χ̂2 p-value

2 103257 56979.5 140 242.137 1.0492e-07

3 32289.7 45599.2 143 224.598 9.53969e-06

4 10895.9 25775.7 140 1032.99 6.97554e-137

5 3945.5 10028.8 155 1226.62 6.84481e-167

6 1512.9 4033.18 125 1369.86 2.1071e-209

7 603.745 1530.5 94 1112.53 8.20245e-175

8 248.217 605.686 66 1011.79 1.70043e-170

9 103.696 222.941 47 650.682 2.36554e-108

10 43.441 85.0996 33 460.135 6.81127e-78

11 18.255 32.2162 23 378.632 2.41168e-67

12 7.429 11.2062 15 114.326 2.64538e-18

13 3.069 4.02226 9 46.3872 7.34918e-08

14 1.256 1.4319 6 8.4145 0.0775217

15 0.491 0.570489 4 10.3533 0.00564684

16 0.191 0.22074 3 0.494901 0.481749

17 0.08 0.0776777 2 0.0175593

18 0.038 0.0365926 2 0.0141596

19 0.018 0.0176937 2 0.00148004

20 0.009 0.00892793 2 0.000183622

21 0.004 0.00398799 1 0

22 0.003 0.00299399 1 0

23 0.003 0.00299399 1 0

24 0.003 0.00299399 1 0

25 0.003 0.00299399 1 0

Table 6.7: Goodness of fit for the Poisson approximation for the number of frequent
patterns of length k = 10 in texts of length l = 500000, estimated by using ∆ = 1000
random texts generated by an independent non-equiprobable random model, following
the distribution of human grm1.
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Quorum Sample Avg. Sample Variance Classes χ̂2 p-value

2 116801 58243.6 141 269.859 2.00229e-10

3 41539.1 42781.9 154 153.544 0.449686

4 14736.6 25945.5 151 449.43 6.9024e-32

5 5414.03 11627.9 153 837.799 1.12166e-95

6 2098.79 4906.05 137 1028.24 2.61393e-137

7 864.218 1933.1 106 829.702 1.62603e-113

8 377.41 770.176 79 579.701 3.83452e-78

9 175.108 332.709 58 454.812 7.76275e-64

10 85.199 162.394 43 422.063 9.63566e-65

11 43.267 78.1459 33 341.015 6.65791e-54

12 22.964 38.287 24 223.196 3.09532e-35

13 12.59 20.8087 19 195.101 2.75833e-32

14 7.051 10.9033 15 149.793 2.26907e-25

15 4.083 6.12824 11 118.416 2.81786e-21

16 2.405 3.01399 8 31.4464 2.08286e-05

17 1.525 1.66704 6 17.0793 0.00186556

18 0.974 0.988312 5 6.13192 0.105366

19 0.632 0.583159 4 6.97926 0.0305121

20 0.457 0.390542 4 13.5805 0.00112466

21 0.333 0.274385 3 16.0111 6.29708e-05

22 0.263 0.216047 3 19.2538 1.14442e-05

23 0.203 0.175967 3 10.1966 0.00140702

24 0.156 0.137802 3 7.92729 0.00486946

25 0.126 0.114238 3 4.95806 0.0259693

Table 6.8: Goodness of fit for the Poisson approximation for the number of frequent
patterns of length k = 10 in texts of length l = 500000, estimated by using ∆ =
1000 random texts generated by an 1-order Markov chain random model, following the
distribution of human grm1.

In Table 6.8, we report the results for the independent non-equiprobable model. We

notice that the situation is similar to the independent non-equiprobable model, however

for q ≥ 17 the p-values have an erratic behavior, with low p-values when q = 21 and

q = 22, when there is a reduction in the number of classes from 4 to 3. The variance is

comparable to the average when q ≥ 17.
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Conclusion

7.1 Results

We explored various statistical aspects in the extraction of the frequent patterns in

genomic sequences. Our intention was to evaluate whether the Chen-Stein method

could be successfully applied to the extraction of frequent patterns as it was done in [9]

for the itemsets in market basket analysis, which gave an interesting result that allowed

the authors increase the efficiency and accuracy of existing algorithms.

In our framework, we discovered that the Chen-Stein method is used for approximat-

ing the distribution of the number of occurrences of a pattern to a compound Poisson

distribution, while the simple Poisson distribution we described is more adequate for

aperiodic patterns.

We intended to compare the exact distribution to the Poisson distribution, in order to

evaluate the discrepancies between the two and see whether a Poisson approximation

is sufficient for our purposes. We developed two simple algorithms for the calculation

of the exact complementary cumulative distribution function, based on the DFA for

the recognition of strings with the required number of occurrences of the pattern; we

later discovered that these algorithms are known in literature under the name of Finite

Markov Chain Imbedding. We still were interested in this and other methods for the

exact calculation for the complementary CDF for a single pattern, most importantly to

compare the difference in the complexity between the exact methods and the approx-

imation methods. Furthermore, by analyzing their complexity, we conclude that they

are not viable methods for the calculation of the number of frequent patterns.

Subsequently, we analyzed the applicability of the Chen-Stein method for some families

of patterns in different random models. We observed that the Poisson approximation

for the number of occurrences can be successfully applied to patterns that cannot self-

overlap. Through the comparison between the exact probability and the approximate
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probability in independent random models, while the discrepancy in the complementary

CDF is significantly lower than the error bound b1 + b2, we noticed that the relative

error rapidly diverges for patterns with high periodicity.

We then proceeded to investigate the distribution of the number of frequent patterns.

We discovered that the results obtained through the Chen-Stein method for individual

patterns could be useful for the estimation of the average number of frequent patterns.

For independent models, we developed a fast way to approximate the average number of

frequent patterns, together with an error bound. For equiprobable models, the method

requires to calculate just one value for the complementary CDF of a Poisson random

variable. For non-equiprobable independent models, the approximation requires just

O(k|Σ|−1) terms. The method is particularly interesting when the alphabet size is small,

which is the case in genomic sequences.

Applying the Chen-Stein method to the number of frequent patterns immediately ap-

peared to be a challenging problem: while in market basket analysis the random models

that are commonly used let the authors establish a compact neighborhood set, in ge-

nomic sequences each pattern is intrinsically dependent to each other, even when they

cannot overlap.

The näıve application of the Chen-Stein theorem, where the neighborhood set corre-

sponds to the set of patterns, lets us apply the approximation only if the average num-

ber of occurrences is much less than 1. This has been established both by an analytical

evaluation (which also depends on the variance of the number of frequent patterns) and

by an estimation through simulation. The quorum value threshold obtained this way

may be still quite reasonable for some random models.

We evaluated a different neighborhood set, which excludes those patterns that cannot

overlap from their respective neighborhoods. We noticed that the size of the neigh-

borhood is still rather large, coherently with the fact that it is sufficient for the two

patterns to share a single character between the end of one pattern and the beginning

of the other, in order for them to be neighbors. Unsurprisingly, the estimated values of

b1 and b2 did not decrease substantially, while b3 starts being greater than 0.

Finally, we decided to check whether a Poisson approximation may be suitable even

when the average is about 1 or higher, in order to potentially exclude any significant

improvement with other neighborhoods. The application of the Pearson’s chi-square test

and some estimates of the variance let us conclude that no significant improvements can

be made over the näıve approach for non-equiprobable models, while some improvement

may be obtained for the independent equiprobable model.

These results let us apply the method described in Section 1.3: we provided an approx-

imation for the average number of frequent patterns in independent random models,

which can be used instead of simulating the texts, and we gave some indications about
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when the distribution can be approximated to a Poisson distribution. These can be

used to obtain a quorum threshold after which every frequent pattern can be marked as

statistically significant with a low FDR.

7.2 Further developments

There are various aspects that can be expanded in further studies. First of all, the

compound Poisson approximation for single patterns may be used to improve the results

we obtained for the approximation of the average number of frequent patterns. The key

issue is being able to obtain expressions that lead to an acceptable complexity for the

approximation and for the error.

It is also interesting to expand the calculation of the average number of frequent patterns

for non-independent models. Unfortunately, in Markov chain random models, the oc-

currence probability of each pattern is heavily influenced by the order of the characters

in the pattern; thus it is more difficult to partition the patterns in classes with equal

probabilities. An approximate approach that partition the patterns in bigger classes

with similar probabilities may have some range of applicability. Another possibility is

to sample the space of patterns and calculate the probability (exact or approximate) of

q-occurrence, in order to estimate the number of frequent patterns.

Further improvements may be made for motifs: we analyzed some simple structured

motifs in our work with fixed length, however in computational biology there is a sub-

stantial interest in various types of motifs, which often reach the complexity of regular

expressions, or even allow for some errors in the pattern match in order to recognize

patterns with slight variability. This requires additional study on the types of motifs

that are of interest in molecular biology.

Finally, there is an interest in finding patterns that appear to be frequent in a significant

number of texts in a collection of texts. Some of our results may be adapted to this new

problem, while the simulation may become cumbersome when the number of texts in

the collection is considerable.
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