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Abstract

Nowadays mobile devices are provided with multiple interfaces so as to be adap-
tive to different use scenarios. However old-fashioned protocols do not allow using
these interfaces in parallel to increase performance of the end user. Multipath
protocols such as MPTCP have been proposed to fill this gap, offering increased
theoretical throughput and robustness due to resources pooling, but at the same
time they suffer from low performance in case of heterogeneous paths and a com-
plex retransmission management in case of losses. This thesis aims firstly to study
a new approach to this problem, introducing multipath protocols that exploit Net-
work Coding. The particular structure of Network Coding enables to overcome
the aforementioned issues simplifying the scheduling of packets among the links
and the retransmission management. Secondly, we focus on the management of
feedbacks and retransmissions in the presented protocols, in particular the impact
that these have on the overall performance.

Specifically, we will propose two multipath transmission protocols, both based
on Network Coding, and will study a feedback scheme compatible with them that
allows to exploit the feature of the coding scheme. Moreover, these protocols will
be implemented in a Python simulator, and a thorough simulation campaign will
be conducted in order to evaluate the performance especially for what concerns
overhead and feedbacks.
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Sommario

I dispositivi mobili dispongono oggigiorno di diverse interfacce in modo da potersi
adattare a differenti scenari di utilizzo. Tuttavia, protocolli obsoleti non permet-
tono di utilizzarle in parallelo e quindi di migliorare le prestazioni offerte all’utente
finale. Per colmare questa mancanza sono stati dunque proposti protocolli multi-
interfaccia come ad esempio MPTCP che, grazie all’unione delle risorse di più
interfacce, promettono di aumentare il throughput e la robustezza. il MPTCP
vede le sue prestazioni diminuire nel caso vengano utilizzate interfacce eterogenee
ed inoltre ha una complessa gestione delle ritrasmissioni nel caso di perdita di
pacchetti. Questa tesi si prefigge inizialmente di studiare un nuovo approccio a
questo problema, introducendo dei protocolli multi-interfaccia che utilizzano la
tecnica del Network Coding. La particolare struttura del Network Coding per-
mette di risolvere i problemi menzionati prima, di semplificare lo scheduling dei
pacchetti tra le diverse interfacce e la gestione delle ritrasmissioni. Successiva-
mente, ci siamo focalizzati sulla gestione dei feedback e delle ritrasmissioni nei
protocolli presentati, e in particolare l’impatto che questi hanno sulle prestazioni
generali.

Proporremo due protocolli di trasmissione multi-interfaccia, entrambi basati
sul Network Coding, e studieremo un schema di feedback compatibile con questi
e che permetta di sfruttare le proprietà di questo schema di codifica. Inoltre
questi protocolli verrano implementati in un simulatore in linguaggio Python, e
una estensiva campagna di simulazioni fornirà i risultati, specialmente riguardo
a overhead e feedbacks.
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1
Introduction

Today’s devices that access the Internet are radically different from those of sev-
eral decades ago, when the building blocks of this technology were developed.
At that time, to access the Internet only PCs with a single wired interface were
available, and all the transmission protocols such as TCP were designed to work
over a single interface. Nowadays, we can access the network through a number
of different devices as smartphones, tablets, and notebooks that can adapt to dif-
ferent scenarios in mobility, being equipped with multiple interfaces for different
technologies, e.g. WiFi and LTE [6]. Still, they use old protocols that allow to
employ only one of them at a time [7]. For these reasons, in the recent years the
research and development of multipath protocols have begun that allow to fully
exploit the transmission potentialities of these devices. Multipath protocols aim
to provide several benefits to the users [8]:

• Effectively increasing of the goodput for the end user, due to the pooling of
resource from the different paths

• Vertical handover for mobile devices, that can maintain the transmission
active even if one of the links lose the connection, increasing the robustness
of the transmission

The most relevant implementation of a multipath protocol is MultiPath TCP
(MPTCP) [8], a major extension of traditional Transmission Control Protocol
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(TCP) officially released by the Internet Engineering Task Force (IETF) in 2013
[8] (the architectural guidelines were released in 2011 in RFC 6182 [9]), that
integrates all the aforementioned characteristics.

The performance of MPTCP as all the other multipath protocols is influenced
by a problem called head-of-line blocking that arises in presence of heterogeneous
links. Works [4] and [5] proposed to solve this problem by introducing Network
Coding (NC) in the MPTCP protocol, developing what they call network coding
based Multipath TCP (NC-MPTCP).

NC is a promising scheme presented in 2000 [10] that completely redefines the
way to transmit the packets in a network. It is detached from the traditional
store and forward as it encodes packets at network level, adding another level
of information encoding. Particularly interesting is the Random Linear Network
Coding (RLNC) [11] that aims to encode packets generating linear combinations
of them; this scheme has unique features that make it an important block in the
telecommunication research [12] [13]:

• Transmission throughput achieves network capacity

• Increased robustness against losses due to its structure that mixes the in-
formation of different packets in the same encoded packet

• Ability to generate encoded packets at intermediate node without waiting
the decoding; this feature is called recoding

These properties led some researchers [4, 5] to implement this scheme in MPTCP
because it can solve the negative effects of out-of-order reception and multiple
losses that degrade the performance of TCP and MPTCP. With this thesis, we
have supported the development of a multipath protocol called nctun that, com-
pared to previous works, integrates NC in a more natural and complete way to be
used for the transmission of TCP packets over multiple interfaces. The utilization
of multiple heterogeneous links to transmit the same session of data introduces
further complexity for the scheduling and the retransmission of the lost packets;
e.g., a requirement of MPTCP to make the protocol reliable and robust against
losses is to allow the retransmission of a packet on a different subflow on which it
has been lost. This is not trivial because it require acknowledgements at connec-
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tion level but also at subflow level with multiple sequence numbers in the packet
header [8].

The main challenge is to increase the coupling of the subflows, making the
management of a multipath transmission quite equivalent in terms of complexity
to the single path counterpart but maintaining all the benefits of exploiting several
links. This result can be achieved by exploiting the characteristics of RLNC.
RLNC aims to merge the information from multiple packets that belong to a
set called generation into a single one; this allows the receiver to decode the
original information after having received a sufficient number of these encoded
packets, as opposed to the traditional store and forward that requires the exact
set of original packets [13]. For example, a network coded packet received in any
instant and from any subflow carries always the same amount of information to
the receiver, and can recover the information of one lost packet without requiring
the knowledge of a sequence number and the retransmission of a particular packet.

A small modification of the information carried by the ACK packets is needed
when NC is employed, as discussed in [14] and [15], that is easy to implement,
and as we will see, does not imply a transmission overhead increase with respect
to traditional feedback packets. In addition, for the reasons mentioned before, a
request for retransmission is equivalent to the request for the generation of new
random encoded packets. The last feature does not only increases the resilience
to packet losses but also allows to prevent packet erasures by sending a sufficient
amount of redundant packets, if the transmitter has the information about the
loss rate of the link.

Most of the research about feedbacks on network coded transmissions assumes
that feedbacks are transmitted over a perfect delay-free channels, and founds the
performance evaluation of the protocols onto this assumption. In all likelihood
this assumption leads to over optimistic results with respect to the real behavior
of the protocol. Real channels are never perfect or without delay and we want
to evaluate the impact of the acknowledgement transmission on the final perfor-
mance. The introduction of this evaluation in a multipath environment underlines
a completely different approach with respect to the previous works, which gives
a better comprehension of how it is possible to optimize the performance of a
network coded multipath protocol and how this performance strictly depends on
the quality and reliability of the feedbacks.
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In this thesis, two network coded based multipath protocols are investigated.
The two protocols differ in the way they employ the available links: the first is
suited for full-duplex links where the transmission of the packets can be simul-
taneous with the reception of the acknowledgement packets, while the second
is designed for half-duplex links where these functions are performed separately.
These protocols report two completely different ways to transmit encoded packets
and manage feedback and retransmissions, dictated by the channel characteris-
tics. Two aspects of the protocols have been analysed: the performance in terms
of throughput and the impact that feedback has on that.

Firstly, the network configurations utilized for the evaluation of the protocols
are described. In this set of configurations both single path and multipath net-
works are present, in order to have a complete comprehension of the behaviour
of the protocols in all possible scenarios. Secondly, the developed protocols are
explained in detail, and in particular it is explained that we choose to employ only
one link for the transmission of the acknowledgement packets also in a multipath
scenario, where multiple links could be used. This choice opens the problem about
the selection of the best path for feedback transmission among the ones available;
the search for the characteristics of a path that make it preferable is the main
objective of our evaluations.

The aforementioned evaluations are performed implementing the protocols in
a simulator specifically developed for this research. All the results are obtained
with this simulator that has been written in Python language with the help of
Kodo [1], a library with specific tools for the implementation of RLNC protocols.

The rest of this thesis is organized as follows:

• Chapter 2 describes the enabling technology of our protocols, Network Cod-
ing and in particular Random Linear Network Coding. In addition, it intro-
duces the main features, issues, and solutions given by other works about
feedback on Network Coding and Multipath transmissions.

• Chapter 3 introduces the Kodo library of Steinwurf, describing the main
tools and functions provided. Besides, the developed is described in details
Python simulator. Third, the feedback management and the developed
protocols are introduced.
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• Chapter 4 outlines the simulation procedure, presents figures, and comments
the results obtained about the two protocols.

• Chapter 5 draws the conclusions and suggests some possible future works.
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2
State of art

2.1 Preliminary definitions

In this section we want to introduce some concepts and definitions that will be
used later in the thesis.

Network Coding (NC): Usually with the NC term we refer to Random
Linear Network Coding (RLNC) [10] [11]. NC is a technique used at network
level that acts on packets. This technique breaks-up with the store and forward
paradigm, e.g. typical of the TCP/IP suite [7], combining several packets to-
gether for transmission; we call encoded packet the result of the combination of
multiple packets. The encoded packets in RLNC are generated by linearly com-
bining packets that belong to a set called generation. The linear combinations
are computed in a finite field Fq, where q is the size of the field, and the coeffi-
cients are randomly generated: e.g., in F2 packets and coefficients belong to the
binary field (i.e. assume values 0 or 1), and the linear combination of two packets
correspond to the XOR (logical exclusive OR) of them. The coefficients of the
linear combination are stored in the header of the encoded packet. The receiver
collects the encoded packets in a buffer and fills a matrix (called decoding matrix)
with the received coefficients of the linear combinations; when the receiver has
received enough packets it performs the decoding operation and recovers all the
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packets that belong from the current generation. NC improves the transmission
throughput, theoretically reaching the capacity of a network, and the resilience
to losses [12] [13].

Erasures: The system developed in this thesis exchanges information in the
form of packets at network level. In the ISO/OSI model [16] the protocols at
network layer rely on the services offered by lower layers, that aim to mask issues
due to noise, interference and fading at physical layer [17]. What is experienced
at network layer is the so called packet erasure channel, where the packets are
either successfully received or lost. There are other events in a packet network,
e.g. congestion or full buffer, that imply an erasures. In this thesis we refer to
erasure and loss as the event of failed reception of a packet.

Perfect channel: In this thesis we call perfect channel a link with zero-delay,
probability of erasures equal to zero and infinite bandwidth. Every packet that is
transmitted through a perfect channel is instantaneously delivered at the receiver
with probability 1.

2.2 Network Coding

The term network coding has been coined in the paper [10] referring to ”coding at
a node in a network as network coding”. No particular coding scheme is specified,
but the term applies map from input packets to outputs. This definition of
network coding is the most general possible because it does not depends on a
particular coding scheme, and reveals the flexibility of a novel concept of coding.
Network coding in this first paper idealizes, in a way, the usual information theory
where each node in a network has a probabilistic effect on other nodes, because
they define network coding in a network where nodes are interconnected by error-
free point to point links. This assumption does not seem to be very realistic,
if we think of present-day connections, wireline connections may approach this
condition, but wireless channels are more challenging. The network in the model
of [10] is in fact an abstraction of physical layer connections, approaching the
concept of network layer connection. If physical layer is not able to provide a
reliable connection to the higher layers, the reliability can be achieved with data
link control, network, and transport layers. Then, the first citation that we have
mentioned can be extended leading to the very first description of network coding:
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coding at a node in a network with error free links [13]. The absence of lossy links
suggests that network coding is not a channel coding procedure that recovers
data corrupted by a noisy channel. Channel coding is an arbitrary mapping
from received input symbols to outgoing channel symbols, from a source node
that performs the encoding to one or more destinations, where symbols encoded
travel over the physical layer. Channel coding is applied to physical connections,
sources and destinations of this type of encoding have to be directly linked via the
physical medium between them [13] [18]. Network coding proceeds in the same
manner of channel coding, but exploiting the features of higher layer protocols
on top of the physical links. Nodes that communicates with a network coded
transmission have not to be physically and directly linked, but simply have to be
logically connected in the higher layer network. Given the specifications of the
network, its behaviour and the probability function of the erasures of packets its
possible to define capacity as the maximum reliable rate that can be achieved.
The capacity that we have defined is measured in packets per unit time and
can be achieved with network coding as we will see later. The main difference
between these two procedures is that channel coding maps symbols of the physical
channel, network coding is an arbitrary mapping function of the content of each
node’s incoming packets. Packets at upper layers have to provide robustness
against erasures, while channel symbols are intended to be robust against noise.
Secondly, packet level encoding allows to append side information in the header
of the packet. Thirdly, due to processing, queueing and dropping procedures at
lower layers, packets transmission are not synchronized as can be intended the
symbol transmissions.

The usage of a higher level representation of the information allows to have a
better view of the network, giving the possibility to manage not only the single
transmission but also the interaction of multiple flows exchanged through the
network, and thus also the global behavior of the system and its performance.

The usual way to build a fully reliable communication at packet level is to use
a feedback protocol as the Automatic Retransmission reQuest (ARQ) [17], that
can be implemented in a link-by-link setup or in a end-to-end one, or both. The
optimal case where the capacity can be achieved using network coding is when
we have an uncongested network with perfect zero-delay feedbacks. Congestion
is in fact a specific problem of packet level networks that causes packet dropping
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and increased delay in a transmission; furthermore, unreliable and slow feedbacks
can represent a very important problem for an ARQ scheme [19] [20]. Another
scenario where end-to-end ARQ could be not well-suited in usual packet networks
is the multicast transmission, where each node that experiences a packet loss no-
tifies the source, possibly overloading the network; in addition, the retransmitted
packets are probably useful only for a subset of the nodes. Network coding allows
to use a feedback and retransmission control drastically different from the usual
ones.

Network coding thus is not a single precise coding scheme but a general new
approach that introduces a set of coding opportunity in a different domain, at
packet level. Packets are different from physical layer symbols for the reasons that
we have previously explained. Symbols are simply transmitted from a source to
one or more destinations in an end-to-end way through a physical channel, packets
are exchanged in a more complex scenario with multiple nodes to go through to
reach the destination, in a network where multiple users want to transmit and
then, sharing the same links with other users.

A subset of network coding techniques that are thought in order to increase the
performances of transmission from a single user are called intra session network
coding, that aims to encode packets that belong to the same transmission session;
the most important coding scheme that is part of this family is the random
linear network coding [12] that is usually confused with the more general term
of network coding. Random linear network coding is the most used and famous
network coding technology because it has several interesting properties: it is able
to approach capacity of the network, it is decentralized then it does not need
coordination between nodes, and in particular it is a rateless code i.e. from the
same set of source packets an infinite number of coded packets can be generated
[13] [12]. This is particularly useful in lossy network where the loss rate could
change over time.

In the multi-unicast case, where in the same network there are N > 1 sessions
between a set S = {s1, s2, . . . , sN} of sources and a set D = {d1, d2, . . . , dN} of
destinations [21], there is another type of network coding techniques that can be
used called inter flow network coding [22], that aims to encode at a node in the
network packets that arrive from different sessions. Inter-session network coding
is more complicated than intra-session network coding because it needs a complex
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management of the coding procedures at intermediate nodes in order to guarantee
that each sink can decode its desired source process.
In the following section we will analyse the coding scheme that we have employed
in our research: Random Linear Network Coding.

2.2.1 Random Linear Network Coding

Random linear network coding is a technique that aims to encode the packets
that belong to the same transmission session. The main idea of this scheme is
that a node, instead of simply forwarding its packets individually, sends coded
packets that contain a linear combination of the information inside of the original
packets. Each packet that carries a linear combination of other packets also has
to piggyback side information about the particular combination in the payload,
and this operation is made possible and simple because we are at the packet level
and then we can store side information in the header of the packet. Then the
main difference between a usual coding scheme that maps an input symbol to an
output one is that here we jointly code multiple packets in a single one, carrying
more information than a normal forwarded packet.
In order to better understand the important advantages that such a coding scheme
brings with it we mathematically formalize the procedure. At the source node we
have K uncoded packets w1, w2, . . . , wK which are vectors of length λ with values
over the finite field Fq (that can be also called Galois field of size q). Practically,
the information that the source has to transmit is split into K segments of the
same length λ where the set of this packets w1, w2, . . . , wK is called generation.
If the original packets have a length of b bits, then each of the K segments of the
generation will have a length of λ = ⌊b/ log2 q⌋ in the Galois field of length q.

The coding procedure at the source node is simply the creation of a linear
combination among the K packets of the generation, creating an outgoing coded
packet with the same length of the uncoded packets (except for the header that has
to contain side informations) and that has inside coded information of potentially
all the K packets. The cases in which is created a linear combination of a subset
of packets is included in the general case taking the coefficients corresponding to
the packets not in the subset equal to zero. Since the whole procedure is linear
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Figure 2.1: Overview of the Random linear network coding procedure[1].

we can describe any coded packet x as a linear combination of w1, w2, . . . , wK ,
thus

x =
K∑
k=1

γkwk (2.1)

that can be written in matrix form X = Γ ·W. When a coded packet is created
at the source in the header is stored the vector of coefficients γ = [γ1, γ2, . . . , γK ]

that is fundamental for the decoding operations, the overhead of K log2 bits is
negligible if packets are sufficiently large. In Fig. 2.1 we can see the coding
procedure where the K packets of the generation are passed through the encoder
that generate n encoded packets that are linear combinations of the original ones.
A destination node collects the received packets and, if it has received K packets
with linearly independent coefficients vectors then the node is able to decode the
K original source packets, inverting the matrix Γ i.e. W = Γ−1X. The decoding
operations are made by Gaussian elimination [23] [24]. The random part of the
procedure is in the encoding, in fact the coefficients vectors γ are chosen randomly
in FK

q generating random linear combinations between the packets of the same
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generation. The operation of choosing randomly a vector of coefficients can be
made infinite times, meaning that it is possible to generate a infinite number of
coded packets from the same set of source packets, for this reason this set is called
generation. Random linear network coding is then said to be a rateless code, since
there is no predefined rate of the code but we are able to generate how many
encoded packets we need, and this is one of the most important feature of this
coding scheme. In Fig. 2.1 the number of generated encoded packets n ≥ K is
reported in lower case to underline that this is not a predefined number but can be
chosen a posteriori in function of the erasures of the medium. At the decoder we
assume to have received a number r ≥ K of linearly independent coded packets,
and then passing those through the decoder that applies the Gaussian elimination
we recover the original data.
Since the decoding of the data depends on the reception of a number n > K of
linearly independent combinations then the probability that a source generates
a linear dependant combination becomes an important factor. We denote with
K ′ = K − K̃ the number of packets needed by a sink in order to decode, where
K̃ is the number of linear independent packets already received by the sink. This
interesting point has been analyzed in [25]. For a given q and K the probability
that a generated combination is linear dependent to another one can be written
as

Pdep = 1−
K∏
i=1

(1− 1

qi
) (2.2)

Figure 2.2: Markov Chain for a single node that receivesK packets.

A sink receiving K packets can be represented as a Markov chain as reported in
Fig. 2.2, where the probability that a packet is useful at a sink is the probability
it is received multiplied with the probability that it is independent

Pi→(i−1) = (1− p)

(
1− 1

qi

)
(2.3)
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The probability that a packet is not useful can be calculated as the complementary
of the previous one, that is the probability that the packet is not received plus the
probability that is received but linear dependent from the ones already received

Pi→i = 1− (1− p)

(
1− 1

qi

)
= 1− 1 +

1

qi
+ p+ p

1

qi
=

= p+ (1− p)
1

qi

(2.4)

Obviously the more packets the sink has collected, the higher the probability
that a new received packet is not useful, but from 2.4 we can also see that the
dimension q of the finite field that is employed plays an important role in the
value of this probability. In fact a field with a bigger size guarantee a lower
probability of generating linearly independent packets at the price of an increased
computational complexity of each operation in the coding procedure. This value
impact on the efficiency of thee coding procedure because a higher probability
Pi→(i−1) require an higher mean number of transmitted packets. If we denote C

as the transition matrix of the Markov chain in Fig. 2.2

C =


1 0 . . . 0

(1− p)
(
1− 1

q1

)
p+ (1− p) 1

q1
. . .

...
... . . . . . . 0

0 . . . (1− p)
(
1− 1

qK

)
p+ (1− p) 1

qK

 (2.5)

Then the expected number of transmission for one packet of the total K packets
can be found by

E[tx] =
1

K

∞∑
i=0

1−Ci
(K,0) (2.6)

Then we have seen that the choice of K and q can have an impact on the efficiency
of the code and then we have to find a good tradeoff between efficiency and
complexity.
Since we are coding at the packet level, each packet that the source transmits can
go through multiple nodes before reaching the intended destination. Intermediate
nodes can act in two different ways: only forward the packets that it receive to
the next node in the routing table or recode the packets. In the recode setup,
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when an intermediate node receives a packet, it stores the packet in the internal
memory. Every time that an erasure happens on an outgoing link of the node,
the latter can generate a packet that is a linear combination of the previously
received packets. Supposing that the node has L packets stored in the memory,
for example y1, y2, . . . , yL, then the node can produce the outgoing packet:

y0 =
L∑
l=1

αlyl (2.7)

with αl chosen according to a uniform distribution over the elements of Fq. Due
to the structure of the packets this new packet y0 is itself a linear combination of
the original packets wk of the generation

y0 =
K∑
k=1

(
L∑
l=1

βnαnk

)
wk =

K∑
k=1

γkwk (2.8)

, and the coefficients γ = {γ1, γ2, . . . , γK} are inserted in the header of y0.

Figure 2.3: Two-link tandem network.

The opportunity of coding at intermediate nodes is a very important feature
in the case of a network with lossy links, as seen in the following example [13].
In Fig. 2.3 we have the node 1 that wants to transmit some packets to node 3
passing through 2. Packets are lost, i.e. the entire packet experiences an erasure,
on the link between nodes 1 and 2 with probability ε12 and on the other link with
probability ε23. With an end-to-end erasure code from node 1 we can achieve the
maximum rate of (1−ε12)(1−ε23). The true capacity of the system is not achieved;
if we use two different stage of encoding, i.e. enabling recoding at node 2, we are
able to communicate between nodes 1 ad 2 at rate (1− ε12) and between nodes 2
and 3 with rate of (1−ε23) packets per unit time. Thus, this strategy allows us to
communicate from node 1 to 3 at a rate of min{1− ε12, 1− ε23} that is in general
greater than (1 − ε12)(1 − ε23). It is possible to employ this strategy with every
erasure code, simply decoding and recoding the received packet at each node, but
it is not a feasible option because the decoding procedure at each intermediate
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node increases the delay too much. The unique feature of random linear network
coding is that intermediate nodes are able to generate encoded packets also with
an incomplete set of information and without decoding the incoming packets [10]
[26] [27].

Now that we have briefly analysed the increased robustness to erasures with
network coding we can go further to see which are the throughput gains that
we can achieve. To employ network coding can provide some throughput gain
in different scenarios, like the ones that we have described in the introduction:
unicast, multicast and broadcast. A multicast scenario where the network coding
can achieve the capacity of the network is the butterfly network, reported in Fig.
2.4 and presented for the first time in [10].

Figure 2.4: Multicast scenario: butterfly network.

The Galois field used in the example network has size equal to 2, meaning that
each coding operation between two or more packets results in a XOR between
them. This example is not directly related to random linear network coding
because in the coding operations the coefficients are not chosen randomly, but it
shares most of the property and then the results are still valid for random linear
network coding. Source node s wish to send packets b1 and b2 to both sinks t1 and
t2. The multicast transmission can fully exploit the capacity of the network only
if one of the intermediate nodes does not only forward the packets but decides
to network code them. In the example Node 3 receives both packets b1 and b2

then following the same algorithm explained for the recoding operation in random
linear network coding, it can produce a coded packet that contains the bitwise
XOR of both packets. All the other nodes only forward the received packets. Each
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of the two sinks finally receive two linearly independent packets, one uncoded
from the side link and one encoded from the Node 4, then they can decode both
the original packets. The nine packets used in the butterfly network carry the
information of two packets, but without coding its not possible to transmit as
much data and other transmissions are needed. The butterfly network example
is contrived and rarely could represent a real network but is useful to show how
the utilization of a simple network coding scheme can increase the throughput in
a multicast wireline network. The throughput benefits are not restricted only for
wireline networks, but can exploit also the broadcast nature of wireless networks.

Figure 2.5: Wireless multicast scenario: wireless butterfly network

Fig. 2.5 represents a network similar to the one used in the previous example
with the difference that in this case the arcs of the graph represent wireless
transmissions; in fact each transmission is not heard only by one node but also
by all neightbors of the source. Also in this case only node 3 network codes the
received packets. Exploiting the broadcast nature of the wireless medium, Node 3
is able to transmit the coded packet to both sinks simultaneously, and this packet
is useful for both. In this case node 3 reduces by 1 the number if transmissions
with respect to the case without network coding where the same node has to
transmit b1 and b2 separately. On the other side, also the receivers t1 and t2 have
the advantage of not receiving useless packets intended for the other sink.

Wireless links, in addition to the broadcast nature, have the important char-
acteristic to be subject to interference, fading and collisions, thus at the packet
level wireless links are seen as lossy links [17]. Sometimes packets are lost during
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the transmission and the intended sink could require a retransmission of these
packets. We put ourselves in a broadcast scenario where a single source wants
to transmit the same information to N receivers. Each receiver can experience a
different quality of the channel at different times, then a single sink could not re-
ceive packets that other sinks have correctly received. In a normal packet network
that employs an ARQ scheme, each sink sends a request of retransmission of the
packets that has not received, possibly overwhelming the source node of requests
and of a different retransmission schedule for each user. In addition, the sinks
will probably receive useless packets that are not intended for them. With NC
all the received packets are useful for several users due to the linear combination
structure.

2.3 Feedback

In the previous section, we have talked about the benefits that network coding
can bring in a packet network. In a multicast scenario we know from [10] that
the source can transmit data at a rate arbitrarily close to the capacity of the
network, by allowing intermediate nodes to randomly combine their incoming
packets. These results are formalized in the coding theorems also in [10], that
are like bounds that we can achieve in ideal conditions. These results assumes
the complete knowledge by the source of the min-cut capacity of the network
and that it will code information at that rate. Furthermore, they assume that
the nodes of the network are benevolent users that aims to maximize the global
performance of the system, and also that there are no complexity constraints.
This last assumption means that all the intermediate nodes can encode all their
incoming information flows with an arbitrarily complex Forward Error Correc-
tion (FEC) scheme. This approach is investigated in [28], [29], [30] and others,
employing low complexity codes at network or application layer.
The utilization of feedback schemes instead of FEC codes is an alternative way
to proceed that can bring benefits but also complicates the management of the
network. Usually feedbacks are assumed as ideal, meaning that the source knows
instantly if its transmission has been successful or not. In addition, idealized feed-
backs guarantee to achieve capacity of the network. In real networks feedbacks
are not free of costs because they have the same characteristics of other packets in
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the network, then suffering of delay, congestion, and erasures, in practice they are
a new source of traffic that has to be reliably delivered. Despite these problems,
in a Network Coding enviroment feedbacks are fundamental to achieve reliability
against losses and parameter adaptation [14]. The parameter adaptation is an
important procedure that has to be implemented in order to allow the code to
achieve the best possible performance. For example we can consider the parame-
ter of the size of the generation that in the previous section we have denoted as K.
The size of the generation can affect the rate that a sink can experience and the
error correcting capability of the code [25]. The first because a bigger generation
size leads to bigger coefficients vectors in a Galois field of higher dimension, thus,
with a lower probability to have linear dependent vector. The second because, in
a multicast scenario, with a higher K is more probable that a single packet can be
useful to several sinks in order to recover losses. These advantages comes at the
price of a higher computational complexity and decoding delay. The complexity
is increased due to the greater size of the coefficients matrix to invert during the
decoding procedure, while the delay is affected by the higher number of coded
packets that a sink has to wait until decoding. The trade-off is between a higher
erasure robustness and throughput versus a delayed decoding. Feedbacks from
the sinks can then be useful for the source in order to optimize the generation
size in function of the current channel quality.
We can think an example of a delay constrained transmission where packets re-
ceived after the time Tthres are useless and then dropped. The network setup is
reported in Fig. 2.6 with h sources, N =

(
n
k

)
receivers and k coding links {Ai, Bi}.

Each of the N receivers Ri observes a distinct subset of h B nodes. Time is slot-
ted and in every slot each source can transmit one packet through every link,
that have unitary capacities. The network has min-cut capacity h at the source
and between nodes Bi and the receivers Ri. The single source S underlines that
the packets are all from the same session than we are talking about intra session
network coding. We assume that the edges between nodes A and B are associated
with a delay that changes in a i.i.d. fashion according to a probability distribution
P; in addition, the delay changes at a lower time rate, e.g. they changes each M

time slots.

In order to transmit at rate h i.e. at the mincut capacity to all the receivers,
the source has to send at most h uncoded packets and k − h packets coded
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Figure 2.6: Network withh source andN =
(
n
k

)
receivers.

through Random Linear Network Coding. In order to decode in a useful time a
receiver has to receive the packets from the h links that observes with a delay
lower than Tthres, that happens with a probability of P (d < Tthres)

h. With only
one of the edges that exceeds this threshold all the received packets at a sink
become useless. If instead the sources send only uncoded packets then we have
not problem of decoding delay meaning that a link with a delay that exceeds the
threshold does not invalidate all the previously received packets because do not
need to be decoded. On the other hand, sending only uncoded information does
not guarantee to achieve min-cut rate at all the receivers and there could be sinks
that receives packets at a rate equal to 1; this happens when a receiver observes
the same uncoded packets from all its h links.
If the source receives feedbacks from the receiver nodes it can decide of not use
the links with a high delay (this is possible due to the assumption of the slow
changing of the delay of the links) and modify the coding scheme in order to
maximize the transmission rate on the remaining links.
The last example shows us how the feedbacks are important in order to adapt the
coding scheme to the network where it is applied, optimizing the throughput and
the delay. The parameter adaptation is not the only advantage of the utilization
of the feedbacks with network coding. Now we want to report some results from
[14] that aim to prove how the usage of the feedbacks can help to save resources, in
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systems that combines in different ways ARQ and FEC. These schemes are applied
on the network in Fig. 2.7 where the source A aims to transmit information to
node C through the intermediate node B. The link between nodes A and B has a
loss rate of εAB and the other one εBC . Assuming εAB < εBC the mincut capacity
is equal to (1− εAB).

Figure 2.7: A path from source A to Node C through intermediate Node B.

In Table 2.1 are reported the characteristics and the results of the five employed
coding schemes. The reported values are:

1. Rate: the maximum achievable rate at which information can be transmit-
ted from A to C.

2. Delay: represent the excess time (d − k/Cmc) with respect to the theoret-
ical minimum that node B takes to transmit k packets; Cmc is the mincut
capacity and d is the time instant when B finishes transmitting.

3. Feedback: the number of feedback packets required by the coding scheme

4. Memory: the quantity of memory needed at node B

5. Blocksize: The dimension of an single coding block. Bigger coding block
correspond to larger delay.

When employed, feedbacks are assumed lossless and instantaneous.

Schemes Rate Delay Feedback Memory Blocksize
I FEC min-cut: (1− εAB) O(

√
k log k) 0 O(k) k

II End-to-end FEC (1− εAB)(1− εBC) O(k) 0 0 k

III Fec-m (1− εAB)(1− πm) O(k) 0 m k

IV ARQ (Rf = 1) min-cut: (1− εAB) O(
√
k) k O(

√
k) 1

V FEC + ARQ (Rf ) min-cut: (1− εAB) O(
√
k) kRf O(

√
k) k

Table 2.1
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• Scheme I : In this scheme Nodes A and B use a capacity achieving FEC
code. Node A uses a code C1 to encode and transmit n1 packets over the
link AB. Node B receives on average n1(1 − εAB) coded packets after n1

time slots, decodes (or recode without decoding if possible) and transmits
n2 coded packets with the code C2. If Node B finishes to transmit at time
d, Node C will receive on average n2(1− εBC).

• Scheme II : This scheme is a simplified version of the previous one, because
the code is applied only at Node A, and Node B only forward the packets
that it receives. This scheme does not require processing and memory ca-
pabilities at Node B but does not achieve capacity.

• Scheme III : It is similar to the first scheme, with a constrained memory at
the Node B that can contain at most m packets. This scheme collects the
received packets in the memory and outputs a stream of packets that are
linear combination of those. It achieve only (1−πm) of the mincut capacity,
where πm < εBC is the steady state probability of an appropriately defined
Markov chain as described in [30].

• Scheme IV : Ensures the correct reception with one feedback for each packet
(i.e. at rate Rf = 1). This scheme achieves the mincut capacity but also
overwhelms the network of feedback packets. It is important to note that
this scheme can reach this performance only if the feedbacks are assumed
perfect, i.e. with zero-delay and no erasures.

• Scheme V : Here a block coding scheme is employed(e.g. RLNC) with in
addition a feedback protocol to notify the correct reception of a block. Every
block has length equal to k then a feedback is transmitted at an average
rate of 1/(k(1 + ϵ)) that is the rate at which the receiver collects the k

packets useful to decode the block. We can generalize the rate of feedback
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transmission introducing Rf :

Rf =
# of feedback msg
# of received pcks (2.9)

where a rate of Rf = 1/f means that a feedback packets is transmitted
every f time slots. The scheme uses f times less feedbacks than the previous
one, requiring an average memory at node B of 1/Rf (1− ϵBC) larger than
that with ARQ. The main benefits is that we are able to reach the mincut
capacity requiring feedbacks only on the link BC instead of both AB and
BC as in the scheme IV.

This example shows how feedbacks can improve performance of the transmis-
sion when is combined with a block coding scheme as random linear network
coding, referred to a better memory management delay. If we focus our attention
to the case where TCP is used to ensure reliable communication the application
of ARQ is not straightforward. This case is discussed in [14] and [2] that report
similar solutions to the problem.
In RLNC every received packets is formed by the linear combination of packets
that belong to the same generation. A node is not able to perform a full decoding
of the original packets until it has correctly received K linear independent packets.
If we follow a batch based approach, the packets are acknowledged only when the
full decoding is reached, leading to a decoding delay that increase as a function of
the generation size K. This approach could interfere with the TCP retransmission
mechanism that would either timeout or observe a high round trip time leading
to a low throughput. Paper [2] aims to build an ACK-based sliding-window net-
work coding approach compatible with TCP. TCP uses acknowledgements for
notify newly received packets as they arrive in correct sequence order, in order
to guarantee reliable communication and also as a feedback for the congestion
control loop. The difference with the normal TCP is that the receiver does not
observe a packet but a linear combination of packets that has not something that
can distinguish it from the other coded packets. What is missing is the notion of
ordered sequence of packets as used in TCP because at the source we are mixing
the originally ordered packets. In addition, a received coded packets could be lin-
early dependent on those already received, not carrying new information to the
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receiver. If we think the decoding problem at the receiver as a system of equations
in K unknowns, every time a new useful packet is received a new equation can be
inserted in the system subtracting a degree of freedom from the system. Thus, a
new unit of information corresponds to a degree of freedom, then acknowledging
each degree of freedom can be a strategy compatible with TCP. We now want
to formalize this intuition about the degrees of freedom, as reported in [2]. We
consider a set of K packets p1,p2, . . . ,pK that are vectors over the finite field Fq.
The kth packet in the source generation is said to have a index k. A node that
performs network coding can for example produce packets q1 = αp1 + βp2 and
q2 = γp1 + δp2, where α, β, γ, δ ∈ Fq. Assuming the packet length equal to l and
K = 2 the two packets can be written in matrix form(

q11 q12 . . . q1l

q21 q22 . . . q2l

)
= C ·

(
p11 p12 . . . p1l

p21 p22 . . . p2l

)
(2.10)

where C =

(
α β

γ δ

)
is the coefficients matrix. At the decoder side it has only to

invert matrix C in order to recover original data. In this setting [2] introduced
the following definitions.

Definition 1 (Seeing a packet). A node is said to have seen a packet pk if it has
enough information to compute a linear combination of the form pk + q, where
q =

∑
l>k αlpl. Thus, q is a linear combination involving packets with indices

larger than k.

Then a node has seen a packet if it has received at least one linear combination
where the coefficient relative to the kth element is different from 0. If the node
has also decoded pk then it can also compute a linear combination pk + q with
q = 0.

Definition 2 (Knowledge of a node). The knowledge of a node is the set of linear
combinations of original packets that it can compute, based on the information it
has received so far. The coefficient vectors of these linear combinations form a
vector space called the knowledge space of the node.

Proposition 1. If a node has seen packet pk, then it knows exactly one linear
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combination of the form pk+q such that q is itself a linear combination involving
only unseen packets.

From this proposition derives the following definition

Definition 3 (Witness). We call the unique linear combination guaranteed by
Proposition 1 the witness for seeing pk.

In Fig. 2.8 is represented the basis matrix of a node in a row-reduced echelon
form (RREF) that is the form obtained by applying Gaussian elimination on the
coefficient matrix. The seen packets are the ones that corresponds to the pivot
elements of the basis matrix, the unseen elements are the ones that have not still
a row with the corresponding pivot element.

Figure 2.8: Seen packets andwitness in terms of the basis matrix [2].

The main observation made in [2] is that the number of seen packets is always
equal to the dimension of the knowledge space, that is equivalent to say that is
equal to the number of degrees of freedom received at the moment. A new packet
that increases this number is said to be innovative. If the field size is very large
with high probability every newly received packet is innovative.
This observation leads us to a feedback mechanism for network coding trans-
missions on TCP, that consists in sending an acknowledgement packet for each
innovative packet received. In particular, the strategy proposed is this [2]:

1. The sender takes packets from the TCP source and put them in an encoding
buffer. The encoding buffer represents the set of packets from which are
generated the linear combination, when a packet has been acknowledged it
is deleted from the coding buffer.
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2. For each packet R linear combinations are sent to the IP layer on average.
R represent the redundancy parameter. The redundancy is an important
parameter because if we send a low number of packets, then due to losses,
the receiver will not be able to decode, requiring some retransmissions. This
is a situation where the losses are not masked to TCP, resulting in a higher
Round Trip Time (RTT) (i.e. the amount of time that the a packet takes
to be sent plus the amount of time that it take to be acknowledged at the
transmitter) and lower throughput. Also a higher R is not a good choice
because too many packets will congest the network.

3. When the receiver receives a linear combination, it extracts the coefficients
from the header and put them in the decoding matrix. Then it performs
Gaussian elimination on the matrix to find out the newly seen packet. If
there is one, an ACK is created and transmitted to the source. The receiver
maintains a buffer with the packets that are not yet been decoded.

The mechanism proposed is then to send a feedback for each innovative coded
packet that is received, that contains the index in the generation of the newly seen
packet. The idea of the sending algorithm that exploit the information carried
by the feedback packets is a sort of sliding window coding. In fact, the source
does not generate linear combinations of all the packets of the generation but
only of those that are inside a coding window. The coding window at the source
has a defined length and shifts of one packets when the source receives a feedback
from the receiver that notifies the last seen packet. Fig. 2.9 reports an example
of the behaviour of this technique in a multicast scenario with a source and two
receivers A and B. The source has to transmit a generation composed by packets
p1,p2,p3,p4 and the window length is equal to 2, leading to linear combination
that are at most composed by two packets.

Figure 2.9: Example of sliding window.
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This coding scheme allows to minimize the decoding delay because sending
packets on a small window allows to decode when all the packets depending from
that window have been seen from the decoder, and not when at least K innovative
packets are received. In addition, the buffer required at the decoder is smaller
because it is useful to store only the packets of the current windows that are seen
but not decoded, because when they are decoded they are passed to the TCP layer.
In this way, the TCP layer does not suffer of the high RTT and the reception of
the packets is perceived as in order. It is important to note as these improvements
on the performance of the random linear network coding scheme are possible only
with a feedback mechanism that provides the information about the state of the
receivers at the source. As in the previous example, the mechanism can be simply
applied to multicast scenarios where network coding can manifest all its benefits,
and not only to the classical unicast TCP connections.

What we have seen is a protocol that allows to apply random linear network
coding to the standard TCP inserting a network coding layer that implements the
retransmission algorithm between IP and TCP layers. This permits to exploit the
performance gains of RLNC without modifying the TCP protocol, fundamental
if we think about an implementation in a real network. Not always a complex
mechanism is required, when we do not have memory and decoding delay con-
straints. In these cases it is possible to see how Network Coding can simplify also
the feedback management. Usual ARQ schemes as Go Back-N are selective re-
peat and not still applicable with Network Coding due to the lack of the sequence
ordering that we have previously explained. In order to request a retransmission
to the source, the receiver has to notify how many linear combinations it has
received, and not the exact packet that has been lost on the erasure channel.

2.4 Multipath

In recent years with the emergence of wireless connections to access the Internet
the number of devices with multiple interfaces is increased. Few years ago the
usual way to connect to the the Internet was a PC with a wired connection, now
we have devices as the smartphones that are provided with LTE and WiFi [6]
and notebook that have both wired connection (Ethernet) and wireless connec-
tions (WiFi and sometimes also LTE). For the users of these devices seems to
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be logical to improve the network experience and performance when connected
through multiple interface instead of a single one. The expectations of the users
in this case do not have a straightforward solution for the real implementation.
The main problem in the realization is that the most used transport protocol
(TCP) is not suited to scale on multihomed devices. TCP is a protocol that aims
to build a tunnel through the network between two network interfaces, then it is
not possible to adapt the protocol without deep modifications. In order to tackle
this problem the IETF released a dedicated version of TCP under the name of
MPTCP, which was inserted for the first time in the Linux kernel on July 2013,
and its development is still ongoing. MPTCP is an extension of TCP presented
for the first time in [31] and [32] and then officially inserted by the IETF in Re-
quest for Comments (RFC) 6824 [8]. Pooling the resources of multiple channels
allows to increase the throughput with respect to TCP. In a wireless scenario, as
the aforementioned example of the smartphone, MPTCP can dynamically man-
age the channel interfaces, for example when the WiFi link is lost and only the
3G/4G link remains, the connection is not interrupted but automatically switched
on the remaining link, increasing the robustness of the connection experienced by
the user. The behavior is the same in the opposite situation where a new link
layer connection is available, splitting the traffic between the two channels and
increasing the throughput.
Then, multipath transport protocols have several theoretical benefits on the per-
formance of a connection. We said that the realization of these objectives is not
straightforward because usually we have to handle with multiple links with dif-
ferent characteristics. A well-known problem of multipath connections is called
head-of-line blocking, that arises in presence of links with high differences in band-
width and delay. If we want to guarantee in-order delivery of the packets at the
receiver, results that the packets that are scheduled on the low delay/high band-
width link have to wait for the arrival of the packets from the high delay/low
bandwidth link in a temporary buffer before being passed to the higher layer pro-
tocol. Head-of-line blocking problem causes burstiness in the stream of the data
due to the delayed delivery of the data to the application layer. In this scenario
application becomes less reactive and user experience degrades becoming worse
than with a traditional single path connection. In case of a limited buffer of the
receiver this problem could cause also dropping of some collected packets further
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degrading the quality of the connection, then a well designed buffer at the receiver
is a good way to tackle with head-of-line blocking. In [33] and [3] is recommended
a buffer size of

Buffer = (
n∑

i=1

bwi)× RTTmax × 2 (2.11)

where
∑n

i=1 bwi is the sum of thee bandwidth of the n links and RTTmax is the
highest Round Trip Time (RTT) among all the subflows, allowing all the subflows
to transmit at full speed also in case of erasures.
Regardless the solution to the problem of multipath transmission given by MPTCP,
the core of the protocol at the transmitter side is the scheduler. The scheduler is
the entity that decides how to split the traffic between the available links and a
wrong scheduling decision might result in the problems that we have previously
explained. In [3], the authors have simulated a network with a transmitter and a
receiver that communicate through two subflows as in Fig. 2.10, using MPTCP.

Figure 2.10: Testbed of [3]

With this simple setting they have tested four different schedulers from the
simplest one, called Round Robin (RR) where packets are transmitted on a path
or on the other in alternation, to complex ones that take into account estimated
parameters of the links as the RTT or the congestion window of the TCP socket
at the receiver, reaching the conclusions that designing a scheduler compatible
with the congestion control of TCP, that can tackle the buffer limitation at the
receiver and the head-of-line blocking at the receiver is not trivial especially with
large RTT differences. In addition, the design requires very precise estimation
of the RTT that is also an hard task in highly variable scenario like wireless
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networks.

2.4.1 Network coding basedMPTCP

In [4], the authors tried to give a solution to the common problem of head-of-line
blocking that affects all the MultiPath protocols, proposing a NC-MPTCP proto-
col. This protocol mixes network coded and normal flows in order to compensate
for the lost or delayed head-of-line packets but also includes a scheduler and a
redundancy estimation algorithm.

Figure 2.11: Protocol architecture presented inn [4] for NC-MPTCP.

In Fig. 2.11 is possible to see the architecture presented for NC-MPTCP that
consists of several modules: the main socket that is a normal socket that acts
as a medium between the application layer and the NC-MPTCP controller, the
NC-MPTCP controller that implements the scheduling algorithm and the redun-
dancy estimation. The regular subsockets and the network coded subsockets are
standard TCP sockets managed from the main socket that transmit data with
regular TCP and network coded TCP, respectively.
The scheduling algorithm in this is thought in a reverse way, instead of choosing
the path on which to send the packet, it waits for an available subsocket and then
chooses the best packet to send among those in the queue. The network coded
subflow is utilized only as redundancy flow in order to compensate losses and de-
lay on the regular TCP flows, the quantity of packets transmitted on the network
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coded flow is computed with an expression that is function of the RTT and the
probability of losses of the links and have to satisfy the following conditions

|C|(1− pn) + |G′|(1− pr) ≥ |G| (2.12)

|C| ≥ |C|pn + |G′|pr (2.13)

where pr and pr are the probability of losses on the regular and network coded
flows, G denote a generation and C the set of coded packets computed over G;
network coded subflows transmits C and the regular ones transmits G′ such that
G′ ⊆ G. The expression used for the redundancy estimation try to find the
minimum |C| and |G′| that satisfy equations (2.12) and (2.13). [4] found out via
simulation that NC-MPTCP requires a smaller aggregation buffer at the receiver
than MPTCP in order to achieve a stable goodput and in general is more robust to
high differences of delay of the subflows, which is the real weakness of MPTCP.
Another example of the application of Network Coding to MultiPath TCP is
reported in [5], where a full network coded protocol instead of a partial one as
the in [4] where the network coding subflows was used only for the redundancy
packets. The scheme used is reported in Fig. 2.12 where we can see that all
the packets pass through two steps of Network Coding and the second layer of
encoding provides the redundancy packets to overcome the packet losses on the
link.

The authors of [5] have computed the end-to-end analytical throughput of their
protocol, providing a closed form expression, function of the parameters of the
links. Then they have applied to this analytic model and the classical MPTCP
the data from three heterogeneous links (WiMax, WiFi mesh network and an
Iridium satellite link) collected by a moving vehicle in order to have a dataset
that reflects the real utilization of the devices. The results from these experiments
show that the classical MPTCP is hindered by high packets losses while the
developed version of NC-MPTCP reaches a higher throughput because is able to
mask losses to the TCP sockets. Another benefit of using a fully network coded
protocol is that it simplifies the scheduling and the retransmission protocol. The
scheduler is simpler because all the packets from the same generation have the
same characteristics, and without the need to choose the optimal packet to send on
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Figure 2.12: MPTCPwith NC in [5].

the free channel. Second, the retransmission protocol has an easier management
because we only need to acknowledge the number of degrees of freedom at the
receiver and retransmit a sufficient number of linear combinations; if a packet
is lost, any packet sent in a different subflow can be used in the lost packet’s
place. In order to prevent the dumb retransmission of packets in this case as in
[2] for each degree of freedom to send R ≥ 1

1−ϵ
packets are transmitted where ϵ

is the probability of erasure of the link. The examples presented from [4] and [5]
show how is possible to significantly increase the quality of service in a multipath
scenario by smartly exploiting Network Coding, and how this technique is able
to tackle losses on the links and the emergence of situations as the head-of-line
blocking. In addition, it allows to reduce the memory requirements at the receiver
and simplifies the scheduling and feedback protocols that are not trivial when
there are multiple links to manage.

2.5 Simulators

New protocols and network technologies are constantly under research and de-
velopment in order to provide every time better performance with respect to the
state of the art. The most complete method that can be utilized to evaluate the
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performance of a protocol is the real implementation of a sample system. A real
implementation returns the exact results that the protocol will have when utilized
in a real world setting because all the parts and modules of which is composed are
running on physical devices, in particular in network applications, the channel is
real and not simulated. This approach encounters also some difficulties, firstly
the cost because network protocols have to run on a network with several devices
that sometimes have prohibitive costs; an example on the theme of our work may
be the testing of a multipath scenario with a smartphone that communicate via
WiFi and LTE; in order to have a LTE link we need a LTE base station with
a dedicated frequency to use for tests, that is an expensive machine with a cost
that can reach 100K euros. Second, it is not always possible to reproduce all the
interesting scenarios on which the protocol could run because every time we have
to reconfigure the devices with different parameters or try to reproduce differ-
ent channel conditions. Finally, it is also effort and time expansive because it
requires to program the devices with low level programming language, interfac-
ing with problems that could arise as compatibility with operating systems and
firmwares. For these reasons the real implementation of a new system usually
is one of the last steps in the development of a network protocol, after a phase
of testing by software that can prove the effective benefits and relevance of the
results and justify the investment for the implementation of a testbed.
The software technologies utilized for these evaluations can be divided in two
families that are differentiated by the approach utilized to reproduce the entities
in the network, emulators and simulators. The family of the emulators is com-
posed by the software tools that are halfway between testbeds and simulators.
An emulator allows the developer to create a simulated network of devices that
interact with each other them through the standard network protocols or with
custom developed protocols. Then with an emulator it is possible to choose the
topology of the network and the typology of the link between the nodes. These
nodes can run a chosen protocol stack allowing the developer to evaluate the be-
haviour of its project when inserted in a network. In addition various channel
scenarios can be simulated, for example the interference between wireless devices
or the variability of the noise of the channel due to external events. These are
only a subset of the opportunity brought by an emulator; some examples of fa-
mous network emulators are Network Simulator (NS) [34] and mininet [35]. The
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first allows to simulate the network interaction between devices providing models
for all the most used protocols from physical to application layers, technologies
as WiFi and LTE, routing protocols. The latter, mininet, provides to the de-
veloper the tools to emulate full devices and not only the network interactions
between them. mininet allows to run real kernel, switch and application code on
simulated devices; connected devices in mininet are real Vitual Machines (VMs)
that the developer can control from a simulated command line. NS is then a net-
work emulator, that aims to allow simulated components to communicate with
protocols that are commonly used in the real world; mininet instead is a environ-
ment emulator that extends further the previous model in an attempt to build
an implementation environment in which real world protocols may be directly
executed, simulating the environment of a particular operating system.
Sometimes the evaluation of a protocol or an algorithm is not strictly or imme-
diately required in relation with real-world connections, because it is not clear
how a new technology can be merged with existing networks or, conversely, be
applied to so many scenarios and then it is more useful to see the performance ab-
stracting the underlying network. We have seen in the previous sections examples
about Network Coding that show the gains of this coding scheme that are not
dependant to a particular transmission protocol but show benefits with respect
to the usual store and forward. The examples presented are designed to be easy
to understand graphically and show immediately the results in the most simple
possible setting. If we want to go deeper in the understanding of which are the
possible benefits in different scenarios for example with an higher finite field size,
different topologies and characteristics of the transmission we have to write our
mathematical model in a programming language and compute the results with
the imposed parameters. This is what is called a simulator, because it simulates
the behaviour of a system through the numerical computation of the algorithms
and mathematical expressions that describe it. This approach abstracts all the
systems that in real world work at lower layer as contained in a black box, man-
aging only the aspects that are included in the mathematical model. Thus, a
simulator provide to the user only a partial view of what may be the developed
system in a real environment, focusing only on the interesting aspects. Insert-
ing a new developed system in a complex protocol stack maybe misleading for
the understanding of the behaviour of the new product, because some situations
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could arise not as an effect of our work but for reasons that regard the underlying
protocols; then a simulator is useful in order to focus the attention on a subset
of parameters and characteristics that interest us.
A particular case in the family of simulators are the discrete event simulators [36]
that differ from the others in the way time is simulated. In this type of simulators
the time is not divided in equally spaced intervals during which the behavior of
the system is tracked. The timeline in this typology of simulators is broken by
the events, then the length of the time slices can vary in relation to the happening
instant of the event. The type of events that interrupt a time slice is decided by
the model, and has to be a particular event that changes the state of the system.
This feature of not to take into account every regular unit of time make usually
the discrete event simulators faster in the simulation with respect to other types
of simulators [37].
For these reasons in our work we have chosen to employ a discrete time simu-
lator, in order to focus on the results of the developed protocol and not on the
interaction with the lower layers, abstracting the links that connect the node and
its characteristics in the simulated network, and in order to have relatively good
simulation speed.
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3
Contribution

We have seen that Network Coding brings several benefits in terms of through-
put in various scenarios as multicast and broadcast communication, and with
inter-session network coding also in the case of multiple unicast flows that share
the same network. In case of lossy links, we have seen that NC increases the
robustness of the connection and furthermore simplifies the managing of the re-
transmission scheme abstracting the role of the sequence number in the ARQ
scheme. A scenario that takes particular advantage of these benefits in lossy
networks is the multipath case, that without NC has several complications as dis-
cussed before.
The leading thread between lossy networks and the benefits that NC brings in
that situation are the feedbacks. Feedbacks are the only medium in a packet net-
work utilized for meta-data transmission from the destination to the source about
the connection and the only way to smartly exploit the Network Coding features.
In fact, feedbacks act as a control knob of the coding procedure at the source that
set the number of packets that the source has to generate as a function of the
receiver’s state and the channel measured state. A wrong feedback management
can completely nullify the gain of the coding scheme potentially overwhelming
the network of useless packets or even, get worse throughput, when few pack-
ets are sent that do not allow the destination to decode the full information in
a useful time. Thus, a reliable feedback procedure is of central importance to
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guarantee that the transmission can reach the aforementioned gains of this novel
coding scheme but also that the network is utilized in a fair way and not flooded
of useless packets. Some examples of the large gains in multipath scenario (in
particular MultiPath TCP) that a smart feedback management can provide are
shown in the previous section and are referred to the researches in [4] and [5]. In
these researches but also in those presented before like [14] the ARQ scheme is
combined with Network Coding scheme to provide the best possible performance
and reliability. Every time that feedbacks are analyzed, they are reported as
a perfect stream of meta information in the sense that the packets that carry
the feedback information are transmitted through a perfect channel with infinite
bandwidth, without delay and errors. This assumption is obviously optimistic
and never applicable in a real network and then also the results are spoiled by
that. The first step of our work is then the research of what are the effects of a
non-perfect feedback channel in both single path and multi path scenarios.
In order to do this we have built what we have previously defined as a discrete
event simulator that measures the performance of a transmission in these two
scenarios and in different setup of the links. All the transmissions that we have
analyzed utilize Network Coding, in particular, Random Linear Network Cod-
ing; thus, we need some tools that allow us to easily manage all the phases of a
network coded transmission. The set of tools that we have utilized is a library
named Kodo [1] that we will describe in the next section.

3.1 Kodo

Kodo is a project developed by the Steinwurf team initially composed by students
of the Aalborg University and then expanded with other members from different
academical organizations. It was born as a C++ library for Network Coding
that aims to help students and researchers to develop network coding algorithms.
It provides several ready-to-use building blocks and algorithms that can be ex-
ploited by the developer to simplify and speed up the process of development of
their project. Kodo is then a flexible and extensible Application Programming
Interface (API) that provides already functional components to reuse. The first
objective of this project is to be easy for users with any level of programming
experience, hiding the more complicated implementation details. The ease of
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use should no interfere with the performance that is one of the key challenges of
Kodo; if this is not possible, the tradeoff prefers always the ease of use, in fact
in the case that an high performance implementation is required it is possible to
modify directly the source code of Kodo that is open.

Figure 3.1: Kodo logo.

The main part of the library is dedicated to support the creation of Random
Linear Network Coding (RLNC) systems, then provides the tools to manage the
parameters that we have illustrated in the introduction to Network Coding. First
it is possible to create the fundamental entities of the encoder, that generates the
linear combinations of packets, and the decoder, that collects the incoming packets
until it has received a sufficient number of linear combinations and is ready to
decode. The data to be encoded can originate from a finite or an infinite stream,
but in order to make feasible the encoding operation, the transmitter divides the
stream in chunks of a reasonable size. A chunk is what we have previously defined
as a generation and when a couple encoder/decoder is created is possible to set
the generation size K, i.e., the number of packets and the symbol size d, i.e. the
dimension in bytes of each packet in the generation.

In Fig. 3.2 an example is reported of the basic algorithm implemented in Kodo
to partition a stream of N packets in M = N

K
generations, each containing K pack-

ets. The third parameter that Kodo allows to customize in an encoder(decoder)
is the field size q. This parameter set the dimensions of the Galois Field on which
to perform the coding operations, modifying the set of allowed coefficients used
to computed the linear combinations of packets and translating all the packets
from a binary representation to a finite field of size q representation. The choice
of the finite field size q is a key parameter for a simulator, because there is a
tradeoff between the speed of the simulation and the coding performance; any-
way, it could be interesting to test the performance in different field, this choice
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Figure 3.2: Basic partitioning algorithm.

has a different relevance than if it was implemented in a real network where the
complexity constraint of the devices has a decisive importance on the applicabil-
ity of the employed code. The fact that these functionalities are ready-to-use, is
very helpful for a developer, that does not need to build an environment for the
finite field computation; this might be annoying and a waste of time that could
be employed in the research objectives. In this context, Steinwurf team provides
another tool that is specific for computation in finite field arithmetic named Fifi
[38] particularly useful in contexts as erasure correcting codes and cryptography.
The benefits of using Kodo are not confined to these few basic features for RLNC,
but consists of others important functions that allow to exploit the potentiality
of this coding scheme. The feature that makes Network Coding unique with re-
spect to the other codes is the possibility to recode packets at intermediate nodes,
generating other linear combinations starting from the collected packets. This is
implemented in the function recode of Kodo and easily employable in a project.
Other functions concern the different encoding strategies that are possible to
employ at the transmitter to tackle some problems that can be critical in some
settings as the decoding delay, some of those we have described in the introductory
part. One example could be the systematic encoding where not all the packets are
transmitted as linear combinations but a part of the traffic consists of uncoded
packets and the remaining part of coded packets; this technique is analysed in
[25] where are compared the performance with the standard approach. There are
scenarios where the data at the transmitter are not fully available at the same
time but becomes available at different times, and potentially at variable rates;
in these cases there could not be enough packets to complete a generation at
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the encoder and we want to send packets with the temporary available subset.
This technique of encoding is implemented in Kodo under the name of on the
fly encoding. To reduce the decoding delay in Kodo Sliding Window encoding
has been introduced, described in the section 2.3; the linear combinations are not
generated from the whole set of packets of the generation but only from a window
that shifts on the generation when some packets are acknowledged.
These are only some of the functions implemented in Kodo to help researcher in
the network coding field, for example there exist several schemes with a different
strategy on the random selection of the coding coefficients that may impact on
the code performance. In order to increase the flexibility of the library, the de-
velopers have exported some of the functionalities of Kodo in other programming
languages such as C or Python. We have decided to exploit the benefits of a high
level language as Python and then we have employed the Kodo-python library in
our simulator.

3.2 Simulator

In the previous paragraph, we have seen how Kodo can be a useful tool for the
development of algorithms and protocols that employ Network Coding as trans-
mission paradigm. Due to its flexibility, this library can be embedded in every
type of implementation like a simulator, an emulator or a real testbed. Within
the collaboration with the Technische Universität Dresden (TUD) a protocol was
developed for multipath transmission, as those of the family of network coding
based Multipath TCP. We call this protocol nctun meaning Network coding tun-
nelling. Its main idea is reported in Fig. 3.3.

The principle of a multicast connection is to merge the potentiality of multiple
available links to send the information from the same session,that is not possible
with standard protocols (as TCP) that use no more than one link for each session.
Upon reception of a request to open a new TCP session the operative system of
a device chooses one and only one of the available layer 2 links. The protocol
consists of three important steps:

1. The first step of this protocol is the creation of a virtual interface that masks
the multipath behavior of the protocol to the operative system, represented
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Figure 3.3: nctun protocol.

in the first rectangle in Fig. 3.3. This trick does not hide the standard links
to the operative system but adds a new layer 2 interface that is virtual,
then the system can choose among a standard single path connection or a
multipath one to transmit its information.

2. The second part is the encoding of the information, that is applied the
whole stream that is passed through the virtual interface. In this way we
can exploit all the benefits of a full network coded transmission in terms of
throughput, robustness and retransmission management. In other examples
of NC-MPTCP other encoding strategies have been employed, as in [4]
where only a part of the information sent is network coded.

3. The third and last step is the scheduler that aims to choose at each time
the best path to send a packet onto. As we have seen, it is fundamental in
MPTCP in order to achieve the best performance but its importance has
been reduced with the introduction of the mixing properties of Random
Linear Network Coding [4] [5].

Once selected the path to follow, the transmission continues as a normal trans-
mission in a TCP network.
At the receiver’s side there must be another complementary entity that is able to
collect the different flows and pass them to the decoder in order to retrieve the
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original information.
nctun is a system that promises very high gains in all the aspects with respect to
the usual single path connection. The key problem with this new protocol is the
implementation in a real system due to the need to create the virtual interface,
which has non trivial compatibility issues with the operating system. In addition,
as said in the section 2.5, in order to have some reliable results about the per-
formance we have to arrange a multipath network, for example a WiFi with an
LTE dedicated channel to reproduce a smartphone use case, that are a complex
requisite to satisfy due to the prohibitive costs of prototyping.
For these reasons, we have decided to accompany the implementation of the proto-
col with a simulator that would abstract the transmission links and the protocol
stack and would show the performance of the developed multipath protocol in
general conditions. The whole project has been developed with the Python pro-
gramming language [39], that is a high level interpreted object-oriented language.
It has the benefits of being very flexible and light, but with an enormous standard
library that provides tools for any task.

Figure 3.4: Python programming language logo.

In addition, its syntax is simple and emphasizes the code readability and is
supported by several developers that provide useful tools not included in the
standard library; an example of this support by external communities is the
Kodo-python library [40] that we have employed in our project and that allows
Python to be more and more flexible.
The core of the simulator replicates the transmission of network coded packets
from a transmitter to a receiver through several links, an example with two paths
is reported in Fig. 3.5. Each simulated link has in addition a reverse path that is
used to transmit informations in the reverse direction, in our case the feedbacks
about the transmission. In Fig. 3.5 these reverse paths are represented with the
green dashed lines.
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Figure 3.5: Topology of the simulated multipath network, the black solid lines are the forward path, the green

dashed lines represents the reverse paths.

The transmission of the information proceeds in a way similar to the nctun
protocol presented before:

1. The information from the upper layer is passed to the transmitter

2. The transmitter encodes the information dividing the stream in several gen-
erations of K packets. From each generationn encoded packets are created
, where n depends on different parameters of the protocol and the links.

3. The encoded packets are passed to the scheduler that decides on which link
to transmit the current packet.

4. The propagation of the packets is simulated, with different parameters for
each path.

5. After the propagation time the receiver collects the packets incoming from
the different paths.

6. When the receiver has collected enough packets, it decodes the original
information and pass it to the application layer.

This is a brief outline of the basic procedure that has been implemented in every
version of the simulator.
The first point of the simulation is the injection of the source data in the trans-
mitter. In a simulator it is not important the exact data that we transfer over
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the network because our focus is on the performance of the transmission, and
the nature of the source data does not have any effect on that. What we want
to control are the offered traffic at the encoder and the dimension of the source
chunk of data that in the code is referred to as block_size. For these reasons,
each time that is needed, a chunk of block_size bits dimension is randomly gen-
erated, using the os.random function provided by the standard library of Python,
as reported in Fig. 3.6.

Figure 3.6: First step.

In the second step the Random Linear Network Coding scheme is applied to
the chunk of bits that arrives from the source. The Kodo-python library provides
a tool called encoder/decoder factory that is an entity that generates encoders
(or decoders) with the same parameters. We can associate with each encoder a
block of bytes to encode, in other words, the encoder performs the role of a single
generation. The encoder performs the aforementioned partitioning algorithm that
divides the block of data in packets of a determined dimension symbol_size,
where packets can be at most n_symbols. In addition Kodo allows to choose
among different encoder_factory functions, in order to choose the right size of
the finite field in which to perform the encoding; in this case, the Python version
of Kodo shows some limitations due to the performance constraints of the Python
language in the field of pure mathematics computation with respect to C++ that
allows to set larger field sizes. Once assigned a block of data to the encoder, we
can generate as many encoded packets as we want to call every time the encoder
through the function write_payload that creates a encoded set of bits that we
can use to simulate the transmission in our system. Usually in our system we
use the encoding strategy called Sliding Window, that creates coded packets from
linear combinations from a subset of symbols of the generation. The number n of
generated packets is computed differently with respect to the particular version
of the feedback protocol that is simulated.

Each generated packet is sent on one of the available links, the procedure
of selection among the channels is called scheduling. The basic scheduler that
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Figure 3.7: Second step: encoding.

we use try to fully exploit the available bandwidth at each link, sending the
current packet on the first free link. This scheduler achieves optimal performance
assuming that the sender knows immediately when the channel is available for the
transmission of a new packet. In order to do this, we maintain a different timer
tl for each link l that is updated at every transmission (for this reason this is a
discrete event simulation) adding the time necessary for the transmission tpck,l of
the packet in the l-th link; e.g., for the k-th transmission

tl,k = tl,k−1 + tpck,l (3.1)

In this way we can select the link l̂ that has the minimum value of the simulated
time tl in that moment

l̂k+1 = argmin
l

tl,k (3.2)

Figure 3.8: Third step: scheduling.
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Other schedulers have been tested in addition to this one, for example a sched-
uler that works with the assumption of complete information about the channel
state in each precise moment, i.e. bandwidth and the latency; in this way the
system is able to choose the path that, in case of successful transmission, will first
deliver the packet. In the simulation runs we have always used the first presented
scheduler.
In the fourth step the propagation of the packets along the links is simulated, that
concerns in the simulation of bandwidth, delay, and loss rate of the selected link.
Each time that a packet is scheduled for a link, it is decided if it will be erased
during the transmission or will be successfully delivered, following a Bernoulli
distribution B(pl) where pl is the actual value of the loss rate of the l-th link. If
the transmission is successful the packet is inserted in a queue, with attached the
time of reception calculated as

trec = tl + tpck,l + dl (3.3)

where tl is the instant measured by the timer of the l-th link at the moment im-
mediately before the transmission, tpck,l is the time necessary for the transmission
of the packet over the l-th link and dl is the delay associated to the link l. The
time required for the transmission tpck,l is function of the dimension of the packet
dim and the bandwidth of the selected link bl

tpck,l =
8 · 103 · dim

106 · bl
(3.4)

where tpck,l is expressed in [s], dim in [bytes] and bl in [Mb/s]. The parameters of
bandwidth, latency and loss rate can be set by the user and can change dynam-
ically during the simulation. When a packet is elected to be erased during the
transmission, it is not inserted in the queue but the timer is updated in the same
way because we have to simulated a correct injection of the packet in the channel
with a failed propagation along the channel, then we have to simulate the flowing
of time also for this event.

In the fifth step, the receiver listens for the incoming packets from the multiple
links and forwards all of them to the decoder. In addition to the individual timers
of the paths that have to track the different speeds of the time with respect to the
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Figure 3.9: Fourth step: propagation.

events (i.e., the transmissions), there is another timer that is system time T that
represent the time reference for the entire system. The system time is updated
after each transmission in according to the individual timer in order to have a
coherent simulation of the time

T = max
l

tl (3.5)

If treck,l is the reception time of the k-th packet in the l-th link queue, when
there exist k, l such that

treck,l ≤ T (3.6)

the associated packets are considered as delivered at the receiver.

Figure 3.10: Fifth step.

The sixth and last step of the core of the simulator is the decoding part. In
this part the received packets are passed to the decoder the performs the de-
coding procedure. Every time that a packet is delivered we use the Kodo func-
tion decoder.read_payload that extracts and saves the payload of a packet and
adds its coefficients to the decoding matrix. This function automatically per-
forms Gaussian elimination [24] on the matrix of the received coefficients in to
order update the rank of the matrix. If the rank is augmented with respect
to the previous value, it means that the new packet has brought what we have
previously defined as one degree of freedom. When the decoder has received
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enough degrees of freedom, the function decoder.is_complete will provide a
true boolean value; then is possible to retrieve the original information using the
function decoder.copy_from_symbols.

Figure 3.11: Sixth step.

It is important to note that the described procedure is the central functioning
of the developed simulator, the start point on which are based the performance
evaluations of different feedback management algorithms that will be presented
in the following section. At the beginning of the simulation is possible to set all
the parameters of the network from the command line:

• Bandwidth of links, chosen independently in Mb/s

• Latency of links, chosen independently in ms

• Loss rate of links, chosen independently in %

• Number of symbols of the generations

• Size of symbols in Bytes

• Number of generations to transmit

It is possible to set other parameters that are related to the feedback algorithm
and then we will describe them later. In the following section we will see how
this simulator has been employed to analyze different strategies for the manage-
ment of the feedbacks in these network settings. Our objective is to search some
results about the behavior of the whole system when the feedback are transmit-
ted in different conditions, deleting the assumption of perfect feedbacks that is
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usually employed in related works. In addition, we will try to exploit from these
results some rules about how to send and manage the feedbacks and the related
retransmissions.

3.3 Analyzed protocols

In the sections 2.3 and 2.4 we have seen the solutions provided by the literature
[14] [15] for the implementation of a feedback structure in a Network Coding
system. In this type of systems the feedbacks have two main functions [14]:

• Notify the packet erasures and then control the necessary retransmissions

• Optimize the encoding procedure during the transmission process

the first is the classical function of the ARQ schemes, with the proper modifica-
tions in the case of network coded transmission (see section 2.3), the second is
possible in the case that we use particular Random Linear Network Coding ver-
sions as the Sliding Window also described in section 2.3. This informations have
to be included in the feedback packet that will be sent in the reverse channel, one
of the two green paths in Fig. 3.5.

Figure 3.12: Feedback packet scheme.

The feedback packets have to transport a little amount of informations in order
to be transmitted as fast as possible; thus, we just include two fields. In Fig. 3.12
is reported the structure feedback packet that we have used in our simulator:

• The first field is the last seen symbol/packet k that is related to the Sliding
Window paradigm that does not encode the already seen packets, but only
the part that has not been seen or decoded, decreasing decoding computa-
tion complexity and the decoding delay. If the index of the last seen packet
is k, and the encoder knows that, the encoding window will start from the
(k + 1)-th packet.
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• The second field brings the information about the number of degrees of
freedom effectively received. This information is useful in order to estimate
the number of encoded packets that the transmitter has to generate. For
example, in case of lost feedbacks the encoder can rely on the last feedback
received and transmit a number of encoded packet that will probably allow
decoding.

We have developed three protocols that manages in different ways the feedback
transmission and the retransmission of other packets from the sender.

3.3.1 Full-duplex protocol

The first protocol that we have developed is thought for network that have links
capable of transmit packets and receive feedbacks in the same time, that for
simplicity we will call full duplex links. The aim of this protocol is to fully exploit
the available links’ bandwidth, and the scheme is presented in Fig. 3.13.

Figure 3.13: Scheme of the first protocol, black solid arrows represent the encoded packets, red dashed arrows

represents the feedback packets.

The full-duplex protocol consists of by the following steps:

• The sender fills all the available interfaces with the encoded packets, gen-
erated following the Sliding window paradigm

51



• For each packet received, the decoder sends a feedback composed as previ-
ously described

• The sender stops to generate new packets when it receives the feedback that
confirms that the receiver has successfully decoded the original information

• In case that we want to send multiple generations, the second generation
starts to be transmitted after the first is completely decoded.

In Fig. 3.13 we can see on the left side the transmitter and the black solid arrows
that represent the outgoing packets, while on the right side we have the receiver
that sends feedbacks at each reception, the red dashed lines. We can immediately
note how in the figure are reported some feedbacks between two received packets.
This is due to the way that we send the feedbacks, that is the core arguments of
the research. In the multipath scenario that we consider, we transmit the feedback
packets only on one of the two available reverse links. Feedbacks are small packets
that we want delivered reliably as soon as possible, there are no reason to use two
links in order to transmit such a small packets incurring in the aforementioned
managing complications of multipath connections.
Thus, the scheme presented in Fig. 3.13 is the one that reports the functioning of
the protocol on the path selected to transmit the feedbacks, and the red arrows
between two received packets want to represent the transmitted feedbacks due to
the reception of packets from the other path. They also want to underline that
the two links have different characteristics and that erasures are random, then the
packets that travels in the two paths are not synchronized in any way. Thus the
other path will only transmit the packets in the forward direction, and feedback
task will be left to the selected path, that we will refer as the feedback path.
Still in Fig. 3.13 on the lower left is reported a red arrow that underline the over-
head packets, i.e. the packets that are transmitted but are not useful because the
receiver has already received enough packets to decode the original information.
This happens due to the delay of the delivery of the last feedback packet, during
this time the sender will transmit several packets that are useless and will be
dropped by the receiver. The higher the delay and the bandwidth, the higher
also the overhead.
In order to reduce the number of transmitted feedbacks we have tested also an-
other version of the same protocol, where we transmit feedbacks for all the packets
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of the same generation received when the receiver is able to decode, the scheme
is reported in Fig. 3.14.

Figure 3.14: Scheme of the second version of the first protocol.

Unfortunately this protocol does not provide to the encoder the informations
that allows to exploit the Sliding Window, but significantly reduces the number
of transmitted feedbacks.

3.3.2 Half-duplex protocol

After the first basic protocol that we have developed for full duplex channels
we have thought of a protocol that would be compatible with links that cannot
transmit and feedbacks in both the directions in the same time, like the half
duplex channels.

The protocol tries to solve the problem of unidirectionality of the links sending
block of n encoded packets that will be acknowledged at the end of the transmis-
sion. Formally, the protocol follows these steps:

• The transmitter generates n encoded packets and forwards them in a row
without interruptions. The quantity n is the result of the expression

n = (K − rank(D))(1 + r) (3.7)
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Figure 3.15: Scheme of the full-duplex protocol, black solid arrows represent the encoded packets, the red dashed
arrows represents the feedback packets.

where K is the number of symbols of the current generations, D is the
decoding matrix, rank(D) is the number of degrees of freedom received at
the decoder and r is a redundancy factor, with 0 ≤ r ≤ 1. In the first
iteration rank(D) = 0.

• At the end of the block transmission the decoder sends f feedback packets,
composed as described in the introduction of Section 3.3. The number of
feedbacks is in general calculated in order to provide a sufficient robustness
to erasures; given the loss rate ε of the feedback path and assuming i.i.d.
losses the default number f of transmitted feedbacks is

f =
1

1− ε
for 0 ≤ ε ≤ 1 (3.8)

• If the decoding is completed, finish and pass to the next generation; oth-
erwise update the rank of the decoding matrix known at the transmitter
with the new information acquired with the feedbacks and return to the
first point.
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We call round each transmission block with the related feedbacks. In this
protocol, there is a throughput decrease during the transmission of the feedbacks
and then the optimal case is when we complete the transmission after the first
round, without requiring another retransmission round. The redundancy r is a
parameter set at the beginning of the simulation and in order to have a good
robustness to losses in the literature is suggested to use r

r ≥ 1

1− εmax
(3.9)

where εmax is the maximum among the loss rates εl of the available links l. The
number of rounds required to terminate the transmission directly depends on the
loss rate of the paths and the redundancy r.

In this case the Sliding window protocol is affected by the lack of feedbacks
during the transmission but in case of retransmissions it can exploit the informa-
tion carried by the feedbacks. Also in this protocol the feedbacks are transmitted
using only one path and not all the available paths for the already mentioned
reasons.
This protocol has the advantages of being directly usable in half-duplex links
because there are never concurrent transmissions and receptions on the same
channel and a significant reduction of the overhead in case of optimal choice of
the redundancy r.
The number of feedbacks transmitted at each round is very important for the
correct functioning of the protocol because the intervals of time where we are
allowed to send feedbacks are very limited, and a failed reception of the feedback
has negative impacts on the performance of the system; it is possible to modify
the default value setting the parameter on the simulator.
In a future research it will be possible for example to improve this protocol by
not stopping the transmission on the other paths during the reception of the
feedbacks, exploiting the whole potentiality of the links.

3.3.3 Half-duplex protocol with feedback retransmission

The third protocol is an extension of the half-duplex protocol, that corrects some
of its critical issues. One of the problem of the previous protocol is that if after
the transmission of a block all the feedback packets are lost then rank of the
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decoder matrix stored at the encoder is not updated and in the next round it will
retransmit the same number of packets n of the previous round.

Figure 3.16: Scheme of the third protocol, black solid arrows represent the encoded packets, the red dashed ar-

rows represents the feedback packets, green dashed lines are the request for feedbacks.

This protocol is similar to the second but differs for the managing of the case
of lost feedback. In more detail:

• If at least a feedback arrives at each round at the source the transmission
and retransmission procedures are the same of the the second protocol

• If in a round it happens that all the feedbacks are lost, then the source does
not react sending the same number of packets of the previous round but
sends a block of requests for feedback, that are represented in Fig. 3.16 with
the green dashed arrows

• When the decoder receives a request for feedback it responds with a new
block of feedbacks, returning at the first point
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The request for feedbacks are very small packets that do not carry information
but only a code interpretable by the source, that reacts resending the block of
packets relative to the last round.
This protocol aims to minimize the overhead of the transmission induced by the
second protocol that in case of loss of all the feedback generates a too big overhead
that flood the links of useless packets. As the previous protocol also this can be
improved exploiting the empty link during the transmission of the feedbacks in
order to send packets of another generation for example, but it is not a trivial
modification because it requires a management of packets of different generations
and then more memory at the receiver to store packets seen but not decoded.
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4
Results

In the previous chapters we have seen the motivations for which we have built
a simulator for multipath network coded transmissions, which are the building
blocks of this simulator and the algorithms that we have implemented. The
simulator consists of a core that remains the same in all the versions (explained
in section 3.2), and on top of this several protocols (reported in section 3.3) that
replicate some of the possible use cases of the nctun protocol explained in 3.2.
The network that we want to simulate is presented in Fig. 3.5 and is consists of
two links, called forward paths, that are used simultaneously to transmit network
coded information packets, and two reverse links that can be used to transmit
the feedback packets. An important observation that we have previously made is
that there are no motivations to send the packets that contain the feedbacks on
both the available reverse links in a multipath way, incurring in problem of out of
order, delayed and lost feedbacks that will degrade the performance of the whole
system and complicate the feedback procedure; in addition, the feedback packets
are very small as reported in section 3.3 and the throughput boost provided by
pooling multiple links is not needed. This considerations leads us to a choice
that we have to do in order to employ this multipath protocol, which one of the
two reverse paths we will use to transmit our feedbacks. We have seen also in
the related works on the NC-MPTCP the importance of a reliable delivery of the
feedbacks is important in order to reach good performance, then a good choice of

59



the link to exploit can drastically change the results reached by the protocol [41].
Our objective is to find a criterion that allows us to choose the best path among
the available ones on the base of the information that we have about them, that
in our case are the parameters of the link: Bandwidth, Latency and Loss rate. A
first step to do in order to go in this direction is to evaluate the effects of the
variation of this parameters on the system performance. We will then simulate the
behavior of the developed protocols under different channel conditions, searching
the critical channel parameters for the feedback transmission.

4.1 Performance evaluation of the full-duplex protocol

We have presented and explained the first protocol in the section 3.3.1 that is
thought for full duplex links.
The use of Network Coding in our protocols as we have seen brings several advan-
tages in terms of simplification of the feedback management due to the mixing
property of this coding scheme and the lack of a sequential order of the packets
that comes from the same generation. We can also observe how the management
of feedbacks in RLNC system is equal for Single Path and Multi Path transmis-
sions, especially in our case where we use a single link to transmit the feedbacks in
a multipath setup. The protocols that we have implemented are easily extensible
to a single path transmission, by slightly modifying the scheduler that will send
the packets always on the same path.
Thus, at a first time we have analysed the behavior of the protocols in a single
path setup, changing the parameters of the feedback path. In Fig. 4.1 is reported
the scheme of the simulated network in this first part, it is composed by a single
forward path and the related feedback path.

In order to evaluate the performance at the modification of the feedback path
parameters we have conducted the simulations as follows

• The parameters of the forward path remain fixed to the value chosen at the
beginning of the simulation from the command line

• Two of the three parameters (bandwidth, latency and loss rate) of the feed-
back path vary among selected intervals

• At each iteration the goodput of the transmission is measured.
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Figure 4.1: Single Path transmission.

The goodput is measured for each generation between the instant of transmis-
sion of the first packet ttx and the reception of the feedback that notifies the
correct decoding at the receiver tfeed, then representing the effective time that
has been employed in order to transmit the information of a generation

Goodput = 8 · S ·K
tfeed − ttx

(4.1)

where S is the symbol_size and is reported in Bytes, K is the number_of_symbols
of the current generation and the 8 is to compute the Goodput in bit/s.

If we consider an iteration during the simulation as an interval of time in
which the parameters of all the links do not change, we can say that during each
iteration we send several generations, precisely ngen. Thus, the overall goodput of
an iteration is computed on the time interval between the transmission of the first
packet of the first generation to the reception of the feedback of correct decoding
of the last generation. If tTOT represents this amount of time, the overall goodput
of an entire iteration will be

GOODPUT =
8 · S ·K · ngen

tTOT

(4.2)

Usually each iteration is repeated multiple times (nit iterations) in order to aver-
age on the possible realizations of the random processes that are present in the
transmission as the random generation of the linear combination contained in the
encoded packet and the erasures along the channel propagation; the measured
goodput after nit iterations is then the arithmetic mean of the goodput obtained
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in each of the iterations computed with (4.2).
The parameters about the network coding scheme are maintained fixed for all

the simulations that we have performed, unless not directly specified

• The number_of_symbols K of each generation is equal to 128.

• The symbols_syze S is equal to 1500 Bytes, similar to an Ethernet con-
nection.

In the following plots we will analyze the obtained goodput of the single path
connection of Fig. 4.1 with the forward path characterized by a bandwidth of 10
Mb/s, latency equal to 10 ms and no losses on the transmission. Regarding the
feedback path, we have simulated three different scenarios in which we can compare
the effects of the modification of the channel parameters, two by two.

• In Fig. 4.2:

– Latency: 5 ms fixed

– Loss rate: 0% to 90%, step 10%

– Bandwidth: 1 Mb/s to 10 Mb/s, step 1 Mb/s

• In Fig. 4.5:

– Bandwidth: 10 Mb/s fixed

– Latency: 5 ms to 50 ms, step 5 ms

– Loss rate: 0% to 90%, step 10%

• In Fig. 4.4:

– Loss rate: 0% fixed

– Latency: 5 ms to 50 ms, step 5 ms

– Bandwidth: 1 Mb/s to 10 Mb/s, step 1 Mb/s

This means that we have kept fixed a parameter to a default value and changed
the other two always in the same intervals.

In Fig. 4.2 we can see a stable plot on the axis of the bandwidth, underlining
that at each value of the loss rate the decreasing of the bandwidth of the feedback
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Figure 4.2: Single Path, Bandwidth vs Loss Rate, 10Mb/s, 0% Loss, 10ms Latency.
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path does not imply a change in the system performance. On the other axis, at
the increasing of the of the loss rate, there is a perceivable decreasing of the
performance only at very high value, over the 80 %. This plot tells us that the
first protocol does not require much bandwidth to transmit in a useful time the
feedbacks, meaning that the lightweight design of the feedback packets reached
the prefixed goal. In addition the feedback management is robust to channels
with very high loss rate, due to the fact that we transmit a feedback for each
received packet.
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Figure 4.3: Single Path, Bandwidth vs Loss Rate, 10Mb/s, 0% Loss, 10ms Latency.

These good results lead us to further stress our system increasing the loss rate
and decreasing the bandwidth with respect to the previous case. This experiment
is reported in Fig. 4.3 where we set the bandwidth between 0.1 and 1 Mb/s (with
steps of 0.1 Mb/s) and the loss rate is between the 90% and 99%. Also in this
case, we can see that the performance is stable for all values of the bandwidth
that proves that the feedback transmission is not bandwidth constrained. The
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same does not happen on the axis relative to the loss rate, here the heavy rate
of lost feedbacks degrades the resulted goodput but not as much as expected, in
fact we obtain a goodput between 5 and 5.5 Mb/s when the feedback path is set
at a loss rate of 99%; it is a good result considering that a channel with such
an high loss rate is a very extreme case. The degrading of the performance with
the increasing of the loss is principally due to the loss of the last feedback of the
generation that acknowledges the decoding of the information and this implies the
transmission of further useless packets and the waste of useful time and resources
of the forward path.
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Figure 4.4: Single Path, Bandwidth vs Latency, 10Mb/s, 0% Loss, 10ms Latency.

The second evaluation is made by varying of the bandwidth and the latency,
reported in Fig. 4.4. As in the previous case at a fixed value of the latency the
goodput is stable for each bandwidth value, proving that also when the latency
increases the bandwidth does not become a critical parameter for the feedback
transmission. On the contrary, when we increase the latency of the transmission
on the feedback path the goodput degrades very rapidly going under the 7 Mb/s
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at 50 ms of delay. This is due to the delayed reception of the last feedback at the
encoder that produce an high overhead and degrades the performance.
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Figure 4.5: Single Path, Loss Rate vs Latency, 10Mb/s, 0% Loss, 10ms Latency.

The third and last of this set of comparisons is the one in Fig. 4.5 that represent
the third combination of the parameters. Here we have evaluated the performance
of the system at the changing if the loss rate and the latency of the feedback path.
The behavior on the axis of the loss rate is as we have seen in the first example,
the performance starts to slightly degrade when the rate is higher than 80%; at
90% the goodput is decreased of only 0.5 Mb/s with respect to the case with 0%
of loss rate. On the side of the latency we can see an evident degradation of the
goodput at the increasing of the delay of the feedback path. As in the second case
the performance sufferes of a decrease of the goodput of approximately 2 Mb/s
going from 5 ms to 50 ms of latency that is not negligible excursion.
With this first set of simulations based on a single path network coded transmission
we have evaluated the impact that can have a non perfect feedback path on the
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contrary of what is assumed by the majority of the works related to our. The
first results show this is not an acceptable assumption because feedback packets
that are transmitted over a non-zero-delay link affect the overall performance of
the system. From the last examples we can extract some considerations:

• The bandwidth of the feedback path seems to have no incidence on the
performance of the system. This a good result, because this means that we
have well designed the feedback packets and their transmission, and that
we have not to care about the bandwidth of the path because the feedback
packets will be delivered reliably in a useful time also with low transmission
rates

• The loss rate is negligible in this protocol apart at very high value, meaning
that the protocol is robust enough to feedback losses.

• Since the very critical parameter for the feedback transmission seems to be
the latency, a small increase results in a rapid degradation of the perfor-
mance. This result leads us to think that if we can choose between two
feedback paths we will choose the one with the lower latency, disregarding
the other characteristics.

These first simulations on the single path setup are useful to focus our attention
on the impact that the feedback has on the transmissions that use this protocol,
whereas the complexity added by the multipath protocol that can be misleading.
Now we have a clearer view of how the parameters have a different weight on the
transmission of the feedbacks, and we can better understand the results obtained
in a multipath case.

4.1.1 MultiPath evaluation

The first difference between single path and multipath transmissions in the pres-
ence of the entity called scheduler. As explained in section 3.2 the scheduler that
we have implemented sends a packet on one of the channels every time that chan-
nel has finished the previous transmission. In Fig. 4.6 the network utilized for
the simulations is reported consisting of two forward paths and two reverse paths;
we remind that only one of the two reverse paths is effectively used to transmit
the feedbacks.
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Figure 4.6: Multipath simulated network.

Then we have four paths to simulate in this case, possibly with different pa-
rameters; in order to simplify the comprehension of the results we have thought
to fix the parameters of the forward path and the related reverse path to the same
value.

The plots that we will show are the results of simulations conducted following
these steps:

• We select only one parameter that we want to vary. The other parameters
are maintained fixed to the values selected from the command line.

• The whole procedure is repeated twice, the first time the selected parameter
varies only on the first path, the second time on the second path. The path
that not varies, e.g. the second path during the first iteration, remains fixed
to the initial value of the other path.

• At each value of the selected parameter is measured the goodput of the
transmission, computed as in the single path case with the expressions 4.1
and 4.2.

• In the plots there are a blue line that represents the goodput obtained at the
first iteration of the simulation, and a red line that represents the goodput
of the second iteration.

The multipath simulation needs the introduction of two more parameters to
set at the beginning
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• The most important is the selection feedback path, that remains fixed during
the whole simulation

• The second is the value that has to assume the selected parameter on the
path that has to remain fixed. Without any particular specification, the
value is set to the initial value of the other path.

We have then performed some simulations similar to the ones in the single
path, in order to see if the considerations that we have made in that case are
still valid in a multipath transmission. In this case, remember that the two path
consist of a forward and a reverse paths with the same parameters. The feedback
path is always the first in these evaluation. In Fig. 4.7 we have analysed the
protocol at the variation of the bandwidth between 1 Mb/s to 10 Mb/s. The
other parameters are 0% of loss rate and 5 ms of latency on both the links. For
example, in the first of the two iterations the first path has a bandwidth that
changes from 1 to 10 Mb/s while the second is always fixed to 1 Mb/s; all the
other parameters in both the links are fixed.
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Figure 4.7: Multi Path, Bandwidth, 0% Loss, 5 ms Latency on both the links.

We can see in Fig. 4.7 that the two lines do not overlap although the two path
in both the simulation are practically symmetric. The only difference between the
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two paths is that the first carries the feedbacks on the reverse path. We can see
that the blue line is always slightly higher than the red line meaning that faster
feedbacks gives a little boost in the performances of the system. The difference
between the two lines increases at higher value of the bandwidth because in the
second iteration the feedbacks arrives too slowly with respect to the increasing
transmission speed of the other link. In addition, at high bandwidth values the
difference between the two links becomes relevant and the simulation shows the
common limitation of the multipath protocols that we have called the head-of-
line blocking problem, explained in Section 2.4 [3]; in the first case the problem is
slightly compensated by the faster feedbacks, but not in the second case, where
the feedbacks are transmitted always at the same rate. In conclusion, the goodput
is different in the two cases but the difference is not very relevant, in particular
if the main difference seems to be due to the head-of-line blocking.
In this simulation as in the following the statistical confidence intervals of the
results have been evaluated; these intervals in all the situations are very small,
then we have decided to do not insert them in the plots. Even in the figures
where the blue and the red lines are very close, the confidence intervals with a
confidence level of 95% do not overlap.

The second simulation considers a variable loss rate. The values chosen are
similar to the ones used in the single path case in order to compare the results;
the loss rate varies between 0% and 90%, while bandwidth and latency are fixed
on both links to 10 Mb/s and 5 ms, respectively. In Fig. 4.8 the performance
decreases when the loss rate of one of the links increases, we can see how the NC
scheme maintains the goodput sufficiently high also at high values of the loss rate
because NC makes all the received packets useful also if received out of order or
with some erasure during the transmission. The most interesting result is the fact
that the two lines overlap, meaning that a noisy feedback path does not imply a
decrement of the goodput obtained with this first protocol. As in the previous
case it is possible to see a faster decreasing of performance when the loss rate of
the feedback path exceeds the 80%, after this value the blue line goes below the
red one. This again shows that the feedbacks employed as in the first protocol
are sufficiently robust to losses and the loss rate is not a critical parameter.

In the third case we have simulated the goodput versus the latency, for the bet-
ter telling in an interval from 5 to 50 ms; bandwidth and loss rate are maintained
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Figure 4.8: Multi Path, 5ms Latency, 10Mb/s on both the links.
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Figure 4.9: Multi Path, Latency, 0% Loss, 10Mb/s on both the links.
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at 10 Mb/s and 0% respectively. In the plot reported in Fig. 4.9 the goodput
of both the iterations (i.e. the goodput reported by both the lines in the plots)
decreases when the delay increases as we can expect, but the red line in Fig. 4.9 is
always above the blue line. In this case, there is a large difference between the two
lines in the plot that underlines what we have found before, that is the latency is
the critical parameter for the transmission of the feedbacks. When the feedback
path is the one that has the lowest delay we obtain a higher goodput with respect
to the other case. If we can choose between two paths then we will always select
the one with the lowest latency. We will provide some other proofs of this in the
following simulation where we have further complicated the configuration of the
network.

4.1.2 Extreme cases

The previous simulations suggest that the latency is the parameter, among the
three that we have taken into account, that has the largest impact on the perfor-
mance of the feedbacks and consequently on the whole system. Our goal is now
to understand if this conclusion is always valid, e.g. in the case that the path
with the lowest latency has a very high loss rate. In this cases, the choice of the
feedback path between the ones available is not trivial, for this reason we provide
two extreme situations. These examples are a bit more complex of the previous
ones because the two paths are not symmetric and we have to make some more
comparison between the results. The first is reported in Figures 4.10 and Figures
4.11 where we have the links with the parameters reported in Table 4.1, and a
latency that changes as in the previous simulations from 5 to 50 ms on a path at
a time.

Bandwidth Loss rate
Path 1 10 Mb/s 0%
Path 2 50 Mb/s 0%

Table 4.1: Parameters of the links in Figures 4.10 and 4.11.

This test aims to clarify if it is more convenient to choose a feedback path with a
high bandwidth but also a high delay or one with a significantly lower bandwidth
and better latency. For these reasons, we have performed twice the simulation
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on the same network, switching the designed feedback path from the first to the
second link.
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Figure 4.10: Multi Path, Latency, [10 50]Mb/s, 0% Loss on both the links. Feedback on the first path.

In the figures,the red plot describes the goodput when changingthe feedback
path; the blue line when we change the other path.
The key consideration to make is that in both the plots the higher line is the
blue one, meaning that disregarding the bandwidth of the path we obtain better
results when the latency on the feedback path is the lowest possible. The blue
line represents the case where the feedback path has a latency fixed to 5 ms while
in the other path grows up to 50 ms, and then apart from the initial point the
delay of the feedback path is always lower. In Fig. 4.10 the results are better
than in Fig. 4.11 because we are using the feedback path with the lowest delay
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Figure 4.11: Multi Path, Latency, [10 50]Mb/s, 0% Loss on both the links. Feedback on the second path.
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and the highest bandwidth.
The second comparison that we have tested represents the case where the two
paths have a high loss rate difference and also a different latency. The parameters
of the links are reported in the Table 4.2, while the latency changes as in the
previous case.

Bandwidth Loss rate
Path 1 10 Mb/s 0%
Path 2 10 Mb/s 50%

Table 4.2: Parameters of the links in Figures 4.12 and 4.13.

The procedure performed is the same of the previous case, where we have done
two simulation runs switching the feedback path. The results are reported in
Figures 4.13 and 4.13 and and we can see that also with this setup the blue line
is the higher one in both cases. We can conclude that also in the case where a
path has a high loss rate is preferable to choose it as feedback path if it has the
lowest available latency.

4.1.3 Automatic switching

In the previous sections, starting from the single path cases and step by step
increasing the complexity of the simulations we have extracted always similar
conclusions from the results, that latency is the critical parameter in terms of
feedback path selection, while bandwidth and loss rate are of secondary importance.
In order to conclude this section of results about the first protocol we want to
show how the performance of the system can improve when we select always the
best possible path to send the feedbacks.

Bandwidth Loss rate
Path 1 10 Mb/s 0%
Path 2 10 Mb/s 80%

Table 4.3: Parameters of the links in Fig. 4.14.

In Fig. 4.14 we report the results of a simulation where the two links have the
parameters reported in Table 4.3; in the first plot, the feedbacks are transmitted
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Figure 4.12: Multi Path, Latency, [0, 50]%Loss, 10Mb/s on both the links. Feedback on the first path
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Figure 4.13: Multi Path, Latency, [0, 50]%Loss, 10Mb/s on both the links. Feedback on the second path.
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on the first path in the second they are transmitted always in the one with the
lowest latency. In these simulations the latency changes in the same way of all the
other cases that we have analyzed but in the path that remains fixed it is set to
30 ms and not to 5 ms as usual. We can immediately see how in Fig. 4.14(b) the
red line is significantly higher before the 30 ms with respect to plot (a), and the
same is also for the blue line after the threshold of the 30 ms. In (a) is reported
the performance with the better of the two paths in terms of loss rate, if we had
taken the second path as feedback path the results would have been worse and
then the gain in (b) would have been higher. This is an important result because
it proves that our considerations were correct and with this technique we are able
to exploit the the full potentiality of the links only setting as feedback path the
one with the lowest delay without taking care of the other parameters.

4.2 Performance evaluation of the half-duplex protocol

In Section 3.3.2 we have introduced a second protocol that differs from the first for
it does not send packets and receive feedbacks in the same time but in separated
instants as on a half duplex medium. In addition it aims to reduce the overhead
transmitting only the useful amount of packets and waiting for the feedbacks. In
order to optimize the transmission performance tackling the erasures of the links,
we want to send a number of encoded packets sufficient for allowing the decoding
in the first round and also enough feedbacks to notify the state of the decoder at
the transmitter.

4.2.1 Redundancy analysis

The second protocol needs to tune the amount of redundancy encoded packets:
low redundancy implies multiple rounds, too high redundancy implies overhead,
thus in both cases a wrong choice of the redundancy have negative effects on the
obtained goodput of the system.
We want to present an example of this scenario in Fig. 4.15. In this plot we
have simulated a single path network exactly equivalent to the one utilized in the
simulations of the first protocol, with the forward path and the feedback path that
can assume different parameters values. The forward path is characterized by a
bandwidth of 10 Mb/s, 50% of losses and 10 ms of latency, while the feedback path
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(a) Feedbacks on the first path.
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(b)Automatic switch of the feedback path.

Figure 4.14: Automatic switching on the best feedback path.
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has a latency of 10 ms and loss rate and bandwidth that varies. The literature
suggests a redundancy of 1

1−ε
that in this case would be equal to 2, but we have

tried to set the value to 1.2. On the feedback path, the loss rate changes during
the simulation, we have then decided to adapt the number of feedbacks per round
using (4.3).
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Figure 4.15: Single Path, Low redundancy, 50% Loss, 10Mb/s, 10ms.

In Fig. 4.15 we can see that the goodput is stable around the 3.5 Mb/s apart
when the loss rate is very high and bandwidth very low; in this case, the per-
formance degrades to 3 Mb/s. The fact that the goodput is stable means that
adaptive calculation of the number of feedbacks in function of the loss rate is ef-
fective, and that NC maintains the amount of information carried to the decoder
stable even when the erasure rate is high as in this case. We can reach higher
performance simply setting the right amount of redundancy to send, a low redun-
dancy implies several rounds of transmission. In Fig. 4.16 we have performed the
same simulation setting the redundancy to 2.

The resulting goodput is significantly higher than the previous case, especially
when the loss rate is under 60%; on the other axis, as expected from the first
protocol, the bandwidth does not impact on the performance also if it is very
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Figure 4.16: Single Path, Right redundancy, 50% Loss, 10Mb/s, 10ms.

restricted as in this case that goes from 0.1 to 1 Mb/s. In Fig. 4.16 we can see
that there is jump in the throughput passing from 40% to 50%, that could be not
reasonable in a first analysis. This is due to the fact that we compute the number
of feedbacks f as

f =

⌈
1

1− ε

⌉
, for 0 ≤ ε ≤ 1 (4.3)

and when ε passes from 0.4 to 0.5 the number of feedbacks f passes from 2 to 3 at
each round and this implies a little boost of the performance. This consideration
tells us that the optimal value of f suggested also in [2] is too conservative, for
this reason we have made another simulation, reported in Fig. 4.17 , where f is
computed adding one to the previous case

f =

⌈
1

1− ε

⌉
+ 1, for 0 ≤ ε ≤ 1 (4.4)

With this small modification to the feedback number we can increase the ro-
bustness of the protocol to the losses on the feedback path as we can see in Fig.
4.17 the plot is smoother with respect to 4.16 and the goodput decreases more
slowly at the increasing of the loss rate. Looking at this good result obtained
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Figure 4.17: Single Path, Right redundancy and onemore feedback, 50% Loss, 10Mb/s, 10ms.

only increasing the number of feedback packets by 1 suggests us to try to add
further feedbacks in order to tackle very bad realizations of the erasure process.

Since we have seen that the bandwidth of the feedback path has no relevant
impact on the goodput, in Fig. 4.18 we have fixed it at the value of 0.5 Mb/s. In
Fig. 4.18 (a) we have sent 3 more feedbacks with respect to the value calculated
with 4.3, while in (b) 5 more. In (a) the goodput is maintained over the 4.3 Mb/s
until 50% of loss rate and after it decreases rapidly, (b) before 50% has the same
goodput of (a) while after the threshold of 50% has a smoother behaviour that
maintains the goodput over 4 Mb/s also with 80%. Sending more feedback at
high loss rate can maintain a stable goodput for the whole range of loss rates
simulated.

In Fig. 4.19 we have tested if the last suggestion was true, doubling the number
of feedbacks in the case where the loss rate of the feedback path exceeds 40% that
is the point where the plots in Fig. 4.18 begin to decrease the goodput. Doubling
the feedbacks for all the loss rate would affect the performances when the rate is
low due to useless transmitted feedbacks, while following this procedure we can
increase the performances of higher loss rate cases. In Fig. 4.19 we can see how
with this strategy the system is able to maintain the goodput stable between 4.4
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Figure 4.18: Single Path, Second protocol, 10ms, 10Mb/s, 50% loss.
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Figure 4.19: Single Path, Right redundancy and onemore feedback, 50% Loss, 10Mb/s, 10ms.

and 4 Mb/s with loss rate on the feedback path that goes from 0 to 90%.
The last result means that this half-duplex protocol can be made robust to losses
on the feedback path as the first one, carefully choosing a sufficiently high number
f of feedbacks. In addition, in general the number of feedbacks computed with
(4.3) is not sufficient to have a decent robustness to the feedback erasures and we
have to be more conservative.

4.2.2 Multipath evaluation

After this first step where we have analysed the performance of the half-duplex
protocol in a single path scenario when subject to different amounts of redun-
dancy and number of feedbacks we want to extend the performance evaluation
to the multipath case. In the previous case we have derived from the results that
the bandwidth is not a parameter impacting on the transmission of the feed-
backs, while the loss rate has a more important role with respect to the first
protocol. Here the loss of all the feedbacks of a round degrades significantly the
performance but in most case it is possible to work around by simply sending a
sufficient number of feedbacks in relation to the erasure characteristics of the link;
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it is possible to guarantee a sufficiently high goodput up to the 50% probability
of loosing a feedback. With the simulation in the multipath scenario we want
to evaluate which is the behaviour of this protocol when the latency of the links
increases.
The multipath simulation is conducted in the same way of that on the first pro-
tocol, where latency of each link increases, on the forward and the related reverse
path together. The parameters employed in the simulations in Figures 4.20 and
4.21 are reported in Table 4.4, while the latency varies from 5 ms to 50 ms with
steps of 5 ms.

Bandwidth Loss rate
Path 1 10 Mb/s 0%
Path 2 10 Mb/s 50%

Table 4.4: Parameters of the links in Figures 4.20 and 4.21.

With this simulation, we want to evaluate if in a multipath scenario that em-
ploys the half-duplex protocol it is still preferable to choose always the path with
the lowest delay; as in the last comparisons of the first protocol we have performed
the simulation testing both the links as feedback path. Since we have two paths
with the same bandwidth and one has a loss rate of 50%, we can consider as we
have a link with the 25% of loss rate; following the optimal expression we should
set the transmission redundancy to 1

1−0.25
= 1.33 but in order to be a bit more

conservative we have set the redundancy to 1.4. Trying to set the redundancy to
1.6 results in worse performance due to the overhead. From the Figures 4.20 and
4.21 we can deduce that in both cases we can get a higher throughput choosing
as feedback path the link with the lower latency, also in the case that this link is
the one with the loss rate equal to 50%.
We can finally conclude that in a multipath scenario where we have to choose
which of the available reverse links use to transmit the feedbacks, we will base
our decision only on the latency of those links, selecting the one with the lowest
value.

In particular, we want to underline how the high flexibility and adaptability
against erasures of these protocols is completely due to Network Coding that
allows the system to react to a packet loss with the creation of new encoded
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Figure 4.20: Multi Path, second protocol, Latency, [0, 50]%Loss, 10Mb/s on both the links, 1.4 redundancy. Feed-

back on the first path.
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Figure 4.21: Multi Path, second protocol, Latency, [0, 50]%Loss, 10Mb/s on both the links, 1.4 redundancy. Feed-
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packets disregarding which packet was lost. If we have the information about the
loss rate of the links, Network Coding allows not only to react but also to prevent
the erasures of the links, as in the half-duplex protocol where we transmit redun-
dant packets in order to avoid the requests for retransmissions that have an high
cost in terms of performance. The concept of redundant packet has a meaning
only in a NC environment due to the fact that is a rate-less code and allows to
create an arbitrary number of encoded packets from the same generation that are
useful to recover any of the lost packets during the transmission. Network Coding
brings important implementation and performance benefits when embedded in a
multipath protocol: NC allows to do not keep track of the specific packets that
have been transmitted on a link, NC encoder only counts of the number of trans-
mitted packets. Multipath transmission is one of the natural implementations of
NC, this coding scheme has been designed to easily split the traffic among several
links in order to maximize end-to-end throughput and resilience against losses.
We have exploited these features to develop the protocols, and with the simulator
we have proved that the aforementioned benefits of NC can be reached. Finally,
NC not only allows to simplify the transmission of packets, but also the feedback
management; from the simulations, we have deduced that thanks to NC features
and the right settings of the parameters, we can make the feedback procedure ro-
bust to losses and low bandwidth, increasing the reliability and the performance
of the developed protocols, both in single path and multipath scenarios.
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5
Conclusions And Future Work

This thesis introduced a simulator for the multipath transmissions that employs
the Network Coding scheme to encode packets, and analyzed the performance
of two proposed protocols, in particular evaluating the impact that the feedback
packets have on the performance.

We first introduced the concept at the base of Network Coding, and then de-
scribed in detail the main application of this paradigm, called Random Linear
Network Coding. The main characteristics of Random Linear Network Coding
were then analysed, along with some examples that explain the benefits of this
coding scheme as the capacity achieving throughput in a multicast scenario, the
rateless encoding and the recoding at intermediate nodes, and the increased trans-
mission robusteness with respect to the classical store and forward paradigm [13]
[12].

Furthermore, some related works were reported about the integration of a feed-
back structure in a network coded transmission protocol [14] [15]; this is not trivial
due to the lack of the concept of sequential ordering of packets, and a method
was proposed that utilizes degrees of freedom instead of the traditional sequence
number.

After the feedback management, the performance and robustness benefits have
been discussed that are expected by a multipath transmission, implemented on
a multihomed device. Besides, we have analysed also the issues of a multipath
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protocol and the schedulers provided by the literature that aim to solve these
problems [33] [32], implemented in MPTCP [8]. Thus, were reported some ex-
amples about multipath solutions that exploit the unique features of Random
Linear Network Coding to solve the critical issues discussed before [4] [5]. Then,
the different solutions and tools were briefly discussed that usually are adopted
to develop a protocol as the emulators and the simulators.

An overview of the Kodo library [1] was provided in order to describe how
Random Linear Network Coding is implemented in the simulator and what this
tool can offer to the developers that want to exploit the features of NC in their
projects. Details on the specific implementation of the multipath simulator were
discussed, in particular the encoding procedure, the scheduler and the simulated
propagation of the packets along the links. After that, we went in the details of
the reception and the decoding procedures that control the transmission of the
feedbacks packets.

The developed protocols were presented next, that integrate the transmission
multipath protocol and a feedback management system based on the NC scheme,
and propose different solutions for half duplex and full duplex links. The use of
the Network Coding scheme allowed us to manage the feedbacks and the retrans-
missions in a flexible and efficient way. As a futher contribution, we showed the
results about the feedback path choice.

Before the results, were discussed the reasons that led us to use only one path
for the feedback transmission, and from this consideration we derived the need to
choose the best of the available paths. In the last section, we researched which
characteristics of the paths make a link preferable among the available ones, plot-
ting the performance of the protocols with different links’ configurations, in order
to deduce how the modification of a parameter (as bandwidth, latency and loss
rate) impacted on the feedback transmission and effectiveness and on the over-
all system performance. The results showed that in both protocols, the feedback
management is robust and effective also in connections with low bandwidth and
high erasure rate, but that is more affected by high latency links that imply a
degrading of the performances. The practical conclusion that we deducted from
these results is that the choice of the path on which to send the feedback packets,
called feedback path, would be based only on the selection of the lowest latency
disregarding the bandwidth and the loss rate.
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A related consideration has been derived from the results: in general we cannot
assume that the feedbacks are transmitted on a perfect delay-free channels, this
is only a theoretical abstraction that never reflects reality. The majority of works
about feedbacks over network coding transmissions uses this assumption to show
the theoretical performance of their systems. We saw that the delay applied to
the feedbacks has an important impact on the performance of the system and
then we cannot consider feasible and realistic such an assumption.

5.1 FutureWork

As future work, it would be interesting to include in the simulator more refined
schedulers, that exploit the information about the links in order to optimize
throughput and reduce the head-of-line blocking problem that is present, in a
reduced form, also when Network Coding is employed. We think that the devel-
opement of a multipath scheduler specific to work together with Network Coding
exploiting all its unique features could further reduce the magnitude of this prob-
lem that affects the multipath protocols.

Moreover, the simulator can be extended to reproduce intermediate nodes be-
tween the source and the receiver exploiting the possibility of recoding without
decoding specific of Random Linear Network Coding; this solution will probably
show further improved throughput and resilience against losses with respect to
the end-to-end code that we have employed. In fact, the feedback protocol could
exploit the recoding operation to require the retransmission of a new encoded
packet to the last node and not to the the source.

In addition, the simulation framework developed in this thesis can be utilized
to test other NC protocols that can be easily attached to the existing structure,
evaluating the overall throughput of the system and not only the impact of the
feedbacks.

91



92



References

[1] Steinwurf, “Introduction to kodo,” 2016. [Online]. Available: http:
//steinwurf.com/_products/kodo.html

[2] J. K. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Barros,
“Network coding meets TCP: theory and implementation,” in Proceedings
INFOCOM 2009. IEEE, 2009, pp. 280–288.

[3] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental evalu-
ation of multipath TCP schedulers,” in Proceedings of ACM SIGCOMM
workshop on Capacity sharing workshop. ACM, 2014, pp. 27–32.

[4] M. Li, A. Lukyanenko, and Y. Cui, “Network coding based multipath TCP,”
in Computer Communications Workshops (INFOCOM WKSHPS), 2012
IEEE Conference on, 2012, pp. 25–30.

[5] J. Cloud, F. du Pin Calmon, W. Zeng, G. Pau, L. M. Zeger, and M. Medard,
“Multi-path TCP with network coding for mobile devices in heterogeneous
networks,” in Vehicular Technology Conference (VTC Fall). IEEE, 2013,
pp. 1–5.

[6] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “Wifi, lte, or
both: Measuring multi-homed wireless internet performance,” in Proceed-
ings of the 2014 Conference on Internet Measurement Conference. ACM,
2014, pp. 181–194.

[7] J. Postel, “Transmission Control Protocol,” Internet Engineering Task
Force, Request for Comments (Standard) 793, September 1981. [Online].
Available: ftp://ftp.isi.edu/in-notes/rfc793.txt

[8] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions
for multipath operation with multiple addresses.” Internet Requests

93

http://steinwurf.com/_products/kodo.html
http://steinwurf.com/_products/kodo.html
ftp://ftp.isi.edu/in-notes/rfc793.txt


for Comments, RFC 6824, January 2013. [Online]. Available: https:
//tools.ietf.org/html/rfc6824

[9] J. Iyengar, C. Raiciu, S. Barre, M. J. Handley, and A. Ford, “Architectural
Guidelines for Multipath TCP Development,” RFC 6182, Mar. 2011.
[Online]. Available: https://rfc-editor.org/rfc/rfc6182.txt

[10] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[11] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “On random-
ized network coding,” in Proceedings of the Annual Allerton Conference on
Communication Control and Computing, vol. 41, no. 1. Citeseer, 2003, pp.
11–20.

[12] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” 2003.

[13] T. Ho and D. Lun, Network coding: an introduction. Cambridge University
Press, 2008.

[14] C. Fragouli, D. Lun, M. Médard, and P. Pakzad, “On feedback for net-
work coding,” in Annual Conference on Information Sciences and Systems.
IEEE, 2007, pp. 248–252.

[15] J. K. Sundararajan, D. Shah, and M. Médard, “Feedback-based online net-
work coding,” arXiv preprint arXiv:0904.1730, 2009.

[16] I. Standardization, “Iso/iec 7498-1: 1994 information technology–open sys-
tems interconnection–basic reference model: The basic model,” Interna-
tional Standard ISOIEC, vol. 74981, p. 59, 1996.

[17] N. Benvenuto, R. Corvaja, T. Erseghe, and N. Laurenti, Communication
systems: fundamentals and design methods. Wiley, 2007.

[18] J. Irvine and D. Harle, Data communications and networks: An engineering
approach. John Wiley & Sons, 2002.

94

https://tools.ietf.org/html/rfc6824
https://tools.ietf.org/html/rfc6824
https://rfc-editor.org/rfc/rfc6182.txt


[19] L. Badia, M. Rossi, and M. Zorzi, “Sr arq packet delay statistics on markov
channels in the presence of variable arrival rate,” IEEE Transactions on
Wireless Communications, vol. 5, no. 7, pp. 1639–1644, 2006.

[20] L. Badia, “On the effect of feedback errors in markov models for sr arq
packet delays,” in Global Telecommunications Conference, 2009. GLOBE-
COM 2009. IEEE, 2009, pp. 1–6.

[21] C. Wang, T. Gou, and S. A. Jafar, “Multiple unicast capacity of 2-source
2-sink networks,” CoRR, vol. abs/1104.0954, 2011.

[22] M. Hundebøll and J. Ledet-Pedersen, “Inter-flow network coding,” 2011.

[23] E. Bareiss, MULTISTEP INTEGER-PRESERVING GAUSSIAN ELIMI-
NATION., Jan 1966. [Online]. Available: http://www.osti.gov/scitech/
servlets/purl/4474185

[24] J. E. Gentle, Numerical linear algebra for applications in statistics. Springer
Science & Business Media, 2012.

[25] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Network coding
for mobile devices-systematic binary random rateless codes,” in IEEE In-
ternational Conference on Communications Workshops, 2009, pp. 1–6.

[26] R. Koetter and M. Médard, “Beyond routing: An algebraic approach to
network coding,” in INFOCOM. Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings., vol. 1, 2002, pp.
122–130.

[27] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” 2003.

[28] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reli-
able communication over packet networks,” Physical Communication, vol. 1,
no. 1, pp. 3–20, 2008.

[29] ——, “Further results on coding for reliable communication over packet
networks,” in Proceedings International Symposium on Information Theory
(ISIT). IEEE, 2005, pp. 1848–1852.

95

http://www.osti.gov/scitech/servlets/purl/4474185
http://www.osti.gov/scitech/servlets/purl/4474185


[30] D. S. Lun, P. Pakzad, C. Fragouli, M. Médard, and R. Koetter, “An analysis
of finite-memory random linear coding on packet streams,” in International
Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks. IEEE, 2006, pp. 1–6.

[31] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/WiFi handover with Multipath TCP,” in Proceedings of
ACM SIGCOMM workshop on Cellular networks: operations, challenges,
and future design. New York, NY, USA: ACM, 2012, pp. 31–36. [Online].
Available: http://doi.acm.org/10.1145/2342468.2342476

[32] O. Bonaventure, M. Handley, and C. Raiciu, “An
Overview of Multipath TCP,” vol. 37, no. 5, Oct.
2012. [Online]. Available: https://www.usenix.org/publications/login/
october-2012-volume-37-number-5/overview-multipath-tcp

[33] S. Barré, C. Paasch, and O. Bonaventure, “Multipath TCP: from theory to
practice,” in NETWORKING 2011. Springer, 2011, pp. 444–457.

[34] ns 3, “What is ns-3?” 2016. [Online]. Available: https://www.nsnam.org/
overview/what-is-ns-3/

[35] mininet, “Mininet overview,” 2016. [Online]. Available: http://mininet.
org/overview/

[36] N. Matloff, “Introduction to discrete-event simulation and the simpy lan-
guage,” Davis, CA. Dept of Computer Science. University of California at
Davis. Retrieved on August, vol. 2, p. 2009, 2008.

[37] B. P. Zeigler, Multifacetted Modelling and Discrete Event Simulation. San
Diego, CA, USA: Academic Press Professional, Inc., 1984.

[38] Steinwurf, “Fifi overview,” 2016. [Online]. Available: http://steinwurf.
com/_products/fifi.html

[39] P. S. Foundation, “Python overview,” 2016. [Online]. Available:
https://www.python.org/about/

96

http://doi.acm.org/10.1145/2342468.2342476
https://www.usenix.org/publications/login/october-2012-volume-37-number-5/overview-multipath-tcp
https://www.usenix.org/publications/login/october-2012-volume-37-number-5/overview-multipath-tcp
https://www.nsnam.org/overview/what-is-ns-3/
https://www.nsnam.org/overview/what-is-ns-3/
http://mininet.org/overview/
http://mininet.org/overview/
http://steinwurf.com/_products/fifi.html
http://steinwurf.com/_products/fifi.html
https://www.python.org/about/


[40] Steinwurf, “Kodo-python,” 2016. [Online]. Available: https://pypi.python.
org/pypi/kodo/8.0.1

[41] J. K. Sundararajan, “On the role of feedback in network coding,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2009.

[42] M. Hundebøll, J. Ledet-Pedersen, J. Heide, M. V. Pedersen, S. A. Rein, and
F. H. Fitzek, “Catwoman: Implementation and performance evaluation of
IEEE 802.11 based multi-hop networks using network coding,” in Vehicular
Technology Conference. IEEE, 2012, pp. 1–5.

[43] M. Hundebøll, S. A. Rein, and F. H. Fitzek, “Impact of network coding
on delay and throughput in practical wireless chain topologies,” in IEEE
Consumer Communications and Networking Conference (CCNC), 2013, pp.
381–386.

[44] J. K. Sundararajan, D. Shah, and M. Médard, “Arq for network coding,”
in IEEE International Symposium on Information Theory, 2008, pp. 1651–
1655.

[45] E. Drinea, C. Fragouli, and L. Keller, “Delay with network coding and
feedback,” in IEEE International Symposium on Information Theory, 2009,
pp. 844–848.

[46] G. Cherubini and N. Benvenuto, “Algorithms for communications systems
and their applications,” 2003.

97

https://pypi.python.org/pypi/kodo/8.0.1
https://pypi.python.org/pypi/kodo/8.0.1


98


	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	State of art
	Preliminary definitions
	Network Coding
	Random Linear Network Coding

	Feedback
	Multipath
	Network coding based MPTCP

	Simulators

	Contribution
	Kodo
	Simulator
	Analyzed protocols
	Full-duplex protocol
	Half-duplex protocol
	Half-duplex protocol with feedback retransmission


	Results
	Performance evaluation of the full-duplex protocol
	MultiPath evaluation
	Extreme cases
	Automatic switching

	Performance evaluation of the half-duplex protocol
	Redundancy analysis
	Multipath evaluation


	Conclusions And Future Work
	Future Work

	References

