
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCATRONICA

TESI DI LAUREA MAGISTRALE

DEPTH-SENSORED AUTONOMOUS SYSTEM

FOR TABLE CLEARING TASKS

Relatore: GIOVANNI BOSCHETTI

Co-relatori: DAVID MARTÍNEZ MARTÍNEZ

GUILLEM ALENYÀ RIBAS

Laureando: NICOLA COVALLERO

Matricola 1103120

ANNO ACCADEMICO 2016-2017

Abstract

Manipulation planning is a field of study with increasing interest, it combines manipula-

tion skills and an artificial intelligence system that is able to find the optimal sequence

of actions in order to solve manipulation problems. It is a complex problem since it in-

volves a mixture of symbolic planning and geometric planning. To complete the task the

sequence of actions has to satisfy a set of geometrical restrictions.

In this thesis we present a planning system for clearing a table with cluttered objects,

which tackles geometrical restrictions within symbolic planning with a backtracking ap-

proach.

The main contribution of this thesis is a planning system able to solve a wider variety

of scenarios for clearing a table with cluttered objects. Grasping actions alone are not

enough, and pushing actions may be needed to move an object to a pose in which it can

be grasped. The planning system presented here can reason about sequences of pushing

and grasping actions that allow a robot to grasp an object that was not initially graspable.

This work shows that some geometric problems can be efficiently handled by rea-

soning at an abstract level through symbolic predicates when such predicates are chosen

correctly. The advantage of this system is a reduction in execution time and it is also easy

to implement.

This Master Thesis is an extension of [12] initially done at the Universitat Politècnica

de Catalunya at the Institut de Robòtica i Informàtica Industrial (IRI) in the Percep-

tion and Manipulation laboratory with the supervision of David Martínez Martínez and

Guillem Alenyà Ribas. The extensions include some improvements of the system carried

out in the same laboratory in the scope of publishing a conference poster paper [13]. Fur-

thermore, for the sensing part a Microsoft Kinect sensor has been compared with a stereo

vision system based on two frontal parallel cameras in order to assert the best sensor for

the task. This has been developed at the Università degli studi di Padova at the Dipar-

timento di tecnica e gestione dei sistemi industriali (DTG) in the Robotics laboratory

with the supervision of Giovanni Boschetti.

iii

v

Acknowledgements

I want to thank my supervisors David Martínez Martínez and Guillem Alenyà Ribas for

guiding me and teaching me along this thesis and during the writing of the paper. I am

very grateful for all your help that you gave and still are giving to me. I have learnt so

much about robotics, and not just robotics, thanks to both of you.

All the staff of IRI, everyone was so kind and open that made me feel at home. In

particular my colleagues of the perception laboratory: Alejandro, Sergi, Enrique. And of

course "los trabajadores" Gerard and Maite.

Ringrazio il professore Giovanni Boschetti per avermi dato la possibilità di "giocare"

con la visione stereo, e per avermi offerto delle belle opportunitá e per tutto il supporto

datomi.

A todos mis compañeros de Master, compañeros de trabajos, de fiesta, de parilladas y

de mucho màs: Abraham y su mujer María, Esteban y su mujer Vero, Daniél y su mujer

María, Eduardo, Eugenio. Gracias por haberme acompañado en este camino, cada uno

tenía el suyo pero todos compartimos mucho. Cada uno de vosotros, con sus experiencias

y sabiduría me ha enseñado mucho. En particular quiero agradecer a mis amigos y com-

pañeros de muchos trabajos: Nacho y Eric. Suerte en vuestros caminos de investigadores,

el mundo está pendiente de lo que vais a contar.

Un grandissimo ringraziamento alla mia famiglia per avermi sempre supportato du-

rante tutti questi anni e per avermi permesso di intraprendere la meravigliosa esperienza

di studiare due anni a Barcellona. Tutti i risultati li devo a voi.

E ovviamente a tutti i miei amici italiani, in particolare Davide, Mattia e Daniele che

hanno condiviso le mie pene e le mie gioie durante questo percorso.

Un agradecimiento a los 4 fantasticos: Adeline, Angie y Yann. Mi estancia en Barcelona

ha sido fantastica gracias a vosotros, os llevo en mis recuerdos. Os agradezco todos los in-

tento de enseñarme que habia algo màs que el Master, espero que hayáis salido del centro

de vez en cuando.

Y un agradecimiento va a mi amigo Samuél por aguantar mis quejas diarias por todo

un año. Y a Sara, la mejor amiga que se podia encontrar en Barcelona.

A cada uno os deseo mucha suerte aunque os mereceis mucho màs.

Contents

Contents vii

1 Introduction 1

1.1 Project motivation . 1

1.2 Objectives . 2

1.3 Problem Approach . 2

1.4 Contributions . 8

1.5 Set up . 8

1.6 Outline of the Thesis . 11

2 Previous works 13

3 Planning subsystem 17

3.1 Introduction to task planning . 17

3.2 Task planners review . 21

3.3 Planner selection . 22

3.4 State space and action model . 23

3.4.1 Representation . 23

3.4.2 State space . 25

3.4.3 Action model . 26

3.4.4 PDDL syntax . 28

3.5 Backtracking . 32

3.6 Replanning . 35

4 Perception subsystem 37

4.1 Software tools . 37

4.2 Depth vision . 37

4.2.1 Camera model and distortions 41

4.2.2 Stereo Vision . 49

4.2.3 Depth sensor selection . 66

4.3 Object Segmentation . 71

vii

viii CONTENTS

4.3.1 Tabletop Object Detection . 72

4.3.2 Segmentation . 73

4.4 State generation . 76

4.4.1 Preliminary concepts . 76

4.4.2 Predicate: block_grasp . 81

4.4.3 Predicate: on . 83

4.4.4 Predicate: block_push . 85

5 Execution Subsystem 91

5.1 Pushing . 91

5.2 Grasping . 95

6 Software design 99

6.1 C++ code . 100

6.2 ROS implementation . 101

6.3 How to use . 103

7 Experiments 117

8 Conclusions 127

Bibliography 129

Appendices 135

A Basler Cameras 137

1. Introduction

This Chapter introduces the project’s motivation, its objectives, an insight of the approach

used to tackle the problem, the experimental set up, and finally the outline of the thesis.

1.1. Project motivation

Robotic manipulation of objects is an increasing field of research which has captured the

interest of researches from many years ago. In several industrial environments robots

can be easily programmed when the objects are known a priori, i.e. the manipulation is

always the same, and robot operations avoid cluttered scenes, but the workspace has to

be designed in a manner to provide to the robot a non cluttered scene. However, there are

situations in which robots with enhanced intelligence can be useful. An example in which

a robot could face a cluttered scenario is the one of the Amazon Picking Challenge [10],

which provides a challenge problem to the robotics research community that involves

integrating the state of the art in object perception, motion planning, grasp planning, and

task planning to manipulate real-world items in industrial settings such the ones human

operators face in Amazon’s warehouse. Joey Durham from Amazon Robotics describes

the challenges of this competition as follows:

“A robot for picking purposes must possess a lot of skills: the selected item

must be identified, handled and deposited correctly and safely. This requires

a certain level of visual, tactile and haptic perceptive skills and great handling

capabilities.”

Moreover, we introduce also the concept of Industry 4.01. This term derives from the

fact that we stand on the cusp of a fourth industrial revolution in which the factories will

be smarter. The principles of this revolution are the ability of machines to communicate

with each other, to create a virtual copy of the physical world, to support humans in tasks

that are unpleasant and the ability to make decisions on their own.

With these considerations we think that this thesis is well motivated since it proposes

1http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/

Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf

1

http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf

2 Introduction

a planning system to enhance the self-decision making step of robots for picking tasks

exploiting a Barret WAM collaborative robot.

1.2. Objectives

The objective of this thesis is designing and implementing an artificial intelligence system

which can reason about how to interact with the objects in the scene in order to clear a

table with cluttered objects. To clear a table means grasp all the objects and remove them

by dropping them, for example, into a bin. The cluttered hypothesis on the kind of scene

introduces advanced difficulties in the manipulation because it may happen that to grasp

a specific object the surrounding objects need to be manipulated as well (e.g. Figure

1.7b). Thus, the robot needs to be enhanced by a system which decides how to interact

accordingly to the observed scene. To interact with the objects a 7 degree of freedom

(DoF) robotic manipulator is used. The idea is to design the system by human-inspired

actions, that is the intelligence system we want to develop tries to solve the task similarly

as a human would do.

To locate the objects the system utilizes a depth sensor that captures a 3D image of

the scene. To this aim, two different depth sensor systems are analysed to assert the more

adapt for the task. These are the Microsoft Kinect sensor and a stereo vision system

developed using two Basler cameras (see Appendix A).

The stereo vision system was developed at the DTG2 in the Robotics laboratory. Here,

there was not a suitable set up to perform the same experiment we did at IRI, thus the

stereo system is tested performing real experiments to assert the quality of the 3D image

obtained and it is integrated within the presented robotic system only in a simulated en-

vironment. Regardless, the design of the robotic system is very modular and the sensing

part can be performed by any method able to give a 3D representation of the scene.

1.3. Problem Approach

The strategy to solve the problem is inspired by the way humans solve it. A human would

use mainly two actions: grasping and pushing. When it is not possible to grasp an object,

2http://www.gest.unipd.it/en

http://www.gest.unipd.it/en

1.3 Problem Approach 3

because other objects prevent the human to put the hands in the proper way to grasp

the desired one, he/she interacts with the scene to make the object graspable. However,

humans are characterized by a high dexterity and therefore they have a lot of freedom in

the way to grasp objects. Robots, normally, do not have such a dexterity and grasping in

cluttered scenes could be very hard without moving the surrounding objects.

Based on these considerations, the actions the robot has to use are grasping and push-

ing. Grasping is the most important action since it lets to take an object and drop it

somewhere, for instance into a bin, clearing in this way the table. There exist different

works facing the same task by focusing only in grasping [18, 53]. The pushing is useful

when two adjacent objects could not be grasped if they are so close such that the robot’s

gripper, when attempting to grasp an object, would collide with the adjacent one, making

the object ungraspable. The pushing action can separate adjacent objects that mutually

exclude themselves from being grasped. This requires to put the end-effector in a certain

pose and then push the object by moving the end effector. However, it is difficult to push

an object and ensure that it follows the desired path since the action’s outcome depends

on its shape. Moreover a controller would be needed in order to correct the pose of the

end effector along the path. We assumed that all objects had basic shapes, so that a simple

pushing action performs well. For simplicity we only consider actions that interact with

a single object, whereas humans may push several objects together in some cases.

To do so the robot must be enhanced with an artificial intelligence system to make

decisions. The decision maker uses a planner that returns a sequence of actions to achieve

the goal of clearing the table. The robot reasons in an abstraction level by considering

only symbolic predicates with limited geometrical information. Then the plan is checked

to see if it is feasible, and if it isn’t, it replans accounting that such an action cannot be

executed (backtracking [34, 5]).

To include all the geometrical constraints into the symbolic planning system we pro-

pose to divide them into two groups: relational and reachability geometrical constraints.

Relational constraints are those generated between objects when executing pushing and

grasping action and they give a knowledge of how the objects are collocated with respect

the others. They are computed by simulating pushing and grasping actions and checking

all the collisions between the objects themselves and with the robot. Reachability con-

straints are generated when computing the robot motion path, possibly taking into account

4 Introduction

obstacle avoidance.

We assume the world is perfectly known, that is the planner has all the information

regarding any object. The actions are actually non-reliable and the outcomes could differ

from the expected one with a certain probability. To handle that, instead to introduce

probabilities in the planning stage, we supposed the actions to be deterministic and the

uncertainty factor is handled by replanning after the execution of each action[27]. If the

outcomes of an action differs from the expected, the planner will next return an updated

plan accordingly to the scene.

The pipeline of the planning system (Figure 1.1) is divided in three subsystems:

• A perception subsystem devoted to locate the objects through a depth-sensor and

to generate the state.

• A planning subsystem which is the core of the artificial intelligence that takes

decisions depending on the state.

• An execution subsystem devoted to the actions execution .

Perception Subsystem Planning Subsystemstate Execution Subsystemaction

replanning

Fig. 1.1: Simplified pipeline of the planning system.

The design of planning subsystem is the most important part because it defines what

actions can be executed and what information it needs from the perception subsystem to

carry out the decision making stage.

In order to provide a graphical scheme to the reader the perception and planning

pipeline is depicted in detail in Figure 1.2. The graphical scheme should be read to-

gether to the Algorithm 1. At each step, the perception subsystem (Sec. 4) takes an image

from a depth sensor and generates the symbolic state, possibly containing errors due to

perception noise. We propose to embed the relational and reachability constraints in the

state definition and thus are tackled naturally by the planner (Sec. 3.4.2). The planning

subsystem takes the state of the scene and uses the action model (Sec. 3.4.3) to compute a

plan. In our current implementation, the whole plan until the goal is fulfilled is computed.

If the plan cannot be found and replanning is not effective, the system cannot continue.

1.3 Problem Approach 5

Depth sensor

Object segmentation

State generation

State
Action

Model
Goal

Planning

solution? subgoal?

update goal

& replanning

No

No

IK?

Yes

unfeasible

(backtracking)

feasible

execution

Perception subsystem

Planning subsystem Execution subsystem

Fig. 1.2: The system is divided in three subsystems: the perception subsystem generates the

state with relational restrictions, the planning subsystem finds a feasible plan with no reachability

restrictions that are included afterwards through backtracking, and the execute subsystem executes

the first action of the plan.

6 Introduction

To solve this limitation, sub-goals [39] could be used to find a feasible sub-plan that al-

lows the robot to continue towards the goal. The planning subsystem, after having found

a plan, computes the reachability constraints to check for feasibility. If they can be ful-

filled, the next action is executed; otherwise, backtracking (Sec. 3.5) is triggered to find an

alternative solution. In our implementation we validate only the robot inverse kinematic

(IK) for the next action, but the same scheme holds for more elaborated strategies, like

using heuristics to compute only some key actions [37], compute all actions [34], or use

complex robot motion planners [52]. After the execution of an action the system replans,

that is it captures a new image and all the process is iterated until the goal is reached.

Notice that replanning is triggered either when an action is executed, in this way the

uncertainties regarding the actions outcomes are handled, or whenever it is impossible to

find a plan, this could be due to a wrong segmentation which is sensitive to the noise and

it could be fixed by capturing a new image. To avoid occlusions, we wait until the robot

finishes to execute an action and moves away before taking new images.

The pipeline of our current implementation is described in more detail in Algorithm

1. First a 3D image is taken, the objects are segmented, the goal is set and the state is

generated (lines 2− 5). In our experiments the goal is removing all the objects, thus, if

there are no objects onto the table the task is considered finished (lines 6−8). Then, if the

goal involves at least one object to interact with (line 9), a plan is obtained without limits

regarding the reachability (line 10), i.e. all the actions can be executed. If a plan is found

(line 11), reachability constraints are evaluated. In our implementation the reachability

constraints refer to the inverse kinematic (IK) of the actions, so we evaluate the robot IK

for the first action in the plan; if it is not feasible the state is updated and backtracking

takes place. This is repeated until a feasible action is obtained or there exists no solution

(lines 13− 17). If there exists a plan and the first action is feasible, it is executed and

replanning is triggered (lines 18− 20). Otherwise, if there exists no plan, the system

updates the goal (lines 22− 24) removing from the goal the objects the robot cannot

interact with because of reachability limitations, these information are included into the

state. Finally, if the robot has executed an action or cannot find a feasible plan, it replans.

The task is considered finished when there are no longer objects on the table.

1.3 Problem Approach 7

Algorithm 1 Planning system’s pipeline.

1: while ¬ f inished do

2: image← captureImage();

3: ob jects← segment(image);

4: goal← ob jects;

5: state← stateGeneration(ob jects);

6: if goalEmpty(goal) then

7: f inished← true;

8: end if

9: while ¬goalEmpty(goal) do

10: plan← planning(state);

11: if hasSolution(plan) then

12: action← IK(plan[0]);

13: while ¬isFeasible(action) ∧ hasSolution(plan) do

14: state← updateState(action);

15: plan← planning(state);

16: action← IK(plan[0]);

17: end while

18: if isFeasible(action) ∧ hasSolution(plan) then

19: execute(action);

20: break

21: end if

22: if ¬hasSolution(plan) then

23: goal← updateGoal(state);

24: end if

25: end if

26: end while

27: end while

8 Introduction

(a) Barrett WAM arm (b) Microsoft Kinect sensor (c) Stereo vision system

Fig. 1.3: Robot and depth vision sensors.

1.4. Contributions

The contributions of this thesis are:

• A planning system that thanks to the combination of pushing and grasping actions is

capable to solve a wider variety of scenarios than considering only grasping action.

• A symbolic planning system which finds the best sequence of pushing and grasping

actions.

• A perception system which translates geometrical restrictions into symbolic predi-

cates. A lazy approach is used to evaluate if actions are feasible in order to improve

the efficiency of the system.

1.5. Set up

In order to make the problem clear to the reader, the set up of the environment the robot

will work in is presented here.

The robot used is a Barret WAM arm, which is a 7 degree of freedom (DoF) manip-

ulator arm (Figure 1.3a). The WAM is noteworthy because it does not use any gears for

manipulating the joints, but cable drives, so there are no backlash problems and it is both

fast and stiff. Cable drives permit low friction and ripple-free torque transmission from

the actuator to the joints. To detect the objects a Kinect camera, a RGB-D sensor, is em-

ployed (Figure 1.3b). In section 4.2 also a stereo vision system (Figure 1.3c) is build and

tested to assert the best sensor for the task. However, in the experimental set up of the

whole planning system only the Kinect was employed.

1.5 Set up 9

Fig. 1.4: Gripper used for the experiments

Fig. 1.5: Gripper and WAM.

To manipulate the objects the robot has a gripper designed in the IRI institute and

actuated by Dynamixel motors. Such a gripper is depicted in Figure 1.4 from several point

of views. Its closing width3 is 3 centimetres while its opening width4 is of 7 centimetres,

therefore we are constrained to grasp objects with a width in the range [3÷7]cm.

For the task planner, as the reader will see in Chapters 3 and 4, the model of the

gripper is an important resource in order to compute the state. The gripper is modelled

measuring some principal elements such as: finger’s width and height, gripper’s width,

height and deep, closing and opening width. The modelling procedure is depicted in

Figure 1.6. The resulting model is a simple triangle mesh which includes all the important

geometric information of the gripper. Such a simple model allows the collision algorithm

commented in Chapter 4 to check for collision in just a few milliseconds. A more detailed

and complex model would have higher precision, but such a high accuracy is not needed,

and it would slow down the algorithm. The gripper is mounted in the end effector of the

robot as shown in Figure 1.5.

The scenario the robot is going to work in is composed of a table and the objects

will lay on top of it. In Figure 1.7a the main elements of the set up are highlighted. In

this figure the depth sensor is the Microsoft Kinect sensor. The WAM arm’s base is in a

fixed position with respect the table and the depth camera is located on top of the table

3Distance between the fingers when the gripper is closed.
4Distance between the fingers when the gripper is open.

10 Introduction

Elements measured Opened gripper mesh model Closed gripper mesh model

Fig. 1.6: At the left the principal elements measured are highlighted for the opened gripper model.

The gripper mesh model is here shown in the PCL visualizer. The green, red and blue axis are

respectively the x, y and z axis.

(a) Principal elements of the experi-

mental set up.

(b) Example of a cluttered scene.

(c) Kinect’s view.

Fig. 1.7: Experimental set up with an example of a cluttered scene the robot is going to interact

with. The depth sensor used is the Microsoft Kinect sensor.

pointing downward. The camera is calibrated and the fixed transformation between the

camera’s frames and the base frame of the robot is known, so all the points measured can

be expressed in coordinates with respect the robot’s base frame. The transformation is

given by the translation vector −→t = [0.9014760,−0.0594,0.725172]m and the rotation

vector −→r = [0.28,1.379,−2.921]rad which represents the roll, pitch and yaw angles re-

spectively. Figure 1.7b shows an example of a cluttered scene the robot is going to deal

with, and Figure 1.7c shows the same scene seen by the camera.

1.6 Outline of the Thesis 11

1.6. Outline of the Thesis

The document starts by analysing in Chapter 2 some relevant previous works in manip-

ulation planning comparable to ours to assert the contributions of this work. Then, since

the proposed system is organized in three subsystems, we describe them by starting from

the planning subsystem. Although it is the second one in a logical order, the others are

designed in function of the planning subsystem. The planning subsystem is the one which

defines what information are required from the scene and what are the possible actions to

execute. The planning, perception and the execution subsystems are explained in Chap-

ters 3, 4 and 5 respectively. Chapter 4 includes the comparison, supported by three ex-

periments, between the Kinect and the stereo system to assert the best depth sensor for

the task. Then, we proceed discussing the design of the software in Chapter 6. Finally in

Chapter 7 the experiments performed are discussed and the document concludes present-

ing the conclusions and future works in Chapter 8.

12 Introduction

2. Previous works

In this chapter we present some previous works regarding manipulation planning and

analysing them for their contribution with respect this work.

Many manipulation planning approaches[35] assume that the task can be treated as a

geometric problem with the goal to place the objects in their desired positions. Planning is

essentially done with a mixture of symbolic and geometric states. They require to obtain

the symbolic predicates that represent geometric features, which are very time consuming.

Therefore, these hybrid planners can be too slow in real applications.

Dogar and Srinivasa [16] proposed a framework for planning with cluttered scenes

using a library of actions inspired by human strategies. They designed a planning system

that decides which objects to move, the order, where to move them, and the appropriate

manipulation actions. Moreover, it accounts for the uncertainty in the environment all

through this process. The planning system first attempts to grasp the goal object, and if it

is not possible, it identifies what is the object that prevents the action and adds it to a list of

objects that have to be moved. Afterwards, those objects are moved in whatever position

that makes the goal feasible. Their work is the most similar to our, but their planning

system cannot be directly applied to a table clearing task. The goal is a single object at

a time, then to grasp another object they need to replan. Our approach performs better

with goals that involve more than one object. We plan sequence of actions considering

all objects in the goal. The actions they use to move objects that were in the way may

actually hinder future goals.

A recent alternative proposed by Mösenlechner and Beetz [41] is to specify goals

symbolically but evaluate the plan geometrically. The idea is to use a high-fidelity physics

simulation to predict the effects of actions and a hand-built mapping from geometric to

symbolic states. Planning is conducted by a forward search, the effects of actions are

determined by simulating them, and then the mapping is used to update the symbolic

state. However, their method requires to know the physic of the manipulated objects to

simulate them. Moreover the authors didn’t test their planning system with a complex

scene like the ones faced in this thesis. Our planning system doesn’t use any simulator,

instead it relies on a prediction algorithm to represent how the objects can be manipulated,

leading to a faster and easier to implement solution.

13

14 Previous works

In [9] the authors address a problem similar to the one of this thesis. The authors

blended pushing and grasping actions for a table manipulation task. They use the con-

cept of reachability [54] to exclude impossible poses of the gripper at the planning stage,

creating a reliable plan suitable for real-time operation. The authors model the planning

problem through a Markov Decision Process (MDP), discretizing the world in grid cells

and assigning each one a push and grasp vector defined by the reachability concept. Their

advantage is that they plan a trajectory level so they can consider more details. In contrast,

we plan at an action level, so we can consider more complex goals involving several ob-

jects, and will optimize the sequence of actions for completing the whole task. Moreover,

while their method needs to be adapted to each robot, to build a reachability map, our

method can be directly integrated in any robotic manipulator.

Symbolic planning requires knowledge about the preconditions and effects of the in-

dividual actions and such a knowledge can be obtained through machine learning tech-

niques. In [2] the authors proposed an approach to learn manipulation skills, including

preconditions and effects, based on teacher demonstrations. With just a few demonstra-

tions the method learns the preconditions and effects of actions. This work looks promis-

ing since it allows to resolve planning problem by learning the model, but it is suitable

only for simple actions. Having a hand-built model, like the one of our work, lets to solve

more complex problems and also it is more straightforward.

In [14] Dearden and Burbridge proposed an approach for planning robotic manip-

ulation tasks which uses a learned bidirectional mapping between geometric states and

logical predicates. First, the mapping is applied to get the symbolic states and the planner

plans symbolically, then the mapping is applied to generate geometric positions which are

used to generate a path. If this process fails they allow the system a limited amount of

purely geometric backtracking before giving up and backtracking at the symbolic level to

generate a different plan. However, this method cannot tackle complex scenes, such as

cluttered objects, since in those cases learning a good mapping would be very hard.

Compared to the state of the art, we propose a planning system for clearing cluttered

objects. Our approach plans at a symbolic level, which is efficient and is low time con-

suming (the time to get a plan is usually less than 0.5 seconds). As far as we know,

previous approaches haven’t tackled very cluttered scenes, such as the one in Figure 1.7b.

We will also show that the lack of geometric constraints introduces some limitations to

15

the system, but the general results obtained are good.

16 Previous works

3. Planning subsystem

In this chapter, after an introduction to task planning and a review of the current state of

the art of task planners, a proper planner is chosen and then a suitable description to the

table clearing problem is discussed.

3.1. Introduction to task planning

Task planning is the branch of artificial intelligence that concerns strategies to achieve

a determined goal. There exists a variety of planners that can involve different set of

informations at the planning stage. This introduction focuses on the simplest case which

is given by a fully observable, deterministic, finite (with a countable set of possible states

and actions) and static (change happens only when the agent, the robot in our case, acts)

environment [47]. To describe this classical planning we use the state space model [35].

The fundamental idea is that every possible and interesting situation that can happen in

the world is called a state, denoted by s, which is a multidimensional variable, and the

set of all possible states is called state space, denoted by S. For discrete planning S is

countable and it is up to the developer designing the possible states in order to account

all the relevant information. Aside the state, the model needs to include an action model

which defines what actions can be executed by the agent and the rules of these actions.

The rules define if, given s, action a can be executed and the result is the new state s′

specified by a state transient function, T . In formulas, the outcome of action a applied to

s is the state s′:

s′ = T (s,a). (3.1.1)

For each state s there exist a countable set of actions that can be executed, this set is

called action space and is denoted as A(s).

The general planning problem is formulated as a 6-tuple Π = 〈S,so,G,A,T,c〉, where:

• S is the finite set of states;

• so ∈ S is an initial state;

• G ∈ S is a goal state;

17

18 Planning subsystem

• A is a finite set of applicable actions;

• T (s,a) : S×A×S is a deterministic transition function;

• c(a) is the cost to applying action a.

A plan τi is a sequence of actions applicable from the initial state to the goal state. The

cost of a plan C(τi) is the sum of the cost of the actions of the plan C(τi) = ∑a∈τi
c(a).

The optimal solution τ∗ is the solution with less cost: τ∗ = minτi
C(τi).

When S is finite the aforementioned formulation appears almost identical to a finite

state machine. Thus, the discrete planning problem could be interpreted as the sequence

of input that makes a finite state machine eventually report a desired output.

It is often convenient to express this formulation as a directed state transition graph

where the vertices, also called nodes, are all the states in S. In this graph, a directed

edge from s to s′ exists if there exists an action a ∈ A(s) such that s′ = T (s,a). The

state transition graph is usually built iteratively during the planning process exploiting

the information of the state and action model in order to connect the initial state to the

goal state. The graph built until a certain iteration is called search graph. Whereas the

state transition graph includes all the possible transitions among all the possible states,

the search graph includes only the visited transitions and states. The aim of the search

graph is not the one to explore the whole state transition graph but to connect the initial

state to the goal state finding a path with the smallest cost.

Given the 6-tuple Π the planner have to find the sequence of actions to achieve the

goal. To do so, the simplest solution would be to explore iteratively the whole state space

but this would require too much time. Instead, there exist search algorithms that tries to

optimize this search by focusing on exploring interesting solutions and avoiding solutions

that are known not to solve the task. These methods are called heuristics search methods.

For this aim the searching algorithms are systematic, that is they keep track of the visited

states in order to focus on exploring unvisited states and they use heuristics to prioritize

the next state to expand the graph.

In the followings the general scheme on which these search methods are based on is

described:

1. Initialization: the search graph is first initialized with the initial state marked as

visited. The search graph will incrementally grow to reveal more and more of the

3.1 Introduction to task planning 19

state transition graph.

2. Select a state: choose another state, for expansion. The state is typically chosen

from a priority queue which is governed by some heuristics.

3. Apply an action: virtually apply the action required to obtain the new state, given

the current one, accordingly to the state transition function.

4. Insert a directed edge: if the action can be executed it is inserted in the graph and

the new state is marked as visited.

5. Check for solution: if the new state is the goal then the task is terminated.

6. Return to step 2: iterate unless a solution is found or a certain termination criteria

is satisfied.

To guide the search the states are labelled as visited or unvisited. The unvisited ones

are the ones that can be select for expansion from a visited state. A visited state s can

be mark as open node if the exploration of the state transition graph can continue from

such a state, or as closed node if all the possible applicable actions to s have already been

tested.

s1 s2

s3

a1

a2

a3

a4

a5

s4

a6

a7

Fig. 3.1: Example of the construction of the search graph. The initial and goal states are s1 and

s4 respectively. The dashed states and lines refers to unvisited states, while the non-dashed ones

refer to visited states. Green circles refers to open node from which the graph can extend, while

the red one refers to a closed node. Action a3 is an useless action because next state is a previously

visited state, thus it is not consider by the search algorithm.

Let’s focus on the example of Figure 3.1 where s1 and s4 are the initial and goal

20 Planning subsystem

states respectively. The search graph is rooted in s1 since we consider a forward search1.

In the particular iteration considered, the search graph has labelled s1 as a visited and

closed node because all the possible reachable states from s1 have been visited. States

s2 and s3 are labelled as visited and open nodes, thus the exploration can continue from

them. In this case, to explore from s2 an heuristics could select for expansion the states

s4 or s3. The selection depends on an estimate of the cost to reach the goal, such an

estimate is done by a heuristic function in order to bias the exploration to speed up the

searching. Let consider the following costs for the actions c(a1) = 1,c(a2) = 4,c(a3) =

1,c(a4) = 2,c(a5) = 3,c(a6) = 7,c(a7) = 4. In this scenario the optimal plan is given

by the sequence a1,a4,a7, thus a good heuristic would select s3, instead of s4, to expand

the graph from s2, although s4 is the goal. For this simple example there are no clear

benefits in using heuristics but for bigger state spaces they may be fundamental to make

the problem tractable.

What heuristics do is to estimate the cost of a path to reach the closest goal state (there

could exist more goal states when the user is interested in satisfying only a certain part of

conditions). An example of a very basic heuristic is the Hamming heuristic which counts

the number of variables of the state that differ from the goal. Let recall that the cost of a

path is the sum of the cost of the actions belonging to such a path. These heuristics are

just estimates of the cost, thus, if a goal is reached by a path obtained exploring always

the state with minimum heuristics this does not mean that it is the optimal plan, but a

suboptimal one. In fact, there exist three main properties for a heuristic function h:

• admissibility: a heuristic is admissible if it never overestimates the real cost of

reaching the closest goal state from state si. Formally:

h(si)≤ h∗(si)

where h∗(si) is the real cost to reach the goal from si.

• consistency: a heuristic function is consistent, or monotone, if its estimate is always

less than, or equal to, the estimated distance from any neighbouring state to the goal,

plus the cost of the action to reach such a state. Formally, let s2 be a state reachable

1There exist backward search algorithms whose search graphs are rooted in the goal state. Some plan-

ners also use a bidirectional search such the two trees are rooted one from the initial state and another one

from the goal state.

3.2 Task planners review 21

from state s1 by applying action a1, the estimated cost to reach the goal sg from

s1 is not greater than the cost to execute the action to get state s2 plus the cost of

reaching the goal from s2:

h(s1)≤ c(a1)+h(s2)

h(sg) = 0.

Consistency implies admissibility but the vice versa is not true.

• safety: a heuristic function is safe if its estimate is infinite if and only if the actual

cost to reach the goal is infinite.

The ideal properties for optimal planning are admissibility, consistency and accuracy,

i.e. the heuristic estimate is close as possible to the real cost. Thus a heuristic biases the

expansion of the search graph by minimizing the visited states and speeding the process

up.

Having a basic understanding of task planning, although restricted to classical plan-

ning, we move to analyse what are the available planners to finally decide what suits better

to our application.

3.2. Task planners review

To choose the proper planner for the task we evaluated three main categories of planners:

1. classical planners,

2. hierarchical planners,

3. probabilistic planners.

Classical planners are characterized by environments which are fully observable,

deterministic, finite and static (changes happen only when the agent acts) and discrete (in

time, actions, objects...) [47]. A very well known classic planner is the Fast Downward

planner [21].

Hierarchical planning, also called Hierarchical Task Network(HTN), works in a sim-

ilar way to how it is believed that human planning works [38]. It is based on a reduction

of the problem. The planner recursively decomposes tasks into subtasks, stopping when it

22 Planning subsystem

reaches primitive tasks that can be performed directly by planning operators. This kind of

planner needs to have a set of methods, where each method is a schema for decomposing

a particular kind of task into a set of subtasks. For this kind of planning technique a well

known planner is SHOP [42].

Probabilistic planning is a planning technique which considers that the environment

is not deterministic but probabilistic. So the actions have a probability to obtain a certain

state, and given an initial state and a goal state, the planner finds the solution path with

the highest reward, which depends also on the probability. Probabilistic problems are usu-

ally formalized as Markov Decision Processes (MDP). In this category two probabilistic

planners that performed good in planning competitions are Gourmand [33] and PROST

[31].

3.3. Planner selection

The problem involves a big amount of uncertainty due to the interaction of the robot with

the environment. When the robot interacts with the objects, it is hard to predict correctly

the position of the object after the execution, that is the next state. A probabilistic planner

considers the probability associated with every effect to predict the state after executing

an action, such a probability has to be specified or learned for each type of object.

Martinez et al. [40] faced the problem of cleaning a surface entirely by probabilistic

symbolic planning. The problem they solved was characterized by a strong uncertainty,

and a unexpected effect of an action would require to replan and therefore to slow down

the system. Another way to face the problem of probability is replanning after each exe-

cuted action [27], or whenever the current state deviates from the expected one, generat-

ing a new plan from the current state to the goal. In this case the actions are considered

deterministic, and only the first action is executed before replanning again.

Little et al. discussed in [36] the problem of when is more useful the probabilistic

planning with respect a simple replanning system. They defined a planning problem prob-

abilistic interesting if dead ends can be avoided, exist multiple goal trajectories and there

is at least one pair of distinct goal trajectories, τ and τ
′

that share a common sequence of

outcomes for the first n− 1 outcomes, and where τn and τ
′

n are distinct outcomes of the

same action.

3.4 State space and action model 23

They assert that unless a probabilistic planning problem satisfies all of the conditions

to be probabilistic interesting then it is inevitable that a well-written replanner will out-

perform a well-written probabilistic planner. Moreover the authors do not negate the pos-

sibility that a deterministic replanner could perform optimally even for probabilistically

interesting planning problems.

To conclude, in many problems it is more efficient to replan with a deterministic plan-

ner rather than directly using a probabilistic planner.

Taking into account such considerations and that, except for rare cases, our planning

problem is not probabilistic interesting, the problem has been thought to be solved by a

deterministic planner.

A hierarchical planner would be a good choice if the problem presented some hierar-

chies, for instance in the case the goal was to clear several tables. Since the problem is

about cleaning a single table it is more straightforward to use a classical planner.

The planner chosen was the Fast Downward planner [21], a very well know classic

one. This planner is feature-wise complete, stable and fast in solving planning problems.

The planning problem we handled has not a wide state space and action space, thus, in

order to ensure the optimality of the plan, we used a blind heuristic that works as a brute

force algorithm by selecting randomly the next possible state since it has no information

to prioritize any state to expand the search. We experienced with other type of heuristics

that the plan was not always optimal, whereas with the blind heuristic the plan is optimal

and the increasing of elapsed time is negligible compared to other heuristics.

3.4. State space and action model

Before to proceed to the description of the state and action model for the table clearing

problem, the general representation of states and actions is described.

3.4.1. Representation

The Fast Downward planner needs the problem to be formulated in Problem Domain De-

scription Language (PDDL) [1]. This is a widely used representation for planning domain

whose state and action representation is here briefly described. The PDDL formulation is

based on two representation: one for the domain, which specifies the state space and the

24 Planning subsystem

action model, one for the problem to solve, which specifies what are the initial and goal

states.

States The states are represented as a conjunction of literals, also called symbolic pred-

icates, for example Happy∧Graduated may represents the state of a lucky and recently

graduated agent. Literals can be either positive, when true, or negative, when false. An ex-

tension of this representation is based on first-order literals such as onTable(obj1)∧onTable(obj2)

that might represent a state where objects 1 and 2 are both onto the table. The close-world

assumption is used, meaning that every omitted condition in the state is assumed false. All

the possible literals to describe the state are typically defined in the domain formulation.

The goal is a state, thus its representation is equivalent to the states and every omitted

literal means that it can be either positive or negative. In such a case the goal is defined

by multiple states.

Actions An action is specified in terms of the preconditions that must hold in order to

be able to execute that action, the effects subsequent the action and the cost to apply it.

An example of the action of grasping an object and removing it from the table could be:

Action(grasp(obj)):

PRECONDITIONS: GraspFree(obj) ∧ onTable(obj) ∧ ¬removed(obj)

EFFECTS: removed(obj) ∧ ¬onTable(obj)

COST: 10

In words, the action grasps the object labelled as obj, with a cost equal to 10, if it is

collision-free when grasped, if it is on the table and if it has not already been removed.

The effects are that obj is removed and not on the table. We see here that the effects can

be also negative, meaning that some literals are set to false (e.g. ¬onTable(obj)). Notice

also that the set of actions defines the transition function we defined in the introductory

section.

More properly, the above action notation refers to an action schema because it repre-

sents a set of different actions that can be derived by varying the variable obj.

An action is considered applicable when all the preconditions are satisfied. If in the

preconditions some literals are omitted, it means that they can be either positive or nega-

tive. If in the effects some literals are omitted, it means that they remain unchanged.

3.4 State space and action model 25

3.4.2. State space

The task this thesis faces is a common task done by humans, who think in order to find

a feasible sequence of actions. Such a sequence is normally composed of actions that

avoid collision between the manipulated objects and the other ones, whenever possible.

To do this we, as humans, think on what is going to happen if we manipulate an object in

a certain way accordingly to our prediction. The design of the problem has been inspired

by such a reasoning way and symbolic predicates are used so that the planner can reason

about collisions and geometrical constraints.

As described in the introduction, the system will be able to perform two types of

actions: pushing and grasping. Grasping action is a necessary action in order to grasp

an object and drop it into a bin, while the pushing action is an auxiliary action which has

the aim to move an object in a pose that does not obstacle the solution of the problem.

The pushing action is said to be auxiliary because it is not strictly necessary to solve

every kind of problem, depending on the cluttered scene the grasping action may suffice.

The combination of these two actions makes wider the range of problem this planner can

solve.

The symbolic predicates are designed accordingly to the available actions trying to

answer the following questions:

• When can an object be grasped?

• When can a object be pushed? In which direction?

Answering these questions the following predicates are defined:

• removed: (removed o1) means that object o1 has been grasped and removed from

the table. The goal is reached when all the objects have been removed.

• on:(on o1 o2) means that object o1 stands on top of object o2. This predicate

is defined since we don’t want to interact with an object that has objects on top of

itself. If we would grasp it, the object above would likely fall corrupting in this

way the scene. That behaviour is undesired since a human, normally, would not

grasp the bottom object without first grabbing the one on the top. Similarly for the

pushing action, when an object with objects on top of itself is pushed, they could

fall or collide with other objects. Vice versa if it was on top of other objects.

26 Planning subsystem

• block_grasp: (block_grasp o1 o2) means that object o1 prevents object o2 to

be grasped. Once we are sure that an object has no objects on top of it we have

to check if it is graspable, that is if the gripper would collide with adjacent objects

attempting to grasp the desired one. With this predicate the planner knows whether

the robot has first to interact with those objects before to grasp the target one.

• block_push: (block_push o1 o2 dir1) means that object o1 prevents object

o2 to be moved along direction dir1. We considered 4 possible pushing directions

(defined in Chapter 4) per object. Being observant to the philosophy of human-

inspired actions, we avoid collisions when we push an object. To do so we translate

the object along the pushing direction, for a certain length until the object is gras-

pable. and check for collision. Moreover, to push an object the end effector has to

be put in the opposite side with respect the pushing direction, so an object cannot be

pushed along a certain direction even in the case the gripper collides with an object.

Therefore if an object cannot be moved along a certain direction it is because the

object would collide, or the end effector would collide, with other objects.

• ik_unfeasible_dir, ik_unfeasible_grasp: to consider the geometrical constraints

regarding the working space of the robot, a predicate which states whether the in-

verse kinematic has solution is added for each action. For instance, (ik_unfeasible_dir

o1 dir1) means that the inverse kinematic to push the object o1 along pushing di-

rection dir1 has no solution or that o1 would be pushed outside the working space

such that it cannot be grasped afterwards. Whereas (ik_unfeasible_grasp o1)

means that the grasping pose of o1 is outside the working space. These predicates

are added in order to consider the reachability constraints regarding the working

space of the robot.

Predicates on, block_grasp, block_push represent the relational geometrical con-

straints mentioned in the introduction, whereas ik_unfeasible predicates represent the

reachability geometrical constraints. The firsts are computed by the perception subsys-

tems and the seconds by the planning subsystem when an action is needed by a plan.

3.4.3. Action model

In this section the actions preconditions and effects are described.

3.4 State space and action model 27

Grasping Action The preconditions to grasp a certain object are:

• no object stands on top of it,

• no object collides with the gripper attempting to grasp the desired object,

• the inverse kinematic has solution.

The effects of the grasping action are:

• the grasped object is removed and dropped into the bin,

• the grasped object no longer prevents other object from being pushed or grasped,

• if the grasped object was on top of other ones, it is no longer on top of them.

The cost is 1 since all the grasping actions help to remove objects, thus to reach the goal

state of a cleared table.

Pushing Action The preconditions to push a certain object, along a certain direction,

are:

• no object stands on top of it,

• the manipulated object is not on top of other objects,

• no object collides with the manipulated one, or with the gripper, when pushed,

• the inverse kinematic has solution.

In particular we defined 4 pushing actions, one per pushing direction. The symbolic plan-

ner is not able to capture all the geometrical information of the problem through symbolic

predicates, therefore it is not able to predict the future position of the manipulated object,

and so the future states. This problem was handled by considering the object to be pushed

until it is graspable in such a way it can be removed afterwards (Figure 3.2).

Therefore, the effects of this action are:

• the manipulated object no longer prevents other objects from being pushed or grasped,

• the other objects no longer prevent the manipulated object from being pushed or

grasped.

28 Planning subsystem

Fig. 3.2: The pushing length l is function of the neighbour objects. The first image shows the

configuration before moving the purple box. The second one shows the execution of pushing the

purple box. In the third one we see the purple box is moved to a graspable pose.

When the object is pushed the end-effector is moving close to the objects and it has

to avoid collisions with them otherwise the hypothesis of a careful manipulation falls.

To do so we weight the cost of the action of pushing a certain object along a certain

direction by considering the collision-free range for the end-effector. In detail, the cost is

an exponential function of the minimum distance dmin between the other objects and the

end-effector:

c = ⌈ek(n−dmin)⌉

where k = 100 is the gain factor and n = 0.05 refers to the minimum distance, in meters,

to consider the pushing action as safe. When dmin ≥ n the cost is 1. In order not to be

too conservative this is done only for the pushing pose, that is the pose of the end-effector

from where it starts to push (see Chapter 5). The results is that the pushing actions with

wider collision-free range, to locate the end-effector for pushing, have high priority. This

is done only for the pushing pose, hence the collisions along the pushing path with the

other objects are allowed. Despite this, these collisions rarely happen and they results

just in slight movements of the other objects. In cluttered scenes as the ones we are

going to deal with some collisions must be permitted otherwise the task would be likely

unsolvable.

3.4.4. PDDL syntax

For clarity purposes, the PDDL syntax of the domain (state space and action model) is

shown in Listing 3.1. For the reader who is not experienced with PDDL see [1]. The

domain specifies two types to differentiate between objects and directions, the aforemen-

tioned predicates and the actions. Notice that the notation of these actions differ from

3.4 State space and action model 29

an action schema but we define a particular action for each object and pushing direction.

Despite this, the notation used to represent an action in this Thesis is of the type (push

o0 dir1) instead of (push-o0-dir1), since the meaning is the same and the notation

is cleaner. This is due to an implementation issue because it was not possible to include

costs that vary depending on the parameters. The actions of the domain are all similar,

they differ only for the objects of the first-order literals in the preconditions and effects.

Thus, only the grasping action and pushing action, along the first direction, for object o0

has been reported. This means that the PDDL domain file is generated on-line at every

iteration, after having detected the objects and computed the cost of pushing actions.

1 (d e f i n e (domain d o m a i n _ t a b l e _ c l e a r i n g)

(: r e q u i r e m e n t s : a d l : e x i s t e n t i a l −p r e c o n d i t i o n s : u n i v e r s a l−p r e c o n d i t i o n s

: a c t i o n−c o s t s)

3 (: t y p e s o b j d i r e c t i o n)

(: p r e d i c a t e s

5 (b l o c k _ p u s h ? o1 − o b j ? o2 − o b j ? d − d i r e c t i o n)

(on ? o1 − o b j ? o2 − o b j)

7 (b l o c k _ g r a s p ? o1 − o b j ? o2 − o b j)

(removed ? o − o b j)

9 (i k _ u n f e a s i b l e _ d i r ? o − o b j ? d − d i r e c t i o n)

(i k _ u n f e a s i b l e _ g r a s p ? o − o b j)

11)

(: f u n c t i o n s (t o t a l −c o s t) − number)

13 (: a c t i o n grasp−o0

: p a r a m e t e r s ()

15 : p r e c o n d i t i o n

(and

17 (n o t (e x i s t s (? x − o b j) (on ? x o0)))

(n o t (e x i s t s (? x − o b j) (b l o c k _ g r a s p ? x o0)))

19 (n o t (i k _ u n f e a s i b l e _ g r a s p o0))

)

21 : e f f e c t

(and

23 (removed o0)

(f o r a l l (? x − o b j)

25 (when (on o0 ? x) (n o t (on o0 ? x)))

)

27 (f o r a l l (? x − o b j)

30 Planning subsystem

(when (b l o c k _ g r a s p o0 ? x) (n o t (b l o c k _ g r a s p o0 ? x)))

29)

(f o r a l l (? x − o b j)

31 (and

(f o r a l l (? d − d i r e c t i o n)

33 (when (b l o c k _ p u s h o0 ? x ? d) (n o t (b l o c k _ p u s h o0 ? x ? d)))

)

35)

)

37 (f o r a l l (? x − o b j)

(and

39 (f o r a l l (? d − d i r e c t i o n)

(when (i k _ u n f e a s i b l e _ d i r ? x ? d) (n o t (i k _ u n f e a s i b l e _ d i r ? x ? d)))

41)

(when (i k _ u n f e a s i b l e _ g r a s p ? x) (n o t (i k _ u n f e a s i b l e _ g r a s p ? x)))

43)

)

45 (i n c r e a s e (t o t a l −c o s t) 1)

)

47)

49

(: a c t i o n push−o0−d i r 1

51 : p a r a m e t e r s ()

: p r e c o n d i t i o n

53 (and

(n o t (e x i s t s (? x − o b j) (b l o c k _ p u s h ? x o0 d i r 1)))

55 (n o t (e x i s t s (? x − o b j) (on ? x o0)))

(n o t (e x i s t s (? x − o b j) (on o0 ? x)))

57 (n o t (i k _ u n f e a s i b l e _ d i r o0 d i r 1))

)

59 : e f f e c t

(and

61 (f o r a l l (? x − o b j)

(and

63 (f o r a l l (? d − d i r e c t i o n)

(and

65 (when (b l o c k _ p u s h o0 ? x ? d) (n o t (b l o c k _ p u s h o0 ? x ? d)))

(when (b l o c k _ p u s h ? x o0 ? d) (n o t (b l o c k _ p u s h ? x o0 ? d)))

3.4 State space and action model 31

67 (when (i k _ u n f e a s i b l e _ d i r ? x ? d) (n o t (i k _ u n f e a s i b l e _ d i r ? x ? d)))

)

69)

(when (b l o c k _ g r a s p o0 ? x) (n o t (b l o c k _ g r a s p o0 ? x)))

71 (when (b l o c k _ g r a s p ? x o0) (n o t (b l o c k _ g r a s p ? x o0)))

(when (i k _ u n f e a s i b l e _ g r a s p ? x) (n o t (i k _ u n f e a s i b l e _ g r a s p ? x)))

73)

)

75 (i n c r e a s e (t o t a l −c o s t) 75)

)

77)

)

Listing 3.1: Domain PDDL syntax.

An example of a PDDL problem file for a problem with three objects is showed in

Listing 3.2 and it refers to the example in Figure 6.8. This file, which is generated on-

line, specifies the interesting elements for the problem (objects and pushing directions),

the initial state and the goal. What differs from different problem files is only the initial

state and the number of objects.

(d e f i n e (problem p r o b l e m _ n e w _ f u l l)

2 (: domain domain_new_fu l l)

(: o b j e c t s

4 o0 − o b j

o1 − o b j

6 o2 − o b j

o3 − o b j

8 o4 − o b j

d i r 1 − d i r e c t i o n

10 d i r 2 − d i r e c t i o n

d i r 3 − d i r e c t i o n

12 d i r 4 − d i r e c t i o n

)

14 (: i n i t

(= (t o t a l −c o s t) 0)

16 (b l o c k _ p u s h o1 o0 d i r 2)

(b l o c k _ p u s h o2 o1 d i r 1)

18 (b l o c k _ p u s h o4 o1 d i r 1)

(b l o c k _ p u s h o2 o1 d i r 2)

32 Planning subsystem

20 (b l o c k _ p u s h o4 o1 d i r 2)

(b l o c k _ p u s h o0 o1 d i r 3)

22 (b l o c k _ p u s h o3 o1 d i r 3)

(b l o c k _ p u s h o3 o1 d i r 4)

24 (b l o c k _ p u s h o3 o2 d i r 2)

(b l o c k _ p u s h o4 o3 d i r 1)

26 (b l o c k _ p u s h o4 o3 d i r 2)

(b l o c k _ p u s h o1 o3 d i r 3)

28 (b l o c k _ p u s h o1 o3 d i r 4)

(b l o c k _ p u s h o1 o4 d i r 3)

30 (b l o c k _ p u s h o3 o4 d i r 3)

(b l o c k _ p u s h o1 o4 d i r 4)

32 (b l o c k _ g r a s p o3 o1)

(b l o c k _ g r a s p o1 o3)

34 (b l o c k _ g r a s p o1 o4)

(on o0 o1)

36)

(: g o a l

38 (n o t (e x i s t s (? x −o b j) (n o t (removed ? x))))

)

40 (: m e t r i c min imize (t o t a l −c o s t))

)

Listing 3.2: Problem PDDL syntax

3.5. Backtracking

The reachability constraints related to the inverse kinematic of the robot are computation-

ally expensive. Computing it for each possible action (we have 5 actions in total, one

grasping action and 4 pushing actions) for each object would make the computation of

the predicates too expensive making the planning system quite slow. Usually the objects

are inside the working space of the robot and the computation of the ik_unfeasible

predicates is usually unnecessary.

To overcome this we used the backtracking technique [34, 5]. Backtracking is based

on a two-fold strategy:

1. planning and checking if the plan is feasible,

3.5 Backtracking 33

2. if it is not, the state is updated with the new information and the system repeats

from point 1 until a feasible plan is obtained.

Planning symbolically is very fast therefore replanning several times is not a problem.

With this method the inverse kinematic will be solved only for the action we want to

execute, the first one of the plan, and no time is wasted in computing the inverse kinematic

for unnecessary actions. If executing the first plan’s action is not possible the equivalent

ik_unfeasible predicate is updated. This allows us to include reachability geometrical

constraints within symbolic planning. The pseudo algorithm to get a plan is shown in

Algorithm 2.

Algorithm 2 Planning procedure with backtracking.

Inputs: initial state s0 and goal state G.

Outputs: a feasible plan or not plan at all.

procedure GETPLAN(s0,G)

repeat

plan← GETFASTDOWNWARDPLAN(s0,G)

if ¬EXISTSSOLUTION(plan) then return NULL

end if

action← GETFIRSTACTION(plan)

success← HASIKSOLUTION(action)

if ¬success then

s0← UPDATEINITIALSTATE(action)

end if

until success return plan

end procedure

Observe that in this approach, the planner first considers that the actions have no

restrictions regarding the reachability of the robot. Afterwards, the first action in the

plan is validated. This is a lazy approach that makes the planning stage fast because the

computational expensive information, defined by the reachability geometrical constraints,

are computed if and only if required by a plan.

It is possible that an object cannot be grasped in a certain pose, because the inverse

kinematic has no solution, but it can be moved in a new pose in which it can be grasped.

34 Planning subsystem

Fig. 3.3: Unfeasible plan due to reachability constraints. In this case the planner returns as action

to execute grasping or pushing away the white cup (highlighted by a red circle) but it is out the

configuration space of the robot and there exist no plan for that problem.

Therefore the pushing actions also include the effect that for the object of interest the

grasping action is feasible after being pushed. This is usually a rare case but it might

happen. In the case the object is in a pose where it cannot be neither grasped or pushed

because of the inverse kinematic, first the planner will return as a solution to grasp it, then

it will replan and the solution will be to push it in one direction and grasp it, and so until

no action can be executed and there exist no solution for the plan.

Backtracking is used also to include advanced information when the robot must exe-

cute a pushing action. It would be useless to push an object outside the working space,

therefore the robot must avoid that situation. To this aim, when the action to perform is

pushing, we compute the IK for the pushing action and also for the grasping pose of the

object after being pushed up to the estimated final pose. Thus, if the robot can execute

the action (push o1 dir1) but it would push o1 outside the working space the predicate

(ik_unfeasible_dir o1 dir1) is set to true.

An example of how backtracking works is shown in Figure 3.3. Accordingly to our

strategy, the robot cannot grasp the black or red box because the gripper would collide,

and the same for pushing them. It has to interact with the white cup in order to make space

to move the other objects and then grasp them. For this case the system would perform

the following set of operations:

1. It first gets the following plan: (grasp o2), (push o0 dir1), (grasp o1), (grasp

o0),

2. It solves the inverse kinematic for the (grasp o2) action, but it finds no solution

and adds to the states the predicate (ik_unfeasible_grasp o2),

3.6 Replanning 35

3. It replans and gets the following plan: (push o2 dir1), (grasp o2), (push o0

dir1), (grasp o1), (grasp o0),

4. It solves the inverse kinematic for the (push o2 dir1) action but it finds no solu-

tion, so the predicate (ik_unfeasible_dir o2 dir1) is added to the states,

5. It continues until there exists no solution for the planning problem.

It may happen that the object outside the working space of the robot blocks the exe-

cution of the task because it is impossible to achieve the goal to grasp all the objects since

one is outside the working space. This happens when all the ik_unfeasible predicates

for an object are set to true. When this situation occurs the object is removed from the goal

so that the rest of the goal can be completed if possible. That is, sub-goals are introduced

whenever the original goal is not achievable.

3.6. Replanning

It is important to point out again that the system is deterministic, meaning that all the

actions are supposed to give the resultant state with a probability of 1. Clearly the biggest

uncertainty is related to the pushing action; the method used to select the pushing direc-

tions does not take into account reliably the geometry of the object and the trajectory will

be unlikely the desired one but a similar one. Overall, the planner is considering to push

the manipulated object in a position in which it is graspable and isolated, but the may be

not isolated and it may be not graspable if the trajectory is different from the expected one.

This is another uncertainty of the pushing action due to the lack of geometrical informa-

tion. Also the grasping action has its uncertainties due to perception noise and difficulties

in grasping particular shapes (e.g. cylindrical objects may be hard to grab if the grasp is

not stable).

To handle the uncertainty replanning[27] is used. After the execution of an action the

planner gets a new depth image from the depth sensor, it segments the scene, it recomputes

the states and obtains a new plan. In this way the planner considers a totally new problem

and all the uncertainties associated to the previous plan are solved by the current one.

36 Planning subsystem

4. Perception subsystem

This chapter describes in detail the perception subsystem. First, the software tools used to

develop it are described. Second, the depth vision system is discussed with a comparison

between the Microsoft Kinect sensor and the stereo vision system implemented at DTG.

Third, the object segmentation to locate the objects onto the table is discussed. Finally,

how the state is generated is described.

4.1. Software tools

The perception subsystem was developed using the following open-source libraries:

• OpenCV: The Open Source Computer Vision Library [24] is a popular open-source

library, released under the BSD license, that implements several recent state of the

art algorithms. This library is used for the implementation of the stereo system.

The version used in this Thesis is the last stable version (OpenCV 3.2).

• PCL: The Point Cloud Library [48] is an open-source project, released under the

BSD license, for 3D images processing and it implements several state of the art

algorithms. This project has been developed at Willow Garage1 from 2010. The

version used in this Thesis is the 1.8 which is currently an unstable release. This

library is used to locate objects and model them.

• FCL: The Flexible Collision Library [44] is an open-source library, released under

the BSD license, that implements several algorithms for fast collision checking and

proximity computation. This library is used to compute the relational geometric

constraints.

4.2. Depth vision

Several computer vision algorithms, based on two-dimensional RGB images, can pre-

cisely detect objects on the images, and if the camera is calibrated and the object’s model

1http://www.willowgarage.com/

37

http://www.willowgarage.com/

38 Perception subsystem

known a priori, they can also locate it in the space. With unknown objects this task be-

comes hard, overall for what it concerns the estimation of the object pose. Eventually,

this scenario could be easier whether the grabbed image of the scene has spatial informa-

tion. To this aim, several techniques have been developed to provide a three-dimensional

representation of the observed scene.

(a) 2D RGB image of the scene (b) 3D image/pint cloud of the scene

Fig. 4.1: Point cloud example: in 4.1b is shown the point cloud corresponding to 4.1a which is

the RGB image grabbed by the Kinect’s color sensor. This point cloud has been capture using the

Microsoft Kinect sensor.

In this extension, 3D images are denoted as point cloud (Figure 4.1), this is a vector

of points with physical coordinates and eventually with rgb information. The mainly used

technologies to obtain such a 3D representation are:

• Laser scanning: these scanners project a laser beam in a particular direction and

then analyse either the elapsed time or the phasing of the reflect beam. This is done

for each direction of interest. They are particularly precise but cannot provide a

matrix sampling of the scene but they generally provide a line sampling. This make

them unsuitable for real-time applications whether a matrix sampling is needed.

• Structured Light: by illuminating the scene with a specially designed light pattern

a single camera can determine the depth by analysing how the pattern is deformed

in the scene. This kind of sensors are not expensive and can work with good frame

rates but experience problems with particular materials because of light reflection.

• Time-of-flight: similarly as lasers, this technology uses a light source and the cam-

era gathers the reflected light. The incoming light has a delay with respect the light

4.2 Depth vision 39

source depending on the distance of the surface of reflection. They can grab images

with a high rate but the resulting point cloud has generally small resolution.

• Stereo triangulation: this technology is based on multiple monocular cameras that,

by triangulation, can measure the depth of the points in the overlapping field of

vision of the two cameras. This system can return a very dense point-cloud accord-

ingly to the cameras resolution and can be easily designed to estimate the depth

even for objects far from the cameras. In contrast it is computational expensive.

In the initial version of this thesis [12] a structured light sensor (Microsfot Kinect)

was employed. In the extension of the thesis we wanted to explore the alternative of a

stereo system to compare the results with the Kinect.

Fig. 4.2: The main parts that conform the Microsoft Kinect sensor.

Let briefly introduce the Microsoft Kinect sensor to analyse its benefits and draw-

backs. In Fig. 4.2 some relevant parts of the sensor are highlighted; the most notable

ones are the IR emitters and depth sensor. Although the depth-sensing technology is not

disclosed it is known to be based on the structured light principle [58]. The IR emitter

is an IR laser that passes through a diffraction grating and turns into a set of IR dots.

These dots are observed by the IR sensor and, since the relative transformation between

the emitter and the sensor are known, by triangulation the depth is computed.

The Kinect sensors can work approximatively up to 30 frame per seconds making it

suitable for real time applications. On the other hand, it has drawbacks regarding the

quality of depth estimation. In fact, for small objects the estimation is poor and some

surfaces does not reflect the infra-red pattern as well as others, as results these objects

could be not seen by the Kinect (e.g. the plastic bottle in Figure 4.3). Moreover, it cannot

measure points that are too close or too far the camera. These are the main reasons why

not all the points of the 2D image of Fig. 4.1 appears in the point cloud.

40 Perception subsystem

(a) Image RGB (b) Point cloud (top view) (c) Point cloud (lateral view)

Fig. 4.3: Point cloud of a plastic bottle captured by the Kinect. The sensor was able to correctly

estimate the depth olny for the bottle’s label.

Instead, a stereo system provides a dense and precise point cloud and have no re-

strictions on the materials of the observed objects. In contrast the computational effort is

not negligible and make this system not suitable for real time applications and the field

of vision may be smaller than the Kinect’s. Nevertheless, the robotic system presented

in this thesis is not a real-time system thus, there are no restrictive limitations on time

requirements. Hence, the employment of a stereo system is beneficial because it would

extent the set of objects the system can deal with. The stereo system, depicted in Figure

4.4, was built using two Basler ACE USB 3.0 scan cameras (see Appendix A) which are

characterized by a high manufacture quality and are widely used for industrial processes.

Fig. 4.4: Stereo rig: vertical arrangement composed of two Basler ACE UBS 3.0 cameras dis-

tanced by 13cm.

We highlight that in the robotics laboratory of the DTG was not possible to reproduce

a suitable set-up for the robotic system here presented. Thus, the stereo system has been

developed and tested with real-case scenarios but not integrated within the real robotic

system. However, the stereo system has been reproduced in a simulated environment in

Gazebo and integrated within the simulated robotic system (Chapter 6).

In this section the theory behind the stereo vision is introduced supported by some

4.2 Depth vision 41

real-world experiments. First, the pinhole camera model, distortions and calibration are

discussed in order to give to the reader a required knowledge to understand the stereo

vision. Second, the stereo vision itself is discussed presenting all the geometrical concepts

and algorithms needed by the stereo vision. Finally, a comparison between the point

clouds obtained with the Kinect and the stereo system is carried out to state the best

sensor for our application.

4.2.1. Camera model and distortions

There exist different models for the monocular cameras, in this thesis we focus on the

simplest one; first considering the ideal model then introducing non-idealities. This model

is the so-called pinhole model [56].

Pin hole model

This model is characterized by a single light ray entering the pinhole from any point in the

scene. In a physical camera this point is projected onto an imaging surface called imager,

forming an inverted image. The plane to which the image belongs is called image plane.

The capture of an image is basically a projection of the physical point onto the imager

through perspective projection. As result, the size of the image depends only on one

camera’s parameter called focal length. This is the distance between the pinhole aperture

and the image plane.

Xq

xq

image plane

Zy

X

Y

f

optical axisCc

focal plane

x

Zq

Fig. 4.5: Pinhole camera model: a pinhole (the pinhole aperture, C) lets through only those light

rays that intersect a particular point in space; these rays then form the image by projecting the

point onto the image plane.

42 Perception subsystem

Figure 4.5 shows a pinhole camera model, where f is the focal length of the camera,

Zq is the distance of a given point
−→
Q from the camera, Xq is the coordinate of the point

orthogonal to the optical axis and xq is the coordinate of that point in the imager.

To derive the equations for the perspective projection, the coordinate system (c,x,y)

is defined such that the origin is at the point c (intersection of the optical axis and the

image plane) and the axes are as the ones in the Figure 4.5. This coordinate system takes

the name of image coordinate system. We use an extra coordinate system (C,X ,Y,Z) to

express coordinates in the space, where its origin is in pinhole C which is at a distance f

from c, and the axes are chosen as in the figure with the Z axis parallel to the optical one.

This second coordinate system is called camera coordinate system.

From the aforementioned definitions of camera and image coordinate systems, the

relationship between the 2D image coordinates and 3D space coordinates for a given

point
−→
Q can be obtained by similar triangles as:

xq

f
=

Xq

Zq
(4.2.1)

Notice that Eq. 4.2.1 holds for the X-Z plane, an analogous relationship is obtained for

the Y-Z plane.

From a geometric point of view, there is no difference to replace the image plane by a

virtual image plane located on the other side with respect the focal plane and changing the

orientation of the x and y axes (Figure 4.6). In the camera coordinate system, an image

point (x,y) has 3D coordinates (x,y, f).

virtual image plane

Z

X

Y

f

optical axis

C

c

focal plane

x

y

Q = (Xq; Yq; Zq)

q = (xq; yq; f)

Fig. 4.6: Pinhole camera model with a virtual image plane

The point c of the intersection of the image plane and the optical axis is referred to as

the principal point, while the point C is also called center of projection. For a complete

4.2 Depth vision 43

and robust model we should consider that the principal point could not be exactly at the

center of the imager. This is mainly due to the production process that would require a

micron accuracy in posing the imager. Thus, there could be some offset in the coordinates

of a point in the image plane due to the displacement of the principal point. This offset

is modelled by parameters cx and cy. A generic point
−→
Q in the physical world, whose

coordinates are (Xq,Yq,Zq), is projected via a perspective transform onto the imager at

some pixel location, given by −→q = (xq,yq), in accordance to the following relationships

[26]:

xq = fx

Xq

Zq
+ cx

yq = fy

Yq

Zq
+ cy

(4.2.2)

Note that (xq,yq) are pixel coordinates of the projected point onto the imager, and not the

physical coordinates in image coordinate system. Thus, let’s introduce the pixel coordi-

nate system that represents a point of the imager as pixel of the image rather than a 2D

point belonging to the image plane.

In the previous equations two focal lengths have been introduced. The reasons is that

the individual pixel on a typical low-cost imager are rectangular rather than square. The

focal length fx is actually the division of the physical focal length f of the lens, whose

measurement unit is mm, and the size sx of the imager pixels, whose measurement unit is

mm/pixels. Hence, the focal length fx is measured in pixels, in accordance to Eq. 4.2.2.

So even the principal point is measured in pixels.

The perspective transform that maps
−→
Q to−→q can be denoted by a matrix using the ho-

mogeneous coordinates. These coordinates associated with a point in a projective space of

dimension n are typically expressed by a (n+1)-dimensional vector and all the points that

have proportional homogeneous coordinates are equivalent. In this case, the image plane

is the projective space and it has two dimensions; thus, we represent points on that plane

as a three dimensional vector −→q = (xq,yq,zq). Given that all the points in the projective

space having proportional values are equivalent, we can obtain the pixel coordinates by

dividing the vector by zq. This notation allows as to rearrange the parameters fx, fy,cx,cy

into a single 3× 3 matrix called camera intrinsics matrix. The perspective projection is

then given by the following formula:

−→q = M ·
−→
Q (4.2.3)

44 Perception subsystem

where

−→q =

xq

yq

zq

M =

fx 0 cx

0 fy cy

0 0 1

−→
Q =

Xq

Yq

Zq

Performing the multiplication we obtain

−→q =

xq

yq

zq

=

fxXq + cxZq

fyYq + cyZq

Zq

,

dividing −→q by zq the result is the relationship of Eq. 4.2.2.

Distortions

So far the ideal pinhole model has been considered, but this model differs from the reality

because in the ideal model only very small amount of light passes through the pinhole. In

practice, in order to capture an image the exposure time should be very long and unsuit-

able for real applications. To capture images at a faster rate the camera needs to gather

more light over a wider area and focus it to converge to the point of projection. This is

done by a lens, which can increase the image rate focusing a large amount of light on a

point but this introduces distortions that need to be corrected whenever we want a correct

projective transformation in accordance to the pinhole model.

In theory, it is possible producing a perfect lens but this is hard because of manufactur-

ing. It is easier to produce a spherical lens rather than a parabolic ones, and also it is hard

to perfectly align the lens and the imager. There exist different types of distortions, we

only consider the two main ones, that are the ones typically considered by the literature

and they are the radial distortion and the tangential distortion.

Radial distortion This type of distortion is due to the particular shape of the lens.

Lenses usually distort the image near the edges of the imager. Fig. 4.7 shows a scheme

of this distortion. Rays farther from the center of the lens are bent more than those closer

in, thus in the optical center the distortion is absent but it increases as we approach the

edges of the imager. Given that the distortion is small it can be modelled by using the first

few terms of the Taylor expansion around the center of the lens. In literature usually only

the first three terms are accounted and the radial location of a point in the imager will be

4.2 Depth vision 45

Fig. 4.7: Radial distortion: the square appears to bow out in the image plane because of accentu-

ated bending of the rays farther from the center of the lens. (source [26])

rescaled according to the following equations:

xcorrected = x(1+ k1r2 + k2r4 + k3r6)

ycorrected = y(1+ k1r2 + k2r4 + k3r6)
(4.2.4)

Here, (x,y) is the original location on the imager of the distorted point, (xcorrected,ycorrected)

is the location as result of the correction and r is the euclidean distance from the optical

center.

Tangential distortion This distortion is due to manufacturing process of the lens result-

ing from the lens not being exactly parallel to the imager. This is characterized by two

additional parameters p1 and p2 [26] such that:

xcorrected = x+[2p1xy+ p2(r
2 +2x2)]

ycorrected = y+[p1(r
2 +2y2)+2p2xy]

(4.2.5)

Thus, in total there are five distortion coefficients needed to correct the image2. Neverthe-

less, due to the high manufacturing quality the cameras lenses we used introduced very

low distortion to the images.

Calibration

The calibration of a camera aims to estimate both the intrinsic and distortion parameters

of the camera.

The method we use for calibration is based on viewing a known pattern from different

angles [57]. The pattern is designed in manner to have many easily identifiable points.

2There could be more parameters if we consider more terms of the Taylor expansions for the radial

distortions. Moreover, there exist different models of distortions.

46 Perception subsystem

Having a different set of points per angle of view we can obtain the distortion parameters

by means of optimization. Knowing where the points are projected onto the imager for a

certain view, and knowing the structure of the pattern we can estimate where this points

should be projected onto the imager.

The pattern used in this work is a flat chessboard with white and black squares, whose

point of interest are the inner corners of the squares. In total we used 14 views to calibrate

the camera, few of them are shown in Figure 4.8. With such a number of views a better

estimate, robust to noise, is achieved.

Fig. 4.8: Some views of the chessboard used for calibration.

Fig. 4.9: Detected inner chessboard corners in the first view of Figure 4.8.

The detected corners (Figure 4.9) undergo a perspective transformation when viewed

through a pinhole, this transformation is described by a 3×3 homography matrix. Since

we work with planar surfaces, the homography transformation is actually a planar ho-

mography because the points, which belong to the chessboard plan, are projected onto

the image plane. In computer vision, a planar homography is a projective mapping from

one plane to another. This mapping can be expressed in terms of matrix multiplication if

homogeneous coordinates are used to express both the point
−→
Q′ = (X ′q,Y

′
q), expressed with

respect a frame attached to the chessboard plane, and the relative point on the imager −→q .

4.2 Depth vision 47

Thus, the mapped point −→q is obtained from
−→
Q′ by the following formula:

−→q = s ·H ·
−→
Q′

−→
Q′ =

X ′q

Y ′q

1

,−→q =

xq

yq

1

(4.2.6)

The term s is an arbitrary scale of factort and it has been introduced to make explicit that

the homography is defined up to scale factor s. Notice that points
−→
Q′ are straightforward to

compute because the square size and the number of corners to detect are known a priori.

Then, points −→q are detected in the image as shown in Figure 4.9 and only the map must

be estimated.

The matrix H embeds two parts: the physical transformation W between the chess-

board plane and the image plane, and the projection which introduces the camera intrinsic

matrix M. Then, Eq. 4.2.6 can be reformulated as:

−→q = s ·M ·W ·
−→
Q′. (4.2.7)

The homography relates the positions of a point
−→
Psrc on the chessboard (expressed

with respect to a 2D frame attached to the chessbaord) to a point
−→
Pdst on the imager by the

following equations:

−→
Pdst =

xdst

ydst

1

= H ·
−→
Psrc

−→
Psrc =

xsrc

ysrc

1

= H−1 ·
−→
Pdst (4.2.8)

Fixing the scale factor s, the H matrix has 8 DOF [3]. Each 2D point generates

two constraints on H, one per coordinate. The results is that we need at least 4 points

to estimate the homography; further points bring redundant information useful for the

robustness of the estimate.

The rotation is described by three angles and the translation is defined by three dis-

placements, hence there are six geometrical unknowns per view. This unknowns are called

extrinsic because they do not refer to the camera model.

Since we want to estimate the camera intrinsic parameters and not just the homogra-

phy, it turns out that we have 10 unknowns (6 for the extrinsic ones plus 4 for the camera

intrinsic ones). Thus a single view would not suffice, and each new view would add new

6 extrinsic parameters to estimate given that the chessboard is in a different pose.

48 Perception subsystem

In addition to intrinsics parameters also the distortions ones must be estimated. In

total there are 4 camera intrinsics unknowns (fx, fy,cx,cy) and 5 distortions unknowns

(k1,k2,k3, p1, p2), this set of 9 parameters is called intrinsics.

Supposing to capture K images of the chessboard in different poses, how many views

are needed to solve the calibration problem? We have to consider that:

• K images of the chessboard provide 2 ·4 ·K = 8 ·K constraints, this because only 4

corners are worth of information and they add two constraints each one.

• There are 9 intrinsics and 6 extrinsic per view to estimate.

Thus, the number of view to solve the calibration problem has to suffice the following

inequality:

8 ·K ≥ 6 ·K +9

K ≥
9
2
= 4.5

(4.2.9)

Thus, the minimum number of views to solve the calibration problem is 5. Ignoring the

distortion parameters 2 views would suffice.

In our experiment we took 14 views of the chessboard in order to have a good ro-

bustness. This disparity between the theoretically minimal 5 images and the practically

required 10 or more views is a result of the very high degree of sensitivity that the intrinsic

parameters have on even very small noise.

To estimate the parameters the function cv::calibrateCamera() [24] of OpenCV

has been used, which is based on the algorithms presented by Zhang [57] and Bouguet

[7] that solve an analytical solution followed by non-linear optimization. The estimated

intrinsic camera matrix, for the first camera, is:

M1 =

7375.4928 0 1293.689

0 7368.388 961.901

0 0 1

The data here reported are in pixel coordinates. It is worth to mention that the pixel coor-

dinate system has its origin at the top left corner of the image, the x coordinate refers to

the columns and the y coordinate refers to the rows accordingly to a matrix representation

of the image. The physical focal length can be obtained by f = fx · 2.2µm = 0.01622m,

where 2.2µm is the pixel width (see Appendix A). A similar results can be obtained with

4.2 Depth vision 49

fy. Notice that the lens that mount the camera has a focal length of 16mm, accordingly

to the constructor information, thus the estimate matches with the real focal length. Next,

the offset of the principal point is cx = 1293.68pixels and cy = 961.901pixels which ap-

proximatively corresponds to the center of the image in pixels coordinates that is given

by (1295,971).

Undistortion With the estimated distortion coefficients we can now remove their effects

obtaining a correctly mapping between a 3D point and its projection onto the imager.

Then, the image is ready to be used for stereo vision as described in the next section.

When performing undistortion we use a map that specifies where each pixel of the

input image goes to in the output image. Such a map is called undistortion map 3.

An example of the effect of the distortion is shown in Fig. 4.10. In the image on the

left is possible appreciating the effect of the radial distortion since the mirror on the top

looks bent. On the right image the same image undistorted is shown; it can be appreciated

that after correction the mirror’s edge is straight and the image looks more natural and

similar to what we would see by naked eye.

Fig. 4.10: Camera image distorted (left) and undistorted (right). (source [26])

4.2.2. Stereo Vision

Stereo vision works on the principle of binocular vision. That is, having two frames,

one captured by each camera, points are matched between the two frames and, knowing

the relative transformation between the two cameras, it is possible retrieving the depth

3http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.

html#initundistortrectifymap

http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#initundistortrectifymap
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#initundistortrectifymap

50 Perception subsystem

information of a given point by means of similar triangles. Notice that in Eq. 4.2.2 there

are two equations and three unknowns (Xq,Yq,Zq), thus it is not possible determining the

coordinates in the space of point
−→
Q . To this aim a second camera is used.

We refer to the two cameras as left and right camera4, such an arrangement of the

cameras is called horizontal. In this work, however, the arrangement was vertical such

that the left camera is actually the below camera and the right camera is the top one.

Despite this, all the theory here described works exactly the same for both arrangements

and it is more intuitive using a horizontal arrangement.

Having the cameras calibrated it is possible unambiguously project points in the phys-

ical world onto the image in pixel coordinates. This is a fundamental process in order to

retrieve the depth. Having a certain pixel in the left image, described by a feature, we can

look for a match (i.e. we look for the same feature) in the right image, then by triangula-

tion the depth is retrieved. Generally, the feature relative to a pixel captures information

of surrounding pixels to provide a description metric of such a pixel.

This process is complex and involves many expedients (Figure 4.11):

1. Remove radial and tangential distortions from each image to get the undistorted

images.

2. Project the two frames on the same plane and make them parallel (i.e. the pixels

on a row in the left image belong to the same row on the right image), this process

is known as rectification. As results, the images are row-aligned for a horizontal

arrangement or column-aligned for a vertical arrangement.

3. Find the same features in the left and right camera views, this process is called

stereo matching. As result, a disparity map is produced, which specifies the dif-

ference between the pixel coordinates of a point from left and right images. This

difference holds part of the depth information.

4. Knowing the geometric transformation between the right camera with respect to

the left one, by triangulation, the depth of the pixels can be computed using the

disparity map. This final step is called reprojection and it returns a point cloud.

4In this thesis, the left and right cameras may also be called first and second cameras, respectively.

4.2 Depth vision 51

raw undistorted rectified

disparity mappoint cloud

Fig. 4.11: Stereo vision stages for a vertical cameras arrangement: the input raw images are

undistorted (here it is not appreciable since the cameras mounted lenses with ultra-low distortion),

rectified and a disparity map is computed by matching the pixels in the rectified images. Finally,

the pixels of the disparity map are reprojected onto the 3D space forming a point cloud.

Triangulation

Let’s assume a perfectly undistorted, aligned and measured stereo system as shown in

Figure 4.12. The two cameras have perfectly coplanar image planes with exactly parallel

optical axes and are at a known distance apart and have the same focal length. Assume

also that the principal points c
le f t
x and c

right
x have the same pixel coordinates and that the

images are row-aligned (this arrangement is called frontal parallel). The pixel coordinate

systems of the left and right images have origins at upper left corner in the image, and

pixels are denoted respectively by (xl,yl) and (xr,yr). The center of projections are at

Cl and Cr with principal ray intersecting the image plane at the principal point. After

rectification, the two images are row-aligned, that is they are coplanar and horizontally

aligned, one displaced from the other by T .

A point
−→
Q =(Xq,Yq,Zq) in the first camera coordinate system, that can be seen by both

cameras, is projected as
−→
ql and

−→
qr onto the two images plane, whose the horizontal pixel

52 Perception subsystem

f f

Cl Cr

crightxcleftx

T

−!
Q

xl xr

xl xr

Zq

T − d = T − (xl − xr)

Fig. 4.12: Perfectly undistorted and aligned stereo rig and known correspondence, the depth Zq

can be calculated by similar triangles.

coordinates are xl and xr respectively. In this simplified case the disparity is d = xl− xr;

note that it is always positive since a point on the right image will be always projected

onto the right image plane to a smaller coordinate than xl . By triangulation the following

equations holds:
T −d

Zq− f
=

T

Zq
(4.2.10)

Thus, the depth can then be computed as follows:

Zq =
f T

d
(4.2.11)

The disparity tends to zero as the observed point tends to move away from the camera.

Since the depth is inversely proportional to the disparity the depth is severely affected by

an erroneous disparity value when this is small and vice versa. That is, stereo vision

systems have high depth resolution only for objects close to the camera and it decreases

as these get far. To improve the precision the distance T must be increased.

The general idea is operating in the ideal case of a perfectly undistorted, aligned and

known cameras’ displacement. The undistortion was discussed in the previous subsec-

tion. The alignment of the imagers is a surrealistic hypothesis but it can be achieved

after rectification. The measurement of the cameras’ displacement is done by calibrat-

ing the stereo system, here not only the two cameras are calibrated in manner to have

the same focal distance but also the geometrical transformation between the two camera

4.2 Depth vision 53

frames is estimated. Despite rectification, when designing a stereo system it is impor-

tant to arrange the cameras approximatively frontal parallel as possible and as close to

horizontally aligned as possible. Second, the cameras need to be synchronized in order

to capture simultaneously the image of the scene, otherwise the stereo system will work

only in static environments. Last but not least, the stereo system has to be designed in

manner that there is sufficient overlapping area between the field of visions of the cam-

eras; thus, further they are from each other, and closer to the working plane, better the

depth measurement is, because the disparity is larger, but the overlapping area is smaller.

Stereo calibration

A fundamental information for the stereo system is the relative pose of the second camera

with respect to the first one. This has to be estimated through stereo calibration. The

geometrical transformation is composed by a rotation matrix R and a translation vector T

that can be estimated by using the same chessboard used for the calibration of each single

camera. To this aim, the two cameras have to capture the same view of the chessboard.

Then knowing the position of the inner corners in the left and right images, using the

prior knowledge of the calibration of single camera (i.e. the image are undistorted), it is

possible estimating R and T .

Given K views of the chessboard we obtain K rotation matrices and translation vector,

then the median values are extracted as the initial approximation of the true solution, then

the value is refined running a Levenberg-Maquardt iterative algorithm to find the local

minimum of the reprojection error of the chessboard corners for both camera views. This

is automatically done by the function cv::StereoCalibrate() [24]. This function can

also calibrate the single cameras forcing them to have the same focal length.

For our vertical arrangement, the two cameras were displaced by 13 centimeters and

the transformation estimate of the calibration were composed of a practical identity matrix

for the rotation matrix and the translation vector T = [−0.06cm,12.988cm,−0.145cm].

These results match with the real arrangement.

Stereo rectification

Stereo rectification is the process to correct the images of each camera so that they are

row-aligned. The geometry it is based on is called epipolar geometry. This combines two

54 Perception subsystem

pinhole models that have different center of projection, Cl and Cr, and different projective

planes, Πl and Πr. Epipole −→el on image plane Πl is defined as the image of the center

of projection of the other camera Cr [26]; analogously for epipole −→er . The plane in space

formed by a generic point
−→
Q and the two epipoles is called epipolar plane and the lines

−→ql
−→el and −→qr

−→er are called epipolar lines (where −→ql is the projection of
−→
Q on Πl).

−!
Q

Cl Cr

projective planes

epipolar lines

epipoles

−!ql −!qr

−!er
−!el

Πl Πr

Fig. 4.13: Epipolar geometry entities. Epipoles are located at the intersection of the line joining

Cl and Cr and the two projective planes, the epipolar plane is formed by points
−→
Q ,−→el ,

−→er .

Epipolar lines are very useful to address the problem of triangulation. In fact, con-

sidering
−→
Q projected onto Πr, the right camera does not have any information about the

depth of
−→
Q and it can be any point laying on the line formed by Cr and −→qr . If that line is

projected onto Πl the epipolar line formed by −→ql and −→el is obtained. In other words, the

image of all the possible locations of a point seen in one imager is the line that intersects

the corresponding point and the epipole on the other imager.

Thus, the epipolar geometry is fundamental for stereo vision for three main reasons:

• Every 3D point, in the overlapped field of vision, belongs to an epipolar plane that

intersects each image in an epipolar line.

• Given a feature in one image, the corresponding feature in the other image must lay

on the corresponding epipolar line (epipolar constraint).

• The epipolar constraint narrows the search space for all the possible correspon-

dences for a given feature since looking along the corresponding epipolar line suf-

fices. This helps to make the algorithm faster and more robust against false matches.

4.2 Depth vision 55

For a parallel frontal stereo system, since the image planes of the cameras are almost

coplanar the results is that the epipoles do not belong to the image and they tend to be

at infinity. Thus, the epilines that we expect are horizontal and different from the one in

Figure 4.13.

Having the transformation matrices obtained by the stereo calibration the next step is

to rectify the images, the result of this operation is that epipolar lines are the same on

both images. The images are row-aligned5, so that the algorithm devoted to look for a

correspondence of a pixel in the i-th row can look for them on the other image in the same

row and not over all the image.

Rectification In the general case, different from the parallel cameras arrangement, the

corresponding points are not defined in a common reference frame and the disparity can-

not directly be measured.

Cr

Cl

Il

Ir

(a) Example of view.

Il Ir

(b) Raw images.

Cr

Cl

Il

Ir

RT

Rl

Rr

(c) Projective plane.

Il

Ir

(d) Rectified undistorted images.

Fig. 4.14: Rectification accordingly to Bouget’s algorithm: the ball is captured by both imagers Il

and Ir (a), but since they are not parallel (their projective planes Πl and Πr are different) and row-

aligned the ball appears to be at the bottom of the right image (b). With rectification the images

are projected onto a parallel plane (c) and they are now row aligned (d). Notice that the images

have been undistorted before rectification.

The goal of rectification is to project the two images such that they belongs to the same

plane and they are row aligned in a way the disparity can straightforwardly be measured

5For a vertical stereo system the result of rectification is that the images are column-aligned.

56 Perception subsystem

(Figure 4.14). The result of this alignment is that the epipoles itself are located at infinity,

as introduced in the previous paragraph. Since there is an infinity number of possible

parallel planes to choose from, more constraints need to be added. These constraints

depend on the algorithm used. In this work the Bouget’s algorithm6 is used, which is the

most common.

The algorithm attempts to minimize the reprojection distortions while maximizing the

common viewing area. To minimize image reprojection distortion, the rotation matrix R

that describes the rotation of the second camera with respect to the first one is split in half

between the cameras, that is in matrices rl and rr. In other words, the two images are both

rotated by half rotation in order to lay on an intermediate plane. Each camera’s principal

axis ends up parallel to the vector given by the sum of the two original principal rays.

Such a rotation makes the images coplanar but not row-aligned. When two images a row

aligned it means that the epipoles go to inifinity at that the epipolar lines are horizontal

(or vertical in case of a vertical arrangement). To achieve this situation a second rotation

matrix Rrect is used and created as follows:

• The first row e1 of Rrect is given by a normalized vector with the same orientation

of the translation vector T = [Tx,Ty,Tz] that expresses the translation of the second

camera:

e1 =
T

||T ||

• The second row must be an unit vector orthogonal to e1, to this aim we choose a

normalized vector given by the cross product of the principal ray pr = [0,0,1] and

e1:

e2 =
[−Ty,Tx,0]
√

T 2
x +T 2

y

• The third row is given by the vector e3 orthogonal to both e1 and e2, thus:

e3 = e1× e2

6Jean-Yves. Bouguet never published this algorithm although he implemented it in his well-known

Camera Calibration Toolbox for Matlab.

4.2 Depth vision 57

Matrix Rrect is then

Rrect =

e1

e2

e3

, (4.2.12)

this matrix rotates the first camera to the center of projection so that the epipolar lines

become horizontal (or vertical) and epipoles are located at infinity. Therefore, the row-

alignment is then given by the combination of Rrect , rl and rr matrices:

Rl = Rrectrl

Rr = Rrectrr

(4.2.13)

Next, also the projection matrices Pl and Pr, which embed the camera matrices, for the

left and right cameras, are computed:

Pl =

fxl
0 cxl

0

0 fyl
cyl

0

0 0 1 0

Pr =

fxr
0 cxr

Tx fxr

0 fyr
cyr

0

0 0 1 0

(4.2.14)

In case of vertical stereo Pr is:

Pr =

fxr
0 cxr

0

0 fyr
cyr

Ty fyr

0 0 1 0

(4.2.15)

These projection matrices take a 3D point in homogeneous coordinates to a 2D point in

homogeneous coordinates as follows:

Pl

X

Y

Z

1

=

x

y

w

(4.2.16)

where the screen coordinates can be calculated as (x/w,y/w). Image points can also be

projected to 3D points in homogeneous coordinates given their screen coordinates and the

58 Perception subsystem

camera intrinsics matrix. Recalling the following relationships:

x = f
X

Z
+ cx

y = f
Y

Z
+ cy

Z =
f Ti

d

(4.2.17)

where Ti is either equal to Tx for horizontal stereo or Ty for vertical stereo. Putting these

equations in matrix form we obtain the reprojection matrix Q:

Q =

1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 1
Ti

0

. (4.2.18)

So, given a 2D dimensional point in screen coordinates and its disparity, which holds the

depth information, we can project such a point to a 3D point in the space as follows:

Q

x

y

d

1

=

X

Y

Z

W

(4.2.19)

where the 3D coordinates are then (X/W,Y/W,Z/W).

In Fig. 4.15 an example of the rectification on the proposed stereo system is shown.

The horizontal lines serve to highlight the row-alignment of the rectified images. For a

better understanding Figure 4.16 provides a 3D representation of the stereo system that

is observing objects onto a conveyor belt. The image shows that the rectified images, if

projected onto the conveyor belt plane, perfectly overlaps.

Stereo matching

Stereo matching aims to match a 3D point, in the overlapping volume of the field of

visions, in two different views (i.e. look for correspondences) to compute the disparity.

Knowing the physical transformation between the cameras it is possible retrieving the

depth from the disparity d = xl−xr between the corresponding points in the two different

views.

Two algorithms are tested to perform this matching. The more robust one is the semi

global block matching (SGBM) stereo algorithm implemented in OpenCV, which is based

4.2 Depth vision 59

(a) Unrectified images.

(b) Rectified images.

Fig. 4.15: Unrectified and rectified images.

60 Perception subsystem

Fig. 4.16: Camera’s field of vision in the 3D space. The green pyramid is the field of vision of

the first camera, and the red pyramid is the field of vision of the second one. The blue plane is

the plane of the conveyor belt our system is working with. This plot highlights that only for the

points in the overlapping volume the depth can be measured and how the rectified images overlap,

despite some occluded parts. Notice that in this plot the stereo rid is supposed frontal parallel, thus

the translation vector is T = [0,13cm,0] and the rotation is R = I3×3. This differs from reality but

after rectification we can refer to the case of frontal parallel. The images are the ones of Figure

4.17.

4.2 Depth vision 61

on a more refined revision of the block matching algorithm (BM). BM relies on the "sum

of absolute difference" (SAD) of neighbour pixels for finding correspondences between

the views of the two camera. This SAD is a measure of similarity between image blocks:

it is computed taking the sum of the absolute difference between each pixel in the original

block and the corresponding pixel’s block used for comparison. Because of the SAD

metric used for matching, the algorithm is reliable only on high textured scenes.

The BM algorithm is based on three main steps:

1. Prefiltering to normalize the image brigthness and enhance texture.

2. Looking for correspondences along horizontal epipolar lines using the SAD win-

dow.

3. Postfiltering to eliminate bad correspondeces.

The correspondences are looked by sliding a SAD window7. For each feature in the

left image the algorithm searches the corresponding row for the best match. The search

is limited to the same line because after rectification the images are row-aligned. If the

feature cannot be found in the other image, because the scene is too poorly textured or the

feature is occluded, the algorithm neglects such a feature.

To speed up the search it can be specified the minimum disparity to start from and

the maximum disparity to stop to. Recall that large disparities mean closer objects, thus,

if we work with object close to the camera the search can be specified to start from a

high number of disparity. These two parameters narrow down the search over the same

row speeding the process up and making it more robust against false matches. In the

physical world, this means that the 3D region covered by the depth estimation is controlled

by the minimum and maximum disparity consider, this 3D volume is called horopter.

Horopters can be made larger decreasing the distance of the two cameras in such a way

the overlapping volume increases, reducing the focal length (i.e. increasing the field of

vision of the cameras), increasing the disparity search range or by increasing the pixel

width.

In our experiment, there was a conveyor belt at a distance of Z = 1.3m from the

cameras with blocks of size 4× 3× 8cm laying on it. Thus, a reasonable depth range is

7This metric works on image blocks, i.e. it is a window of arbitrary n×m pixels.

62 Perception subsystem

from 1.2m to 1.4m whose correspondence disparity values are:

dmax =
f T

Zmin
=

7327.73pixels ·0.13m

1.2m
= 799pixels

dmin =
f T

Zmax
=

7327.73pixels ·0.13m

1.4m
= 680pixels

(4.2.20)

The smallest depth range resolution ∆Z directly depends on the increment of disparity

∆d the algorithm uses to look for correspondences:

∆Z =
Z2

f T
∆d. (4.2.21)

Thus, higher the displacement of the camera is better the resolution ∆Z is.

To neglect outliers, there is an order constraint which states that the features on the

left image mush have the same order of the ones in the right image. In formulas, if a point
−→
ql

1 = (xl
1,y

l
1) has a correspondence to

−→
qr

1 = (xr
1,y

r
1), a point

−→
ql

2 = (xl
2,y

l
2) such that xl

2 > xl
1

cannot have a correspondence to
−→
qr

2 = (xr
2,y

r
2) such that xr

2 < xr
1.

After correspondences, the algorithm post-filters the found matches in order to reject

false matches. Each feature, in order to be considered as positive, must have a SAD value

low enough such that it is similar to the neighbour features. If neighbour features have a

small matching metric value whereas the current feature has a high one this is index of a

likely false match.

SGBM algorithm relies on mutual information as a superior metric of local corre-

spondences and the enforcement of the consistency constraints along directions other

than epipolar lines. As result, a much greater robustness against light and false matches

is provided. The two main improvements are:

• Use of new Birchfield-Tomasi metric to compare pixels which is insensitive to

image sampling thanks to linearly interpolated intensity functions of surrounding

pixels[6].

• Use of the consistency constraints, this assumes there is some continuity along

certain directions on the disparity map. In other words, if the cameras see a diagonal

stick the points belonging to the stick are neighbours and have similar disparity

values. If this is not true it means that such points are lonely points in the space,

and this indicates they are false matches.

The introduction of this superior metric allows the algorithm to use smaller window

than BM. For BM, bigger window means more information to rely on for matching but

4.2 Depth vision 63

(a) Top view

(b) Bottom view (c) Disparity map

Fig. 4.17: Example of the disparity map(c) obtained by the SGBM algorithm given the rectified

images (a) and (b). The whiter a point is closer to the camera it is.

it creates problems near the edges of objects because the cameras may see things that are

occluded to the other and this results in a high SAD value. Instead, SGBM uses a small

window that is less affected by this phenomena and relies on the information of neighbour

matches for validation.

SGBM is more sophisticated and more robust but it has a considerable computational

cost that may make it not suitable for real time application. In contrast, block matching

stereo algorithm is faster. The computation of correspondences with SGBM took up to 2

seconds for the images captured with our stereo rig that have a resolution of 5M pixels.

To speed up the process a scaled model of the cameras can be used, thus, the images

are scaled by a factor s, and so are the focal length and the center of the image (cx,cy).

This allows to speed up the process but in contrast the point cloud is less dense and could

be smoother near the edges. However, we typically run the stereo match algorithm on a

four times downscaled version and the results are good and shown in the next subsection.

On such a downscaled image SGBM took about 0.25 seconds and BM took about 0.17

64 Perception subsystem

seconds to perform the stereo matching for the example of Figure 4.17. Notice that if the

process of calibration is run on a downscaled version of the capture images, the calibration

refers to a downscaled version of the camera and the rectification and stereo matching can

work directly on the downscaled images without the need to manipulate the reprojection

matrix Q.

Fig. 4.18: Point cloud obtained by reprojecting the points given the disparity map of Figure 4.17.

This has been obtained downscaling four times the input rectified images.

Reprojection

The point cloud can finally be computed by reprojecting all the points of the disparity

map accordingly to the Equation 4.2.19. Then the RGB info can be obtained by the first

rectified image. The resulting point cloud of Figure 4.17, downscaling the images by a

factor 0.25, is shown in Figure 4.18. The depth has been filtered otherwise all the black

points of the disparity map, that are the ones without matches, are reprojected to infinity.

The example shows four blocks upon a conveyor belt and the dimensions of interests are:

4.2 Depth vision 65

• Distance of the conveyor belt from the cameras: ≈ 1.3m

• Block dimension: 4×3×8cm

Tab. 4.1: Measured points coordinates to compare the dimension with the real ones. The euclidian

distance is used as metric to compare with the real width and length. For the thickness we used

the difference only along the z coordinate.

x y z

0.022304m −0.100604m 1.271616m

−0.017364m −0.100298m 1.276024m

width 0.0399m

−0.003263m −0.022619m 1.275622m

−0.001954m −0.102918m 1.276024m

length 0.0803m

- - 1.266445m

- - 1.295624m

thickness 0.0292m

To verify the correctness of the point cloud the viewer of PCL (pcl_viewer) was used

enabling the option to display the coordinates of a selected point of the point cloud. In

Table 4.1 some relevant points are highlighted and so their coordinates. It is appreciable

as the relative distances match with the real dimensions. Notice also that the z coordinate

of conveyor belt’s points match with the measured distance between it and the cameras.

For such a distance from the cameras (≈ 1.3m) the depth resolution can be computed

using Eq. 4.2.21:

∆Z =
1.3m2

0.016m ·0.13m
= 812.5pixels

∆Z = 812.5pixels ·2.2
µm

pixel
= 1.79mm

(4.2.22)

66 Perception subsystem

where ∆d = 1, and ∆Z has been converted from pixels to millimetres. The resolution is

good enough to work with those blocks in the scene.

4.2.3. Depth sensor selection

Three different experiments are discussed in order to assert the best depth system for the

problem tackled by this thesis. The experiments were designed in order to assert the pro

and cons of the two systems, and they are commented in details in the following.

1st experiment: cluttered objects This is the most interesting one for the problem we

are tackling and is showed in Figure 4.19. The are three small blocks and a flipped over

jar. One block is on top of another, and the remaining objects are very close each other.

It is appreciable that Kinect can see with a good quality, with small noise, all the objects

above the table although the resolution of the depth image is not very high because of the

higher field of vision of the Kinect. In fact, Figure 4.19c shows only a small portion of the

cloud captured by the Kinect that was approximatively located 1 meter far away the table.

Figure 4.19d shows that the edges are poor noisy, thus a good segmentation is expected.

Figures 4.19e and 4.19f show the point cloud captured by the stereo system. The

resolution is very high, this because of the small field of vision. The objects are easily

identifiable although Figure 4.19f highlights the higher noisy content of the point cloud.

Not all the table plane is detected, and for some points the depth is wrongly estimated

although they do not differ too much from the real depth. To assert if this point cloud

is good enough for our task the segmentation algorithm, explained in the next section,

is used. Figures 4.19g shows the detected objects. The segmentation is good except for

the block sustained by the other block because of the noise at the edges. By the way

this is not a problem as shown in Figure 4.19h where the objects models and the table

plane, in gray, are shown. Accordingly to our strategy, explained in the Section 4.4, the

perception subsystem is capable of understanding that the purple object is on top of the

yellow one; thus the purple one will be grasped before the yellow one and the problem

will be correctly solved.

2nd experiment: transparent plastic bottle This experiment is intended as proof of

the incapability of the Kinect to detect transparent objects such as a plastic bottle. This is

4.2 Depth vision 67

(a) Raw bottom image (b) Raw top image

(c) Kinect top view (d) Kinect lateral view

(e) Stereo top view (f) Stereo lateral view

(g) segmentation (h) objects models

Fig. 4.19: Cluttered scene experiment. In (a) and (b) the bottom and top images are respectively

shown. In (c) and (d) the Kinect’s point cloud of the objects is shown. In (e) and (f) the point

cloud of the stereo system is shown (the point cloud is obtaining using the block matching stereo

algorithm). In (g) and (h) the segmentation and the models are shown (see Sections 4.3 and 4.4.1).

68 Perception subsystem

(a) Raw bottom image (b) Raw top image

(c) Kinect top view (d) Kinect lateral view

(e) Stereo top view (f) Stereo lateral view

(g) segmentation (h) object model

Fig. 4.20: Transparent plastic bottle experiment. In (a) and (b) the bottom and top images are

respectively shown. In (c) and (d) the Kinect’s point cloud of the objects is shown. In (e) and (f)

the point cloud of the stereo system is shown (the point cloud is obtaining using the block matching

stereo algorithm). In (g) and (h) the segmentation and the models are shown (see Sections 4.3 and

4.4.1). The gray plane in (h) is the convex hull of the table.

4.2 Depth vision 69

because infra-red light suffers of reflection problem on transparent, shiny, or very matte

and absorbing surfaces[4]. Figures 4.20c and 4.20d show that the transparent surface

of the bottle is not seen by the Kinect’s IR camera but it sees directly the table below.

Instead the stereo system can see it because it relies only on RGB information. Figures

4.20e and 4.20f show the point cloud captured by the stereo system. It is appreciable how

the image is still noisy and not all the points of the plastic are detected but just few of

them. This is because of the light reflection that makes it hard for the matching algorithm

to find correspondences. However, the segmentation algorithm is able to segment nicely

the bottle (Figures 4.20g and 4.20h).

3th experiment: flipped over metallic jar In this experiment it is notable how the

Kinect sees nicely the object but the circular edges are missed (Figures 4.21c and 4.21d).

Instead, the stereo system is able to see nicely the whole top surface (Figure 4.21e). In the

other hand, it gave some problems on the estimation of depth. As appreciable from Figure

4.21f, the top surface has not a circular shape but it is seen as a flat surface. An insight of

the problem is that this is due to false matches detected at the part of the jar that reflects

the light source. That reflection causes some pixel to be saturated, and it obstacles the

matching algorithm. Then, the flat surface is given by the ordinary constraint applied to

the pixels that follows the wrong matches. Despite this, the object was nicely segmented

as shown in Figures 4.21g and 4.21h.

Conclusions To conclude, Table 4.2 summarizes the pros and cons of both methods

for the specific task of this thesis. For the problem we are tackling we state that the

Microsoft Kinect is a good depth sensor because its estimation is not particularly noisy

with big objects (sizes of some centimetres) as the ones the robot is going to deal with,

the limitation of the kind of materials it can detect is not of interest because all the objects

we supposed to work with are not transparent, it is a cheap sensor, easy to use and has a

wide field of vision compared to our stereo system. The wide field of vision is important

because, since the robot is supposed to work with object with dimensions of 15cm for

instance, the view of the sensor must be wide enough in order to sufficiently cover the

working space. To achieve a suitable field of vision with our stereo system, the cameras

should be located at a very high distance from the table, this also results in a low resolution

of the measured depth. Otherwise other cameras with different characteristics should be

70 Perception subsystem

(a) Raw bottom image (b) Raw top image

(c) Kinect top view (d) Kinect lateral view

(e) Stereo top view (f) Stereo lateral view

(g) segmentation (h) object model

Fig. 4.21: Plastic bottle experiment. In (a) and (b) the bottom and top images are respectively

shown. In (c) and (d) the Kinect’s point cloud of the objects is shown. In (e) and (f) the point cloud

of the stereo system is shown (the point cloud is obtaining using the semi-global block matching

stereo algorithm). In (g) and (h) the segmentation and the models are shown (see Sections 4.3 and

4.4.1). The gray plane in (h) is the convex hull of the table.

4.3 Object Segmentation 71

used. As final comment, from these results the stereo system should be enhanced by

images pre-processing to handle the cases of high brightness and saturation (maybe with

High Dynamic Range[15]) or by point cloud post-processing to reduce the noise.

Tab. 4.2: Pros and cons of the Microsoft Kinect sensor and the stereo system.

Pros Cons

Kinect

easy to use

wide field of vision (58.5×46.6 degrees)

good precision

good frame rate

cheap

problem with some materials

poor measurements for small/high distances

poor measurements for tiny objects

Stereo
all the surfaces can be detected

high dense point cloud

problems with saturated images

small field of vision (19.8×14.9 degrees each camera)

possibly noisy at objects boundaries

computationally expensive, low frame rate

expensive

However we highlight that this comparison focuses on the task of this thesis, and this

does not state that Kinect is better than a stereo system. It depends on the specific task.

A stereo system can be easily designed to get a good point cloud of tiny objects such as

bolts whereas the Kinect would give a point cloud that make it difficult to distinguish the

bolt from the table.

4.3. Object Segmentation

One of the most interesting applications of computer vision is the location of objects in

the scene. There are two main categories of methods that deal with locating objects:

object detection and object segmentation. The former is the branch of computer vision

that focuses on locating certain classes of objects in the scene. Hence, a prior knowledge

of the searched object is required. In a similar but different fashion, the latter is a group of

methods to segment the objects, that is to assign a certain part of the image to each object.

Object segmentation is a particular case of image segmentation which is the problem of

localizing regions of an image relative to content.

Generally, object detection algorithms rely on knowledge of the objects that can be

given by a 3D or 2D model of the objects (e.g. a CAD model), or relevant features

that can distinguish it and that can be learnt using machine learning methods (e.g. face

72 Perception subsystem

detection). To make the robotics system be more general as possible we decide to work

with no prior knowledge of the objects. Then, the object can be located by segmenting

them.

This task is quite hard to perform on a RGB image but easier to do on point cloud

since the point representation has important information regarding the geometry of the

objects.

It remains the problem of defining what an object is; we consider an object any suf-

ficiently big cluster of points on the table. We do not want to segment the entire image,

otherwise the table would be segmented as an object, and the floor as well. Thus, the

algorithm has first to detect the table, and so the objects that stand on top of it, and then

segmenting them.

Thus, this stage of the perception pipeline is composed of 3 steps:

1. Point cloud filtering: point clouds are noisy at the edges, thus to reduce the noise

the statistical outlier removal algorithm [49] is used.

2. Tabletop objects detection: at this stage we detect the table and all the objects upon

it.

3. Objects segmentation: having a point cloud of all the objects we segment it in order

to obtain a cluster of points per object.

4.3.1. Tabletop Object Detection

The strategy for the tabletop object detection phase is composed of 3 different steps:

1. Table plane estimation: the points of the table are detected estimating a plane in

the point cloud using the RANSAC algorithm[19], all the points which belong to

such a plane are the points of the table.

2. 2D Convex Hull of the table: having the points of the table a 2D convex hull is

computed in order to get a 2D volume containing those points. A 2D convex hull is

the smallest convex area that contains all the points of a given set.

3. Polygonal prism projection: all the points are projected on the table plane previ-

ously estimated and all the points whose projections belong to the 2D convex hull

4.3 Object Segmentation 73

(a) Input Point Cloud (b) RANSAC plane estimation (c) Table plane

(d) Convex Hull (e) Convex hull in the point

cloud

(f) Tabletop objects

Fig. 4.22: Object Segmentation: Given the point cloud (a), the estimated table’s plane is obtained

(b and c), its convex hull is extracted (d and e), and the tabletop objects are obtained by a polygonal

prism projection (f).

are considered to be points of tabletop objects. The points that do not belong to it

are points of non-tabletop objects.

The steps of this tabletop object detection algorithm are described in Figure 4.22 for

the point cloud8 in Figure 4.22a.

4.3.2. Segmentation

The PCL library [48] provides several algorithms to perform image segmentation. Many

of them are based on clustering the points by some constraints, they may be both geo-

metrical and color constraints, in such a way that only the points that are close and share

similar characteristic are considered as points of the same object. The Locally Convex

Connected Patches (LCCP) [51] algorithm proved to be very effective thanks to the way

it handle those constraints.

8Point cloud taken from the Object Segmentation Database (OSD)

http://users.acin.tuwien.ac.at/arichtsfeld/?site=4

http://users.acin.tuwien.ac.at/arichtsfeld/?site=4

74 Perception subsystem

(a) Input scene (b) Supervoxels (c) Adjacency graph

Fig. 4.23: Example of supervoxels for the table top objects.

Supervoxel

For their segmentation the supervoxel concept is used. A supervoxel is a group of voxels

that share similar characteristics, for instance similar normals.

In this work the supervoxels are computed with the Voxel Cloud Connectivy Segmen-

tation (VCCS) algorithm [45], which is able to be used in online applications. An example

of the obtained supervoxels is shown in Figure 4.23.

The algorithm works in 3 main steps as a K-nearest variant:

• Voxelizing the point cloud to choose the seeds: it partitions the 3D space in voxels

ensuring an evenly distribution of seeds.

• Clustering together all adjacent voxels by means of a distance metric that accounts

spatial distance, color and normals.

• Creating an adjacency graph for the supervoxel: the adjacency map connects adja-

cency supervoxels and is iteratively used to generate and refine the supervoxels.

Local Convex Connected Patches Segmentation

Once the supervoxels of the tabletop objects are computed, they can be clustered in or-

der to segment the objects. Papon et al. [51] also proposed a segmentation algorithm

based on their supervoxel technique, called Local Convex Connected Patches Segmenta-

tion (LCCP). This algorithm allows to segment objects by clustering together adjacent

convex supervoxels. In Figure 4.24 the algorithm’s pipeline is briefly described. The al-

gorithm is quite simple but very effective for segmentation of objects that have convex

shapes.

4.3 Object Segmentation 75

Fig. 4.24: LCCP algorithm’s structure. Reproduced from [51]

Fig. 4.25: Example of segmentation results.

It clusters all the adjacent convex supervoxels (patches) using 2 criterion:

• Convexity criterion: to consider two adjacent patches convex, both must have a

connection to a patch which is convex with respect both patches

• Sanity Criterion: check if the adjacent patches which can be considered as convex

present geometric discontinuities (see point D of Figure 4.24), in this case they are

not considered as valid to form a cluster.

Then, due to the smoothed normals that could appear in some edges of the objects (point

G Figure 4.24), the algorithm merges the clusters that are composed of few supervoxels

to the biggest adjacent cluster.

By tuning properly the parameters of the segmentation algorithm the objects can be

correctly segmented obtaining for each one a point cloud. Two examples of the segmen-

tation algorithm for a cluttered scene are depicted in Figure 4.25.

The algorithm was set in manner to segment accounting only geometric properties,

and not the color properties.

76 Perception subsystem

(a) (b)

Fig. 4.26: Principal Components Analysis: Figure 4.26a shows PCA for a standard 2D set of

observations, Figure 4.26b shows the result of the PCA for a rectangular segmented object. The

green, red lines refers to different ways of the first principal direction, while blue and cyan lines

refers to different ways of the second principal direction. The third one is the cross product of the

first two principal directions because of the orthogonality property of principal components.

Note that this segmentation algorithm forces us to distort the initial hypothesis of

absence of prior knowledge about the objects. Hence, there is prior knowledge about the

convex shape of the objects.

4.4. State generation

In this section the computation of the symbolic predicates introduced in Section 3.4 is

described in detail. Before to move in the detail description a brief introduction of some

required general concepts is proposed.

4.4.1. Preliminary concepts

Principal Direction The principal direction of an object is its principal axis which is

defined as any of three mutually perpendicular axes about which the moment of inertia is

maximum. For instance, for a rectangular object its principal direction is the axis aligned

with its longest dimension.

To obtain the principal axis the principal component analysis (PCA) [25] technique is

4.4 State generation 77

used. This technique is a common statistical procedure that uses orthogonal transforma-

tion to convert a set of observations of possibly correlated variables into a set of values of

linearly uncorrelated variables, which are called principal components. The transforma-

tion is defined in a manner that the first component has the largest variance, the second

has the second largest variance and so on. An example of the principal components for a

2D data set is depicted in Figure 4.26a9.

A generic point cloud can be seen as a set of observations, where the variables are the

3D coordinates, and the PCA can be directly applied to the object’s point cloud to retrieve

its principal components. In this work we refers to principal components as principal

directions, where with the term first principal direction we refer to the first principal

component, or equivalently to the principal axis. In Figure 4.26b the first two principal

directions of a generic object are illustrated. Note that for each principal direction we can

obtain two vectors (one per sense).

Projection onto a plane We will see later that the concept of the projections of a point

onto a plane will be useful. Considering a point −→p = (xp,yp,zp) and a plane Π defined

by the following equation

ax+by+ cz+d = 0

the projection pΠ of point−→p onto the plane Π is given by the following set of operations:

1. Calculate the origin point
−→
ΠO = (xO,yO,zO) of the plane, which can be calculated

by arbitrary xO and yO coordinates as

zO =
−1
c
(axO +byO +d),

then calculate the coordinates of −→p with respect the point
−→
ΠO:

−−→
ΠO p =−→p −

−→
ΠO.

2. Then calculate the projection of
−−→
ΠO p onto the plane normal −→n = (a,b,c)

λp =
−→n ·
−−→
ΠO p.

3. Translate point −→p by λp along the normal of the plane −→n

−→pΠ =−→p −λp
−→n .

The minus sign is due to the fact that the normal is pointing upwards.
9Image taken from https://en.wikipedia.org/wiki/Principal_component_analysis

https://en.wikipedia.org/wiki/Principal_component_analysis

78 Perception subsystem

Rotation Matrices Rotation matrices express a rotation between two reference frames.

Given two frames {A} and {B}, and the rotation matrix A
BR that defines the rotation of

{B} relative to {A}, then a point A−→p with respect frame {A} is given by A−→p = A
BR

B−→p ,

where B−→p is the same point relative to frame {B}.

Having a frame {B} defined by axis
A−→
XB,

A−→
YB and

A−→
ZB, where

A−→
YB is the unitary vector,

relative to frame {A}, with same orientation of the y axis of frame {B}, the rotation matrix

between {A} and {B} is defined as

A
BR =

A−→
XB

A−→
YB

A−→
ZB

To transform any object, such as the gripper mesh model, to a pose defined by frame {B}

then the following homogeneous transform is applied:

H =

B
AR ABO

−→
0 1

where B
AR = A

BR
⊤

and ABO is the origin of frame {B} relative to {A}. In this way, having

some axes that define our new reference frame, we can transform the gripper model in

such a way its closing point is in the origin of the new frame and its orientation is aligned

to the one of the new reference frame.

Bounding Box A bounding box is the smallest cubic volume that completely contains

an object10. An axis-aligned bounding box (AABB) is a bounding box aligned with the

axis of the coordinate system, while an oriented bounding box (OBB) is a bounding box

oriented with the object’s frame. To compute the OBB the object is transformed from

its frame to the world frame and the dimensions of the bounding box are obtained by

computing the maximum and minimum coordinates of the transformed object. In this

way it is possible to have an approximation of the length, width and height of an object.

Convex Hull A convex hull of a point cloud P is the smallest 3D convex set that contains

P. In Figure 4.2711 an example of the convex hull for a point cloud is shown. The vertices

are first detected and then connected among them by means of triangles. In this way a

10https://en.wikipedia.org/wiki/Bounding_volume
11Images obtained from http://xlr8r.info/mPower/gallery.html

https://en.wikipedia.org/wiki/Bounding_volume
https://en.wikipedia.org/wiki/Bounding_volume
http://xlr8r.info/mPower/gallery.html
http://xlr8r.info/mPower/gallery.html

4.4 State generation 79

(a) Pointcloud (b) Convex hull

Fig. 4.27: Convex hull example

triangle mesh is associated to the convex hull. This can be directly computed using the

PCL library[48].

Collision Detection To understand if an object blocks a certain action, such as the push-

ing along a certain direction, we have to check if along the desired trajectory the pushed

object would collide with the others. The collision detection is therefore a crucial step to

generate the states. There exist different techniques to assert if two objects are colliding

and all of them need a representation of the object, which could be a basic shape or a more

complex as an octree.

The mesh shape has been thought to use since it can be directly obtained from a convex

hull.

Given two objects A and B and their configurations qA and qB, the collision test

returns a boolean value about whether two objects collide or not [44]. Two objects collide

if

A(qA)∩B(qB) 6= 0

The collision detection will be used to understand if in a given pose the object A would

collide with the other objects in the scene.

In order to relax the collision detection the majority of collision libraries, before to use

complex algorithm to detect collision between two shapes, they first check if the bounding

volumes (e.g. AABB) of the objects intersect, if they don’t the objects surely don’t collide.

If their bounding volumes intersect the objects might collide and more complex algorithm

are used to assert the collision.

For the collision detection the FCL[44] library is used. Objects are represented as

triangular meshes directly formed by the convex hull.

80 Perception subsystem

(a) (b) (c)

Fig. 4.28: Convex hulls and collision detection using the segmented objects retrieved by the LCCP

segmentation algorithm. The gray surface represents the plane’s 2D convex hull. Figure 4.28a

shows the scene captured by an external camera, where as the depth sensor sees the scene from

above. Figure 4.28b shows the convex hull computed on the segmented object retrieved by the

LCCP segmentation algorithm. It is possible appreciating that we miss the information about the

hidden part of the object. In Figure 4.28c a collision detection example is depicted. The convex

hull of object o1 is translated along a direction and no collision is detected since the two convex

hulls do not intersect.

Objects Modeling The depth sensor can mainly see one face (usually the top) of the

objects and therefore we cannot apply directly the convex hull algorithm to the detected

surfaces. If we applied the convex hull on an object’s observed surface, we would have

likely the situation depicted in Figure 4.28c, in which the collision detections would not

detect any collision when it should. This is because we are missing the surfaces that

cannot be seen from the Kinect’s point of view.

From the captured point cloud also the table plane is known because estimated at

the segmentation stage, so the information we have are: the table plane model and the

segmented objects (mainly the top surfaces). If an human would be in the same pose

of the camera, looking at the table, he would imagine that the objects are not floating

surfaces, and he/she would deduce the objects shape from the shape of the top surface.

The sides of the objects can be deduced by projecting the top surface’s edges to the plane

and then filling the missing object’s sides with points. To do that we have to detect the

top surface’s edges. A easier method is directly projecting all the points of the surfaces

onto the table plane and then apply the convex hull algorithm to the resulting point cloud

given by the sum of the top surface and its projection. In this way the missing sides are

indirectly retrieved by the convex hull. An example of this method is depicted in Figure

4.29.

4.4 State generation 81

(a) Surfaces projection (b) Resulting convex hull

Fig. 4.29: Convex hull of the objects using their projections onto the table plane: Figure (a) shows

the detected surfaces and their projected surfaces onto the table plane (in blue), (b) shows the

retrieved convex hull using also the projected points. The original scene, although difficult to

understand in image (a), is composed of a violet box, a red one and a black juice box supported

by the red box.

4.4.2. Predicate: block_grasp

The (block_grasp o1 o0) predicate refers to the fact that object o1 prevents o0 from

being grasped. The computation of this predicate is straightforward: the mesh model of

the opened gripper is transformed to the grasping pose of object o0, and checked if it

collides with the other objects. If no object collides with the gripper, o0 is considered to

be graspable. Notice that in order to have a certain collision-free range we suppose that

a grasping pose is considered to collide if the minimum distance between the gripper and

the surrounding objects is less than 2cm. In other words, o0 is graspable if all the objects

are further than 2cm from the gripper when transformed to the grasping pose of object

o0. In Figure 4.30 such a procedure is shown and in Algorithm 3 the pseudo-algorithm is

described in detail.

Notice that this method requires to check for collision between the gripper and ob-

jects that might be very far from the interested object, i.e. there is no need to compute the

collision detection. Despite this, as explained in Section 4.4.1, the majority of collision

detection algorithms first check if the bounding boxes of the objects intersect. This is a

computationally cheap operation, and only if they intersect the computationally expen-

sive algorithm are used to check for collision. This makes the Algorithm 3 efficient and

computationally not expensive. It has been observed that, in average, to compute this

82 Perception subsystem

Fig. 4.30: Visualization of the computation of block_grasp predicate for object o0. The opened

gripped model is transformed to the grasping pose for object o0 and it is tested if the gripper mesh

model collides with the other objects. In this case it collides with o1.

Algorithm 3 Computation of block_grasp predicates.

Inputs: Set of objects O (convex hull retrieved with the projection onto the table plane)

and the set of grasping poses Gposes.

Outputs: The block_grasp predicates.

function COMPUTEBLOCKGRASPPREDICATES(O,Gposes)

BLOCK_GRASP_PREDICATES =∅

for all A ∈ O do

gripperMeshTrans f ormed← TRASNFORMGRIPPERMODEL(Gposes[A])

for all B ∈ O do

if A 6= B then

collision← ISTHERECOLLISION(gripperMeshTrans f ormed , B)

if collision ∨ DISTANCE(gripperMeshTrans f ormed , B) < 2cm then

BLOCK_GRASP_PREDICATES
⋃

(block_grasp B A)

end if

end if

end for

end for

return BLOCK_GRASP_PREDICATES

end function

4.4 State generation 83

predicate the time is about 10 milliseconds per object, i.e. to check for collision between

the opened gripper and all the other objects.

This predicate is evaluated for every possible combinations of grasping pose and ob-

jects, therefore the complexity to generate this state is O(n2),where n is the number of

objects.

4.4.3. Predicate: on

The (on o0 o1) predicate, when true, means that object o0 is on top of object o1. With

the convex hull of the objects is easy to understand if two objects are one on top of the

other one by checking for collision, but in this way we do not know what is above and what

is below. To do this, their surface projections onto the table plane are used. The research

group of Artificial Intelligence and Robotics Laboratory of Istanbul Technical University,

published some interesting researches suitable to the aim of this thesis. In [17, 43] the

authors proposed some approaches to enhance 3D recognition and segmentation results to

create and maintain a consistent world model involving attributes of the objects and spatial

relations among them. Their researched focused on modelling the world for manipulation

planning tasks. They do not consider scene like the one of this thesis but simpler ones

such as a pile of cubes above each other. What can be directly used from their work is

the computation of the on predicate. The on relation for a pair of objects is determined

by checking whether their projections onto the table plane overlap. This predicate was

not a relevant part of their work and they did not provide too much information about its

computation. Therefore our implementation for the on predicate is based on their idea

with some modifications.

The key idea is based on the fact that an object, which stands on top of another,

occludes some parts of the object below. In the other side, the one below does not occlude

any part of the top object. Let’s consider the scene in Figure 4.31a, the object o0 occludes

a portion of object o1. The projections onto the table plane of o0 and o1 form respectively

the sets of point P0 and P1, which are the red and green ones in Figure 4.31b. The set P0

intersects the convex hull CP1 of P1, whereas the P1 does not intersect the convex hull

CP0 of P0 (Figures 4.31c and 4.31d). In this issue the intersection does not refer to the

mathematical intersection but to the set resulting from the points, of a given set, that are

inside a given convex hull.

84 Perception subsystem

(a) Scene (b) P1 & P0

(c) CP1 & P0 (d) P1 & CP0

Fig. 4.31: Visualization of the computation of the on predicate. Figure 4.31a shows a scene where

o0 is on top of o1, Figure 4.31b shows the projections of the objects onto the table plane whereas

Figures 4.31c and 4.31d represent the two fold strategy to compute the on predicate.

Although this method works fine to compute the on predicate it has the limitation that

its scope is only for objects with a simple shape. Moreover, if the top object occludes

too much the object below, the segmentation may see the object below as two different

objects and the top object may be detected as being not on top of anything.

It is important to take into account also that actually the edges of the occluded parts of

the below object, once projected, could be at a similar position, of some projected edges

of the top object. This could be dangerous for the computation of this predicate. Focusing

the attention on Figures 4.31c and 4.31d it can be appreciated that the intersection CP1∩P0

includes several points. On the other hand, in case the edges projections relative to the

occluded and occluding part have similar coordinates, the intersection CP0 ∩ P1 would

include just few points. Therefore a threshold is added as bound for the cardinality of the

intersections. Finally, the (on o0 o1) predicate is update accordingly to the following

4.4 State generation 85

formula:

(on o0 o1)=

True, |CP0 ∩P1|< th ∧ |CP1 ∩P0|> th

False, otherwise

(4.4.1)

where the threshold th is 100 and is empirically determined.

The formula 4.4.1 is then evaluated for every possible combinations of objects, there-

fore the complexity to generate this state is O(n2),where n is the number of objects.

Despite this, its computation is very fast. The example in Figure 4.31 was evaluated just

2 times since there are only 2 objects and it took 3 milliseconds, that is ≈ 1.5 ms
pair o f ob ject

.

For instance, for a complex scene with 10 objects the total time devoted to compute this

predicate would be approximatively 10 ·9 ·1.5≈ 135ms.

4.4.4. Predicate: block_push

The (block_push o1 o0 diri) predicate, if true, means that object o1 prevents object

o0 from being moved along its i-th direction because a collision would occur.

Recall that the pushing action pushes the object along a pushing direction up to a

graspable pose. Let’s evaluate the predicate for object o0 along its pushing direction

dir1. Its computation is based on a two-fold strategy :

• o0 is translated by ρ (0.03m in our experiments, although it can be variable with

some heuristics) along dir1 and checked for collisions with the other objects. If o0

collides with o1 the literal (block_push o1 o0 dir1) is true. This process is it-

erated until o0 is graspable. At this stage, to check for graspability, the surrounding

objects are tested for collision with the gripper in the grasping pose of the translated

object. Notice that, in order to speed up this graspability checking, the objects that

prevent o0 from being pushed are not considered because they need to be moved

anyway to push o0 along dir1.

• The robot needs free space to position the end-effector before pushing o0, such a

pose is called pushing pose. If in the pushing pose the closed gripper model collides

with o1 then (block_push o1 o0 dir1) is set to true. This is done only for the

pushing pose and not for all the pushing path in order not to be too conservative.

86 Perception subsystem

A queue is used to keep track of the objects that are already known to collide with the

translated object or the gripper in the pushing pose. In this way, we skip the evaluation,

i.e. the collision checking, of predicates that are already true.

Note that also the gripper during the pushing action will move, so the collision check-

ing should be done exactly as done for the object. We decided to neglect this and to check

only for the pushing pose in order to relax the planner and not to make it too much con-

servative. This means that during the pushing action the robot might actually move more

than one object. Despite this relaxing strategy the algorithm showed to work fine and

cases in which the gripper moved more than one object were rare and correctly handled

by replanning.

An example of the computation of the block_push predicate is shown in Figure 4.32.

In Figure 4.32a a scene with 3 objects is shown, and in Figure 4.32b the pushing direc-

tions of o0 are highlighted. In Figure 4.32c and 4.32d the computation of the predicates

for pushing o0 along dir1 and dir2 are graphically shown. We first check if o0 can

be pushed along its first pushing direction. In Figure 4.32c the closed gripper model is

collision-free meaning that there is free space to collocate the end-effector at the pushing

pose. Object o0 needs to be pushed 0.21 meters along dir1 to be graspable but it collides

with o2, so (block_push o2 o0 dir1) is set to true. It can be thought that it needs to be

moved more than 0.21 meters but o2 does not intervene in the graspability checking since

o2 has first to be moved away in order to move o0 along that direction. In Figure 4.32d

o0 is collision-free along dir2 and it has to be pushed 0.06 meters to be graspable, but

o2 collides with the gripper in the pushing pose, so (block_push o2 o0 dir2) is set to

true. Therefore, the robot will have first to interact with o2 to move o0 along either dir1

or dir2. Considering also the directions dir3 and dir4, the predicates (block_push o1

o0 dir3) and (block_push o1 o0 dir4) are true as well.

Applying the same procedure to o1, we obtain that the predicates (block_push o0

o1 dir3), (block_push o0 o1 dir4), (block_push o2 o1 dir1) and (block_push

o2 o1 dir2) are true. This means that if o1 is not graspable the robot has to push away

the other objects before interacting with o1 since they impede o1 to be grasped or pushed

in any direction.

Regarding o2, only the pushing directions dir3 and dir4 are impeded. In fact, for o2

the block_push predicates set to true are (block_push o0 o2 dir3), (block_push

4.4 State generation 87

(a) Scene (b) Pushing directions of o0

(c) (block_push o2 o0 dir1) (d) (block_push o2 o0 dir2) and

(block_push o1 o0 dir2)

Fig. 4.32: Computation of block_push predicate for the first two pushing directions dir1 and

dir2 of o0. In (c) and (d) the closed gripper is transformed to the pushing pose of (push o0

dir1) and (push o0 dir2) actions respectively. The white mesh model represents the open

gripper model transformed to a collision free grasping pose after having pushed o0 for a sufficient

length.

o0 o2 dir4), (block_push o1 o2 dir3) and (block_push o1 o2 dir4).

For this example, having a goal to clear the table, the planner finds as solution this

set of actions: (push o2 dir1),(grasp o2),(push o0 dir1), (grasp o1), (grasp

o0).

For completeness, Figure 4.33 shows an example of the computation of the predicate

for a cluttered scene with 8 objects. From that we can notice:

• o7 is graspable from its pose so there is no need to push it.

• o2 must be pushed away along its dir1 but o3 impedes the action because it collides

88 Perception subsystem

with the gripper in the pushing pose.

• o1 have to be pushed away along its dir1 but o2 collides with o1 and the gripper

collides with o0 in the pushing pose.

The computation of this predicate can be appreciated in detail in Algorithm 4.

The computation of this algorithm is the most computational expensive of all the plan-

ner since it involves many collision detections. In fact the time required to compute this

predicate for the example in Figure 4.32 was ≈ 0.221seconds, that is not negligible con-

sidering the simplicity of the problem.

For the more complex example of Figure 4.33, the system took about 1.9seconds,

(a) Scene (b) o7 is graspable

(c) (block_push o3 o2 dir1) (d) (block_push o2 o1 dir1),

(block_push o0 o1 dir1)

Fig. 4.33: Example of the computation of block_push predicate for a cluttered scene with 8

objects.

4.4 State generation 89

0.047seconds and 0.027seconds to compute the block_push, block_grasp and on pred-

icates respectively. Despite this, the problem is very complex and, after computing the

predicates, the planning stage is very fast and it justifies their computational costs.

90 Perception subsystem

Algorithm 4 Computation of block_push predicates.

Inputs: set of objects O (convex hull retrieved with the projection onto the table plane),

set of the pushing directions Pd of all the objects, set of the pushing pose Pposes of all the

objects, ρ displacement to test the object for collisions when pushed.

Outputs: block_push predicates

function COMPUTEBLOCKPUSHPREDICATES(O, Pd, Pposes, ρ)

BLOCK_PUSH_PREDICATES =∅

for all A ∈ O do

BO =∅ ⊲ set of objects known to collide either with A or the gripper

for all dir ∈ Pd(A) do

while ¬ISGRASPABLE(A) do ⊲ graspable if no object is closer than 2cm to the

gripper

A← TRANSLATEOBJECT(A,ρ,dir)

for all B ∈ O do

if A 6= B ∧ B ∋ BO then

if ISTHERECOLLISION(A,B) then

BLOCK_PUSH_PREDICATES
⋃

(block_push B A dir)

BO
⋃

B

end if

end if

end for

end while

closedGripperMesh← TRASNFORMCLOSEDGRIPPERMODEL(Pposes(A,dir))

for all B ∈ O do

if A 6= B ∧ B ∋ BO then

if ISTHERECOLLISION(closedGripperMesh,B) then

BLOCK_PUSH_PREDICATES
⋃

(block_push B A dir)

BO
⋃

B

end if

end if

end for

end for

end for

return BLOCK_PUSH_PREDICATES

end function

5. Execution Subsystem

In this chapter how the actions are executed is described in details. This chapter also helps

to have a better understanding of the actions with respect to the action model provided in

Chapter 3.

5.1. Pushing

Pushing is a difficult action to execute when the goal is to move one object along a path.

The majority of pushing actions in object manipulation have the aim to interact with the

objects in order to move them and validate the segmentation [30] [28] [29] , without

taking care about the final position of the objects or about eventual collisions. Hermans et

al. [22] presented a novel algorithm for object singulation through pushing actions, here

the pushing actions have the aim to separate objects in cluttered scenes but they are not

interested in singulate tidily the objects but just to find a feasible interaction to singulate

them regardless possible collisions.

We considered to work with objects with simple shapes, comparable to parallelepipeds

or cylinders. A human would push such objects mainly accordingly its principal axis and

the one orthogonal to its (i.e. the first 2 principal components of Figure 4.26b), he/she also

could push it along the diagonal thanks to the several degrees of freedom of the hands.

Inspired by this consideration, we decided to consider its first two principal directions as

possible directions to push an object. In particular, there are two senses for each direction,

so in total we have 4 possible pushing directions per object, as depicted in Figure 5.1.

Another thing to take into account is that the principal directions are not always par-

allel to the table plane. An object which stands on top of a table will be obviously pushed

along a direction parallel to the table. For this aim the first two principal components

are initially computed onto the segmented surface and then they are projected onto the

table plane. So the pushing directions considered are not the principal directions but their

projections.

Next, the pose of the gripper is computed accordingly to the gripper shape, to the

shape of the objects and the pushing direction.

In Figure 5.2 is possible observing the profile of the gripper mounted to the base of

91

92 Execution Subsystem

(a) (b)

Fig. 5.1: Example of pushing directions. The principal directions are initially computed on the

segmented surface seen by the depth sensor (Figure (a)). Next, they are projected onto to the table

plane and they are associated to the object’s model (Figure (b)), whose barycentre is calculated as

the mean coordinate of the segmented surface plus its projection.

Fig. 5.2: The gripper and its base. Fig. 5.3: Profile view of a desired pose for pushing an object.

the gripper, highlighted by the blue color. The base has a circular shape and the gripper’s

depth is less than the one of the base. It is undesirable pushing an object with a circular,

or spherical, shape for the end effector because there is more uncertainty on the resulting

path of the manipulated object. The gripper has no a circular shape and it is symmetric,

this makes it suitable to push an object with a certain stability (i.e. make the object follow

the desired path) during the action. Since we want a pushing action as accurate as possible,

we don’t want that the gripper’s base touches the manipulated object.

Knowing also the height of the objects retrieved by its OBB, it is possible having a

pose for the gripper is such a way that the gripper’s base does not touch the object. The

gripper’s pose, relative to the object, is computed in manner to locate the red point of

Figure 5.2 to be at the same height of the object. In this way the fingers will fully touch

5.1 Pushing 93

(a) (b)

Fig. 5.4: Possible pushing poses to push an object along its principal axis: In Figure (a) the

closing direction of the gripper is orthogonal to the pushing direction, and for the case depicted in

the figure the gripper would likely push also the black juice box. In Figure (b) the closing direction

of the gripper is parallel to the pushing direction.

the object during the pushing action. Moreover, to make easy for the robot reaching the

pushing pose, it was defined to be a certain distance from the object (in our experiment

it was set to 5cm). It would be difficult to reach the pose of Figure 5.3 without colliding

with the object. Thus the pushing pose is a bit far away from the object to avoid dangerous

collisions.

Due to the limited opening width of the gripper (7 centimetres) the objects the robot

can manipulate are thin. This means that when pushing along the principal axis, the

object’s width is likely small (Figure 5.4a). Pushing in such a way the gripper would

likely push also the black juice box since the brown box is very thin. Therefore, when

pushing, the pushing pose can have either the closing direction1 parallel to the pushing

direction if the object is thin, or orthogonal if the object is wide. This is because the pose

of Figure 5.4a, with the gripper’s closing direction orthogonal to the pushing direction, is

more stable since the contact points (the fingers) are more distant between themselves.

Having the projections of the principal components, the table normal and the desired

coordinates for the gripper’s closing point it is possible defining a rotation and translation

1The closing direction is the direction along with the gripper’s fingers move when closing or opening.

94 Execution Subsystem

matrix that define the pushing pose. To push along direction 1 those matrices are:

R =

dir2X dir2Y dir2Z

dir4X dir4Y dir4Z

−nx −ny −nz

T =

cx

cy

cz

(5.1.1)

where dir2X refers to the x component of the versor that defines the direction 2 with

respect to a world frame, −→n is the table’s normal pointing upward and −→c is the desired

tool closing point2. The pushing pose is sketched in Figure 5.5.

Fig. 5.5: Pushing pose for pushing direction 1. The yellow surface is the detected surface of

the object and the blue one its projection. Here, the arrows refer to the the pushing directions of

the object centered in the barycentre of the segmented top surface. The world reference frame is

represented by x, y and z.

As aforementioned, the planner considers to push the objects for a sufficient length,

denoted by the scalar l, to make it graspable. To do so, the length of the pushing is

given by the perception subsystem that knows how long it has to push to move it up to a

graspable pose.

To retrieve the path we consider the origin of the frame associated to the pushing pose

as the initial point, and the barycentre of the object summed to the pushing length l along

the associated pushing direction, direction 1 for instance, as final point. The pose is then

defined by the orientation expressed by the rotation matrix of Equation 5.1.1.

The path is then given by the discretization of the linear trajectory connecting the

initial and final points in the space. In particular, the discretization is given by three

2The gripper’s closing point is finger’s contact point. (Although in this case the fingers do not touch

themselves)

5.2 Grasping 95

poses: one for the pushing pose, one for the final one and one for a pose at the midway.

For each pose the inverse kinematic is calculated.

When the robot approaches the pushing pose it could collide with other objects. It

would be suitable to use MoveIt!3 which can build an octomap representation of the scene

and find a collision-free path. The integration of MoveIt! will be a future work. To avoid

the collisions we considered a pre-pushing pose which is the same of the pushing pose but

translated, accordingly to the table’s normal, 30 centimetres upwards. This pre-pushing

pose is easier to reach without collisions. After the execution of the pushing action the

robot goes to its home pose (depicted in Figure 1.7a) in order not to stay inside the depth

sensor’s view. When it goes to home it might collides with some objects, so also for the

final pose we define the post-pushing pose as the final path’s pose translated, accordingly

the table’s normal, 30 centimetres upwards. In this way the pushing trajectory is defined

by a total of 5 poses.

Despite this very basic strategy and the absence of a controller to follow the linear

trajectory, the robot performs an approximatively linear trajectory that fits well to our

purposes. In Figure 5.6 all the poses aforementioned are depicted.

5.2. Grasping

There exists an advanced state of the art regarding grasping. Despite this, all the tech-

niques of grasping are usually computationally expensive. Many of them rely on the

identification of the shape of the objects and then a set of pre-built grasping poses is re-

turned [8]. Other techniques rely on the identification of local features which can state if

a grasping pose is feasible or not. Two goods grasping planning algorithms of this kind,

which deal with novel objects, are AGILE [53] and HAF [18], despite this, they are not

so robust and they are computationally expensive and not suitable for this thesis [11]. In

order to have a fast planning algorithm we considered a very simple approach to grasp

the objects, which is suitable only with the kind of objects we are going to interact with.

Despite this, the planner presented by this thesis can be directly integrated with several

grasping algorithms.

The idea is to grasp the object in manner that the gripper’s closing direction4 is orthog-

3Ioan A. Sucan and Sachin Chitta, “MoveIt!”, [Online] Available:http://moveit.ros.org
4The gripper’s closing direction is the direction along with the fingers move when grasping.

http://moveit.ros.org
http://moveit.ros.org

96 Execution Subsystem

(a) pre-pushing pose (b) pushing pose

(c) midway pushing pose (d) final pushing pose

(e) post-pushing pose (f) Home pose

Fig. 5.6: Execution of the pushing action for the example of Figure 3.2

onal the principal axis of the object. The approaching direction5 of the gripper is given by

the third principal component of the object. Then the gripper’s closing point coordinates

are given by the centroid, of the object’s top surface, translated along the approaching

direction by the half of the gripper’s fingers height (2.25cm). A generic grasping pose is

depicted in Figure 5.7. In this manner a single grasping pose is obtained for each object.

Even to grasp the object a approaching pose is needed, otherwise the gripper would

collide with the object attempting to reach the grasping pose moving it away, and the grasp

would fail. This pose is the pose at which the robot opens the gripper to grasp afterwards

the object. The approaching pose is simply defined by the grasping pose translated along

its approaching direction by 10 centimetres. Once the object has been grasped it may

5The gripper’s approaching direction is the direction along with the gripper approaches the grasping

pose.

5.2 Grasping 97

Fig. 5.7: Grasping pose for a generic object. The yellow surface is the detected surface of the

object and the blue one its projection. Here, the arrows refer to the the principal directions of the

object centered in the barycentre of the segmented top surface. The red point is the barycentre

of the segmented top surface and the blue one is that barycentre transleted along the approaching

direction by 2.25cm.

easily collides with the others, therefore also a post-grasping pose is defined by translating

the grasping pose for 30 centimetres along the table’s normal. This post-grasping pose is

used both to reach the approaching pose avoiding collisions and to move the object at a

sufficient high to avoid collision when moving to the dropping pose. The dropping pose

is the pose at which the robot opens the gripper dropping the object down into a bin.

All the poses of the grasping actions are described in detail in Figure 5.8 for the

example of Figure 5.6.

98 Execution Subsystem

(a) post-grasping pose (b) approaching pose

(c) opening gripper (d) grasping pose

(e) closing gripper (f) post-grasping pose

(g) dropping pose (h) opening gripper

Fig. 5.8: Execution of grasping action for the purple box of Figure 5.6

6. Software design

In this chapter the software design1 and the external libraries used are briefly described.

Sections 6.1 and 6.2 describe the libraries developed and the general ROS architecture of

the system. In section 6.3 how to use the code is explained. Although that section is a

brief tutorial of how to use code for people familiar with ROS, I believe it is interesting

for the reader to skim the images to have an insight of the system. Some of the tools used

to implement the system have been mentioned in the previous chapters (OpenCV, PCL,

FCL, Fast Downward planner), the remaining are:

• ROS Indigo: The Robot Operating System [46] is a robotics open-source middle-

ware, i.e. a collection of software frameworks, for robot software development. It

has infrastructure layer that is shared by all platforms using the operating system.

This allows a very modular software programming and the result is the creation of

software packages of easy integration. For this reason is widely used for research

purposes. The entire pipeline of the thesis is developed in ROS and all the software

is developed as C++ libraries that are used in ROS packages.

• Gazebo: It is an open source simulator for robotics [32]. It allows to reproduce

complex indoor and outdoor environments populated by multiple robots using a

robust physic engine. It has an interface to ROS allowing to accurately test the

planning system before the implementation on the real platform.

The algorithm relies heavily on the PCL library to do the following operations: fil-

tering, segmentation, plane estimation, principal component analysis, projections onto

the table plane and convex hulls. The FCL library was used only for collision detection

between the convex hulls of the objects and the gripper as well. Whereas the Fast Down-

ward planner is used for the decision making step feeding it with a coherent problem

description.

1All the development has been carried out in Ubuntu 14.04 LTS.

99

100 Software design

6.1. C++ code

All the code was developed as independent C++ libraries that can be easily embedded

in a ROS package and they are all available in Git [50] repositories. All the libraries

are provided with a documentation2 done in Doxygen [55], including some examples.

However, a basic usage of the codes is described in Section 6.3. The libraries are divided

by the specific task they do:

• Stereo vision: this library (stereovision) include a class to compute the stereo

calibration, stereo matching and point cloud computation of a stereo system. The

implementation works as a wrapper of OpenCV methods to easily and intuitively

calibrate the system and get a point cloud of the scene.

Git repository: https://github.com/NicolaCovallero/StereoVision.git

• Object segmentation: this library (tos_supervoxel) performs the object segmen-

tation described in Section 4.3 and it was developed in the scope of a training at IRI

institute[11].

Git repository: https://github.com/NicolaCovallero/tos_supervoxels.git

• State generation: this library (table_clearing_planning) performs the state

generation described in Section 4.4 given a set of segmented objects and the table

plane normal, both provided by tos_supervoxel library.

Git repository: https://github.com/NicolaCovallero/table_clearing_planning.git

• Fast Downward wrapper: this library (fast_downward_wrapper) works as a

wrapper for the task planner. This is because the planner is not provided with an

API, thus, the only way to use it is writing in two different files the domain and

problem files, as mentioned in Section 3.4.4, and launch the executable that reads

those files and gives as output the plan. This library is designed in manner to be

easily used by any program, not strictly the ones of this thesis.

Git repository: https://bitbucket.org/NicolaCov/fast_downward_wrapper

2The documentation will be subjected to improvements. To use it go in the build folder

trunk/build and launch the command make doc. Then, open the documentation: firefox

../doc/html/index.html

https://github.com/NicolaCovallero/StereoVision.git
https://github.com/NicolaCovallero/tos_supervoxels.git
https://github.com/NicolaCovallero/table_clearing_planning.git
https://bitbucket.org/NicolaCov/fast_downward_wrapper

6.2 ROS implementation 101

The C++ libraries developed need the aforementioned open-source libraries com-

mented in Chapter 4 to be correctly installed. Then, for each developed library it is

sufficient to move to its root folder and launch the commands:

1 $ cd t r u n k / b u i l d

$ cmake . .

3 $ sudo make i n s t a l l

Each one is provided with examples to show how to use the library.

6.2. ROS implementation

The ROS code has been separated in different packages in order to make it as modular

as possible. The code was developed to be easy and intuitive to use for anyone when

possible, such as the code for segmentation or for wrapping the task planner. Despite this,

it may be tricky to use because it has been coded using a specific class of the IRI institute

following the philosophy of LabRobotica3. In the LabRobotica web page is possible

also to find many packages to handle the WAM robot that are omitted in the following.

However all the ROS code is based on the C++ libraries aforementioned that are easy to

embed in any program. The ROS packages developed are the following:

• The package basler_stereo which implements a node, using the stereovision

library, to perform the stereo rectification and stereo matching of the images ob-

tained by two, non synchronized, cameras. The point cloud is published as a Point-

Cloud2 message on a topic whenever there is at least one subscriber.

Git repository: https://github.com/NicolaCovallero/basler_stereo.git

• The package iri_tos_supervoxels to segment the objects and estimating the

table plane coefficients using tos_supervoxels library. This node is implemented

as a service that segments a given point cloud on request.

Git repository: https://github.com/NicolaCovallero/iri_tos_supervoxels.git

• The meta-package (a collection of more packages) iri_table_clearing_planning

to manage all the operations specific for the table clearing task. These are divided

3LabRobotica: http://wiki.iri.upc.edu/index.php/LabRobotica

https://github.com/NicolaCovallero/basler_stereo.git
https://github.com/NicolaCovallero/iri_tos_supervoxels.git
http://wiki.iri.upc.edu/index.php/LabRobotica

102 Software design

in different packages accordingly to their function4

– iri_table_clearing_predicates: this packages implements a service node

that computes the symbolic predicates on request using the table_clearing_planning

library.

– iri_table_clearing_execute: this packages implements a service node

that computes the IK of the robot and it executes the action if feasible.

– iri_table_clearing_decision_maker: this package implements a node

that, given the last received point cloud from the depth sensor, manages all

the nodes and calls all the required services following the scheme sketched in

Figure 6.1.

– iri_table_clearing_description: this package includes an enhanced URDF

description of the WAM robot that includes the simplified model of the grip-

per. This package is used only for simulation together to the following pack-

age.

– iri_table_clearing_gazebo: this package includes example of worlds for

Gazebo and a python script to simulate the grasping. The gripper was model

without any actuators, thus the grasping action is supposed to be determin-

istic and the object is removed from the world of Gazebo when the robot

approaches the object to grasp it.

Git repository: https://github.com/NicolaCovallero/iri_table_clearing_planning.git

• The package iri_fast_downward_wrapper to work as an API to interface the

code to the task planner through the fast_downward_wrapper library. This pack-

age implements a service node that can handle two different services on request:

the first one to write a problem PDDL file and call the executable of the planner, the

second one to write both the domain and problem PDDL files and call the planner.

Git repository: https://bitbucket.org/NicolaCov/iri_fast_downward_wrapper

Here, the perception subsystem is composed of packages iri_tos_supervoxels

and iri_table_clearing_predicates, the planning subsystem is made of packages

iri_fast_downward_wrapper and iri_table_clearing_decision_maker and part

4Only the more relevant ones are cited.

https://github.com/NicolaCovallero/iri_table_clearing_planning.git
https://bitbucket.org/NicolaCov/iri_fast_downward_wrapper

6.3 How to use 103

of the package iri_table_clearing_execute. In the code explanation we drop off the

division in subsystems and we consider the planning system as a unique one.

The software architecture is sketched in Figure 6.1. The decision maker node does the

following operations:

1. Wait for a point cloud;

2. Call the segmentation service giving as input the point cloud and receiving as result

the segmented tabletop objects and the plane coefficients;

3. Call the state generation service giving as input the tabletop objects point clouds

and the plane coefficients and receiving as result all the states, as well the poses for

the pushing and grasping actions;

4. Call the Fast Downward planner giving as input the states;

5. Call the action execution service. The result of this service is a boolean variable

which specifies if the requested action has the inverse kinematic feasible. If it is not

feasible, the decision maker adds to the state the ik_unfeasible predicate for that

action and it requests a new plan going to point 4. If the action’s IK is feasible the

action is executed and the system starts again to point 1.

6.3. How to use

In this section the usage of the code, which is quite complex to use, is described providing

examples of the planning system in the simulated environment. However, only a brief

explanation is given. All the libraries are provided with a Doxygen documentation and

examples. Moreover the codes might be subjected to changes in the future. This section

supposes that all the previously mentioned ROS packages and C++ libraries have been

downloaded and correctly installed (see also the installing section of LabRobotica5).

Prepare the world Gazebo6 does not allow to disable the gravity for a specific model

during the simulation, this makes the arrangement of the objects very hard because if

5http://wiki.iri.upc.edu/index.php/LabRobotica_Software_Installation
6The version used is the 2.2.6.

http://wiki.iri.upc.edu/index.php/LabRobotica_Software_Installation

104 Software design

Decision

Maker

Stereo

Matcher

Segmentation

State Generation

Fast Downward

Action

Execution

Fig. 6.1: Software architecture. The decision maker waits for a point cloud captured by the Kinect

or by the stereo vision system, depending on which one is employed. Next, it calls the services of

the other nodes by following the order indicated by the dashed line.

you translate upward the object and then rotate it, moving from the translation tool to the

rotation one, the object falls. A trick is creating the world disabling the gravity for all the

objects, then the user arranges the objects as he/she pleases. To do so, launch in a terminal

the command:

1 r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ g a z e b o w o r l d _ o n l y . l a u n c h wor ld :=

t e s t _ t e x t u r e d 4

Where test_textured4 is a previously world defined to use as example and it should

look like in Figure 6.2. Then disable the physics by checking enable physics box in the

world->physics panel on the left. Then, add the desired models to the world, enable the

physics and save the world in the worlds folder of package iri_table_clearing_gazebo.

Notice that some models are needed and these include models to simulate the experi-

mental set up at IRI laboratory and some textured objects. These are available at

https://gitlab.iri.upc.edu/perception/gazebo_models.git

https://github.com/NicolaCovallero/stereo_models.git

https://gitlab.iri.upc.edu/perception/gazebo_models.git
https://github.com/NicolaCovallero/stereo_models.git

6.3 How to use 105

Fig. 6.2: World arrangement.

Fig. 6.3: Rendered textured objects models.

Stereo vision The stereo vision system has been implemented in the simulated environ-

ment with a different focal length in order to have a field of vision that covers a sufficient

area of the table. The area covered by the implemented stereo system is too small with

respect the objects the robot has to manipulate. Repository stereo_models includes a

chessboard calibration pattern to perform a simulation of the calibration and some texture

objects models (e.g. Figure 6.3). Notice that in Gazebo, since the cameras parameters are

known, it is not necessary performing a calibration because all the data to estimate are

perfectly know. However, to make it as general as possible, we calibrate the system in

the simulated environment to show that we are effectively simulating a real case scenario.

Next, the textured models are required since for the stereo matching the texture plays

a fundamental role. In a non-textured surfaces the features are wrongly matched and a

no-sense point cloud is obtained (Figure 6.4).

The models of the stereo system is defined in the xacro files left_camera.xacro and

right_camera.xacro (in package basler_stereo), where the relative transformation

between the cameras has to be fixed at the beginning of file right_camera.xacro. The

transformation between a generic reference frame and the left camera has to be set at the

106 Software design

Fig. 6.4: Comparison between point clouds with textured and non-textured surfaces. Here, there

is a non-textured gray (i.e. all the points of that surface have the same rgb value) floor whose

coordinate points are wrongly estimated because of false matches in the stereo matching stage.

The right surface is a textured wood floor and its points are perfectly measured.

beginning of file left_camera.xacro. Notice that in this files the cameras are defined

as Gazebo plugins and the user can set whatever desired values, such as the focal length

playing with the horizontal_fov (horizontal field of view, in radians) parameter. Once

the user has defined the stereo system as he/she pleases, the calibration procedure begins

by launching in a terminal the following command:

1 $ r o s l a u n c h b a s l e r _ s t e r e o b a s l e r _ s t e r e o _ c a l i b r a t i o n . l a u n c h

This command opens Gazebo with the stereo system and a calibration chess pattern. The

next step is saving the images captured by the cameras. To do so, first create two fold-

ers where you are going to save the images. Let’s call those folder calib_left and

calib_right and let’s locate them in the folder data inside the basler_stereo pack-

age. Then, launch in a terminal, inside the folder calib_left, the following command:

1 $ r o s r u n image_view image_view image : = / s t e r e o / l e f t / image_raw

Then, launch in a different terminal, inside the folder calib_right, the following com-

mand:

1 $ r o s r u n image_view image_view image : = / s t e r e o / r i g h t / image_raw

Two windows appear showing the captured image of the two cameras (Figure 6.5a)7.

7Notice that to easy the calibration process you may want to add lights in Gazebo. This helps the

6.3 How to use 107

(a) Cameras views

(b) Translations (c) Rotations

Fig. 6.5: Calibration of the simualted stereo system.

Next, by right clicking on each image view the images are saved in JPG format. The

chessboard can be translated and rotated in Gazebo (Figure 6.5) to capture multiples im-

ages, we recommend to grab at least 10 images. Finally, to calibrate the system it is

required to run the stereo executable of the StereoVision project inside the folder that

contains the two xml list files, one per camera, that list all the pairs images to use for

calibration. For example, the file relative to the left camera has the following format:

<?xml version="1.0"?>

<opencv_storage>

<images>

"./calib_right/frame0000.jpg"

identification of the chessboard corners when calibrating.

108 Software design

"./calib_right/frame0001.jpg"

...

"./calib_right/frame0020.jpg"

</images>

</opencv_storage>

Notice that the order of images in the two files .xml must be the same otherwise the images

pairs are wrong.

To calibrate the system launch the following command in the folder containing the

files:

1 $ < p a t h t o S t e r e o V i s i o n p r o j e c t > / b i n / s t e r e o l e f t _ l i s t . xml r i g h t _ l i s t .

xml

a menu will be printed in the terminal, press ’c’ to perform the calibration. The program

will ask the user for the number of inner corners, by defining the number of corners in

width and height (7 and 7 for the chess pattern in Figure 6.5), and for the size of each

square (0.0625m for the chess pattern in Figure 6.5). Notice that the measurement unit

you choose to use here is fundamental because it will affect all the cameras parameters

(focal length, translation, etcetera ...) and the resulting point cloud. Define the square

size in metres. Then it will also ask to give a down scale factor to speed up the process.

Despite this, it is better to use always a down scale factor of 1, i.e. not downscaling at all,

because we obtain more robust result.

At this point the calibration actually starts, this process detects the inner corners for

every pair of the images listed in the input files, and then it performs the stereo calibration.

Finally, it prints out some information such as the reprojection error as quality metric,

it should be around 1, or less, to have a nice calibration. It pops up some windows

that show the rectified input images with some lines that serve to visually check if they

are effectively aligned (something similar to Figure 4.15). If the rectified images are

not column-aligned, or row-aligned, something gone wrong. Press any button to keep

on. When all the rectified pair have been showed the program saves the intrinsics and

extrinsics parameters on files. This produces the intrinsics.xml and extrinsics.xml

files that contain all the relevant informations regarding the stereo system. The easiest way

to check if the calibration has been correctly done is by checking the translation vector T

in the extrinsics.xml file.

6.3 How to use 109

Next, the stereo matching algorithm parameters must be tuned. This is done by using

the executable stereo of the StereoVision project on example images. This may be

captured in a similar way as done for calibration using the ros package image_view.

Pay attention that now the program is going to perform a matching of pixels and the

image needs to be textured8. The textured set up environment, including the robot, can be

launched by the following command:

1 $ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ g a z e b o e s t i r a b o t _ g r i p p e r _ s t e r e o . l a u n c h

wor ld := t e s t _ t e x t u r e d 4

Now grab the images in the same manner we did for calibration, i.e. using the node

image_view.

To perform the tuning now is necessary to move in the folder where the images have

been saved and launch the command:

1 $ < p a t h t o S t e r e o V i s i o n p r o j e c t > / b i n / s t e r e o l e f t _ t e x t u r e d _ i m a g e . j p g

r i g h t _ t e x t u r e d _ i m a g e . j p g

The same menu of before is printed on the terminal. Press the ’u’ button and enjoy the

tuning. The program asks to specify if its a vertical stereo arrangement or not, in our case

it is. Next it asks to use a downscale factor, this is important because it severely affects

the computation time. In our experiments we set up a down scale factor of 4, meaning that

we worked with images 4 times smaller than the grabbed ones. Next, it asks to choose

the stereo matching algorithm to use (block matching or semi global block matching).

Then, it displays the rectified frames (it also plots lines by pressing ’l’) to visually check

that everything is fine. By pressing ’q’ a new window appears containing two images, the

disparity map on the left and the input left image on the right (Figure 6.6). The right image

is useful because it allows you to understand which points of the scene have a matched

given the displayed disparity map. Another menu is printed that gives several options

for tuning the stereo matching algorithm. By pressing ’q’ the tuning process terminates

and it asks whether to save or not the parameters. It will save the parameters in the file

sgbm_parameters.yml if you used semi global block matching algorithm, or in the file

bm_parameters.yml for the block matching algorithm. Notice that the current folder

8Any model the user wants to use with the stereo system must be textured. This can be done by having a

.stl model and then a texture can be applied using the open-source project Blender. Then export the textured

model as .dae and configure a new Gazebo model.

110 Software design

must contain the intrinsics.xml and extrinsics.xml files otherwise it will return

error.

Fig. 6.6: Stereo matching algorithm tuning. This figure refers to the example of Figure 4.17.

The stereo matching tuning can be checked by running the aforementioned command

and selecting the option to perform the stereo matching. It asks for the downscale factor

(it must be the same used for tuning), whether it is a vertical arrangement, the match-

ing algorithm and then it saves a point cloud in the current folder that can be visualize

afterwards with the pcl_viewer.

Set up the robot and depth sensor Let’s respawn the robot and the stereo vision sys-

tem:

1 $ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ g a z e b o e s t i r a b o t _ g r i p p e r _ s t e r e o . l a u n c h

wor ld := t e s t _ t e x t u r e d 4

Now, the robot and the stereo system has been spawned in Gazebo and the cameras

are grabbing. The next step is performing the stereo vision launching the node of package

basler_stereo:

1 $ r o s l a u n c h b a s l e r _ s t e r e o s t e r e o . l a u n c h

Remember that all the files aforementioned (intrinsics.xml, extrinsics.xml,

sgbm_parameters.yml, bm_parameters.yml) must be located inside the folder config

of package basler_stereo. However this can be changed by modifying the file stereo.launch.

Now the stereo system is initialized but to compute a point cloud it is waiting for someone

to subscribe to the topic /stereo/pointcloud. In another terminal launch:

1 $ r v i z

6.3 How to use 111

and add the PointCloud2 voice, subscribe it to the topic /stereo/pointcloud and select

world as reference frame.

To spawm the robot with kinect instead of the stereo system launch:

1 $ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ g a z e b o e s t i r a b o t _ g r i p p e r . l a u n c h wor ld :=

t e s t _ t e x t u r e d 4

What should be seen in Rviz is similar to Figure 6.7.

(a) Stereo (b) Kinect

Fig. 6.7: Pointclouds obtained from the simulated sensor. The Kinect was set to have a very low

noise, so also the cameras but the stereo system produces a more noisy point cloud because of

the stereo matching. Notice also that the simulated Kinect produces erroneous rgb values but our

segmentation algorithm does not care about rgb values.

Object segmentation To perform only the object segmentation on the captured point

cloud launch in another terminal

1 $ r o s l a u n c h i r i _ t o s _ s u p e r v o x e l s t o s _ s u p e r v o x e l s _ s t e r e o . l a u n c h

for the stereo system, or

1 $ r o s l a u n c h i r i _ t o s _ s u p e r v o x e l s t o s _ s u p e r v o x e l s . l a u n c h

if you spawned the Kinect. Then, this node produces a point cloud for tabletop objects

and each object is labelled by a different color (Figure 6.8). This message is published in

the topic /segmented_objects/points.

112 Software design

Fig. 6.8: Segmentation of the point cloud produced by the stereo system.

Deploying the whole planning system In this paragraph we briefly explain how to

launch the whole planning system. Each command must be launched in a different termi-

nal.

First of all launch:

1 $ r o s c o r e

Then the system must be spawned, either with the stereo system:

1 $ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ g a z e b o e s t i r a b o t _ g r i p p e r _ s t e r e o . l a u n c h

wor ld := t e s t _ t e x t u r e d 4

$ r o s l a u n c h b a s l e r _ s t e r e o s t e r e o . l a u n c h

or with the Kinect:

$ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ g a z e b o e s t i r a b o t _ g r i p p e r . l a u n c h wor ld :=

t e s t _ t e x t u r e d 4

The spawned robot and world in Gazebo should be similar to Figure 6.9.

In the following we refer to the objects configuration showed in Figure 6.10.

Next, we have to launch the nodes to compute the predicates, call the planner and

execute the robot, accordingly to the scheme of Figure 6.1:

1 $ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ p r e d i c a t e s i r i _ t a b l e _ c l e a r i n g _ p r e d i c a t e s

. l a u n c h

$ r o s l a u n c h i r i _ f a s t _ d o w n w a r d _ w r a p p e r f a s t _ d o w n w a r d _ s e r v e r . l a u n c h

3 $ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ e x e c u t e i r i _ t a b l e _ c l e a r i n g _ e x e c u t e .

l a u n c h

$ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ d e c i s i o n _ m a k e r

i r i _ t a b l e _ c l e a r i n g _ d e c i s i o n _ m a k e r . l a u n c h INPUT_TOPIC : = / s t e r e o /

6.3 How to use 113

(a) Robot with the stereo vision system (b) Robot with the Microsoft Kinect

Fig. 6.9: Gazebo world and robot.

Fig. 6.10: Objects configuration

p o i n t c l o u d STEREO:= True

where the parameter INPUT_TOPIC can be left to the default value, i.e. omitted in the

command, when the Kinect is used. STEREO is an another argument to specify if the

system is using the stereo vision system. Then, the decision maker node asks to the user

if he/she wants to repeat each iteration. By pressing ’y’ it segments the last received

point cloud, computes the predicates, it plans and it gives the action to execute to the

execution node which solves the IK and if the action is feasible, by default, it asks to the

users step by step if it can proceed to the new pose of the action. By pressing ’y’ in the

terminal, where the execution node was launched, the robot goes to the next action’s pose,

otherwise by pressing ’n’ the robot goes to its home pose and the decision node performs

another iteration of the planning system.

Then, launch in another terminal Rviz because very useful to understand what is going

on in the system. The decision node publishes several useful markers, the most important

114 Software design

ones are:

/estirabot/iri_table_clearing_decision_maker/action_trajectory

/estirabot/iri_table_clearing_decision_maker/objects_label

/estirabot/iri_table_clearing_decision_maker/pushing_directions

and the pose of the action (pre-pushing pose for pushing and approaching pose for grasp-

ing):

/estirabot/iri_table_clearing_execute/action_pose

For representing the pose choose the axis shape. The segmented objects are shown in the

pointcloud published in the topic

/estirabot/iri_table_clearing_decision_maker/cloud

For instance, in Figure 6.11a the pushing directions of the objects are shown and

Figure 6.11b shows the approaching pose9 for grasping o0. Notice that in that example

the can either grasp o2 or o0. The second is on top of o1 so it must be grasped before

to manipulate the others. Note also that the object labels of Figures 6.11a and 6.11b are

different because they refer to different point clouds and for each point cloud the labels

may change since the system considers each iteration as a whole new problem.

(a) Pushing directions (b) Approaching pose for o0

Fig. 6.11: Pushing directions and approaching pose visualised in Rviz.

In Figures 6.12 and 6.13 an example of pushing and grasping actions in the simulated

environment is shown.
9Here, the red, green and blue axes are the x, y and z axes respectively.

6.3 How to use 115

Finally, in order to have a complete visual result a gui based on rqt_gui has been

developed. Launch in another terminal:

$ r o s l a u n c h i r i _ t a b l e _ c l e a r i n g _ c o n f i g r q t _ g u i . l a u n c h

And then you will have to load the rviz configurations.

(a) Rviz visualization of the pushing trajectory

(b) Execution in Gazebo (c) Outcome of the action

Fig. 6.12: Execution of a pushing action to separate o0 and o1. In Rviz (a) the pushing trajectory is

used to visually verify the correctness of the trajectory, red marks are the poses of the pushing path.

Then the excution node controls the robot to execute such an action in the simulated environment

(b), and the outcome is shown in (c) where it is appreaciable that the object’s trajectory is not as

predicted. The white mesh models are the Collada models of the Basler cameras of the stereo

vision system.

116 Software design

(a) Post grasping pose (b) Grasping pose

Fig. 6.13: Continuation of the experiment of Figure 6.12. Despite the unexpected outcome of the

previous pushing action, o1 is graspable. So the system decides to grasp it. It initially locates the

end-effector at the post-grasping pose, then it moves to the approaching pose. At this point the

execution node calls a service to remove o1’s model from Gazebo (because the grasping is not

simulated and supposed to be deterministic). Then it moves to the grasping pose to finally drop

the object into a bin.

7. Experiments

In this chapter three experiments1 2 are presented in order to assert the quality and robust-

ness of the proposed planning system. These experiments are intended to:

1. Study the performance of the planning system for scenes with 3, 4, 5, 6 and 7 objects

(Figure 7.1). Each scene has been repeated three times changing the configuration

of the objects.

2. Analyse the trace of one clearing trial for a scenario with 7 objects.

3. Do a comparison between the proposed planning system and the framework pre-

sented by Dogar and Srinivasa[16] which is the most similar work to the proposed

planning system.

The first experiment aims to assert the robustness of the system and study its perfor-

mance in terms of the time taken by each of the three subsystems. Table 7.1 shows some

numerical results. It can be seen that, as expected, the global time increases with the com-

plexity of the scene. In particular, the perception time used to compute the predicates,

because the number of relationships between objects is larger. We recall that each object

is modelled using the convex hull of the segmented object and its projection onto the table.

This leads to complex mesh models that make the collision checking time consuming. If

we accept to work with simple shapes, an alternative is to fit a simple model for each

object, considerably reducing the time devoted to the state generation.

Contrarily, observe that the planning subsystem takes less accumulated time in the

case of 5 objects (12.62 sec) than 4 objects (19.84 sec). The explanation is that even if the

scenario contained more objects, their position were always reachable even after pushing

actions and thus, backtracking was not necessary. Backtracking is time consuming be-

cause our implementation uses an optimization method to compute the IK that, naturally,

is not constant in time. The evaluation of an unfeasible pose takes the maximum time.

1Additional material: www.iri.upc.edu/groups/perception/phasinginplan
2Video: https://www.youtube.com/watch?v=P4QRB0bdiGw this video refers to the first version of this

thesis [12] whose main difference is that the actions do not have cost and the pushing length is function of

the manipulated object and not of the surrounding ones. Despite this, in the video the robot behaves almost

the same to the one presented in this thesis.

117

https://www.youtube.com/watch?v=P4QRB0bdiGw

118 Experiments

3 objects

4 objects

5 objects

6 objects

7 objects

Fig. 7.1: Initial configuration of the performed trials.

119

Tab. 7.1: Plan’s length and elapsed times of the trials of Figure 7.1 that were correctly finished, i.e.

the robot was able to grasp all the objects and no object was moved outside the working space. The

elapsed times are the average times spent by the three subsystems to achieve the goal of clearing

the table. Thus, several iterations are included within these data.

n◦ objects 3 4 5 6 7

n◦ actions 4.33±0.58 7±1.73 8±1 9.67±1.53 12±3.46

perception [s] 8.05±0.88 14.62±3.82 17.97±2.26 28.88±4.11 45.67±12.77

planning [s] 7.64±4.42 19.84±16.8 12.62±1.74 28.38±12.10 81.58±36.52

execution [s] 108.70±11.79 170.73±33.43 194.21±14.05 243.19±42.61 292.26±53.59

total [s] 124.40±10.50 205.2±37.53 224.81±16.73 300.46±50.69 419.5±100.71

n◦ backtracks 0.67 2 0 3 1

The execution of the actions is the most time-expensive subsystem because our robot

moves at low speed for safety. Thus, it is important to compute a good plan that contains

the minimum number of actions.

As a practical lesson learnt during the experiments, we observed several unexpected

outcomes during pushing actions because either the resulting trajectory of the object was

slightly different to the expected one or the end-effector slightly touched other objects.

One alternative is to generate more robust robot motions. In our case, with simple pushing

actions, the replanning technique showed to be very suitable to handle these unexpected

outcomes. An example is depicted in Figure 7.2. The robot had to move the green box

along the direction of the arrow but the gripper touched the brown box too. As result,

both the green and brown boxes have been moved and none of them was graspable. The

system replanned and the next action was to push the brown box. The action was correctly

executed and the brown box was graspable and the task could be terminated.

Replanning showed to be effective also to handle the unexpected outcomes of grasp-

ing. Some shapes could be challenging to grasp and the object could slip out if the grasp

is not stable (Figure 7.3). This happened some times when the robot attempted to grasp

circular objects. These objects also slipped out the working space twice and the use of

subgoals showed to be effective.

We observed also that the top objects are usually the ones that prevent the majority of

the actions (see the third trials with 4,5,6 objects) and that the system can recognize them

120 Experiments

Fig. 7.2: Unexpected outcome of the pushing action. In the first scene the robot had to push the

green box away but it accidentally moved also the brown box. The green box was not graspable

after being pushed, the robot replanned and decided to move the brown one.

Fig. 7.3: Unstable grasp that makes the object slip out.

and it grasps them first.

The second experiment presents in more detail the trace of one clearing trial for a

scenario with 7 objects. Figures 7.4 and 7.5 represent the actions’ outcomes and their ex-

ecution respectively. It is interesting noting the difference between the initial and executed

plan3:

• Initial plan: (push o1 dir1) (push o5 dir2) (grasp o6) (push o4 dir1)

(push o2 dir1) (grasp o0) (grasp o5) (grasp o3) (grasp o2) (grasp

o1) (grasp o4)

• Executed actions:(push o1 dir1) (grasp o1) (push o6 dir1) (push o6 dir2)

(push o6 dir2) (grasp o6) (push o4 dir1) (push o2 dir1) (grasp o2)

(grasp o0) (push o4 dir1) (grasp o4) (push o5 dir1) (push o3 dir2)

(grasp o3) (grasp o5)

Where the initial plan is the plan obtained for the first captured image (Figure 7.4a) and

the executed one is the sequence of the executed actions that may differ from the initial

3Here the objects’ label are the same along all the trace but actually, after the execution of each action

the robot considers the problem as a new one with no historical information, thus the label for a certain

object may change at every iteration.

121

(a) Initial configuration and objects’ labels

(b) Outcomes of the executed actions

Fig. 7.4: First trial for the scenario with 7 objects.

122 Experiments

(a) (push o1 dir1) (b) (grasp o1)

(c) (push o6 dir1) (d) (push o6 dir2)

(e) (push o6 dir2) (f) (grasp o6)

(g) (push o4 dir1) (h) (push o2 dir1)

(i) (grasp o2) (j) (grasp o0)

Fig. 7.5: Execution of the first 8 actions of Figure 7.4

123

one. In fact, the executed plan differs because of two main reasons:

1. the robot had to push some objects more times to make them graspable.

2. the robot, when pushing, might have moved more than one object.

The first case happened when the robot attempted to manipulate objects o6 and o4. This

is appreciable in Figure 7.4b. From picture 3 to 6, the robot pushed o6 initially in one

direction, but the object was not graspable and needed to be moved again, so it decided

to push in the opposite direction and the same problem occurred. This was solved by a

further pushing action. Figure 7.6 shows the grasping poses of o6 in the several poses.

A similar case happened for o4, the robot had to push it twice in order to put it in a

graspable pose. As lesson learnt, the probability of the outcome of the pushing action

should be handled also by the pushing length. A simple but effective way is to consider a

larger collision-free range for the grasping pose after being pushing.

Fig. 7.6: Executed actions to grasp o6 in the experiment depcited in Figure 7.4. From top left,

in its initial pose the gripper is too close to the gray box, after pushing the gripper would collide,

after pushing again o6 is still too close to the gray. Finally, after an ulterior pushing the gripper in

the grasping pose is collision free and sufficiently far from the other objects.

The times devoted to each phase are shown in Fig. 7.7a, where backtracks are repre-

sented as black dashed rectangles joining two consecutive iterations. Figure 7.7b concen-

trates on the three main aspects for planning: state generation, planning and IK evaluation.

As it can be seen, IK is the most time consuming operation. The explanation is that each

of the pushing and grasping actions are composed by several poses of the end-effector,

124 Experiments

and therefore several checks have to be performed. State generation consumes also sev-

eral seconds, and planning is very fast. These results uphold the benefits of delaying IK

computations to evaluate the feasibility of one action only when it is needed in a plan.

(a) Amount of time spent by the three subsystems.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

2

4

6

8

10

12

14

16

18

Number of the iteration

T
im

e
 [
s
e
c
o
n
d
s
]

State Generation

Planning

IK

(b) Elapsed times for the state generation, planning and IK.

Fig. 7.7: Elapsed times for each iteration of the experiment in Figure 7.4. (a) elapsed times for the

three subsystems. Backtrackings are highlighted using black dashed rectangles. The perception

subsystem first filters the point cloud for noise reduction, segments the objects and then generates

the state. The planning subsystems computes the plan and the IK of the first action. The execution

subsystems just executes the action. (b) elapsed times to generate the state, to get a plan and

evaluate the IK of the first action. In the last iteration the robot correctly grasps the last object

remaining on the table and the goal is achieved.

125

(a) Reactive strategy

(b) Proposed system

Fig. 7.8: Experiment to compare the proposed system with the reactive strategy used in [16]. The

figures on the left in (a) and (b) are the initial scene.

The third experiment compares the proposed method with an adaptation of the frame-

work presented by Dogar and Srinivasa [16], which is the most similar work to ours to the

best of our knowledge. The authors propose a general framework to deal with cluttered

scenes, where, if necessary, the objects around the target one are rearranged to make it

graspable. Considering that the goal is to clear the whole table, their algorithm behaves as

a reactive strategy repeated for each object. We select the target object as the one yielding

the less number of objects that would collide with the end-effector if grasped; if there are

several candidates, the target object is selected randomly.

We simulated both algorithms in a simulated environment. In simple scenarios both

strategies are similar. Differences arise in moderately complex scenes. Figure 7.8 shows

one example comparing both solutions for a 5 object scene. In the figure, the lower-

right yellow object is the candidate target. Observe that in this case the reactive approach

requires 5 actions to grasp it (Fig. 7.8a), while with our approach (Fig. 7.8b) 2 actions

suffice.

126 Experiments

8. Conclusions

The objectives established have been achieved developing a planning system which is

able to solve table clearing tasks with cluttered objects reasoning at a symbolic level. The

planning system can choose the best sequences of pushing and grasping actions to solve

problems that could be not solved by only considering grasping actions.

The planning system has been inspired by the way humans solve the task and the

experiments showed the robot can solve the task with a intelligent sequence of actions

that we consider close to the one a human would do.

The system is able to interact with the objects because augmented with a depth sensor

that gives a three-dimensional representation of the scene. Two depth sensors are con-

sidered: a Microsoft Kinect and a stereo vision system. After a comparison of the two

sensors we assert that for the specific task tackled by this thesis the Microsoft Kinect sen-

sor suits better. The developed stereo vision system, although does not suffer for the kind

of observed material as Kinect does, it suffers for brightness that may cause saturated

images and it is computationally expensive and less robust than Kinect.

The novelty of this thesis regards the tackling of geometrical restrictions within sym-

bolic planning. To do so, a symbolic three-layered system that plans at a deterministic

semantic level and accounts for geometrical restrictions is proposed. This is done by han-

dling geometrical constraints both with symbolic predicates and through backtracking.

Geometrical constraints are divided into relational (collisions between objects or with the

robot) and reachability (unfeasible actions due to non-solvable IK or path planning fail-

ures). Relational constraints generate a set of symbolic states that are used by the planner

to compute a plan. The evaluation of reachability constraints is delayed until the plan has

to be executed. This lazy approach allows to accelerate the reasoning process. Thanks

to backtracking, unfeasible actions generate new symbolic predicates and replanning pro-

duces a new plan.

A simple implementation is presented and evaluated in different scenarios. Experi-

ments show that the strategy of delaying the reachability constraints evaluation is ben-

eficial in practical robot applications as it strongly reduces the required computational

time. The presented algorithm can handle different strategies, but as we propose to re-

plan after each action, the current implementation only evaluates the first action of the

127

128 Conclusions

computed plan. This is a good option to take into account uncertainty when the robot

actions are non-deterministic, like the ones used in the experiments. But also has some

limitations, for example, pushing objects towards the limits of the robot working space

possibly invalidates some future pushing or even grasping actions.

The planning system can be easily adapted to every kind of robotic manipulator and

gripper, as it only needs to include the model of the gripper and the inverse kinematic. It

can also be easily integrated with more sophisticated grasping methods.

As future work we would like to include the probabilities of the outcomes of the push-

ing action within predicates, so as to be able to choose between different pushing strate-

gies. Also, one limitation of the presented system is that it considers as errors all types of

collisions. Thus, we would like to introduce the collisions as actions’ cost accordingly to

the kind of collision.

The more restrictive limitation of the system is the segmentation, particularly hard

in cluttered environments. A wrong segmentation can make the planner unable to find a

feasible plan. A method to contrast this is enhancing the action model with an auxiliary

action that allows to grab another image, as done by Hernánzed [23], to provide more

information about the objects whether the segmentation is not good enough. Then, to

maximize the added value of the new image the point of view should be movable and

chosen accordingly to a likelihood function that favours point of views that allow to see

previously occluded parts in a similar fashion to the work of Foix et al. [20]. Alternatively,

an extra camera can be employed.

Finally, the system can be enhanced by integrating it with the motion planning frame-

work MoveIt! [52] in order to execute collision-free trajectories to approach the pushing

and grasping poses.

Bibliography

[1] PDDL - The Planning Domain Definition Language. Technical report, CVC TR-98-

003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[2] Nichola Abdo, Henrik Kretzschmar, Luciano Spinello, and Cyrill Stachniss. Learn-

ing manipulation actions from a few demonstrations. In Robotics and Automation

(ICRA), 2013 IEEE International Conference on, pages 1268–1275. IEEE, 2013.

[3] Anubhav Agarwal, CV Jawahar, and PJ Narayanan. A survey of planar homogra-

phy estimation techniques. Centre for Visual Information Technology, Tech. Rep.

IIIT/TR/2005/12, 2005.

[4] Faraj Alhwarin, Alexander Ferrein, and Ingrid Scholl. Ir stereo kinect: improving

depth images by combining structured light with ir stereo. In Pacific Rim Interna-

tional Conference on Artificial Intelligence, pages 409–421. Springer, 2014.

[5] Julien Bidot, Lars Karlsson, Fabien Lagriffoul, and Alessandro Saffiotti. Geometric

backtracking for combined task and motion planning in robotic systems. Artificial

Intelligence, 2015.

[6] Stan Birchfield and Carlo Tomasi. A pixel dissimilarity measure that is insensitive to

image sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(4):401–406, 1998.

[7] Jean-Yves Bouguet. Camera calibration tool-box for matlab. http://www. vision.

caltech. edu/bouguetj/calib_doc/, 2002.

[8] Peter Brook, Matei Ciocarlie, and Kaijen Hsiao. Collaborative grasp planning with

multiple object representations. In Robotics and Automation (ICRA), 2011 IEEE

International Conference on, pages 2851–2858. IEEE, 2011.

[9] Rui Coelho and Alexandre Bernardino. Planning push and grasp actions: Experi-

ments on the icub robot.

129

130 BIBLIOGRAPHY

[10] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert Causo,

Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and Peter R. Wur-

man. Lessons from the amazon picking challenge. CoRR, abs/1601.05484, 2016.

[11] N. Covallero and G. Alenyà. Grasping novel objects. Technical Report IRI-TR-16-

01, Institut de Robòtica i Informàtica Industrial, CSIC-UPC, 2016.

[12] Nicola Covallero. Task planning for table clearing of cluttered objects. Master’s

thesis, Universitat Politècnica de Catalunya, 2016.

[13] Nicola Covallero, David Martínez, Guillem Alenyà, and Carme Torras. Planning

clearing actions in cluttered scenes by phasing in geometrical constraints. In Pro-

ceedings of the 20th International Conference of the Catalan Association of Artificial

Intelligence, 2017.

[14] Richard Dearden and Chris Burbridge. Manipulation planning using learned sym-

bolic state abstractions. Robotics and Autonomous Systems, 62(3):355 – 365, 2014.

Advances in Autonomous Robotics — Selected extended papers of the joint 2012

{TAROS} Conference and the {FIRA} RoboWorld Congress, Bristol, {UK}.

[15] Paul E Debevec and Jitendra Malik. Recovering high dynamic range radiance maps

from photographs. In ACM SIGGRAPH 2008 classes, page 31. ACM, 2008.

[16] Mehmet Dogar and Siddhartha Srinivasa. A framework for push-grasping in clutter.

In Nick Roy Hugh Durrant-Whyte and Pieter Abbeel, editors, Robotics: Science and

Systems VII. MIT Press, July 2011.

[17] Mustafa Ersen, Melodi Deniz Ozturk, Mehmet Biberci, Sanem Sariel, and Hulya

Yalcin. Scene interpretation for lifelong robot learning. In Proceedings of the 9th

international workshop on cognitive robotics (CogRob 2014) held in conjunction

with ECAI-2014, 2014.

[18] David Fischinger, Astrid Weiss, and Markus Vincze. Learning grasps with topo-

graphic features. volume 34, pages 1167–1194, 2015.

[19] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

BIBLIOGRAPHY 131

[20] Sergi Foix, Guillem Alenya, and Carme Torras. 3d sensor planning framework for

leaf probing. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Interna-

tional Conference on, pages 6501–6506. IEEE, 2015.

[21] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res.(JAIR),

26:191–246, 2006.

[22] Tucker Hermans, James M. Rehg, and Aaron F. Bobick. Guided pushing for object

singulation. In IROS, pages 4783–4790. IEEE, 2012.

[23] Alejandro Suárez Hernández, Carme Torras Genıs, Guillem Alenya Ribas, and

Javier Béjar Alonso. Integration of task and motion planning for robotics. 2016.

[24] Itseez. Open source computer vision library. https://github.com/itseez/

opencv, 2017.

[25] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[26] Adrian Kaehler and Gary Bradski. Learning OpenCV 3: Computer Vision in C++

with the OpenCV Library. " O’Reilly Media, Inc.", 2016.

[27] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Unifying perception, estimation

and action for mobile manipulation via belief space planning. In Robotics and Au-

tomation (ICRA), 2012 IEEE International Conference on, pages 2952–2959. IEEE,

2012.

[28] Dov Katz. Interactive perception of articulated objects for autonomous manipula-

tion. University of Massachusetts Amherst, 2011.

[29] Dov Katz, Moslem Kazemi, J. Andrew (Drew) Bagnell, and Anthony (Tony) Stentz

. Clearing a pile of unknown objects using interactive perception. In Proceedings of

IEEE International Conference on Robotics and Automation, March 2013.

[30] Dov Katz, Arun Venkatraman, Moslem Kazemi, J Andrew Bagnell, and Anthony

Stentz. Perceiving, learning, and exploiting object affordances for autonomous pile

manipulation. Autonomous Robots, 37(4):369–382, 2014.

[31] Thomas Keller and Patrick Eyerich. Prost: Probabilistic planning based on uct. In

ICAPS, 2012.

https://github.com/itseez/opencv
https://github.com/itseez/opencv

132 BIBLIOGRAPHY

[32] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an

open-source multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS

2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages

2149–2154. IEEE.

[33] Andrey Kolobov, Mausam, and Daniel S Weld. Lrtdp vs. uct for online probabilistic

planning. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[34] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson. Constraint propagation on

interval bounds for dealing with geometric backtracking. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 957–964, 2012.

[35] Steven M. LaValle. Planning Algorithms. Cambridge University Press, May 2006.

[36] Iain Little, Sylvie Thiebaux, et al. Probabilistic planning vs. replanning. In ICAPS

Workshop on IPC: Past, Present and Future, 2007.

[37] T. Lozano-Perez and L. P. Kaelbling. A constraint-based method for solving se-

quential manipulation planning problems. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 3684–3691, 2014.

[38] Bhaskara Marthi, Stuart J Russell, and Jason Wolfe. Angelic semantics for high-

level actions. In ICAPS, pages 232–239, 2007.

[39] D. Martínez, G. Alenyà, and C. Torras. Relational reinforcement learning with

guided demonstrations. Artificial Intelligence, 247:295–312, 2017.

[40] David Martínez, Guillem Alenya, and Carme Torras. Planning robot manipulation to

clean planar surfaces. Engineering Applications of Artificial Intelligence, 39:23–32,

2015.

[41] Lorenz Mösenlechner and Michael Beetz. Using physics- and sensor-based sim-

ulation for high-fidelity temporal projection of realistic robot behavior. In AIPS,

2009.

[42] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop: Simple hier-

archical ordered planner. In Proceedings of the 16th international joint conference

BIBLIOGRAPHY 133

on Artificial intelligence-Volume 2, pages 968–973. Morgan Kaufmann Publishers

Inc., 1999.

[43] Melodi Ozturk, Mustafa Ersen, Melis Kapotoglu, Cagatay Koc, Sanem Sariel-Talay,

and Hulya Yalcin. Scene interpretation for self-aware cognitive robots. 2014.

[44] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for

collision and proximity queries. In Robotics and Automation (ICRA), 2012 IEEE

International Conference on, pages 3859–3866. IEEE, 2012.

[45] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Wörgötter. Voxel

cloud connectivity segmentation - supervoxels for point clouds. In Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on, Portland, Oregon, June

22-27 2013.

[46] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating sys-

tem. In ICRA Workshop on Open Source Software, 2009.

[47] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2 edition, 2003.

[48] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In

International Conference on Robotics and Automation, Shanghai, China, 2011 2011.

[49] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael

Beetz. Towards 3d point cloud based object maps for household environments.

Robotics and Autonomous Systems, 56(11):927–941, 2008.

[50] Ravishankar Somasundaram. Git: Version control for everyone. Packt Publishing

Ltd, 2013.

[51] S. C. Stein, M. Schoeler, J. Papon, and F. Woergoetter. Object partitioning using

local convexity. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2014.

[52] Ioan A. Sucan and Sachin Chitta. Moveit! [Online] Available:http://moveit.

ros.org.

http://moveit.ros.org
http://moveit.ros.org
http://moveit.ros.org
http://moveit.ros.org

134 BIBLIOGRAPHY

[53] Andreas ten Pas and Robert Platt. Using geometry to detect grasp poses in 3d point

clouds. In International Symposium on Robotics Research (ISRR), September 2015.

[54] Nikolaus Vahrenkamp, Tamim Asfour, and Rudiger Dillmann. Robot placement

based on reachability inversion. In Robotics and Automation (ICRA), 2013 IEEE

International Conference on, pages 1970–1975. IEEE, 2013.

[55] Dimitri Van Heesch. Doxygen: Source code documentation generator tool. URL:

http://www. doxygen. org, 2008.

[56] Gang Xu and Zhengyou Zhang. Epipolar geometry in stereo, motion and object

recognition: a unified approach, volume 6. Springer Science & Business Media,

2013.

[57] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transac-

tions on pattern analysis and machine intelligence, 22(11):1330–1334, 2000.

[58] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–

10, 2012.

Appendices

135

A. Basler Cameras

The Basler ACE USB 3.0 cameras used are the acA2500-14um and acA2500-14uc mod-

els. The two models differ only for the color scale they capture the image, the uc model

captures a RGB image while the um model captures a monochrome image. In Table A.1

the main specifications of the models are reported.

Tab. A.1: Basler ACE USB 3.0

Specification acA2500-14um/uc

Resolution um: 2592×1944 uc: 2590×1942

Sensor Type Aptina MT9P031, CMOS

Optical Size 1/2.5”

Pixel size 2.2µm×2.2µm

Fps 14

The lenses used are ultra low-distorsion lenses with a focal length of 16mm, f-number1

2.0, for sensor sizes up to 2/3".

Fig. A.1: Basler ACE USB 3.0 acA2500-14um/uc without and with lence.

1The f-number F is the ratio between of focal length to the diameter D of of the entrance pupil such

that F = f
D

137

	Contents
	Introduction
	Project motivation
	Objectives
	Problem Approach
	Contributions
	Set up
	Outline of the Thesis

	Previous works
	Planning subsystem
	Introduction to task planning
	Task planners review
	Planner selection
	State space and action model
	Representation
	State space
	Action model
	PDDL syntax

	Backtracking
	Replanning

	Perception subsystem
	Software tools
	Depth vision
	Camera model and distortions
	Stereo Vision
	Depth sensor selection

	Object Segmentation
	Tabletop Object Detection
	Segmentation

	State generation
	Preliminary concepts
	Predicate: block_grasp
	Predicate: on
	Predicate: block_push

	Execution Subsystem
	Pushing
	Grasping

	Software design
	C++ code
	ROS implementation
	How to use

	Experiments
	Conclusions
	Bibliography
	Appendices
	Basler Cameras

