
Università degli Studi di Padova
Master Thesis in Computer Engineering

Department of Information Engineering (DEI)

ING-INF/05

Design, Analysis and

Engineering of Algorithms

for Closeness Centrality

Candidate

Marco Basso

Supervisors

Prof. Andrea Pietracaprina

Prof. Geppino Pucci

Academic Year 2018-2019

Alla mia famiglia

Acknowledgments

I would like to thank my supervisors Prof. Andrea Pietracaprina and Prof. Gep-

pino Pucci of the Department of Information Engineering at University of Padova

for their professional guidance through each step of this research and for their

patience in the careful review of this thesis. I would also like to express profound

gratitude to my family who has always supported me throughout my years of

study.

Abstract

The identification of central vertices in large networks is fundamental for many

real world applications. Among all the centrality measures defined to address this

task, the closeness centrality is one of the oldest and most popular. Its exact com-

putation, even if polynomial in time, is not practically feasible for large graphs.

Recent works developed sample based estimation techniques that reduce the com-

putational effort in exchange for a controlled loss of the solution accuracy. The

aim of this work is to devise and analyze novel efficient approaches for the esti-

mation of the closeness centrality of the vertices of a large graph and to compare

them with the state-of-the-art techniques. In this study we mainly introduce two

novel sample based methods, one deterministic and one progressive randomized.

The qualities of the approaches are analyzed from a theoretical point of view and

by an extensive experimental analysis, based on road networks and social graphs,

that assesses their quality with the relative errors of their estimates. The results

show that the deterministic approach achieves good performances on road net-

works and the progressive randomize approach is superior in every aspect among

all the compared methods. In conclusion, our novel approaches might be valuable

alternatives for closeness centrality estimation on large graphs.

Sommario

L’identificazione dei vertici centrali nelle reti di grandi dimensioni è fondamentale

in diverse applicazioni. Tra tutte le misure di centralità definite per affrontare

questo compito, la closeness centrality è una delle più popolari. Il suo calcolo

esatto, seppur ottenibile in un tempo polinomiale, è infattibile in pratica se appli-

cato su grafi di grandi dimensioni. Nei lavori più recenti sono state sviluppate delle

tecniche in grado di stimare tale misura, basandosi sul campionamento dei vertici

del grafo, che riducono lo sforzo di calcolo in cambio di una perdita controllata

dell’accuratezza della soluzione. L’obbiettivo di questo lavoro verte sul concepi-

mento e sul’analisi di nuovi approcci efficienti per la stima della closeness centrality

dei vertici di un grafo di grandi dimensioni e sul confronto con lo stato dell’arte. In

questo studio introduciamo principalmente due nuovi metodi, uno deterministico

e uno progressivo randomizzato. Le qualità degli approcci sono analizzate da un

punto di vista teorico e da un’ampia analisi sperimentale, basata su reti stradali e

grafi sociali, che ne valuta la qualità mediante gli relativi errori delle loro stime. I

risultati mostrano che l’approccio deterministico raggiunge buone prestazioni sulle

reti stradali e l’approccio progressivo randomizzato è superiore sotto ogni aspetto

tra tutti i metodi comparati. In conclusione, i nostri nuovi approcci potrebbero

essere valide alternative per la stima della closeness centrality su grafi di grandi

dimensioni.

x

Contents

Contents xi

1 Introduction 1

2 Preliminaries 3

2.1 Graph Theory Review . 3

2.1.1 Graph Representation . 5

2.1.2 Breadth-First Search Algorithm 5

2.1.3 Dijkstra’s Algorithm . 7

2.2 Relevant Topological Characteristics 8

2.2.1 Some Topological Features 9

2.2.2 Types of Topologies . 9

2.2.3 Dimensionality . 10

2.3 Centrality Measures . 11

2.3.1 Geometric Measures . 11

2.3.2 Path-based Measures . 13

2.3.3 Spectral Measures . 13

2.4 Closeness Centrality Computation 15

2.4.1 All-Pairs Shortest-Paths . 15

2.4.2 Sum of Distances approximation 17

2.5 Approximation Algorithms . 18

2.6 Center-Based Clustering . 19

3 Traditional Approaches 21

3.1 Eppstein and Wang’s Method . 21

3.1.1 Algorithm . 21

3.1.2 Analysis . 22

3.2 Chechik et al. ’s Method . 25

3.2.1 Algorithm . 26

3.2.2 Analysis . 28

xi

xii CONTENTS

4 Progressive Approaches 37

4.1 Farthest-First Traversal Methods 37

4.1.1 Algorithms . 38

4.1.2 Analysis . 41

4.2 k-means++ and k-median++ Methods 46

4.2.1 Algorithms . 47

4.2.2 Analysis . 49

4.3 Progressive CCK Methods . 49

4.3.1 Algorithms . 49

4.3.2 Analysis . 52

5 Experiments and Results 57

5.1 Overview . 57

5.2 Experiment Runs and Evaluation Technique 58

5.3 Experimentation Workflow . 60

5.4 Results . 62

6 Conclusion 73

References 75

Chapter 1

Introduction

One fundamental task in graph analytics concerns the determination of the im-

portance of the vertices of a graph. Over the years several measures, known as

centrality measures, have been defined, which capture different graph structural

properties in order to reveal the most important vertices of a graph. The common

concept behind these measures consist in considering as more important the ver-

tices that are more central on the graph. A vertex is considered central when it

lies at the center of a star and centrality measures are based on different notion of

star. There are a variety of applications where these measures play a crucial role,

to give some examples, they are used to determine the influence of individuals

in social graphs, or to detect crucial connections in transportation networks (e.g.

road networks), or to determine the importance of web pages.

One of the oldest and most popular centrality measure is the Closeness Central-

ity, introduced in [Bav50] and defined, for each vertex of a connected undirected

graph, as the inverse of the sum of distances between the vertex and all other

vertices in the graph. Its exact computation reduces to the solution of the well

known all-pairs shortest-paths problem whose time complexity is polynomial in

the size of the input. With the advent of big data, the need to exploit large graphs

structural information has increased. For such huge instances the computation of

the all-pairs shortest-paths, although requiring polynomial time, becomes imprac-

tical introducing the necessity for alternative solutions. The problem has been

addressed by reducing the computational effort in exchange for a controlled loss

of the solution accuracy. The most relevant recent works on the estimation of the

closeness centrality on huge graphs are those presented in [EW04] and [CCK15].

These state-of-the-art approaches are both based on the computation of a sam-

ple of vertices, whose closeness centrality is computed exactly, and, by harnessing

the single-source shortest-paths computations of each sample vertex, are able to

estimate the closeness centrality of every other vertex in the graph.

1

2 Introduction

The focus of our research is to devise and analyze novel efficient approaches for

the estimation of the closeness centrality of the vertices of a large graph, and to

compare them with the aforementioned state-of-the-art techniques. We developed

two novel sample based approaches that progressively refine the estimates of the

closeness centrality for all the vertices of a graph by iteratively adding new vertices

to the sample. The first is a deterministic approach based on the Farthest-First

Traversal algorithm described in [Gon85] and the second is a progressive random-

ized approach based on [CCK15]. For each of them we introduce different variants

whose qualities are analyzed from a theoretical point of view. We conducted an

extensive experimental analysis to compare these novel approaches with each other

and with the state-of-the-art RAND, [EW04] and [CCK15]. We based our exper-

iments on road networks and social graphs, which feature different topological

properties, and we used the relative errors of the closeness centrality estimates to

assess the solution quality. The comparison outcome of the closeness centrality

estimation showed that the deterministic approach achieves good performances on

road networks, the progressive randomized approach is superior in every aspect

and we observe good performances of RAND.

The work is structured as follows. Chapter 2 describes the basics required

to understand our research. It presents fundamental graph theory and graph

analytics notions. Then, it defines some important centrality measures and de-

scribes how the closeness centrality can be computed. Lastly, it illustrates some

clustering algorithms that inspired our approaches. Chapter 3 describes the state-

of-the-art approaches for the closeness centrality estimation presented in [EW04]

and [CCK15]. For each approach we presents both the pseudocode and a theoret-

ical analysis of its quality. Chapter 4 presents a selection of the most promising

novel approaches we designed. We present them in the same order in which they

were conceived and for each one we provide the pseudocode and an analysis on

their operations. Chapter 5 describes in detail the extensive experimental analysis

and reports a selection of the results. Finally, Chapter 6 summarizes our findings

and discuss possible future developements of the work.

Chapter 2

Preliminaries

This chapter introduces the reader to the research topic by describing

the basics needed to understand our work. Most of the concepts pre-

sented are described with more detail in [CLRS09]. The first section

presents the fundamental graph theory notions in order to clarify the

notation used throughout the work, furthermore describes in short how

graphs could be represented in memory and two of the fundamental

search algorithms used in our methods. In the second section we de-

scribe some basic tools used in graph analytics, some topological struc-

tures of complex networks and the introduction of the dimensionality

of a graph used as input parameter in certain applications. The third

section illustrates the most relevant centrality measures described in

literature. The forth section focuses on the computation of the close-

ness centrality, core of our research. In the fifth section we introduce

the approximation algorithms which are necessary to understand some

of the previous works. Finally in the sixth section we describe some

methods used to solve clustering problems which inspired our new al-

gorithm designs.

2.1 Graph Theory Review

In graph theory a graph is a structure consisting of a set of objects and a set of

pairwise relations among them. The objects are called vertices and the pairwise

relations are called edges. Often, the terms nodes, for the objects, and arcs or links,

for the pairwise relations, are used. Both vertices and edges could have attributes

containing useful information related to them. Formally a graph G = (V,E) is

an ordered pair where V represents the set of vertices and E ⊆ V × V represents

the set of edges. When a graph has self loops (i.e. an edge composed by a pair

3

4 Preliminaries

of equal vertices) or multiple edges between the same pair of vertices it is called a

multi-graph, otherwise, if none of such edges are present, it is called simple graph.

A graph is undirected (resp. directed) if edges are unordered (resp. ordered)

pairs, and is weighted if each edge has a numerical attribute w representing a

weight. It is possible to describe a weighted graph with the triplet G = (V,E,w)

where w : E → R is a function that maps every edge into a real number.

A pair of vertices v, u ∈ V are said to be adjacent if they have an edge (v, u) ∈
E connecting them. The set of all the adjacent vertices with respect to a generic

vertex v corresponds to the neighborhood (or adjacency list) of v, and its degree

δ(v) corresponds to the number of vertices in such neighborhood. In case of a

directed graph, it is possible to distinguish between the in-degree δ−(v) and the

out-degree δ+(v). The former counts the neighbour vertices connected by the edges

pointing to v, the latter counts the adjacent vertices whom edges point out from

v. An edge e ∈ E is incident to a vertex v ∈ V if it contains such vertex while an

edge ei is said to be incident to an edge ej if they have one vertex in common.

The edges in a graph define a rich set of possibilities for moving through the

vertices. A sequence of vertices v1, v2, . . . , vk with (vi, vi+1) ∈ E is called a path.

If such sequence does not contain repeated vertices is then called simple path. A

simple path that starts and ends with the same vertex is called a cycle. In case

of directed graphs, paths, simple paths and cycles are also directed, that is, the

edges inside the sequence have all the same direction.

Two vertices are connected if there exists at least one path containing both of

them, while they are unconnected or unreachable if no such path exists. A graph

is connected when every pair of vertices is connected, otherwise it is disconnected.

In the latter case the graph could be divided in connected components which are

maximal connected subgraphs. Thus, every vertex and edge in an unconnected

graph belongs to one connected component only.

A fundamental problem related to paths is the single-source shortest-paths

(SSSP) problem, which consist in finding a shortest-path form a source vertex

to all the other reachable vertices in the graph. The shortest-path between two

vertices in an unweighted graph is the connecting path with the smallest number

of edges while in a weighted graph corresponds to the connecting path where the

sum of the edge weights is the lowest.

The distance d(u, v) from u to v is the length of the shortest path form u to

v, or ∞ if the two vertices are unreachable, that is, they belong to two distinct

connected components.

The Breadth-First Search (BFS) is one of the simplest algorithms for searching

graphs, it is the archetype for many other graph algorithms and it solves the SSSP

problem on unweighted graphs. When it comes to weighted graphs, with positive

2.1 Graph Theory Review 5

weights, the solution to the SSSP problem is achieved by the Dijkstra’s algorithm.

These two algorithms are at the basis of our research and are briefly described

later on in this section.

2.1.1 Graph Representation

There are two standard ways to represent a graph G = (V,E): as a collection of

adjacency lists or as an adjacency matrix. Such representations applies to both

directed and undirected graphs. The adjacency-list has a more compact structure

and is used to represent sparse graphs, that is, graphs for which the edges number

|E| is much less than the squared vertices number |V |2. The adjacency-matrix

representation instead is used in case of dense graphs, that is, graphs for which

|E| is close to |V |2, or when it is necessary to quickly know if there is an edge

connecting two given vertices.

The adjacency-list representation of a graph G = (V,E) consist of an array of

|V | lists, one for each vertex in the graph. For each vertex u ∈ V , the adjacency

list contains all the adjacent vertices to u in G.

The adjacency-list representation requires an amount of memory to store the

graph that is Θ(|V |+ |E|), for both directed and undirected graphs.

The adjacency-matrix representation of a graph G = (V,E) consist of a |V | ×
|V | matrix A = (aij), where all the vertices are numbered 1, 2, . . . , |V |, such that

aij =

{
1 if (i, j) ∈ E ,

0 otherwise .

The adjacency-matrix representation requires Θ(|V |2) memory to store the graph.

We assume that every algorithm described throughout the course of this work

considers the adjacency-list representation of its input graph.

2.1.2 Breadth-First Search Algorithm

Given a graph G = (V,E) and a source vertex s, the Breadth-First Search al-

gorithm discovers the vertices reachable from s by systematically exploring the

edges of G. It computes the distance (smallest number of edges) form s to each

reachable vertex and it also produces the BFS tree with root s that contains all

reachable vertices. For any vertex v the path from v to s in the BFS tree corre-

sponds to a shortest-path in G from s to v, that is, a path containing the smallest

number of edges.

The algorithm, whose pseudocode is reported below as Algorithm 1, expands

the frontier between discovered and undiscovered vertices in order to discover all

the vertices at distance k form s before discovering any vertices at distance k+ 1.

6 Preliminaries

This means that the algorithm expands its frontier first in breadth, from which it

takes its name.

The algorithm keeps track of progress by coloring each vertex white or black

through its execution and by adding discovered vertices to a first-in-first-out queue.

All vertices start out white and may later become black. During the search, a

vertex is discovered the first time it is encountered, it becomes black and it is

added to the queue. The black vertices still in the queue that have at least one

adjacent white vertex represent the frontier between discovered and undiscovered

vertices.

Algorithm 1 Breadth-First Search algorithm

1: procedure BFS(G, s)

2: for all vertices u ∈ V − {s} do . initialize vertex attributes

3: u.color ← WHITE

4: u.distance←∞
5: u.parent← NIL

6: end for

7: s.color ← BLACK

8: s.distance← 0

9: s.parent← NIL

10: Q← ∅ . Initialize the queue

11: Enqueue(Q, s) . add the source vertex to the queue

12: while Q 6= ∅ do

13: u← Dequeue(Q)

14: for all vertices v adjacent to u do

15: if v.color = WHITE then

16: v.color ← BLACK

17: v.distance← u.distance+ 1

18: v.parent← u

19: Enqueue(Q, v)

20: end if

21: end for

22: end while

23: end procedure

The Breadth-First Search builds a BFS tree, initially containing only its root,

which is the source vertex s. Every time a white vertex v is discovered by scanning

the adjacent vertices of an already discovered vertex u extracted from the queue,

the vertex v and the edge (u, v) are added to the tree. Vertex u is the predecessor

or parent of v in the BFS tree. Each vertex v 6= s is discovered once during the

2.1 Graph Theory Review 7

search thus it has exactly one parent.

The algorithms attaches three attributes to each vertex in order to store the

current color, the predecessor vertex in the BFS tree and the distance from the

source vertex. As described in Algorithm 1 all vertices are white except the source

vertex which is black, that is, it has already been discovered and added to the

queue. While the queue is not empty the breadth-first search explores the ad-

jacency list of the vertices extracted from the queue and for every unexplored

vertex it founds, it changes its color to black and inserts it into the queue. Since

the queue is first-in-first-out than the frontier is explored in breadth first.

Given a graph G = (V,E) the time complexity of breadth-first search is

O(|V | + |E|) which is linear with respect to the sizes of the graph G and the

space complexity is O(|V |+ |E|).

2.1.3 Dijkstra’s Algorithm

Given a weighted graph G = (V,E,w) where every edge e has a non-negative

weight assigned by the function w : E → R and a source vertex s the Dijkstra’s

algorithm solves the SSSP problem for both undirected and directed graphs.

The algorithm maintains an initially empty set S of vertices whose final shortest-

path weights form the source s have already been determined and, for each vertex

u ∈ V , it keeps its shortest-paths estimate that will be updated each time an ad-

jacent vertex added to S. The algorithm repeatedly selects the vertex u ∈ V − S
which has the minimum shortest-path estimate, adds u to S, and relaxes all edges

leaving u. The process of relaxing an edge (u, v) consist of testing whether the

shortest path to v found so far can be improved by going through u and, if so,

update the v distance and parent attributes.

The pseudocode of Dijkstra’s algorithm is reported below as Algorithm 2. Its

time complexity depends on the implementation of the min-priority queue. Each

entity added to the queue represent a vertex u of the graph, its key corresponds to

the shortest-path weight from u to the source vertex s estimated so far though the

course of the algorithm, and its value is a record that contains other information on

the vertex u (such as the index, the parent vertex, and the color). The first possible

implementation is an array where each cell corresponds to a vertex numbered

from 1 to |V | and contains the distance from the source vertex estimated so far.

In this scenario the operations of inserting and decreasing the keys (i.e. update

the distance of a vertex) of the priority queue elements takes O(1) time, and

each extraction from the queue takes O(|V |) time since is necessary to search

through the entire array. Therefore the complexity of Dijkstra’s algorithm is

O(|V |2 + |E|) = O(|V |2).

Assuming that the input graph of the algorithm is sufficiently sparse, that is,

8 Preliminaries

the number of edges is o(V 2/ log V), it is possible to improve the time complexity

by implementing the min-priority queue with a binary min-heap structure. The

time complexity to create the heap is O(|V |), which is negligible with respect

to the overall complexity. The operations of extracting and decreasing the keys

inside the heap takes both O(log |V |) time. Since there are |V | extract operations

and at most |E| (2|E| in case of undirected graph) decrease key operations the

overall complexity of the Dijkstra algorithm became O((|V |+ |E|) log |V |), which

is better than O(|V |2) when the graph is sparse.

A further improvement could be achieved by implementing the min-priority

queue with a Fibonacci heap. This structure could perform a decrease key oper-

ation in O(1) amortized time and the extract operation in O(log |V |) amortized

time, which means that the overall complexity of Dijkstra’s algorithm became

O(|V | log |V |+ |E|).

Algorithm 2 Dijkstra’s Single-Source Shortest-Paths Algorithm

1: procedure Dijkstra(G,w, s)

2: for all vertices u ∈ V do

3: u.distance←∞
4: u.parent← NIL

5: end for

6: s.distance← 0

7: S ← ∅
8: Q← V

9: while Q 6= ∅ do

10: u← ExtractMin(Q)

11: S ← S ∪ {u}
12: for all vertices v adjacent to u do

13: if v.distance > u.distance+ w(u, v) then

14: v.distance← u.distance+ w(u, v)

15: v.parent← u

16: end if

17: end for

18: end while

19: end procedure

2.2 Relevant Topological Characteristics

Networks that arise in many real-world applications are conveniently represented

as graphs and their analysis is often influenced by variety of distinctive features,

2.2 Relevant Topological Characteristics 9

such as, subsets of highly connected vertices, treelike structures, and highly con-

nected hubs.

The most common tools developed for graph analytics consider vertex degrees,

distance statistics, and clusters of connected vertices as methods to describe graph

structure and topology.

2.2.1 Some Topological Features

Vertex degrees could give insights about the graph structure by combining local

information of each vertex. This is done by considering the distribution of the

vertex degrees, for instance, when the distribution is concentrated around a value,

that is, all the vertices have more or less similar vertex degree, the graph will have

similar structures on a local basis that will reflect on a more regular structure

overall. A good way to visualize this structural property is by a vertex degree

ranked histogram.

Some important graph analytics measures come from the distance statistics

which summarize structural properties from the distances between pair of vertices

in the graph. Given a connected graph G = (V,E) the eccentricity of u ∈ V is

the maximum distance among all the possible shortest paths starting form u, the

radius of G is the minimum eccentricity among its vertices, and the diameter of

G is the maximum distance among all the possible shortest paths in the graph.

Another distance statistic measure is the path length of a vertex, that is, the

sample mean of the sum of distances of a vertex. Form this measure it is possible

to define the average path length, which is the average over all the vertices of their

path lengths, that represent in a single value how the vertices are spread in the

graph. Small average path length values imply compact graphs where vertices are

close to each other on average.

Lastly the local clustering and the global clustering coefficients are used to

measure, respectively, how strongly connected are the vertices within the graph in

a local and global point of view. The former calculates the clustering coefficient of

each vertex by counting the number of edges between the vertex’s neighbors, and

then dividing by the maximum possible number of edges between the neighbors.

The latter instead counts the number of triangles, which are complete subgraphs

with exactly tree vertices, and divides by the number of distinct triples, which are

subgraphs with exactly three vertices and two edges.

2.2.2 Types of Topologies

In real world applications graphs are used to represent many different kind of data.

Large real world networks, also referred to as complex networks, may have different

10 Preliminaries

local features but in general they share similar global characteristics. Researchers

have designed models to represent real world networks by studying their structural

components with the tools of graph analytics. From these studies, they defined

different graph categories, such as mesh-like graphs, small world graphs and scale-

free graphs. In real world applications, the first two types are not commonly found

while the last two types arise frequently.

A mesh graph has a configuration of vertices and vertices that forms a regular

tiling and it is embedded in some euclidean space Rn. In these kind of graphs,

both path length and vertex degree distributions are concentrated, that is, all its

vertices have similar vertex degrees and similar sum of distances. Furthermore, the

vertices’ clustering coefficient are high since close vertices in the euclidean space

are connected, that is, vertices neighbours are neighbours too. Road networks are

a good example of mesh-like graphs that could be found in real world applications,

they embed in a two-dimensional euclidean space.

In a small world graph two randomly chosen vertices are always at a distance

that is proportional to the logarithm of the number of vertices in the graph, that is,

vertices within the network are all close together (i.e. the small world phenomena).

These graphs have high clustering coefficients and low average path lengths. Many

real world networks share these properties such as social graphs, some web based

graphs like Wikipedia, and gene graphs.

Scale free graphs vertex degrees distributions follow a power law, that is, the

fraction of vertices of degree k is proportional to k−α where α ∈ (2, 3). This means

that there are a few vertices, called the hubs, that have a lot of neighbours while

the majority of the other vertices have just a few incident edges that likely connect

them to at least one of the hubs and a few other vertices. The local clustering

coefficient also follows a power law, but this time the higher the vertex degree the

lower the clustering coefficient is. Furthermore these graphs have a low average

path length because vertices are close together thanks to the hubs. These graphs

are very common when it comes to real world use cases and are present in different

kind of applications such as internet topology, collaboration graphs, airline graphs,

biological graphs, and social graphs.

2.2.3 Dimensionality

An interesting parameter to understand graphs topology is the concept of dimen-

sion. There are different definitions for it but in this section we will describe the

ones that are more relevant to our purposes.

The first graph dimension that has been defined in literature is the euclidean

dimension. Given a graph G = (V,E), the euclidean dimension is the least integer

n such that there exists a bijective embedding f : V → Rn for which |f(u)−f(v)| =

2.3 Centrality Measures 11

1 if and only if (u, v) ∈ E [EHT65]. For instance a complete graph of size |V | will

have a dimension n = |V | − 1.

Another parameter used to describe graph structure is the doubling dimension.

This measure is defined for a general metric space. A metric space is an ordered

pair (M,d) where M is a set and d(·) is a metric on M , that is, a function

d : M ×M → R such that for every x, y, z ∈M holds that d(x, y) ≥ 0, d(x, y) = 0

if and only if x = y, d(·) is symmetric and it satisfies the triangle inequality.

Given a weighted undirected graph G = (V,E,w) it is possible to define a distance

measure d(u, v) as the shortest path from u to v. This distance satisfies all the

properties of a metric, therefore the pair (V, d) is a metric space.

To define the doubling dimension for such a graph it is necessary to define

the ball of radius r around a vertex v B(v, r) = {u ∈ V : d(u, v) ≤ r}, that is,

the set of vertices that are within a distance r from vertex v ∈ V . The doubling

dimension of G is the minimum value D such that, for every r > 0 and for every

v ∈ V , we have that every ball B(v, 2r) is covered by at most 2D balls of radius r.

2.3 Centrality Measures

Centrality measures aim at revealing vertex importance in a graph. There are

many alternatives for vertex centrality in a graph which could be divided in three

main categories: geometric, path-based and spectral. Even though centrality mea-

sures are quite different from one another, most of their definitions stem from the

natural idea that a vertex at a center of a star is more important than the periph-

ery. We will review a few examples from the various categories. However, since

the scope of our research focuses on the closeness centrality, we refer to [BV14]

for a more complete overview of the topic.

2.3.1 Geometric Measures

vertices importance for these measures is considered a function of distances, that is,

geometric centrality is based on how many vertices are present at every distance

from the selected vertex. Furthermore, some of the oldest measures defined in

literature belong to this category.

Degree Centrality

Degree centrality is the simplest centrality measure which could be considered geo-

metric because it counts the vertices at distance one, that is, its value is the degree

(if the graph is undirected) or the in-degree (if the graph is directed) of a vertex.

Degree centrality has some drawbacks that preclude its usage in some applications

12 Preliminaries

(e.g. in a web page scenario it is easy to increase a page importance by adding

links to that page and increase its in-degree), but it is a good baseline. Computing

the degree centrality measure for every vertex in the graph is polynomial in time,

more precisely, it is Θ(|E|) in case of a adjacency list representation and Θ(|V |2)

in case of adjacent matrix representation of the graph.

Closeness Centrality

This measure has been proposed in the late forties by Bavelas [Bav50]. Given a

graph G = (V,E) the closeness centrality of a vertex u ∈ V is defined by

ccu =
1∑

v∈V d(v, u)
. (2.1)

The idea behind this measure is that vertices that are more central are closer

to all the other vertices in the graph, that is, they have smaller distances from all

the other vertices. Therefore, a small sum of distances implies an high importance

value.

The closeness centrality is also used in its normalized version defined by

c̄cu =
|V | − 1∑
v∈V d(v, u)

. (2.2)

This definitions are applicable only for connected graphs (strongly connected in

case of undirected graphs) because the distance of unreachable vertices is infinity

by definition and brings the closeness centrality value to be zero for every vertex

in an unconnected graph.

Computing the closeness centrality reduces to the computation of, for every

vertex, the sum of distances to all other vertices, which means solving the all-pairs

shortest-paths problem.

The closeness centrality of every vertex could be computed in polynomial time

in the size of the input graph.

Harmonic Centrality

The harmonic centrality is the most recent measure proposed to adapt the close-

ness centrality for unconnected graphs. Instead of computing the inverse of the

sum of distances it computes the sum of the inverse of the distances. Given a

graph G = (V,E) the harmonic centrality for a vertex u ∈ V is defined by∑
v∈V,v 6=u

1

d(v, u)
(2.3)

2.3 Centrality Measures 13

When a pair of vertices are unreachable the distance is infinity and the con-

tribution to the sum is zero. This centrality measure has been proven to behave

similarly to the closeness centrality on connected graphs (except for some particu-

lar graph topologies that are not common in real applications) [Roc09]. The time

complexity for its computation is the same as for the closeness centrality.

2.3.2 Path-based Measures

Path-based measures considers all shortest paths (or all paths) coming into a

vertex to assign its importance value.

Betweenness Centrality

The idea behind the betweenness centrality is to measure how frequently a vertex

is within the shortest path connecting two other vertices in a graph. Assuming σvu
to be the number of shortest paths connecting vertex v to vertex u, and σuv(x) to

be the number of such paths that pass through vertex x, the betweenness centrality

of x is defined by ∑
u,v∈V, u,v 6=x, σuv 6=0

σuv(x)

σuv
(2.4)

The intuition behind this measure is that if a large fraction of shortest paths

passes through x, then x is an important junction point of the graph, thus, it has

an higher importance.

In case of a weighted graph, each path is multiplied by its distance.

The computational time to compute the betweenness centrality is polynomial

with respect to the size of the input graph.

2.3.3 Spectral Measures

Spectral measures compute the left dominant eigenvector of some matrix derived

from the graph. These measures differentiate from each other depending on how

the matrix is derived. These are slightly more complex measures but it has been

discovered that they could all be expressed as path-based measures (we refer to

[BV14] for more details).

Left Dominant Eigenvector Centrality

The left dominant eigenvector centrality is the most obvious spectral measure that

computes the left dominant egienvector of the adjacency matrix of the graph. The

idea behind this measure consist in assigning importance to vertices based on the

importance of their adjacent ones.

14 Preliminaries

Given a graph G = (V,E) and A = (avu) its adjacency matrix where every

vertex is numbered 1, 2, · · · , |V |, the dominant eigenvector centrality score su of

vertex u ∈ V is defined by

su =
1

λ

∑
v∈V, v 6=u

avusv (2.5)

where the sum considers only the adjacent vertices to u for whom avu > 0 and λ

is a constant. This equation could be rewritten in matrix form as

xA = λx (2.6)

where x is the left dominant eigenvector with |V | components and λ is its left

dominant eigenvalue. The centrality measure for the ith vertex is represented by

the normalized left dominant eigenvector ith component.

The eigenvalue computation could be made with the power iteration algorithm,

which is an iterative method that converges to the solution and finds the dominant

eigenvector and corresponding eigenvalue.

Page Rank

The Page Rank is the most famous centrality measure to compute vertices cen-

trality in a directed graph because has been used to assign vertex importance in

a web graph in order to rank web pages in the Google search results.

The idea behind this measure was to model a person who surfs the web, and

assign higher importance to the pages which are more likely to be surfed.

Consider a random surfer, starting form a random vertex, that navigates the

directed graph G = (V,E). Suppose that at some point he is positioned at vertex

v ∈ V . If v has no outgoing edges, then the surfer will move to a random vertex in

V . Otherwise, the surfer will move to an adjacent vertex along any of the outgoing

edges, with probability α · 1/nv where nv represents the number of the outgoing

edges form v, or to an arbitrary vertex in V , with probability 1 − α, for some

α ∈ (0, 1).

The page rank for every vertex in the graph are the elements of the unique

vector p satisfying the equation

p = αp‖A‖1 + (1− α)v (2.7)

where α is the damping factor and v is a preference vector (which must be a

distribution, that is, its elements must sum to one). The damping factor represents

how likely it is that a random surfer will follow an outgoing edge or jump to a

random vertex, while the preference vector assigns to each vertex in the graph a

probability to be visited by a surfer jump, that is, the probability to jump on the

ith vertex is the value in the ith element of the preference vector.

2.4 Closeness Centrality Computation 15

2.4 Closeness Centrality Computation

Most of the geometric centrality measures could be led back to the solution of

the all-pairs shortest-paths problem such as the closeness centrality measure,

focus of our research. In fact, the exact computation of the sum of distances

W (u) =
∑

v∈V d(u, v) for all the vertices u ∈ V , required to compute the closeness

centrality, is achieved by computing all the distances among all the vertices pairs

within the graph. Therefore it is necessary to find all the shortest paths between

all the vertices pairs in the graph which lead us back to the all-pairs shortest-paths

solution.

2.4.1 All-Pairs Shortest-Paths

Given a weighted graph G = (V,E,w), where the function w : E → R maps the

edges to their weights, the all-pairs shortest-paths problem consist in finding for

every pair of vertices u, v ∈ V a shortest (least-weight) path between u and v,

where the weight of a path corresponds to the sum of its edges weights.

There are different alternatives to solve the all-pairs shortest-paths problem.

The brute force approach consist in running a SSSP algorithm |V | times, using each

of the vertices in V as the source. When the edges’ weights of the input graph are

non-negative it is possible to compute the SSSP using the Dijkstra’s algorithm. If

the input graph presents negative weights but does not present negative-weighted

cycles the Bellman-Ford algorithm should be used instead. The former brute

force solution leads to different time complexities based on the implementation

of the min-priority queue of the Dijkstra’s algorithm. Implementing the queue

with an array the overall time complexity is O(|V |3 + |V ||E|) = O(V 3), using a

binary heap implementation yields O(|V ||E| log |V |) time complexity and using a

Fibonacci heap leads to a running time of O(|V |2 log |V |+|V ||E|). The latter brute

force approach the time complexity is O(|V |2|E|) because each SSSP computation

runs in O(|V ||E|) time.

The alternatives to the brute force approaches are the Floyd Warshall and

Johnson-Dijkstra algorithms. Both the algorithms solve in polynomial time the

all-pairs shortest-paths problem for input graphs that do not present negative-

weighted cycles.

The Floyd Warshall algorithm applies on directed weighted graphs G = (V,E)

represented by their weighted adjacency-matrix A = (aij) where

aij =

0 if i = j

the directed edge weightwij if i 6= j, (i, j) ∈ E
∞ if i 6= j, (i, j) /∈ E

(2.8)

16 Preliminaries

It relies on the following observation. Assuming that the vertices of G are V =

{1, 2, . . . , n}, let us consider a subset {1, 2, . . . , h} of vertices for some h. For any

pair of vertices i, j ∈ V , consider all the paths from i to j whose intermediate

vertices (i.e. the vertices of the path excluding the first and the last in the se-

quence) are all drawn from {1, 2, . . . , h}, and let pij be the shortest path from

among them. The algorithm exploits a relationship between such path pij and the

shortest paths from i to j with all the intermediate vertices in the set {1, 2, . . . , h}.
The relationship depends on whether or not h is an intermediate vertex of path

pij .

• If h is not an intermediate vertex of path pij , then all its intermediate vertices

are in the set {1, 2, . . . , h− 1}. Which means that a shortest path form i to

j with intermediate vertices drawn from {1, 2, . . . , h − 1} is also a shortest

path from i to j with intermediate vertices drawn from {1, 2, . . . , h}.

• If h is an intermediate vertex of path pij , we decompose pij into pih and phj .

Since pij is a shortest path, then pih and phj are both shortest paths whose

intermediate nodes are drawn from {1, 2, . . . , h− 1}

The algorithm computes the shortest paths by iteratively adding vertices to the

initially empty set of intermediate vertices until h = |V |. The initial shortest paths

p
(0)
ij contains the aij values of the adjacency-matrix of the input graph because

there are no intermediate vertices. For each pair of vertices i, j, every time a

new node is added to the intermediate set {1, 2, . . . , h − 1} the shortest path

p
(h)
ij = min{p(h−1)

ij , p
(h−1)
ih + p

(h−1)
hj }. From the previous observation, keeping the

minimum between the shortest path without and with h fore each intermediate

until h = |V |, suffice to assure that p
|V |
ij contains the shortest path from i to j

within the input graph. The Floyd Warshall time complexity is Θ(|V |3) because

for each intermediate vertex in V it computes the minimum operation for every

possible pair of vertices in V .

The Johnson-Dijkstra algorithm solves the all-pairs shortest-paths problem for

sparse directed weighted graphs that do not have negative-weighted cycles. It uses

a re-weighting technique which assure that a positive weight will be assigned to

all edges and that the shortest paths among the nodes pairs remain unchanged.

It then computes the shortest paths, using the positive re-weighted edges, for

each vertex in V by running |V | times the Dijkstra’s algorithm with a Fibonacci

heap implementation of the min-priority queue. The re-weighting is achieved by

adding an external vertex s /∈ V to the graph that has only outgoing edges.

each with weight 0, pointing to all the vertices in V . From this new graph, the

algorithm computes the SSSP from s to all the other vertices using the Bellman-

Ford algorithm, and assigns to each vertex u ∈ V the shortest path weight h(u)

2.4 Closeness Centrality Computation 17

from s to u. The re-weighting consist of assigning to each edge (u, v) ∈ E the

new weight ŵ(u, v) = w(u, v) + h(u) − h(v). If the graph does not have negative

weighted cycles than the new weight ŵ(u, v) is positive for any edge (u, v) ∈ E
since, by the triangle inequality, it holds that w(u, v)+h(u) ≥ h(v). The Johnson-

Dijkstra’s algorithm computes the re-weighting in O(|V ||E|) time because of the

Bellman-Ford algorithm complexity, and it computes the all-pairs shortest-paths

in O(|V |2 log |V | + |V ||E|) time since it runs |V |times the Dijkstra’s algorithm.

Therefore the overall time complexity is O(|V |2 log |V |+ |V ||E|).

Summarizing, the all-pairs shortest-paths problem could be solved in polyno-

mial time in the size of the input graph.

2.4.2 Sum of Distances approximation

The exact computation of the sum of distances for every vertex in the graph

is feasible when its input size is small enough. It became impractical when we

deal with huge graph instances, therefore alternative computation techniques are

needed.

In order to compute the sum of distances for every vertex it is necessary to

calculate the distance between every pair of vertices within the graph, that is,

solve the all-pairs shortest-paths problem. The alternative methods developed so

far reduce the number of SSSP required to compute the sum of distances for every

vertex in the graph by a smart sampling of the source vertices. They are able

to estimate the sum of distances of every vertex in the graph with the distance

information obtained from the SSSP of the sampled vertices. Every method has a

different sampling technique that produce different guarantees for the estimation

quality.

As already described earlier in the chapter, the closeness centrality of a vertex

u is defined as the inverse of the sum of distances ccu = 1/W (u). If we are able

to estimate the sum of distances with the value Ŵ (u) such that (1 − ε)W (u) ≤
Ŵ (u) ≤ (1 + ε)W (u), where ε > 0 is the relative error, and we define the closeness

centrality estimate as ĉcu = 1/Ŵ (u). Than a small relative error over the sum

of distances estimate implies a small relative error on the closeness centrality

estimate. In fact, it holds that ĉcu ≥ 1
(1+ε)W (u) = ccv

(1+ε) and ĉcu ≤ 1
(1−ε)W (u) =

ccv
(1−ε) . From these bounds, it is deduced that it exists a value ε′ (with ε′ that tends

to ε when ε tends to 0) such that

(1− ε′)ccu ≤ ĉcu ≤ (1 + ε′) (2.9)

18 Preliminaries

2.5 Approximation Algorithms

Approximation algorithms have been designed to overcome the need of solving

important intractable optimization problems by finding near-optimal solution in

polynomial time. A combinatorial optimization problem is a computational prob-

lem Π(I, S,Φ,m) defined by a set of instances I, a set of solutions S, an objective

function Φ and m ∈ {min,max}. For each instance i ∈ I there is a subset Si ⊆ S
of feasible solutions. Given i ∈ I the problem requires to find an optimal solution,

namely a feasible solution s ∈ Si which minimizes or maximizes the objective

function Φ(s) according to m.

In the era of big data, even optimization problems that could be solved in poly-

nomial time may be impractical due to the huge input sizes. Therefore approxi-

mation algorithms become useful to reduce the computational effort in exchange

for a controlled loss in solution accuracy.

Suppose that the objective function returns a positive value for every feasible

solution. An approximation algorithm A for a combinatorial optimization problem

Π(I, S,Φ,m) has an approximation ratio of ρ(n) if, for any instance i ∈ I of size

n, it returns a feasible solution A(i) ∈ Si, such that

Φ(A(i))

mins∈Si Φ(s)
≤ ρ(n) if m = min or

maxs∈Si Φ(s)

Φ(A(i))
≤ ρ(n) if m = max

(2.10)

that is, it returns a feasible solution within a factor ρ(n) with respect to the

optimal solution of the optimization problem. The algorithm A is called a ρ(n)-

approximation algorithm.

For many optimization problems, polynomial-time approximation algorithm

with small constant approximation ratios are known, although there are problems

whose best known approximation algorithm has a ratio that grows as a function of

the input size n. Another interesting class of approximation algorithms are those

designed to achieve increasingly better approximation ratios by using more and

more computation time. That is, it is possible to trade the computational effort in

exchange for the quality of the approximation. These are known as approximation

schemes. An approximation schemes provides a (1 + ε)-approximation algorithm

for every value ε > 0, which is given as part of the input.

Approximation schemes could be polynomial in time if their time complexity

is polynomial in the size n of its input instance. Moreover they could be fully

polynomial in time if their time complexity is polynomial in both 1/ε and the

size n of the input instance. Polynomial time approximation schemes may be

exponential with respect to 1/ε which implies an exponential growth in complexity

as the approximation is more and more precise. Instead fully polynomial time

2.6 Center-Based Clustering 19

approximation schemes could trade better approximation with a polynomial loss

in time complexity.

Both approximation algorithms and approximation schemes could be random-

ized, that is, for every input instance the execution depends on a number of

random choices which may return different feasible solutions. Typically, the com-

plexity and/or the approximation factor featured by an approximation algorithm

are analyzed probabilistically.

2.6 Center-Based Clustering

Our novel closeness centrality estimation approaches have been inspired by some

well known techniques used to solve center-based k-clustering problems. Given

a metric space (M,d). A set P ⊆ M of n points and an integer k such that

1 ≤ k ≤ n. A k-clustering is a tuple C = (C1, C2, . . . , Ck; c1, c2, . . . , ck) where

(C1, C2, . . . , Ck) defines a partition of P and c1, c2, . . . , ck are suitable selected

centers for the clusters such that ci ∈ Ci for every 1 ≤ i ≤ k. A k-clustering

problem for (M,d) is an optimization problem whose instances are finite sets

of points P ⊆ M . For each instance P , the problem requires to compute a k-

clustering of P , which minimizes a suitable objective function Φ(C). The most

relevant clustering problems are the k-center, k-means and k-median clustering

whose objective functions are respectively

• Φk-center(C) = maxki=1 maxx∈Ci d(x, ci);

• Φk-means(C) =
∑k

i=1

∑
x∈Ci

(d(x, ci))
2;

• Φk-median(C) =
∑k

i=1

∑
x∈Ci

d(x, ci).

Our first approach takes inspiration from the Farthest-First Traversal (FFT)

algorithm, proposed by Gonzales in [Gon85], which is a 2-approximation sequen-

tial algorithm that solves the k-center clustering problems. The solution to this

problem is the k-clustering that minimizes the objective function defined above,

that is, the maximum distance of an input point from the closest center. The

algorithm takes in input a set P of n points from a metric space (M,d) and an

integer k > 1 which determines the number of clusters. A point x is assigned

to the cluster Cj if the distance d(x, cj) to its center cj is the lowest among the

distances d(x, ci) to the other cluster centers ci for 1 ≤ i ≤ k, i 6= j. The centers

are selected and added to an initially empty set S in an iterative fashion. Except

the first center c1, which is arbitrarily selected from P , the center ci at the ith

iteration is the farthest point from set S = {c1, c2, . . . , ci−1}, where the distance

of a point x from S is defined as d(x, S) = min{d(x, c) : c ∈ S}. This means that

the new cluster center at iteration i is ci = argmaxx∈P−S d(x, S). It is possible

20 Preliminaries

to assign the points in P to their corresponding clusters during or after the k − 1

iterations. In the former case it is necessary to keep track of the closest center

index for each point x ∈ P . Firstly all the points are assigned to the cluster cen-

tered at c1. At every iteration i if the new selected center is closer to the point x

than the previously selected closest center than the index is updated to i. In the

latter case, once all the k centers have been defined, each point is assigned to the

cluster of the closest center by looping through all of them once. In both cases

the time complexity is O(nk).

Other two algorithms from which we took inspiration are the k-means++ and

k-median++. The former is used to initialize the centers (centroids) of the well-

known Lloyd’s algorithm [Llo57] for the k-means clustering problem. The latter is

used to initialize the centers (medoids) of the Partitioning Around Medoids algo-

rithm which is used to find sub optimal solutions for k-median clustering problems.

Both the approaches are capable finding good approximations for their respective

clustering problems. The procedure they use for the center selection is similar

to the one adopted by FFT, that is, they use the same iterative procedure but

the centers are randomly selected at each iteration based on probabilities values

that depend on the distances of the points to the set S. The difference between

the two probabilistic approaches consists in the computation of such probabilities.

The first point is selected uniformly at random in both of the approaches. At

iteration i the next center ci is selected from P − S, with S = {c1, c2, . . . , ci−1},
where for each x ∈ P−S the probability of being selected is (d(x,S))2∑

y∈P−S (d(y,S))2
for the

k-means++ algorithm and d(x,S)∑
y∈P−S d(y,S) for the k-median++ algorithm. As for

the FFT algorithm, it is possible to keep track of the clusters within the iteration

or compute them at the end by assigning the points to their closest center cluster.

Chapter 3

Traditional Approaches

In this chapter we describe in detail the two approaches already pre-

sented in literature. For each of them we describe, specify the algo-

rithm and analyze the quality of estimations it provides. Both designs

uses probabilistic sampling techniques and are able to compute the es-

timates after a full iteration over that sample. The reader may see in

the next chapter that our approaches could all be implemented to pro-

gressively refine the estimates and could be stopped at any iteration

and give a result.

3.1 Eppstein and Wang’s Method

In [EW04] Eppstein and Wang propose the first method designed to reduce the

computational effort required for the computation of the normalized closeness

centrality in exchange for a controlled loss of accuracy. They apply a random

sampling technique to approximate the inverse normalized closeness centrality of

all vertices in a weighted connected graph G = (V,E) to within an additive error

of ε∆ with high probability in time O(log |V |
ε2

(|V | log |V |+ |E|)), where ε > 0 and ∆

is the diameter of the graph. Furthermore they prove that their approach provides

a near-linear time (1 + ε)-approximation to the centrality of all vertices for graphs

that exhibit the small world phenomenon.

3.1.1 Algorithm

The algorithm they propose, called Rand, is a randomized approximation algo-

rithm able to estimate the closeness centrality of every vertex in the graph. Given

in input a weighted connected graph G = (V,E), Rand selects uniformly at ran-

dom k sample vertices and computes from each of them the SSSP to all the other

21

22 Traditional Approaches

vertices in the graph. Considering S = {v1, v2, . . . , vk} to be the set of the sam-

pled vertices, the estimated normalized closeness centrality ĉu of a vertex u ∈ V is

computed in terms of the average distance d̄(u, S) = 1
k

∑k
i=1 d(vi, u) to the sample

vertices as follows

ĉu =
|V | − 1

|V | 1k
∑k

i=1 d(vi, u)
=
|V | − 1

|V |d̄(u, S)
(3.1)

The time complexity depends on the number k of sample vertices and the

SSSP algorithm used. Considering a sparse positive weighted connected graph,

the algorithm runs in O(k(|V | log |V |+ |E|) time using Dijkstra’s algorithm.

We describe a variant of the Rand algorithm which, for every vertex, estimates

the sum of the distances with all other vertices. Recalling the relation between

these two measures it is clear that Eppstein and Wang’s method consider the sum

of distance estimate of a vertex u to be Ŵ (u) =
∑k

i=1
|V |
k d(vi, u), that is, |V |

times the average distance of vertex u to the sample set S. The pseudocode of the

algorithm is reported below as Algorithm 3.

Algorithm 3 Eppstein and Wang’s Rand algorithm

1: procedure Rand(G, k)

2: // Initialize the estimates

3: for all vertices u ∈ V do

4: Ŵ (u)← 0

5: end for

6: S ← ∅
7: for i← 1 to k do

8: vi ← SelectRandomVertex(V − S)

9: S ← S ∪ {vi}
10: compute SSSP distances d(vi, u) from vi to all other vertices u ∈ V
11: Ŵ (vi)←

∑
u d(vi, u)

12: for all u ∈ V − S do

13: Ŵ (u)← Ŵ (u) + |V |
k d(vi, u)

14: end for

15: end for

16: return (u, Ŵ (u)) for u ∈ V
17: end procedure

3.1.2 Analysis

We reformulate the analysis of [EW04] focusing on the sum of distances estimate

instead of the inverse normalized closeness centrality estimate.

3.1 Eppstein and Wang’s Method 23

We first prove that for any sample size k and for any vertex u holds that the

expected value Ŵ (u) is equal to the sum of distances W (u).

Theorem 3.1.1. E[Ŵ (u)] = W (u)

Proof. Let us consider a connected graph G = (V,E) and let n = |V |. Given that

the probability of selecting a generic vertex vi at random within k extractions

without replacement is

Pr
{

“extract vi within k extractions”
}

=

= 1− Pr
{

“NOT extract vi within k extractions”
}

=

= 1− n− 1

n
· n− 2

n− 1
· n− 3

n− 2
· · · · · n− k + 1

n− k + 2
· n− k
n− k + 1

=

= 1− n− k
n

=
k

n

(3.2)

Then the expected value of the sum of distances Ŵ (u) is

E[Ŵ (u)] = n
1

k
E
[k∑
i=1

d(vi, u)
]

= n
1

k

n∑
i=1

E[d(vi, u)] =

=
n

k

n∑
i=1

k

n
d(vi, u) = W (u)

(3.3)

The analysis of the algorithm requires the use of the Hoeffding’s probability

bounds for sums on independent random variables [Hoe63].

Lemma 3.1.2 (Hoeffding [Hoe63]). If x1, x2, . . . , xk are independent random

variables, ai ≤ xi ≤ bi, and µ = E[
∑ xi

k] is the expected mean, then for ξ > 0

Pr

{∣∣∣∣∑k
i=1 xi
k

− µ
∣∣∣∣ ≥ ξ

}
≤ 2 · e−2k2ξ2/

∑k
i=1 (bi−ai)2 . (3.4)

Theorem 3.1.3. Let G = (V,E) be a connected graph with diameter ∆. For any

ε > 0, by setting k = O(log |V |/ε2) we have that, with high probability, for each

vertex u ∈ V the estimator Ŵ (u) computed by Rand for the sum of distances

from u is within an additive factor ξ = ε|V |∆ of the exact value W (u).

Proof. We want to prove that the estimation error of our estimator Ŵ (u) is at

most ξ = ε|V |∆ for any vertex u ∈ V . We know from Theorem 3.1.1 that

E[Ŵ (u)] = W (u). Therefore we can bound the probability that the absolute differ-

ence between the sum of distances estimates Ŵ (u) and the actual sum of distances

24 Traditional Approaches

W (u) is more than ξ by applying the Hoeffding’s bound with xi = |V |d(vi, u),

µ = W (u), ai = 0, and bi = |V |∆.

Pr
{∣∣∣1
k

k∑
i=1

xi − µ
∣∣∣ ≥ ξ} =

Pr
{∣∣∣1
k

k∑
i=1

|V |d(vi, u)−W (u)
∣∣∣ ≥ ξ} =

Pr
{∣∣Ŵ (u)−W (u)

∣∣ ≥ ξ} ≤ 2 · e−2k2ξ2/
∑k

i=1 (bi−ai)2

≤ 2 · e−2k2ξ2/k(|V |∆)2

= 2 · e−Ω(kξ2/|V |2∆2)

(3.5)

For ξ = ε|V |∆, if we run the Rand algorithm with k = α log |V |
ε2

samples, such

that α ≥ 1, with high probability the absolute error between the sum of distances

estimator Ŵ (u) and the sum of distances W (u) of every vertex u in the graph will

be at most ε|V |∆.

From the Theorem 3.1.3 it is possible to bound with high probability also the

relative error of the sum of distances estimator Ŵ (u) with respect to the sum of

distances W (u) for every vertex u in the graph.

Corollary 3.1.4. Let G = (V,E) be a connected graph with diameter ∆. Suppose

that for every vertex u ∈ V its average distance from the other vertices, namely

d̄(u, V) = W (u)/|V |, is such that ∆/d̄(u, V) < t, for some t > 0. Then, for any

ε > 0, by running the Rand algorithm with k = O(log |V |/ε2) we have that, with

high probability, for each vertex u ∈ V the relative error of Ŵ (u) with respect to

W (u) is less than t.

Proof. Recalling the final inequality of the Theorem 3.1.3

Pr
{∣∣Ŵ (u)−W (u)

∣∣ ≥ ξ} ≤ 2 · e−Ω(kξ2/|V |2∆2) (3.6)

If we divide by W (u) both sides we have

Pr
{∣∣Ŵ (u)−W (u)

∣∣
W (u)

≥ ε |V |∆
W (u)

}
≤ 2 · e−Ω(kε2)

Pr
{∣∣Ŵ (u)−W (u)

∣∣
W (u)

≥ ε ∆

d̄(u, V)

}
≤ 2 · e−Ω(kε2)

(3.7)

If it holds that ∆/d̄(u, V) ≤ t for every vertex u ∈ V than we conclude our

proof.

3.2 Chechik et al. ’s Method 25

From this last proof it is clear that this approach guarantees small relative

errors over the computation of the closeness centrality only for particular types

of graphs, that is, when the ratio between the diameter and the average distance

of every vertex is bounded by a small enough constant t. For instance, in a small

world graph the diameter is relatively small with respect to the size of the input

and the average distances are similar for each vertex, which means that in such

graphs the Rand algorithm may perform well. We also expect good performances

on road networks were the average distance is similar for each vertex and within

a constant factor to the diameter. The time complexity required to have such

guarantees will be O(log |V |
ε2

(|V | log |V |+ |E|).

3.2 Chechik et al. ’s Method

The work done by by Chechik et al. [CCK15], proposes sharper tools to estimate

the average distance between points and the closeness centrality of vertices on

very large data sets. In particular they present estimators with tight statistical

guarantees whose computation is highly scalable.

They consider inputs that are either in the form of an undirected positive

weighted connected graph or a set of points in a metric space. In case of graphs,

the distances of the underlying metric correspond to the lengths of the shortest

paths between the vertices. They focus on the estimation of the sum of distances

W (u) =
∑

v∈V d(u, v), where V could be a set of points in a metric space or a

set of vertices of a graph. Given the definitions of average distance W (u)/|V |
and normalized closeness centrality (|V | − 1)/W (u), a small relative error on the

estimation of W (u) imply a small relative error on both values.

The approximation quality of the sum of distances estimator Ŵ (u) is measured

by the normalized root mean square error

√
E[(Ŵ (u)−W (u))2]/µ where µ is the

mean of the estimator. When the estimator is unbiased, as in this case, such

measure is the ratio between the variance σ and the mean µ of their estimator

which is called Coefficient of Variation (CV) in [CCK15]. Chebyshev’s inequality

implies that the probability that their estimator is within a relative error of η from

is mean is at least 1 − (CV)2/η2. Hence a CV of ε implies that the estimator is

within a relative error η = cε from its mean with probability ≥ 1− 1/c2.

Therefore their method computes estimates within a small Coefficient of vari-

ation ε and a small relative error with high probability, using O(log |V |/ε2) SSSP

computations.

In the following sections we will concentrate on the algorithm whose inputs

are in the form of graphs and we will refer to it as Cck algorithm.

26 Traditional Approaches

3.2.1 Algorithm

The Cck algorithm is based on the computation of a single weighted sample of

vertices that provides sum of distances estimates for all the vertices of the input

graph with tight statistical guarantees. The computations are divided in sampling

and estimation phases. The former receives in input the graph G(V,E), an integer

k and a base set S0, and produces in output a weighted sample of vertices. The

weighted sample and the graph are then passed as inputs to the estimation phase,

which computes the estimates.

Algorithm 4 Cck Sampling algorithm

1: procedure Sampling(G = (V,E), k, S0)

2: // Compute sampling coefficients γu
3: for all u ∈ V do

4: γu ← 1
|V |

5: end for

6: for all v ∈ S0 do

7: compute SSSP distances d(v, u) from v to all other vertices u ∈ V
8: W (v)←

∑
u d(v, u)

9: for all u ∈ V do

10: γu ← max
{
γu,

d(v,u)
W (v)

}
11: end for

12: end for

13: // Compute the sampling probabilities pu
14: for all u ∈ V do

15: pu ← min{1, kγu}
16: end for

17: // Compute the Poisson sample according to pu
18: S ← ∅
19: for all u ∈ V do

20: if RandomNumber(0, 1) < pu then

21: S ← S ∪ {(u, pu)}
22: end if

23: end for

24: return S

25: end procedure

The base set covers a key role on the statistical guarantees of the final esti-

mates. As described in Algorithm 4, it is used to assign to each vertex u in the

graph a coefficient γu that combined with the parameter k determines its sampling

3.2 Chechik et al. ’s Method 27

probability pu ≡ min{1, kγu}. These probabilities are used both for the Poisson

sampling and as weights of the selected vertices in the weighed sample. Such

sample is indeed a collection {(v, pv)} of vertices and their respective sampling

probability. The estimates are calculated by accumulating the contribution of

each sampled vertex to the sum of distances of all the other vertices, as described

in Algorithm 5. The contribution of a sampled vertex v to the estimate Ŵ (z)

of vertex z ∈ V is given by the distance d(z, v) divided by the weight pv of the

sampled vertex. That is, given the set S of sampled vertices, returned from the

sampling phase, the sum of distances estimate for a vertex z ∈ V is calculated as

follows

Ŵ (z) =
∑
v∈V

d̂(z, v) where d̂(z, v) =

{
d(z,v)
pv

if v ∈ S
0 if v /∈ S

(3.8)

Algorithm 5 Cck Estimation algorithm

1: procedure Estimation(G = (V,E), S = {(v, pv)})
2: // Where S is the sample returned by Sampling(G, k, S0)

3: for all z ∈ V do

4: Ŵ (z)← 0

5: end for

6: for all v ∈ S do

7: compute SSSP distances d(v, z) from v to all other vertices z ∈ V
8: Ŵ (v)←

∑
z∈V d(v, z)

9: for all z ∈ V − S do

10: Ŵ (z)← Ŵ (z) + d(v, z)/pv
11: end for

12: end for

13: return (z, Ŵ (z)) for z ∈ V
14: end procedure

In order to obtain a sample set S able to guarantee a small coefficient of

variation and a small relative error for the estimate Ŵ (z), the sampling probability

pu of each vertex u ∈ V should be (roughly) proportional to its distance d(z, u)

from z. This approach, referred to as Probability Proportional to Size (PPS)

sampling [CCK15], favors the selection, during the sampling process, of the vertices

that give the higher contribution to the sum of distances of vertex z. Furthermore,

in order to guarantee small relative errors for all the sum of distances estimates,

the rough proportionality of each PPS pu must hold for every vertex z in the

graph.

The exact computation of these universal PPS requires to calculate the all-

28 Traditional Approaches

pair shortest-paths, which we are trying to avoid. Luckily an approximation of

such universal PPS is good enough to guarantee small relative errors estimates.

To build an approximate universal PPS it must hold for each vertex u that γu ≥
c d(u, z)/W (z) for some constant c and for every vertex z. In practice to obtain

such coefficients it is sufficient to have a well positioned vertex inside the base

set S0, which informally is a vertex that lays in the region of the graph where

the vertices are more dense and close together. Since half of the vertices in a

graph happen to have this property, building the base set by extracting at random

O(log |V |) vertices from the graph is enough to guarantee with high probability

the presence of one such vertex in the set.

Assuring universal approximate PPS implies that the sum of distances W (z)

for every vertex z can be estimated unbiasedly within a small relative error of ε

with high probability with a sample of size O(log |V |
ε2

).

In the following subsection we review the analysis carried out in [CCK15],

which explains the rationale behind the crucial choices made by the algorithm,

and we will formally define the concepts mentioned before.

3.2.2 Analysis

The goal of this section is to prove that, given an input graph G = (V,E), Algo-

rithms 4 and 5 provide sum of distance estimates Ŵ (u) for every vertex u ∈ V
within a small relative error ε with high probability using O(log |V |

ε2
) SSSP distance

computation.

The authors of [CCK15] start with the following lemma

Lemma 3.2.1. Suppose that S0 contains a vertex v. Consider an arbitrary vertex

z ∈ V such that v is the (q|V |)th closest vertex to z. Then for all vertices u ∈ V ,

γu ≥
1− q

4
· d(z, u)

W (z)
. (3.9)

Proof. From the specification of Algorithm 4, since the sampling coefficients γu
are initialized to 1

|V | and are updated to γu ← max
{
γu,

d(u,v)
W (v)

}
for v ∈ S0, then

they satisfy

γu ≥ max

{
1

|V |
,
d(v, u)

W (v)

}
(3.10)

Let Q = d(z, v). Consider the classification of the vertices u ∈ V “close” ver-

tices and “far” vertices according to their distance from z (Figure 3.1), that are

respectively the sets

L = {u ∈ V : d(z, u) ≤ 2Q}
H = {u ∈ V : d(z, u) > 2Q}

(3.11)

3.2 Chechik et al. ’s Method 29

Figure 3.1: Visualization of the

L and H sets with respect to the

vertex z and its q|V |th closest

vertex v. The set L of “close”

vertices correspond to the ball

of radius 2Q around z. The set

H of “far” vertices instead corre-

spond to all the vertices outside

that ball.

Since γu ≥ 1
|V | , for u ∈ L we have

γu ≥
1

|V |
≥
(

1− q
2

)(
2

1− q

)
1

|V |
=

(
1− q

2

)(
2Q

(1− q)Q

)
1

|V |

≥
(

1− q
2

)
d(z, u)

W (z)

(3.12)

To prove the last inequality of the above equation we observe that d(z, u) ≤ 2Q,

since u ∈ L, and we prove, in what follows, that W (z) ≥ (1− q)|V |Q. Recall that

v is the (q|V |)th vertex closest to z. Therefore there are (1− q)|V | vertices more

distant from z than v. Since we have defined d(z, v) = Q, it holds that d(z, u) > Q

for every vertex u more distant than v from z. We split the sum of distances from

z in two sums, one considering the vertices that are within the distance Q and

one for the others, thus we have that

W (z) =
∑
u∈V

d(z, u) =
∑

u∈V :d(z,u)≤Q

d(z, u) +
∑

u∈V :d(z,u)>Q

d(z, u)

≥(q|V | − 1) min{d(z, u) : d(z, u) ≤ Q}+ (1− q)|V |Q
≥(q|V | − 1) cmin + (1− q)|V |Q ≥ (1− q)|V |Q

(3.13)

where from the sum of the vertices within distance Q the distance form z to itself

is not counted and cmin > 0 is the minimum distance of a vertex from z. Therefore

W (z) ≥ (1 − q)|V |Q which conclude the proof of the last inequality of Equation

3.12.

For all u ∈ V , we have that d(v, u) ≥ d(z, u)−Q by the triangle inequality. In

addition, for the same reason it also holds that d(v, u) ≤ d(z, u) +Q for all u ∈ V .

This imply that summing the distances from v to all the other vertices u we have

the following ∑
u∈V

d(v, u) ≤
∑
u∈V

d(z, u) + |V |Q

W (v) ≤W (z) + |V |Q
(3.14)

30 Traditional Approaches

Substituting into Equation 3.10 the first triangle inequality and this last inequality,

for every vertex u ∈ V we have that

γu ≥
d(v, u)

W (v)
≥ d(z, u)−Q
W (z) + |V |Q

(3.15)

In particular, for u ∈ H, which , by definition, is such that d(z, u) > 2Q, we have

d(z, u)−Q ≥ 1
2d(z, u). From W (z) ≥ (1− q)|V |Q we obtain

|V |Q ≤ W (z)

1− q
(3.16)

hence,

W (z) + |V |Q ≤W (z)
(

1 +
1

1− q

)
= W (z)

(2− q
1− q

)
(3.17)

Substituting this last inequality and d(z, u) − Q ≥ 1
2d(z, u) in Equation 3.15 we

get

γu ≥
1

2

(1− q
2− q

)d(z, u)

W (z)
for all u ∈ H (3.18)

From this last equation we have that γu ≥ 1−q
4

d(z,u)
W (z) for all q ∈ [0, 1] (which is the

range of q by definition). By combining Equation 3.12 which holds for vertices in

L and Equation 3.18 which holds for vertices in H we have

γu ≥
1− q

4

d(z, u)

W (z)
for all u ∈ V and for all q ∈ [0, 1] (3.19)

which concludes the proof.

Lemma 3.2.2. Consider a set of sampling coefficients γu such that for a vertex

z, for all u and for some c > 0, γu ≥ cd(z,u)
W (z) . Let S be a sample obtained with

probabilities pu = min{1, kγu}, and let Ŵ (z) be the inverse probability estimator

as in Equation 3.8. Then

V ar[Ŵ (z)] ≤ W (z)2

ck
(3.20)

3.2 Chechik et al. ’s Method 31

Proof. Given the estimator of Equation 3.8 and the definition of variance

V ar[Ŵ (z)] = V ar
[∑
u∈V

d̂(z, u)
]

=
∑
u∈V

V ar[d̂(z, u)]

=
∑
u∈V

E
[(
d̂(z, u)− E[d̂(z, u)]

)2]
=
∑
u∈V

E
[(
d̂(z, u)− d(z, u)

)2]
=
∑
u∈V

E
[
d̂(z, u)2 − 2d̂(z, u) d(z, u) + d(z, u)2

]
=
∑
u∈V

(
E[d̂(z, u)2]− 2E[d̂(z, u)] d(z, u) + d(z, u)2

)
=
∑
u∈V

(d(z, u)2

pu
− d(z, u)2

)
=
∑
u∈V

(1

pu
− 1
)
d(z, u)2

(3.21)

Note that the vertices u for which pu = 1 contribute 0 to the variance of the

estimate of a vertex z. For the other vertices they use the lower bound pu ≥
ck d(z,u)

W (z) that holds when the sampling coefficients γu are approximate PPS.

∑
u∈V

(1

pu
− 1
)
d(z, u)2 =

∑
u∈V :pu<1

(1

pu
− 1
)
d(z, u)2

≤
∑

u∈V :pu<1

1

pu
d(z, u)2

≤
∑

u∈V :pu<1

W (z)

ck d(z, u)
d(z, u)2 =

W (z)

ck

∑
u∈V :pu<1

d(z, u)

≤ W (z)

ck
W (z) =

W (z)2

ck
(3.22)

which conclude the proof.

Lemma 3.2.1 demonstrates that the coefficients γu for each u ∈ V are lower

bounded by 1−q
4 ·

d(z,u)
W (z) for q ∈ [0, 1] and for every vertex z ∈ V . Lemma 3.2.2

demonstrates that if we have γu coefficients that satisfy the approximate Probabil-

ity Proportional to Size definition for a vertex z, it is possible to upper bound the

variance of the sum of distances of that vertex. In what follows, the notion of well

positioned vertex is introduced and it is proved that if the base set contains one

such vertex then indeed the γu coefficients satisfy the PPS definition. Moreover,

32 Traditional Approaches

it will be also proved that under these circumstances, the estimate of the sum of

distances for every vertex has a small relative error.

Let us define the notion of well positioned vertex. Let the median distance

of a vertex u, denoted by m(u), be the distance between u and the d1 + |V |/2e
closest vertex to u ∈ V . Furthermore she defines MinMed = minu∈V m(u) to be

the minimum median distance of any vertex u ∈ V .

Definition 3.1. A vertex is well positioned if m(u) ≤ 2 MinMed, that is, the

median distance m(u) of u is within a factor 2 of the minimum median distance.

We now show that most of the vertices are well positioned.

Lemma 3.2.3. Let v be such that its m(v) = MinMed. Then all d1 + |V |/2e
vertices in V that are closest to v are well positioned.

Proof. Let u be one of the d1 + |V |/2e vertices closest to v. Then d(u, v) ≤
MinMed and a ball of radius 2 MinMed around u contains all the d1 + |V |/2e
vertices closest to v. Therefore, m(u) ≤ 2 MinMed and by Definition 3.1, u is a

well positioned vertex.

The well positioned vertices are interesting because of the following property

Lemma 3.2.4. If v is a well positioned vertex, then for every vertex z we have

that d(z, v) ≤ 3m(z).

Proof. For every two vertices v and z we have that d(v, z) ≤ m(v) + m(z). In

fact, there must be at least a vertex x that is both within distance m(v) from

v and within distance m(z) from z. In other words, there must be at least one

intersection between the d1+|V |/2e closest vertices to v and the d1+|V |/2e closest

vertices to z because d1 + |V |/2e+ d1 + |V |/2e > |V |. From this observation and

the triangle inequality we have that

d(v, z) ≤ d(v, x) + d(z, x) ≤ m(v) +m(z) (3.23)

If we choose v to be a well positioned vertex, that is m(v) ≤ 2 MinMed ≤ 2m(z)

we have that d(z, v) ≤ 3m(z) which proves the lemma.

Lemma 3.2.5. Suppose that the base set S0 contains a well positioned vertex v.

Then for all vertices u,

γu ≥
1

19
max
z∈V

d(z, u)

W (z)
(3.24)

3.2 Chechik et al. ’s Method 33

Proof. Given an arbitrary vertex z and a parameter α, we partition the vertices

in two sets L and H, similarly to the proof of Lemma 3.2.1, as follows

L = {u ∈ V : d(z, u) ≤ αm(z)}
H = {u ∈ V : d(z, u) > αm(z)}

for α > 0. (3.25)

By the definition of median distance there are d|V |/2 − 1e vertices that are

distant form z more than m(z), therefore we have

W (z) ≥
(⌈
|V |
2
− 1

⌉)
m(z) ≥ m(z)

|V |
3

(3.26)

where the last inequality holds for graphs that have more than 8 vertices.

We obtain that for all u ∈ L

d(z, u)

W (z)
≤ αm(z)

m(z) |V |3

=
3α

|V |
(3.27)

Therefore,

γu ≥
1

|V |
=

3α

|V |
1

3α
≥ 1

3α

d(z, u)

W (z)
for u ∈ L (3.28)

Subsequently we consider u ∈ H. Since v is well positioned then Lemma 3.2.4

holds and we have that d(z, v) ≤ 3m(z). For the triangle inequality and since

u ∈ H implies that d(z, u) > αm(z) we have

d(v, u) ≥ d(z, u)− d(z, v) ≥ d(z, u)− 3m(z)

≥ d(z, u)− 3

α
d(z, u)

≥
(

1− 3

α

)
d(z, u)

(3.29)

Since v is well positioned and we show above that W (z) ≥ m(z) |V |3 , we have

W (v) ≤W (z) + |V |d(z, v) ≤W (z) + 3|V |m(z)

≤W (z) + 9W (z) = 10W (z)
(3.30)

Therefore

γu ≥
d(v, u)

W (u)
≥

(
1− 3

α

)
d(z, u)

10W (z)
=

1

10

(
1− 3

α

)
d(z, u)

W (z)
for u ∈ H (3.31)

Depending on whether a vertex u belongs to the sets L or the set H we have

found respectively two lower bounds on γu presented in the last inequalities of

Equation 3.28 and 3.31 depending on the parameter α. These inequalities have

34 Traditional Approaches

the same measure d(z,u)
W (z) multiplied by a different coefficient, respectively c1 = 1

3α

and c2 = 1
10

(
1 − 3

α

)
. We want to find maxα>0 min{c1, c2}. Since the former is

a monotonically decreasing function and the latter is a monotonically increasing

function for α > 0, in order to find the coefficient that maximizes the minimum

value of the two coefficients, we should find α such that c1 = c2, that is, α = 19/3.

Substituting it into the two coefficients we have

γu ≥
1

19

d(z, u)

W (z)
for u ∈ V (3.32)

therefore considering all z ∈ V we have

γu ≥
1

19
max
z∈V

d(z, u)

W (z)
for u ∈ V (3.33)

which concludes the proof.

The following corollary is an immediate consequence of Lemmas 3.2.2 and

3.2.5.

Corollary 3.2.6. If S0 contains a well positioned vertex, then for any vertex z,

V ar[Ŵ (z)] ≤ 19W (z)2

k

One consequence of Lemma 3.2.5 is that the sampling coefficients γu cannot

grow too much even if the base set S0 includes all vertices.

Corollary 3.2.7. Let

γ̄u ≡ max
z∈V

d(z, u)

W (z)
. (3.34)

Then ∑
u∈V

γ̄u = O(1) . (3.35)

Proof. From the specification of Algorithm 4, since the sampling coefficients γu
are initialized to 1

|V | and are updated to γu ← max
{
γu,

d(u,v)
W (v)

}
for v ∈ S0, it holds

that

γu ≤
1

|V |
+ max

v∈S0

{
d(v, u)

W (v)

}
(3.36)

3.2 Chechik et al. ’s Method 35

If we sum all the γu’s we have that

∑
u∈V

γu ≤
∑
u∈V

(
1

|V |
+ max

v∈S0

{
d(v, u)

W (v)

})
≤
∑
u∈V

(
1

|V |
+
∑
v∈S0

d(v, u)

W (v)

)
≤
∑
u∈V

1

|V |
+
∑
u∈V

∑
v∈S0

d(v, u)

W (v)
= 1 +

∑
v∈S0

∑
u∈V

d(v, u)

W (v)
=

= 1 +
∑
v∈S0

W (v)

W (v)
= 1 +

∑
v∈S0

1 = 1 + |S0|

(3.37)

therefore
∑

u∈V γu ≤ 1 + |S0|.
Consider the case where S0 consists of a single well positioned vertex, thus we

have that
∑

u∈V γu ≤ 2. By Lemma 3.2.5 we have γu ≥ 1
19 maxz

d(z,u)
W (z) . Therefore∑

u∈V γ̄u ≤ 19
∑

u∈V γu ≤ 38 = O(1), which concludes the proof.

The following lemma establishes a probability bound on the relative error of

the estimate of the sum of distances for every vertex z. The proof can be found

in [CCK15].

Lemma 3.2.8. If the sampling coefficients are approximate PPS for a vertex z,

that is, there is a constant c such that for all vertices u ∈ V , γu ≥ cd(z,u)
W (z) , and we

use k = O
(

log |V |
ε2

)
, then

Pr

[
|Ŵ (z)−W (z)|

W (z)
≥ ε

]
= O

(
1

poly(|V |)

)
(3.38)

Proof. For τ = W (z)/(ck), we have

pv ≥ min{1, d(z, v)/τ} = min{1, ck d(z, v)/W (z)} . (3.39)

The contribution of a vertex v to the estimate Ŵ (z) is as follows. If d(z, v) ≥ τ ,

then the contribution is exactly d(z, v). Otherwise, the contribution Xv of a vertex

v is d(z, v)/pv ≤ τ with probability pv and 0 otherwise.

The contributions Xv of the vertices with distance d(z, u) ≤ τ are thus in-

dependent random variables, each in the range [0, τ] with expected value d(z, v).

The proof is completed by applying the Chernoff-Hoeffding bound to bound the

deviation of the expected value of the sum of these random variables. More details

can be found in [CCK15].

36 Traditional Approaches

From the proof of Lemma 3.2.8, it follows that if the sampling coefficients are

approximate universal PPS and k is large enough, but still O(log |V |/ε2), then the

probability that the relative error of the estimate of each sum of distances exceeds

ε can be made less than 1/|V |a with a > 2, hence, by applying the union bound,

all estimates will feature relative error at most ε with high probability.

From Lemma 3.2.5 it follows that we obtain the universal PPS sampling coef-

ficients if S0 includes a well positioned vertex. We would like this to happen with

high probability. In [CCK15] the following approaches are proposed to this aim.

(i) From Lemma 3.2.3 we know that most vertices are well positioned, therefore

taking a random sample U of O(log |V |) vertices, and choosing the vertex

x = arg minu∈U m(u) with minimum median distance, means that we are

guaranteed with probability 1−O(poly(|V |)) that u is well positioned. The

SSSP required to identify a well positioned vertex with this procedure are

O(log |V |).

(ii) Alternatively, it is possible to ensure that S0 contains a well positioned

vertex with high probability by simply placing O(log |V |) uniformly selected

vertices in S0. This procedure still requires O(log |V |) SSSP computations.

In the second case, we can argue that with a polynomially small error for each

vertex z, one of the
⌈
1+ |V |2

⌉
closest vertices to z is in S0. Therefore we can apply

3.2.1 with q ≤ 1/2 to obtain that with high probability, the sampling probabilities

are approximate PPS for all vertices and thus the estimates will have polynomially

small relative errors.

Chapter 4

Progressive Approaches

In this chapter we present our novel approaches, which are able to

produce sum of distances estimates for every vertex of the input graph

by progressively refining the solution while the sample is being built

iteratively. In the first section, we describe a deterministic approach

based on the Farthest-First Traversal (FFT) algorithm presented by

Gonzalez in [Gon85]. In the second section, we present two probabilis-

tic versions based on the same idea behind the FFT. Finally, in the

last section, we present a method that combines the ideas behind the

Cc algorithm and our approaches.

4.1 Farthest-First Traversal Methods

We propose a deterministic sample-based closeness centrality estimation algorithm

that progressively refines its estimates by adding vertices to the sample set in

the same fashion as the FFT algorithm, described in [Gon85], selects its clusters

centers. As already explained in Section 2.6, the FFT is a 2-approximation se-

quential algorithm that solves the k-center clustering problem in a metric space

(M,d) for a set of points P ⊆M . The problem consist in finding the k-clustering

C = (C1, C2, . . . , Ck; c1, c2, . . . , cn) that minimizes, the maximum distance of a

point from its reference center, that is, C minimizes the objective function

Φk-center(C) =
k

max
i=1

max
x∈Ci

d(x, ci) .

For a point x and a set S, define d(x, S) = min{d(x, s) : s ∈ S. The FFT

algorithm selects the centers iteratively as follows. Let Sj = {c, . . . , cj} be the set

of centers selected in the first j iterations. The next center cj+1 to be selected is

37

38 Progressive Approaches

the point x ∈ P maximizing d(x,Cj), that is,

cj+1 = argmax
x∈V

min
ci∈Sj

d(x, ci) . (4.1)

Our approach is an adaptation of the Gonzalez’s technique to be used on

graphs G = (V,E) for the progressive estimation of the sum of distances W (u),

and consequently the closeness centrality, for every vertex u ∈ V . We propose two

variations of the same algorithm where the difference is given by how we define

the argument of the objective function to be minimized.

The main idea is to use the sum of distances of the sampled vertices to deter-

mine an upper and a lower bound to every sum of distances of any vertex in the

graph. As in Gonzalez’s approach, the centers are selected with the objective of

minimizing the maximum distance from the vertices to their corresponding center,

in our approach we want to build a sample that guarantees that every other vertex

is at least at distance ε∆ from it, where ∆ represents the diameter of the graph.

Indeed, by selecting at each iteration the farthest vertex we assure to reduce the

maximum distance of a vertex to the selected sample.

Theoretically, our approach achieves small relative errors for graphs that present

a mesh-like structure, such as road networks, using k = O(εD) sample vertices,

where D represent the doubling dimension of the graph.

4.1.1 Algorithms

The approach we designed is described in Algorithm 6. It receives in input a

weighted connected undirected graphG = (V,E), a parameter k, which determines

the maximum size of the vertex sample, and a parameter ε that defines the target

maximum relative error of the estimates.

After the initialization step, the first next vertex vn is arbitrarily picked among

all the vertices in V . At each iteration, the next vertex of the previous iteration

becomes the current vertex vc and is added to the sample set S. Then the al-

gorithm computes the SSSP distances from the current vertex to all the other

vertices in the graph, and, using the distances information acquired, it updates

the argument au, the lower bound lbu, the upper bound ubu and the relative error

reu of each vertex u ∈ V . After the updates, it computes the maximum rela-

tive error remax and the next vertex to be added to the sample. Lastly it checks

if the termination criterion is true, and, if not, it starts with another iteration.

The TermCriteria(k, ε, |S|, remax) is a function that returns true only when the

sample size is larger than k or when the maximum relative error is lower than ε.

For each vertex u the argument au keeps the minimum NewArgument(u, vc)

among all the currently selected sample vertices. Such function defines the two

4.1 Farthest-First Traversal Methods 39

versions of our algorithm. When NewArgument(u, vc) ≡ d(u, vc) we have the

first version of our approach, which selects the vertices in the exact same way

as Gonzalez’ does. When NewArgument(u, vc) ≡ d(u, vc)/W (vc) we have the

second version of our approach, where the sum of distances W (vc) of the current

vertex comes into play as a normalizing factor to determine which vertex is going

to be selected next. In this second version, the effect we expect is to give more

importance to the vertices that are farther from the more central vertices, thus

producing a sample able to be in general closer to every vertex in the graph. In

other words, at the ith iteration, the first variation of the algorithm chooses the

next sample vertex vn = argmaxx∈V minc∈Si d(x, c) and the second variation of the

algorithm chooses the next sample vertex vn = argmaxx∈V minc∈Si d(x, c)/W (c),

where Si represent the set of sampled vertices at iteration i.

The idea behind the second variant is that if two vertices u, v have the same

distance from the current sample set d(u, Sj) = d(v, Sj), where the minimum

distance from u to Sj is given by the vertex cx and the minimum distance from v

to Sj is given by the vertex cy, if W (cx) > W (cy) then cy has an higher centrality,

and thus increasing the normalized distance to the sample set of vertex v with

respect to that of u.

The lower and upper bounds are defined based on the sum of distances esti-

mates for the sampled vertices c1, . . . , ck. The first idea could be to assign each

vertex u ∈ V to its closer sample vertex ci the same way Gonzalez does in his algo-

rithm, and use the sum of distances W (ci) and the distance d(u, ci) to determine

the interval within which the estimate lies. These bounds can be simply obtained

on the basis of the triangle inequality, stating that for each vertex v, d(u, v) ≤
d(u, ci) + d(ci, v), which clearly holds since the shortest path distances provide a

metric space on the graph vertices. Thus W (u) ≤ W (ci) + (|V | − 2)d(ci, u), and

W (u) ≥W (ci)− (|V | − 2)d(ci, u), which gives us the interval endpoints. Observe

that we multiply by |V | − 2 because the distance from u to itself is not counted

and the the distance from u to ci is already counted in W (ci) since the graph is

undirected. Observe however that we are able to determine an interval for every

vertex u ∈ V with respect to every sampled vertex ci, thus we may improve on

the original idea by keeping the minimum upper bound and the maximum lower

bound with respect to every ci and for each vertex u ∈ V , which can only reduce

the interval size and improve the solution. The final sum of distances estimates

may be given by the arithmetic mean of the lower and upper bounds of each vertex

u ∈ V .

Using the above approach, we are also able to compute an overestimate of the

relative errors using the lower and upper bounds of each vertex u ∈ V as described

in Algorithm 6.

40 Progressive Approaches

Algorithm 6 Farthest-First Traversal Method

1: procedure Fft(G = (V,E), k, ε)

2: // Initialize arguments au, relative errors reu,

3: // lower bounds lbu and upper bounds ubu
4: for all u ∈ V do

5: au ← +∞; reu ← +∞; lbu ← 0; ubu ← +∞;

6: end for

7: S ← ∅
8: Assign the first vertex from V to the next vertex vn
9: repeat

10: vc ← vn // Set the next vertex vn to be the current one

11: S ← S ∪ {vc}
12: Compute SSSP distances d(vc, u) from vc to all other vertices u ∈ V
13: W (vc)←

∑
u d(vc, u)

14: // Update argument, lower and upper bounds of vc
15: avc ← 0; lbvc ←W (vc); ubvc ←W (vc);

16: for all u ∈ V − S do

17: au ← min{au,NewArgument(u, vc)}
18: lbu ← min{lbu,W (vc)− (|V | − 2) d(vc, u)}
19: ubu ← max{ubu,W (vc) + (|V | − 2) d(vc, u)}
20: reu ← (ubu − lbu)/(2 max{lbu, d(vc, u)})
21: end for

22: remax ← maxu∈V {reu} // Find maximum relative error remax
23: vn ← argmaxu∈V−S{au} // Compute next vertex vn
24: until TermCriteria(k, ε, |S|, remax)

25: return (Ŵ (u) = (ubu + lbu)/2) for each u ∈ V
26: end procedure

4.1 Farthest-First Traversal Methods 41

In the next subsection we formalize the operations of the algorithm and we

prove our claims on the small relative errors for mesh-like graphs.

4.1.2 Analysis

The proof of correctness requires some definitions, which we state in the following.

We assume that each definition, unless otherwise mentioned, holds for a weighted

undirected graph G = (V,E), where for every u, v ∈ V , the distance d(u, v) is

given by the length of the shortest path in G between u and v.

Definition 4.1 (Diameter of a graph). The diameter of graph G is the maxi-

mum distance between pairs of reachable vertices in G, that is,

∆ = max{d(u, v) : u, v ∈ V ∧ d(u, v) <∞}

Definition 4.2 (Ball of radius r around a vertex v). The Ball of radius r

around a vertex u is defined by the set of vertices that are within distance r from

u. That is,

B(u, r) = {v ∈ V : d(v, u) ≤ r}

Definition 4.3 (Doubling dimension of a graph G). The Doubling dimension

of a graph G is the minimum value D such that for every r > 0 we have that every

ball B(u, 2r) is covered by at most 2D balls of radius r.

Lemma 4.1.1. Given a weighted undirected connected graph G = (V,E) with

constant doubling dimension D and diameter ∆, for any constant ε ∈ (0, 1) we

can cover G with at most k = d(2/ε)De balls of radius at most ε∆

Proof. Since G has diameter ∆, we observe that we can cover G with 1 ball of

radius ∆. Given that G has constant doubling dimension D we can cover that one

ball with (at most) 2D balls of radius ∆/2, and in turn we can cover each of these

balls of radius ∆/2 with at most 2D balls of radius ∆/4, that is, we can cover the

entire graph with at most 22D balls of radius ∆/4. Iterating this reasoning i times,

we end up covering the graph with 2iD balls of radius ∆/2i. As a consequence, if

we want to cover G with balls of radius ε∆ with ε ∈ (0, 1), we need to find i ∈ Z+
0

such that ε∆ ≤ ∆/2i, that is, i = d− log2 εe. This means that we need at most

2d− log2 εeD balls of radius at most ε∆ to cover the entire graph. By definition of

the ceiling function we know that i < − log2 ε+ 11, therefore it holds that

2d− log2 εeD ≤ 2(− log2 ε+1)D

≤
⌈(

2

ε

)D⌉ (4.2)

and the thesis follows.

42 Progressive Approaches

Observe that Lemma 4.1.1 immediately implies that there exists a set S of k

vertices v1, . . . , vk ∈ V such that for every u ∈ V we have that d(u, S) ≤ ε∆, where

d(u, S) = min{d(u, vi) : 1 ≤ i ≤ k} is the distance to the closer center vertex from

u.

Lemma 4.1.2. Given a weighted undirected connected graph G = (V,E) with

constant doubling dimension D and diameter ∆. Selecting a set S of k vertices,

where k = d(2/ε)De, computed with the Farthest-First Traversal algorithm. Then,

max
u∈V

d(u, S) ≤ 2ε∆

Proof. Given that the FFT algorithm start by selecting an arbitrary vertex v1

and for 2 ≤ i ≤ k selects the ith vertex vi as the most distant vertex from

v1, v2, . . . , vi−1. If we consider z ∈ V the farthest vertex from the sample set

S, that is z = argmaxu∈V d(u, S), it is easy to see that the k + 1 vertices in

S ∪ {z} are all at distance at least d(z, S) from one another. In fact all the previ-

ously selected vertices vi where chosen because their distances from the sample set

Si−1 = {v1, . . . , vi−1} was greater than the distance of vertex z to Si−1. Therefore,

considering the k balls B1, B2, . . . , Bk of radius ε∆ covering the graph G, which

must exist because of Lemma 4.1.1, by the pigeonhole principle, at least two of

the vertices in S ∪ {z}, say x and y, must belong to the same ball Bi, hence, by

the triangle inequality, their distance must be at most twice the radius of the ball.

Thus,

d(z, S) ≤ d(x, y) ≤ 2ε∆

which concludes our proof.

Definition 4.4 (Mesh graph). A mesh graph is a finite connected subgraph of

the infinite n-dimensional lattice embedded in Zn, that is, the one in which the

vertices are the points (x1, x2, . . . , xn) ∈ Zn and each edge connects two vertices

u = (u1, u2, . . . , un) and v = (v1, v2, . . . vn) if and only if
∑n

i=1 |ui − vi| = 1.

Lemma 4.1.3. Given a mesh graph G = (V,E) with diameter ∆. Then the sum

of distances W (u) of every vertex u ∈ V is Θ(∆|V |).

Proof. We will prove the Lemma 4.1.3 only for mesh graphs that could be embed-

ded exactly in a polytope shape, for instance, in a 2-dimensional space such graph

lie exactly in a rectangle (polytope in Z2) whose vertices are the 4 vertices of the

mesh graph with the lower degree. We refer to such mesh graph as “rectangular”

mesh graph. We start by considering a rectangular mesh graph G = (V,E) em-

bedded in Z2 such as the one shown in Figure 4.1. By observing that the rectangle

that encloses the rectangular mesh graph has dimensions a1 and a2. It is clear

4.1 Farthest-First Traversal Methods 43

Figure 4.1: A mesh graph G=(V,E) embedded in Z2

that the its diameter is ∆ = a1 + a2 and the number of vertices are |V | = a1 · a2

since by the definition of mesh graph each edge has unit weight.

The sum of distances of every vertex in a graph is trivially O(∆|V |) by the

triangle inequality. Therefore, to show that the sum of distances of all the vertices

in a rectangular mesh graph are Θ(∆|V |) it suffice to prove that the most central

vertex, that is, the one with the minimum sum of distances value, is Ω(∆|V |).
In case of a rectangular mesh graph such as in Figure 4.1, we can state that

for the sum of distances W (u) of the most central vertex u (which could be any

of the highlighted vertices in red in Figure 4.1) holds the following

W (u) ≥ 4

ba1/2c∑
i1=0

ba2/2c∑
i2=0

(i2 + i1) (4.3)

Lets define Ai = bai/2c, thus

W (u) ≥ 22
A1∑
i1=0

A2∑
i2=0

(i2 + i1) = 22
A1∑
i1=0

(
A2∑
i2=0

i2 +

A2∑
i2=0

i1

)
=

= 22
A1∑
i1=0

(
A2

(A2 + 1)

2
+A2i1

)
= 22

(
A1∑
i1=0

A2
(A2 + 1)

2
+

A1∑
i1=0

A2i1

)
=

= 22

(
A1A2

(A2 + 1)

2
+A1A2

(A1 + 1)

2

)
=

= 22A1A2

(
(A1 + 1)

2
+

(A2 + 1)

2

)
(4.4)

44 Progressive Approaches

From the above equation, by substituting Ai = bai/2c ans by the definition of the

floor function we have

W (u) ≥ 4
(a1

2
− 1
)(a2

2
− 1
)(a1 + a2

4

)
=

=
(a1 + 1

2
− 3

2

)(a2 + 1

2
− 3

2

)
(a1 + a2)

=
(1

4
(a1 + 1)(a2 + 1)− 3

4
(a1 + a2 + 1)

)
(a1 + a2)

(4.5)

By the definitions of a1 and a2, that is, ∆ = a1 +a2 and |V | = (a1 + 1)(a2 + 1)

we have that

W (u) ≥ ∆
(1

4
|V | − 3

4
(∆ + 1)

)
(4.6)

We want to obtain that W (u) ≥ K∆|V |, for some constant K > 0, therefore it

must hold that (1

4
|V | − 3

4
(∆ + 1)

)
≥ K|V |

∆ + 1

|V |
≤
(1

3
− 4

3
K
)

∆ + 1

|V |
<

1

3

(4.7)

Therefore, for bidimensional rectangular mesh graph for which holds the final

inequality of the above equation we have that W (u) = Ω(∆|V |).
Let now generalize the proof for a rectangular mesh graph embedded in a

generic n-dimensional infinite lattice, such that it is enclosed in a polytope in

Zn of dimensions a1, a2, . . . , an. For such rectangular mesh graph we have that

the diameter ∆ =
∑n

i=1 ai and the vertices number are |V | =
∏n
i=1(ai + 1). Let

Ai = bai/2c for 1 ≤ i ≤ n, thus, by the generalization of the results of Equation

4.4, for the most central vertex holds that

W (u) ≥
A1∑
i1=1

A2∑
i2=1

· · ·
An∑
in=1

(i1 + i2 + · · ·+ in) =

= 2n

(
n∑
i=1

(Ai + 1)

2

)
n∏
i=1

Ai

(4.8)

By substituting Ai = bai/2c and by the definition of the floor function we have

that

W (u) ≥ 2n

(
1

4

n∑
i=1

ai

)
n∏
i=1

(ai
2
− 1
)

=

= 2n−2

(
n∑
i=1

ai

)
n∏
i=1

(ai + 1

2
− 3

2

) (4.9)

4.1 Farthest-First Traversal Methods 45

this time the result of the multiplication gives a function that does not depend

only on the diameter and the number of vertices, but also depend on a function

F (a1, . . . , an) of the dimensions of the polytope that encloses the graph. That is,

W (u) ≥ 2n−2∆
(
K1|V | −K2F (a1, . . . , an)

)
(4.10)

where K1 and K2 are some constant greater than zero. Observe that K1|V | −
K2F (a1, . . . , an) ≥ K|V |, for K > 0 if

F (a1, . . . , an)

|V |
≤ K1

K2
− K

K2
<
K1

K2
(4.11)

Therefore, if any of the combinations of the polytope dimensions satisfy this last

inequality, we will have that W (u) = Ω(∆|V |).

We can now state the following

Theorem 4.1.4. Let G = (V,E) be a weighted undirected connected mesh-like

graph with constant doubling dimension D and diameter ∆. Using k = O(ε−D)

samples computed with the Farthest-First Traversal approach, we can estimate the

sum of distances W (u) as defined in Algorithm 6 of every vertex u ∈ V within a

relative error of ε with k SSSP computations.

Proof. By Lemma 4.1.2 we know that selecting a sample S with k = d(2/ξ)De =

O(ξ−D) samples in a FFT fashion assures us that for every vertex u ∈ V it holds

that d(u, S) ≤ maxz∈V d(z, S) ≤ 2ξ∆. From our Algorithm 6 we know that by

keeping track of the closest vertices vi ∈ S of every vertex u ∈ V we can bound

the sum of distances W (u) as follows

W (vi)− (|V | − 2)d(u, vi) ≤W (u) ≤W (vi) + (|V | − 2)d(u, vi) (4.12)

The estimate of our algorithm are the arithmetic mean of the lower and upper

bounds, that is Ŵ (u) = W (vi), where vi is the closest vertex to u among the

sample vertices. Therefore, we can rewrite Equation 4.12 as

Ŵ (u)−W (u) ≤ (|V | − 2)d(u, vi) ∧ W (u)− Ŵ (u) ≤ (|V | − 2)d(u, vi) (4.13)

That is,

|Ŵ (u)−W (u)| ≤ (|V | − 2)d(u, vi) (4.14)

From Lemma 4.1.2, for a constant c > 0, we have that

|Ŵ (u)−W (u)| ≤ (|V | − 2)d(u, vi) ≤ 2(|V | − 2)ξ∆ (4.15)

46 Progressive Approaches

If we divide both sides of the last inequality by W (u) and we consider the mesh-like

property of the graph given in Lemma 4.1.3, we have

|Ŵ (u)−W (u)|
W (u)

≤ 2ξ
(|V | − 2)∆

W (u)
≤ 2ξ

c
(4.16)

By choosing ε = 2ξ/c our estimates assure assure small relative errors with O(εD)

SSSP computations for mesh-like input graphs.

It is not possible to make the same reasoning for the second version of the

approach because the sample distance definition, that is d(u, Si) = minv∈Si

d(u,v)
W (v) ,

involves also the sum of distances of the vertices in the sample Si produced after i

iterations of the algorithm. Therefore, the guarantees of Lemma 4.1.2 are not valid

in this scenario, which means that there are no guarantees that, at each iteration

i, for every pair of selected vertices v, q ∈ Si and for every vertex u ∈ V − Si, the

distance d(v, q) ≥ d(v, u).

Observe that, during the computation of the minimum distance d(u, Si) of

a vertex u ∈ V from the sample Si at a generic iteration i, if we consider

two vertices vh, vl ∈ Si such that d(u, vl) < d(u, vh) and W (vl) < W (vh), we

could select as “closer” vertex vh if the ratio d(u, vl)/d(u, vh) is greater that

the ratio W (vl)/W (vh). Which means that the assignation of the vertices to

their closes sample vertex does not behave as the first version. Furthermore, let

consider two vertices u, z ∈ V and two vertices vx, vy ∈ Si. Let assume that

x = argmin1≤j≤i d(u, vj)/W (vj) and y = argmin1≤j≤i d(z, vj)/W (vj), that is, vx
is the vertex that determine d(u, Si) and vy is the vertex that determine d(z, Si).

Let assume also that d(u, vx) > d(z, vy) and W (vx) > W (vy). In this scenario

there is no guarantee that the farthest vertex u will be picked because if the ra-

tio d(u, vx)/d(z, vy) is lower than the ratio W (vx)/W (vy), than vertex z will be

selected in the sample.

Even if the coverage of the selected sample of the second version of the algo-

rithm does not have the same guarantees as in the first version, we expect that by

weighting with the sum of distances of the sample vertices we reduce the number

of selected outlier vertices without affecting too much the coverage quality, thus

the estimate relative errors.

4.2 k-means++ and k-median++ Methods

These are two probabilistic variations of the FFT algorithm, already presented in

literature and used to seed the initial cluster centers of k-means and k-median clus-

tering algorithms, respectively. While we were experimenting the FFT approach

for the estimation of the closeness centrality in social graphs, as the reader may

4.2 k-means++ and k-median++ Methods 47

see later in Chapter 5, the method performed poorly. We attributed the reason

of these performances to the fact that social graphs have a high dimensionality,

therefore, the sample created by FFT tended to be composed mainly of outlier

vertices, i.e. vertices in the periphery of the graph. This composition did not allow

good estimates for most of the more central vertices in the graph, that remained

farther away from the selected sample.

In order to improve the estimate of the more central vertices it was necessary to

take less peripheral vertices. One way to do it was to add a random component in

the choice of the next selected vertex. Hence, instead of selecting at each iteration

the farther vertex form the sample we thought to use the distance information to

assign a selection probability proportional to the distance from the sample, which

lead us to the same designs of the k-means++ and k-median++ algorithms as

in [AV07].

4.2.1 Algorithms

The algorithms reflect the operations made by FFT, except for the selection of the

sample vertices, which is probabilistic and based on the distances to the already

selected sample set. The difference between this two probabilistic approaches is

given by how they assign the probabilities to the vertices at each iteration. They

receive in input a undirected weighted connected graph G = (V,E), a parameter k

which determines the maximum sample size, and a parameter ε used to determine

the target maximum relative error of the estimates. After the initialization step,

as in FFT, the first vertex is uniformly selected at random from V . At each

iteration 2 ≤ j ≤ k we compute the SSSP form the current vertex vc to all the

other vertices u ∈ V . We update the argument au of each vertex by keeping the

minimum distance from the sample set, the fork bounds and the relative errors as

in FFT. The probability assigned to each vertex u ∈ V is

pu =
d(u, Sj)∑
v∈V d(v, Sj)

for the k-median++ approach, while is

pu =
d(u, Sj)

2∑
v∈V d(v, Sj)2

for the k-means++ approach, where Sj represents the sample set at iteration j.

In Algorithm 7 the minimum distance from a vertex u ∈ V to the current

sample set Sj is kept by the argument au. The termination criterion is the same

as in FFT, that is, the algorithm stops its iterations when the size of the sample

set reaches k or when the maximum relative error is below the target error ε.

48 Progressive Approaches

Algorithm 7 k-median++ and k-means++ Method

1: procedure Kmpp(G = (V,E), k, ε)

2: // Initialize arguments au, relative errors reu,

3: // lower bounds lbu and upper bounds ubu
4: for all u ∈ V do

5: au ← +∞; reu ← +∞; lbu ← 0; ubu ← +∞;

6: end for

7: S ← ∅
8: Assign to vn a vertex from V selected uniformly at random

9: repeat

10: vc ← vn // Set the next vertex vn to be the current one

11: S ← S ∪ {vc}
12: Compute SSSP distances d(vc, u) from vc to all other vertices u ∈ V
13: W (vc)←

∑
u d(vc, u)

14: // Update argument, lower and upper bounds of vc
15: avc ← 0; lbvc ←W (vc); ubvc ←W (vc);

16: for all u ∈ V − S do

17: au ← min{au, d(vc, u)}
18: lbu ← min{lbu,W (vc)− (|V | − 2) d(vc, u)}
19: ubu ← max{ubu,W (vc) + (|V | − 2) d(vc, u)}
20: reu ← (ubu − lbu)/(2 max{lbu, d(vc, u)})
21: end for

22: remax ← maxu∈V {reu} // Find maximum relative error remax
23: Select next vertex vn based on probability

pu =

{
au/(

∑
v∈V av) if k-median++

a2
u/(
∑

v∈V a
2
v) if k-means++

24: until TermCriteria(k, ε, |S|, remax)

25: return (Ŵ (u) = (ubu + lbu)/2) for each u ∈ V
26: end procedure

4.3 Progressive CCK Methods 49

4.2.2 Analysis

We do not provide a formal analysis of the sample size needed to achieve a given

relative error for these two approaches but we provide the following intuitive ex-

planation. The reasoning is the same made for the FFT. Given an undirected

weighted connected graph with constant doubling dimension D and diameter ∆,

we want to argue that the k sample vertices are spread in 2iD balls of radius ε∆

where ε = 1/2i. For the FFT we had the certainty that at every step the farthest

vertex was selected to be part of the sample, therefore we could use the pigeonhole

principle to argue that the sample set S of size k = d2/ε)De whose vertices are

mutually farther than maxv∈V d(v, S), together with the farthest vertex from the

sample will cause two distant vertices to be within the same ball of radius ε∆. This

time we are assigning probabilities to the vertices thus it is not possible to argue

the same as in FFT. But we can argue that, since we are assigning probabilities

based on the distance to a vertex from the sample, we may end up covering the

same balls of radius ε∆ with a linear increase in the size of the sample and at the

same time avoiding only picking outlier vertices.

4.3 Progressive CCK Methods

In this section we present two adaptations of Cck approach that instead of sepa-

rating the sampling phase from the estimation phase, combine them together by

progressively selecting new vertices to the sample while adding their contribution

to the sum of distances estimates of every vertex of the input graph. Further-

more, instead of using just the information of the base set to build the sampling

coefficients, we use the distances information due to every SSSP of the sampled

vertices to update them.

We can argue that these two methods produce estimates with similar estimates

guarantees with respect to Cc presented in Section 3.2. That is, for every vertex

u of the input graph G = (V,E), we can compute the sum of distances estimate

Ŵ (u) within a small relative error ε with high probability using O
(

log |V |
ε2

)
SSSP

regardless of the graph topology.

4.3.1 Algorithms

The two adaptations share the same operations except for the selection of the

next vertices to be added to the sample, therefore we are going to treat them as

variants of a single approach, which is described in Algorithm 8.

The algorithm receives in input a weighted undirected connected graph G =

(V,E), a parameter k, that determines the final sample size, and a base set S0. It

50 Progressive Approaches

Algorithm 8 Progressive Cc Algorithm

1: procedure ProgCck(G = (V,E), k, S0)

2: // Compute sampling coefficients γu
3: for all u ∈ V do

4: γu ← 1
|V |

5: end for

6: for all v ∈ S0 do

7: Compute SSSP distances d(v, u) from v to all other vertices u ∈ V
8: W (v)←

∑
u d(v, u)

9: for all u ∈ V do

10: γu ← max
{
γu,

d(v,u)
W (v)

}
11: end for

12: end for

13: // Initialize the estimates of each vertex z

14: for all z ∈ V do

15: Ŵ (z)← 0

16: end for

17: S ← ∅
18: i← 0 // Counts the number of iterations

19: repeat

20: // Select next vertices based on every γu
21: Q← VertexSelection(V − S, γu)

22: for all q ∈ Q do

23: S ← S ∪ {q}
24: Compute SSSP distances d(q, z) from q to all other vertices z ∈ V
25: Ŵ (q)←

∑
z∈V d(q, z)

26: for all z ∈ V − S do

27: Ŵ (z)← Ŵ (z) + d(q, z)/γq
28: γz ← max

{
γz,

d(q,z)

Ŵ (q)

}
29: end for

30: end for

31: i← i+ 1

32: until |S| ≥ k
33: for all z ∈ V − S do

34: Ŵ (z)← Ŵ (z)/i

35: end for

36: return (z, Ŵ (z)) for z ∈ V
37: end procedure

4.3 Progressive CCK Methods 51

computes, as in Algorithm 4, the sampling coefficients γu using the base set S0 by

performing a SSSP from each vertex v ∈ S0 to all the other vertices u ∈ V such

that γu = maxv∈S0 d(v, u)/W (v).

It then initializes the sum of distances estimates Ŵ (z) of each vertex z ∈ V ,

the sample set S and an iteration counter.

At each iteration the algorithm selects, based on the sampling coefficients γu,

a set Q of vertices, that is computed differently depending on the adaptation. For

each vertex q ∈ Q we compute the following operations. Firstly we add q to the

sample set S, then we compute the SSSP from q to all the other vertices z ∈ V .

Moreover, using the distances information, we add to each sum of distances esti-

mate Ŵ (z) the intermediate contribution d(q, z)/γq of q which must be normalized

by the total number of iterations. And lastly we update the sampling coefficients

γz by keeping the maximum between γz and d(q, z)/W (q), as if q were part of the

base set S0. Finally we increment the counter i and we end our iteration.

We stop iterating when the sample set size is greater or equal than k (it can

be strictly greater only in one of the two adaptations).

The final contribution of each vertex v ∈ S to the estimates Ŵ (u) for every u ∈
V are given by d(v, u)/(xγv) where x is the final number of iterations in Algorithm

8. The algorithm divides the intermediate contributions of each estimate by the

number of the final iterations x after having computed the sample and not during

the computation mainly for two reasons. Firstly, at each iteration i, it is always

possible to compute the sum of distances estimates by dividing the accumulated

values for each estimate by i. Secondly, in one of the two adaptations the final

number of iterations is unkown a priori.

By making a comparison with Cck approach, the reader may notice that the

contribution of a sample vertex q to the sum of distances estimate Ŵ (u) in Cc

is given by d(q, u)/pq = d(q, u)/min{1, kγq}. In these progressive adaptations we

replace the parameter k with the number of iterations x and we do not take the

minimum. In the next section we will argue that, under certain conditions, these

two adaptations may have similar estimates guarantees as Cck approach.

At every iteration, the sample vertex selection could be made by exactly ex-

tracting one vertex from V − S or by Poisson sampling the vertices from V − S.

The former case is presented in Algorithm 9, which is a possible implementation

for the random extraction of one vertex based on the probabilities γu. In this

adaptation, the final number of iterations x is going to be equal to the input

parameter k of the algorithm.

The latter case is presented in Algorithm 10 which implements a Poisson sam-

pling also based on the probabilities γu. In this case the number of iterations

performed by the algorithm may be different from the input parameter k because

52 Progressive Approaches

Algorithm 9 One sample selection

1: procedure VertexSelection(U, γu)

2: Γ←
∑

u∈U γu
3: // Generate uniformly at random a number x ∈ [0,Γ]

4: x← RandomNumber(0,Γ)

5: // Consider ui ∈ U such that 1 ≤ i ≤ |U |
6: i← 0

7: while x < Γ do

8: x← x+ γui
9: i← i+ 1

10: end while

11: return {ui}
12: end procedure

at each step it selects O(1) vertices to be added to the sample.

Algorithm 10 Poisson Sample selection procedure

1: procedure VertexSelection(U, γu)

2: Q← ∅
3: for all u ∈ U do

4: if RandomNumber(0, 1) < γu then

5: Q← Q ∪ {u}
6: end if

7: end for

8: return Q

9: end procedure

As we may see in the following subsection, making a Poisson sampling based

on the probabilities γu assures us to get O(1) samples which does not affect the

time complexity of the algorithm, but since is not exactly one we may end up with

a sample of size bigger than k.

4.3.2 Analysis

The goal of the analysis is to show that, given an input graph G = (V,E), both

the progressive Cc approaches are able to produce the sum of distances estimates

Ŵ (u) for every vertex u ∈ V within a small relative error ε with high probability

using O(log |V |
ε2

) SSSP distance computations. We mainly based this proof on the

results obtained by Chechik et al. in [CCK15].

4.3 Progressive CCK Methods 53

In Algorithm 8 the sampling coefficients are built the same way as in Cc before

the sample construction. Therefore all the lemmas related to the sampling coef-

ficients and the well positioned vertices, defined and proved in Subsection 3.2.2,

holds for our two adaptations. Hence, the base set S0 must have O(log |V |) ver-

tices to obtain with high probability the sampling coefficients that approximate

a universal Probability Proportional to Size. However, in these progressive ap-

proaches, the sampling coefficients are updated each time a new vertex is added

to the sample set, hence they may increase their value depending to the iteration

i and the sample vertices selected within such iterations. We refer to the sampling

coefficient of each vertex u ∈ V at iteration i as γ
(i)
u .

From the specification of Algorithm 8 it holds that γ
(i+1)
u ≥ γ

(i)
u for each

u ∈ V . Before the iteration process, the sampling coefficients obtained from the

base set computations are γ
(0)
u and are used in the first VertexSelection of

the algorithm during the first iteration. The final contribution of a sample vertex

v ∈ S to the sum of distances estimate Ŵ (u) is d(v, u)/(xγ
(i)
u) where x is the

final number of iterations and i represent the iteration in which vertex v has been

selected.

Let us focus on the Poisson sampling version of the progressive Cc adaptation.

For each vertex u ∈ V , the probability of being selected as sample vertex is the

following

pu = 1−
x−1∏
i=0

(1− γ(i)
u) (4.17)

That is, 1 minus the probability of not being selected in any of the x iterations.

Let assume that we do not update the sampling coefficients at each iteration,

therefore pu = 1− (1− γ(0)
u)x for any u ∈ V . By the binomial expansion we have

that

1− (1− γ(0)
u) = 1−

x∑
j=0

(
x

j

)
1x−j

(
− γ(0)

u

)j
= xγ(0)

u +
x(x− 1)

2!

(
− γ(0)

u

)2
+
x(x− 1)(x− 2)

3!

(
− γ(0)

u

)3
+ . . .

· · ·+
(
− γ(0)

u

)x
(4.18)

For sufficiently small values of γ
(0)
u we can argue that the probability pu is almost

xγ
(0)
u , since the other therms of the equation can be neglected. If we assume

that maxu,v∈V d(v, u)/W (v) ≤ 1/x then the probabilities pu are also equal to

min{1, xγ(0)
u }. Therefore, each vertex u is selected in the sample with probability

pu and its contribution to the sum of distances of every other vertex u ∈ V is

d(v, u)/xγ
(0)
u . Hence we can apply Lemma 3.2.8 using k = x and obtain the same

54 Progressive Approaches

guarantees as in Cc.

The same reasoning could be made for any updated γ
(i)
u throughout the itera-

tion process. By updating the sampling coefficients we expect an improvement of

the estimates relative errors since such update better refines the approximation of

the universal Probability Proportional to Size.

Let us consider the one sample version of the progressive Cc adaptation. This

time, for each vertex u ∈ V , the probability pu of being selected involves the sum

of the sampling coefficients at iteration i, which is Γ(i) =
∑

u∈V−S(i) γ
(i)
u , where

S(i) is the set of the selected vertices after i iterations. Therefore,

pu = 1−
x−1∏
i=0

(
1− γ

(i)
u

Γ(i)

)
(4.19)

Let assume for now that we do not update the sampling coefficients, therefore

γ
(i)
u = γu(0) for every i and every u ∈ V .

Let us focus on the sum of the sampling coefficients Γ(i) for every iteration

i. As in Corollary 3.2.7, if we consider γ̄u = maxz∈V
d(z,u)
W (z) , we can state that

Γ(i) ≤
∑

u∈V γ̄u = Γmax for every iteration i. Furthermore, recalling the same

corollary, Γmax is O(1), thus a constant.

We can argue that the minimum value that Γ(i) may have is during the final

iteration of Algorithm 8 if all the vertices with the highest sampling coefficients

have been selected. In this edge case we have that Γ(i) ≥ Γ(i) −
∑

v∈Smax
γv,

where Smax contains x vertices v ∈ V that have the highest sampling coefficients

γ
(0)
v compared to the others. Therefore, given the number of iterations x, we can

determine a Γmin > 0 if x < |V |.
Given the number of iterations x < |V |, we can determine a constant Γmin > 0

such that Γ(i) ≥ Γmin for every iteration i. If we consider that during the run of

Algorithm 8 we iteratively select x vertices with the highest sampling coefficients

γ
(0)
u among all the others, we have that Γ(i) ≥ Γ(i) −

∑
v∈Smax

γv, where Smax

contains such x vertices.

Since we are not considering the update of the sampling coefficients, we can

now bound the probability pu of every vertex u ∈ V as follow

1−

(
1− γ

(0)
u

Γmin

)x
≤ pu ≤ 1−

(
1− γ

(0)
u

Γmin

)x
(4.20)

By the binomial expansion and if we assume that γ
(0)
u is sufficiently small we can

argue that, for each node u ∈ V , we have

x
γ

(0)
u

Γmax
≤ pu ≤ x

γ
(0)
u

Γmin
(4.21)

4.3 Progressive CCK Methods 55

Therefore, the probability pu is Θ(xγ
(0)
u) for each node u ∈ V .

Even if the probabilities are not exactly the weight of the contribution of a

vertex, we expect that Lemma 3.2.8 holds also for this method, and we argue

that updating the sampling coefficients using the distances information of the

SSSP of the sample vertices may only improve the approximation of the universal

Probability Proportional to Size, thus improve the quality of the estimates.

56 Progressive Approaches

Chapter 5

Experiments and Results

In this chapter we describe how the experiments have been conducted

and we present our findings on the closeness estimation quality between

the different approaches presented throughout the course of this work.

In the first section we present the tools and the data sets we used. In

the second section we describe how we have structured the runs of each

approach and how the performance evaluation has been made. In the

third section we present how we conducted the experiments. Lastly,

in the final section, we show the results by comparing the different

approaches.

5.1 Overview

The experiments we have conducted aim at assessing whether our novel meth-

ods, presented in Chapter 4, are competitive with the state-of-the-art algorithms,

presented in Chapter 3. We based the comparison on two different graph types:

road networks and social graphs. The former have a mesh-like structure while the

latter are scale-free graphs that presents the small-world phenomenon.

We are going to present the results based on two road networks of the 9th

DIMACS Challenge Dataset [DGJ05] and two social graphs of the SNAP Dataset

[LK14], showed in Table 5.1. During our experiments we used two additional

graphs, one from each data set, to test the sensitivity of Cck algorithm, which

are shown in Table 5.2. We defined the base set size, based on a parameter, over

two different graphs in order to keep it unbiased from the benchmark graphs, and

achieve a fair final comparison with the other methods.

The methods we compare are shown in Table 5.3 and have been implemented

sequentially in C++ using the primitives of the Boost Graph Library [SLL02] to

store the input graphs in main memory and to compute the SSSP distances re-

57

58 Experiments and Results

Graph Vertices Edges Weighted

USA-road-d.COL 435 666 1 057 066 yes

USA-road.d-FLA 1 070 376 2 712 798 yes

com-dblp.ungraph 317 080 1 049 866 no

com-youtube.ungraph 1 134 890 2 987 624 no

Table 5.1: Benchmark graphs used for the comparison

Graph Vertices Edges Weighted

USA-road-d.BAY 321 270 800 172 yes

com-amazon.ungraph 334 863 925 872 no

Table 5.2: Benchmark graphs used to test the sensitivity of the base set size in

Cck approach

quired. We have used the boost::minstd rand random number generator of the

Boost Library to implement the random selections involved within the probabilis-

tic approaches implementations.

We also designed, implemented and tested other approaches and variations

whose results are not reported in order to allow a lighter comparison of the most

promising methods. Each omitted method performed similarly or poorly than the

ones present in Table 5.3.

5.2 Experiment Runs and Evaluation Technique

Each implemented method receives in input a connected undirected graph G in the

formats specified by either SNAP or DIMACS and a parameter k that determines

the SSSP computations. Furthermore, the probabilistic methods have an addi-

tional input parameter used as the seed for the random number generator. A run

of an algorithm is univocally determined by its input graph G and its parameter

k. The probabilistic approaches may have multiple executions of the same run by

changing the input seed, while the deterministic approaches have only one execu-

tion per run. For each execution of an algorithm we stored the sum of distances

estimates of every vertex in the input graph and some other useful information,

such as the input parameter k, the number of SSSP computations, the wall clock

time of the entire execution and the wall clock time spent on computing the SSSP.

To be able to determine exactly the quality of our results we should have

calculated the sum of the distances of each vertex for all the benchmark graph,

that is, we should have computed the all-pairs shortest-paths of every benchmark

graph. Since we did not have such computational power to do it in a feasible

5.2 Experiment Runs and Evaluation Technique 59

Name Description

CC Cck approach.

RAND Eppstein and Wang approach.

FFTv1 Farthest-First Traversal approach where

NewArgument(u, vc) = d(u, vc) for each

u ∈ V .

FFTv2 Farthest-First Traversal appraoch where

NewArgument(u, vc) = d(u, vc)/W (vc)

for each u ∈ V .

KM++ k-median++ approach.

PCCos Progressive Cck appraoch that selects one

sample at each iteration.

PCCps Progressive Cck approach that selects

nodes with a Poisson sampling at each it-

eration.

Table 5.3: Methods

amount of time, we opted for alternative solutions. We chose to compute the

exact sum of distances of small subsets on wisely selected vertices of the input

graphs. We are going to refer to these subsets of vertices by the name of ground

sets.

We used three different kinds of ground sets that could give insights on the

solution quality form different perspectives. The first ground set we used is com-

posed by 1 000 vertices uniformly selected at random from the input graph, which

we refer to as the random ground set. The second and third ground sets are build

by pooling respectively the most central and least central vertices based on the

sum of distances estimates computed form all the runs we have made through-

out the experimentation process on the same input graph. More precisely, for

each graph, we selected the top 100 vertices with lower sum of distances estimate

(higher centrality) from each of the run results and we unified them to form the

top ground set. Similarly, we selected the bottom 500 vertices with lower sum of

distances estimate for each of the run results, and we unified them to form the

bottom ground set. We considered fewer vertices in the pooling process of the top

vertices in order to keep the sizes of the top and the bottom ground sets similar.

The random ground set gives an insight on the overall quality of the estimates,

while the top and bottom ground sets respectively give insights on the quality of

the estimates for the most central and least central vertices of the input graphs.

Given the estimates results of a run and one of the three ground set, we are able

60 Experiments and Results

to compute the relative errors for the corresponding ground set vertices. Instead of

computing a measure to summarize the overall quality of the solution we decided

to plot these relative errors in a normalized cumulative histogram, where on the x-

axis we have the relative error and on the y-axis we count the percentage of vertices

that have a relative error that is less or equal than the corresponding x-value. For

illustrative purposes, the reader may find the results of a single execution in Figure

5.1. Each point corresponds to a bin of vertices whose percentage is determined

by its y value and that have relative error less or equal than its x component value

. From the figure it is clear that in this execution half of the ground sets vertices

0.008 0.009 0.010 0.011 0.012 0.013
Relative Error

0

25

50

75

100

N
od

es
%

Figure 5.1: Example plot of a single experiment run results based on a ground set

have a relative error below 0.011 and the majority of the vertices have a relative

error below 0.012.

5.3 Experimentation Workflow

When we first tested Cck approach, we observe an high variance in the relative

error of the estimates among different runs with the same configuration of param-

eters. We thought that the reason could have been attributed to the base set size,

which should be composed by O(log |V |) vertices. We tested its sensitivity by con-

sidering the base set size to be α ln |V | and by executing different runs with fixed

SSSP using different values of α ∈ {0.33, 0.66, 1, 1.33, 1.66, 2}. We are not going

to present the results to avoid showing unnecessary information, but α = 1.33 has

given the best performances in terms of variability and we have kept such value

through the entire experimentation process. In general, the variability produced

by each tested α showed similar results with no sensible reduction to the overall

variance.

Another issue with Cck method has been its variability of the number of

SSSP computed within the different executions of a run. In fact the sample set,

5.3 Experimentation Workflow 61

which determines the number of SSSP, is made out of a Poisson sampling, which

produces a sample of a variable size that depends on the input parameter k and

the random seed. This factor have shaped our experiment workflow as we are

going to explain in a moment.

Another algorithm that has some variability on the sample size is the PCCps.

But instead of the traditional Cck approach, its sample variability has been neg-

ligible. In fact given the input parameter k that determines the number of SSSP

the experiments have shown that its final SSSP computations have exceeded such

input parameter by at most one percent of its value.

The objective was to run CC and the other approaches using a comparable

number of SSSP computations for every run. Given a benchmark graph, the

experiment process starts by the executions of Cck approach with five different

values for the parameter k, that is, k ∈ {100, 200, 300, 400, 500}. As already

mentioned in the previous section, the probabilistic approaches requires multiple

executions for the same run, each execution with a different seed. For each k

and for every probabilistic approach, we chose to execute 15 times the same run

changing the seed. Using the side information we stored, we have computed for

Cck approach the average SSSP actual computations among the 15 executions

for each of the five runs determined by k. We then used the five averages values

of each run as input parameters for the five runs of the other methods. For

instance, assuming that after executing 15 times CC with k = 100 we obtain that

on average CC has used 130 SSSP computations, then all the other algorithms will

compute their estimates using k = 130, that is, using 130 SSSP for one of their

runs. Therefore, after having completed all the CC’s executions we have used its

5 averages SSSP number as input parameters to execute the other methods, with

the same procedure as in CC.

Another possible experiment procedure, at least for the comparison of the

probabilistic approaches, might have been that, for each run of the probabilistic

methods, instead of using the average of the SSSP of the corresponding run of

CC, we could have made the 15 executions using as input parameter all the 15

values of SSSP computation made in the run of CC. We chose to use the averages

instead of the exact values of SSSP of the run of CC to avoid introducing variance

in algorithms that are able to compute exactly the specified number of SSSP in

input.

For each run of a probabilistic approach we have 15 different sum of distances

estimates for each vertex of the input graph, one for each execution, while for the

deterministic approaches we stored just one estimate per vertex.

In order to apply the pooling technique to build the ground sets, in case of

probabilistic approaches we based our selection on the averages of the estimates

62 Experiments and Results

among the 15 executions of each run. For the deterministic approaches, which are

specifically the Farthest-First Traversal methods, we have found that the vertices

with lower sum of distances estimate had all the same value, so we chose to select

for the pooling of the top ground set 100 vertices uniformly at random from this

portion of the most central vertices.

We have repeated these experiments for every benchmark graph. In the next

section we are going to show the experiment results.

5.4 Results

In this section we are going to show a selection of the results that we obtained in

order to focus the reader’s attention to the most interesting insights. Therefore for

each graph and for each tested algorithm, we are going to show only two of the five

runs we made (one per each value of SSSP). We structure the results as follows,

first we compare similar methods in order to determine the most promising ones

and then we make a final comparison on these most promising approaches.

The first comparison is between the Farthest-First Traversal Methods and the

k-median++ algorithm. Figures 5.2 and 5.3 plot the relative errors of the estimates

returned by the algorithms on road networks and social graphs, respectively, on the

random ground set. For each graph, the subplots are arranged in such a way that

each row corresponds to a different algorithm and each column represents a run

with a different number of SSSP computations. The two deterministic approaches,

FFTv1 and FFTv2, perform similarly but the second version seems to give slightly

better estimates in almost all the experiments. The KM++ does not improve

the solution quality in general but it is able to assign good relative errors on

almost all the vertices of the random ground sets in case of road networks. In fact

the cumulative histogram curves of the relative errors increase rapidly and covers

almost all the vertices way earlier than the deterministic approaches. Furthermore,

we want to point out that the k-median++ algorithm, although less performing

in approximating all the sum of distances on the random ground sets, has shown

a slight improvement in the estimates of the top ground sets, while it has greatly

worsened the estimates of the bottom ground sets. The deterministic approaches

instead have behaved slightly worst in the top ground sets and slightly better in the

bottom ground sets. Another interesting point that could be attributed to the k-

median++ is its low variability on the solution quality, in fact all the executions of

the runs are difficult to distinguish in all the plots. Although these considerations,

from the results obtained by the experiments, we consider the FFTv2 to be the

best among these three approaches.

The second comparison is between the two Progressive Cck approaches. Fig-

5.4 Results 63

ures 5.4 and 5.5 plot the relative errors of the estimates returned by the algorithms

on road network and social graphs, respectively, on the random ground set. The

subplots are arranged as in the first comparison where we have algorithms in

the rows and SSSP computations in the columns. It is clearly visible that the

Progressive Cck approach that selects one sample at each iteration (PCCos) per-

forms better with respect to its Poisson sampling (PCCps) counterpart for any

graph type. The PCCos has way less variability on the different executions of the

runs, and it gives estimates with smaller relative errors, Therefore it is the most

promising method between the two.

The third comparison we present is between the state-of-the-art approaches

(CC and RAND) and the most promising approaches we designed (PCCos and

FFTv2). We present plots, one for each graph, where we show the performances

on each of the three ground sets. Figures 5.6 and 5.7 show the plots relative to

the road networks, while Figures 5.8 and 5.9 show the plots relative to the social

graphs.

Focusing our attention on the FFTv2 method we can clearly see that its esti-

mates relative errors are not competitive in social graphs. But on road network

it could compete with CC approach which has more variability on its results with

respect to the other two probabilistic approaches. The fact that the Farthest-First

Traversal approach finds in a deterministic procedure its solution estimates gives

a good competitive advantage on the comparison with Chechik. Furthermore, al-

ways focusing on the road networks results, the competitiveness of FFTv2 is kept

also in the top ground sets. As already mentioned in this chapter, the Farthest-

First Traversal approaches tend to assign to the top vertices the sum of distances

of the most central sampled vertex, leading to an homogeneous estimates list of

the most central vertices. Therefore the FFTv2 could be used to determine the

most central vertices but it is not valuable to achieve a ranking of the most central

vertices.

Looking at the RAND algorithm it is interesting to notice that it has great

performances in both road and social graphs, even better than Cck approach.

Indeed, the relative errors of its estimates present less variability between the

runs and are slightly better than Cck approach. From the analysis we have made

for the RAND approach we would have expected good results on both road and

social graphs but their quality has been surprisingly better than what we expected.

The PCCos seems to be the most competitive together with the RAND ap-

proach. In case of road networks, it seems to have a slightly less variability on the

relative errors of the estimates based on the top ground set vertices with respect

to RAND. Meanwhile, even if the scale of the plots in Figures 5.8 and 5.9 do not

consent to compare properly these two most promising approaches, it performed

64 Experiments and Results

slightly worse than RAND on these two social graphs. The key strength of PCCos

with respect to CC is its less variability on the solutions relative errors, probably

due to the absence of the Poisson sampling procedure.

Summarizing the findings of our results, the best methods for the closeness

centrality estimation for the two types of graphs we analyzed are PCCos and

RAND, followed by CC that is damaged by its more variability on its solutions

relative errors. In case of road networks, The Farthest-First Traversal approaches

are competitive and could be a valuable option for the closeness centrality es-

timation. We should say that Cck algorithm has an implementation that does

not use the Poisson sampling that may reduce its variability. However, since the

procedure requires a VarOpt sampling, which is a reservoir sampling [Vit85] with

weighted probabilities, that introduces complexity to the algorithm, we did not

tested this version, which could be the subject of future research.

5.4 Results 65

0

25

50

75

100

N
od

es
%

139

FFTv1

586

0

25

50

75

100

N
od

es
%

FFTv2

0.00 0.05 0.10 0.15

Relative Error

0

25

50

75

100

N
od

es
%

KM++

0.00 0.05 0.10 0.15

Relative Error

USA-road-d.COL

0

25

50

75

100

N
od

es
%

134

FFTv1

578

0

25

50

75

100

N
od

es
%

FFTv2

0.00 0.05 0.10

Relative Error

0

25

50

75

100

N
od

es
%

KM++

0.00 0.05 0.10

Relative Error

USA-road-d.FLA

Figure 5.2: Comparison on road networks between Farthest-First Traversals

(FFTv1, FFTv2) and the k-median++ (KM++) approaches. The numbers above

each column represent the SSSP computations of a run. They are the average

among the SSSP computations of each execution of the run of CC, respectively

with k = 100 and k = 400 as input parameter.

66 Experiments and Results

0

25

50

75

100
N

od
es

%
116

FFTv1

450

0

25

50

75

100

N
od

es
%

FFTv2

0.0 0.2 0.4

Relative Error

0

25

50

75

100

N
od

es
%

KM++

0.0 0.2 0.4

Relative Error

com-dblp.ungraph

0

25

50

75

100

N
od

es
%

112

FFTv1

450

0

25

50

75

100

N
od

es
%

FFTv2

0.0 0.2 0.4

Relative Error

0

25

50

75

100

N
od

es
%

KM++

0.0 0.2 0.4

Relative Error

com-youtube.ungraph

Figure 5.3: Comparison on social graphs between Farthest-First Traversals

(FFTv1, FFTv2) and the k-median++ (KM++) approaches. The numbers above

each column represent the SSSP computations of a run. They are the average

among the SSSP computations of each execution of the run of CC, respectively

with k = 100 and k = 400 as input parameter.

5.4 Results 67

0

25

50

75

100

N
od

es
%

139

PCCos

586

0.0 0.1 0.2

Relative Error

0

25

50

75

100

N
od

es
%

PCCps

0.0 0.1 0.2

Relative Error

USA-road-d.COL

0

25

50

75

100

N
od

es
%

134

PCCos

578

0.0 0.1 0.2 0.3

Relative Error

0

25

50

75

100

N
od

es
%

PCCps

0.0 0.1 0.2 0.3

Relative Error

USA-road-d.FLA

Figure 5.4: Comparison on road networks between the Progressive Cc (PCCos,

PCCps) approaches. The numbers above each column represent the SSSP com-

putations of a run. They are the average among the SSSP computations of each

execution of the run of CC, respectively with k = 100 and k = 400 as input

parameter.

68 Experiments and Results

0

25

50

75

100

N
od

es
%

116

PCCos

450

0.0 0.1 0.2 0.3

Relative Error

0

25

50

75

100

N
od

es
%

PCCps

0.0 0.1 0.2 0.3

Relative Error

com-dblp.ungraph

0

25

50

75

100

N
od

es
%

112

PCCos

450

0.00 0.05 0.10

Relative Error

0

25

50

75

100

N
od

es
%

PCCps

0.00 0.05 0.10

Relative Error

com-youtube.ungraph

Figure 5.5: Comparison on social graphs between the Progressive Cc (PCCos,

PCCps) approaches. The numbers above each column represent the SSSP com-

putations of a run. They are the average among the SSSP computations of each

execution of the run of CC, respectively with k = 100 and k = 400 as input

parameter.

5.4 Results 69

025507510
0

Nodes%

13
9

C
C

58
6

13
9

58
6

13
9

58
6

025507510
0

Nodes%

R
A

N
D

025507510
0

Nodes%

P
C

C
os

0.
00

0.
05

0.
10

0.
15

0.
20

R
el

at
iv

e
E

rr
or

025507510
0

Nodes%

F
F

T
v2

0.
00

0.
05

0.
10

0.
15

0.
20

R
el

at
iv

e
E

rr
or

0.
00

0.
05

0.
10

0.
15

0.
20

R
el

at
iv

e
E

rr
or

0.
00

0.
05

0.
10

0.
15

0.
20

R
el

at
iv

e
E

rr
or

0.
00

0.
05

0.
10

0.
15

0.
20

R
el

at
iv

e
E

rr
or

0.
00

0.
05

0.
10

0.
15

0.
20

R
el

at
iv

e
E

rr
or

U
S

A
-r

oa
d

-d
.C

O
L

T
O

P
gr

ou
n

d
se

t
R

A
N

D
O

M
gr

ou
n

d
se

t
B

O
T

T
O

M
gr

ou
n

d
se

t

F
ig

u
re

5
.6

:
B

es
t

m
et

h
o
d

s
co

m
p

a
ri

so
n

o
n

U
S

A
-r

oa
d

-d
.C

O
L

ro
ad

n
et

w
or

k
.

T
h

e
n
u

m
b

er
s

ab
ov

e
ea

ch
co

lu
m

n
re

p
re

se
n
t

th
e

S
S

S
P

co
m

p
u

ta
ti

on
s

of
a

ru
n

.
T

h
ey

a
re

th
e

av
er

ag
e

am
on

g
th

e
S

S
S

P
co

m
p

u
ta

ti
o
n

s
of

ea
ch

ex
ec

u
ti

on
of

th
e

ru
n

o
f

C
C

,

re
sp

ec
ti

ve
ly

w
it

h
k

=
10

0
a
n

d
k

=
4
0
0

as
in

p
u

t
p

ar
am

et
er

.

70 Experiments and Results

0 25 50 75

100

Nodes %

134

C
C

578
134

578
134

578

0 25 50 75

100

Nodes %

R
A

N
D

0 25 50 75

100

Nodes %

P
C

C
os

0.0
0.1

0.2
R

elative
E

rror

0 25 50 75

100

Nodes %

F
F

T
v2

0.0
0.1

0.2
R

elative
E

rror
0.0

0.1
0.2

R
elative

E
rror

0.0
0.1

0.2
R

elative
E

rror
0.0

0.1
0.2

R
elative

E
rror

0.0
0.1

0.2
R

elative
E

rror

U
S

A
-road

-d
.F

L
A

T
O

P
grou

n
d

set
R

A
N

D
O

M
grou

n
d

set
B

O
T

T
O

M
grou

n
d

set

F
ig

u
re

5.7:
B

est
m

eth
o
d

s
co

m
p

a
rison

o
n

U
S

A
-road

-d
.F

L
A

road
n

etw
ork

.
T

h
e

n
u

m
b

ers
ab

ov
e

each
colu

m
n

rep
resen

t
th

e

S
S

S
P

co
m

p
u

tation
s

of
a

ru
n

.
T

h
ey

are
th

e
average

am
on

g
th

e
S

S
S

P
com

p
u

tation
s

of
each

ex
ecu

tion
of

th
e

ru
n

of
C

C
,

resp
ectively

w
ith

k
=

1
0
0

an
d
k

=
4
00

as
in

p
u

t
p

aram
eter.

5.4 Results 71

025507510
0

Nodes%

11
6

C
C

45
0

11
6

45
0

11
6

45
0

025507510
0

Nodes%

R
A

N
D

025507510
0

Nodes%

P
C

C
os

0.
0

0.
2

0.
4

0.
6

R
el

at
iv

e
E

rr
or

025507510
0

Nodes%

F
F

T
v2

0.
0

0.
2

0.
4

0.
6

R
el

at
iv

e
E

rr
or

0.
0

0.
2

0.
4

0.
6

R
el

at
iv

e
E

rr
or

0.
0

0.
2

0.
4

0.
6

R
el

at
iv

e
E

rr
or

0.
0

0.
2

0.
4

0.
6

R
el

at
iv

e
E

rr
or

0.
0

0.
2

0.
4

0.
6

R
el

at
iv

e
E

rr
or

co
m

-d
b

lp
.u

n
gr

ap
h

T
O

P
gr

ou
n

d
se

t
R

A
N

D
O

M
gr

ou
n

d
se

t
B

O
T

T
O

M
gr

ou
n

d
se

t

F
ig

u
re

5.
8:

B
es

t
m

et
h

o
d

s
co

m
p

ar
is

o
n

on
co

m
-d

b
lp

.u
n

gr
ap

h
so

ci
al

gr
ap

h
.

T
h

e
n
u

m
b

er
s

ab
ov

e
ea

ch
co

lu
m

n
re

p
re

se
n
t

th
e

S
S

S
P

co
m

p
u

ta
ti

on
s

of
a

ru
n

.
T

h
ey

a
re

th
e

av
er

ag
e

am
on

g
th

e
S

S
S

P
co

m
p

u
ta

ti
o
n

s
of

ea
ch

ex
ec

u
ti

on
of

th
e

ru
n

o
f

C
C

,

re
sp

ec
ti

ve
ly

w
it

h
k

=
10

0
a
n

d
k

=
4
0
0

as
in

p
u

t
p

ar
am

et
er

.

72 Experiments and Results

0 25 50 75

100

Nodes %

112

C
C

450
112

450
112

450

0 25 50 75

100

Nodes %

R
A

N
D

0 25 50 75

100

Nodes %

P
C

C
os

0.0
0.2

0.4
R

elative
E

rror

0 25 50 75

100

Nodes %

F
F

T
v2

0.0
0.2

0.4
R

elative
E

rror
0.0

0.2
0.4

R
elative

E
rror

0.0
0.2

0.4
R

elative
E

rror
0.0

0.2
0.4

R
elative

E
rror

0.0
0.2

0.4
R

elative
E

rror

com
-you

tu
b

e.u
n

grap
h

T
O

P
grou

n
d

set
R

A
N

D
O

M
grou

n
d

set
B

O
T

T
O

M
grou

n
d

set

F
ig

u
re

5
.9

:
B

est
m

eth
o
d

s
co

m
p

a
rison

o
n

com
-you

tu
b

e.u
n

grap
h

so
cial

grap
h

.
T

h
e

n
u

m
b

ers
ab

ove
each

colu
m

n
rep

resen
t

th
e

S
S

S
P

com
p

u
ta

tio
n

s
o
f

a
ru

n
.

T
h

ey
a
re

th
e

average
am

on
g

th
e

S
S

S
P

com
p

u
tation

s
of

each
ex

ecu
tion

of
th

e
ru

n
of

C
C

,

resp
ectively

w
ith

k
=

1
0
0

an
d
k

=
4
00

as
in

p
u

t
p

aram
eter.

Chapter 6

Conclusion

In this thesis we developed and analyzeed novel competitive approaches for the es-

timation of the closeness centrality in large graphs, and tested the performances of

the resulting sequential implementations against that of state-of-the-art methods,

using as benchmarks both road networks and social graphs. Based on the analysis

and the experiments results carried out, we conclude that our novel approaches

are competitive with the approaches described in [CCK15] and [EW04]. More

specifically, the FFT based methods provide good estimates in the case of road

networks while the progressive Cc approaches are competitive for both types of

graphs.

We initiated our research by exploiting the effectiveness of sample selection

of the FFT approach, because we saw a potential for the estimation of the close-

ness centrality given the guarantees based on the bounds over the distances of the

vertices of a graph from this sample. We were aware that the approach was promis-

ing only for road networks whereas for higher dimensional graphs, such as social

graphs, they would produce less competitive results. Our expectations were con-

firmed by the first experiments. We attributed the bad performances on graphs of

high dimensionality to the selection procedure, that was selecting only peripheral

nodes of the graph, hence producing poor estimates overall. To address this prob-

lem we then introduced a probabilistic component for the selection of the nodes,

which led us to the k-median++ and k-means++ approaches. We expected to

improve the performances on social graphs without diminishing the performances

on road networks. Our line of reasoning was that the random selection of a vertex,

based on the distances from the sample, would select with higher probability a

peripheral vertex with higher probability, but, it would also include in the sample

intermediate vertices with nonnegligible probability which could then yield bet-

ter estimates on social graphs. This time the results invalidated our expectation,

since, in fact, in fact there was no significant improvement on social graphs. In or-

73

74 Conclusion

der to combine the positive aspects of the methods in the literature and our novel

approaches, we designed progressive versions of Cck approach. We expected to

be able to improve the performance by iteratively adding vertices to the sample,

which allows to refine the sampling coefficients and thus the approximation of the

universal Probability Proportional to Size ideal strategy. The analysis we have

conducted and the experimental results have shown that the two new methods

implementing this idea are valuable alternatives to the already existing ones. In

conclusion, based on our analysis, the approaches inspired by the clustering algo-

rithms are competitive only in case of road networks, while we argued that the

progressive methods based on the same concepts presented in [CCK15], under

certain conditions on the sampling coefficients, have similar statistical guarantees

of the approach on which they are based. The experimental outcome confirms

the results of the analysis and show that the progressive methods based on Cck

approach are the most effective novel approaches. PCCos has proved to improve

the estimates’ quality with respect to CC, showing lower relative errors variances

over all the runs, and it has also been competitive to RAND (where sampling

is performed uniformly and not proportionally to distances), which has surpris-

ingly given the best closeness centrality estimates overall. In addition, we want to

point out the competitiveness of the FFT approaches on road networks, which is

a remarkable result and makes FFT a valid deterministic option for the closeness

centrality estimation on this type of graphs.

Based on these conclusions, there are several possible directions for future re-

search on the topic. Our experiments have been conducted using unweighted social

graphs, which are scale-free graphs that feature the small-world phenomenon. One

might experiment with these methods on weighted scale-free graphs, which may

or may not feature the small-world phenomenon, so to understand if even on these

types of graphs the algorithms’ estimates quality comply with our conclusions for

their unweighted counterparts. Also, our work based the comparison on the se-

quential implementation of these approaches. A possible challenging and interest-

ing work may be to design and implement these methods in a big data framework

such as Map Reduce/Spark or the new Google Cloud Dataflow. Another interest-

ing aspect to explore is the comparison of these methods with Chechik’s approach

that uses the VarOpt sampling [CDK+08] instead of the Poisson sampling, which

removes the variability of the sample size, and may thus decrease the variability

of the estimates.

Throughout this work we showed that there is still room for improvement in

the quest for competitive solutions for closeness centrality estimation on large

graphs. Furtyher research is needed on novel methods that may prove to be a

promising alternative for the state-of-the-art approaches.

References

[AV07] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful

seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA,

2007. Society for Industrial and Applied Mathematics.

[Bav50] Alex Bavelas. Communication patterns in task-oriented groups. Journal of

the Acoustical Society of America, 22:725–730, November 1950.

[BV14] Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathemat-

ics, 10:222–262, 2014.

[CCK15] Shiri Chechik, Edith Cohen, and Haim Kaplan. Average distance queries

through weighted samples in graphs and metric spaces: High scalability with

tight statistical guarantees. CoRR, abs/1503.08528, 2015.

[CDK+08] Edith Cohen, Nick G. Duffield, Haim Kaplan, Carsten Lund, and Mikkel Tho-

rup. Variance optimal sampling based estimation of subset sums. CoRR,

abs/0803.0473, 2008.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition,

2009.

[DGJ05] Camil Demetrescu, Andrew Goldberg, and David Johnson. 9th dimacs im-

plementation challenge - shortest paths. http://users.diag.uniroma1.it/

challenge9/download.shtml, 2005.

[EHT65] Paul Erdös, Frank Harary, and William T. Tutte. On the dimension of a

graph. Mathematika, 12(2):118–122, 1965.

[EW04] David Eppstein and Joseph Wang. Fast approximation of centrality. Journal

of Graph Algorithms and Applications, 8:39–45, September 2004.

[Gon85] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster dis-

tance. Theoretical Computer Science, 38:293 – 306, 1985.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-

ables. J. American Statist. Assoc., 58:13 – 30, March 1963.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

75

http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
http://snap.stanford.edu/data

76 REFERENCES

[Llo57] Stuart P. Lloyd. Least squares quantitization in pcm. IEEE Transactions on

Information, 1957.

[Roc09] Yannick Rochat. Closeness centrality extended to unconnected graphs : The

harmonic centrality index. ANSA, August 2009.

[SLL02] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:

User Guide and Reference Manual. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2002.

[Vit85] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math.

Softw., 11(1):37–57, March 1985.

	Contents
	Introduction
	Preliminaries
	Graph Theory Review
	Graph Representation
	Breadth-First Search Algorithm
	Dijkstra's Algorithm

	Relevant Topological Characteristics
	Some Topological Features
	Types of Topologies
	Dimensionality

	Centrality Measures
	Geometric Measures
	Path-based Measures
	Spectral Measures

	Closeness Centrality Computation
	All-Pairs Shortest-Paths
	Sum of Distances approximation

	Approximation Algorithms
	Center-Based Clustering

	Traditional Approaches
	Eppstein and Wang's Method
	Algorithm
	Analysis

	Chechik et al. 's Method
	Algorithm
	Analysis

	Progressive Approaches
	Farthest-First Traversal Methods
	Algorithms
	Analysis

	k-means++ and k-median++ Methods
	Algorithms
	Analysis

	Progressive CCK Methods
	Algorithms
	Analysis

	Experiments and Results
	Overview
	Experiment Runs and Evaluation Technique
	Experimentation Workflow
	Results

	Conclusion
	References

