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Introduction

On May 29, 1919, during a solar eclipse, the deflection of light rays of stars due to the Sun’s
gravitational field was measured [12], marking the first successful test of the theory of general
relativity (GR; Einstein 1916). Then, the first discovery of extra-galactic gravitational lensing
was obtained in 1979, with the detection of a doubly-imaged quasar lensed by a galaxy
[53]. Lensing distortions have been known since 1987 with the observation of giant arcs −
strongly distorted galaxies behind massive galaxy clusters [48]. Three years later in 1990,
weak gravitational lensing was detected for the first time as statistical tangential alignments
of galaxies behind massive clusters [51]. It took another 10 years until, in 2000, coherent
galaxy distortions were measured in blind fields, showing the existence of weak gravitational
lensing by the large-scale structure, or cosmic shear [21], [52], [54]. And so, nearly 100 years
after its first measurement, the technique of gravitational lensing has evolved into a powerful
tool for challenging GR on cosmological scales.

All observed light from distant galaxies is subject to gravitational lensing. This is because
light rays propagate through a universe that is inhomogeneous due to the ubiquitous density
fluctuations at large scales. These fluctuations create a tidal gravitational field that causes
light bundles to be deflected differentially. As a result, images of light-emitting galaxies that
we observe are distorted. The direction and amount of distortion is directly related to the
size and shape of the matter distribution projected along the line of sight. The deformation
of high-redshift galaxy images in random lines of sight therefore provides a measure of the
large-scale structure (LSS) properties, which consists of a network of voids, filaments, and
halos. The larger the amplitude of the inhomogeneity of this cosmic web is, the larger the
deformations are.

The typical distortions of high-redshift galaxies by the cosmic web are on the order of a
few percent, much smaller than the width of the intrinsic shape and size distribution. Thus,
for an individual galaxy, the lensing effect is not detectable, placing cosmic shear into the
regime of weak gravitational lensing. The presence of a tidal field acting as a gravitational lens
results in a coherent alignment of galaxy image orientations. This alignment can be measured
statistically as a correlation between galaxy shapes.

Cosmic shear is a very versatile probe of the LSS. It measures the clustering of the LSS
from the highly non-linear, non-Gaussian sub-megaparsec (Mpc) regime, out to very large,
linear scales of more than a hundred Mpc. By measuring galaxy shape correlations between
different redshifts, the evolution of the LSS can be traced, enabling us to detect the effect of
dark energy on the growth of structure. Together with the ability to measure the geometry of
the Universe, cosmic shear can potentially distinguish between dark energy and modified
gravity theories [16]. Since gravitational lensing is not sensitive to the dynamical state of the
intervening masses, it yields a direct measure of the total matter, dark plus luminous. By
adding information about the distribution of galaxies, cosmic shear can shed light on the
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complex relationship between galaxies and dark matter.
Since the first detection over a few square degrees of sky area a decade and a half ago, cosmic
shear has matured into an important tool for cosmology. Current surveys span hundreds
of square degrees, and thousands of square degrees more to be observed in the near future.
Cosmic shear is a major science driver of large imaging surveys from both ground and space.
The traditional statistics to use for comparison of theory with data are two-point statistics -
correlation functions or power spectra. These can be sufficient statistics provided that the
field under consideration is a random Gaussian field, but the non-linear growth of structure
by gravitational instability means that the field is non-Gaussian, and the two-point statistics
do not capture all of the cosmological information contained in the field. Thus, to fully exploit
the data requires going beyond the power spectrum to probe also the non-Gaussian properties
of the field. There are several ways to do this, from sophisticated Bayesian forward-modelling
techniques, which incorporate a gravity model [38] and which apply the likelihood at the
field level, likelihoodfree inference [17], or by analysing higher-order summary statistics. The
addition of the bispectrum to the power spectrum can lead to significant reduction in errors
[49] [23] [42] and better control of systematics [40].
There are alternative approaches to including non-Gaussian information, such as with skew-
spectra [33] [31] and Minkowski functionals [32], both of which have been developed for
weak lensing.
For higher-order statistics, there are several challenges, one of which is the very large number
of three-point functions (bispectra, in harmonic space) that can be considered. In addition to
this is the formidable challenge of making accurate theoretical predictions for these statistics
[3] and to compute their sampling distribution. In order to address the first complication,
we consider the integrated bispectrum, which involves computing only power spectra, in
patches on the sky, but which probes the squeezed limit of the bispectrum. This approach
has been first proposed in the context of Large Scale Structure [7] and has a wide range of
applications like galaxy clustering, 21 cm and weak lensing studies.
Here we consider its extension to 2D random fields on the sphere developed in [18] for CMB
non-Gaussianity (NG) analyses. We consider the spin−0 convergence field, rather than the
spin−2 cosmic shear field, as this field is easier to deal with, whilst still incorporating many
of the same challenges as the cosmic shear field, which is the usual field studied with weak
lensing. Cosmic shear and the inclusion of NG contributions in the covariance will be the
subjects of future studies.

Goal

Build a pipeline for the integrated angular bispectrum estimator implementing the flat-sky
approximation in the position dependent power spectrum estimator, in order to have a high
enougth speed to apply it to many thousands of simulations in order to extract the covariance
matrix.

Thesis structure

In Ch.1 we introduce the cosmological framework, recalling Einstein’s equations, FLRW
metric, Friedmann equations, the matter power spectrum and its time evolution. In Ch.2 we
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introduce gravitational lensing formalism and its various applications. In Ch.3 we discuss
the shape of non-Gaussianity analyzing the effect in real space of different bispectrum shapes,
in particular focusing on squeezed configurations; in Ch.4 we introduce the statistical tools
needed to define the integrated angular bispectrum estimator and the theory behind its de-
scriptions, with both a flat-sky a in full-sky treatment. In Ch.5 we discuss the computational
implementation of flat-sky approximation within the pipeline. In Ch.6 we show results from
all sky simulations and in Ch.7 we draw the conclusions of this work.
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Chapter 1

Cosmological Framework

When the scientific interest towards the study of the Universe brought the necessity of
a scientific theory able to describe the whole Universe, it became clear that in order to
pursue this goal a guiding principle was needed; then, at the begins of the 20th century, the
Cosmological Principle has been introduced. This principle claims that on large enough
scales the Universe can be considered homogeneous and isotropic from the point of view
of a comoving observer1. This means that on such large scales (more precisely, on length
scales larger than hundreds of Mpc) there is not a preferred direction or orientation in the
space. Although at first this was just a principle introduced to simplify scientific theories,
later on some observations confirmed this assumption [47]. Nowadays it is thought that
the model that best describes a Universe with these components is the Λ Cold Dark Matter
(CDM) model or ΛCDM model. The main components of the present day Universe are:

• Dark Energy (∼ 68%), it is responsible for the accelerated expansion of the Universe;

• Dark Matter (∼ 27%), it is composed of non-interacting massive particles that have an
equation of state dust-like: p = wρ with w = 0, whose nature has not been clarified yet;

• Baryonic Matter (∼ 5%), it is the ordinary matter produced during the Big Bang
Nucleosynthesis.

The ΛCDM model is a six free parameters model, this means that six parameters are needed
in order to parametrise the ΛCDM model. According to the Planck mission [37], combining
Planck temperature with Planck lensing data, the values of these parameters are written in
table 1.1:

1A comoving observer is an observer that moves with the cosmic flow.
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Chapter 1. Cosmological Framework

H0[c] 67.66± 0.42
τ 0.0561± 0.0071
ns 0.9665± 0.0038

ln (1010As) 3.047± 0.014
Ωbh

2 0.02242± 0.00014
Ωmh

2 0.14240± 0.00087

Table 1.1: Cosmological parameters associated to the ΛCDM model with their values from the Planck
mission.

1.1 Einstein’s Equations and FLRW Metric

The model introduced to describe the Universe is based on Einstein’s equations (EE) of
general relativity (GR):

Gµν = Rµν −
1

2
Rgµν = 8πGTµν (1.1)

where Gµν is the Einstein tensor describing the geometrical part in the left-hand-side, with
Rµν and R being the Ricci tensor and the Ricci scalar, derived from the metric tensor gµν .
EE can be derived from the variation with respect to the metric of the total action STOT =
SHE + Sm, where

SHE =
1

16πG

∫

d4x
√−gR (1.2)

is the Hilbert-Einstein action that accounts for gravity, while

Sm =

∫

d4x
√−gLm (1.3)

is the action associated to all the other particles (scalar fields, fermions, gauge bosons, . . . ).
In particular, from the variation δSHE

δgµν
it derives the geometric LHS of Eq.(1.1) while the

stress-energy tensor Tµν on the RHS is defined as

Tµν = − 2√−g
δSm

δgµν
. (1.4)

This tensor can be computed focusing on its global properties and treat it as a perfect fluid;
this lead to the very well known form (true for a generic reference frame)

Tµν = uµuν(ρ+ P ) + Pgµν (1.5)

where uµ is the 4-velocity of the fluid in its reference frame.
There are other two important relations that must be taken into account every time that
Einstein’s equations enter in the game; these are the Bianchi identity DµG

µν = 0 and the
continuity equation DµT

µν = 0, which indeed are consequence of one another, given the
Einstein’s equations.
It is also important to remember that eq.(1.1) can be either used to find metrics that satisfy
some symmetries or, using some specific spacetime and constraints, to find some system.
If we proceed in first way, looking for a metric that describes an expanding universe with
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1.2. Friedmann Equations

curvature κ and which is symmetric under rotation and spatial translation, assuming the
Cosmological Principle: isotropy and spatially homogeneity2, we find the FLRW metric

ds2 = −c2dt2 + a2(t)

[

dr2

1− κr2
+ r2dΩ2

]

, (1.6)

where t is the cosmic time, whereas the time coordinate of an observer comoving with the
cosmic fluid; the scale factor a(t) spans the expansion of the universe; dΩ2 = dθ2 + sin2θdφ2

is the infinitesimal solid angle and the curvature κ3 can be either positive (open universe),
null (flat universe) or negative (closed universe)4. Usually one parametrizes κ as

Figure 1.1: Close, open and flat universe representations.

κ =











−1 open

0 flat

+1 close

(1.7)

It is important to underline that the set (r, θ, φ) is made of comoving coordinates, i.e. they
do not depend on the evolution and remain constant, so that, once they are multiplied by
the scale factor, the physical coordinates are recovered5. From the symmetry properties of eq.
(1.6), it can be found the very easy form for the stress-energy tensor

Tµν = diag[ρ(t), P (t), P (t), P (t)], (1.9)

where ρ(t) and P (t) are respectively the energy density and the isotropic pressure of the fluid,
which do not depend on ~x because of isotropy and homogeneity.

1.2 Friedmann Equations

The dynamics of the expanding universe can be explicitly seen by unfolding the Einstein’s
equations

Rµν −
1

2
gµνR = 8πGTµν − Λgµν , (1.10)

2We do not ask for the time translation invariance because we want a universe able to change throughout
time.

3Which is indicated with the same character we will use for the convergence field, here the curvature is a
constant while the other is a field.

4One can show that these three cases represent respectively the geometry of an hyperboloid, a plane and a
sphere. It is intuitive that in all of these the “landscape” around a specific point is completely isotropic and it is
the same in every point one chooses, hence they indeed are isotropic and homogeneous.

5Considering the comoving coordinates, one can show that the coordinate separation between two points
remain constant in time. Then the spatial slices of the metric in the parenthesis gets rescaled by the scale factor,
in such a way that for any distance λ, it holds

λphysical = a(t) · λcomoving . (1.8)
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Chapter 1. Cosmological Framework

where we have added for the sake of completeness Λ, the cosmological constant. In eq.
(1.10) appears the Ricci tensor Rµν , which is the contraction of the first and third index of the
Riemann tensor equal to

Rλ
σµν = ∂µΓ

λ
σν − ∂νΓ

λ
σµ + Γλ

µρΓ
ρ
νσ − Γλ

νρΓ
ρ
µσ ; (1.11)

the Ricci scalar R, which is the contraction of the two remaining indices of the Ricci tensor,
and the Christoffel symbols Γµ

νλ, defined as

Γµ
νλ =

1

2
gµρ (∂λgρν + ∂νgρλ − ∂ρgνλ) . (1.12)

Thus, one can find the Friedmann equations by writing explicitly the 00 and ij components of
the Einstein’s equations and by exploiting the conservation laws ∇µT

µν = 0 (in this specific
case the ∇ refers to the covariant derivative) finding

H2 +
κ

a2
=

8πG

3
ρ+

Λ

3
, (1.13)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
, (1.14)

ρ̇+ 3H(ρ+ P ) = 0 , (1.15)

where the dot indicates the derivative w.r.t. cosmic time and H is the Hubble rate defined
as H = ȧ/a. These equation are indeed dependent from one another through the Bianchi
identities so that only two of them are independent.
To close the system, one needs an extra relation linking P (t) and ρ(t), named equation of state
P (ρ). The simplest choice is

P = ωρ with ω = constant , (1.16)

where ω depend on the energy content considered

ω =











0 dust or pressureless matter
1
3

radiation

−1 Λ cosmological constant

. (1.17)

Solving this system of equations, one finds the explicit expression of the scale factor a(t),
which in FLRW has the usual solution with a singularity back in time

a(t) = a∗

(

t

t∗

)
2

3(ω+1)

, (1.18)

where ∗ indicates a reference scale6.
For what regards the energy density ρ:

ρ = ρ∗

(

a

a∗

)−3(1+ω)

⇒ ρ ∝











a−3 ω = 0

a−4 ω = 1
3

constant ω = −1

. (1.19)

6From this relation one can appreciate the fact that only ratios of scale factors are physical, assuming a
spatially flat universe. In fact, the coordinate can always be rescaled by a constant without any physical
consequence.
Whereas in the case of κ 6= 0 the normalization of a(t) becomes physical, since in the Friedmann equations the
term ∝ κ cannot be rescaled freely.
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1.3. The matter power spectrum

These dependency can be intuitively derived if one thinks at how energy gets diluted with
the expansion of the universe: in the case of pressureless matter (e.g. we can think of a bunch
of protons), the energy density will scale as volume−1, so a−3, since the number of particles
in that volume will not change; for radiation, the energy gets an extra a−1 factor because
the wave length of radiation will also be diluted by expansion; finally Λ is by definition a
constant, so even if the universe expands, its value will not change.

Keeping in mind this scaling relation and going back in time in the evolution history of the
Universe, it is possible to identify three main eras through the correspondent values of the
scale factor:











Dark energy domination: aΛ < a < a0,

Matter domination: aeq < a < aΛ,

Radiation domination: 0 < a < aeq.

. (1.20)

Observations seem to show that the dominance of the cosmological constant starts at z ∼ 1.

1.3 The matter power spectrum

In order to explain the origin and the evolution of the cosmic structures, we have to take
into account primordial matter density perturbations δ(x). These perturbations came from
quantum fluctuations of the scalar field called inflaton that filled the Universe in the first
stages of its evolution. These density fluctuations, due to gravitational instability, became
larger and larger until they generate the cosmic structures we see today, as the Universe
during the inflationary period underwent a remarkable expansion of about 60-efolds [24].
They can be considered quasi-Gaussian random fields and, as a consequence, can be treated
from a statistical point of view as if they were exactly Gaussian; this means that these
fields are defined by their mean 〈δ(x)〉 that is zero by definition and their covariance or
two-point correlation function ξ(r) = δ(x)δ(x + r). This field lives in a Robertson-Walker
Universe, that geometrically is a spacetime with the three-dimensional spatial component
homogeneous and isotropic, this property translates in a definition of a density fluctuation
δ(x) homogeneous and isotropic itself with the two-point correlation function that depends
only on the r coordinate with r = |x2 − x1|. Moving to Fourier space7:

δ(x) =
1

(2π)3

∫

d3keik·xδk (1.21)

and the two-point correlation function will be:

ξ(r) = 〈δ(x)δ(x+ r)〉 = 1

(2π)6

∫

d3k1

∫

d3k2 e
i(k1·x+k2·(x+r))〈δk1δk2〉. (1.22)

If the random field is homogeneous and isotropic, also its statistical ensemble will have the
same properties, this means that it is possible to write:

7Later δ will indicate the angular size of the cartesian projection, do not confuse it with the mass fluctuation
field.
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Chapter 1. Cosmological Framework

〈δk1δk2〉 = (2π)3δ(3) (k1 + k2)P (k), (1.23)

where the Dirac delta δ(3) (k1 + k2) ensures translation invariance and the function P (k) called
Power Spectrum guarantees rotational invariance.
It is possible to show that the power spectrum of our statistical system is simply the Fourier
transform of the two-point correlation function
Moving from cartesian coordinates to spherical coordinates in Fourier space the explicit
expression of the two-point correlation function will be function of k, θk and φk.
After an integration over the angles it will be:

ξ(r) =
1

2π2

∫

dkk3P (k)
sin(kr)

kr
. (1.24)

Now, we focus on the linear regime and study the evolution of density perturbations at this
scale.
The equations that describe the evolution of a fluid inside a Universe with a non-static
background (remember that Universe evolves) can be written as:

∂ρ

∂t
+ 3Hρ+

1

a
∇ · (ρv) = 0 (1.25)

ξ(r) =
1

(2π)3

∫

d3keik·rP (k),

ξ(r) = 〈δ(x)δ(x+ r)〉 = 〈 1

(2π)6

∫

d3k1

∫

d3k2e
ik1·xeik2·(xr)δk1δk2〉

=
1

(2π)6

∫

d3k1

∫

d3k2e
ik1·xeik2·(xr)δk1δk2(2π)

3δ3 (k1 + k2)P (k)

=
1

(2π)3

∫

d3k1e
−ik1·rP (k) =

1

(2π)3

∫

d3k1e
ik1·rP (k)

(1.26)

∂v

∂t
+Hv +

1

a
(v · ∇x)v = −1

a
∇xΦ

∇2
x
Φ = 4πGa2δρ

(1.27)

Eq. (1.25) is the continuity equation, eq. (1.26) is the Euler equation and eq. (1.27) is
Poisson’s equation. H(t) is the Hubble constant, a(t) the scale factor and Φ is the Newtonian
gravitational potential and v is the peculiar velocity. We want to write these equation for the
evolution of the initial density fluctuation δ in the linear regime, this means that δ ≪ 1 and
we can linearise our system,

δρ = ρ− ρ̄ andρ = (1 + δ)ρ̄ (1.28)

we obtain:
∂δ

∂t
+

1

a
∇x · v = 0

∂v

∂t
+Hv = −1

a
∇xΦ

∇2
x
Φ = 4πGa2δρ̄

(1.29)
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1.3. The matter power spectrum

In order to find a solution to this system of equations we go to Fourier space where our vector
fields will be δ(k, t),v(k, t) and Φ(k, t).
Now, combining the three equations we get:

δ̈ + 2
ȧ

a
δ̇ − 4πGδρ̄ = 0. (1.30)

If we are in a matter-dominated Universe, then a(t) ∝ t2/3, H(t) = 2/3t and ρ̄ = 1/6πGt2 and
it is possible to rewrite the second order differential equation as:

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0. (1.31)

With a substitution we find two different solutions:

δ ∝
{

t2/3 ∝ a(t)
t−1 ∝ H(t)

(1.32)

In particular we introduce D+(t) that is the growing mode factor and D−(t) that is the
decaying mode factor and we have:

δ(x, t) = D+(t)δ(x) +D−(t)δ(x). (1.33)

Since D− ∝ t−1 it becomes negligible in the early stages of the evolution of the Universe, the
interesting term is D+(t) ∝ a(t) ∝ t2/3 that describes the growing mode of the initial density
perturbation. As these density perturbations are small, the linear regime approach is able
to explain their physical evolution; when the perturbations due to gravitational instability
becomes larger, the linear regime is no longer the right approach and we have to pass to the
non-linear regime in order to explain structure formation 3.2.
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Chapter 2

Gravitational Lensing

2.1 Introduction

Photons travel along null geodesics of the spacetime metric, and the presence of sources
of mass/energy in their path induces deflections in the direction of the light bundles. This
phenomenon of gravitational light deflection is called Gravitational Lensing and it is well
described in the context of General Relativity. Light from distant galaxies is deflected on
its way toward the observer through an inhomogeneous Universe and light bundles are
differentially distorted by tidal fields of the Large Scale Structure components. The interesting
property of the gravitational lensing is that it can be considered as a probe of the total matter
(dark matter and visible matter) content of the Universe without having to take into account
dark matter probes [45].

2.2 History

The idea that gravity might bend light did not originate with Einstein, it was already consid-
ered by Newton in his publication about Optics, and by Laplace. Following Newton, light
rays should have experienced the gravity force.
In 1804 Soldner attempted to apply the Newtonian gravity to calculate the deflection of the
light ray by the Sun, under the assumption that light is composed by massive particles. He
found that, according to the classical theory of gravity, the deflection angle α of a photon with
respect to its unperturbed path due to the presence of a point-like body of mass M would be
given by

αN =
2GM

b c2
, (2.1)

where G is the gravity universal constant, b the impact parameter (minimum distance of
the light ray from the mass M ) and c the velocity of light in vacuum. The argument to
obtain such result in the Newtonian limit is quite simple and refers to the classical process of
scattering on a centrally symmetric field force with inverse quadratic power-law with distance.
Unfortunately, this calculation has a number of problems associated with it. Newton’s theory
simply cannot be applied to massless particles: they feel no gravitational force (because the
force depends on their mass) and they have no inertia. Unaware of Soldner’s calculation,
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in 1907 Einstein began to think about the possible bending of light. By this stage, he had
already formulated the equivalence principle, but it was to be another eight years before the
general theory of relativity was completed. He realised that the equivalence principle in itself
required light to be bent by gravitating bodies. But he assumed that the effect was too small
ever to be observed in practice, so he shelved the calculation.
In 1911, still before the general theory was ready, he returned to the problem. What he did
in this calculation was essentially to repeat the argument based on Newtonian theory, but
incorporating the equation E = mc2. Although photons do not have mass, they certainly
have energy, and Einstein’s theory says that even pure energy has to behave in some ways
like mass. Using this argument, and spurred on by the realisation that the light deflection he
was thinking about might after all be measurable, he calculated the bending of light from
background stars by the Sun. These parameters yield a deflection of 0.87 seconds of arc; for
reference, the angle in the sky occupied by the Sun is around half a degree. This answer is
precisely the same as the Newtonian value obtained more than a century earlier by Soldner.
The predicted deflection is tiny, but according to the astronomers Einstein consulted, it could
just about be measured.
In 1915, with the full general theory of relativity in hand, Einstein returned to the light-
bending problem. And he soon realised that in 1911 he had made a mistake. The correct
answer was not the same as the Newtonian result, but twice as large. Einstein had neglected
to include all effects of curved space in the earlier calculation. The origin of the factor two is
quite straightforward when one looks at how a Newtonian gravitational potential distorts
the metric of space-time. In flat space ds2 = c2dt2 − dl2 and null geodesics in this case are
straight lines. Around a spherical distribution of mass M the metric changes so that, in the
weak field limit, it becomes

ds2 =

(

1 +
2GM

r c2

)

c2dt2 −
(

1− 2GM

r c2

)

dl2. (2.2)

Since the corrections in the parenthesis are small, one can solve the equation ds2 = 0 by
expanding each bracket in a power series. Einstein’s original calculation had included only
the first term, which corresponds to the R00 part of the field equations. The second doubles
the net deflection. Not only does energy gravitate, so does momentum and this appears in
the second term in the metric. The angular deflection predicted by Einstein’s equations in the
Newtonian limit is therefore

αE =
4MG

b c2
, (2.3)

which yields 1.74 arcsec for M = M⊙ and b = R⊙. Not only is this easier to measure, being
larger, but it also offers the possibility of a definitive test of the theory, since it differs from
the Newtonian value.

The 1919 British expeditions to Sobral and Principe were to prove this last calculation to be
right. This was the first proof of GR [12].

2.3 Gravitational Optics

In general it is a difficult problem to determine the trajectories of light rays in curved space-
times. However, in the cosmological setting, we can simplify the task by applying some
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assumptions [43].

• For a start we assume that the global background geometry is well described by the
Robertson–Walker metric we introduced in chapter 1.

• We make use of a Newtonian approximation for the light trajectories. We assume that a
light ray travels unperturbed from a background source until it is very close to the lens,
whereupon it is deflected by some angle we shall assume to be small. It then follows an
unperturbed trajectory from the lens to the observer (so called Born approximation).

• We need to require that the effective gravitational potential of the lens Φ is such that
|Φ2| ≪ c2.

• The lens is moving with respect to a cosmological frame with a velocity v ≪ c.

If these conditions apply, then the deflection produced by the lens is going to be small and it
can be computed as

α̂ =
2

c2

∫

∇⊥Φ dl (2.4)

where the gradient of the Newtonian potential is taken perpendicular to the light path and
the integral is taken along photon trajectory. With the simplification mentioned above, the
gradient can be taken to be perpendicular to the original (unperturbed) light ray rather than
the actual (perturbed) one. In this case we only need to consider the impact parameter b of
the light ray as it crosses the lens plane. The relevant potential for a point lens can be written

Φ(b, z) = − GM√
b2 + z2

(2.5)

where z is the distance along the path. With this for of the potential we find

∇⊥Φ(b, z) =
GMb

(b2 + z2)3/2
. (2.6)

The deflection angle is then

α̂ =
4GM

c2b
. (2.7)

Assuming that the lens is infinitely thin compared with the distances from source to lens and
from observer to lens, we can consider the lens to be a mass sheet lying in a plane usually
called the lens plane. The relevant property of the sheet is its surface mass density, Σ, where

Σ(ξ) =

∫

ρ(ξ, z)dz (2.8)

in which the integral is taken over the photon path as before. It can be shown that the net
deflection (now written as a vector to show its direction in the lens plane) is given by

α̂ =
4G

c2

∫

(ξ − ξ′)Σ(ξ)

|ξ − ξ′|2 d2ξ′ (2.9)
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Figure 2.1: Gravitational lensing. A light ray travels from the source S to the observer O passing
the lens at an impact parameter ξ. The transverse distance from the optic axis is η. The light ray is
deflected through an angle α̂; the angular separations of source and image from the optic axis are
denoted β and θ, respectively. The angular-diameter distances between observer and source, observer
and lens and lens and source are Ds, Dd and Dds, respectively.

If the distribution of mass in the lens plane is circularly symmetric, then the deflection angle
points towards the centre of symmetry and has modulus

α̂ =
4GM(ξ)

c2ξ
(2.10)

where ξ is the distance from the centre of the lens and M(ξ) is the mass enclosed within a
radius ξ so defined:

M(ξ) = 2π

∫ ξ

0

Σ(ξ′) ξ′ dξ′. (2.11)

We can now put this altogether to look at the geometry of a general lensing system as shown
in Figure 2.1. The figure introduces the reduced deflection angle α, which is related to α̂ via

α =
Dds

Ds

α̂. (2.12)

From the diagram, assuming small angles everywhere, we get

θDs = βDs − α̂Dds (2.13)

so that
β = θ −α(θ). (2.14)

This is called the lens equation; it relates the angular position of images and sources. Note that
angular-diameter distances must be used in this and the following.
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As an example let us look at a case with constant surface mass density Σ in the lens plane.
From equation (2.10) we obtain

α(θ) =
Dds

Ds

× 4G

c2ξ
× Σπξ2 =

4πGΣ

c2
Dd

Dds

Dsθ (2.15)

where ξ = Ddθ. In this case we can define a critical surface mass density

Σ∗ =
c2

4πG

Ds

DdDds

, (2.16)

where D is defined by

D =
DdDs

Dds

. (2.17)

The interpretation of the critical density Σ∗ is that the deflection angle α(θ) = θ so that β = 0
for any θ. This is a perfect lens which brings all light rays to focus at a well-defined focal
length. Real gravitational lenses are not perfect, but nevertheless display interesting optical
properties. Lenses which have Σ > Σ∗ typically produce multiple images of a background
source. Now let us generalise to the case of a circular lens with an arbitrary mass profile. The
lens equation (2.13) then becomes

β = θ − Dds

DdDs

4GM(θ)

c2θ
. (2.18)

If the mass density is sufficient, then a source with β = 0, i.e. one that lies on the optic axis, is
lensed into a ring with radius θE, where

θ2E =
4GM (θE)

Dc2
. (2.19)

This is called the Einstein radius.
For a point mass we obtain

θE =

(

4GM

Dc2

)1/2

. (2.20)

We can use this to rewrite the lens equation in this case as

β = θ − θ2E
θ

(2.21)

which has two solutions:

θ± =
1

2

(

β ±
√

β2 + 4θ2E

)

. (2.22)

The two solutions correspond to two images, one lying on either side of the source. One
image is always inside the Einstein ring and the other outside it. If the source is moved
further from the optic axis (i.e. if β increases), then one image gets closer to the lens and the
other gets nearer the source.

17



Chapter 2. Gravitational Lensing

(a) (b) (c) (d)

Figure 2.2: This Illustrates the geometry of the deflection of light by a deflector in the center of each
image. The lens is the inner circle, the source is the off-centre circle. The dashed circle marks the
Einstein ring. The shaded region shows the lensed image. From (a) to (d): the source gets closer and
closer to the lens. Interesting to note that for an extended source, like shown here as a white circle,
the two images have apparent sizes larger than the real one. These can be obtained from the two
crossing straight lines centred in the lens barycentre, the two lines being aligned with the borders of
the source in its unperturbed position and defining the borders of the lensed images. To demonstrate
this consider that every point in the source and lensed images can be treated according to eq (2.22),
and particularly the points at the borders that are aligned that are aligned along the two lines.

2.4 More General Systems

The preceding section dealt with simple lens systems. In the following we shall look at
some examples of how to deal with the more general case without any special symmetry. To
simplify the notation let us start by defining a scaled potential ψ(θ) by

ψ(θ) =
1

D

2

c2

∫

Φ (Ddθ, z) dz. (2.23)

This is useful because the gradient of ψ with respect to θ is just the deflection angle α because

∇θψ = Dd∇ξψ =
2

c2
Dds

Ds

∫

∇⊥Φdz = α. (2.24)

Moreover, the Laplacian of ψ with respect to θ is proportional to the surface mass density in
the lens plane:

∇2
θψ =

2

c2
DdDds

Ds

∫

∇2
ξΦdz =

2

c2
DdDds

Ds

× 4πGΣ = 2
Σ

Σ∗

. (2.25)

It is then convenient to define the convergence field κ via

κ(θ) ≡
∑

(θ)

Σ∗

, (2.26)

so that the Laplacian is just twice the convergence in a two-dimensional version of Poisson’s
equation:

∇2
θψ = 2κ (2.27)

This means that we can write the potential as a function of κ using
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ψ(θ) =
1

π

∫

κ(θ) log |θ − θ′| d2θ′. (2.28)

Because the deflection angle is just the gradient of the potential ψ from (2.24), we can write

α(θ) =
1

π

∫

κ(θ)
θ − θ′

|θ − θ′|2
d2θ′, (2.29)

which is equivalent to the equation (2.13) we obtained earlier.
In general the lens produces a mapping of the source plane onto the image plane. The local
properties of this mapping are best specified by the Jacobian matrix

Aij =
∂βi
∂θj

=

(

δij −
∂αi(θ)

∂θj

)

=

(

δij −
∂2ψ

∂θi∂θj

)

. (2.30)

The Jacobian Aij may be thought of as the inverse of a magnification tensor Mij . The local
distortion of an image due to the lens given by the determinant of A. If a solid angle δβ2 of
the source becomes δθ2 in the image, then

∂θ2

∂β2
= detM =

1

detA
. (2.31)

This is a general form of equation (2.21).
The general properties of the mapping from source to image can be described somewhat
more simply than the general form (2.21). First define a notation such that

ψij ≡
∂2ψ

∂θi∂θj
. (2.32)

Using (2.27) we find that

κ =
1

2
(ψ11 + ψ22) . (2.33)

We are in weak lensing regime if κ < 1 and in strong lensing regime if κ > 1.
We can also use the elements of ψij to construct components of a shear tensor. First define

γ1 =
1

2
(ψ11 − ψ22) ≡ γ cos(2φ) (2.34)

and

γ2 = ψ12 = ψ21 ≡ γ sin(2φ). (2.35)

Using these definitions we can write

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

(2.36)

which can also be written

A = (1− κ)

(

1 0
0 1

)

− γ

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

. (2.37)
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This notation is useful because it allows a simple visual interpretation of the effects of lensing.
A pure convergence κ corresponds to an isotropic magnification of the source in such a way
that a circular source becomes a larger but still circular image. The components γ1 and γ2
represent shear in such a way that

γ =
√

γ21 + γ22 (2.38)

represents the magnitude of the shear and φ its orientation. A non-zero shear transforms a
circular source into an elliptical image.
In some places the mapping between source and image plane becomes singular. These
singularities are normally called caustics and they lead to interesting optical effects owing
to the non-uniqueness of the mapping between image and source planes to which they
correspond. Basically a given (extended) lens will generate a set of caustics in the source
plane. When a source crosses such a caustic a new pair of images is produced in the image.
An extended lens can produce many images, depending on the mass distribution in the lens
plane, while a point-mass lens only produces two. Near the caustics the shape of the images
can be complicated, producing near-circular giant arcs. These can be very bright, owing to
the magnification effect which is formally infinite at a caustic.
The consequences of these can be spectacular but complicated and, generally, considerable
modelling is needed to understand the complex images obtained.

2.5 Applications

The gravitational effects on light propagation offer us an ideal tool to measure the total
gravitating mass content in cosmological objects and structures [20], which is of course a
very uncertain task, as we know; moreover gravtational lensing offers also other studies and
applications:

• The case for strongly lensed high-redshift sources and the gravitational telescopes [15],

• The fraction of strongly lensed objects as a function of the cosmological parameters
(constraints on ΩΛ ) [8],

• Time delays due to lensing and the estimate of H0 [14],

• Micro-lensing and the search for massive dark objects in the Milky Way halo,

• Variability of high-redshift quasars [34],

• Weak-lensing and the Large Scale Structure [41], [36], see figure 2.3.
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2.5. Applications

Figure 2.3: Simulation of the weak lensing distortion induced by large-scale structure. The pattern of
density perturbations is shown as a greyscale picture upon which lines are superimposed representing
the size and angle of the distortions (convergence and shear field)
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Chapter 3

The Shape of Non-Gaussianity

3.1 Introduction

Most of the fields that we observe in cosmology are significantly non-Gaussian: the large-
scale matter density is strongly non-Gaussian due to non-linear growth (1.32), and even the
CMB is significantly non-Gaussian on small scales due to non-linear effects. Current evidence
suggests that primordial fluctuations at the beginning of the hot big bang were very close
to Gaussian, but primordial non-Gaussianity is still a possibility and, if observed, would be
a way to rule out wide classes of early-universe models. Understanding non-Gaussianity
is therefore crucial to extract the most information from cosmological observations. Since
the initial fluctuations were close to Gaussian, the non-Gaussianities can often be treated
perturbatively, in which case the bispectrum and trispectrum contain most of the additional
information (though at very late times where strongly non-linear processes are involved
a deeper analysis may be required). Here we will focus on non-Gaussianity as described
by a bispectrum. We will show what fields with various qualitatively different types of
non-Gaussianity look like in real space, and give some general results for the form of the
squeezed bispectrum and its angular decomposition.
Here we do not aim to review the details of observational analysis or physical modelling of
non-Gaussianities, we will mostly focus on generalities rather than specific models, though
we mention specific cases of cosmological interest. For simplicity we restrict to scalar fields
in flat space; the generalization to 2D fields on the sphere (e.g. the full-sky CMB or weak
lensing convergence field), a non-flat background, or tensor fields (e.g. weak lensing shear
and CMB polarization) is conceptually simple, though can be technically significantly more
complicated.
We will assume a standard statistically isotropic and homogeneous background cosmology.
In this case the wavevectors describing a particular non-Gaussian configuration of modes
must sum to zero: for a bispectrum there are three modes with wavevectors that close to
form a triangle; by "shape", we will mean a particular configuration of fixed-length wavevec-
tors, e.g. a specific bispectrum triangle. A general bispectrum gives the full wavenumber
and configuration dependence, i.e. the amount of signal expected in each possible shape.
For example an ’orthogonal’ bispectrum does not correspond to a particular triangle shape,
but instead a particular wavenumber dependence of the signal in each shape. Instead of
showing the magnitude of the signal as a function of the wavevectors, we instead focus on
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what the signal looks like in real space for specific configurations. This can be a useful aid to
understanding which kinds of physical process generate the different shapes (see [2] and [28]).

3.2 Gaussianity and the power spectrum

Before discussing non-Gaussianity, it is worth quickly remembering the key features of Gaus-
sian fields. In particular we are usually interested is statistically isotropic and homogenous
universe models, and hence in fields that have these symmetries. For simplicity we shall
focus mainly on scalar fields 2D flat space, for example a slice through the matter density field
or a small patch of the weak lensing convergence field, or of the CMB, but almost everything
generalizes to other cases such as full-sky observations. Assuming we can measure a field
T (x) as a function of position, in flat space these can be Fourier transformed and written as

T (x) =
1

(2π)N/2

∫

dkT (k)eik·x (3.1)

where N is the number of dimensions. Statistical homogeneity and isotropy means that
the statistical properties of the field must be unchanged under translations and rotations
T (x) → T (x′), so 〈T (x)T (x′)〉 can only be a function of the invariant separation between
the points |x− x′|. This implies that the covariance of the field is determined by a power
spectrum depending only on k ≡ |k| :

〈T (k1)T (k2)〉 = δ (k1 + k2)P (k1) . (3.2)

For a small patch of the CMB, the power spectrum is just Cl, where l = k. The delta function
says that modes with different wavevectors are completely uncorrelated: knowing the sign
of T (k1) tells you nothing about the likely sign of T (k2). From the power spectrum the
only thing we know is the variance of each individual mode, which from the assumption of
isotropy is the same independent of the orientation of the mode.
A purely Gaussian statistically homogeneous and isotropic field is fully described statistically
by its power spectrum. However more interesting fields are possible that are also statistically
homogeneous and isotropic, with the non-Gaussian statistics described by a series of higher-
point correlation functions.

3.3 Bispectrum

The first non-Gaussian signal to consider is a bispectrum, corresponding to a three-point
correlation, or in Fourier space a correlation between three different mode wavevectors.
We are still interested in statistically homogeneous and isotropic fields, which implies the
statistics are described by a reduced bispectrum b (k1, k2, k3) that depends only the lengths of
the wavevectors:

〈T (k1)T (k2)T (k3)〉 =
1

(2π)N/2
δ (k1 + k2 + k3) b (k1, k2, k3) (3.3)

From now on when referring to the bispectrum we will mean the reduced bispectrum as
defined here; an analogous definition applies on the full sky (4.1.2). The delta function
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here means that the 3-mode correlation is zero unless the wavevectors sum to zero: they
form a triangle. If there is a non-zero bispectrum, modes with different wavevectors are not
independent: if we measure T (k1) and T (k2), the sign of the bispectrum b (k1, k2, k3) then
tells us which sign of T (k3) is more likely. Positive sign gives positive skewness (tail of very
high values), negative sign gives negative skewness (tail of very low values). What this looks
like in real space depends on the shape of the triangle (the relative lengths of the different
wavevectors).

3.3.1 Equilateral and flattened (folded) triangles

The first case we consider is equilateral triangles, where the lengths of the three sides of the
triangle are the same, k1 = k2 = k3. If there’s a non-zero equilateral bispectrum, what does
the field look like in real space? To answer this we can consider taking the T (k1) and T (k2)
components of the field, and then ask what the bispectrum tells us about T (k3). Depending
on the relative sign of T (k3), a field consisting of these three modes looks rather different -
see Fig. 3.1. The sign of the bispectrum tells us which sign of T (k3) is more likely, in other
words whether we are more likely to have small regions of concentrated overdensity (b > 0)
or regions of concentrated underdensity (b < 0). As can easily be imagined, such patterns can
be obtained by locally moving matter around, for example concentrated overdensities can
form by gravitational collapse, and thus equilateral non-Gaussianity is likely to be present in
any field undergoing local non-linear dynamical processes.

A bispectrum is determined by three wavevectors which always lie in a plane. In 3D, the
modes we are considering correspond to plane waves, and the concentrated overdensities
correspond to filaments. These are precisely what form during the growth of large-scale
structure, as shown in the famous simulation of Fig. 3.2 . Since it is the overdensities that are
concentrated, not the underdensities, the non-linear large-scale structure density field will
have a large positive equilateral component to its bispectrum.

Of course exactly equilateral triangles are a very special case, but there are many shapes that
are close to equilateral and these will also look similar, but correspond to slightly elliptical
concentrated overdensities or underdensities. As the bispectrum triangle becomes more
flattened, these turn into a line, or in 3D concentrated overdensity or underdensity pancakes
(planes); see Fig. 3.3. Note that shapes that are qualitatively distinct in 3D may not be after
projection into 2D: for example if an purely equilateral shape is present in 3D, projecting
down to 2D will give flattened contributions when the line of sight lies close to the plane of
the triangle (slicing a 3D filament along its length gives a line of overdensity).

3.3.2 Squeezed triangles

Squeezed triangles correspond to having one wavevector much shorter than the other two:
in other words one large-scale mode and two much shorter-scale modes. The bispectrum
is invariant under permutations of k1, k2, k3, so for squeezed triangles it is convenient to
adopt the convention that we permute indices so that k1 ≤ k2 ≤ k3, and k1 therefore labels
the large-scale mode. Sometimes people refer to the "squeezed-limit", meaning the limit
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Figure 3.1: Equilateral bispectrum: a field can be decomposed into plane-wave modes, and the three
components with wavevectors that form an equilateral triangle may have different relative signs.
The sign of the bispectrum tells you which combination of signs is more likely (on average gives a
positive or negative product of the three modes). A positive reduced bispectrum corresponds to being
likely to have waves combining to have strong overdensities surrounded by larger areas of milder
underdensity. A negative equilateral bispectrum corresponds to being likely to have concentrated
underdensities surrounded by areas of milder overdensity. Note that in 3D the figures extend into the
page, and hence the positive bispectrum corresponds to concentrated overdense filaments surrounded
by larger areas of milder underdensity.

Figure 3.2: A snapshot of non-linear large-scale structure from the millennium simulations. Dy-
namical non-linear collapse of very dense filaments (surrounded by milder underdensities, voids)
generates a large positive roughly equilateral density bispectrum.

26



3.3. Bispectrum

Figure 3.3: As an approximately equilateral bispectrum triangle flattens, the round areas of over-
density become flattened into pancakes. In 3D a positive flattened bispectrum with k1 = k2 = k3/2
corresponds to being likely to have overdense pancakes with larger mildly underdense planes in
between.

as k1 → 0, but this is not really observationally relevant as very super-horizon modes are
unobservable. By squeezed we will mean triangles with k2, k3 ≫ k1, but the wavelength of k1
not much larger than the horizon size today, so that the mode is still observationally relevant.
First it is helpful to consider what a combination of two small-scale modes with k2 ∼ −k3

looks like: as shown in Fig. 3.4 the waves destructively interfere in some regions leaving
little small-scale structure, but in other regions they reinforce each other giving a large small-
scale signal. So this looks like a large-scale modulation in the small-scale power, where the
wavevector of the modulation is given by − (k2 + k3). In a Gaussian field the signs of all the
modes are independent, so of course there is no modulation on average. However if there
is a non-zero squeezed bispectrum, there is a correlation between this modulation and the
large-scale modes; for example see Fig. 3.5a positive squeezed bispectrum means that where
there’s a large-scale overdensity there’s likely to be more small-scale structure, and where
there is an large-scale underdensity there is likely to be less small-scale structure.

3.3.2.a Angular dependence and the squeezed approximation

So far we have described the bispectrum triangles in terms of the lengths of the sides.
However for squeezed triangles in particular it can be useful to describe the triangles in a
different way. Since the two small-scale modes are of similar wavelength, is natural to use a
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Figure 3.4: Two short-scale modes combine giving interference patterns. These look like a large-scale
modulation in the amplitude of the small-scale modes, with the modulation having wavevector
k1 = −k2 − k3.

single number k ≡ |k2 − k3| /2 to quantify the scale of the small-scale modes [27] , as shown
in Fig. 3.6. The remaining free parameter can then be taken to be the angle φ between the
large-scale and small-scale wavevectors, so that a triangle is fully described by the three
numbers k1, k, φ. Squeezed triangles have k1 ≪ k, and in particular we shall refer to the
squeezed limit as having leading corrections of O

(

(k1/k)
2). Note that exchanging k2 ↔ k3 is

equivalent to φ↔ π − φ with the same k.
It can also be useful to decompose the bispectrum depending on its angular dependence, i.e.
writing 8

b (k1, k, φ) =
∑

m

bmk1,ke
imφ. (3.4)

If the squeezed bispectrum is independent of φ, i.e. the orientation between the large and
small-scale modes, it is called isotropic. In this case the bispectrum is fully determined by
the m = 0 component b0k1,k. For 3D or statistically parity-invariant 2D fields than can be no
sin(mφ) dependence, and from rotational invariance the odd m components should vanish,
but in general there can be an angular dependence cos(mφ) with evenm. This generally enters
from k1 ·k2 and k1 ·k3 dependence of the bispectrum, for example from gradient contractions,
and hence angular dependence enters in the combination k1 cos(φ). A bispectrum expansion
in k1/k therefore has angular dependence entering via powers of the dimensionless parameter
ǫφ ≡ (k1/k) cos(φ). Since any bispectrum must be symmetric under k2 ↔ k3 (and therefore
φ↔ π − φ), only even powers of ǫφ can enter, and higher even powers of cos(φ) (and hence

8For bispectra in 3D, one could also expand into more directly orthogonal spherical harmonic YL0 modes;
the argument is much the same so for simplicity I will stick with the 2D modes.
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3.3. Bispectrum

(a)

(b)

Figure 3.5: Squeezed bispectrum: two small-scale modes with nearly-equal wavelength (k2 ∼ k3)
interfere with each other, giving some regions with lots of small-scale power and others with destruc-
tive interference giving little small-scale power. The sign of the bispectrum tells you whether a region
of high small-scale power is more likely to be associated with a large-scale overdensity or a large-scale
underdensity. If the correlation is independent of the relative orientation (upper and lower figures
have the same signal) the bispectrum is isotropic, but in general it is not.

higher even m ) are suppressed by proportionally more powers of k1/k. Thus the squeezed
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Chapter 3. The Shape of Non-Gaussianity

Figure 3.6: A bispectrum triangle can be described by the lengths of the three sides, or alternatively
by the length of the shortest side (corresponding to the large-scale mode), the length-scale of the
long sides (short-scale modes) defined by k = |k2 − k3| /2, and the angle φ that measures the relative
orientation of the long and short-scale modes.

expansion of a smooth scalar bispectrum is typically of the form

b (k1, k2, k3) = A (k1, k) + [B (k1, k) + C (k1, k) cos(2φ)]
k21
k2

+D (k1, k, φ)O
(

k41/k
4
)

, (3.5)

where A,B,C,D encode the scale-dependence of the particular physics involved. Hence
unless there is very strong scale dependence the leading term is isotropic, and the next leading
term only has isotropic and quadrupolar contributions. For some bispectra A = 0 and the
leading term then in general has both isotropic and quadrupolar components. Physically the
reason higher angular dependence does not appear is because a small patch on a large-scale
scalar modulating field will be accurately described by a field value and gradient, with the
field value giving an isotropic change to the small-scale power, and the gradient defining the
local basis for the quadrupolar dependence of the small-scale power. The leading term can
only have anisotropic contributions if the modulation is not scalar.

For example gravitational lensing of the CMB generates both m = 0 part of the bispectrum
(corresponding to large-scale lenses isotropically magnifying and de-magnifying the CMB),
and also an m = 2 component from lensing shear (see e.g. refs. [27] [10] [5] ). Primordial
bispectra involving gravitational waves can also generate small m = 2 components, since
the modulation of the small-scale modes will depend on their orientation with respect to the
anisotropic distortion produced by a large-scale tensor mode [29]. Similarly inflation models
with vector fields can generate anisotropic bispectra [1]. Purely scalar local modulations are
expected to give isotropic bispectra [6].

The decomposition of the squeezed bispectrum into angular moments is conceptually useful
for distinguishing different physical effects. In particular, in the squeezed limit bispectra
with different m are orthogonal9: an estimator for bmk1,k should not be liable to confusion

with a bispectrum bm
′

k1,k
if m 6= m′. For example this is partly what allows CMB lensing to

be easily distinguished from an isotropic local primordial bispectrum: the m = 0 part due
to magnification is a source of confusion, but the m = 2 lensing signal is distinctive and
allows the lensing to be isolated and subtracted. The angular decomposition is also useful
when considering secondary processing of primordial bispectra: if a statistically isotropic
small-scale process affects the primordial modes it will not mix bispectra of different m.
For example under gravitational lensing any primordial squeezed bmk1,k is blurred out in
k due to random small-scale lensing deflections, but the angular m dependence does not

9In 2D, see [35] [13] . For bispectra in 3D, one can expand in spherical harmonics YL0, and the modes with
different L will then be orthogonal.
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3.3. Bispectrum

change [35] [13]. Since all bispectra are expected only to have the lowest m components
in the squeezed limit, this also suggests that a general modal bispectrum decomposition
can efficiently capture the angular dependence with only two angular modes for squeezed
shapes, and since corrections are quadratic triangles do not need to be very squeezed for the
squeezed approximation to be quite accurate.
Models in which statistical isotropy is broken can also generate anisotropic bispectra in the
more general sense that the bispectrum signal can then depend on the orientation of the
triangle [22] [11].

3.3.2.b General form of the squeezed bispectrum

Consider the case where the field being observed T̃ can be calculated from some non-linear
function of a set of purely Gaussian fields {Xi} that we can write as a vector X. For example
the Gaussian fields might be combinations of small scale and large-scale perturbation modes,
different inflation field perturbations, lensing potentials, linear matter densities, velocity
fields giving redshift distortions, etc. Since we are assuming underlying Gaussian fields, they
are fully described by their covariance C (a matrix of power spectra). If we are interested in
the bispectrum of a field T̃ (X) (where the tilde denotes that it is non-linear), it can therefore
be calculated by integrating out the Gaussian fields

〈

T̃ (k1) T̃ (k2) T̃ (k3)
〉

=

∫

dX
exp

(

−1
2
X†C−1X

)

| 2πC |1/2 T̃ (k1) T̃ (k2) T̃ (k3) (3.6)

For a squeezed bispectrum the large-scale field T (k1) is at a much larger scale than the two
small-scale fields T (k2), T (k3), and hence is often well approximated as being Gaussian
(a linear function of the underlying Gaussian fields). For example in large-scale structure
the large-scale mode in the bispectrum will be nearly linear if k1 . 0.05Mpc−1, similarly in
the CMB large scales are accurately linear but smaller scales have significant non-linearities
due to lensing and other effects. The approximation T̃ (k1) ≈ T (k1) is the linear short-
leg approximation [27], which is very accurate in some cases. Writing T (k1) as a linear
combination of Xi (k1) in (3.6), T (k1) = MiXi (k1), and then writing Xi (k1) as a functional
derivative of the exponent,

〈

T (k1) T̃ (k2) T̃ (k3)
〉

=

∫

dX
exp

(

−1
2
X†C−1X

)

|2π|1/2 MiXi (k1) T̃ (k2) T̃ (k3)

= −
∫

dXMiCij (k1)
δ

δXj (k1)
∗

(

exp
(

−1
2
X†C−1X

)

|2πC|1/2

)

T̃ (k2) T̃ (k3)

=MiCij (k1)

∫

dX
exp

(

−1
2
X†C−1X

)

|2π|1/2
δ

δXj (k1)
∗

(

T̃ (k2) T̃ (k3)
)

(3.7)
Then since Cij = PXiXj

, we have MiCij = PTXj
and hence

〈

T̃ (k1) T̃ (k2) T̃ (k3)
〉

≈
〈

T (k1) T̃ (k2) T̃ (k3)
〉

= PTXi
(k1)

〈

δ

δXi (k1)
∗

(

T̃ (k2) T̃ (k3)
)

〉

(3.8)
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Chapter 3. The Shape of Non-Gaussianity

Thus the bispectrum depends on the correlation of the large-scale field with the modulating
fields PTXi

(k1), and is proportional to the response of the small-scale non-linear modes to
changes in the large-scale modulation. The result of 3.8 is fully non-perturbative and only
relies on the linear short-leg approximation, not an extreme squeezed limit (if necessary it
can be generalized out of the linear short-leg approximation by including higher derivative
terms). In the case of CMB lensing it is possible to calculate the response term essentially
exactly non-perturbatively [27]; more generally as k1/k → 0, k2 → k3, and the response
term just describes how the small-scale power spectrum changes with a different large-scale
background modulation.
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Chapter 4

Weak Lensing Statistics

This chapter is devoted to the analytical description of 2D field in flat space and on the sphere,
its angular power spectrum and angle averaged integrated bispectrum. In the final section
we describe the covariance matrix and we explain the need to estimate it analyzing thousands
simulations.

4.1 Position-Dependent Power Spectrum from Convergence
Maps

A relatively new observable has been developed in recent years that relies on the fact that the
power spectrum measured from a survey sub-volume correlates with the mean of the same
observable in the same sub-volume. This correlation gives a direct estimate of the bispectrum
in the squeezed limit.
In this section we will present the analytical results relevant to the position-dependent power
spectrum from 2D surveys with an emphasis particularly on 2D weak lensing surveys.

4.1.1 Flat-Sky Treatment

Measurement of the bispectrum from weak lensing surveys is difficult due to non-ideal sky
coverage caused by masking of regions close to bright objects as well as irregular survey
boundaries. The IB proposed here tries to bypass these complexities by concentrating on
the squeezed limit of the bispectrum, which can be estimated by techniques developed for
estimation of the power spectrum. We will concentrate on the projected survey but general-
ization to tomographic bins is straight-forward.

In this section we develop the recently introduced statistics of position-dependent power
spectrum to the case of weak lensing. We consider 2D weak lensing surveys but extension to
2D projected galaxy surveys can be done in a straight-forward manner. We will use the small
angle approximation before generalising to the all-sky case in the following section.

Let us consider a weak lensing convergence map κ(Ω̂) at a angular position of the sky Ω̂

defined over a patch of the sky Ω̂ = (ϑ, ϕ), where ϑ and ϕ are right ascension and declination
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Chapter 4. Weak Lensing Statistics

respectively. We will divide the entire patch into equal area sub-patches. We will focus on

one such sub-patch centered around the angular position Ω̂0 = (ϑ0, ϕ0). The local average of
κ on a sub-patch of the sky can differ from its global value of zero, where for a sub-patch the
local average is:

κ̄
(

Ω̂0

)

:=
1

α

∫

d2Ω̂κ(Ω̂)W
(

Ω̂− Ω̂0

)

; α :=

∫

W
(

Ω̂− Ω̂0

)

d2Ω̂

W (Ω̂) := Θ (ϑ− ϑ0)Θ (ϕ− ϕ0)

(4.1)

Here, W describes the sky-patch and Θ represents the one-dimensional top-hat function
i.e. Θ(ϑ− ϑ0) = 1 if |ϑ− ϑ0| < ϑS and zero otherwise and similarly Θ(ϕ− ϕ0) = 1 if
|ϕ− ϕ0| < ϕS and zero otherwise. In this notation, ϑS and ϕS represent half-width of a
sub-patch along the ϑ and ϕ directions while α is the effective area of a sub-patch. We will

assume that all sub-patches are of the same size and α is independent of Ω̂0
10. In 2D, we will

denote the Fourier wave-number as l and use the following convention for Fourier transform:

κ(l) :=

∫

d2Ω̂ exp
(

−il · Ω̂
)

κ(Ω̂); κ(Ω̂) :=

∫

d2l

(2π)2
exp
(

il · Ω̂
)

κ(l). (4.2)

The power spectrum P κ and bispectrumBκ in 2D are defined using the following conventions:

〈κ (l1)κ (l2)〉 := (2π)2δ2D (l1 + l2)P
κ (l1) ; l = |l| (4.3a)

〈κ (l1)κ (l2)κ (l3)〉 := (2π)2δ2D (l1 + l2 + l3)B
κ (l1, l2, l3) (4.3b)

The angular brackets represent the ensemble average11. Here, δ2D is the Dirac delta function in
2D. The window W describing a patch can be used to extend the limits of angular integration.
Thus, the flat-sky (local) Fourier transform takes the following form:

κ
(

l; Ω̂0

)

:=

∫

d2Ω̂κ(Ω̂)W
(

Ω̂− Ω̂0

)

exp
(

−il · Ω̂
)

=

∫

d2l1
(2π)2

κ (l− l1)W (l1) exp
(

−il1 · Ω̂0

)

(4.4)

We use W (l) to denote the Fourier transform of W (Ω̂). Notice that the Fourier coefficient

κ
(

l; Ω̂0

)

for l = 0 (monopole) is identical to κ̄
(

Ω̂0

)

defined above. The local convergence

power spectrum P κ
(

l; Ω̂0

)

in this fraction of sky is given by (we will denote the global power

spectrum as P κ(l)):

P κ
(

l; Ω̂0

)

=
1

α

∫

d2l1
(2π)2

∫

d2l2
(2π)2

κ (l− l1)κ (−l− l2)

× exp
[

−i (l1 + l2) · Ω̂0

]

W (l1)W (l2)

(4.5)

The resulting IB is defined by cross-correlating the local estimate of the power spectrum and
the local average of the projected field:

10This is implemented considering equal area flat projection of the full-sky map, see Flat projecitons
11In our implementation this means averaging over Npatches, assuming isotropy ??
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4.1. Position-Dependent Power Spectrum from Convergence Maps

Bκ(l) :=
〈

P κ
(

l; Ω̂0

)

κ̄
(

Ω̂0

)〉

=
1

α2

∫

d2Ω̂0

2π

∫

d2l1
(2π)2

∫

d2l2
(2π)2

∫

d2l3
(2π)2

〈κ (l− l1)κ (−l− l2)κ (−l3)〉

×W (l1)W (l1 + l3)W (l3) exp
[

−i (l1 + l2 + l3) · Ω̂0

]

(4.6)

The power spectrum P κ and the average κ̄ used in eq (4.6) are estimated from the same patch
of the sky. Many such patches are created by dividing the entire survey area. The compu-
tation of the average and the power-spectrum from a patch is far simpler than estimating
the bispectrum directly. However, it is worth mentioning that such a simplification comes at
a price, as the IB can only extract information about the squeezed limit of the bispectrum,
if we focus on wave numbers l much larger than the wave numbers that correspond to the
fundamental mode of the patch.

Next, we will specialize our discussion for weak lensing surveys. The weak lensing conver-
gence κ is a line-of-sight projection of the 3D density contrast δ(r), in The Born approximation
it is given by :

κ(Ω̂) :=

∫ rs

0

dr w(r)δ(r, Ω̂); w(r) :=
3ΩM

2

H2
0

c2
a−1dA(r)dA (rs − r)

dA (rs)
(4.7)

Here, r is the comoving radial distance, a represents the scale factor, H0 the Hubble parameter,
ΩM the cosmological matter density parameter and dA(r) is the comoving angular diameter
distance. We will ignore the source distribution and assume them to be localized on a single
source plane at a distance r = rs

12. Fourier decomposing δ along and perpendicular to the
line-of-sight direction we obtain:

κ(Ω̂) =

∫ rs

0

dr ω(r)

∫

dk‖
2π

∫

d2k⊥

(2π)2
exp

[

i
(

rk‖ + dA(r)Ω̂ · k⊥

)]

δ(k; r) (4.8)

In our notation, k‖and k⊥ are the components of the wave vector k along and perpendicular
to the line-of-sight direction and δ(k) is the Fourier transform of the 3D density contrast δ.
We have used the following convention for the 3D FT and its inverse:

δ(k) :=

∫

d3x exp(−ik · x)δ(x); δ(x) :=

∫

d3k

(2π)3
exp(ix · k)δ(k). (4.9)

We have introduced x = (r, Ω̂) as the comoving distance and k as the corresponding wave
number. We will use δ3D to denote the 3D Dirac delta function. The 3D power spectrum and
bispectrum for the density contrast δ are:

〈δ (k1) δ (k2)〉 := (2π)3δ3D (k1 + k2)P
δ
3D (k1) ; k = |k| (4.10a)

〈δ (k1) δ (k2) δ (k3)〉 := (2π)3δ3D (k1 + k2 + k3)B
δ
3D (k1,k2,k3) (4.10b)

12We will also ignore photometric redshift errors. However, such complications are essential to link predictions
to observational.
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Using the Limber approximation [26] the convergence power spectrum P κ(k) and bispectrum
Bκ (k1,k2,k3) . can be expressed respectively in terms of the 3D matter power spectrum
P δ
3D(k) (introduced in 1.3) and bispectrum Bδ

3D (k1,k2,k3) :

P κ(l) =

∫ rs

0

dr
ω2(r)

d2A(r)
P δ
3D

(

l

dA(r)
; r

)

(4.11a)

Bκ (l1, l2, l3) =

∫ rs

0

dr
ω3(r)

d4A(r)
Bδ

3D

(

l1
dA(r)

,
l2

dA(r)
,

l3
dA(r)

; r

)

(4.11b)

To compute this, we use the fitting function developed in [50]. One can also includes the
post-Born correction [39] which becomes necessary at high redshift but has a small effect at
low redshift.
In 2D the angular average of the IB, denoted as Bκ

(l), can be defined as:

Bκ
(l) :=

∫

dϕl

2π
Bκ(l); l = |l| (4.12)

Here ϕl is the angle between the vector l and the ϑ direction. Next, carrying out the Ω̂0

integral in eq (4.6) and using the resulting 2D delta function to perform the l2 integral leaves
us with the following expression:

Bκ
(l) =

∫

dϕl

2π

∫

d2l1
(2π)2

∫

d2l3
(2π)2

Bκ (l− l1,−l+ l1 + l3,−l3)

×W (l1)W (l1 + l3)W (l3) .

(4.13)

4.1.2 All-Sky Formulation

Our starting point is a 2DmapM(Ω̂) in pixel space for a generic field defined on the sphere,
related to its spherical harmonic coefficients aℓm

13 by

M(Ω̂) =
∑

ℓm

aℓmYℓm(Ω̂) and aℓm =

∫

d2Ω̂M(Ω̂)Y ∗
ℓm(Ω̂) (4.14)

where Ω̂ = (θ, ϕ) is the position on the celestial sphere.

A patch in the sky is selected by multiplying the map M(Ω̂) by the patch window W (Ω̂2Ω̂0)(

patch centered at Ω̂0). Ohe latter can be either a simple mask (i.e. a step function, taking
values 1 inside the patch and 0 outside) or a more general beam function with no sharp
edges in pixel space, like a multipole space patch as we will deal with, see 5.1). Hence, the
position-dependent harmonic coefficients (i.e. the harmonic coefficients in the patch centered

at Ω̂0 ) are given by

ãℓm

(

Ω̂0

)

=

∫

d2Ω̂M(Ω̂)W
(

Ω̂, Ω̂0

)

Y ∗
ℓm(Ω̂) =

∑

ℓ1m1

aℓ1m1K
mm1
ℓℓ1

(

Ω̂0

)

(4.15)

where we use the notation ∼ to indicate that it is a patch quantity (with respect to the
harmonic coefficient aℓm for the full sky) and Kmm1

ℓℓ1
is the patch kernel defined by

13In order to refer at convergence field, it is sufficient to consider kℓm instead of aℓm
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Km1m2
ℓ1ℓ2

(

Ω̂0

)

≡
∫

d2Ω̂W
(

Ω̂, Ω̂0

)

Yℓ2m2(Ω̂)Y
∗
ℓ1m1

(Ω̂) (4.16)

The position-dependent power spectrum is then given by

C̃ℓ

(

Ω̂0

)

=
1

fW
sky

1

2ℓ+ 1

∑

ℓm

ãℓm

(

Ω̂0

)

ã∗ℓm

(

Ω̂0

)

=
1

fW
sky

1

2ℓ+ 1

∑

ℓ1m1

∑

ℓ2m2

aℓ1m1aℓ2m2

∑

m

(−1)mKmm1
ℓℓ1

(

Ω̂0

)

K−mm2
ℓℓ2

(

Ω̂0

)
(4.17)

where we used
(

Km1m2
ℓ1ℓ2

)∗
= (−1)m1+m2K−m1−m2

ℓ1ℓ2
.

The patch function can also be decomposed into spherical harmonics

W
(

Ω̂, Ω̂0

)

=
∑

ℓm

wℓm

(

Ω̂0

)

Yℓm(Ω̂) (4.18)

The local average value in a patch is then given by

˜̄M
(

Ω̂0

)

=
1

4πfW
sky

∫

d2Ω̂M(Ω̂)W
(

Ω̂, Ω̂0

)

=
1

4πfW
sky

∑

ℓm

∑

ℓ′m′

aℓmwℓ′m′

(

Ω̂0

)

∫

d2Ω̂Yℓm(Ω̂)Yℓ′m′(Ω̂)

=
1

4πfW
sky

∑

ℓm

aℓmw
∗
ℓm

(

Ω̂0

)

(4.19)
where fW

sky is the fraction of the sky covered by the patch and the last step is obtained using
the orthogonality property of spherical harmonics.

The integrated angular bispectrum is defined as the cross-correlation of the average ˜̄M and
the position-dependent power spectrum C̃ℓ of a patch, averaged over the whole sky:

IBℓ ≡
〈

1

4π

∫

d2Ω̂0
˜̄M
(

Ω̂0

)

C̃ℓ

(

Ω̂0

)

〉

. (4.20)

In practice, the integrated bispectrum of a map (simulation or observation) is computed by
averaging over all the patches

IBobs
ℓ =

1

Npatch

∑

patch

˜̄Mobs
patch C̃

obs
ℓ, patch (4.21)

where Npatch is the total number of patches used to divide the sky and ˜̄Mobs
patch and C̃obs

ℓ,patch are
determined for each patch after multiplying the data map by the patch window.
After substituting the position-dependent power spectrum eq. (4.17) and the mean patch
value eq. (4.19) into the angular averaged integrated bispectrum definition (4.20), the expec-
tation value of the integrated bispectrum becomes

IBℓ =
1

(4π)2
(

fW
sky

)2

1

2ℓ+ 1

∑

ℓ1m1

∑

ℓ2m2

∑

ℓ3m3

〈aℓ1m1aℓ2m2aℓ3m3〉

×
∫

d2Ω̂0w
∗
ℓ3m3

(

Ω̂0

)

∑

m

(−1)mKmm1
ℓℓ1

(

Ω̂0

)

K−mm2
ℓℓ2

(

Ω̂0

)

(4.22)
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The integrated bispectrum depends explicitly on the full angular bispectrum 〈aℓ1m1aℓ2m2aℓ3m3〉.
The number of multipoles usually considered ℓmax ∼ O (103) makes the brute force compu-
tation of this summation totally out of reach, a common issue to all CMB, and also weak
lensing bispectrum analyses.
Assuming statistical isotropy , it is more convenient to work with a rotationally-invariant
quantity called the angle-averaged bispectrum defined by14

Bℓ1ℓ2ℓ3 ≡
〈
∫

d2Ω̂Mℓ1(Ω̂)Mℓ2(Ω̂)Mℓ3(Ω̂)

〉

, with Mℓ(Ω̂) =
∑

m

aℓmYℓm(Ω̂) (4.23)

This angle-averaged bispectrum is related to the angular one by

〈aℓ1m1aℓ2m2aℓ3m3〉 = h−1
ℓ1ℓ2ℓ3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

Bℓ1ℓ2ℓ3 , (4.24)

where Bℓ1ℓ2ℓ3 is the full sky counterpart of (4.11b); the matrix is a Wigner-3 j symbol and
hℓ1ℓ2ℓ3 is defined by

hℓ1ℓ2ℓ3 ≡
√

(2ℓ1 + 1) (2ℓ2 + 1) (2ℓ3 + 1)

4π

(

ℓ1 ℓ2 ℓ3
0 0 0

)

. (4.25)

We also use the related Gaunt integral15

∫

d2Ω̂Yℓ1m1(Ω̂)Yℓ2m2(Ω̂)Yℓ3m3(Ω̂) = hℓ1ℓ2ℓ3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

(4.28)

and eq (4.18) to rewrite the patch kernel definition eq (4.16) as

Km1m2
ℓ1ℓ2

(

Ω̂0

)

= (−1)m1

∑

ℓ3m3

wℓ3m3

(

Ω̂0

)

hℓ1ℓ2ℓ3

(

ℓ1 ℓ2 ℓ3
−m1 m2 m3

)

(4.29)

After substituting this expression and eq (4.24) into the integrated bispectrum eq (4.22), we
obtain

IBℓ =
1

(4π)2
(

fW
sky

)2

1

2ℓ+ 1

∑

ℓ1ℓ2ℓ3

Bℓ1ℓ2ℓ3

hℓ1ℓ2ℓ3

∑

m1m2m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

×
∑

m4m5m

(−1)m
(

ℓ ℓ1 ℓ4
−m m1 m4

)(

ℓ ℓ2 ℓ5
m m2 m5

)

∫

d2Ω̂0w
∗
ℓ3m3

(

Ω̂0

)

wℓ4m4

(

Ω̂0

)

wℓ5m5

(

Ω̂0

)

.

(4.30)

14Note that the reduced bispectrum Bℓ1ℓ2ℓ3/h
2

ℓ1ℓ2ℓ3
, where hℓ1ℓ2ℓ3 is defined in eq. (4.25) is also often used in

the literature.
15The symbol G introduced in eq (4.28) is also known as Gaunt integral which represents the coupling of

three spherical harmonics. To relate eq (4.10b) and eq (4.3b) we note that the Gaunt integral introduced in (4.28)
becomes a Dirac delta function in the flat-sky limit

Gm1m2m3

ℓ1ℓ2ℓ3
≈ (2π)2δ2D (l1 + l2 + l3) , (4.26)

which leads us to identify the reduced bispectrum as the flat-sky bispectrum [cite 57]:

bκℓ1ℓ2ℓ3 ≈ Bκ (l1, l2, l3) ; (4.27)
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4.1. Position-Dependent Power Spectrum from Convergence Maps

The remaining integral depends exclusively on the choice of patches and its dependence on
several multipole numbers m ’s still makes the integrated bispectrum impossible to compute
in practice. Similarly to other bispectrum estimators, the solution comes under the form
of separability of the integrated bispectrum in ℓ-space, which we achieved using a class of
simple azimuthally symmetric patches.

4.1.2.a Exploiting multipole space patches

We now exploit the use of azimuthally symmetric patches having the following simple
m-dependence:

wℓm

(

Ω̂0

)

= wℓY
∗
ℓm

(

Ω̂0

)

(4.31)

Using the addition theorem of spherical harmonics

∑

m

Yℓm(Ω̂)Y
∗
ℓm

(

Ω̂′
)

=
2ℓ+ 1

4π
Pℓ

(

Ω̂ · Ω̂′
)

(4.32)

where Pℓ is a Legendre polynomial, it is straightforward to obtain from eq. (4.18) the simple
and m-independent expression of the patch window function in real space

W
(

Ω̂, Ω̂0

)

=
∑

ℓ

wℓ
2ℓ+ 1

4π
Pℓ

(

Ω̂ · Ω̂0

)

. (4.33)

With this type of patches, the remaining integral term in the integrated bispectrum expression
(4.30) becomes a Gaunt integral, eq. (4.28).
Substituting this into eq (4.30) gives

IBℓ =
1

(

4πfW
sky

)2

1

2ℓ+ 1

∑

ℓ1ℓ2ℓ3ℓ4ℓ5

Bℓ1ℓ2ℓ3

hℓ1ℓ4hℓ2ℓ5hℓ3ℓ4ℓ5wℓ3wℓ4wℓ5

hℓ1ℓ2ℓ3

×
∑

m1m2m3

m4m5m

(−1)m+m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)(

ℓ ℓ1 ℓ4
−m m1 m4

)(

ℓ2 ℓ5
m m2 m5

)(

ℓ3 ℓ4 ℓ5
−m3 m4 m5

)

.

(4.34)
In this new expression, the m-dependent part (the second line) is only a summation of Wigner
3j-symbols, hence it is independent from the exact choice of patches. More importantly, this
summation of Wigner 3j-symbols reduces to a Wigner 6j-symbol:

∑

m1m2m3
m4m5m

(−1)m+m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)(

ℓ ℓ1 ℓ4
−m m1 m4

)(

ℓ ℓ2 ℓ5
m m2 m5

)(

ℓ3 ℓ4 ℓ5
−m3 m4 m5

)

= (−1)ℓ2+ℓ4

{

ℓ1 ℓ2 ℓ3
ℓ5 ℓ4 ℓ

}

.

(4.35)

Substituting this and eq (4.25) into (4.34), we obtain our final expression for the integrated
bispectrum:

IBℓ =
1

(4π)3
(

fW
sky

)2

∑

ℓ1ℓ2ℓ3ℓ4ℓ5

Bℓ1ℓ2ℓ3Fℓ1ℓ2ℓ3ℓ4ℓ5wℓ3wℓ4wℓ5 (4.36)
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where Fℓ1ℓ2ℓ3ℓ4ℓ5 is a shorthand notation for the part of the expression depending only on
multipole numbers

Fℓ1ℓ2ℓ3ℓ4ℓ5 =(−1)ℓ2+ℓ4 (2ℓ4 + 1) (2ℓ5 + 1)

×
(

ℓ1 ℓ2 ℓ3
0 0 0

)−1 (
ℓ ℓ1 ℓ4
0 0 0

)(

ℓ2 ℓ5
0 0 0

)(

ℓ3 ℓ4 ℓ5
0 0 0

){

ℓ1 ℓ2 ℓ3
ℓ5 ℓ4 ℓ

}

.
(4.37)

As stressed out at the beginning of the section, the position-dependent power spectrum is
by definition interesting as a tool to study the squeezed limit of the bispectrum, where one
multipole number is small compared to the two others. With the following convenient choice
of patch window function

wℓ = 0 for ℓ > ℓw with ℓw ∼ O(10) (4.38)

it is possible to remove (almost all) non-squeezed terms from the sum in eq (4.36) which
implies a significant computational gain. With this choice, only the part of the bispectrum
where ℓ3 ≤ ℓw is considered in the summation. The multipoles ℓ4 and ℓ5 also have to be
less than or equal to ℓw. Moreover, recalling that the Wigner 3j-symbols are zero when the
triangle inequality is not respected, the only non-vanishing terms of eq (4.36) require that
ℓ1, ℓ2 ∈ [ℓ− ℓw, ℓ+ ℓw]. Therefore, the total number of terms in the sum for a given ℓ has
been drastically reduced and is only of O (ℓ5w) (compared to O (ℓ5max) before), which is fast to
compute.
For this broad class of patches, one can determine the exact expected integrated bispectrum
from the theoretical bispectrum shape.

4.1.2.b Covariance

Before using these results to analyze data from simulations and observations, we also need
its expected covariance matrix, which can be computed following a similar method.
First, we recall the well-known expression of the bispectrum variance, valid in the usual weak
non-Gaussianity case (〈Bℓ1ℓ2ℓ3〉 ≈ 0) corresponding to CMB observations or high redshift
weak lensing maps

〈

Bℓ1ℓ2ℓ3Bℓ′1ℓ
′

2ℓ
′

3

〉

= h2ℓ1ℓ2ℓ3Cℓ1Cℓ2Cℓ3

[

δℓ1ℓ′1δℓ2ℓ′2δℓ3ℓ′3 + δℓ1ℓ′2δℓ2ℓ′1δℓ3ℓ′3 + δℓ1ℓ′1δℓ2ℓ′3δℓ3ℓ′2
+δℓ1ℓ′2δℓ2ℓ′3δℓ3ℓ′1 + δℓ1ℓ′3δℓ2ℓ′2δℓ3ℓ′1 + δℓ1ℓ′3δℓ2ℓ′1δℓ3ℓ′2

] (4.39)

It is then straightforward to obtain the covariance,

ICℓℓ′ ≡ 〈BℓIBℓ′〉

=
1

(4π)6
(

fW
sky

)4

∑

ℓ1ℓ2ℓ3ℓ4ℓ5
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′
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′

4ℓ
′
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〈
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′

3

〉
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′
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′
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×
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wℓ3

(
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′

5
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′
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)

+ wℓ2
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′

5
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5

)

+ wℓ1
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′

5
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′

5
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,
(4.40)
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where the last step is obtained after summing over ℓ′1, ℓ
′
2 and ℓ′3. Note that the terms in wℓ1

and wℓ2 on the last line are zero if ℓ > 2ℓw (thus for most of the ℓ’s considered). Note also that
the sum is separable in (ℓ4, ℓ5) and (ℓ′4, ℓ

′
5), hence in practice there are only O (ℓ5w) different

terms to evaluate, as for the integrated bispectrum, eq (4.36).

4.1.2.c NG contribution to Covariance

In the previous section, we have shown that the integrated bispectrum variance ICℓℓ is well
described by eq. (4.40), where we assume to be in the regime of weak non-Gaussianity. How-
ever, in [18] we verify that this approximation no longer works well enough when we look at
off-diagonal covariance terms. Weak lensing convergence maps are indeed significantly non-
Gaussian. An accurate description of the bispectrum and integrated bispectrum covariances
thus requires including higher-order connected correlation functions in the calculation [44]. A
calculation of this type was performed in [23], using however the Limber approximation. The
same approach is not sufficient here because we are mainly interested in the squeezed limit,
where this approximation is not valid. While the full computation of the squeezed bispec-
trum covariance is beyond the scope of this work, we can computationally study the level of
correlation between different configurations (i.e., off-diagonal covariance terms), see figure 4.2

4.2 The integrated bispectrum estimator

4.2.1 Definition

As anticipated, The integrated bispectrum estimator is based on three relatively simple steps:
separate the celestial sphere into many equal-sized patches, determine the power spectrum
(small-scale fluctuations) and the average value (large-scale mode) in each patch and compute
their patch-bypatch correlation averaged over the sky. The result is called the integrated
bispectrum and is by construction sensitive to the correlations between small-scale and large-
scale effects, like the squeezed limit of the bispectrum (one multipole much smaller than the
other two).

Implementing this method first requires the characteristics of the patches (size, shape, num-

ber) to be specified, and then sky realizations Wpatch (Ω̂) produced, where the index ’patch’
denotes the exact patch considered in the full set (see figure 1 for examples). Then, one by
one, these patch maps, are applied as masks to the observational data κobs (Ω). For each
resulting map, we only have to compute two simple quantities; its power spectrum Cobs

ℓ,patch,

which is called the position-dependent power spectrum in the literature, and its average
value κ̄obs

patch. . The product of these two quantities is finally averaged over all the patches to
obtain the integrated angular bispectrum estimator:

IBobs
ℓ =

1

Npatch

∑

patch

κ̄obs
patch C

obs
ℓ, patch (4.41)

where Npatch is the number of patches used to divide the sky. For example, a way to separate
the sky into a set of equal-sized patches is to use the standard HEALPix pixelization: starting
from a given data map, one degrades it to lower resolution and defines a patch by fixing
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Chapter 4. Weak Lensing Statistics

every pixel of the low resolution map to zero, except one. The power spectrum in the chosen
patch is then computed at high resolution. Repeating this process for each low-resolution
pixel gives a set of patches that covers uniformly the full sky.

4.2.2 Mask

Both CMB and LSS datasets are characterized by incomplete sky coverage, either because
only part of the sky is actually observed, or because foreground contamination imposes to
mask a non-negligible part of it. The missing power from the masked/non-observed regions
induces a multiplicative bias on the observed quantities:

Cmasked
ℓ = fskyC

unmasked
ℓ , Bmasked

ℓ1ℓ2ℓ3
= fskyB

unmasked
ℓ1ℓ2ℓ3

and IBmasked
ℓ = fsky B

unmasked
ℓ (4.42)

the so-called fsky approximation, where fsky is the fraction of the sky that is left unmasked (see
[19] for the derivation of the first two equations while the last one is obtained by substituting
the corrected bispectrum into eq. (4.36).

4.2.3 Linear correction

When using observational data from actual surveys, statistical isotropy is broken due to
partial sky coverage and anisotropic noise. This creates a large spurious bispectrum in the
squeezed limit due to the correlations between small-scale fluctuations (e.g. noise power
spectrum) and large-scale effects (e.g. scanning pattern of the satellite). As shown in [19], the
large resulting bias to the integrated bispectrum can be removed using a simple correction
term Iobs

ℓ → IBobs
ℓ − IBlin

ℓ given by

IBlin
ℓ =

1

Npatch

∑

patch

κ̄obspatch C
MC
ℓ, patch (4.43)

This mean-field correction displays a linear dependence on the observed data
(

κ̄obs
patch

)

, while

the quadratic term CMC
ℓ,patch is a Monte-Carlo average of the position-dependent power spec-

trum from many simulations sharing the same experimental characteristics as the observed
data. This is conceptually similar to the standard linear correction of the bispectrum originally
introduced in [9].

4.3 Covariance estimation

The integrated bispectrum estimator build with flat-sky power spectrum estimator is a binned
estimator (bin width depends on the dimension of the projecion 5.11).

From [18] we recall the results of preliminary studies. A simple example is the covariance
matrix of the binned bispectrum estimator. Because of the large bins (width of 100 for ℓ > 100),
each triplet of bins contain many different correlated configurations. The estimated covari-
ance matrix from 40 convergence simulations at zs = 1 is, in the squeezed limit, more than
two times larger that its theoretical expectation computed in the diagonal case. While using
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4.3. Covariance estimation

smaller bins (width of 10), the difference becomes much smaller for most of the configurations.
This shows that, taken individually, the effect of non-diagonal terms is rather small; however,
when integrating over many modes (e.g. using large bins), their summed contribution quickly
becomes the dominant one.

Have been shown that the diagonal part of the integrated bispectrum covariance matrix is
well-approximated by eq. 4.40, as can be also checked in figure 4.1, where the theoretical
covariance to the one estimated from the usual 40 simulations are compared. In this figure,
they also show that the error bar on the mean value of a bin of width 100 in multipole space
is actually of the same order as the value from a single multipole ℓ (except at very low ℓ
), while it should be 10 times smaller if modes were uncorrelated. This confirms the large
correlation between different integrated bispectrum modes. Doing a step further with the

Figure 4.1: The integrated bispectrum variance ICℓℓ of the weak lensing convergence at zs = 1 using
step function patches. The solid red line corresponds to the theoretical prediction. The blue dotted
line is the variance estimated from 40 simulations, while the blue circles are also determined from
these simulations after compressing the integrated bispectrum information to 20 bins. From [18].

integrated bispectrum and estimate its full covariance from simulations as shown in figure
4.2 (left panel). This full covariance is compared to the theoretical counterpart, in the right
panel, determined in the case of a diagonal full bispectrum covariance eq. (4.39). While the
theoretical covariance in the weak NG limit is close to diagonal (non-zero terms are only
found where |ℓ− ℓ′| ≤ 2ℓmax

w = 20 ), we can see that the actual covariance from simulations
(left panel) is non-negligible everywhere. Even very different ℓ and ℓ′ are correlated. This of
course will need to be taken into account in more advanced applications, aimed for example at
building a bispectrum/integrated bispectrum likelihood to measure cosmological parameters.

A direct solution to characterize the full integrated bispectrum covariance matrix is simply to
estimate it from many mock simulations, as exemplified in figure 4.2. However, reaching the
desired accuracy for actual parameter estimation and matrix inversion cannot be achieved
with only 40 simulations, as done here for illustrative purposes. Considering the typical
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number of modes in our analysis, we will actually need thousands of simulations. This is the

reason we are trying to implement a faster pipeline making use of flat-sky Pκ(k, Ω̂) estimation.

The alternative approach, namely deriving analytically the integrated bispectrum covariance
matrix using eq. (4.40) presents several difficulties, like, on one side, the sheer number of
terms in the sum (10 or more different multipole numbers16) and, on the other, the costly
evaluation of many 6j-symbols. On top of this, eq. (4.40) is also assuming that the full
bispectrum covariance (4.39) is already available and we only need to extract the integrated
bispectrum covariance out of it.

Figure 4.2: The integrated bispectrum covariance ICℓℓ′ of the weak lensing convergence at zs = 1
using step function patches. On the left, the covariance is estimated from the 40 simulations. On the
right, the theoretical covariance computed using eq. 4.40 if the bispectrum covariance is given by
(4.39) (valid only in the weak non-Gaussianity regime. For visibility, IC ℓℓℓ′ is multiplied by the factor
ℓℓ′. Note that the color scale is logarithmic, except for values smaller in absolute value than 10−26

where it becomes linear. From [18].

16Within the flat-sky approximation the angular size of the projection and thus the angular width of the
mexican needlet patch need an higher ℓw, therefore the number of multiples to consider for theoretical signal
computation increase consistently. This is the reason why up to some value of ℓmax

w ∼ 25 running the script to
evaluating theorethical −− bispectrum and −− variance they do not give consistent results as the computation
is too heavy.
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Computational Implementation

Weak lensing full sky simulations were used in [18] to validate the integrated angular bispec-
trum estimator described in chapter 4 for weak lensing studies and to further characterize
the squeezed limit of the convergence bispectrum. It is crucial, to apply this statistic to data
analysis and parameter estimation, to extract the covariance matrix. This requires applying
the integrated bispectrum estimator to many thousands simulations, however the current
implementation is too slow. Here we investigate a new implementation, based on the so-
called flat-sky approximation, in which the power spectrum in small patches of the spherical
domain is computed via a tangent-plane projection.

5.1 Maps and Methods

5.1.1 Weak lensing maps

Figure 5.1: Weak lensing full-sky map at zs = 1, nside = 2048.

Accurate simulations of the weak lensing convergence field have been built by Takahashi et
al. [50], using ray-tracing through N-body simulations17, briefly discussed in the next section;

17They present 108 full-sky gravitational lensing simulation data sets generated by performing multiple- lens
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We want to analyze several sets of these maps18 at source redshifts (zs = 1).

5.1.2 N-body simulations and Ray-tracing

5.1.2.a Ray-tracing simulations: The principle

The simulations proceed by following light rays through the inhomogeneous matter distri-
bution in the Universe [45]. The latter is generated by cosmological simulations of structure
evolution. Those start at an early epoch by generating a realization of a Gaussian random
field with a power spectrum according to the cosmological model considered, and follow
the evolution of the density and velocity field of the matter using Newtonian gravity in
an expanding Universe. The mass distribution is represented by discrete particles whose
evolution in time is followed. A finite volume of the Universe is simulated this way, typically
a box of comoving side-length L, for which periodic boundary conditions are applied. This
allows one to use Fast Fourier Transforms (FFT) to evaluate the gravitational potential and
forces from the density distribution. The box size L should be chosen such that the box
contains a representative part of the real Universe, and must therefore be larger than the
largest scales on which structure is expected, according to the power spectrum; a reasonable
choice is L & 100h−1Mpc. The number of grid points and the number of particles that can
be distributed in this volume is limited by computer memory; modern simulations work
typically with 2563 points and the same number of particles, though larger simulations have
also been carried out; this immediately yields the size of grid cells, of order 0.5h−1Mpc. This
comoving length, if located at a redshift of z ∼ 0.3 (which is about the most relevant for
cosmic shear), subtends an angle of roughly 2′ on the sky. The finite number of particles
yields the mass resolution of the simulations, which is typically ∼ 1010h−1M⊙, depending on
cosmological parameters.

In order to obtain higher spatial resolution, force calculations are split up into near-field and
far-field forces. The gravitational force due to the distant matter distribution is obtained by
grid-based FFT methods, whereas the force from nearby masses is calculated from summing
up the forces of individual particles; such simulations yield considerably higher resolution
of the resulting mass distribution. Since the matter in these simulations is represented by
massive particles, these can undergo strong interactions, leading to (unphysical) large orbital
deflections. In order to avoid these unphysical strong collisions, the force between pairs of
particles is modified at short distances, typically comparable to the mean separation of two
particles in the simulation. This softening length defines the minimum length scale on which
the results from numerical simulations can be considered reliable. Cosmological simulations
consider either the dark matter only or, more recently, the hydrodynamics effects of baryons
have been incorporated as well.

plane ray-tracing through high-resolution cosmological N -body simulations. The data sets include full-sky
convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150h−1 Mpc comoving radial distance
(corresponding to a redshift interval of ∆z ≃ 0.05 at the nearby universe).

18We use the maps with Nside = 4096 which can be downloaded here at http://cosmo.phys.

hirosaki-u.ac.jp/takahasi/allsky_raytracing/nres12.html. We downgrade their resolution
to Nside = 2048 and impose lmax = 2000 for all the analyses presented in this section, unless mentioned
otherwise.
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Figure 5.2: Configuration of ray-tracing simulation with cubic simulation boxes of lengths
L, 2L, 3L, · · · , where L = 450h−1Mpc (comoving scale), placed around the observer. The figure
shows the inner two boxes with side lengths L and 2L, respectively. The observer is located at the
vertex of the boxes. In each box, we constructed three spherical shells with thickness of ∆r = L/3 =
150h−1Mpc; the orange circles show the boundaries between the shells [50] .

The outcome of such simulations, as far as they are relevant here, are the 3D positions of the
matter particles at different (output) times or redshifts. In order to study the light propagation
through this simulated mass distribution, one employs multiple lens-plane theory. First, the
volume between us and sources at some redshift zs is filled with boxes from the cosmological
simulations. That is, the comoving distance ws = w (zs) is split up into n intervals of length
L, and the mass distribution at an output time close to ti = t(w = (i− 1/2)L) is considered
to be placed at this distance. In this way, one has a light cone covered by cubes containing
representative matter distributions. Since the mass distributions at the different times ti are
not independent of each other, but one is an evolved version of the earlier one, the resulting
mass distribution is highly correlated over distances much larger than L. This can be avoided
by making use of the statistical homogeneity and isotropy of the mass distribution: each
box can be translated by an arbitrary two-dimensional vector, employing the periodicity of
the mass distribution, and rotated by an arbitrary angle; furthermore, the three different
projections of the box can be used for its orientation. In this way - a kind of recycling of
numerical results - the worst correlations are removed.

Alternatively, one can combine the outputs from several simulations with different realiza-
tions of the initial conditions. In this case, one can use simulation boxes of different spatial
extent, to match the comoving size of a big light cone as a function of redshift. That is, for a
given light-cone size, only relatively small boxes are needed at low redshifts, and bigger ones
at higher redshift.

Second, the mass in each of these boxes is projected along the line-ofsight, yielding a surface
mass density at the appropriate comoving distance wi = (i − 1/2)L. Each of these surface
mass densities can now be considered a lens plane, and the propagation of light can be
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followed from one lens plane to the next; the corresponding theory was worked out in detail
by Blandford & Narayan [4]. Important to note is that the surface mass density Σ in each
lens plane is the projection of ∆ρ = ρ− ρ̄ of a box, so that for each lens plane, 〈Σ〉 = 0. This
multiple lens-plane approach presents a well-defined discretization of the full 3-dimensional
propagation equations. Light bundles are deflected and distorted in each lens plane and thus
represented as piecewise straight rays. The resulting Jacobi matrix A is then obtained as a
sum of products of the tidal matrices in the individual lens planes, yielding a discretized
version for A. The result of such simulations is then the matrix A(θ) on a predefined angular
grid, as well as the positions β(θ) in the source plane. The latter will not be needed here, but
have been used in studies of multiple images caused by the LSS.

5.1.3 Healpix map’s structure

Concerning the observational component of the code, the first step is to generate the patches.
One possibility would be to use HEALPix pixelization19 and its hierarchical structure (see
Appendix A).

Figure 5.3: Healpix pixelization scheme, Nside = 1, 2, 3, 4 respectevely.

In figure 5.3 is shown the isotropic distribution on the sphere of pixels centers, which is a
crucial aspect for the implementation as we assume statistical isotropy 4.1.2.

5.1.4 Patches and masks

5.1.4.a Motivation

The need to divide full sky maps into small patches can be easily achieved using the HEALpix
python library named healpy, which, thanks to its hierarchical nature, offers a simple way
to divide the celestial sphere in a set of equal-sized areas by simply taking the (large) pixels
of a very low resolution maps. For example to generate 192 patches, make a map with the
resolution Nside = 4 and a zero value for each of its 192 pixels. Then, fix the value of a pixel to
one and upgrade the resolution to the same as the studied data map (e.g., Nside = 2048 for
Planck) to obtain one patch. Repeat the same process for each pixel of the low resolution map
to obtain the full set. However, these patches are not suited for analytical computations of
the integrated bispectrum because they do not have a simple expression in multipole space
(they do not allow removing m-dependence in the final integrated bispectrum expression).

19Healpy documentation https://healpy.readthedocs.io/en/1.15.2/
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This is why, except for some results on CMB simulations (both Gaussian and non-Gaussian)
cited from previous works [18] [19], we will not use this approach in the rest of the work
(except for some tests in monopole estimation 5.3.2) and will instead focus on the azimuthally-
symmetric, multipole space patches introduced in 5. Their simple definition in multipole
space (5.1) can be translated into real space maps using eq. (4.33), requiring to compute
Legendre polynomials for every pixel of the map. This takes significantly longer than the
HEALpix patches approach, but the computational time remains still very reasonable, even
more since in the new implementation of pipeline only one patch will be needed.

An important point to notice is that multipole space patches have non-zero values everywhere
in the sky (the patch window is not a step function in pixel space), thus there is not a unique
number of different patches leading to a complete, isotropic coverage of the sky. A good
method to obtain such a coverage is to use a number of multipole patches again correspond-
ing to the number of pixels in a low resolution HEALPix map (we will use Nside = 4, 8, 16
in our analysis, corresponding to 192, 768 or 3072 pixels) and to center each of them at the
center of a corresponding HEALPix pixel patch.
In previous works [19], [18], computing patches in this way was typically lont time requiring,
as the following step of the pipeline. Therefore, it was important to save real space maps for
each patch, when simultaneously analyzing many data maps. However this task is avoided
with the new implementation we are presenting here.

In the case of slow pipeline 5.4.1 we need only one patch which is rotated over the sky,
corresponding to each pixel center position of a given Nside pixelization. Here, in order to
speed it up, one could compute both power spectrum and monopole of all Nmaps in a single
patch position in the sky, and then change the pixel position rotating the patch. In this way
the number of patch rotations are reduced from Npatches ×Nmaps to only Nmaps patch rotations
(see 5.5). Having a lot of memory space to store even high number of patches would lead to a
further improvement in computational time of this pipeline.
In the fast pipeline case 5.4.2 only one patch computation is required since the flat sky
projection will be the same in every direction, thus we can use the same flat patch to mask
eack flat-sky projection of the weak lensing map. However, this procedure will give rise to
accuracy issues in monopole estimation 5.3.2.

5.1.4.b Types of patches

Here we discuss the different types of patches that can be used in this analysis: healpix
patched are well defined in real space; multipole space patches like step-function patches
or needlets which are well defined in harmonic space. In figure 5.3 the shape of HEALPix
patches is shown, with a defined support in real space, covering the entire sphere with a well
defined number of them.
To exploit the simplification in computing the theory signal (4.30) we instead use azimuthally
symmetric patches having the following simple m-dependence:

wℓm

(

Ω̂0

)

= wℓY
∗
ℓm

(

Ω̂0

)

. (5.1)

Simple step-function windows for multipole space patches, extensively used in [18], having

wℓ = 1 if ℓ < ℓmax and wℓ = 0 otherwise, (5.2)
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However, our goal is to look at the squeezed configurations of the bispectrum only, through
the integrated bispectrum estimator. In the case of [18], strong localization in real space was
not necessary and in the end step-function windows were adopted. Here, we need a stronger
localization in real space to implement the flat-sky projection, so we make use of Mexican
needlet patches, which are defined by

wℓ =

[

ℓ(ℓ+ 1)

B2j

]p

e
−ℓ(ℓ+1)

B2j (5.3)

where B, j and p are the needlet parameters determining its properties both in real and
harmonic space [46]. For more details about needlet patches see Appendix B.

(a) (b)

Figure 5.4: Mexican needlets patches, localization in real space (left) and in multipole space (right)
for different needlets parameters p and j.

Figure 5.5: Mexican needlets patches with different patch windows and needlet parameters.

We tested the pipeline using a set of mexican needlet patches with increasingly real space
localization20, characterized by different patch window function and needlets parameters:

20The angular width of a multipole space patche is proportionalto ℓ−1
w , thus an higher maximum multipole

corresponds to an higher localization in real space.
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ℓw p B j
[0, 20] 4 1.6 4
[0, 30] 4 1.6 5
[0, 70] 1 1.6 6
[0, 80] 1 1.6 7
[0, 100] 1 1.6 8

Table 5.1: Mexican needlets patches parameters, used in the analysis of the pipeline.

5.1.4.c Optimal number of patches

Each mexican needlet and multipole space patch, as introduced in the previous section, is

defined by its central position Ω̂0 and the corresponding window function in harmonic space,
see eq. (5.1). Such a patch is the largest around its center in a region where resides most of
its constraining power, but it is also non-zero in the rest of the sky. Then, one needs to use
enough of these patches, with a uniform distribution over the sky of their central positions, to
obtain an isotropic coverage of the sky because it is important not to introduce any additional
anisotropy. Unlike the HEALPix patches, where the sky is divided into a certain number of
equal-sized areas and thus directly giving the number of required patches, this number is not
so straightforward to get for multipole space patches21.

We recall that the method we used for the uniform repartition of their centers was simply to
place each of them at the center of a corresponding HEALPix patch. This implies that we have
to use a number of patch Npatches corresponding to the number of pixels of a low resolution
map

(

Npatches = 192, 768, 3072
)

. It is important to keep Npatches as small as possible because it
is proportional to the amount of computations: one power spectrum , flat projecitons and
patch rotations to be estimated per patch, see equations (5.5) (5.6) for the precise pipeline
description; while of course still getting optimal results in agreement with the theory. The
effect of not using enough patches is roughly similar to a partial sky coverage in the sense it
will also increase the variance because some parts of the sky are less scanned than others. In
figure 5.6 we show the integrated bispectrum estimator, its standard deviation and the signal
to noise ratio for different number of patches covering the sphere.

In the previous work [18] were used 192 multipole-space patches, in this work we need
at least 768 patches since the flat sky approximation requires an higher localization in real
space. Depending on the choice of mexican needlets parameters, we compute the integrated
bispectrum estimator using 768 or 3072 patces over the sky, corresponding to Nside = 8, 16
respectevely. In figure 5.7 a plot of the sky coverage with two types of patches is shown.

5.1.4.d Realistic maps over the sky - Euclid mask

We analyze full-sky maps without noise, the ideal case, however the integrated bispectrum
method can also be applied to more realistic observations. In [18] were used the same pseudo
Euclid mask as in [32] which hides both the galactic and elliptic planes (fsky = 0.35). Then,

21The total angular width of a needlet patch is proportional to ℓ−1
wmax. This can used to choose properly the

projection width (2× δ, see 5.1.5).
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Figure 5.6: Estimator results using j = 6 patches. The lower the number of patches the greater
the observed variance. Quantities estimated with Np = 192, 768, 3072 respectevely in green,
blue, black.

Figure 5.7: Patches sky coverage, j = 4 and δ = 5° and N = 768 patches (left), j = 6 and δ = 3° and
N = 3072 patches (right). As we increase the patch localization an higher number of them is needed
to cover the entire sphere.

were assumed Gaussian noise, with a noise power spectrum amplitude given by:

nℓ =
σ2

n̄

where the galaxy number density n̄ (typically n̄ = 30 arcmin−2 for Euclid [25]) should be
expressed in inverse steradians.

5.1.5 Rotations

The need to increase the numerar of patches to cover the entire sphere lead to a too high
memory usage to store all patches. To avoid this we implement a map rotation, giving us the
possibility to store only one and to rotate it in the desired direction.
In this way we copute each rotation using a rotator in harmonic space thanks to rotate_map_alms()
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(5.1). Rotation acting on patch maps, which have a well defined support in multipole space,
let us to fix a low ℓrotmax (which would not possible with weak lensing maps) such that the time
for one rotation is about 1 s for ℓrotmax ≤ 100.

Listing 5.1: Python code for full-sky map rotation

1 # Rotation def rotate_mask(patch, i, nsidepatches):

2 c=hp.pix2ang(nsidepatches,i,lonlat=True)

3 rot_patch=hp.Rotator(rot=c, inv=True)

4 patch_rotated=rot_patch.rotate_map_alms(patch, lmax=100)

5 return patch_rotated

Figure 5.8: Rotation computational time tests. ℓmax
w on the horizontal axis, time on the vertical

axis

5.1.6 Flat sky projections

In order to implement flat-sky power spectrum estimation, tangent plane projection of the full
sky map are needed. healpy provides a class named healpy.projector.CartesianProj
with a method projmap which, given the high resolution full-sky weak lensing map, returs
the a 2D array with the projection of the map. Quantities such as the center of the projection
c, number of pixel per each side npix

22, angular size of the projection δ23 need to be specified.
The larger angular size, the larger number of pixel is included in the projection, and so the
ammount of information in a single flat map; however this also results in a loss of precision
due to the tangent plane projection. The number of pixel in each side of the squared flat map
is determined by proportionality, considering the number of pixels contained in the full sky
region defined by the angular size, in order to minimize the deformation effect due to the
projection, and optimize the pixelization mapping from curved to flat patch. The optimal

22In the code this quantity is usually called size or ngrid.
23This is half of the total angle subtended by the projected region.
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(a) Mexican w : [0, 20], p : 4, B : 1.6, j : 4 (b) WL map masked with mexican patch

(c) Mexican w : [0, 70] p : 1 B : 1.6 j : 6 (d) WL map masked with mexican patch

Figure 5.9: Cartesian projections with δ = 10◦. Mexican needlet patches (left), weak lensing
convergence maps at zs = 1 masked with the corresponding patch on the left (right).

dimension of the projection is found by:

Aproj = (2δ)2 r =
npix 2048

npix sky

nopt
pix = (r Aproj)

1/2 (5.4)

Where npix sky = 41253 is the solid angle of the entire celestial sphere, and npix 2048 = 50331648
is the number of pixel of a Nside = 2048 healpy map. In table 5.2 are shown some values of
the angular size that have been used in this work.

Listing 5.2: Python code for Cartesian projection

1 # cartesian projection python code

2 import numpy as np

3 import healpy as hp

4 from functools import partial

5 def get_flat_projection(map0, center, angle, ngrid):

6 angular_size = [-angle, angle]

7 proj_Cart = hp.projector.CartesianProj(rot=center, coord=G, xsize=ngrid,

ysize=ngrid, lonra=angular_size, latra=angular_size)

8 map0_flat = proj_Cart.projmap(map0, vec2pix_func=partial(hp.vec2pix, hp.

get_nside(map0)))
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9 return map0_flat

On one side we believe that flat-sky approach will lead to speeding up of the pipeline, and
this is proved to be true considering a single position power spectrum estimation (see 5.2). On
the other side such an approach requires to project each localized patch into the tangent plane
centered at HEALpix pixels centers, and this requires a certain ammount of time depending
on the dimension (in pixels) of the projected region; while with a full-sky approach this step
was absent. Therefore we need to choose the size of the flat projection such that we gain
the maximum computational time with respect to the former approach, without loosing in
precision in the power spectrum (and monopole) estimation.

5.1.6.a Projection computational time analysis

This tool scales linearly with respect to the area of the projection (N2 pixels). So it is necesary
to keep the dimension of the projection as small as we still estimate the position dependent
power spectrum with a good enouth accuracy.

Figure 5.10: Healpy Cartesian Projection Time as function of the number of
pixels in the flat map (million pixels).

δ[◦] nopt
pix tproj [s]

5 349 0.050
7.5 524 0.062
10 699 0.074

12.5 873 0.104
15 1048 0.168
: : :
: : :
: : :

Table 5.2: Angular size of the pro-
jection, optimal number of pixel per side
and corresponding time required for the
flat projection (right).

5.2 Power spectrum estimation

In this section we discuss three power spectrum estimators that have been used in this and
previous works. The full-sky estimator anafast, implemented in the healpy library, is
the most precise of the three we analyze here, with the disanvantage to be quite slow on
high resolution maps, as we are interested on multipoles up to ℓmax = 2000. Instead of
the costly full-sky power spectrum estimator required with the step function patches used
in [18], now we exploit much more localized patches based on needlets (mexican), see 5.5.
With this choice, it is then possible compute power spectra using the flat-sky approximation
in each small, localized patch. This a priori should lead to large gains, both because the
total number of pixels per patch is reduced by a factor ∼ 102 and because of the improved
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computational scaling, allowed by FFT operations in flat-sky approximation. Here we discuss
the implementation and test the time scaling of these estimators. We test the one implemented
in the pymaster library and a second one developed by Gabriel Jung (A), both of which lead
to some loss of precision at high ℓ that will be discussed in 5.2.3, but a gain in computational
time. We then tested the needlets parameters and window function to find best choise of
neeldets to recover the most precise position dependent power spectrum with respect to full
sky estimation.

5.2.1 Full-sky

Anafast computes the power spectrum of a Healpix map, at each multipole ℓ ∈ [lmin, lmax] =
[2, 2000], lmin = 2 since no removal of monopole or dipole is performed24. Within the full-sky
approach and map resolution, as lmax = 2000 each power spectrum takes ∼ 10 s to evaluate
on a recent 8-core processor.

Listing 5.3: Python anafast estimator

1 ## Anafast power spectrum estimator

2 import healpy as hp

3 cl = hp.anafast(patched_map, lmax=lmax)

5.2.2 Flat-sky

Flat-sky estimators compute the power spectrum of a cartesian map, intoducing a binning in
multipole space in order to optimize the precision. For theoretical description of flat-sky25

weak lensing convergence field power spectrum see 4.1.1.

5.2.2.a Binning

We will discuss the flat-sky pseudo-Cℓ algorithm starting from a pixelized representation of
the sky map. Let the patch of sky under inspection be contained by a rectangle of sides Lx

and Ly (in units of radians), and let us discretize this rectangle by dividing it into an Nx ×Ny

grid with pixels of area (∆x)2 = ∆x∆y(Lx/Nx)(Ly/Ny). Each pixel in this grid is then labelled
by a pair of integers n = (nx, ny), and is assigned coordinates xn = (nx∆x, ny∆y). The each
component of the pixelized map a(x) is therefore defined for nx ∈ [0, Nx − 1], ny ∈ [0, Ny − 1].

Listing 5.4: Python code for binning

1 def get_ells_flat(angular_size, size):

2

3 Lx = 2*angular_size * np.pi/180.

4 Ly = 2*angular_size * np.pi/180.

5

6 l0_bins = np.arange(size) * np.pi/Lx

7 lf_bins = (np.arange(size)+1) * np.pi/Lx

24The input maps must be in ring-ordering. Spherical harmonics transforms are always on the full sky, if the
map is masked, those pixels are set to 0. It is recommended to remove monopole from the map before running
anafast to reduce boundary effects.

25Namaster flat-sky power spectrum estimation documentation is https://namaster.readthedocs.io/
en/latest/_downloads/bfcb0b7e72dd55ffaebc483ac560ab10/doc_scientific.pdf.
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8 b = nmt.NmtBinFlat(l0_bins, lf_bins)

9

10 ells = b.get_effective_ells()

11 return ells

In figur 5.11 we show the different bins in multipole space used for different angular size of
the projection.

Figure 5.11: Binning examples, flat-sky power spectrum estimator. For example for an angular
size equal 10◦ we have a bin-width of 9 in multipole space; ∆ℓ = 1 is recovered witha δ = 60◦

which however is very much computationally inefficient.

ad ≡ δ in the legend.

5.2.2.b Full-sky to flat-sky factor

Power spectra estimatiion in full-sky Cℓ and flat-sky need to be compared though an fsky
factor (4.42), since the selection of the squared region of pixel selected to be projected covers
a small region on the sky. It is estimated as:

Listing 5.5: Python code proportionality factor

1 surface_sphere = 41253

2 surface_flat = (2*delta)**2

3 fac = surface_sphere/surface_flat

5.2.2.c Namaster

Flat sky power spectrum estimator, it computes the angular power spectra of two masked
flat-sky fields (the same f0 in our case) . Effectively, this is equivalent to computing the map
FFTs and averaging over rings of wavenumber. The returned power spectrum is defined
at the multipoles returned by the method ells = b.get_effective_ells(), so it is a
binned estimator.
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Listing 5.6: Python code for Namaster estimator

1 ## Namaster power spectrum estimator

2 import pymaster as nmt

3

4 def flat_sky_power_spectrum(map0, angular_size):

5 size=len(map0)

6 Lx = 2*angular_size * np.pi/180.

7 Ly = 2*angular_size * np.pi/180.

8 l0_bins = np.arange(size) * np.pi/Lx

9 lf_bins = (np.arange(size)+1) * np.pi/Lx

10

11 b = nmt.NmtBinFlat(l0_bins, lf_bins)

12 ells = b.get_effective_ells()

13

14 mask = np.ones_like(map0)

15 f0 = nmt.NmtFieldFlat(lx=Lx, ly=Ly, mask=mask, maps=[map0])

16 cl = nmt.compute_coupled_cell_flat(f0, f0, b)

17 return ells, cl[0]

The red line fit ∝ N logN confirms that FFTs implementations lead to a faster scaling of the
estimators w.r. to anafast.

Figure 5.12: Time scaling of Namaster versus number of pixels (millions). Handmade estimator
shows a similar behaviour

5.2.2.d Handmade code

See appendix A

5.2.3 Power spectra results

In figure 5.13 flat-sky power spectrum estimators 5.2.2.c and 5.2.2.d are tested for different
patches and different angular size of the projection (δ = 5, 7.5, 10, 12.5, 15) and compared
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with the full-sky anafast estimator (green). We can see how healpix and mexican needlet with
j = 6 patches allow a good estimation also for smaller angular sizes of the projection, while
meican j = 4 requires a larger region to recover the (reduced) full sky amplitude.

(a) healpix (b) mexican j = 4, w[0− 20] (c) mexican j = 6, w[0− 70]

Figure 5.13: Namaster (blue) and HM (orange) power spectrum estimators tested for different
types of patches, and compared with full-sky results (green). For healpix and mexican needlet

with j = 6 Cflat
ℓ traces the same amplitude of the full-sky counterpart δ ≥ 7.5◦a, while for

mexican j = 4 this happens for δ ≥ 20◦

aUsing p = 1 instead of p = 4 this is true also for smaller δ.
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5.3 Monopole term estimation

The second crucial quantity needed to estimate the integrated angular bispectrum is the
monopole term, corresponding to the large scale modulation of the signal.

5.3.1 Full-sky

In the previous work [18] monopole term was evaluated simply averaging over the full-sky
patched map array. In the case of 192 patches this procedure is easily implemented since
each different patch can be stored in the memory. The application of the patch is done as a
mask, thus multipliying map and mask arrays. Slow pipeline 5.4.1 uses this same monopole
estimation procedure, exploiting patch rotation at each iteration.

1 # full sky monopole

2 mono_full = apply_mask(map0*patch).mean()

3 # or

4 mono_full = np.dot(map0,patch)/npix

5.3.2 Flat-sky

In this case there are some aspects to take into account. Evaluating the monopole term in flat
sky using a mexican needlet brings the problem that non zero values outside the projected
region are not taken into account in the average, giving a very different result from full sky
value. In fact mexican needlets need to be very much localized to avoid this effect. Higher
localization can be achieved selecting a larger patch window (4.18) as for example ℓw ∈ [0, 75].
We tried to avoid this effect by making use of a circular mask over the patch mask. Such
a mask is given by a circular one-valued mask centered at healpix pixel center with radius
given by the angular size of the projection. In this way monopole evaluation improves, but
how to take into account such circular mask in theory bispectrum signal is not trivial since
it has not a well defined support in multipole space. Therefore this implementation has a
further speed up, since no patch rotation is needed and the monopole estimation is made
with two smaller arrays moltiplicaiton, however the cost its loss of precision makes us discard
this pipeline implementation.

1 # flat sky monopole

2 mono_flat = apply_mask(map0_flat*patch_flat).mean()

3 # or

nside t0 t1 t2
1024 0.061 0.030 0.0019
2048 0.242 0.104 0.0087
4096 0.968 0.384 0.0310

Table 5.3: Monopole estimation time for different methods of array moltiplication and different
array length. t0 refears to (v ∗ v).mean(), t1 refears to the same operation but with optimized array
moltiplication using njit, and t2 refears to np.dot(v, v)/npix.
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4 mono_flat = np.dot(map0,patch)/npix

5.4 Integrated bispectrum estimator: 2 pipelines

We have analyed the different parts of the pipeline, we now explore two different implemen-
tations.
The main step of the analysis is as simple as computing the monopole and the power spec-
trum of our masked flat map, multiplied by a patch function, and repeating the procedure
for all previously determined patches. Hence, the amount of required computations is that
of Npatches evaluations of a power spectrum, using the flat-sky estimator tool, and of Npatches

tangent plane projections. In addition, as anticipated in the latter paragraph, we distinguish
between two ways of estimating the monopole term: a slower but precise one using full-sky
maps, and a faster but less precise one using flat-sky maps. The integrated bispectrum is then
finally obtained by averaging the products between the monopole and the power spectrum
in each patch.

5.4.1 Slow pipeline

Starting with a full sky weak lensing map and one needlet patch centered in c, the steps to
compute Npatches power spectra are to project the patched map in flat-sky and compute the
estimator (Namaster or HM); this requires one first cartesian projection of the patch map
(that will be the same for each position in the sky). In order to estimate the monopole with
high precision we need to average over the full-sky patched map, this requires the full sky
patch to be rotated at each iteration, resulting an additional Npatches rotations.
Now, performing these rotations for each weak lensing map requires a very high ammount
of time as we need to anayze hundreds of simulations, since rotation needs ∼ 1 s each.
The optimized version, as anticipated in 5.1.4, reverses the loop over maps and patches in
such a way that the Npatches rotation are performed only once, while we estimate the posi-
tion dependent power spectrum and monopole for all maps in one direction in the sky at
each iteration26, reducing the number of patch rotations fromNpatches×Nmaps to onlyNpatches

27.

In summary, the slow pipeline requires the following computations28:

tfullibisp = Npatches ×
[

Nmaps ×
(

tmap
proj + tpdps + tfullmono

)

+ trot
]

+ tpatchproj (5.5)

Where the different t are specific computational times, depending on different quantities: For

tproj(δ, ngrid) see 5.2; tpdps(δ, ngrid) see 5.2.2; tfullmono(n
full
pix ) see 5.3.1; trot(ℓmax) see 5.1.5.

26From this the name "parallel".
27Having a lot of memory space to store even high number of patches would lead to a further computational

time improvement of this pipeline, about Npatches seconds.
28Instead of

Nmaps ×Npatches ×
(

tmap
proj + tpdps + tmono + trot

)

+ tpatchproj
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5.4.2 Fast pipeline

The steps are the same as the slow pipeline, except for the monopole estimation; it is computed
averaging over the flat-sky patched map, thus there is not need for the Npatches full-sky patch
rotation.
Therefore this fast pipeline requires the following computations

Nmaps ×Npatches ×
(

tmap
proj + tpdps + tflatmono

)

+ tpatchproj (5.6)

Up to now the flat-sky estimation of monopole has not been enough precise in order to have
results as precise as with the slow pipeline, therefore we do not delve any further in this
method.

5.4.3 Computational time summary

The estimated times to run this pipeline for Nmaps = 40, Npatches = 768, δ = 10◦ is about 75
minutes:

768× [40× (0.074 + 0.040 + 0.009) + 0.9] + 0.074 = 76min. (5.7)

To have information about other angular sizes see table 5.4 and for other general considera-
tions about time of computations see 6.1.

δ npix tproj [s] tpdps [s]
10 700 0.074 0.04
15 1050 0.17 0.09
20 1200 0.23 0.12
25 1350 0.31 0.16
30 2000 0.76 0.53
40 2500 1.32 1.01

Table 5.4: Time required for flat projection and power spectrum estimation (with namaster), for
different size of the projection, with also t2048mono = 0, 0087s
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Results from All-sky Simulations

6.1 Introduction

Here we present 6.2 the signal to noise ratio for different patches (and sizes of the projection
used); 6.3.1 how flat-sky implementation gives consistent results with the theoretical signal;
6.3.2 integrated bispectrum estimator results for higher ℓw; and 6.4 the expected computational
time description.

6.2 Signal to noise ratio and Optimality

As we use more localized patches we have to check if Npatches used is high enougth to lead
to full-sky coverage of the celestial sphere (see 5.1.4.c). In figure 6.1 we show the observed
integrated bispectrum, its standard deviation and the signal to noise ratio for two different
patches (j = 6, 8), estimated with angular size of the projection δ = 5◦. We estimated these
quantities using two different number of patches, 768 (left) and 3072 (right); we can notice
how in the first case (j = 6) we reach optimality already with Np = 768, while for the
higher localized patch (j = 8) the higher number of patches leads to an improvement on the
estimation, as can be easily seen in the S/N plot (bottom ones) in figure 6.1.
In figure 6.2 we show S/N from three different patches used; we can appreciate again how
an higher number of patches leads to a better estimation of the observed signal, in particular
up to j = 6 a number of patches equal to 768 is sufficient and higher pixelization doesn’t lead
to further improvements, while for j = 7, 8 we found that Np = 3072 improves significantly
the signal to noise ratio. (we can not check the expected variance since the implementation
for the variance is computationally too costly as ℓw is too large.)
These behaviour can be understood remembering that different patches choices lead to
different squeezed configuration entering in the IB estimator, and therefore differences in
amplitude are expected. More in detail, we need also to consider the fact that j parameter
determines the distribution of effective multipoles entering in the needlet patch (which
determines also its angular width29), see eq. (5.4) and fig. 5.4b.

29The effective patch width is ∼ π/ℓmax
w ., but it is important to tke into account that it is defined in a definite

domain in multipole space while in real space it has support on the whole sphere.
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Figure 6.1: Observed integrated bispectrum, its standard deviation and the signal to noise ratio for
two different patches (j = 6, 8), estimated with angular size of the projection δ = 5◦. Two different
number of patches used, 768 (left) and 3072 (right). For (j = 6) we reach optimality already with
Np = 768, while for the higher localized patch (j = 8) the higher number of patches leads to an
improvement on the estimation, indicted in S/N plots (bottom ones)

Figure 6.2: S/N ratio for a fixed δ = 5◦ and three different patches, 768 (left), 3072 (right). We can
appreciate how an higher number of patches leads to a better estimation of the observed signal, in
particular up to j = 6 Npatches = 768 is sufficient and higher pixelization doesn’t lead to further
improvements, while for j = 7, 8 we found that Np = 3072 improves significantly the S/N ratio.

6.3 Observed integrared bispectrum results

6.3.1 IBobs
ℓ compared with theoretical signal

In this section we present the results obtained with pipeline 5.4.1; as first check we compare
observed integrated bispectrum estimator results with theoretical signals (both with and
without post-Born correction) and the standard deviations30; in figure 6.3a results from 40

30The observed signal and standard deviation is computed via Monte Carlo average over results from 40
simulations.
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simulations at zs = 1 using 768 mexican needlet patches (ℓw ∈ [0, 20], j = 4). At higher
ℓw theoretical signal estimation fails due to the too large ammount of multipole triangular
configurations to consider in eq (4.40).
As we discussed in 5.2.3 flat-sky power spectrum estimator reaches the desired accuracy,
with respect to the full sky counterpart, for δ ≥ 20◦; as you can see in figure 6.3b with this
choice of patch we recover the expected (theorethical) amplitude for δ ≥ 20◦ (while for
more localized patches a smaller δ can be chosen without losing in accuracy). The standard
deviation obtained from 40 simulations is consistent with the Fisher matrix forecast (6.3c), it
is to say that in this case with a quite large patch (j = 4) the flat sky approximation is not as
accurate as in the cases in the following paragraph. Figure (6.3d) shows clearly how binning
(determined by different δ) does not influence the error bars.

(a) (b)

(c) (d)

Figure 6.3: Observed integrated bispectrum estimator results with theoretical signals (both with
and without post-Born correction) and the standard deviations from 40 simulations at zs = 1 using
768 mexican needlet patches (ℓw ∈ [0, 20], j = 4) (a). Observed integrated bispectrum estimator
for different angular size of the projection (b). Standard deviation from 40 simulations and the
Fisher matrix forecast (c). Standard deviation from different angular sizes of the cartesian projection
compared (d).

6.3.2 IBobs
ℓ with more localized patches

Here we presents results for the remaining patches we have tested; as anticipated, now we
do not show the theory signal since it is too costly computationally. In figure 6.4, 6.5 we
show results for more localized patches (j = 5, 6 and j = 7, 8 respectively31); we see that
different δ lead to the same standard deviation of the estimator, so different angular sizes of
the projection influence only the binning scheme (and the computational time), given that
it is sufficiently large to have an accurate power specrum estimation. We notice how this

31In the images for j = 6, 7, 8 it is indicated p = 4 while the results refears to p = 1, it’s a typo.
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happens with δ ≥ 12◦ for j = 5, with δ ≥ 5◦ for j = 6 and with δ ≥ 3◦ for j = 7, 8 (while, as in
the previous section, with δ ≥ 20◦ for j = 4).

Another effect we observe is the fact that for some values of ℓ the observed signal has a fall
in amplitude, depending on the angular size of the projection: it happens in some cases for
j ≥ 6, see figure 6.4, 6.5. However within the flat-sky approximation the estimator is more
accurate for higher localization, corresponding to higher ℓ.

Figure 6.4: Observed integrated bispectrum estimator (top) and its standard deviation (bottom), for
mexican patches with parameters w[0 − 30], p = 4, B = 1.6, j = 5 (left) and w[0 − 70], p = 1, B =
1.6, j = 6 (right). Results with different δ are represented in different colors.

Figure 6.5: Observed integrated bispectrum estimator (top) and its standard deviation (bottom), for
mexican patches with parameters w[0− 80], p = 1, B = 1.6, j = 7 (left) and w[0− 100], p = 1, B =
1.6, j = 8 (right). Results with different δ are represented in different colors.
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6.4 Timing summary

Aiming to have a fast enough implementation to run with thousands of simulations, we now
describe the expected computational time for the integrated bispectrum estimator within
flat-sky approximation, we focus on the case of the slow 32 parralel 33 pipeline 5.4.1.

Recalling eq. (5.5) we can compute tflatibsp summing the time contributions of different steps
of the pipeline, multiplied by the number of patches used to cover the sky, and also for a
given number of simulations. Important to notice is the fact that at small angular size of the
projection the rotation time trot contribuites significantly in the total time expected, while at
an high number of maps its contribution becomes negligible.

Results show how the integrate bispectrum estimator pipeline with flat-sky approximation is
valid if we choose an appropriate angular size of the cartesian projection (accordingly with
the patch angular width); the smaller δ, the smaller computational time is expected, however
the former parameter influences also the binning width in multipole space, see 5.11, therefore
we can play with it as we might be interested in estimating the covariance matrix with the
minimum binning width computationally affordable). It is exluded to run with δ too large
both because the projection time becomes too large and the flat-sky approximation fails. In
the following table we show the expected time to run the entire pipeline over 40 simulations,
using different number of patches and three angular width as example.

Npatches tδ=5
tot tδ=10

tot tδ=15
tot

768 35 76 151
3072 140 290 606

Table 6.1: Time to analyze 40 simulations, in minutes; for two sets of patches and three different
angular size of the projection.

32Due to rotation needed to estimate the monopole term 5.3.1.
33At each iteration i = 1, 2, · · ·NPatches computes the position dependent power spectrum estimator at Ω̂i for

all Nmaps.
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Chapter 7

Conclusions

7.1 This work

In this work, we implemented the flat-sky approximation for the position power spectrum
estimation in the integrated angular bispectrum pipeline described in [18]. This was achieved
by making use of a higher number of more localized patches on the spherical domain, which
pick less squeezed triangles (ℓ3 ≤ 100); as the lensing signal is larger on smaller scales (where
the Limber approximation is more accurate) this leads to a higher signal-to-noise ratio for the
integrated signal. Thus this method measures a strong non-Gaussian signal without probing
precisely the large-scale modes on which we focus in [18], but we find these two approaches
complementary and addressing different questions.

Our tests, based on weak-lensing convergence simulations at redshift zs = 1, show a good
agreement between the measured non-Gaussian signal and its theoretical prediction (fig.
6.3a), where it is still computable (lw ≤ 20). This is the ideal situation (full-sky, noiseless
maps)34. In [18] was verified that the two methods (theorethical and computational) produce
consistent results, displaying in both cases the same small mismatch between the measured
and predicted non-Gaussian signal.

Within this new pipeline implementation we achieved the following improvement:

• Pipeline speed up of a factor ∼ 10− 10035, see (7.2).

and tests:

• Flat-sky position dependent power spectrum estimation and time scaling confirmed
∝ N logN (5.2).

• Computational time analysis for different dimension of the tangent plane projection
(5.4.3).

34More realistic partial sky
(

fsky = 0.35
)

analyses, including Gaussian noise realizations, will be a further
subject of tests.

35Depending on the number of patches used, and δ, see 6.4
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• Sky coverage with different HEALpix schemes and results comparison (5.1.4.c).

• Memory save, as only one patch is required (thanks to rotation) independently of
Npatches used to cover the full sky. (5.1.5). 3072 patches with nside = 2048 would have
been unaffordable to store in the memory.

• Sigle direction in the sky analyzed for multiple maps at the same iteration (5.4.2).

7.2 Towards Covariance matrix

Finally, we have explored the issue of how to precisely estimate the full integrated bispectrum
covariance. This is an important point if we want to be able to use our integrated bispectrum
pipeline for future applications, like cosmological parameter inference from weak lensing
non-Gaussianity. In [19] was shown that, thanks to our choice of azimuthally symmetric
patches, the covariance could be quickly evaluated by means of a simple semianalytical
formula (4.40), valid in the weak non-Gaussianity limit of CMB analysis. However, such limit
does not strictly apply to weak lensing and in [18] it was verified that this semi-analytical
approach is no longer good enough for precise evaluation of the off-diagonal covariance
terms (while it still holds quite well for the variance part36), see 4.2. The approach is then
to evaluate the full covariance by running the estimator over many mock datasets, which
requires developments to significantly speed up of the pipeline, which is the main objective
of this work.

As example the total ammount of time needed to run this estimator (considering δ = 5◦, Np =
768, Nmaps = 400037.) is ∼ 40 hours on a 8-core processor38 (while it would have required
1000 hours39 with the full-sky implementation, analyzing weak lensing simulations with 192
patches). Namely we have achieved a speed up of 25 times, factor which increases if we use
δ < 5◦ and decreases otherwise. This is for a single CPU. This benchmark can be adjusted
by considering a possible parallelization of the code. Assuming linear scaling (due to trivial
parallelization, in which we assign independent mock realizations to different nodes), full-sky
code [18] could be run in parallel over the Nmaps whereas flat-sky slow pipeline can be run in
parallel over Npatches. As example, considering δ = 5◦, Np = 768, Nmaps = 4000 and assuming
to parallelize over 10 CPUs we expect ttotfull = 100 hours, and ttotflat = 4 hours.

The choice of angular width of the projection allows both to gauge the computational time,
both to change the optimal binning for the estimator (see 5.11), and accordingly the covari-
ance binning.

36Since the actual expression for the Fisher matrix involves many computations , 4(6)− j symbols, it is not
computable for ℓw ≥ 20, one way to simplify its expression could be exploit the flat-sky approximation in order
understand if there is a possibility to have a computable expression also at higher large-scale multipoles.

37Important to notice how the minimum number of simulations to be used to analyze is the number of modes
considered, which is ℓmax = 2000 for an unbinned estimator, while it is less for a binned one, as in our case;
although in practice the idea is to analyze more simulations for numerical accuracy

38This comes out assuming that it is computationally possible to read all the map files and analyze them at the
same time, requiring ∼ 200Mb ×Nmap of Ram; otherwise running over a smaller set of them in different times.

39Full-sky estimator takes ∼ 15 min for each map.
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A further step would be to extend our method not only to estimate the integrated angular
bispectrum of convergence κ, but also of the shear field (γ, φ)40.

40Or equivalently (γ1, γ2).
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Appendix A

Handmade flat-sky power spectrum
estimator - code

1 ###FFT

2 import numpy as np

3 import healpy as hp

4 from numba import njit, prange

5 import pyfftw

6 import matplotlib.pyplot as plt

7

8

9 #Fast fourier transform

10 def FFT2Dr(a, threads):

11

12 # align arrays

13 Ngrid = len(a)

14 a_in = pyfftw.empty_aligned((Ngrid, Ngrid), dtype="float32")

15 a_out = pyfftw.empty_aligned((Ngrid, Ngrid // 2 + 1), dtype="complex64")

16

17 # plan FFTW

18 fftw_plan = pyfftw.FFTW(

19 a_in,

20 a_out,

21 axes=(0, 1),

22 flags=("FFTW_ESTIMATE",),

23 direction="FFTW_FORWARD",

24 threads=threads,

25 )

26

27 # put input array into delta_r and perform FFTW

28 a_in[:] = a

29 fftw_plan(a_in, a_out)

30 return a_out

31

32

33 ### Pk and binning

34

35 # creating the multiple bin grid

36 @njit(parallel=True, cache=True)

37 def get_kgrid(kgrid, kmin2, kmax2):

38 ngrid = len(kgrid)
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39 middle = ngrid // 2

40 for kxx in prange(ngrid):

41 kx = kxx - ngrid if (kxx > middle) else kxx

42 kx = int(kxx)

43 for kyy in range(middle + 1):

44 ky = kyy - ngrid if (kyy > middle) else kyy

45 ky = int(kyy)

46 if ky == 0 or (ky == middle and ngrid % 2 == 0):

47 if kx < 0:

48 continue

49 val = kx * kx + ky * ky

50 if val < kmin2 or val > kmax2:

51 continue

52 else:

53 kgrid[kx, ky] = val

54

55

56 def get_num_bins(l, l_bins):

57 return np.searchsorted(l_bins[:-1], l, side="right") - 1

58

59

60 def get_bins(lbins, angle, ngrid):

61 box_size = 2 * angle * (np.pi / 180)

62 kF = 2.0 * np.pi / box_size

63 kbins = lbins / kF

64 kgrid = np.zeros((ngrid, ngrid))

65 get_kgrid(kgrid, kbins[0] ** 2, kbins[-1] ** 2)

66 kgrid = np.sqrt(kgrid)

67 kgrid_bins = get_num_bins(kgrid, kbins)

68 return kgrid_bins

69

70

71 @njit(cache=True)

72 def Pk_loop(map_k, kbins, k, Pk, nmodes, ngrid, middle):

73 for kxx in range(ngrid):

74 kx = kxx - ngrid if (kxx > middle) else kxx

75

76 for kyy in range(middle + 1): # kyy=[0,1,..,middle] --> ky>0

77 ky = kyy - ngrid if (kyy > middle) else kyy

78

79 # ky=0 & ky=middle are special (modes with (kx<0, ky=0) are not

80 # independent of (kx>0, ky=0): delta(-k)=delta*(+k))

81 if ky == 0 or (ky == middle and ngrid % 2 == 0):

82 if kx < 0:

83 continue

84

85 # compute |k| of the mode and its integer part

86 k_val = np.sqrt(kx * kx + ky * ky)

87 # Exclude cases not included in the binning range

88 k_index = kbins[kxx, kyy]

89 if k_index < 0:

90 continue

91 # print(k_index)

92

93 # compute |delta_k|^2 of the mode

94 real = map_k[kxx, kyy].real
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95 imag = map_k[kxx, kyy].imag

96 map_k2 = real * real + imag * imag

97

98 # Pk

99 k[k_index] += k_val

100 Pk[k_index] += map_k2

101 nmodes[k_index] += 1.0

102

103

104 def compute_pk(map0, angle, kbins, threads=1):

105

106 ngrid = len(map0)

107 middle = ngrid // 2

108

109 box_size = 2 * angle * (np.pi / 180)

110 kF = 2.0 * np.pi / box_size #maximum multipole

111

112 map_k = FFT2Dr(map0, threads=threads) # fourier transform the flat field (

map)

113

114 nbins = np.max(kbins) + 1

115 k = np.zeros(nbins, dtype=np.float64)

116 Pk = np.zeros(nbins, dtype=np.float64)

117 nmodes = np.zeros(nbins, dtype=np.float64)

118

119 # do a loop over the independent modes.

120 Pk_loop(map_k, kbins, k, Pk, nmodes, ngrid, middle)

121

122 for i in range(len(k)):

123 k[i] = (k[i] / nmodes[i]) * kF

124 Pk[i] = (Pk[i] / nmodes[i]) * (box_size / ngrid ** 2) ** 2

125

126 return k, Pk
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Appendix B

Needlets Patches

In [46] different form of needlets are introduced. The introduction of Mexican needlets is due
to Geller & Maveli [30]

The basic needlet function can be described in real space as follows:

ψjk(x) :=
√

λjk
∑

ℓ

bℓ(B, j)
ℓ
∑

m=−ℓ

Yℓm (ξjk)Yℓm(x) (B.1)

Here, x refers to a position (θ, φ) on the sphere, Yℓm are spherical harmonic functions, j is
the scale (frequency) of the needlet and {λjk} is a set of cubature weights corresponding
to the cubature points {ξjk}; for simplicity, they can be taken to be equal to the pixel areas
and the pixel centres in the HEALPix grid used for CMB analysis, i.e. we shall consider
λjk = λj = 4π/Nj , where Nj is the number of pixel in the pixelization we are working with.
The needlet function itself is contained in the function bℓ(B, j) (or bℓ for short) in harmonic
space, B being one of the parameters deciding the properties of the needlet. The difference
between the needlet systems we are going to discuss can thus be traced in the form of the
weight function bℓ.

1) Standard needlets: Let φ(ξ) be an infinitely differentiable (i.e., C∞ ) function supported in
|ξ| ≤ 1, such that 0 ≤ φ(ξ) ≤ 1 and φ(ξ) = 1 if |ξ| ≤ 1/B,B > 1. Define

b2(ξ) = φ

(

ξ

B

)

− φ(ξ) ≥ 0 so that ∀ℓ > B,

∞
∑

j=0

b2
(

ℓ

Bj

)

= 1

For standard needlets we then obtain bℓ from this function b(ξ) by bℓ(B, j) = b
(

ℓ
Bj

)

. For a
given scale j, the needlet function in harmonic space is centered at a multipole ℓ∗ ≈ Bj . Thus
a given scale j is mainly influenced by multipoles close to ℓ∗. It is immediate to verify that
b(ξ) 6= 0 only if 1

B
≤ |ξ| ≤ B. The main localization property of needlets is established in

Narcowich et al. (2006a), where it is shown that for any M ∈ N there exists a constant cM > 0
s.t., for every ξ ∈ S2 :

|ψjk(ξ)| ≤
cMB

j

(1 + Bjd (ξjk, ξ))
M

uniformly in (j, k)
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where d (ξjk, ξ) denotes the usual distance on the sphere. More explicitly, needlets are almost
exponentially localized around any cubature point, which motivates their name.

2) Bernstein Needlets: The bound which we just provided to establish the localization prop-
erties of needlets depends on some constants cM which we did not write down explicitly.
Such constants depend on the form of the function b(ξ), and turn out to be rather large in
the case of standard needlets. We do no longer have quasi-exponentially decaying tails,
however, but it is possible to establish a weaker result, namely the decay with a polynomial
rate, depending on the number of bounded derivatives we are allowing for b(ξ). It may hence
seem that this construction should enjoy worse properties - but in practice this is not the
case. As for standard needlets, we have bℓ(B, j) = b

(

ℓ
Bj

)

, but note that b(ξ) is different for
Bernstein needlets. As for the standard needlets, the needlet function in harmonic space is
centered at ℓ∗ ≈ Bj .

3) Mexican Needlets: The construction in [30] is similar to standard needlets, insofar as
a combination of Legendre polynomials with a smooth function is proposed; the main
difference is that for standard needlets the kernel is taken to be compactly supported (i.e.,
depending only a finite number of multipoles ℓ ), while the Mexican needlet construction
draws information from all frequencies at any scale. More precisely, we shall consider weight
functions bℓ(B, j) of the form

bℓ(B, j) =

(

ℓ

Bj

)2p

e−
ℓ2

B2j

for p = 1, 2, 3, . . . For instance, for p = 1 the Mexican needlet takes the form

ψjk;1(x) =

√

λj
∑

ℓ≥1

ℓ2

B2j
e−ℓ2/B2j 2ℓ+ 1

4π
Pℓ (d (ξjk, ξ))

and for higher p we have

ψjk;p(x) :=
√

λjk
∑

ℓ≥1

(

ℓ2

B2j

)p

e−ℓ2/B2j 2ℓ+ 1

4π
Pℓ (d (ξjk, ξ))

Indeed, for mathematical rigour ℓ2 should be replaced by the eigenvalue ℓ(ℓ + 1), but for
CMB data analysis the difference is negligible and we shall use ℓ2 for notational simplicity.
As mentioned before, Mexican needlets are not supported on a finite number of multipoles,
so the discussion of their localization properties in the harmonic domain requires some care.
Moreover, because we need to focus on an infinite number of spherical harmonics, from a
strictly mathematical point of view exact cubature and reconstruction formulae cannot hold.
Nevertheless, it must be added that the approach by [30] enjoys some undeniable strong
points, some of which we list as follows:

1. Mexican needlets enjoy extremely good localization properties in the real domain; more
precisely, at a fixed angular distance x their tails decay as exp (−B2jx2/4), as j grows to
infinity.

2. By adjusting the parameter p, one has available a family of wavelets which can be
optimized in terms of the desired localization properties (as we shall show below,
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a growing p improves the localization in the harmonic domain and decreases the
localization in the real domain)

3. The previously mentioned mathematical issues on the cubature points are largely
negligible from a numerical point of view

4. The Monte Carlo evidence provided below proves that Mexican needlets compare fa-
vorably with standard needlets under a variety of circumstances and for many different
indicators.

Concerning the last point, it is important to remark the following. It can be shown that
Mexican needlets for p = 1 provide a very close approximation of the widely popular
Spherical Mexican Hat Wavelets (SMHW). Even in this case, though, the implementation
through needlet ideas in our view yields important benefits:

• the weight function is explicitly given, making easier the implementation and the
validation of numerical codes

• the localization structure in harmonic domain can be analytically studied and controlled

• the correlation structure of random Mexican needlet coefficients is explicitly given and
can be used for statistical inference

• the range of scales to be considered to retain the information from the data is mathe-
matically determined in terms of the frequencies j, rather than by an ad hoc choice of
scales in the real domain as a function of angular distance.

Our results for the different types of needlets can be summarized as follows:

• Standard needlets: The standard needlets are much better localized in harmonic space
than the Mexican needlets (but similar to Bernstein needlets). In fact, the contribution to
a certain scale j is coming from a limited number of multipoles with no influence from
multipoles outside this range. However, the penalty for high localization in harmonic
space is that the real space localization is lower than for other needlets. The parameter
B controls the localization properties: The higher the B, the higher is the real space
localization and the larger are the multipole ranges included in each scale j.

• Mexican needlets: The Mexican needlets are much better localized in real space than
any of the other types. In harmonic space however, a large (in principle infinite)
multipole range contributes to each scale j. The Mexican needlets depend on the
parameter p, larger p have worse real space localization properties but better harmonic
space localization. For p = 3− 4, the real space localization properties of the Mexican
needlets approach those of standard needlets for high values of B. For p = 1 and high j,
the Mexican needlets are almost identical to the Spherical Mexican Hat Wavelets.

• Bernstein needlets: Bernstein needlets are in between the Mexican and standard
needlets. Their real and harmonic space localization is similar to the standard needlets,
sometimes it is slightly better, sometimes it is slightly worse. The Bernstein needlets
depend both on the parameter B and (weakly) on a parameter k. As for the standard
needlets, a higher value of B increases the number of multipoles included in each scale
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j and improves the real space localization. The parameter k may slightly improve
or worsen the localization properties depending on the exact measure used. As an
example we find that for the critical angle for a galactic cut, for k ≥ 2 the angle for
the less stringent thresholds increases for increasing k, whereas the angle for the more
stringent thresholds decreases for increasing k.
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