
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

ELABORATO

MODERN SOFTWARE METRICS:

DESIGN AND IMPLEMENTATION

RELATORE: Ch.mo Prof. Carlo Ferrari

LAUREANDO: Enrico Ros

Padova, 26 Marzo 2010

Contents

Abstract 1

1 Dynamic program analysis and motivations for new tools 3

1.1 Prior art . 5

1.1.1 Debuggers . 6

1.1.2 Profilers . 7

1.1.3 Specialized profilers . 8

1.2 Modern challenges . 11

1.2.1 Power efficiency . 11

1.2.2 Code complexity . 12

1.2.3 Old questions still unanswered 13

1.3 Inspector and the modern software metrics 14

2 Inspector 15

2.1 Features . 16

2.2 Definitions . 16

2.3 Principles of operation . 17

2.4 Inspector design . 19

2.4.1 Software architecture . 19

2.4.2 Backends . 21

2.4.3 Backend Modules . 23

2.4.4 Backend Panels . 24

2.4.5 Backend Tasks . 25

2.5 Implementation in Qt Creator . 27

2.5.1 What is Qt Creator . 27

2.5.2 Implementing the Inspector plug-in 28

i

CONTENTS

2.5.3 Implementing the Qt Backend 30

2.5.4 Implementing the Qt Probe 34

3 Modern Software Metrics 37

3.1 Designing software metrics . 38

3.1.1 What metrics are . 38

3.1.2 Common software measurements 39

3.1.3 Requirements for modern software metrics 40

3.1.4 The MSM design process 41

3.2 The Thermal Painting . 43

3.2.1 Definition . 44

3.2.2 Implementation in Inspector 45

3.2.3 Examples . 52

4 Conclusions 55

4.1 Inspector benefits . 55

4.1.1 Open challenges . 56

4.1.2 Social impact . 59

4.2 The Thermal Painting metric . 60

4.2.1 Social impact . 61

4.3 Future directions . 63

Bibliography 65

ii

Abstract

As software becomes more complex, new measurements methods are needed

to leverage quality, improve user’s experience and reduce energy consumption.

This dissertation introduces the Inspector, a software tool for framework-level

dynamic software analysis and the Thermal Painting, a new software metric for

measuring the performance of the graphical subsystem of a program.

The Inspector breaks many of the constraints that affected traditional tools

like debuggers and function-level profilers, like the need to alter the source or

binary code and the impossibility to profile already running code that exhibits

bad behavior, and provides a unique work environment for conducting the tests.

The Thermal Painting is the new software metric that measures the per-pixel

energy required to paint a graphical user interface, allowing to profile and improve

the graphical performance of a program.

Chapter 1

Dynamic program analysis and

motivations for new tools

Contents

1.1 Prior art . 5

1.1.1 Debuggers . 6

1.1.2 Profilers . 7

1.1.3 Specialized profilers 8

1.2 Modern challenges . 11

1.2.1 Power efficiency . 11

1.2.2 Code complexity . 12

1.2.3 Old questions still unanswered 13

1.3 Inspector and the modern software metrics 14

E
verybody makes mistakes, in life, at work, in every branch of art and tech-

nology. The more complex the subject gets, the more the probability of

incurring into some unwanted condition raises.

Software engineers are often challenged with a really big task that is doing

a perfect product, fully featured but fast, correct but quick to write, working

good for that particular job but still adaptable to similar jobs. Actually it is a

3

1. Dynamic program analysis and motivations for new tools

hard task because in software just a single misplaced bit could break everything

and make things crash in chain. Unfortunately software does not work like that

machinery that can lose bolts and still work.

Being immaterial, software can be virtually duplicated in millions of copies

in a very short time and deployed to a vast user base in a matter of minutes,

over private networks or over the Internet, thus increasing the magnitude of the

damage a single error can do.

The times in which we live are challenging for any product maker because peo-

ple have high expectations. It is not enough to buy a product that “just works”,

it must work good, be appealing to the eye, weight less, last longer. Business is

trying to respond to this needs with management strategies that allow for less

than 5 defects per million, such as the Six Sigma method [1].

To comply with those strict requirements, even the software development

methodologies needed to be adapted. From signed reviews by seniors or peers

to pair programming, to agile development methods, to smart content versioning

systems, to regressions test suites, to automatic building farms, the focus is shift-

ing from man-driven to machine-driven. The more you take repetitive tasks off

the programmer and assign them to the machine the more you can reduce errors.

The very strict nature of some programming languages such as C++, which will

be the main focus of this dissertation, while on one side constraining the flexibil-

ity available to the software engineer, on the other side it allows for automatic

tools that look for mistakes. Computer science has been involved on this testing

tools since its beginnings, and lately the topic has gained even more focus for the

reasons outlined above.

In recent years more sophisticated tools, that help to increase the quality,

have seen the light, like:

continuous integration tools: Those tools allow for automatic merging the

changes, building, packaging, testing and deploying the software written

within teams. Their main task is testing each and every source code change

to see whether it breaks the build or introduces regressions or security issues.

4

1.1 Prior art

Usually they are quite simple scripts running over very powerful machines.

regression tests suites: Those are collections of tests, in form of scripts or

executables, each one testing a very specific feature of the target product.

Usually written by the same people developing the main product, they can

be used either for validating a feature (as in test-driven development) or for

checking that a behavior will not change over time (as in regression testing).

static code analyzers: The analysis performed by those tools is done over the

source code of the program, without building and executing it. By just

looking at the source code those analyzers can find a wide range of issues,

from potential security problems to proving mathematical properties of the

code. The way they achieve this, varies from simple pattern matching over

each line of code to more complex “just in time” compilation and execution

of code paths.

dynamic program analyzers: Those tools analyze the software by executing

programs built from that source code. The programs can be executed on

real or virtual processors. Usually those tools look for generic execution

issues, like out of bounds memory accesses or memory leaks. Sometimes

they require the source code to be recompiled by adding some compile-time

instrumentation.

profilers: This is a subclass of the dynamic program analyzers. Those tools col-

lect information from the program as it executes. The gathered information

can then be used to optimize the program, whether this means optimizing it

for speed, size, startup time, screen area, memory usage or any combination

of the above.

The work presented here is improving the dynamic program analyzers class

by adding completely new and unmatched levels of functionality.

1.1 Prior art

Here we identify three kind of programs available on the market that allow, to

some degree, to do performance analysis and improve the software. Those are

debuggers, profilers, and specialized profilers.

5

1. Dynamic program analysis and motivations for new tools

1.1.1 Debuggers

In the beginning there was the debugger, a computer program designed to test

other programs. Debuggers are used for finding and reducing the number of bugs

(or “unwanted behaviors”), using a well defined methodology tightly related to

the programming language the source code it is written into. However there are

some features that are quite common among debuggers:

stopping execution: When some user defined or self-raised condition is met,

the debugger stops the program showing the position (in terms of source

code line or machine code line) the program has reached.

showing back traces: This is a list of machine code (“stack addresses”) or

function names that led the program to the position it is. The list usually

starts at the “main” function and can be really long and sometimes complex

to understand, for example in case of event loop dispatchers or recursive

functions.

stepping: This is the process of advancing the execution by one line of either

source or machine code. This is usually needed when looking for the exact

point in which some condition happens. A few modern debuggers allow re-

verse stepping that is “going back in time”, or reverting the effects produced

by the execution of that instruction.

displaying memory: This is the ability of showing the contents of the mem-

ory allocated, or used, by the program. Depending on the programming

language the debugger can relate the memory addresses to function param-

eters, global or local variables and exceptions. Usually the ability to alter

values is offered.

The debugger is the first testing tool available to the developer and the one

fulfilling the very basic needs, as outlined above. It is the tool to use when the

program crashes or when stepping through each line of code is the only way to

find the answer you are looking for.

Debuggers are a solid and stable technology and there is a wide range of similar

products available in the market, from open source solutions to commercial ones.

6

1.1 Prior art

1.1.2 Profilers

It is not enough for a program to be correct. When the “quality” bar raises, de-

buggers lose effectiveness. When looking for a way to improve a specific quality

of a program like speed or memory consumption, a new program class comes into

use: Profilers.

Profilers collect data from an executing program. The execution can hap-

pen over a real processor or over a virtual one, in which the execution of every

instruction is emulated in software. For gathering data the profiler needs an in-

strumented program. From the one requiring more manual intervention to the

more automatic one, here is the list of the ways to instrument a program for

profiling:

• manually performed by the programmer over the source code, for example

by calling a function in strategic places.

• performed by automatic tools over the source code (basically an automated

version of the above).

• generated by the source code compiler when emitting the object code.

• added to the object code by binary translators.

• performed during execution by virtual executors.

• injected during execution by specialized programs.

This is also the order in which the instrumentation methods were introduced over

time.

Typically the data gathered during the profiling consists of: duration of func-

tion calls, frequency of function calls, memory usage, cache failures. The data is

then analyzed by the programmer to better direct the optimization efforts. By

looking at the numbers, knowledge can be gained about: functions that take too

much time to execute, functions that are called too often, where and how much

memory is allocated, where “cache misses” happen and how to avoid them.

7

1. Dynamic program analysis and motivations for new tools

The main disadvantage of profilers is that they lack the knowledge of the pro-

gram, of what it is supposed to do, how it works, how the underlying framework

works, how this is translated into machine language. The best they can do is to

make assumptions about the underlying ABI[2], so the best they can tell is which

function is called and for how long.

In the next chapters we will see how developing a profiler that has more

knowledge about the code it is executing will lead to much better results.

1.1.3 Specialized profilers

Profilers with high knowledge of the environment they operate in, fall in this

category. The next examples highlight very recent work on this field. One is

a profiler embedded in the containing application, the other one aims to be a

“framework profiler”.

Google Chrome’s Speed Tracer

Speed Tracer is a tool that helps identifying and fix performance problems in web

pages and web applications in general. It displays metrics that are taken from

low level instrumentation hooks inside Google Chrome[3].

Speed Tracer (figure 1.1) can be installed and used as an extension of the

Google Chrome software. This popular web rendering engine has been instru-

mented on purpose, to allow profiling of the web pages loaded, layouted and

rendered by the web browser itself. The instrumentation can be enabled when

starting the browser, since enabling it by default would mean to lose little per-

formance even when not profiling.

Speed Tracer was built for two main purposes: to allow Chrome’s developers

to profile the web rendering engine itself, and to allow the whole world wide web

community to build better web pages. The theory behind this is that by just giv-

ing web developers a cue about where performance is spent when executing their

web applications, this will help them identifying any wastes, optimize resource

loading, and build cleaner and faster web pages. To do this, Speed Tracer gives

8

1.1 Prior art

Figure 1.1: The Speed Tracer plugin of Google Chrome showing the perfor-

mance of a website.

information about time spent in:

• Javascript parsing and execution

• Layout

• CSS style recalculation and selector matching

• DOM Event handling

• Network resource loading

• Timer fires

• XMLHttpRequest callbacks

• Painting

Since its introduction, Google Chrome has been gaining momentum and as of

March 2010 it is the browser that is having the biggest gains with an estimated

market share of 5% to 16%. Chrome is using the same Webkit [4] open source

web engine that Apple, Nokia, Palm and RIM are using, making Webkit the most

used browser in the mobile market.

This is an example of how profiling and making a faster browser and a faster

web is attractive to both vendors and users.

9

1. Dynamic program analysis and motivations for new tools

NVIDIA’s Parallel Nsight

Parallel Nsight (codenamed “Nexus”) [5] is a GPU profiler and debugger built

by NVIDIA for Microsoft Visual Studio 2008. It is the first complete solution for

developing programs on the GPU, providing tools that allow:

• System performance analysis

• Debugging CUDA C

• Debugging graphics (OpenGL and Direct3D)

• Debugging processing (OpenCL, DirectCompute)

Figure 1.2: NVIDIA Parallel Nsight showing profiling counters.

The profiler (figure 1.2) collects data from the GPU internal counters and

plots it over a time-line where it is easy to see operations with the nanosecond

resolution and to find out the exact execution and data transfers order.

Parallel Nsight is a recent example (announced Sept 30 2009) of a specialized

profiler that operates at the “framework” level. It works by using some facilities

provided by the NVIDIA operating system graphics drivers and it runs where an

NVIDIA graphics board is available. Even if it dictates a strong vendor lock-in,

the features it provides are completely new an much needed by a development

community used to treat graphics boards as black boxes which execute code

10

1.2 Modern challenges

and are impossible to debug. In this regard, Parallel Nsight opens up many

possibilities. We will see how many more can be opened by operating at the

same level.

1.2 Modern challenges

In the past decades, the “golden age of silicon” writing a program that performed

good was not a priority, since everybody knew that every 1.5 years the perfor-

mance of integrated circuits would have doubled. This drove the need for more

processing power, more graphical power, more bandwidth, more storage space,

higher screen resolution.

This exponential growth could not last forever and in recent years there have

been a number of regressions on Moore’s law. Intel’s Atom, a CPU designed for

netbooks, is sacrificing performance to power consumption. People are asking for

cellphones that have more functions (“smartphones”) but must work longer.

1.2.1 Power efficiency

A change of direction in development has happened: the software must work fast

on cheap slow hardware and it must consume the lowest possible energy to do

what it is supposed to do. If the software wastes too much resources it is not

going to succeed in the mobile market.

This need is driving some shifts:

programming languages: To write power efficient code, the developer must

work as close as possible to the machine, thus he moves to the classic C or

C++ programming languages and to more efficient frameworks (and software

stacks).

programming practices: The developer requests and allocates resources man-

ually and releases them as soon as they’re not needed.

program optimizations: Code is profiled with standard call profilers to spot

where to operate to increase throughput and remove bottlenecks.

11

1. Dynamic program analysis and motivations for new tools

There are currently no good tools available for the average developer aiming

for efficiency. There are either low level machine debuggers, generating gigabytes

of hard-to-parse data per second or generic profilers counting function calls. Pro-

viding a tool to measure the performance, or power consumption, in an intuitive

way would mean enabling programmers to really spot where the performance is

lost and selectively perform optimizations there.

The question that needs an answer is: what can be done to reduce the

power consumption of a given application? In chapter 3 we will give some

answers to this question.

1.2.2 Code complexity

As the code complexity raises there is a strong need for new new tools.

Nowadays even the cellphones run operating systems and frameworks built

out of millions of lines of source code. All the popular open and closed source

desktop environments are at least that huge and they are made by a myriad

of components that interact closely together. As the size increases, more code

is reused from past projects, bought from third parties or borrowed from the

open-source world. This means that a software system running on a cellphone is

written by thousands of different people, in different teams, in different countries

and with different programming skills and priorities.

In this complex and often fragile environments it’s easy to see that debuggers

and standard profilers won’t provide the answers the developer is looking for.

Halting one piece of code on a breakpoint might crash the other pieces, stepping

line by line could lead to nowhere, time spent on functions will not tell if that

code path could be done better.

What is needed here is a way to transform the software in intuitive ways to

allow new kind of measurements and comparisons. The transformations should

be based on easy to grasp concepts such as weight, size, temperature, space, time.

12

1.3 Modern challenges

The question that needs an answer is: how can we measure software in

new intuitive ways? In chapter 3 we will give some answers to this question.

1.2.3 Old questions still unanswered

There are specific questions that every developer has asked himself at least once.

If this happened is because some questions survived time, and that means that

nobody provided the answers.

Those questions are:

What is my program doing? The short answer is: exactly what it is pro-

grammed to do. The CPU is executing the binary code loaded by the

operating system bit by bit. Entire stacks of software like kernel code or

toolkit libraries are involved when running a simple program made by a

developer. So when this question is raised the user feels to have lost the

grasp over the running program, and the higher the abstraction degree is,

the more the developer will feel the need for an answer.

Why is it so slow? There is no such thing as “slowness”. There are finite re-

sources, like the processing power of the system, and the program has to

make the best use of them otherwise it will behave in suboptimal ways. A

perfect answer to this question would be to identify the bottlenecks of the

application and how they adversely affect the program execution speed.

Why did it become so... ? This questions deals with the change. Like phys-

ical objects, over time some programs can deteriorate and a number of

different issues that were too small to be noticed when the program was

just started can become more evident after hours, days or years of opera-

tion. Having some ways to check the program at intervals and highlight the

changes could be helpful in resolving this kind of problems.

While in general sense it is not possible answer all those questions, it is possible

to do it under certain circumstances. In chapter 3 we will give some answers to

those questions.

13

1. Dynamic program analysis and motivations for new tools

1.3 Inspector and the modern software metrics

The work outlined in this dissertation is the response to a real need, the need for

some answers to the questions above. Due to the lack of available tools, we had

to create something new, a new software tool to allow specialized profiling at a

new level, the Framework one.

This is why Inspector was born, but it is just the platform, the technology

that enables new kind of tests, or metrics as we will call them on chapter 3.

While Inspector provides the way to access the program, with all the knowledge

to access the software stacks behind it, the modern software metrics that were

developed over it allow for new kind of measurements. They give the real answers

to the questions in section 1.2.

In the next chapters we will take a look at Inspector, answering why, what and

how it was created. Then on chapter 3 the design process for creating the modern

software metrics and the Thermal Painting metric will be explained, highlighting

the significance of the results that can be obtained by applying those new methods

to software development.

14

Chapter 2

Inspector

Contents

2.1 Features . 16

2.2 Definitions . 16

2.3 Principles of operation 17

2.4 Inspector design . 19

2.4.1 Software architecture 19

2.4.2 Backends . 21

2.4.3 Backend Modules . 23

2.4.4 Backend Panels . 24

2.4.5 Backend Tasks . 25

2.5 Implementation in Qt Creator 27

2.5.1 What is Qt Creator 27

2.5.2 Implementing the Inspector plug-in 28

2.5.3 Implementing the Qt Backend 30

2.5.4 Implementing the Qt Probe 34

I
nspector [6] is a tool for framework-level specialized profiling. This program

is the answer to the modern challenges listed in section 1.2 and breaks many

of the constraints that previous tools had. In this chapter we will analyze the

design that came out of the requirements and see how it was implemented.

15

2. Inspector

2.1 Features

Inspector has been designed and implemented to address some needs that

currently available tools or profiling frameworks do not provide. In

particular those needs are addressed:

profiling of unmodified source code: If the code must be changed before

profiling then you are not profiling the original code, but something else.

Plus you want to be able to take an existing program and profile that even

if you have no access to the source code.

profiling with unmodified system libraries: Similarly to the point above,

we want to be able to profile the program in its environment, without

requiring changes to the libraries or frameworks it is using.

profile running executables: It may happen that a program starts acting in

unexpected ways after many hours of operation. In this case you do not

want to close it and start it again in a new profiling session. You want to

be able to profile that exact running instance.

different back-ends: A running code may use any number of system APIs (or

frameworks, toolkits, libraries) and Inspector must be able to support spe-

cialized profiling for a number of those.

modern user interface: The interface must be able to support many Inspec-

tion sessions, must be intuitive and easy to operate, must show the status

of all the running operations, must be able to load, save and compare data

sets.

Inspector does all of the above and more, but before going deeply into the

design details, let us introduce some terms that will be used throughout this

chapter.

2.2 Definitions

Here are some definitions that will be used throughout the rest of the chapter.

Inspector: This tool.

16

2.3 Principles of operation

Target: Any running executable.

Probe: Machine code that can be injected into the Target.

Runtime Injection: The operation of inserting the Probe into the Target.

Framework: An API, framework name, toolkit or system library.

Test: A specific test, probing operation or measure for a Framework.

Backend: An Inspector component, dealing with a specific Framework.

Backend Module: A Backend component implementing one or more Tests.

Backend Panel: A graphical user interface to control a Backend Module.

Inspection: A probing session with a Backend connected to a Target.

Inspector Dashboard: The Inspector control panel allowing to operate on In-

spections.

In the definitions above, some architectural elements are introduced. The or-

der in which the items are presented accounts for the relations of the terms too.

So with no further hesitation let us look at how things work.

2.3 Principles of operation

First let us understand the key principle behind Inspector. It is able to do all

it does because of the way the operating systems are made. Operating systems

provide entire stacks of software from low level (e.g. I/O functions) to high level

(e.g. web tookits) and the way applications use them is via symbolic resolution.

When using a Framework, the related machine code is contained in binary

files prefixed with indexes that tell where to find the “public” or “exported” sym-

bols. This tiny detail allows Inspector to do Runtime Injection of the Probes

into the running executables (Targets). The Probes on their part are binary code

that is loaded when the Backend needs to handle the Target and uses symbols

of a specific Framework to operate. A probe can just invoke specific symbols or

17

2. Inspector

operate in more complex ways like integrating into the Target’s object code.

Inspector is then a generic tool using Backends that know exactly the way

the Framework they are profiling works. And those Backends are able to watch

or control in some ways the operation of the Target.

The way the Backends and Probes work is strictly dependent to the Frame-

work. A common way they work is presented in chapter 2.5.3 where we will

analyze in detail a Backend implementation.

18

2.4 Inspector design

2.4 Inspector design

Inspector has been designed to meet all the requirements described in section 2.1.

From a bird’s-eye point of view, Inspector lets the user pick a Target, select

which Backend to use and then starts analyzing that pair. The analysis is then

completely Backend and Target dependent, so Inspector only provides some fa-

cilities and mandates design patterns to the Backend developers.

This section focuses on the design architecture of Inspector while section 2.5

will focus on the implementation details.

2.4.1 Software architecture

The relevant parts of the code architecture of Inspector are shown in figure 2.1.

Figure 2.1: The software architecture of Inspector. The core functionality

(IBackend and related classes) is greatly separated from presenta-

tion (DashboardWindow and surrounding classes).

The entry point for figure 2.1 is the Inspector class. It owns:

• a SharedDebugger, an utility class that encapsulates the functionality of a

debugger and may be used by Backends. See section 2.5.3 for more infor-

mation about this class.

• multiple IBackendFactory, that describe the features of the Backends and

can create one on demand. This class will be described in section 2.4.2.

19

2. Inspector

• an InspectorContainer, the user interface entry point, described below.

• can have multiple Inspection, one for each profiling session.

The InspectorContainer holds the complete user interface subsystem. It owns:

• a DashboardWindow, that allows to start new Inspections and shows in-

formation about all the running ones. This class and the following do not

access the Backends directly, they just have access to data models or graph-

ical user interface components.

• can have multiple InspectionWindow, each one interacting with a different

inspection. This class and the previous one are described in section as they

are defined by their implementation.

The Inspection class describes a running inspection and exists just before the

start of the Inspection and right after its end. It’s used mainly by graphical user

interface components. It owns:

• an IBackend instance, with a Backend set up and probably connected to

the Target. For more information see section 2.4.2.

• holds strong references to the IInspectionModel and TasksModel classes that

are created by the Backend.

The IBackend class operates over the Target, can do Runtime Injection, as-

sume that the Target makes use of the Framework it is made for, use debugger

functions and all the results of its operations are stored in data models. It owns:

• an IInspectionModel, a data model that holds the common data about the

current Inspection and is usually referenced from the graphical user interface

components.

• a TasksModel, a data model that holds brief information about the running

tasks and is used in the same way the above model is used.

• can have multiple IBackendModule, each one providing the real testing/probing

functionality over a Backend. See section 2.4.3 for more information about

Backend Modules.

20

2.4 Inspector design

• can have multiple IBackendTask, each one describing a task that is running

on the Target. See section 2.4.5 for a detailed description about this.

The naming of the classes has been chosen to reflect their nature. Classes

starting with the capital “I” letter are meant to be interfaces and they are meant

to be reimplemented and specialized. Those classes are IBackend, IBackendFac-

tory, IInspectionModel, IBackendModule, IBackendTask. The exception to this

rule is the AbstractPanel class that violates the pattern because it belongs to a

different abstraction than the one containing the classes mentioned above (see

section 2.4.4).

Inspector classes, their relations and their visibilities define some patterns of

operation that are not visible in the architecture diagram. Those patterns are

enforced for ensuring good programming practices, to meet the requirements of

the design, and to avoid violations over the existing structure.

In the next sections we will see those patterns explained.

2.4.2 Backends

The Backend abstraction provides Inspector the tools it needs to analyze the

behavior of a Target that uses a specific Framework. Each software stack used

by a running program offers usage semantics and entry points that allow for a

Backend to be made.

Backends can be made, for:

libraries and frameworks: such libraries can be used for doing measurements

over the code using them. Examples of this include the Qt Backend ex-

plained in section 2.5.3.

hardware instrumentation: this can be used to measure Targets running on

that hardware. An example of this is the NVIDIATMCUDATMBackend

using the hardware performance counters that are enabled when profiling

CUDA applications.

21

2. Inspector

bytecode interpreters: bytecode written for specific interpreters allows for low

level profiling Backends to be made. Those will use features specific to the

interpreter to offer information about the profiled target. An example of

this could be a Backend for the Microsoft Common Language Runtime, for

Java bytecode execution or for Adobe Flash programs.

virtual machines: there are virtual machines providing information about the

Target they execute and this information could be parsed by a Backend.

An example of this could be a Backend for the Valgrind[7] virtual machine,

a software tool providing memory debugging, memory leak detection and

profiling functionalities.

Figure 2.2: The IBackend interface and the related classes.

Backends in Inspector are defined by the IBackend interface and the related

classes as show in figure 2.2.

The IBackend class provides virtual methods to start the Inspection and cre-

ate AbstractPanels (see section 2.4.4) and it owns data models, Backend Modules

and task descriptors.

The group of classes shown in figure 2.2 is made in a way that allows lay-

ered abstraction. Since the IBackend class must give outside access to some of

the internal classes, like data models or task descriptions, those classes can be

extended too. This way the IInspectionModel class can contain Backend-specific

data, that is used by the Backend, the Backend Modules and the tasks while pro-

viding generic data to the outside watchers. A Backend implementation must at

least re-implement the IBackend class providing some needed functionality and

then it can re-implement the data models, modules, tasks. While the Backend

group of classes has the complete visibility over all the Backend extensions, the

22

2.4 Inspector design

outside classes will still be insulated by the specializations made in the group and

only use the operations and properties of the base classes.

The Backend Modules, described in section 2.4.3 allow to extend the Back-

end with new functionality. The Backend creates and registers all the Backend

Modules at runtime.

The IBackendFactory (shown in figure 2.1) is used to describe and instance

IBackend classes. That class uses the Factory pattern [8] to allow for the creation

of objects that may require complex setups and are not known to the Inspector

base architecture. This way Backends can be plug-ins too.

See figure 2.6 for a sample Backend implementation.

2.4.3 Backend Modules

Backend Modules are used to provide the Tests to the Backends. They exist to

allow cleaner code separation, not for a real need of “pluggable” code even if they

could be made plug-ins.

Figure 2.3: The IBackendModule interface and the related classes.

The Backend Modules are made for a specific Backend. They use the func-

tionality provided by that Backend, usually communication or Runtime Injection

facilities, to do higher level Tests. They don’t have to deal with low-level details,

because this is the job of the Backend, but they must implement the logic that

stands behind a certain Test, the related data models and the views to display

23

2. Inspector

and interact with that data.

The Backend Modules do:

• access the Framework dependent functionality provided by the Backend.

• describe the Test, or Tests, they implement.

• create AbstractPanels to start new Tests and display the results.

• hold any data model specific to the Tests they implement.

• can create specialized IBackendTask to do their job.

Often a Backend Module provides the Backend Tasks needed to perform the

job. So usually the Backend Tasks are assumed to belong to the Backend Mod-

ules. More information about the Backend Tasks is in section 2.4.5.

See figure 2.6 for a sample Backend implementation.

2.4.4 Backend Panels

The Backend Panels are used for providing the user a way to interact with the

Tests. Those Panels act like Views and Controllers in the MVC pattern.

Figure 2.4: The AbstractPanel interface and the related classes.

AbstractPanels are created by Backend Modules when a Test is selected from

the tests menu of Inspector and they are plugged into the InspectionWindow.

Upon creation they are wired to the parent Backend Module and to the data

models they will use (may be IInspectionModel, or models of the Backend, or

models of the Backend Module).

24

2.4 Inspector design

When re-implementing the AbstractPanel class, the specialization needs to

add GUI components, like indicators, knobs, buttons, tables or more complex

views and connect those components to the functions of the Backend Module,

and to update the graphical components whenever the data of the models changes.

Since only one AbstractPanel can exist per Inspection, and the panels may

change while there are Test running, it is important to behave good in terms of

consistency. So when a panel is created it must be updated to reflect the current

state of the model allowing to switch back and forth between different panels

without seeing changes when switching back to the same panel.

2.4.5 Backend Tasks

Backend Tasks have been introduced to provide a good user interaction with In-

spector. They allow for Tests starting, queuing, cancellation and parallel running

while reporting information to the user and avoiding to lock the user interface.

Figure 2.5: The IBackendTask interface related to the surrounding classes.

The IBackendTask does:

• perform the Test.

• inform the user about its activation and progress.

• behave asynchronously.

• feed data models.

It works by accessing the Framework dependent functionality provided by the

Backend, that is available to the Task for its whole activation time.

25

2. Inspector

There is an internal state machine that drives the activation and deactivation

of the tasks and forces a Backend Task to play nice. A Backend Task can request

activation, and it can be granted, refused or delayed. At any time it can receive

the request to interrupt/deactivate the task. When the Backend Task ends, ei-

ther because it wasn’t allowed to start, or it has been canceled, or more likely it

completed its job, it flushes out its data and notifies the Backend it finished.

Figure 2.5 shows how the Tasks interact with their neighborhoods.

26

2.5 Implementation in Qt Creator

2.5 Implementation in Qt Creator

Inspector [6] has been implemented in Qt Creator [9] by Nokia.

At the time of writing the Inspector plugin for Qt Creator is at version 1.3.82,

it implements the Inspector architecture, adds a Qt Backend and some Qt Back-

end Modules that implement some Tests (detailed in chapter 3).

The plugin is made of nearly 11000 lines of code, it has been written in C++

using the Nokia Qt framework [10].

This section focuses on all the implementation details of the design detailed

in section 2.4 and on all the practical things needed to create Inspector.

2.5.1 What is Qt Creator

Qt Creator is a cross-platform C++ integrated development environment which

is made by Qt Development Frameworks a subsidiary of Nokia.

Inspector has been implemented as a Qt Creator plug-in because this IDE

provides many useful features, such as:

• it is written in C++ with the clean Qt libraries.

• runs on Linux, Apple Mac OSX, Microsoft Windows.

• it is open source.

• provides a plug-in framework allowing to add features and modify existing

behaviors easily.

• wraps debugging functionalities in a convenient way.

• already provides ways to load binary code at runtime.

This excellent IDE is available free of charge and under the open source license

agreements so everyone is able to contribute. It is used widely and has a very

vibrant community around: during the eight-months development cycle of the

27

2. Inspector

Inspector plug-in, many other plug-ins were added in the official code base. Qt

Creator is developed in the open in a git software repository on:

http://qt.gitorious.org/qt-creator

2.5.2 Implementing the Inspector plug-in

The Inspector plug-in for Qt Creator realizes the architecture described in sec-

tion 2.4. The realization is straightforward, mapping one class for each of the

design elements outlined above. In addition to that there are some utility classes

used for better integration with Qt Creator, some shared utility classes and some

workarounds for constraints imposed by the present structure of the IDE.

The most relevant implementation constraints that had to be defeated are:

resource locking: given the fact that there are finite amount of resources (e.g.

the debugger that exists in single instance) those must be wrapped and

shielded by a resource borrowing/locking mechanism.

asynchronous communication: since the communication with the Target is

asynchronous no assumptions can be made about its state. This led to the

choice of using asynchronous states machines where appropriate.

gap-less graphical user interface: the user interface must not lock, the oper-

ations could be canceled, and the user should be aware of what is happening

under the hood.

playing nice with other plug-ins: the Inspector plug-in must behave well and

avoid disruptive changes to other plug-ins or to the shared classes and data.

The good citizenship principle poses some constraints to the operation.

The file-system structure

The Inspector plug-in is located in the src/plugins/inspector folder inside the

Qt Creator source code.

28

2.5 Implementation in Qt Creator

Folder Contents

inspector folder for the Inspector plug-in

inspector/{files} Inspector plug-in files

inspector/backend folder for a Backend

inspector/backend/{files} Backend implementation files

inspector/backend/test folder for a Backend Module

inspector/backend/test/{files} Backend Module implementation files

Table 2.1: Contents of the Inspector plug-in folders.

As shown in table 2.1, Inspector implementation files lie in the base plug-in

directory. On each sub-directory lies a Backend implementation along as all the

needed Backend files. Each sub-directory of a Backend folder contains all the files

defining a Backend Module. If some Backend or Backend Modules share some

functionality, that functionality should be placed on the previous level.

The build system follows the same scheme, using a single project file in the

Inspector plug-in folder that includes one project file for each Backend sub-folder.

The Backend file includes all the file to build that Backend and the children Back-

end Modules.

Base file name Class name Description

abstracteasymodel AbstractEasyModel base class for data models

abstractpanel AbstractPanel interface for Backend Panels

dashboardwindow DashboardWindow gui: the Dashboard

ibackend IBackend interface for Backends

ibackendmodule IBackendModule interface for Backend Modules

ibackendtask IBackendTask interface for Backend Tasks

iinspectionmodel IInspectionModel extendable Inspection data model

inspection Inspection describes an Inspection

inspectiontarget InspectionTarget describes a Target

inspectionwindow InspectionWindow gui: the Inspection window

inspectorcontainer InspectorContainer gui: the main window

inspectorplugin InspectorPlugin the entry point

inspectorrunner InspectorRunner integration: run targets

29

2. Inspector

Base file name Class name Description

inspectorstyle InspectorStyle integration: appearance

modulemenuwidget ModuleMenuWidget gui: the side menu widget

panelcontainerwidget PanelContainerWidget gui: a container

plotgrid PlotGrid gui: a charting function

probeinjectingdebugger ProbeInjectingDebugger integration: debugging

runcontrolwatcher RunControlWatcher integration: current runs

shareddebugger SharedDebugger integration: debugging

singletabwidget SingleTabWidget gui: top bar

statusbarwidget StatusBarWidget gui: bottom bar

tasksmodel TasksModel the Tasks data model

tasksscroller TasksScroller gui: display tasks status

Table 2.2: Inspector implementation files and classes.

In table 2.3 there is the list of classes that define the Inspector plug-in.

The relations between the classes have been described in section 2.4, for a

better insight see the publicly available Inspector source code [6].

2.5.3 Implementing the Qt Backend

Inspector is a good tool but it is useless without Backends (see section 2.4.2).

The first Backend that was made is the one for the Qt Framework. Following

the good software principle of “eating your own dogfood”, providing a Qt Backend

allowed to use Inspector to profile Inspector.

Profiling the Qt Framework

The first step for creating the Backend was to analyze the Qt libraries to find out

candidate entry points, possible hooks and static public symbols that Inspector

could take advantage of. Having access to the open Qt sources was really helpful

in this preliminary phase. While there is no public instrumentation support in

Qt, the way the Framework is made allows:

hooks on events dispatching: there is a private callbacks mechanism, defined

in the QInternal class (qobject.cpp) that allows to set callback functions

30

2.5 Implementation in Qt Creator

when running the event loop. Since the event loop is the engine that dis-

patches all the user, network, windowing system, and timing events in a

modern application, having callbacks over that allows to keep the control

of the Target.

hooks on signals/slots: using the QSignalSpyCallbackSet structure (qobject p.h)

and the qt register signal spy callbacks function allow for callbacks

on signal emission and slot activation. Signals/Slots is a language construct

introduced in Qt, which makes it easy to implement the Observer pattern.

This concept has been adopted by other toolkits such as boost signals and

C# events and delegates.

introspection: classes that inherit from QObject are introspectable. This allows

any external watcher to retrieve objects hierarchies, operate on properties

and list and invoke methods on the object. This feature alone allows many

kinds of manipulations on a Target that uses the Qt framework. The soft-

ware metrics outlined in 3 are using the introspection.

use of all the Qt event-based classes: any code Runtime Injected by the Qt

Backend can create instances of all the classes the Target has access to.

That means being able to create or extend Gui/Network/Core components

and to add them to the event loop to take part in event dispatching.

The Qt Backend makes some use of those functionalities on the Target. To

be able to do so, it needs the following:

1. to load object code into the Target

2. a bi-directional communication channel with the Target

Code Injecting Debugger

The first need is addressed by Qt Creator itself. The Debugger plug-in allows

to use the DebuggerManager class that provides debugging facilities on all the

supported operating systems. In particular the GNU GDB debugger and the

Microsoft CDB debuggers are supported. There are two minor problems with the

Debugger plug-in:

1. the user can interfere with the debugger itself (e.g. stopping it by clicking

the stop button while Inspector is using it).

31

2. Inspector

2. there only is one debugger and it may be already in use (by the Inspector

itself or may be busy with some debugging session).

The ProbeInjectingDebugger class solves the first problem by providing the

functionality needed by Inspector while monitoring other possible accesses to the

debugger by third parties. This class allows to load object code (in form of shared

libraries) when starting a new Target or attaching to an existing one, plus it al-

lows to invoke loaded functions by their name.

The SharedDebugger class solves the second problem by hiding the debugger

and offering it as a “resource”, so it can be acquired and released by only one

user at the same time.

Communication with the Qt Target

In the Qt Backend the “communication” from the Backend to the Target is done

by calling functions on the Target. They can be functions provided by the Qt

Framework, or functions provided by the Target (really unlikely, since the Back-

end only knows about the Framework), or provided by the injected Probe.

The communication from the Target to the Backend happens through a local

socket. Both parties are involved to establish the communication, that happens

in this way:

• the Backend starts a server that listens for incoming connections.

• the Probe is injected in the Target.

• the Probe gets the server name (via a function call on the Probe).

• the Probe connects to the server and keeps a synchronous streaming chan-

nel opened.

This sequence of actions introduces some details about the Probe, which will

be described in detail in section 2.5.4.

32

2.5 Implementation in Qt Creator

Qt Backend structure

The Qt Backend is made of two components: the Probe and the Backend itself.

The Backend follows the guidelines outlined in section 2.4.2.

Figure 2.6: The Qt Inspector Backend architecture.

In figure 2.6 there are the main classes that make the Backend. The NokiaQt-

BackendFactory creates a NokiaQtBackend instance when a new Inspection is

started over a Qt Target. The Qt Backend then creates the NokiaQtCommserver

that will handle the incoming communication from the Probe. The NokiaQtIn-

spectionModel class extends InspectionModel by adding some data that can be

used by the Qt Backend Modules. In particular, the extended data is used by

the Info Backend Module to show the status of the Inspection.

Base file name Class name Description

datautils DataUtils data manipulation

nokiaqtcommserver NokiaQtCommserver probe communication

nokiaqtbackend NokiaQtBackend Qt Backend

nokiaqtinspectionmodel NokiaQtInspectionModel extends the data model

Table 2.3: Inspector implementation files and classes.

In the Qt Backend folder there are a number of sub-folders, one for each Qt

Backend Module. At the time of writing, the following modules are present:

Anomaly, Blueprint, Crasher, Events, Heartbeat, Info, Object, Painting.

33

2. Inspector

2.5.4 Implementing the Qt Probe

The Probe is the critical part of the Nokia Qt Backend. It provides the commu-

nication channel with the Target and contains all the object code needed to hook

into the framework (as described in section 2.5.3) and to perform the measure-

ments defined in chapter 3.

The Probe is a small shared library written in C++. It has few public functions

and is forcing the “C” symbols mangling to allow the ProbeInjectingDebugger to

call functions.

When writing the Probe it is necessary to follow some rules to avoid breaking

the Target:

• the symbols must be carefully named to avoid polluting the namespaces

and to avoid clashing symbol names.

• the probe operation should have minimum impact on the target. Functions

must finish quickly.

• the usage of the underlying Framework should be minimum and wise.

• recursion must be taken into account. It can happen that hooks get called

multiple times.

• thread safety must be considered. It can happen that the same hooks get

called at the same time by different threads.

• a test must not interfere with other tests. If this happens, the other tests

should be stopped for the duration of the last test.

In the end you do not want for the Probe to mess up the results since you

are profiling the Target and not the Probe. So high care should be used when

dealing with the Probe.

The Qt Probe is implemented in perfunction.cpp where the following entry

points are defined:

34

2.5 Implementation in Qt Creator

qInspectorActivate(const char *serverName): this function gets called by

the Qt Backend to start probe functionality. The Probe activates all the

hooks and connects to the server, establishing the communication channel.

qInspectorDeactivate(): this function gets called to stop the Probe, close the

communication channel and leave the Target as it was before the injection.

other symbols: there are more symbols present, usually one per Test. An ex-

ample of this is in section 3.2.2.

The Qt Probe, the Qt Backend and the Inspector tool allow us to move to the

next chapter in which we will use those instruments for creating the new, modern

software metrics.

35

Chapter 3

Modern Software Metrics

Contents

3.1 Designing software metrics 38

3.1.1 What metrics are . 38

3.1.2 Common software measurements 39

3.1.3 Requirements for modern software metrics 40

3.1.4 The MSM design process 41

3.2 The Thermal Painting 43

3.2.1 Definition . 44

3.2.2 Implementation in Inspector 45

3.2.3 Examples . 52

A
software metric is a measure of some property of a piece of software. Since

quantitative methods have proved so powerful in the all sciences, com-

puter science practitioners and theoreticians have worked hard to bring similar

approaches to software development.

In this chapter we will analyze why there is a profound need for metrics,

which are the modern requirements and why they are not fulfilled, and develop

new methodologies and some useful and intuitive modern software metrics.

37

3. Modern Software Metrics

3.1 Designing software metrics

This dissertation introduces metrics conceived in new, non-ordinary ways. There-

fore, before analyzing the metrics, there is the need to introduce the design process

itself, in terms of how to think metrics, where to start from, what problem to ad-

dress and how to produce effective metrics.

This usefulness of the design process outlined here has been field tested. The

results that will be presented in the next sections have proven its goodness.

3.1.1 What metrics are

An agreed definition of “software metric” is: a measurement of some property of

a piece of software. The definition is loose but really encapsulates all the concepts

behind the metric:

the measure: the magnitude of a property of an object, relative to an unit of

measurement. A measure can be a number, a scalar field, a vector, any

vectors, a measure can be a color, or the triplet of RGB values associated

to it or anything else.

the property: an attribute of an object, i.e. the characteristic we are measuring.

The property can be a size, a number of elements, the weight of an element,

the time taken by some action to happen, and any other thing that can be

quantified.

the piece of software: this is what we are analyzing, or comparing. This is the

source of the properties we want to measure.

After seeing, in the next section, a brief introduction to the commonly used

software metrics and after seeing that they are inadequate the the present and

complex software world, we will move to analyzing the requisites of the modern

software metrics.

38

3.1 Designing software metrics

3.1.2 Common software measurements

The most used software metrics are:

• bugs per line of code: an a-posteriori measurement of bugs divided by the

lines of code.

• code coverage: the degree to which the source code has been tested.

• cohesion: a measure of how focused the various responsibilities of a software

module are.

• comment density: how many comments there are over the lines of code.

• coupling: the degree to which each program module relies on other modules.

• cyclomatic complexity: measures the number of linearly independent paths

in the source code.

• execution time: the time took for a particular code path to execute.

• function point analysis: an user estimation of the amount of functionality

provided by the software.

• instruction path length: the number of machine instructions required to

execute a particular code path.

• number of classes and interfaces: the number of classes and interfaces in

the source code.

• program load time: the time required to start the program before it gets

usable.

• source lines of code: the number of lines of text in the source code.

While widespread and recognized, those metrics are sometimes naive and sim-

plistic. The values are hard to measure (e.g. in bugs per line of code that requires

foreknowledge), sometimes very subjective (e.g. in function point analysis), some-

times not meaningful (e.g. in comment density).

As explained in section 1.2 nowadays the software is a lot more complex than

when those metrics were introduced, and that is why we are going to introduce

new metrics.

39

3. Modern Software Metrics

3.1.3 Requirements for modern software metrics

Software metrics need to be useful and understandable. They must mean some-

thing to the software analyst.

The measure itself must be more than just a number, its meaning must be

self-evident. The design focus must shift from the process to the user. For a

metric to be useful it must be well understood by the software analyst.

So the modern software metrics must reduce the complexity of the problem

to something easy to understand and compare. The requirements of the modern

software metrics are:

metric intuitiveness: the data gathered must be easy to understand by relat-

ing it to familiar concepts. It must not appear out of the blue, but easily

correlated with existing objects or concepts. The more the metric is intu-

itive, the easier is to understand the meaning that stands behind the data

and take corrective actions if needed.

presentation intuitiveness: the way the data is presented must carefully de-

signed to be as intuitive as possible. A good metric with bad presentation

and analysis tools is worthless since it lacks the tools to express the meaning

of the data. The most effective representation is the one the analyst will

expect when dealing with the data in the real world.

comparable: the data must be comparable in nature, to highlight difference

between two pieces of software or between the same piece of software at

different points in time. The presentation, or visualization, must allow such

comparisons. This seems to be a fairly simple requirement since numbers

can be easily compared, but what must be comparable is the meaning, not

just the numbers themselves.

The common software measurements, introduced in section 3.1.2 are lacking

in regards to the the above requirements. The “comment density” metric, for

example, doesn’t tell whether a value is better than another, or if there is an

optimum value, or how to improve the software, plus it provides no other ways

to visualize the metric than treating it as a number of scarce meaning.

40

3.1 Designing software metrics

3.1.4 The MSM design process

This section outlines the design process to conceive and create the modern soft-

ware metrics introduced in this dissertation. It is a creative process that involves

questioning both the abstract software world and the real world and makes use

of Lateral thinking [11].

Question #1. If you could bring a software piece, something very abstract in

nature, to the outside world, which properties will it exhibit? Can it blend, burn,

melt, turn blue, become bigger, fly away, attract, electrify, spin, emit light or

disappear?

Question #2. What is the meaning of doing some operations to the software?

Can you apply pressure, transpose it into frequency, find out the step response,

measure the temperature (yes, see 3.2), shake it or disassemble it?

Any answer to one of those questions is a candidate for a modern

software metric.

The process can start the other way around too, by focusing on a specific

problem and finding real world properties that you would like to see or tools that

may help you to better expose the problem. The suggestion here is to take the

problem or the question that needs an answer (section 1.2 has plenty of them)

and try to find a real world equivalent to it.

Example of a design process:

• a piece of software feels slow and this needs to be fixed.

• from the preliminary analysis it appears that the slowness happens some-

where in the graphic system.

• however the user interface is really crowded and it is not even possible to

toggle and test the components separately.

• “wouldn’t it be nice if the software told me where the problem lies?”. The

need for a new performance metric arises.

41

3. Modern Software Metrics

• “wouldn’t it be nice if the graphical system told me where the slowness

happens?”. The problem is more circumscribed.

• “could it present it to me as some temperature graph, where red means

slow?”. The visualization is conceived.

• “every software should tell you where the performance is lost, with a temperature-

like graph”. Section 3.2 is conceived.

Using this design process many new software metrics have been conceived.

The next sections will present some of them, their meaning and, where available,

their implementation and the results.

42

3.2 The Thermal Painting

3.2 The Thermal Painting

One of the most recurring questions for the software analyst is “why does my soft-

ware run slow?” or in a positive formulation “what can I do to make it faster?”.

Thermal Painting is answering this question, at least within certain extents.

Software runs on CPUs that provide the computational power, using energy

to perform the needed operations. We can define an optimized program as the

executable that drains the minimum amount of energy for doing what it is sup-

posed to do. In the same manner we can define an optimized source code as the

source code that can produce optimized executables.

The energy metaphor in software is useful because it gives a fundamental

optimization guideline: to make the program good, or faster, you have

to reduce its energy consumption. Bugs drain energy, inefficient algorithms

drain energy, using slower hardware instruction drains energy, but there is an-

other source of energy loss that is “wastes”.

Wastes can be everywhere, both in the software that is being developed or in

underlying software stacks. Examples of wastes include doing the same operation

many times when it is supposed to happen only once (by having unexpected code

paths that execute it), or doing some action faster than needed (like drawing

some area on the screen faster than the screen refresh rate), or avoiding to free

the resources when they are not needed anymore.

One of the major cause of slowdowns in today’s software is the painting subsys-

tem. Hardware acceleration is not yet widespread while the users are demanding

for good looking and animated user interfaces up to the point to base a buying

decision on the performance and appearance of the user interface of the device.

This puts a lot of pressure both on the graphical systems and on the applications

using them.

43

3. Modern Software Metrics

3.2.1 Definition

The Thermal Painting software metric measures the energy needed to paint a

graphical user interface in any configuration, pixel per pixel.

The output of the metric is a scalar two-dimensional matrix. It can be thought

of as a grid, with a number of columns equal to the width of the user interface

in pixels and the number of rows equal to the height of the user interface in pixels.

The scalar values represent, with a constant scaling factor k, the energy needed

by the application to draw the related pixel (that is the user interface pixel asso-

ciated to the row, col of the matrix).

The scalar values can then be mapped to colors, by associating the blue hue

to the minimum value and linearly increasing the hue up to the red, that is as-

sociated to the higher value. This way “color maps” can be generated based on

the scalar values and superposed to the original GUI image to show the “hot and

cold” zones. This software metric was named after this visualization. See figure

3.1 as an example.

Figure 3.1: Color map example with “hot” and “cold” pixels. The different

energy consumption of the pixels is immediately perceived here.

Another way to visualize this metric is to make a two dimensional mesh with

the same physical size of the GUI and with a number of vertices equal to the

number of the items of the matrix and then map the scalar value at row, col to

the z value of the corresponding mesh vertex. In other words, to make a mesh

44

3.2 The Thermal Painting

out of the GUI and warp vertices along their z component by a magnitude pro-

portional to the scalar value.

Figure 3.2: Mesh visualization example. A good presentation for the Thermal

Painting, especially if the user can interact with the mesh in real-

time.

Figure 3.2 shows the three dimensional example, but the results in section 4.2

will show how much this can be extended and how intuitive the data presented

in a navigable three dimensional space is.

The next step is to check whether the given definition of Thermal Painting is

a good definition. The criteria to check the metric have been described in section

3.1.3 and based upon that we can tell that this metric satisfies all the modern

requirements: the measure is intuitive because it is associated to the familiar

concept that is the temperature so that the hot spots take more energy and the

cold take the less, the visualization is intuitive too as either if presented as a

color map or a mesh the analyst expects a similar presentation for a temperature

measurement, and finally the metric allows the comparison. Different softwares

or the same software in different points in time will show a different graph and

just doing a per-point subtraction between the matrices (supposed or the same

size) will tell which one wins and on which screen areas.

3.2.2 Implementation in Inspector

This section turns into practice the Thermal Painting metric described in the

previous section. The metric is implemented as a Backend Module of the In-

45

3. Modern Software Metrics

spector [6] tool, described in chapter 2. There are three components needed: a

custom Backend Module, some custom Probe subroutines and a custom presen-

tation/visualization panel.

Since the Qt Backend is available in Inspector, the first implementation of

Thermal Painting is done for programs that use the Qt Framework. The rest of

this section will refer to some Qt internals, for more information about Qt [10]

see the on-line documentation.

The Backend Module

To add some functionality to the Qt Backend, a Backend Module (described in

section 2.4.3) must be made. We will call this one PaintingModule. The structure

of the extension is presented in figure 3.3.

Figure 3.3: The Painting BackendModule for the Qt Backend. The Thermal-

Panel and the ThermalTask are also presented in this picture.

The entry point of the extension is the PaintingModule, that has the following

relations to the other classes:

1. owns ThermalModel, a model containing all the information about previous

and present Thermal Painting tests. Such information include the start

date, the progress, the completion time estimation, and the actual results

(pictures and meshes) of the measurements.

2. creates ThermalPanel, the visualization component that allows to display

color maps or meshes of all the data in the ThermalModel, interact with

them, and load, save, or delete data. This panel is created when Inspector

needs one and it is connected to the related ThermalModel through the

whole object lifetime.

46

3.2 The Thermal Painting

3. creates ThermalTask, the component that handles all the communication

with the probe, handle the transitions between measure states and store

session parameters while implementing the IBackendTask interface too.

The user has some controls over the measurement parameters since there is

the change to trade off speed for accuracy in this measure. So at the beginning

of a measure, the user selects a preset from the dialog in figure 3.4, or fine tune

the parameters as shown on figure 3.5.

Figure 3.4: Configuring the Thermal Painting measure options: the presets

dialog.

Figure 3.5: The advanced options of the Thermal Painting measure.

After the test has been started, the PaintingModule creates a ThermalTask

that asks the probe to perform a new analysis with the given parameters set.

When the Probe completes the measurement it sends the results back to the

ThermalTask that updates the ThermalModel and signals that it (the task) ended.

When the ThermalModel is updated with the new data the visualization will

show the availability of the data and eventually displays the data. The data on

the ThermalModel is preserved between different of Inspector being read on the

PaintingModule creation and saved prior its disposition.

47

3. Modern Software Metrics

The Probing routine

The Probe (see section 2.3 and 2.5.4) is at the heart of the Qt Backend. Living

within the program, it allows to do any kind of test and manipulation. In this

case it has to do a very precise job: to take the main window of the application

and measure the time took by every pixel to be painted.

The Probe subroutine begins here:

extern "C"

Q_DECL_EXPORT void qPaintingThermalAnalysis(int passes,

int headDrops, int tailDrops, int innerLoops,

int chunkWidth, int chunkHeight, bool consoleDebug)

that is the definition of a function with seven parameters identified by a public

(exported) symbol name, mangled in C style.

The parameters of the function help to understand how the measurement

routine works, so it is better to introduce them first:

passes: this is the number of times the whole window is processed. The higher

the value the higher the number of available samples-per-pixel to mediate

to find an accurate result.

headDrops: this is the number of samples-per-pixel to discard starting from the

highest values. Can help to remove really bad samples due to scheduling or

other disruptive delays.

tailDrops: like headDrops but it starts dropping from the lower values.

innerLoops: this is the number of times the function is called in the innermost

loop, when effectively measure the time taken by a patch. Can be useful

if the measurement time is short compared to the system timer resolution.

In this case, multiplying the measures near the measure point can increase

the signal-to-noise ratio.

chunkWidth: the width of the patch to measure. If the measure happens pixel-

by-pixel both this value and the following will be equal to one.

48

3.2 The Thermal Painting

chunkHeight: the height of the patch to measure.

consoleDebug: a flag that tells the routine to be very verbose and display mes-

sages in the stderr stream output. This flag is only used by developers.

So, being inside the program, we ask the Qt Framework to redraw a specific

patch of 1 square pixels or more and we do this for every pixel, or patch, tessel-

lating the main window of the application. Then all the measures are repeated

passes times and finally some simple statistical methods are applied to drop in-

valid measures per-pixel and find the mean value between the “good” measures.

The Probe code, available within the Inspector sources, does exactly what

described above, having some nested for loops to gather the data and some sta-

tistical functions to clean it up plus it regularly transmits a precisely estimated

progress value and other state-related information to the Inspector via the socket

based communication channel.

When a measure ends, the Probe packs the screen-shot of the window where

the analysis was done along as the two dimensional scalar matrix of the results

and some meta-data into a binary blob that is sent to Inspector for visualization.

The Visualization

The visualization part of the Thermal Painting consists of three different ele-

ments: the panel that can start and control the measurements and shows the list

of the results, the color map visualization and the three dimensional visualization.

The Thermal Painting Panel, as shown in figure 3.6 allows to start a new

Test (see figure 3.5 too) and to browse the previous ones. The presets combo

box contains different presets, from “Fast” to “High Resolution” where the latter

is nearly 2500 times slower than the former, and allows the user to set custom

values too. On the right side there is a list view showing all the measurements

even the ones done previously. On the bottom side there are some controls that

allow to import or export data, remove items from the list and completely clear

the list. By clicking on the view button or by double-clicking on an item on the

list, the test is loaded into the image viewer.

49

3. Modern Software Metrics

Figure 3.6: The main panel of Thermal Painting. On the right side there are

all the data sets.

The Color map visualization, as shown in figure 3.7, just shows the color map

of the selected test. On the top right corner it displays a color bar to indicate

the full range of the colors. The image is colored mapping linearly the blue tone

to the lowest scalar in the result matrix and the red tone to the highest.

Figure 3.7: The color map display for a website. Energy follows the hue:

reddish is hot, meaning high consumption, while blue means low.

The Mesh visualization, as shown in figure 3.8, is really good suited for dis-

playing the results of a Thermal Painting Test. It allows to display one or more

Test results at once. In case of a multiple selection, the surfaces become semi

transparent so it’s easy to understand where they cross and which is the one

wasting more energy per-pixel. Being not limited to a small set of values (like

50

3.2 The Thermal Painting

the hue in color map visualization) this OpenGL based visualization keeps all

the detail of the data so high peaks won’t flatten the rest and the detail is fully

exposed.

Figure 3.8: The (interactive) mesh display for the same website. The mesh

allows a better perception of the magnitude of the energy spent

on each pixel.

On the right side there is the Test Results tree and three buttons. The first

one, named Add Filtered Subsurface creates a child of the selected surface that is

a copy of the janitor but convolved with a Gaussian kernel of the given radius.

This helps a lot in visually reducing the noise on the figure. The other buttons

are used to remove any surface and to set the color of a surface. This option

is useful when comparing Test Results by giving each surface a specific color is

even easier to understand what’s the difference between them. The other options,

in form of check boxes, are just to control the rendering: there is the option to

use the source image as the texture for the mesh, to use bilinear filtering (an

OpenGL interpolation method) on the texture, to show or hide the zero of the

energy, the option to use an alternate color scheme and an option to smooth a

bit the colors (by interpolating the normals of the surfaces). The visualization

pipeline has been build on top of the Vtk [12] toolkit.

The PaintingModule, the Probe routine and the visualizations took nearly

2700 lines of C++ code. Not too much considering that this is a complete im-

plementation of a modern software metric for the Qt Framework and it may be

highly reusable for other frameworks.

51

3. Modern Software Metrics

3.2.3 Examples

The Thermal Painting metric was implemented in Inspector and many Tests were

conducted to prove its accuracy. Here is a side by side comparison of a test pro-

gram in two different screen configurations. The Target program is Fotowall [13],

a canvas for mixing graphical content.

Canvas empty With a transformed picture

1.

2.

3.

Table 3.1: Comparison of the Thermal Painting on two screen configurations.

52

3.2 The Thermal Painting

The simple comparison in table 4.2 features an empty canvas on the left side

and a canvas with a semi transparent and perspective-transformed picture on the

right side. The first row of the table shows the original graphical user interface,

the second shows the color-map from the Thermal Painting test and the third

one shows a screen capture of the mesh view.

The left column shows the data relative to the measurement over the empty

canvas. Here we can see that most of the energy is spent to draw some user

controls while, for example, the background gradient on the canvas seems really

optimized. The other thing that is visible is the “layered” nature of the energy

consumption and this is a direct effect of the user interface being a hierarchy of

rectangles where a child is geometrically bounded to its parent. This is why all

the children of a parent will take the same base energy to be painted, that is the

energy consumed by all the ancestors in the recursive pixel painting process. On

the right column a picture was added to the canvas, its opacity was set to 0.9 and

it was a little perspective transformed. From the pictures we can see that the

perspective painting of the picture itself, and of its surrounding frame, does not

waste much energy. Instead the painting of the perspective transformed text is

really power hungry. In this case we can appreciate the mesh view more than the

color map view, since the mesh view doesn’t compress the details in case of higher

spikes like the color map does. It is more intuitive so more valuable according to

the criteria that were discussed in the previous sections.

The energy consumption on transformed text is really high because it uses

a completely different pipeline for rendering than the case of the untransformed

one, where optimizations such as glyph cache can be applied. Moreover there

is another fact that is exposed, and it is probably due to a clipping bug in the

Framework: while near the text the power consumption drops down to the ex-

pected level, it raises again within the text bounding rectangle. That area should

be really clipped out when dealing with the transformed text, as the closer pixels

are.

53

3. Modern Software Metrics

Canvas empty With a transformed picture

1.

Table 3.2: Noisy data before the Gaussian filter.

Another interesting thing to see is presented on table 3.2. The table shows the

colored mesh view of unfiltered data. After acquiring high resolution data from

the Thermal Painting metric it is possible to filter it with a parametric Gaussian

kernel to visually smooth the noisy data. The discrete noise is produced by the

nature of the measure: it is a measure of time, limited by the resolution of the

system timer and by the interferences of external sources such as kernel timers,

interrupts, and internal latencies such as CPU, cache or memory ones.

Thanks to the Thermal Painting modern software metric everyone has the

tools to analyze the performance of a graphical user interface and spot its software

or framework problems, and knowing where the problem lies is a big step towards

its resolution.

54

Chapter 4

Conclusions

Contents

4.1 Inspector benefits . 55

4.1.1 Open challenges . 56

4.1.2 Social impact . 59

4.2 The Thermal Painting metric 60

4.2.1 Social impact . 61

4.3 Future directions . 63

E
verybody makes programming mistakes, but luckily in software we can

sometimes build the tools to look for them and fix them. This dissertation

introduced the Inspector dynamic software analysis tool (on chapter 2) and the

Thermal Painting modern software metric (on section 3.2) and the design process

for creating such metrics (on section 3.1).

The potential of this new type of software tools is huge and they present an

answer to a concrete and growing demand.

4.1 Inspector benefits

The Qt Creator Inspector plug-in, that is currently at version 1.3.82, is very

concrete and has a solid behavior. The most prominent Inspector features are:

55

4. Conclusions

• offers the complete Thermal Painting software metric.

• offers some other minor metrics and tools, not described here.

• it allows to do a wide range of operations over existing and even already

running programs, without requiring any source or binary modifications.

• it is the ideal software platform for developing modern software metrics.

• it is contributed as open sourced under the LGPL 2.1 license so that every-

one is free to use it an contribute to it.

The dashboard of Inspector, shown in figure 4.1, is very easy to use and allows

to quickly start inspections over new or running Targets and to monitor what is

going on in all the active inspections from a central place.

Figure 4.1: The dashboard of Inspector 1.3.82. This panel allows to start new

Inspections and gives a quick overview over the existing ones.

The Inspection window, shown in figure 4.2, allows to choose an available tool

from the left sidebar and operate with that tool on the right side of the window.

Context sensitive help is provided on the left sidebar and in every moment there

is a scrolling list of the active tasks on the bottom of the window and the possi-

bility to cancel the tasks (if interruptible) too.

4.1.1 Open challenges

While Inspector has just begun showing its potential and works good for the

common use cases, there already are some issues that need to be addressed. While

56

4.1 Inspector benefits

Figure 4.2: A running Inspection with a Thermal Painting measure running.

Notice the good amount of feedback about the operations being

done.

some of them are just simple missing features, some others are real challenges,

like:

multi-threading support: right now the Probe is made with static hooks that

are called at some point in time and may be called by different threads. If

that happens, a per-thread storage model should be used and the measured

data should be grouped and transmitted per-thread. Of course thread-

safety of the shared data will be required at that point while for now it is

not granted. The first component that will be affected by threading issues

is the event loop monitor, partially implemented in the Probe and used by

Inspector, but not mentioned in this dissertation.

more precise timing: tasks such as a Thermal Painting measure need precise

timing information about the real run time (or cpu cycles spent) per-process

or per-thread. Right now Inspector is using the standard POSIX timing

functions, with micro-second accuracy and is improving the information

through statistical means. Various other approaches including the setitimer

and the taskstat LinuxTMkernel accounting interface have been tested but

the results were less precise than with the standard timing interface. To

reduce the jittering due to the kernel scheduling and avoid interferences

from other processes that have to run at the same time some critical timing

function is running, it is possible to set the CPU affinity of a running

executable to a single CPU (so that the task is not transferred between

CPUs), lower the niceness of the Target process (meaning giving it higher

57

4. Conclusions

priority) and if possible schedule the process as runtime. On Linux this can

be accomplished with the schedtool command.

safe probe injection: right now the probe injection happens in a casual point

in time that is near the startup of the program (if the Target is run in

Inspector) or during its execution (if Inspector has attached to the Target

during its execution). However at that time the Target process can be in

any state and it is not guaranteed that calling the probe activation function

will not interfere with the Target or crash it. A solution could be to just

call thread-safe functions when calling the probe activation function and

schedule the more critical operations for later execution, either in a “phase

two” call to the probe or by adding code to be executed by the right event

loop at the right point in time.

allow for dynamic code modifications: Inspector Backends make good use

of the knowledge they have about the Framework they are dealing with, and

this allows to use static public symbols, (un)documented internal hooks, to

integrate with the event loop and a lot of other jobs. However having the

possibility to alter the Target code, placing callbacks dynamically would

allow for even more functions. For example callbacks could be set on the

add and remove functions of the lists (to check for overgrowing lists, an

usual source of problems), or on the send and receive functions of network

sockets. This is a well documented research topic.

standardize the probe communication protocol: right now the Probe is us-

ing a stream protocol to transmit the data to Inspector. The protocol of

the data on the wire has not been standardized and this means that if

somebody wants to implement a new probe-oriented Inspector Backend, he

has to implement the Probe and potentially duplicate lots of the software

stack of another Inspector Backend. However, if the protocol was stan-

dardized, then adding the support for a new Framework could mean to just

rewrite the Probe for that framework while reusing some existing Inspector

software stacks for the data analysis and visualization. An great example

of this could be to add a gtk+ probe that transmits data to Inspector to

perform the Thermal Painting analysis on that Framework too.

58

4.1 Inspector benefits

4.1.2 Social impact

At the time of writing, Inspector has not been public announced and it has only

been shown to a small group of people. However there is a lot of interest for both

the new tool and the metrics that will come with it.

Inspector will allow to compare different softwares from new points of view.

It will allow for example to compare two similar programs for a cellphone and

see which one performs better, or which one drains less energy from the battery.

There are software testing suites and continuous integrations systems that may

include the Inspector tests in their test sets, since this will allow to immediately

spot performance gains or losses in many areas.

The modern software metrics implemented over Inspector could also be used

as a standard for software evaluation or certification. They could be used for

example for certifying that a software is “green”, or that it does not drain power

when idle, or that it does it not crash when given a billion of random stimuli.

59

4. Conclusions

4.2 The Thermal Painting metric

Even if not yet public, the Thermal Painting has already been used to fix perfor-

mance problems in some programs. The most notable example is the Qt Creator

itself where a painting problem in the text editor component, being slower to

paint as far as the line number increased, was identified and fixed.

Other relevant features of the Thermal Painting metric and visualization are

shown in the next figures.

Figure 4.3. Figure 4.4.

Figure 4.5. Figure 4.6.

Figure 4.3 shows a kind of “step” in the corner of the mesh. In the canvas

there is no visible element located in that corner, but hovering the corner with

the mouse it shows a small icon right there. Even if the icon is hidden, the paint-

60

4.2 The Thermal Painting metric

ing functions recurse into that component and this calls take some time. When

filtering the data this step, and other similar steps, becomes evident even if they

last for just some fraction of a microsecond.

In figure 4.4, three semi transparent colored meshes are shown. When more

than a mesh is selected in the mesh view component they are made semi trans-

parent for allowing to visually evaluate the volume of the difference. In this case

the meshes are just displaced but even better visual results can be obtained with

intersecting meshes.

A Thermal Painting measure over the quite complex QtCreator graphical user

interface is shown in figure 4.5. The only difference in profiling a complex graph-

ical user interface than profiling a simple and small interface is that more time is

needed to perform the measure over the complex user interface. This is a direct

consequence of the direct proportionality between the energy consumption of the

graphical user interface and the time needed to perform the operation. However

a future development could be to random sample the user interface at the begin-

ning and auto-tune inner loops for speeding up the process while maintaining a

good precision over the measures.

The last figure, 4.6, shows an anaglyph red-cyan rendering of a Thermal Paint-

ing mesh. This measurement is done over the well known and proprietary Skype

program, to prove that the Thermal Painting metric needs no modifications to

the source code. Other ways for viewing the mesh in 3D are provided, like: red-

blue anaglyph, horizontal interlace, vertical interlace, pure left, pure right, and

checkerboard.

4.2.1 Social impact

The Thermal Painting software metric is expected to have a considerable social

impact. At the time of writing there are tens of thousands of programs writ-

ten against the Qt Framework and a conservative estimation is that at least a

tenth of those can be profiled using this metric. As an additional vehicle, the

open source world, is really permeable to this kind of innovation and there are

hundreds of persons just waiting for tools like Inspector and for metrics like the

61

4. Conclusions

Thermal Painting to show up to optimize their programs.

Given those estimations, there are thousand of programs that can be quickly

profiled and fixed, in addition to the Qt Framework fixes that will allow every-

body using Qt to immediately experience the performance improvements.

Given the world scale of just the open source movement and the fast speed at

which changes propagate nowadays, it is fairly possible that the energy savings

on a world scale will quick be relevant.

62

4.3 Future directions

4.3 Future directions

This was just the beginning of the work in this field. Inspector is a proven tool

that will help developers to profile, compare, and improve their code in new ways.

There will be new Backends added, and the next candidates are the Valgrind

Backend (that allows memory checking and function calls and stack profiling)

and the OpenGL Backend (that with his probe will give access to the OpenGL

state, e.g. textures).

New metrics will be added to the Qt Backend too, and the first ones will be:

the Heartbeat (a way to visually show what a program is really doing while it

seems idle), the Painting Frequency (finding out the screen refresh rate per-pixel)

and a Testing Module that will allow recording user input, sending random input,

and automating the application via scripting.

In the spirit of openness everyone is invited to contribute.

63

Bibliography

[1] Geoff Tennant. Six Sigma : SPC and TQM in Manufacturing and Services.

Ashgate Publishing, 2001.

[2] Wikipedia. Application binary interface.

http://en.wikipedia.org/wiki/application binary interface.

[3] Google Chrome.

http://www.google.com/chrome.

[4] The WebKit Open Source Project.

http://webkit.org.

[5] NVIDIA Parallel Nsight.

http://developer.nvidia.com/object/nexus.html.

[6] Inspector.

http://www.enricoros.com/opensource/inspector.

[7] Valgrind.

http://www.valgrind.org.

[8] Factory Pattern.

http://en.wikipedia.org/wiki/factory pattern.

[9] Qt Creator: Cross-Platform Qt IDE.

http://qt.nokia.com/products/developer-tools.

[10] Qt: A cross-platform application and UI framework.

http://qt.nokia.com.

[11] Edward De Bono. Lateral Thinking - Creativity Step by Step.

Perennial Library, 1970.

65

BIBLIOGRAPHY

[12] Visualization Toolkit.

http://www.vtk.org.

[13] Fotowall.

http://www.enricoros.com/opensource/fotowall.

66

	Abstract
	Dynamic program analysis and motivations for new tools
	Prior art
	Debuggers
	Profilers
	Specialized profilers

	Modern challenges
	Power efficiency
	Code complexity
	Old questions still unanswered

	Inspector and the modern software metrics

	Inspector
	Features
	Definitions
	Principles of operation
	Inspector design
	Software architecture
	Backends
	Backend Modules
	Backend Panels
	Backend Tasks

	Implementation in Qt Creator
	What is Qt Creator
	Implementing the Inspector plug-in
	Implementing the Qt Backend
	Implementing the Qt Probe

	Modern Software Metrics
	Designing software metrics
	What metrics are
	Common software measurements
	Requirements for modern software metrics
	The MSM design process

	The Thermal Painting
	Definition
	Implementation in Inspector
	Examples

	Conclusions
	Inspector benefits
	Open challenges
	Social impact

	The Thermal Painting metric
	Social impact

	Future directions

	Bibliography

