
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Triennale in Ingegneria
Informatica

Continuous Evaluation of Digital

Libraries:

A Software for Automatically

Assessing Performances

Relatore:

Ch.mo Dr. Ing. Ferro Nicola

Laureando:

Bandiera Giuseppe

Padova, 28 Settembre 2012

Anno accademico 2011/2012

Ringraziamenti

Ringrazio i miei parenti più cari: in particolare mia

sorella, mia madre e mio padre per il continuo sostegno

nei miei confronti in questo periodo.

Ringrazio gli amici di Conegliano e di Padova per i

momenti di svago passati assieme.

Infine desidero ringraziare la mepublisher per il rispetto

del mio impegno in questo elaborato.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 Evaluation of Digital Libraries Systems 3

2.1 Information Retrieval Technology . 3

2.2 Actors Involved in Evaluation Campaigns 4

2.3 Stages of an Evaluation Campaign . 5

2.4 The Purpose of the Thesis . 7

2.5 Case Study: Europeana . 7

3 Background 9

3.1 Network Architecture, with a Focus on HTTP 9

3.2 eXtensible Markup Language (XML) . 11

3.3 Java 5 Concurrency: Callable and Future 13

4 Architecture and Functionalities 15

4.1 The Import of Topics . 15

4.2 Launching an Experiment . 15

5 Demonstration of the Functioning 19

6 The Source Code 25

6.1 An Overview . 25

6.2 Main Package . 26

6.2.1 Constructable . 26

iii

CONTENTS

6.2.2 Parsable . 27

6.3 Europeana package . 28

6.3.1 EuroQueryConstructor . 28

6.3.2 EuroXMLParser . 29

6.3.3 IDChanger . 33

6.4 Application Package . 34

6.4.1 Launcher . 34

6.5 Util Package . 42

6.5.1 HTTP . 42

6.5.2 Item . 44

6.5.3 Topic . 45

6.5.4 TopicParser . 46

6.5.5 DoubleHelper . 49

6.6 Extension to Other DLS . 50

6.6.1 Adding Support to Other Application-Layer Network Protocols . 51

6.6.2 Expanding HTTP management class 51

6.6.3 Adding support to other Digital Library Systems 53

7 Conclusions 55

iv

List of Figures

2.1 The logo of Europeana. 7

3.1 An example of XML tree. 13

4.1 Sequence diagram for the import of topics. 16

4.2 Sequence diagram for the launch of an experiment. 16

5.1 The main graphic interface of the program. 20

5.2 The import of topics. 20

5.3 Select the file with topics . 21

5.4 The GUI updated after the import of topics. 21

5.5 Compiling fields. 22

5.6 The experiment is ready to be launched. 22

5.7 The experiment is being taken. 23

5.8 Experiment completed. 23

5.9 The output file. 24

6.1 The organization of the packages. 26

v

LIST OF FIGURES

vi

List of Tables

3.1 The TCP/IP reference model. 9

3.2 Examples of protocols for each layer. 10

3.3 Some HTTP methods. 10

3.4 Some HTTP message headers. 11

3.5 XML node types. 12

5.1 The pattern of the output file. 19

vii

LIST OF TABLES

viii

1

Introduction

Information retrieval is the group of techniques used for selectively recovering elec-

tronic information, guaranteeing access to large corpora of unstructured data. It is the

technology behind Web search engines, being then used by many Web users everyday.

Therefore, Information Retrieval Systems have to effectively and efficiently retrieve in-

formation from large stores of data.

In this context, the need for assessing performances of Information Retrieval Systems

arises.

Several workshop series have then been designed to build the infrastructure necessary

for the large-scale evaluation of information retrieval technology; some examples of

them are TREC and CLEF Initiative.

The purpose of this thesis is to develop a software for optimizing the process of evalu-

ation of an IRS.

The thesis is organized as follows.

Section 1 contains a deepening on the context, with a focus on how a evaluation cam-

paign goes on and on how the software developed during the thesis would help during

its progress.

Section 2 focuses on the background: it contains a deepening on technical aspects that

helped developing the software.

Section 3 presents the architecture and the functionality of the software.

Section 4 contains a presentation of how to use the application, showing the functions

offered to the user.

1

1. INTRODUCTION

Section 5 will then show how to source code is structured and will show how to expand

its functionality.

Finally, Section 6 will present the summary of the work done and the opportunities of

future development on it.

2

2

Evaluation of Digital Libraries

Systems

2.1 Information Retrieval Technology

Information retrieval technology deals with a very familiar problem: finding relevant

information in large stores of electronic documents [1]. It is an old problem, being

faced since the first research conference devoted to this subject held in 1958 [2]. Since

then the problem has continued to grow, as more people gain electronic access to

increasingly information created in electronic form. The advent of the World Wide

Web definitely increased the need for effective retrieval technology. In the last 20 years,

large-scale evaluation campaigns, such as Text REtrieval Conference (TREC)1 in the

United States and the Conference and Labs of the Evaluation Forum (CLEF Initiative,

formerly known as Cross-Language Evaluation Forum)2 in Europe, have conducted

cooperative evaluation efforts involving hundreds of research groups and industries,

producing a huge amount of valuable data to be analyzed, mined and understood

[3]. In particular, the CLEF Initiative has been launched in 2000 with the following

objectives: “to develop and maintain an infrastructure for the testing and evaluation of

information retrieval systems operating on European languages, in both monolingual

and cross-language contexts, and to create test-suites of reusable data that can be

employed by system developers for benchmarking purposes” [4].

1http://trec.nist.gov/
2http://www.clef-initiative.eu/

3

2. EVALUATION OF DIGITAL LIBRARIES SYSTEMS

CLEF has recently organized its 13th edition, in Rome. Over its editions, CLEF has

set its focus on different kinds of text retrieval across languages and different kinds of

media, to encourage the development of next generation multilingual and multimedia

IR systems.

Since 2005, Distributed Information Retrieval Evaluation Campaign Tool (DIRECT)1

has been adopted in the CLEF campaigns: it is a Digital Library System (DLS) for

managing the scientific data produced during an evaluation campaign and it has been

developed with the following goals [5]:

• To be cross-platform and easily deployable to end-users;

• To be as modular as possible, clearly separating the application logic from the

interface logic;

• To be intuitive and capable of providing support for the various user tasks, such

as experiment submission, consultation of metrics and plots about experiment

performances, relevance assessment, and so on;

• To support different types of users, i.e. participants, assessors, organizers, and

visitors, who need to have access to different kinds of features and capabilities;

• To support internationalization and localization: the application needs to be able

to adapt to the language of the user and his country or culturally dependent data,

such as dates and currencies.

Giving DIRECT a new functionality is the purpose of this thesis.

Evaluation campaigns involve huge amounts of participants and are made of several

stages.

2.2 Actors Involved in Evaluation Campaigns

Different types of actors are involved in an evaluation campaign [6]:

• The participant submits his experiments in a forum, that is used also for sharing

and discussing new proposals of algorithms and techniques. His experiments

need to be validated, then the participant can receive measurements about the

1http://direct.dei.unipd.it/

4

2.3 Stages of an Evaluation Campaign

performance of his experiments and overall indicators that allow his experiments

and results to be compared with those submitted by other participants.

• The assessor helps in the creation of the experimental collections by proposing

the topics and assessing the relevance of the documents with respect to those

topics.

• The visitor consults all the information resources produced during the course of

an evaluation campaign.

• The organizer manages several aspects of an evaluation forum: he prepares the

documents that will be used as experimental collections and oversees the creation

of topics and the relevance assessments; he provides the framework that will

be used by participants and computes the different measures for assessing the

performances of the submitted experiments; he also provides the visitors with the

means for accessing all the information resources they are looking for.

These actors interact together in various ways during the course of an evaluation

campaign.

2.3 Stages of an Evaluation Campaign

Evaluation campaigns proceeds through several stages [7]:

• Acquisition and preparation of documents : the organizers acquire and prepare the

set of documents that will be released to participants.

• Creation of topics : the organizers and the assessors cooperate to create the topics

for the test collection. Topics are the information need statements; indeed, they

represent the user requests. Topics are created by inspecting the documents.

• Experiment submission: the participants submit their experiments, which are

built using the documents and the topics created in the previous stages. The

result of each experiment is a list of retrieved documents (in decreasing order

of relevance) for each topic and represents the output of the execution of the

information retrieval system (IRS) developed by the participant. Participants

need an interface for uploading their experiments into the DLS and for describing

them.

5

2. EVALUATION OF DIGITAL LIBRARIES SYSTEMS

• Creation of pools: the organizers, using some appropriate sampling technique,

select a subset of retrieved documents by participants’ experiments to be manually

assessed to determine their actual relevance. Pools consist of this list of documents

selected.

• Relevance assessment : the organizers and the assessors cooperate for determining

whether or not each document in the pool is relevant for the given topic.

• Measures and statistics: the organizers exploit the relevance assessments to com-

pute the performance measures and plots about each experiment submitted by

a participant. These measurements are then employed for conducting statistical

analyses and tests on the submitted experiments.

• Scientific production: organizers and participants prepare reports; the former

provide an overview for the evaluation campaign, the latter explain their exper-

iments and the techniques adopted. The output of this stage may correspond

to theories, models, algorithms, techniques and observations, which are usually

communicated by means of papers, talks and seminars.

DIRECT provides a central platform for participants in order to submit their ex-

periments and for visitors to access the data produced during the evaluation campaign.

This implies the advantage of having a single platform for accessing the history of ten

years of CLEF data.

Since 2011 [5], the Participative Research labOratory for Multimedia and Multilin-

gual Information Systems Evaluation (PROMISE)1 evaluation infrastructure has been

implemented in DIRECT. PROMISE is a Network of Excellence that aims at [15]:

• Managing and providing access to the scientific data produced during evaluation

activities

• Supporting the organization and running of evaluation campaigns

• Increasing automation in the evaluation process

• Providing component-based evaluation

• Fostering the usage of the managed scientific data

1http://www.promise-noe.eu/

6

2.4 The Purpose of the Thesis

Figure 2.1: The logo of Europeana.

An early prototype of PROMISE has firstly been used during the CLEF 2011 campaign.

2.4 The Purpose of the Thesis

The purpose of the thesis is to develop a software for automating the process that

allows participants to conduct experiments and to build their results, so that these

can be stored in DIRECT platform. Actually, indeed, participants have to manually

conduct their experiments: that means they have to manually store the information

about the documents retrieved querying topics through their Information Retrieval

System. The software developed allows to automatically generate the file containing

the results of an experiment, making continuous the process of evaluation. This file

can then be submitted into DIRECT platform.

The component developed will be added in the list of functionality offered by PROMISE

during an evaluation campaign.

2.5 Case Study: Europeana

Europeana1 is a European Digital Library System, co-funded by the European Union,

that provides users direct access to tens of millions of books, films, paintings, mu-

seum objects and archival records that have been digitised throughout Europe. It was

inaugurated on 20 November 2008 by Viviane Reding, European Commissioner for In-

formation Society and Media, in Brussels [16].

1http://www.europeana.eu/

7

2. EVALUATION OF DIGITAL LIBRARIES SYSTEMS

The content on Europeana is cross-domain, but its metadata is mapped to a single data

model - currently Europeana’s Semantic Elements (ESE)1 [17]. This content is made

available to third parts through Europeana API2 (Application Programming Interface)

services.

The software developed for the thesis will use this API to automatically conduct ex-

periments on Europeana Information Retrieval System.

1http://pro.europeana.eu/technical-requirements
2http://pro.europeana.eu/web/guest/api

8

3

Background

3.1 Network Architecture, with a Focus on HTTP

It is useful to organize networks as a stack of layers, each one built upon the one below

it. The purpose of each layer is to offer certain services to the higher layers while shield-

ing those layers from the details of how these offered services are actually implemented

[8]. When layer n on one machine carries on a conversation with layer n on another

machine, the rules and conventions used in this conversation are collectively known as

the layer n protocol. Basically, a protocol is an agreement between the communicating

parties on how communication is to proceed. The most widely used architecture of

network is the TCP/IP Reference Model (after its two primary protocols); it was first

described by Cerf V. and Kahn R. [9] and later refined and defined as a standard in

the Internet Community [10].

The link layer is the lowest layer in the model and it describes what links (such

as Ethernet) must do to meet the needs of this connectionless internet layer. The

internet layer permits host to inject packets into any network and have them travel

Application Layer

Transport Layer

Internet Layer

Link Layer

Table 3.1: The TCP/IP reference model.

9

3. BACKGROUND

Application Layer HTTP, SMTP, RTP, DNS

Transport Layer TCP, UDP

Internet Layer IP, ICMP

Link Layer DLS, SONET, 802.11, ETHERNET

Table 3.2: Examples of protocols for each layer.

Method Description

GET Read a Web page

HEAD Read a Web page’s header

PUT Store a Web page

DELETE Remove a Web page

CONNECT Connect through a proxy

Table 3.3: Some HTTP methods.

independently to the destination. The transport layer is designed to allowed peer

entities on the source and destination hosts to carry on a conversation. The application

layer contains all the higher-level protocols.

As you see in Table 3.2, HTTP (HyperText Transfer Protocol) is a protocol of the

application layer. It is a simple request-response protocols that usually runs over TCP

and is closely associated with the Web. The protocol specifies the types of messages

clients can send to servers and what responses they get back in return; the contents of

requests and responses are given in a MIME-like format. Since version 1.1 [11], HTTP

has supported persistent connections: with them, it is possible to establish a TCP

connection, send a request and get a response, and then send additional requests and

get additional responses. This is very useful when you get a Web page that incorporates

large numbers of embedded links, for content such as icons. HTTP supports methods

other than just requesting a Web page, as shown in Table 3.3. The request line can

be followed by additional lines, which form the request header (the same may happen

with the response; in that case additional lines would form the response header).

Some examples of MIME (Multipurpose Internet Mail Extensions) types are tex-

t/html, application/xml, application/json, image/png.

In add to this, HTTP has built-in support to caching, that allows the user to

reuse a page (if cached) without repeating the transfer; this can slightly improve the

10

3.2 eXtensible Markup Language (XML)

Header Type Contents

User-Agent Request Information about the browser and its platform

Accept Request The type of pages the client can handle

Content-Length Response The page’s length in bytes

Content-Type Response The page’s MIME type

Date Both Date and time the message was sent

Table 3.4: Some HTTP message headers.

performance by reducing both network traffic and latency.

3.2 eXtensible Markup Language (XML)

XML is a markup language for specifying structured content. Its use is strictly con-

nected to the need for separating structured content from its presentation. Unlike

HTML, there are no defined tags for XML: each user can define and define his own

tags. The first proof of XML was produced on November 1996; on February 1998 XML

1.0 became a standard of W3C [19] and on February 2004 even XML 1.1 became a

standard of W3C [12]. Since XML 1.1 is not fully compatible with XML 1.0, many

users have continued using revised editions of XML 1.0 [18]. The latest edition of XML

1.0 it’s the fifth one [20].

Rather then being a single language, XML should be considered a common notation

which permits to build markup languages [18]. On its definition, there is nothing

concerning the semantics of tags. XML is also platform-independent and all of its doc-

uments are written with Unicode.

Conceptually, XML documents form a tree structure that starts at ”the root” and

branches to ”the leaves”. The root node, the beginning node of every XML tree, repre-

sents the entire document. Every arch of the figure represents a child relationship. An

element can have many or no children; the leaves correspond to those elements with no

children.

Every node must belong to one of the categories showed on Table 3.5.

The Figure 3.1 shows an example of XML tree.

Element nodes are specified by opening and closing tags; the text between the tags

is the content of the element and may consist to the children of the node. Opening and

11

3. BACKGROUND

Node Type Description Children

Document Represents the entire docu-

ment (the root-node of the

tree)

Element (one at most),

DocumentType, Processin-

gInstruction, Comment

DocumentFragment Represents a Document ob-

ject, which can hold a portion

of a document

CDATASection, Element,

ProcessingInstruction, Com-

ment, Text, EntityReference

DocumentType Provides an interface to the

entities defined for the docu-

ment

None

ProcessingInstruction Represents a processing in-

struction

None

EntityReference Represents an entity reference Element, ProcessingIn-

struction, Comment, Text,

CDATASection, EntityRefer-

ence

Element Represents an element Element, Text, Comment,

ProcessingInstruction,

CDATASection, EntityRefer-

ence

Attr Represents an attribute Text, EntityReference

Text Represents textual content in

an element or attribute

None

CDATASection Represents a CDATA section

in a document (text that will

NOT be parsed by a parser)

None

Comment Represents a comment None

Entity Represents an entity Element, ProcessingIn-

struction, Comment, Text,

CDATASection, EntityRefer-

ence

Notation Represents a notation de-

clared in the DTD

None

Table 3.5: XML node types.

12

3.3 Java 5 Concurrency: Callable and Future

Figure 3.1: An example of XML tree.

closing tags must correspond.

An XML document usually starts with

<?xml version = "1.0" encoding="UTF-8"?>

Generally, XML languages are classifiable in four groups:

• Data-Oriented Languages: used for describing information, that usually is stored

on databases. XML documents belonging to this group have generally a tree

structure not deep.

• Document-Oriented Languages: text documents containing some tags for describ-

ing their structure. XHTML is a language belonging to this category.

• Protocols and programming languages: complex structures. XMLSchema, XSLT

and WSDL belong to this group.

• Hybrid languages: a hybrid between the previous languages; in particular, it is

common to find hybrid languages between Data-Oriented and Document-Oriented

ones.

3.3 Java 5 Concurrency: Callable and Future

Concurrency is the ability to run several parts of a program in parallel. Till Java 1.4,

the only way to obtain it was by implementing the Runnable interface or extending the

class Thread. The problem is that they provide a simple method run() that cannot

13

3. BACKGROUND

return values, neither it can throw exceptions. Java 2 Platform Standard Edition

(J2SE) 5.0 introduced the Callable1 interface [13, 14], that allows user to return values

from a thread. Its only method

V call() throws Exception

computes a results (as an instance of V), or throws an exception if unable to do so. You

cannot pass a Callable into a Thread to execute: you have to use the ExecutorService2

to execute the Callable object, through the submit(Callable c) method:

ExecutorService pool = Executors.newFixedThreadPool(NUMBER_OF_TASKS_VALUE);

Future<V> future = executor.submit(Callable<V> task);

In this example, a Fixed Thread Pool is created, but there several others implementa-

tions of Executor service:

• Single Thread Executor: a thread pool with only one thread, so that all submitted

tasks will be executed sequentially

• Cached Thread Pool: a thread pool that creates as many threads it needs to

execute the task in parallel

• Fixed Thread Pool: a thread pool with a fixed number of threads

• Scheduled Thread Pool: a thread pool made to schedule future tasks

• Single Thread Scheduled Pool: a thread pool with only one thread to schedule

future tasks

As the last line of the example shows, submitting a Callable object to the ExecutorSer-

vice returns a Future object. Finally use the get() method of Future to retrieved the

value of the result, as it follows:

V tmp = future.get();

Using get() will block the computation if the result hasn’t been computed yet. Finally,

you can close the executor calling the shutdown() method: the executor will not shut

down immediately; instead, it will no longer accept new tasks and once all the threads

have finished current tasks, the executor will shut down.

1Callable is available in the package java.util.concurrent
2ExecutorService is available in the package java.util.concurrent

14

4

Architecture and Functionalities

The software allows the user to import a list of topics from a file, to choose the path

and the name of the file where the results of the experiment will be stored, and to select

the system to query and the protocol to use, and finally to launch the experiment itself.

The flow of the program is controlled by its main class, Launcher.

4.1 The Import of Topics

This sequence involves three classes: Launcher, TopicParser and Topic. The flow of this

sequence starts with Launcher passing to TopicParser the file containing the topics.

This file has already been selected by the user. Then, TopicParser starts parsing the

file: for each topic found there, it initializes a new Topic object and saves it on a list

of Topic. Once the parsing is finished, this list is returned to the Launcher, which will

query these topics on the DLS.

4.2 Launching an Experiment

This process involves several stages: for each topic of the list, the launcher first ob-

tains the string to be queried structured in a form consistent to the one used by the

search engine; then, it makes an HTTP (or through other protocols, once developed

an opportune management class1) request to the DLS, that returns all the results of

the query to the launcher. These results must be interpreted through a parser to be

correctly stored. Finally the launcher writes the list of results on the output file. This

1See paragraph 6.6.1

15

4. ARCHITECTURE AND FUNCTIONALITIES

Figure 4.1: Sequence diagram for the import of topics.

Figure 4.2: Sequence diagram for the launch of an experiment.

16

4.2 Launching an Experiment

process is followed for each topic. Parsable and Constructable are abstract classes, and

they must be extended by specific classes for each DLS1.

1See paragraph 6.2

17

4. ARCHITECTURE AND FUNCTIONALITIES

18

5

Demonstration of the

Functioning

To import topics, the user needs to import topics, by clicking on “File” and then

“Import topics”.

Clicking on “Import Topics” will launch a File Chooser. Once chosen the file con-

taining topics1, the graphic user interface will be updated; user can then compile the

fields regarding the output file that will be created.

The user then chooses the system to query and the protocol to use for obtaining

responses from that system, so he can finally launch the experiment by pressing “Start

Experiment!”.

After pressing the button for starting the experiment you might have to wait some

seconds in order to let the experiment finishing its execution: indeed, all the topics of

the file imported are being queried to the DLS, and the results of the query of each

topic is being written on the output file.

1See paragraph 5.5.4 to see what type of files is correctly loaded by the program

Topic ID Q0 Link of the

result

Rank of the

result

Score of the

result

Name of the

experiment

Table 5.1: The pattern of the output file.

19

5. DEMONSTRATION OF THE FUNCTIONING

Figure 5.1: The main graphic interface of the program.

Figure 5.2: The import of topics.

20

Figure 5.3: Select the file with topics

Figure 5.4: The GUI updated after the import of topics.

21

5. DEMONSTRATION OF THE FUNCTIONING

Figure 5.5: Compiling fields.

Figure 5.6: The experiment is ready to be launched.

22

Figure 5.7: The experiment is being taken.

Figure 5.8: Experiment completed.

23

5. DEMONSTRATION OF THE FUNCTIONING

Figure 5.9: The output file.

24

6

The Source Code

6.1 An Overview

The code of the software is structured to give to future developers the possibility of

easily expanding the functionalities of the program. The design of packages reflects

this choice.

For now, the program can just use the Europeana search system and obtain responses

from the DLS through HTTP.

The package it.unipd.dei.ims.direct.ce.application contains only a class, the Launcher,

that manages the behavior of the software. The package it.unipd.dei.ims.direct.ce.util

contains classes that are independent from digital libraries: this is where network proto-

col management classes and support ones are stored. The package it.unipd.dei.ims.direct.ce

contains those abstract classes that will be extended by the most relevant classes of the

digital libraries packages: indeed the main differences between the queries to different

digital libraries involve the parsing of the results and the search form of the string that is

about to be queried; these abstract classes have been developed to give the launcher an

unrelieved structure, independent from the digital library chosen. Finally, the package

it.unipd.dei.ims.direct.ce.europeana contains classes developed according to Europeana

rules: here we can find an XML parser interpreting the page containing the results of a

query, the EuroQueryConstructor class (that provides a method that returns a string

in the search form of Europeana search engine), and some secondary classes which will

be explained afterwards. There is also the package it.unipd.dei.ims.direct.guielements :

indeed the launcher provides a basic GUI for simplifying the work for the user, and this

25

6. THE SOURCE CODE

Figure 6.1: The organization of the packages.

package store some dialogs that can appear during the execution of the software.

6.2 Main Package

This package contains the following classes:

• Constructable.java

• Parsable.java

6.2.1 Constructable

This abstract class must be extended by all those classes intended to have a query

constructor functionality. Indeed, the method construct(Topic topic) should be used

to get the string that is about to be queried in a form consistent with the search form

of the search engine of digital library. Use the API of the digital library system for

overriding this method in the more corrected way for it.

26

6.2 Main Package

/**

* Abstract class that will be extended by all those class intended to have a

query constructor functionality

* @author Giuseppe Bandiera

*/

public abstract class Constructable {

/**

* @param topic The topic from which you wish to obtain the query

* @return The string that is about to be queried, according to the

APIs of the search engine

*/

public abstract String construct(Topic topic);

}

6.2.2 Parsable

This class must be extended by all those classes that have a parsing functionality. The

parameter of the method parse(String content) is, indeed, a string: then, the collecting

of results pages must return (or must be converted to) a string, or a collection of it. For

example, the HTTP.getEntities(String query) returns a list of strings, that will then

be parsed singularly. Parsable provides two further methods: one returns the number

of results, the other returns the list of results themselves. It is then implied that every

class that extends Parsable should store these variables.

/**

* Abstract class that will be extended by all those class intended to have a

parsing functionality (i.e. XML parser, JSON parser...)

* @author Giuseppe Bandiera

*/

public abstract class Parsable {

/**

* Parses the document

* @param content

*/

27

6. THE SOURCE CODE

public abstract void parse(String content);

/**

* Returns the count of results found

* @return The count of results found

*/

public abstract int returnCount();

/**

* Returns the list of results

* @return The list of results

*/

public abstract LinkedList<Item> returnList();

}

6.3 Europeana package

This package contains the following classes:

• EuroQueryConstructor.java

• EuroXMLParser.java

• IDChanger.java

6.3.1 EuroQueryConstructor

Extends it.unipd.dei.ims.direct.ce.Constructable. It allows to construct the string to

be queried in a form consistent with the search form indicated on the Europeana

OpenSearch API1. The only method :

@Override

public String construct(Topic topic)

{

String result = "";

String title = topic.getTitle();

1Available at http://europeanalabs.eu/wiki/EuropeanaOpenSearchAPI

28

6.3 Europeana package

StringTokenizer sTitle = new StringTokenizer(title, " ");

while (sTitle.hasMoreTokens())

{

result += sTitle.nextToken() + "+AND+";

}

// remove the last ’+AND+’

result = result.substring(0, result.length() - 5);

// remove ’,’

result = result.replace(",", "");

return result;

}

It was taken the decision to construct the query using only the title of the topic, in order

to obtain more pertinent results. The tokens on the title are separated by ‘+AND+’,

as suggested on the API.

6.3.2 EuroXMLParser

Extends it.unipd.dei.ims.direct.ce.Parsable. It allows to parse an europeana results

page, that follows this schema:

<item>

<guid></guid>

<other tags here, not relevant for software aims>

</item>

where item is a single result of the query, and guid is the tag indicating the link to

that result. The partial source code:

/**

* The parser of the xml pages, where query results are stored

* @author Giuseppe Bandiera

*/

public class EuroXMLParser extends Parsable {

29

6. THE SOURCE CODE

int countItem = 0;

LinkedList<Item> itemList = new LinkedList<Item>();

@Override

public void parse(String content)

{

InputStream inputStream = new

ByteArrayInputStream(content.getBytes());

XMLInputFactory inputFactory=XMLInputFactory.newInstance();

XMLStreamReader streamReader = null;

try {

streamReader =

inputFactory.createXMLStreamReader(inputStream);

} catch (XMLStreamException e) {

e.printStackTrace();

}

try {

while(streamReader.hasNext() && countItem < 1000){

streamReader.next();

if(streamReader.getEventType() ==

XMLStreamReader.START_ELEMENT){

String elementName = streamReader.getLocalName();

if("item".equals(elementName)){

// ’item’ is the tag for each results

// collect link and rank of the item

Item item = parseItem(streamReader, countItem);

// then add the item to the list of results

itemList.add(item); countItem++;

}

}

}

} catch (XMLStreamException e) {

e.printStackTrace();

}

30

6.3 Europeana package

//close the streams

try {

streamReader.close();

} catch (XMLStreamException e) {

e.printStackTrace();

}

try {

inputStream.close();

} catch (IOException e) {

e.printStackTrace();

}

}

/**

* Method that stores the appropriate properties (link and rank) of the item

* @param xml

* @param rank

* @return The item itself

* @throws XMLStreamException

*/

public Item parseItem(XMLStreamReader xml, int rank) throwsXMLStreamException

{

Item item = new Item();

item.setRank(rank);

while(xml.hasNext()){

xml.next();

if(xml.getEventType() == XMLStreamReader.END_ELEMENT)

{

String elementName =

xml.getLocalName();

if("item".equals(elementName)){

break;

}

}

else if(xml.getEventType() == XMLStreamReader.START_ELEMENT){

String elementName = xml.getLocalName();

switch (elementName){

31

6. THE SOURCE CODE

case "guid":

{

String link = xml.getElementText();

// change the link

String id = IDChanger.toID(link);

item.setId(id);

break;

}

}

}

}

These two methods basically work as the parse() and parseTopic() in

it.unipd.dei.ims.direct.ce.uti.TopicParser . The main differences are the element tags

together with the storing collection, that here is a LinkedList of Items (instead of a

Topics’ one). Note that the link stored for each item isn’t the one found under “guid”

tag, but this is changed through a static method of the class IDChanger (that will

be described in the next paragraph). EuroXMLParser provides two further accessory

methods:

@Override

public int returnCount()

{

return countItem;

}

@Override

public LinkedList<Item> returnList()

{

return itemList;

}

that allow to access to results and to their count.

32

6.3 Europeana package

6.3.3 IDChanger

Class that provides a static method for changing the structure of the link to the one

used during CLEF evaluation campaign. For example, the link

http://www.europeana.eu/portal/record/

08604/3998043176120F8071C26EDF2565D10E27B7BA33.html

will be changed to:

http://www.europeana.eu/resolve/record/

08604/3998043176120F8071C26EDF2565D10E27B7BA33

The source code of the method is shown below.

/**

* Changes the structure of the link

* @param s

* @return The link structured in the form used during CLEF campaigns

*/

public static String toID(String s)

{

{

String result = "";

StringTokenizer st = new StringTokenizer(s, "/.");

while (st.hasMoreTokens())

{

String tmp = st.nextToken();

switch (tmp)

{

case "portal":

result += "/resolve/";

break;

case "http:":

result += tmp+"//";

break;

case "html":

33

6. THE SOURCE CODE

break;

case "www":

result += tmp +".";

break;

case "europeana":

result += tmp +".";

break;

case "record":

result += tmp;

break;

case "eu":

result += tmp;

break;

default:

result += "/" + tmp;

break;

}

}

return result;

}

}

6.4 Application Package

This package contains only the class Launcher.java.

6.4.1 Launcher

This class is the core of the software: it mainly defers to:

34

6.4 Application Package

• Import the topics to query

• Select the digital library to be queried, choosing an appropriate protocol

• Start a new experiment and save its results

It also provides a basic GUI for simplifying the work to the user.

Once the user clicks on Import Topics (as shown on chapter 5) the program launches

a new File Chooser (through the method selectTextFile()); this will return a file that

will then be parsed through the TopicParser :

class importAction implements ActionListener {

public void actionPerformed(ActionEvent e) {

imported = selectTextFile();

TopicParser tp = null;

try

{

tp = new TopicParser(imported);

topicCount = tp.returnCount();

if (topicCount == 0) {

noTopicsAlert dialog = new noTopicsAlert();

dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

dialog.setVisible(true);

}

topicList = tp.returnList();

final Iterator<Topic> iterTopic = topicList.iterator();

//filling the text area with the content of the topics

String content = topicCount + " topics found!" + "\n\n";

while (iterTopic.hasNext()) {

Topic topic = iterTopic.next();

content += topic.toString();

}

txtArea.setText(content);

}

catch (NullPointerException ex)

{

//do nothing; the user will be warned of

35

6. THE SOURCE CODE

undesirable behaviour through the dialog

}

}

}

The content of topics is added to the left side of the GUI through the line

txtArea.setText(content)

imported, topicList and topicCount are class variables:

public class Launcher {

private static File imported;

private static LinkedList<Topic> topicList;

private static int topicCount;

[...]

The selectTextFile() method:

/**

* Method invoked when "Import Topics" is clicked

* @return The file selected

*/

public static File selectTextFile() {

final JFileChooser chooser = new JFileChooser();

//creating an opportune filter

FileNameExtensionFilter filter =

new FileNameExtensionFilter("text files", "xml");

chooser.setFileFilter(filter);

int returnVal = chooser.showOpenDialog(null);

if (returnVal == JFileChooser.APPROVE_OPTION) {

return chooser.getSelectedFile();

}

36

6.4 Application Package

else return null;

}

Note that, according to how this method works, it is required for topics to be stored

in .xml files. Each topic retrieved by the parsing of the document is saved as an object

of the class Topic.java and added to the LinkedList of Topics topicList. The parsing

itself is made through the methods of the class TopicParser.java. More on these classes

will be explained afterwards. In order to start the experiment, the user must select the

name of it and the path of its save; the name of the experiment will be reported under

each line of the output file. The relevant source code concerning the act of saving the

results on the output file is shown below.

/**

* Method that writes the results of each topic on the output file

* @param toWrite The string to be written

*/

public static void writeToFile(String toWrite) {

PrintWriter prf = null;

try {

prf = new PrintWriter(new FileWriter(experimentFile,true));

prf.println(toWrite);

prf.flush();

}

catch (IOException e) {

e.printStackTrace();

}

finally {

if (prf != null){

prf.close();

}

}

}

37

6. THE SOURCE CODE

The class Launcher stores also the informations about the Digital Library and the

protocol chosen1. Anyway, the core of the class is the method launchExp() : this

method allows the user to create fifty Futures (fifty is the estimated number of topics

stored in the file imported), each:

• establishing a connection through the required protocol

• collecting the responses obtained through that connection

• parsing these responses in order to store the results of the query

Finally the results are written on the output file. The code of this method is shown

below.

/**

* Method that queries the topics to the digital library system

*/

public static void launchExp(){

final Iterator<Topic> iterTopic = topicList.iterator();

ExecutorService executor = new ScheduledThreadPoolExecutor(THREADS);

List<Future<String>> list = new ArrayList<Future<String>>();

operationInProgressDialog dialog = new operationInProgressDialog();

dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

dialog.setVisible(true);

while (iterTopic.hasNext()) {

final Topic topic = iterTopic.next();

Future<String> future = executor.submit(new Callable<String>(){

@Override

public String call() throws Exception {

Parsable parser = null;

Constructable constructor = null;

if (type.equals("europeana")){

parser = new EuroXMLParser();

constructor = new EuroQueryConstructor();

1For more details about how to add more functionalities see paragraph 6.6

38

6.4 Application Package

}

// otherwise match other types (once developed) here

String result = ""; //string that will be printed on the output file

String constructed = constructor.construct(topic);

LinkedList<String> contentList = null;

if (protocol.equals("http"))

contentList = HTTP.getEntities(constructed);

// otherwise match other protocols (once developed) here

Iterator<String> iterContent = contentList.iterator();

while (iterContent.hasNext()) {

// removing non utf-8 characters

String content = iterContent.next().

replaceAll("[^\\x20-\\x7e]", "");

parser.parse(content);

}

//difference that will be subtracted to each score, so that range

score will be 0.001 - 1

double difference = DoubleHelper.getDifference(parser.returnCount());

LinkedList<Item> itemList = parser.returnList();

Iterator<Item> it = itemList.iterator();

double score = 1;

while (it.hasNext()) {

Item item = it.next();

// setting score manually, because europeana doesn’t return the score of a result.

if (type.equals("europeana")){

item.setScore(DoubleHelper.roundUp(score, 4));

score -= difference;

result += topic.getID() + " Q0 " + item + " " + experiment + "\n";

}

return result;

}

39

6. THE SOURCE CODE

});

list.add(future);

}

executor.shutdown();

for (Future<String> fut : list)

try {

writeToFile(fut.get());

}

catch (InterruptedException | ExecutionException e) {

e.printStackTrace();

}

dialog.setVisible(false);

operationCompleteDialog dialog2 = new operationCompleteDialog();

dialog2.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

dialog2.setVisible(true);

dialog2.setAlwaysOnTop(true);

}

A new Future is associated to each topic of the LinkedList. The abstract classes Parsable

and Constructable allow to create abstract objects that can then be initialized to the

appropriate objects, according to the value of string type. The HTTP class provides

the static method getEntities(String s): this returns a LinkedList of Strings, each

storing a page of results. For each string that belongs to this LinkedList, the method

launchExp() first removes the non-UTF8 characters, and then parse the content of the

String through EuroXMLParser.parse(String s) method. This method returns a linked

list of Item, one per result: each Item is then added to the String result together with

other fixed elements, so that every row of result will follow the schema shown on Table

5.1. Once iterated the LinkedList of the Topics, the Futures are executed; each of them

returns the results (as a String) of the query of a single topic. These results are then

written in the output file, through the method writeToFile(String s) described before.

The launchExp() is actually called once the button “Start experiment” is clicked; before

40

6.4 Application Package

calling it the program creates the output file, here’s the concerning code:

class startExpAction implements ActionListener {

public void actionPerformed(ActionEvent e) {

if (expField.getText().equals("") || pathField.getText().equals(""))

//can’t start the experiment if there’s no output file...

{

compileFieldsAlert dialog = new compileFieldsAlert();

dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

dialog.setVisible(true);

}

else if (topicCount == 0) //...or no topics imported

{

noTopicsAlert dialog = new noTopicsAlert();

dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

dialog.setVisible(true);

}

else {

experiment = expField.getText();

path = pathField.getText();

// create new dirs if necessary

File tmp = new File(path);

if (tmp.exists() == false)

tmp.mkdirs();

// create the file of the experiment

experimentFile = new File(path + "\\" + experiment + ".txt");

if (experimentFile.exists() == false)

try {

experimentFile.createNewFile();

}

catch (IOException e1) {

e1.printStackTrace();

}

41

6. THE SOURCE CODE

//finally launch the experiment

launchExp();

}

}

}

6.5 Util Package

This package contains the following classes:

• HTTP.java

• Topic.java

• TopicParser.java

• Item.java

• DoubleHelper.java

6.5.1 HTTP

This class manages a single HTTP connection; indeed, it collects (under a linked list

of Strings) the several responses to a query, each per page. To handle the HTTP

connection, the class uses the Apache HTTP Client library1. The class HTTP contains

only a static method:

/**

* A method for getting the content of http entities

* @param query The string representing the query

* @return A linked list of http entities’ content, each stored in a string

* @throws IOException

*/

public static LinkedList<String> getEntities(String query) throws IOException {

String type = Launcher.type;

LinkedList<String> contentList = new LinkedList<String>();

1Available at http://hc.apache.org/httpcomponents-client-ga/index.html

42

6.5 Util Package

HttpClient httpclient = new DefaultHttpClient();

boolean morePages = true;

int page = 1;

while (morePages)

{

String get = null;

if (type == "europeana")

get = "http://api.europeana.eu/api

/opensearch.rss?searchTerms="+query+

"&wskey=APIkey&startPage="+page;

// other types here; if the results are hosted

on a only page, scan it and then set morePages to false

HttpGet httpget = new HttpGet(get);

HttpResponse response = httpclient.execute(httpget);

HttpEntity entity = response.getEntity();

// since I must get 1000 results at the most,

it’s useless to require more than 84

pages (there are 12 results per page)

if(entity.getContentLength() == -1 &&

page < 85 && type == "europeana")

{

// the europeana page contains results

contentList.add(EntityUtils.toString(entity));

// close the reading of the entity

EntityUtils.consume(entity);

page++;

}

else morePages = false;

}

return contentList;

}

43

6. THE SOURCE CODE

This class reads the value of String Launcher.type, and consequently queries the oppor-

tune digital library database. The HTTP request is put inside a while cycle, so that it

is possible to handle the response of those digital libraries that store the results on more

than a page. In regards to the second IF statement: it has empirically been noticed that

if an Europeana page contains results, the http.HttpEntity.getContentLength() method

applied to its entity returns -1, otherwise it returns a random positive integer value;

in add to this, the method will scan only the first 84 pages of results, because Eu-

ropeana stores 12 results per page and the purpose of the software is to collect 1000

results per query at maximum; then, scanning more than 84 pages would be useless.

If a page contains results, its content is converted to a String through the method

http.util.EntityUtils.toString(HttpEntity entity) and then this String is added to the

LinkedList of Strings that will finally be returned to the calling method.

6.5.2 Item

This class represents a single result of a query.

/**

* Class representing a single result of the query

* @author Giuseppe Bandiera

*/

public class Item {

private int rank;

private String ID;

private double score;

/**

* Sets the rank of the result

* @param i The desired rank

*/

public void setRank(int i)

{

rank = i;

}

44

6.5 Util Package

/**

* Sets the ID of the result

* @param s The desired ID

*/

public void setId(String s)

{

ID = s;

}

/**

* Sets the score of the result

* @param d The desired score

*/

public void setScore(double d)

{

score = d;

}

/**

* Prints the result

*/

public String toString()

{

return ID + " " + rank + " " + score;

}

}

The method toString() is defined so that every item will be printed in the desired way

on the output file.

6.5.3 Topic

This class represents a single topic. It has the fields ID, title and description, and

methods for setting and getting those fields. The method toString() was optional and

done just for having a correct visualization in the GUI of the topics stored in the file

imported.

45

6. THE SOURCE CODE

6.5.4 TopicParser

This class reads an XML file and parses it, collecting topics found on the file. The file

must follow this pattern to be correctly parsed:

<topic>

<identifier></identifier>

<title></title>

<description></description>

</topic>

That file is stored as a variable of the class:

/**

* Reads an XML file, collecting topics stored onto it

* @author Giuseppe Bandiera

*/

public class TopicParser {

File file;

LinkedList<Topic> topicList;

int countTopic = 0;

public TopicParser(File f)

{

file = f;

try

{

parse();

}

catch (ParserConfigurationException | SAXException | IOException | XMLStreamException e)

{

//do nothing

}

}

[...]

46

6.5 Util Package

If an exception is caught, code will impose to do nothing, since the GUI will avoid

undesirable behavior of the program; indeed, only xml files can be parsed (thanks to

the filter applied to the file chooser, in the Launcher.selectTextFile() method). The

source code of parse() :

/**

* Parses the XML document; collects the topics found into the

LinkedList<Topic> topicList

* @throws ParserConfigurationException

* @throws SAXException

* @throws IOException

* @throws XMLStreamException

*/

private void parse() throws ParserConfigurationException, SAXException,

{

topicList = new LinkedList<Topic>();

XMLInputFactory factory = XMLInputFactory.newInstance();

XMLStreamReader streamReader = factory.

createXMLStreamReader(new FileReader(file));

while(streamReader.hasNext()){

streamReader.next();

if(streamReader.getEventType() == XMLStreamReader.START_ELEMENT){

String elementName = streamReader.getLocalName();

if("topic".equals(elementName)){

Topic topic = parseTopic(streamReader);

topicList.add(topic);

countTopic++;

}

}

}

}

The library javax.xml.* is used here to create the XML Stream Reader. The source

code of parseTopic(XMLStreamReader streamReader) :

/**

47

6. THE SOURCE CODE

* Saves information for each topic found

* @param xml

* @return The topic itself

* @throws XMLStreamException

*/

public Topic parseTopic(XMLStreamReader xml) throws XMLStreamException

{

Topic topic = new Topic();

while(xml.hasNext()){

xml.next();

if(xml.getEventType() == XMLStreamReader.END_ELEMENT)

{

String elementName = xml.getLocalName();

if("topic".equals(elementName)){

break;

}

}

else if(xml.getEventType() == XMLStreamReader.START_ELEMENT){

String elementName = xml.getLocalName();

switch (elementName)

{

case "identifier":

topic.setId(xml.getElementText());

break;

case "title":

{

topic.setTitle(xml.getElementText());

break;

}

case "description":

topic.setDescription(xml.getElementText());

break;

}

}

}

return topic;

48

6.5 Util Package

}

The mechanism of these two methods is basically the following: while getting the

event type of every element of the file, parse() method compares this type with the

final value XMLStreamReader.START ELEMENT : if the result of the comparison is

affirmative and the element name is “topic”, then the stream reader is meeting a new

topic element and has to save its attributes through the parseTopic(XMLStreamReader

xml) method. Once finished saving these attributes, this method returns an object of

the class Topic, that will be added by the parse() method to the LinkedList¡Topic¿

topicList . This list can be returned through the method returnList() :

/**

* Returns the list in which all topics found are stored

* @return the list of topics found

*/

public LinkedList<Topic> returnList()

{

return topicList;

}

The class provides a further accessory method:

/**

* Returns the count of topics found

* @return The count of topics found

*/

public int returnCount()

{

return countTopic;

}

that can be used for controls, in order to have a safer execution of the program.

6.5.5 DoubleHelper

Not all digital libraries report the score of a result of a query: in this case the score

must be added manually. The class DoubleHelper is intended to provide help in giving

49

6. THE SOURCE CODE

an appropriate score to a result. The class provides two static methods:

/**

* Gets the difference that must elapse between two consecutive results

* @param count The number of results

* @return The difference between the score of two consecutive items

*/

public static double getDifference(int count)

{

return ((double)1/count);

}

/**

* Rounds a decimal value

* @param double d The value to be rounded

* @param int p The desired quantity of decimal values

* @return The double value d rounded up to p decimal values

*/

public static double roundUp(double d, int p)

{

return Math.rint(d * Math.pow(10,p)) / Math.pow(10,p);

}

The getDifference(int count) method should be used in order to get the difference

of score between two consecutive results. Using this method will allow to spread evenly

the scores in the range from 0.001 to 1. The parameter count should corresponds to the

number of results. The roundUp(double d, int p) method returns the double d value

rounded up to p decimal values. Scores are usually rounded up to 4 decimal values.

6.6 Extension to Other DLS

It may be necessary to load the file containing topics from remote locations, rather than

from a local path. In this case, problem would be solved modifying Launcher.selectTextFile()

or calling a new more adapted method instead of selectTextFile() . It also could be

necessary to save experiments’ results in remote paths rather than in local ones: in this

case lines 271-284 of Launcher.java should be advisably revised:

50

6.6 Extension to Other DLS

// create new dirs if necessary

File tmp = new File(path);

if (tmp.exists() == false)

tmp.mkdirs();

// create the file of the experiment

experimentFile = new File(path + "\\" + experiment + ".txt");

if (experimentFile.exists() == false)

try {

experimentFile.createNewFile();

}

catch (IOException e1) {

e1.printStackTrace();

}

6.6.1 Adding Support to Other Application-Layer Network Protocols

New network protocols1 management classes should be added in the it.unipd.dei.ims.direct.util

package. It is important that the method for retrieving the response returns a LinkedList

of Strings so that the implementation of new protocols would be possible just adding

few lines in this part of Launcher.java :

LinkedList<String> contentList = null;

if (protocol.equals("http"))

contentList = HTTP.getEntities(constructed);

// otherwise match other protocols (once developed) here

New protocols must also be added in Launcher.protocols (that is an array of Strings):

indeed the protocol value is picked by the user as a string of that array.

6.6.2 Expanding HTTP management class

HTTP.java can be expanded to manage HTTP responses from several Digital Libraries

Systems. In particular the following ones are the fragments to modify.

1See paragraph 3.1 for more details on network protocols

51

6. THE SOURCE CODE

boolean morePages = true;

int page = 1;

while (morePages)

{

String get = null;

if (type == "europeana")

get="http://api.europeana.eu/api/opensearch.rss?

searchTerms="+query+"&wskey=APIkey&startPage="+page;

// other types here; i.e.: else if (type == \DLname") get = \..."

If results are stored in just a page, ignore the page variable, scan that page and then

set morePages to false .

Here’s how to scan a page :

HttpGet httpget = new HttpGet(get);

HttpResponse response = httpclient.execute(httpget);

HttpEntity entity = response.getEntity();

if(// type == \europeana" and the page contains results)

{

[...]

}

else if(// type == \yourDL" and the page contains results)

{

contentList.add(EntityUtils.toString(entity));

// close the reading of the entity

EntityUtils.consume(entity);

page++;

}

else morePages = false;

52

6.6 Extension to Other DLS

6.6.3 Adding support to other Digital Library Systems

The support to other digital libraries should be added by adding or modifying the class

for the management of the communication through network-layer protocols (as indi-

cated in the previous paragraphs) and also by creating at least two classes in new pro-

vided packages. The two created classes should extend it.unipd.dei.ims.direct.ce.Parsable

and it.unipd.dei.ims.direct.ce.Constructable respectively. The class that extends Parsable

must store the results found in a LinkedList of Items; the class that extends Con-

structable must use the Digital Library Search Engine API to get the string to be

queried in the correct form. Once written these classes, Launcher.launchExp() must be

modified in these lines (line 427 and on):

Parsable parser = null;

Constructable constructor = null;

if (type.equals("europeana"))

{

parser = new EuroXMLParser();

constructor = new EuroQueryConstructor();

}

// otherwise match other types (once developed) here

If the new Digital Library System doesn’t report the score of a result, you can use the

functionalities of the classDoubleHelper , simply modifying the line 463 of Launcher.java:

if (type.equals("europeana") || type.equals("yourNewDLS")){

item.setScore(DoubleHelper.roundUp(score, 4));

score -= difference;

}

New digital libraries must also be added in Launcher.types (that is an array of String):

indeed the type value is picked by the user as a string of that array.

53

6. THE SOURCE CODE

54

7

Conclusions

The software introduced allows to automate the execution of experiments during an

evaluation campaign. Indeed, it automatically queries the topics to Europeana search

system. Using these software, the strain required to participants of an evaluation

campaign in order to conduct the experiments will be significantly smaller.

As far as future work is concerned, the software will be implemented as a component

of PROMISE, corresponding with its plans to increase automation in the evaluation

process. Participants will use this component to automatically generate the experiment

results and will then upload them into DIRECT portal.

The software can be extended for supporting other Digital Library Systems (using the

guide at Chapter 6.6); the possibility of automatic evaluation will then be incremented

and many Digital Libraries will benefit from it.

55

BibliographyBibliographyBibliographyBibliography

[1]Harman, D. K., & Voorhees, E. M. (2005). TREC. Experiment and Evaluation in

Information Retrieval. Cambridge: MIT Press.

[2]Sparck Jones, J., & Willet, P. (1997). Reading in information retrieval. San

Francisco: Morgan Kaufmann Publishers�

[3]Di Buccio, E., Dussin, M., Ferro, N., Masiero, I., Santucci, G., & Tino, G. (2011).

Interactive Analysis and Exploration of Experimental Evaluation Results. (J.

Kalbach, B. Larsen, T. Russell-Rose, & M. Wilson, Eds.) Retrieved August 23,

2012, from EuroHCIR 2011: http://ceur-ws.org/Vol-763/

[4]Peters, C. (2001). Introduction. In C. Peters, Cross-Language Information Retrieval

and Evaluation: Workshop of Cross-Language Evaluation Forum (CLEF 2000)

(pp. 1-6). Heidelberg: Springer.

[5]DIRECT. (2012). About DIRECT. Retrieved August 30, 2012, from

http://direct.dei.unipd.it/

[6]Dussin, M., & Ferro, N. (2007). Design of the user interface of a scientific digital

library system for large-scale evaluation campaigns. Retrieved August 29, 2012,

from Second DELOS Conference on Digital Libraries:

http://www.delos.info/index.php?option=com_content&tast=view&id=602&ite

mid=334

[7]Ferro, N., & Agosti, M. (2010). Towards an infrastructure for digital library

performance evaluation. In G. Tsakonas, & C. Paptheodorou, Evaluation of

Digital Libraries: An Insight to Useful Applications and Methods (pp. 93-120).

Oxford: Chandos Publishing.

[8]Tanenbaum, A. S., & Wetherall, D. J. (2011). Computer Networks, 5th Ed. Boston:

Prentice Hall.

[9]Cerf, V., & Kahn, R. (1974). A Protocol for Packet Network Interconnection. In

IEEE Trans. on Commun. (pp. 637-648).

[10]Braden, R. (1989)� Requirements for Internet Hosts - Communication Layers�

Retrieved August 29, 2012, from RFC 1122: http://tools.ietf.org/html/rfc1122

[11]Fielding, R., Irvine, U., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., et al.

(1999). Hypertext Transfer Protocol -- HTTP/1.1. Retrieved September 4, 2012,

from W3.org: http://www.w3.org/Protocols/rfc2616/rfc2616.html

[12]Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., & Cowan, J.

(2004). Extensible Markup Language (XML) 1.1 . Retrieved August 29, 2012,

from W3.org: http://www.w3.org/TR/2004/REC-xml11-20040204/

[13]Oracle. (2004, September 30). Concurrency Utilities. Retrieved August 29, 2012,

from J2SE(TM) 5.0 - New Features and Enhancements:

http://docs.oracle.com/javase/1.5.0/docs/relnotes/features.html

[14]Oracle. (2004). Callable Interface. Retrieved August 29, 2012, from JavaTM 2

Platform Standard Ed. 5.0:

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/Callable.htm

l

[15] Agosti, M., Braschler, M., Di Buccio, E., Dussin, M., Ferro, N., Granato, G.L.,

Masiero, I., Pianta, E., Santucci, G., Silvello, G., & Tino, G. (2011). Promise.

Specification of the evaluation infrastructure based on user requirements.

Deliverable number: 3.2. Retrieved September 15, 2012, from promise-noe.eu:

http://www.promise-noe.eu/documents/10156/fdf43394-0997-4638-9f99-

38b2e9c63802

[16]EuropeanaConnect. (2010). Europeana Connect Related projects. Retrieved

September 15, 2012, from EuropeanaConnect - Related Projects:

http://www.europeanaconnect.eu/related-projects.php

[17]Europeana. (2012). Facts and Figures. Retrieved September 15, 2012, from

Europeana Professional: http://pro.europeana.eu/web/guest/about/facts-figures

[18] Møller, A. and Schwartzbach, M. I. (2007). Introduzione a XML. Torino: Pearson

Italia.

[19] Bray, T., Paoli, J., Sperberg-McQueen, C. (1998). XML 1.0 Specifications.

Retrieved August 29, 2012, from W3.org: http://www.w3.org/TR/1998/REC-

xml-19980210

[20] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., & Yergeau, F. (2008). XML

1.0 Specifications (Fifth Edition). Retrieved August 29, 2012, from W3.org:

http://www.w3.org/TR/REC-xml/

