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Abstract

The TREC COVID Challenge has the goal to create search engines

to effectively and efficiently retrieve information produced at a rate

never seen before, in the biomedical field.

This work focuses on the effectiveness of the information retrieval.

The search engine is based on Elasticsearch. A multitude of informa-

tion retrieval techniques are tested, with the goal of identifying the

ones leading to a performance improvement. The techniques’ effec-

tiveness is measured using the evaluation measures: P@20, MAP, and

BPref.

The techniques explored that yield improvement in the search are:

custom analyzers, filters, relevance feedback and reciprocal rank fu-

sion. Other tested techniques, that yield negligible results, are: field

boosting, bigrams and distance feature.

Ultimately, the results are compared to the ones obtained by others

in the Challenge.
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Chapter 1

Introduction

The outbreak of the Covid-19 global pandemic has been one of the major events

of the 21th Century. Joint with the vast access to information of the last decade,

it presented the need to access reliable information in a rapidly changing envi-

ronment, in which new relevant information is produced and published at a rate

faster than usual in the biomedical field.

Because of it, the “TREC-COVID Challenge” was created as a collaboration

among the Allen Institute for Artificial Intelligence (AI2), the National Institute

of Standards and Technology (NIST), the National Library of Medicine (NLM),

Oregon Health & Science University (OHSU), and the University of Texas Health

Science Center at Houston (UTHealth).

The challenge consists of a set of Information Retrieval test collections based

on the CORD-19 dataset. It is a freely accessible and updated research dataset

created in response to the White House’s request to aggregate the largest struc-

tured dataset of coronavirus research for the global research community.

The challenge has two goals:

� Evaluate search algorithms and systems in order to help decision makers,

belonging to medical and political fields, manage the rapidly growing corpus

of COVID-19 related scientific literature;

� Discover methods to manage scientific information in future global biomed-

ical crisis.

1
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1.1 Challenge Structure

The TREC-COVID challenge was structured as a series of five rounds.

For each, the organizers designed a subset of the most recent CORD-19 dataset

to be used in the round and released a set of topics, i. e., queries used for the

document retrieval.

The participant would submit their runs and, after the submission deadline,

NIST would use the submitted runs to produce a set of documents for each topic,

so they could be assessed for relevance to the topic by biomedical field experts.

Since the CORD-19 dataset was too large to get complete judgements, the

collection had to be sampled. For each topic, a sample had to be constructed

in order to judge only a small fraction of the entire document set, while also

identifying most of the relevant documents.

The sample sets were chosen based on the ranks that the documents had in

the submitted runs for a round.

The relevance judgements produced are used to compute a run’s effectiveness

score.

New topics were added to the topic set in each round, which contained the

cumulative set of topics. Relevance judgements of earlier rounds are free to use

in the construction of runs.

To fairly evaluate the runs, they were scored against a reduced collection,

removing from the most recent CORD-19 dataset all previously judged documents

(the documents judged as non-relevant are also removed).



Chapter 2

Models

2.1 BM25 and BM25F

Okapi BM25 is a ranking function used by search engines to estimate the relevance

of documents to a given search query.

Given a query Q containing the keywords q1, ..., qn, BM25’s score of a docu-

ment D is defined as follows:

score(D,Q) =
n∑︂

i=1

IDF (qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(︂
1− b+ b · |D|

avgdl

)︂
where f(qi, D) is the term frequency of qi in the document D, |D| is the number of

words in the document D, avgdl is the average number of words in the collection

of documents. k1 and b are parameters, by default k1 = 1.2 and b = 0.75. IDF (qi)

is the inverse document frequency weight of the query term qi, calculated as:

IDF (qi) = ln

(︃
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)︃
where N is the number of documents in the collection and n(qi) is the number of

documents containing the query term qi

BM25F is derived from BM25 and it is used to apply the scoring when using

multiple fields, which can possibly have different degrees of importance, term

relevance saturation and length normalization. We can define BM25F score as a

linear combination of BM25 scores on multiple fields.

3



4 Chapter 2. Models

Given BM25i score of the ith field and a vector a of score boosters:

BM25F =
∑︂
i

ai ·BM25i.

2.2 Rocchio Algorithm

The Rocchio Algorithm is an algorithm for implementing relevance feedback de-

veloped using the Vector Space Model as its basis.

The formula for the Rocchio Algorithm is:

−→
Qm =

(︂
a ·

−→
QO

)︂
+

⎛⎝b · 1

|Dr|
·
∑︂

−→
Dj∈Dr

−→
Dj

⎞⎠−

⎛⎝c · 1

|Dnr|
·
∑︂

−→
Dk∈Dnr

−→
Dk

⎞⎠
where

−→
Qm is the modified query vector,

−→
QO is the original query vector,

−→
Di is the

document vector for the ith document, Dr is the set of relevant documents, Dnr

is the set of non-relevant documents and a, b and c are weight parameters.

2.3 Reciprocal Rank Fusion

Reciprocal Rank Fusion, or RRF, is a simple method for combining document

rankings from multiple IR systems, and it usually yields better results than any

individual system. RRF sorts the documents according to a naive scoring formula.

Given a set of documents D and a set of rankings R for the documents, the

formula for RRF is:

RRFscore(d ∈ D) =
∑︂
r∈R

1

k + r(d)

where k is a fixed number.

The formula is based on the idea that, while highly-ranked documents are

more important, lower-ranked documents are still relevant. The constant k miti-

gates the effect of high ranking outliers.
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2.4 Evaluation Measures

The following are measures used in the evaluation of Retrieval Effectiveness.

2.4.1 Precision at depth

Precision at depth, or P@d, the fraction of documents that are relevant among

the first d documents retrieved. If ri indicates the relevance of the ith ranked

document scored as 1 if relevant or 0 otherwise then:

P@d =

∑︁d
i=1 ri
d

.

2.4.2 Mean Average Precision

Average Precision, or AP, is calculated for a single query by taking the set of

ranks at which the relevant documents occur, calculating the precision at those

depths in the ranking, and then averaging the set of precision values obtained.

AP =
1

R

d∑︂
i=1

(︄
ri
i
·

i∑︂
j=1

rj

)︄

Where ri indicates the relevance of the i
th ranked document scored as 1 if relevant

or 0 otherwise, d is the number of retrieved documents and R is the number of

relevant documents for the query.

Mean Average Precision, or MAP, is the mean of AP scores for a query batch,

so where Q is the number of queries:

MAP =

∑︁Q
i=1 APi

Q
.

2.4.3 Binary preference

Binary Preference, or BPref, only uses information from judged documents.

It is a function that measures how frequently relevant documents are retrieved

before non-relevant ones.

BPref =
1

R

d′∑︂
i=1

[︄
r′i ·

(︄
1−

i−
∑︁i

j=1 r
′
j

N

)︄]︄
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where, considering the vector of relevance values removing the unjudged doc-

uments, d′ is the number of judged documents retrieved, r′i is the relevance of

the ith ranked judged document and N is the number of documents judged as

not-relevant.

When the judgements are complete BPref is equivalent to MAP, with incom-

plete judgements BPref is shown to be more stable.
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Data

The search and evaluation are performed using the datasets of the fifth and final

challenge round.

The datasets from the fourth challenge round are also used to choose the ideal

field boosting and to build the engine using relevance feedback.

Four types of datasets are used for this study:

CORD-19 - collection of documents to perform the information retrieval on;

List of valid doc-ids - list of IDs that identify which documents in the CORD-

19 collection are to be used in a round;

Topic set - list of topics that determine what query we are inputting in the IR

system in a round;

Relevance Judgements - list of IDs paired with relevance judgements that

identify whether a document is relevant to a topic.

All of the above are publicly available, all CORD-19 releases can be down-

loaded from the CORD-19 database mantained by AI2, while all the other datasets

for each round (together with what release of CORD-19 has been used for each

round) can be downloaded from NIST’s TREC-COVID database.

7
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3.1 Data Structure

The CORD-19 document collection is available as a .csv file.

It contains a list of documents with the following fields: cord uid, sha, source x,

title, doi, pmcid, pubmed id, license, abstract, publish time, authors, journal,

mag id,

who covidence id, arxiv id, pdf json files, pmc json files, url, s2 id.

The fields that have been used are:

Cord uid an alphanumeric string that defines an unique ID for each document

in the collection;

Title of the document;

Abstract of the document;

Publish time that defines the date of publication of the document.

The list of valid doc-ids is a .txt file that contains the list of cord uid to

identify which documents to include in the run.

The topic set is a .xml file that contains a set of topics (30 in the first round,

then 5 more added for each subsequent round, up to 50 for the fifth round), each

topic has 3 fields:

Query provides short statement containing only the keywords regarding infor-

mation needed;

Question provides a more complete description of the information needed;

Narrative provides extra clarification, mainly used to understand what infor-

mation the judges should consider relevant to the topic.

The relevance judgements are available as a .txt tile. Each row is a doc-

ument that has been judged. There are four columns: the first is the number

of topic the judgement is performed on, the second identifies at which point in

time the judgement has been done, the third corresponds to the cord uid of the

document being judged. Finally, the last one is a thricotomous variable for the

relevance judgement: 2 for relevant, 1 for partially relevant (which, however, has

the same value of 2 for scoring runs), 0 for not relevant.
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3.2 Data Transformation and Cleaning

In order to use the CORD-19 collection and the topic set with more ease, they

have been transformed to .json files.

The collection has been transformed using a python program [6.1], while the

topic set has been transformed using a free online tool.

The CORD-19 collection is also missing data, which are fundamental for the

correct function of the information retrieval when using the publish time field.

For some documents such field is blank. In this case, the chosen solution was

to manually input as publish time, for those few documents, the release date of

the CORD19 dataset used.

If a considerable amount of documents were to miss such field, it would be

advisable to write a program to perform the cleaning.

https://www.freeformatter.com/xml-to-json-converter.html


10
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Experiment’s structure

The search engine of choice for the experiments is Elasticsearch.

Elasticsearch is a free and open source full-text search engine based on the

Lucene library, with a HTTP web interface and schema-free JSON documents.

4.1 Database Creation and Indexing

Except for the base run, which uses Elasticsearch’s standard analyzer for text

fields, custom analyzers are applied to the database, which needs to be done by

mapping.

Mapping allows to define the field type an the analyzer uses for a certain

field. Moreover, it needs to be done before indexing, as the filter is used during

indexing to determine what value to insert in each field.

The following token filters are used:

Synonym graph custom filter that allows to define synonyms. It has been used

to transform all the other words to the first one, the list of synonymous

terms applied is “[coronavirus, covid 19, sars cov 2, 2019 ncov]”. The

purpose of this filter is to manually solve the biggest vocabulary mismatch

problem present in the test collection, which influences the searches on all

queries;

Lowercase transforms all upper case characters to lower case;

Stop is the standard filter to remove English stopwords;

Stemmer provides algorithmic stemming, the standard for English is porter

stemming algorithm;

Shingle used when performing the search on bigram instead of tokens. It pro-

duces word n-grams by concatenating adjacent tokens. It has been cus-

11
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tomized to only output two-word shingles, since the filter would also output

unigrams by default.

The filters are applied to the “title” and “abstract” fields.

An example of the database creation with mapping is available at [6.2]. In

windows environment the ’ characters would need to changed to ” and the ” inside

them to \”.
The document collection has to be indexed in the created database, which is

done with a python program [6.3]. First of all, before inserting a document in

the database, a check is performed to establish whether the document’s value for

the cord uid field is in the list of valid doc-ids.

In the event that it is, the document is added to the database; the relative

cord uid is removed from the list in order to prevent cases of duplicated doc uids

(which would break the evaluation process as only one ID should be found for a

topic in a run).

Alternatively, the document is skipped.

4.2 Search and Output Structure

The next step consists of searching the documents and outputting the ones that

are deemed most relevant by the search engine.

The search and output for all the topics is done by using a python program

[6.4]. The program has three global variables:

Indexname name of the elasticsearch index to perform the search on;

Size maximum number of documents retrieved for each topic search, 1000 is the

maximum allowed (and suggested amount) for this challenge;

Origin date used in the distance feature query to calculate distances. The date

of CORD-19 release is chosen for the searches; in a real world application

the current date would be used instead;

Querytype allows to choose between query, question or narrative field from the

topic set for the search.

The search is executed using a should query, which allows a document to be

retrieved even if its tokens only match one token of the search query.

Every document is scored using BM25 (BM25F in case of searching in multiple

fields) and, then, the documents are retrieved in descending score order.



4.3 Relevance Feedback 13

As can be seen in the code example [6.4], the engine allows to: select different

boosts for the fields being matched (giving a field more weight than the others),

add a different boost to each document based on the date of publication, filter

the search in order to only consider documents presenting a certain token in a

field and filter the search to only consider documents published in a certain date

range.

Lastly, the program outputs the retrieved documents to a text file in TREC’s

format, where every line is in the form:

Topicid is the number of the topic;

Q0 is the literal “Q0”, unused column for this challenge.

Docid is the cord uid of the document retrieved;

Rank is the rank position of the document in the list;

Score is the similarity score computed by the system;

Run-tag is a name assigned to the run.

4.3 Relevance Feedback

Relevance Feedback in the experiments has been built using the Rocchio Algo-

rithm with (0,1,0) as vector of parameters. Therefore, only tokens from relevant

documents are used as query; neither the original query nor tokens from non-

relevant documents are used.

The search using relevance feedback uses a different python program [6.5].

An ulterior global variable is present: Indextrain. It identifies the database

used to train the algorithm.

The program also receives in input the relevance judments relative to the

version used in the training database.

For each topic, the program searches the termvectors of relevant documents

and saves the tokens and respective cumulative weight in the documents, up to a

maximum of 1000 tokens (the maximum number needed to be put in place due

to Elasticsearch’s limitations).

Furthermore, since topic sets are super-sets of the previous ones, for each

topic in the training database, the search is performed using the tokens collected

instead of the queries offered by the topic set. The score obtained by each token

is boosted by the respective cumulative weight.

Topics not in the training topic set are instead searched like in the previous

program. The output is done identically to the previous.
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Only termvectors deriving from the title field have been used. Moreover,

only documents judged as fully relevant have been considered. Due to Elastic-

search’s limitations, neither partially relevant documents nor non-relevant ones,

as negative boosting, have not been used.

4.4 Evaluation Structure

Each run’s evaluation is performed using trec eval.

Trec eval is the standard tool used by the TREC community for evaluating

an ad hoc retrieval run. It uses the output file and the set of relevance judgements

to return, in output, the results of the run as a list of standard relevant measures.

The measures considered for the improvement of effectiveness in this study

are: P@20, MAP and BPref.

https://github.com/usnistgov/trec_eval
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Experimental evaluation

5.1 Baseline

The baseline run uses Elasticsearch’s standard analyzer. Because of it, there is

no specific need to manually map any field of the database.

The search is performed on both the title and the abstracts with no boosting

applied. Therefore, the fields hold the same weight in document relevance scoring.

The search is performed thrice, once for each of the different topic set available

field.

As expected, using the narrative fields, compared to the others, returns much

worse results and it is, in fact, not supposed to be used for this purpose. Hence,

no runs using the narrative field will be included.

The baseline runs using query and question fields show comparable results.

However, only the question field will be considered as the baseline run, since its

measures of evaluation are slightly better.

Searches using the query field will be considered in the following runs, instead.

The following are the evaluation measures for the baseline run:

P@20 MAP BPref

0.2360 0.0695 0.3106

15
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5.2 Customized Analyzer and Filters

Custom Analyzer

The first step to improve the IR is applying a customized analyzer.

Before indexing, the database is mapped in order to use the synonym graph,

lowercase, stop and stemmer token filters, for the title and abstract text fields.

The search then continues like the baseline.

The following are the evaluation measures for the runs with customized ana-

lyzers using the query and question fields respectively:

Run P@20 MAP BPref

Query 0.2840 0.1037 0.3482

Question 0.2380 0.0879 0.3416

Filter

Subsequently, filters are applied to the search engine.

The filters applied are a term filter and a date filter. The former filters only

documents that present the word “coronavirus” in the title or the abstract field.

The latter filters only documents published after 01/11/2019.

Both filters used singularly improve the search’s effectiveness, with the date

filter being more effective. However, using both filters is less effective than filtering

only by date.

The following are the evaluation measures, compared to the runs without

filters:

Run P@20 MAP BPref

Query 0.2840 0.1037 0.3482

Query + term 0.3120 0.1182 0.3718

Query + date 0.3130 0.1231 0.3823

Query + term & date 0.3120 0.1227 0.3769

Question 0.2380 0.0879 0.3416

Question + date 0.2740 0.1099 0.3896
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5.3 Field Boosting

Another way to further improve the engine would be by establishing the ideal

boosting parameters for the title and abstract field.

However, using the same database for both the search and the choice of the

parameters would lead to overfitting. In order to avoid that, the parameter choice

is done on the previous step of the TREC-COVID challenge.

On the fourth TREC-COVID challenge step, the same procedures of the

filtered search are applied for a multitude of runs, while also applying different

boostings on the title or abstract fields.

A total of 82 runs are performed: 41 using the query and 41 using the question

field. For each of them, a run is performed without boosting, 20 runs boosting

the title field by 0, 0.05, 0.10, . . . , 0.95 and 20 boosting the abstract field by 0,

0.05, 0.10, . . . , 0.95.

The runs returning the best results are the ones with a 0.4 boost on the title

field regarding query and 0.75 boost on the title field regarding question.

The following are the evaluation measures, comparing the previous best runs

(with date filters) and their respective runs when the ideal boostings found are

applied:

Run P@20 MAP BPref

Query + date 0.3130 0.1231 0.3823

Query + date w/ 0.4 title 0.3160 0.1284 0.3811

Question + date 0.2740 0.1099 0.3896

Question + date w/ 0.75 title 0.2800 0.1119 0.3878
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5.4 Bigrams

Instead of the standard bag-of-words format, which uses single words tokens, the

next method uses bigrams, which are sequences of two adjacent tokens).

In order to do so, the title and abstract fields are mapped with an ulterior

filter called shingle, customized to output only bigrams and not unigrams.

The documents have to be indexed again, and the other procedures applied

are the same of the previous step.

Only the question field is used in the bigrams run, since the query field is

written in a non-natural language format.

The evaluation measures for the bigrams run are:

P@20 MAP BPref

0.2160 0.0484 0.1759

The run has a much lower amount of relevant retrieved documents and, over-

all, lower evaluation measures. It is, however, comparable regarding evaluation

measures when only taking in account the first documents found. Hence, showing

that the engine using bigrams is still effective for the first retrieved documents.

Although the bigram run is not effective by itself, it still might be useful when

applying RRF.
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5.5 Relevance Feedback

A completely different technique is using Relevance Feedback.

Relevance Feedback utilizes information collected previously to improve the

search performing query expansion.

In this case the relevance judgements from the previous rounds are used to

select relevant documents from the collection. The tokens contained in the title

of the relevant documents are collected and used as queries, with boosts relative

to the tokens’ cumulative weight.

Since previous rounds’ topic sets are a subsection of the latest one, Relevance

Feedback cannot be applied to the last 5 topics. Therefore, for those topics, the

search will be the same used earlier.

The following are the evaluation measures for the run using RF:

P@20 MAP BPref

0.3030 0.1536 0.5149

Relevance Feedback brings to a huge improvement in the search engine effec-

tiveness.
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5.6 Distance Feature

An additional way to improve the engine, particularly when considering document

collections with a rapid expansion, might be including a boost based on how recent

the document is.

Distance feature allows to give more weight to documents closer to a certain

date or location.

The origin, which is the date that allows to reach the maximum boosting, is

selected as the date of the CORD-19 database release. In a real-world scenario,

on the other hand, it would use the current date.

A parameter called “pivot” is required. It marks the distance in which the

boost is halved compared to the boost at the origin. In this case the pivot has

been selected as a standard of 60 days.

The following are the evaluation measures for the precedent runs and a com-

parison when adding the distance feature boosting:

Run P@20 MAP BPref

Query + date w/ 0.4 title 0.3160 0.1284 0.3811

Query + date w/ 0.4 title & distance 0.3240 0.1309 0.3833

Question + date w/ 0.75 title 0.2800 0.1119 0.3878

Question + date w/ 0.75 title & distance 0.2760 0.1131 0.3894

RF 0.3030 0.1536 0.5149

RF w/ distance 0.3020 0.1532 0.5152

The results vary and no overall improvement can be found using the distance

feature.
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5.7 RRF

RRF allows to combine the results of different runs to improve the effectiveness.

The following are the measures for various applications of RRF:

Runs combined P@20 MAP BPref

Query + date, Question + date 0.3010 0.1320 0.4115

Query + date w/ 0.4 title, Question + date

w/ 0.75 title
0.3140 0.1369 0.4128

Query + date, Question + date, Query + date

w/ 0.4 title, Question + date w/ 0.75 title
0.3160 0.1380 0.4143

Query + date w/ 0.4 title, Question + date

w/ 0.75 title, RF
0.3210 0.1661 0.5038

Query + date, Question + date, Query + date

w/ 0.4 title, Question + date w/ 0.75 title, RF,

RF w/ distance

0.3230 0.1671 0.5049

Query + date, Question + date, Query + date

w/ 0.4 title, Question + date w/ 0.75 title, RF,

RF w/ distance, bigram

0.3270 0.1652 0.4989
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Conclusions

Below, is shown the baseline evaluation measures, compared to the evaluation

measures from the three best measuring search engines, which combine in them

all the techniques applied:

Run P@20 MAP BPref

Baseline 0.2360 0.0695 0.3106

RF w/ distance 0.3020 0.1532 0.5152

Query + date, Question + date, Query + date

w/ 0.4 title, Question + date w/ 0.75 title, RF,

RF w/ distance

0.3230 0.1671 0.5049

Query + date, Question + date, Query + date

w/ 0.4 title, Question + date w/ 0.75 title, RF,

RF w/ distance, bigram

0.3270 0.1652 0.4989

We can notice an improvement of 38.6%, 140.4% and 65.9% respectively for

the three measures.

The techniques that offered the best improvement are Relevance Feedback,

Reciprocal Rank Fusion, custom analyzers and filtering; whereas field boosting,

bigrams and distance feature can be considered negligible.

When comparing the results to the best official runs we can notice that the

BPref found here is comparable (90% of BPref ∈ [0.3925,0.6091]), while P@20

and MAP are far inferior (90% of P@20 ∈ [0.665,0.846] and 90% of MAP ∈
[0.22,0.4169]).

The reason for this is that, as mentioned before, P@20 and MAP consider

unjudged documents as non-relevant. In fact, the documents have been judged

based on the top documents belonging to the official runs. Hence, it is be ex-

pected that more top documents for those runs are judged, compared to the top
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documents in this study’s runs. BPref is comparable as it only considers judged

documents, instead.

While there definitely are decent results, the lack of machine and deep learning

techniques is noticeable. This is particularly evident when comparing to the very

top runs’ measurement, which make use of such techniques.

These techniques would definitely be topics to expand on in future works.



Code

1 import csv

2 import json

3

4

5 csvfile = open(’metadata_rnd4.csv’, ’r’, encoding="UTF -8")

6 jsonfile = open(’metadata_rnd4.json’, ’w’)

7

8

9 reader = csv.DictReader(csvfile)

10 for row in reader:

11 json.dump(row , jsonfile)

12 jsonfile.write(’\n’)

Listing 6.1: Python code to trasform .csv to .json.

1 curl -XPUT "http :// localhost :9200/ covid_rnd5_an?pretty" -H "

Content -Type: application/json" -d’{

2 "settings ": {

3 "index ": {

4 "analysis ": {

5 "filter ": {

6 "graph_syn ": {

7 "type ":" synonym_graph",

8 "expand ":" false",

9 "synonyms ": [" coronavirus , covid 19, sars cov 2, 2019

ncov"]

10 },

11 "my_shingle ": {

12 "type ":" shingle",

13 "output_unigrams ":" false"

14 }

15 },

16 "analyzer ": {

17 "cord_analyzer ": {

18 "type": "custom",

25
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19 "tokenizer ": "standard",

20 "filter ": [" lowercase ","stop","stemmer","graph_syn ","

my_shingle "]

21 }

22 }

23 }

24 }

25 },

26 "mappings ": {

27 "properties ": {

28 "title ": {

29 "type": "text",

30 "analyzer ": "cord_analyzer"

31 },

32 "abstract ": {

33 "type": "text",

34 "analyzer ": "cord_analyzer"

35 }

36 }

37 }

38 }’

Listing 6.2: Example of database creation with analyzers.

1 #--- importazione di moduli interi

2 import sys

3 import json

4

5 #--- importazione di parti di modulo ---#

6 from elasticsearch import Elasticsearch

7

8 #--- variabili globali ---#

9 INDEXNAME = ’covid_rnd5_bigram ’

10 DOCTYPE = ’_doc’

11 VALIDNAME = ’docids -rnd5.txt’

12

13 #--- connettiti al server

14 es = Elasticsearch ([{’host’:’localhost ’,’port’:9200}])

15

16 indexes =[]

17

18 with open(VALIDNAME) as f:

19 indexes = f.read().splitlines ()

20

21 #--- scansione dei file dei documenti ---#
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22 nargs = len(sys.argv)

23 ndoc = 0

24 for i in range(1,nargs):

25 #--- apertura del file del documento ---#

26 print("processing",sys.argv[i],"...")

27 infile = open(sys.argv[i],’r’, encoding="utf8")

28 #--- lettura del documento ---#

29 for doc in infile:

30 if len(doc) > 0:

31 ndoc += 1

32 record = json.loads(doc)

33 print(sys.argv[i],ndoc ,’...’,end=’’)

34 if record["cord_uid"] in indexes:

35 indexes.remove(record["cord_uid"])

36 res = es.index(index=INDEXNAME ,

37 doc_type=DOCTYPE ,

38 id=ndoc ,

39 body=record)

40 print("added")

41 else:

42 print("id not valid")

43 print("done")

44 print("done")

Listing 6.3: Example of python code to index the database.

1 import sys

2 import json

3 import numpy as np

4

5 from elasticsearch import Elasticsearch as server

6

7 #--- questa funzione sara’ usata piu’ avanti ---#

8 def res(results , query = "1", n = 10, tag = "jackdiquadri"):

9 rank = 0

10 for hit in response[’hits’][’hits’]:

11 rank += 1

12 print(query ,"Q0",hit["_source"][’cord_uid ’],rank ,hit[’

_score ’],tag ,sep=’\t’)

13

14 #--- variabili globali ---#

15 INDEXNAME = ’covid_rnd5_bigram ’

16 SIZE = 1000

17 ORIGIN = "2020 -07 -16"

18 QUERYTYPE = ’query ’
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19 #ORIGIN = "2020 -06 -19"

20

21 client = server ([’localhost :9200’])

22

23 infile = open(sys.argv[1],’r’)

24 queries = json.loads(infile.read())

25 queries_list = queries[’topic’]

26 for query in queries_list:

27 num = query[’@number ’]

28 text = query[QUERYTYPE]

29 query_dict = {

30 "query": {

31 "bool": {

32 "should": [

33 { "match": { "title" : { "query" : text , "

boost" :0.4} } },

34 { "match": { "abstract" : { "query" : text , "

boost" :1} } },

35 {"distance_feature":{"field":"publish_time","

pivot":"60d","origin":ORIGIN }}

36 ],

37 "filter":[

38 # {"term": { "title" : "coronaviru "} or { "

abstract" : "coronaviru "}},

39 {"range": {"publish_time": {"gte": "

2019 -11 -01"}}}

40 ]

41 }

42 }

43 }

44

45 response = client.search(index=INDEXNAME ,body=query_dict ,size

=SIZE)

46 res(response[’hits’][’hits’],num ,SIZE)

Listing 6.4: Example of python code for search and output of relevant documents.

1 import sys

2 import json

3 import csv

4 import numpy as np

5 from elasticsearch import Elasticsearch as server

6

7 infile = open(sys.argv[1],’r’,encoding="utf -8")

8 qrels = list(csv.reader(infile , delimiter=" "))
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9

10 INDEXNAME = ’covid_rnd5_an ’

11 INDEXTRAIN= ’covid_rnd4_an ’

12 SIZE = 1000

13 ORIGIN = "2020 -07 -16"

14 #ORIGIN = "2020 -06 -19"

15 nq1 = 45

16 nq2 = 50

17 rel = [[] ,[] ,[]]

18 all_terms = [[] ,[] ,[]]

19 lista = []

20 client = server ([’localhost :9200’])

21

22 for i in range(nq1):

23 rel [0]. append ([])

24 rel [1]. append ([])

25 rel [2]. append ([])

26 all_terms [0]. append ({})

27 all_terms [1]. append ({})

28 all_terms [2]. append ({})

29

30 for i in range(nq2):

31 lista.append ([])

32

33 for j in qrels:

34 rel[int(j[3])][int(j[0]) -1]. append(j[2])

35

36

37 #for i in range(len(rel)):

38 for i in range(2,len(rel)):

39 for j in range(len(rel[i])):

40 for k in rel[i][j]:

41 finduid ={"query": {"term": {"cord_uid": {"value": k

}}}}

42 trainresponse = client.search(index=INDEXTRAIN ,body=

finduid ,size =1)

43 if len(trainresponse[’hits’][’hits’]) >0:

44 docid=trainresponse[’hits’][’hits’][0][ ’_id’]

45 tv=client.termvectors(index=INDEXTRAIN , id=docid ,

fields =[’title’], term_statistics=True)

46 for field in tv[’term_vectors ’]:

47 terms = tv[’term_vectors ’][field]

48 N = terms[’field_statistics ’][’doc_count ’]

49 occurrences = terms[’terms ’]
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50 for term in occurrences:

51 if len(all_terms[i][j]) <1000:

52 trm = occurrences[term]

53 if term in all_terms[i][j]:

54 all_terms[i][j][term]= all_terms[i

][j][term]+ float(trm[’term_freq ’])

55 else:

56 all_terms[i][j][term]=float(trm[’

term_freq ’])

57

58 def res(results , query = "1", n = 10, tag = "jackdiquadri"):

59 rank = 0

60 for hit in results:

61 rank += 1

62 print(query ,"Q0",hit["_source"][’cord_uid ’],rank ,hit[’

_score ’],tag ,sep=’\t’)

63

64 for j in range(2,len(all_terms)):

65 for i in range(nq1):

66 # print (" ".join(all_terms[j][i]).encode ("utf -8"))

67 for key in all_terms[j][i]:

68 lista[i]. append ({ "multi_match": {"fields":["title","

abstract"],"query":key ,"boost":all_terms[j][i][key ]}})

69 lista[i]. append ({"distance_feature":{"field":"

publish_time","pivot":"60d","origin":ORIGIN }})

70 # lista[i]. append ({ "multi_match ": {" fields ":[" title

^0.75" ," abstract "]," query ":" ".join(all_terms[j][i])}})

71

72

73 infile = open(sys.argv[2],’r’)

74 queries = json.loads(infile.read())

75 queries_list = queries[’topic’]

76 for i in range(nq1 ,nq2):

77 text = queries_list[i][’query’]

78 lista[i]. append ({ "multi_match": {"fields":["title","abstract

"],"query":text }})

79 lista[i]. append ({"distance_feature":{"field":"publish_time","

pivot":"60d","origin":ORIGIN }})

80

81

82 for i in range(nq2):

83 q = {

84 "query":{

85 "bool":{
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86 "should":lista[i],

87 "filter":[

88 # {"term": { "title" : "coronaviru "} or { "

abstract" : "coronaviru "}},

89 {"range": {"publish_time": {"gte": "

2019 -11 -01"}}}]}}}

90

91

92 response = client.search(index=INDEXNAME ,body=q,size=SIZE ,

request_timeout =10)

93 res(response[’hits’][’hits’],i+1,SIZE)

Listing 6.5: Example of python code for search and output of relevant documents using relevance

feedback.

1 import sys

2 import json

3 import csv

4

5 nq=50

6 d=[]

7 nargs = len(sys.argv)

8 for i in range(1,nargs):

9 with open(sys.argv[i],’r’, encoding="utf8") as infile:

10 reader=csv.reader(infile , delimiter="\t")

11 d.append(list(reader))

12

13 diz=[]

14 rrfdocs =[]

15

16 for i in range(nq):

17 diz.append ({})

18 rrfdocs.append ([])

19

20

21 def append_value(dict_obj , key , value):

22 if key in dict_obj:

23 dict_obj[key]. append(value)

24 else:

25 dict_obj[key] = [value]

26

27 for z in range(len(d)):

28 for i in range(len(d[z])):

29 append_value(diz[int(d[z][i][0]) -1],d[z][i][2] ,[z,i])

30
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31 for z in range(nq):

32 k=0

33 for i in diz[z]:

34 rrfdocs[z]. append ([i])

35 for j in diz[z][i]:

36 rrfdocs[z][k]. append (1/(30+ int(d[j[0]][j[1]][3])))

37 rrfdocs[z][k][1] = sum(rrfdocs[z][k][1:])

38 k=k+1

39

40 rrfdocs[z].sort(key=lambda x: x[1], reverse=True)

41

42

43 for z in range(nq):

44 for i in range(min(len(rrfdocs[z]) ,1000)):

45 print(z+1,"Q0",rrfdocs[z][i][0],str(i+1),rrfdocs[z][i

][1],"jackdiquadri",sep=’\t’)

Listing 6.6: Python code to apply Reciprocal Rank Fusion.
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