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Abstract

Here it’s presented a model with the aim of integrating, using the multiplex

networks environment, the awareness and the behavior of individuals in case

of an emergence of an infectious disease within a population. Aware people

are assumed to do as lower contacts between each others as possible, so that

they decrease their probability of getting infected. The position of the critical

point is investigated both theoretically and numerically using a methodology

based on mean-field approximation and Monte Carlo simulations.
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Introduction

The mathematical formulation of epidemiology is a fundamental tool in order

to model, understand and then predict the behavior of a infectious disease

and it has became necessary for a developed world. Hence many researchers

have been working in this subject for centuries, starting from the first studies

in 1663 made by John Graunt, leading to the creation of methods for contain-

ment and prevention. However for centuries the population has been treated

as an homogeneous medium behaving at the same way and passively react-

ing to the spreading process of the infection. Only in the few past decades

researchers have realized the importance of the interaction between human

behavior and the spreading of the infection [14, 19]: individuals actions are

even more difficult to model than the infection itself since many assumptions

need to be done so that it can be possible to generalize the same reaction to

the whole population. In this framework it will be presented a model based

on the reduction of contacts made by individuals when they become aware

of the disease. From Chapter 1 to Chapter 3 there will be some general in-

troductions to make the reader comfortable to topics like complex networks

and epidemiology. Chapter 1 introduces the classical epidemic models giv-

ing a glimpse to concepts like basic reproducing number, the threshold and

their connections to statistical mechanics. In Chapter 2 some definitions for

complex (and multilayers) networks are given, followed by some example of

networks that have been used in this research. In Chapter 3 there is the

connection between the aforesaid chapters, that is the modeling of epidemics

in the networks environment, with particular interest to the contact based

SIS model. With Chapter 4 it begins the actual research, where the problem

of how to model the awareness and the information spreading is addressed.
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2 CONTENTS

While the disease is spreading in a specific network the information spreading

process takes place in a different one (that can be seen as a virtual network

such as Twitter or Facebook) and the analytical formulation of the model is

here formulated. The research of the threshold between absorbing phase and

epidemic phase is carried forward and an explicit expression is found in the

simplest case of homogeneous networks. Considering that the complexity

of the problem brings the analytical solutions to be restricted only to the

simplest cases, numerical simulations are necessary to tackle the problem,

whose methods, solutions and discussions are shown in Chapter 5. At the

end of Chapter 5 some numerical methods are then discussed to define the

critical point always using heavy Monte Carlo simulations and scaling the-

ory from statistical mechanics; and finally there are some final considerations

and perspectives.



Chapter 1

Classical epidemic models

1.1 Brief history of mathematical epidemiology

The very first statistical study of infective disease [5] is due to John Graunt’s

book “Natural and Political Observations made upon the Bills of Mortality"

(1663). The bills consisted in weekly records of number and causes of death

in the city of London and gave an estimate of the probability of dying of a

certain disease. One century later Daniel Bernoulli made what is known as

the first mathematical model for infectious disease when he was trying to

analyze the mortality from smallpox. In 1766 he published a paper where

he suggested that the inoculation of a live virus from a mild smallpox case

would have decreased the mortality in the population although with a little

possibility of death by the inoculation itself ([1],[2]). The father of modern

epidemiology is Ronald Ross who won the Nobel prize in 1902 for his studies

on malaria: he discovered that malaria was carried by mosquitos and that if

they would have been reduced under a critical value it would be sufficient to

contain the disease [24] introducing the concept of basic reproducing num-

ber, which is the average number of secondary infections that an infected

individual makes in a given time interval.

1.2 The SIR model

The modern epidemiology is based on the compartmental model, a technique

consisting in dividing the population into compartments, with the assump-

3



4 CHAPTER 1. CLASSICAL EPIDEMIC MODELS

tion that every individual in the same compartment has the same charac-

teristics. One of the simplest compartmental model, built by Kermack and

McKendrick from 1927 to 1933 [25, 26, 27] assumes that in a fixed population

with size N , individuals can be in three different states:

• Infected individuals (I): are those that carry the infection. If the

infected individual can also spread the disease then it’s also called

infectious.

• Susceptible individuals (S) are those who are not infected but can

contract the infection if exposed to the disease.

• Recovered individuals (R) are those who were once infected but

then they recovered and cannot contract the disease anymore.

If we consider a discrete time evolution of the process, in every time step

a susceptible individual can be in contact with an infected individual and

become infected with a certain probability. In the same time step an infected

individual can recover spontaneously with another probability, without any

interaction with the others. Let’s call µ the probability that an infected indi-

vidual recovers and β the probability that a susceptible individual, meeting

an infected, contracts the disease. Both of them can be estimated by clinical

data, depending on the type of the disease, µ−1 can also be interpreted as

time needed for an infected to heal, on average, so it indicates the infectious

period.

We can outline the transition as (see also Figure 1.1):

S + I β−−→ 2I (1.1)

I µ−−→ R (1.2)

For the moment let’s assume homogeneous mixing, that means that indi-

viduals are totally equivalent and interact with each others in a completely

random way. We call ρI(t), ρS(t) and ρR(t) the densities respectively of

infected, susceptible and recovered individuals:

ρI(t) =
N I(t)

N
(1.3)
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ρS(t) =
NS(t)

N
(1.4)

ρR(t) =
NR(t)

N
(1.5)

whereN I , NS andNR are the numbers of infected, susceptible and recovered

individuals. In the continuous time limit case the process can be described

by three differential equations by applying the law of mass action:

dρI(t)

dt
= βρIρS − µρI (1.6)

dρS(t)

dt
= −βρIρS (1.7)

dρR(t)

dt
= µρI (1.8)

An even simpler model is based only in two states, I and S, that means

that once that an individual recovers it will pass directly to the susceptible

state and can be reinfected again afterwards (SIS model). The SIS model

exhibits a stationary state, called endemic state, in which the fraction of

infected individuals remains constant.

In this case the transition are (see also Figure 1.1):

S + I β−−→ 2I (1.9)

I µ−−→ S (1.10)

and the dynamics is defined by:

dρI(t)

dt
= βρIρS − µρI (1.11)

dρS(t)

dt
= −βρIρS + µρI (1.12)

In order to see the dynamics at the early stage time, so when the disease

starts to spread, we consider ρI ≈ 0 and we plug it in the first equation
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Figure 1.1: Schematic visualization of SIS and SIR processes: the boxes rep-
resent different comparmentals and the arrows the transitions between com-
partments, happening stochastically according to their respective rates [22].

(substituting ρS with 1− ρI):

dρI(t)

dt
≈ (β − µ)ρI (1.13)

where the second order term (ρI)2 has been neglected. The solution is then:

ρI(t) = ρI(0)e(β−µ)t (1.14)

This means that the density of infected individuals increase exponentially

when β − µ > 0. This leads to define the basic reproducing number

R0 =
β

µ
(1.15)

that is one of the most important parameters in the framework of theoretical

epidemiology since it defines the average number of secondary infections

caused by one infected individual immersed in a fully susceptible population.

So if R0 > 1 then the disease will lead to an outbreak, if R0 < 1 it will

die out and if R0 = 1 it means that on average an individual infects just

other one and then it loses the infection and the density remains on average

constant at the initial value ρ0. The reproducing number has that form

just for this particular case in which we considered random homogeneous

mixing, in general it can be a less straightforward function of the parameters;

for example for an homogeneous contact network in which each individual

contacts the same number of people 〈k〉 it is:
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R0 = 〈k〉 β
µ

(1.16)

The epidemic dynamics shows therefore a threshold behavior, see Figure

1.2, that is typical of the phase transition phenomena in non-equilibrium

systems in statistical physics. A phase transition is defined as an abrupt

change of state of a system that can be seen looking at an order parameter

ρ that is zero in a phase and non zero in the other. The phase transition is

due to the change of another parameter called control parameter λ that has

a particular value λc in which the phase transition occurs.ρ = 0 if λ ≤ λc

ρ > 0 if λ > λc

(1.17)

Figure 1.2: Phase transition diagram [23].

Phase transition can be continuous or discontinuous transition: the first

one means that the order parameter is continuous with respect to the control

parameter (but can exhibits a discontinuity in the derivative) the second one

means that the order parameter is discontinuous. In the case of continuous
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phase transition the order parameter follows a power law behavior:

ρ(λ) ∼ (λ− λc)d (1.18)

where d represents the critical exponent.

In the SIS model the order parameter is the density of infected individuals

at the steady state and the control parameter is the effective infection rate,

i.e. β/µ, that at the threshold (or critical point) it separates the healthy

state from the infected.



Chapter 2

Complex networks

2.1 Some definitions

Networks (or graph) [3] can be described as a collection of points (or ver-

tices) connected by edges (or link); formally, given the set N of the nodes

(n1, n2, ...nN ) and the set E of the edges (e1, e2, ..., eh) we can write the graph

G as G = (N,E) that can be also written as GN,E . From a mathematical

point of view a network can be completely written using an adjacency ma-

trix: given N nodes, the adjacency matrix A is a N×N matrix which entries

aij are one if there is an edge connecting i with j, otherwise are zero:

aij = 1 if (ni, nj) ∈ E

aij = 0 otherwise
(2.1)

A graph can be either directer or undirected: directed means that the

direction of the edge is important i.e., calling eij the edge from i to j, eij 6=
eij , while the contrary holds for undirected nodes where eij = eji. In this

framework we will be only using undirected networks.

The degree of a node is the number of edges coming out from it, so:

ki =
∑
j

aij (2.2)

and the degree distribution P (k) is the probability that, chosen a random

node, it has degree equal to k. Networks can be divided into homogeneous

9



10 CHAPTER 2. COMPLEX NETWORKS

networks, where all the nodes have all the same degree ki = 〈k〉 ∀i, or

heterogeneous networks which follow a generic degree distribution P (k).

Two vertex degree correlation can be studied looking at the prob-

ability that an edge leaving a node of degree k will reach a node of degree

k′, P (k′|k). The correct computation of P (k′|k) is although problematic in

finite dimensional networks, so it’s simpler to study the average degree of

the nearest neighbors of vertices of degree k:

k̄nn(k) =
∑
k′

k′P (k′|k)

Uncorrelated networks are those in which the probability that a node

with degree k is connected to a node of degree k′ is independent on k that

means that an edge is more likely connected to a node with high connectiv-

ity. Therefore the probability that a link points to a node with k′ edges is

proportional to k′P (k′); adding the normalization it comes:

P (k′|k) =
k′P (k′)∑
k′ k
′P (k′)

=
k′P (k′)

〈k〉

So for uncorrelated networks:

k̄unnn(k) =

〈
k2
〉

〈k〉

that doesn’t depend on k.

Moreover, for homogeneous uncorrelated networks, since P (k) = 1 when

k = 〈k〉:
k̄honn(k) = 〈k〉

Another parameter useful to describe networks is the clustering coefficient

which is the tendency of two nodes of being connected given that they already

share a common neighbor. The clustering coefficient C is defined as the ratio

between the number of loops of length three in the network, and the number

of connected triples (three nodes connected by two edges).
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2.2 Most used types of networks

2.2.1 Erdös-Rényi graphs

The first random graph models were proposed by Paul Erdos and Alfréd

Renyi in 1959, who suggested two different ways to generate random net-

works. The first one was a model to generate graphs with N nodes and M

edges, GERN,M , so, starting from N disconnected nodes, edges are added to

random couples of non-connected nodes (therefore avoiding multiple connec-

tions) until the number of edges equals M. The average degree in this case

is:

〈k〉 = 2M/N

The second one was a model to generate graphs with N nodes which are

linked together with given probability 0 < p < 1, GERN,p (see Figure 2.1). The

average degree in this case is:

〈k〉 = p(N − 1)

The two families coincide in the limit of large N: N →∞. In this condition

and for fixed 〈k〉 the degree distribution is Poissonian:

P (k) = e−〈k〉
〈k〉k

k!

Erdos-Renyi graphs are uncorrelated by definition, since the connection

between nodes is not depending on the degree and it happens with the same

probability.

(a) p = 0 (b) p = 0.1 (c) p = 0.5 (d) p = 1

Figure 2.1: Erdös-Rényi graphs changing the probability of creating a link
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2.2.2 Power-law graphs

The recent study of real networks showed that the Erdos-Renyi models are

not adequate to describe real graphs topology. Indeed, real networks, are

characterized by short path length, high cluster coefficient, degree correlation

and heavy tail degree distribution. Most of the real networks show a power

law degree distribution:

P (k) ∼ ck−γ

This means that these networks are characterized by having few high degree

nodes (hubs) and the most of the nodes with low degree. Power-law (or

similarly "scale-free") networks are for example: internet, social networks,

airlines networks, protein-protein interaction networks.

It’s useful to know which is the maximum eigenvalue of the adjacency

matrix of a graph since, as we will see soon, it’s strictly connected to the

threshold of the epidemic. For a power-law graph it has been proved [7] that

Λ1 ∼ max(
√
kmax,

〈
k2
〉
/ 〈k〉) (2.3)

where kmax is the maximum degree of the network.

In the thermodynamic limit, in the case in which 2 < γ < 3 the second

order moment diverges because of the precence of big degree oscillations.

(a) Erdös-Rényi (b) Scale free

Figure 2.2: Comparison between Erdös-Rényi and Scale free networks [6]
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2.2.3 Multilayer networks

Formally a multilayer network [4, 15] is a pair M = (G,C) where G = {Gα :

α ∈ {1, ...,M}} is a set of graphs that can be thought as layers and C

represents the connections between the layers (interconnection). If we have a

network characterized by having different aspects, the latters can be splitted

into different layers of networks, becoming a multilayer network. So let’s

suppose to have d aspects, we can define a sequence L = {Lα}dα=1 of layers,

one for each aspect a.

In this framework we will be talking about multiplex networks, see Figure

2.3 that are those networks characterized by having the same set of nodes

for each layer and for which the only possible type of interlayer connections

are those in which a given node is only connected to its counterpart nodes

in the rest of layers.

Figure 2.3: Example of multiplex network [21]
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Chapter 3

Epidemics in networks

3.1 Motivation and methods

Epidemics in networks can be approached using the Markov theory, in which

each node i at time t belongs to a state that is described by the values of

a random variable Xi(t) = {0, 1, ...s − 1} where s is the number of possible

states. This means that for an SIS model Xi(t) will take values {0, 1}.
Therefore if the nodes are n, there are sn possible configurations of the

system that can be encoded in the infinitesimal Markov chain generator

matrix, which will be a sn×sn matrix. Once the initial configuration and the

infinitesimal generator are known it’s possible to find the states probability

at time t with matrix operations. Although this method is exact, it appears

to be unfeasible for many reasons [22]: the set of sn equations limits the

solution to small system sizes and in general the structure of the infinitesimal

generator Q is rather complex, which prevents one from obtaining general

insights. Therefore many other simpler methods are built from this one,

such as the mean field approximation, that will be discussed in the following

section.

3.2 SIS contact based model

Consider a network made of n nodes with adjacency matrix Aij . Let’s ex-

amine an SIS discrete time contact-based model where Xi(t) fully represents

the state of node i at time t: we say that Xi(t) = 1 when it’s infected and

15



16 CHAPTER 3. EPIDEMICS IN NETWORKS

Xi(t) = 0 when it’s susceptible. Each node can represent either an indi-

vidual, a city or an airport and the edges between nodes are any kind of

channels where the disease can spread along (physical contact between in-

dividuals, streets or flight lines). Then we consider the following spreading

process: at each time step a susceptible node i can visit its neighbors mak-

ing λ trials and it can be infected by the infectious ones with probability

β. The infected individuals can also recover with rate µ every time step.

This creates a Markov chain where the configuration of the systems at time

t depends only of the configuration at the previous time step. We define as

rij the probability that the node i is in contact with node j given that the

node i makes λ trials; thus we can define a contact matrix :

Rij = 1−
(

1− Aij
ki

)λ
(3.1)

where ki is the degree of node i. If λ is 1 then the node i will do just

one contact per time step, Rij will be equal to Aij

ki
and the process is called

contact process. While if the number of contacts is really big and λ → ∞,

then Rij will be equal to Aij and the process is called fully reactive process,

that means that the probability that two neighbors are in contact between

each other is equal to 1.

We define then a Bernoulli random variable Qi(t) that is 1 if node i

doesn’t get infected by any neighbors and 0 if it gets infected by at least 1

neighbor, and it can be written in function of the aforesaid terms:

Qi(t) =

n∏
j=1

(1− B(β)B(Rij)Xj(t))

where B(b) defines a Bernoulli random variable with rate b. So now it’s

possible to write the discrete evolution of the process as:

Xi(t+ 1) = Xi(t)(1− B(µ)) + (1−Xi(t))(1−Qi(t)) (3.2)

which says that node i becomes infected only if it was already infected

at the previous time step and it doesn’t recover (first right hand side term),

or it was not infected but it becomes at this time step (second right hand
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side term). Now we take the expectation of the equation 3.2 and we apply

a mean field approximation, that means that the expected values of tuple of

random variables factorize. All the variables are Bernoulli random variables

therefore taking the expectation is the same as considering the probability

of the successful event.

E(Xi(t)) = P(Xi(t) = 1) = xi(t) (3.3)

will finally end up with:

xi(t+ 1) = xi(t)[1− µ] + [1− xi(t)][1− qi(t)] (3.4)

with

qi(t) =

n∏
j=1

(1− βRijxj(t)) (3.5)

The first right hand side term is the probability of already being infected

at time t and don’t recover and the second right hand side term is the

probability of becoming infected at this time step. While qi(t) represents

the probability of avoiding the infection at time t, so that (1 − qi(t)) is the

probability of getting infected at time t.

Waiting for t→∞ we get the steady state equation:

pi = (1− qi) + (1− µ)piqi (3.6)
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3.3 Epidemic threshold

Let’s define the density of infected as the average probability of infection

among the individuals:

ρ =

∑n
i=1 xi
n

We want to look for which values of β we have the onset of the equation,

so for which βc, fixed µ and λ, we get ρ = 0 if β ≤ βc and ρ > 0 if β > βc.

This critical point is found by considering that as long as β → βc [13],

the probability of being infected is really low, xi = εi << 1. Substituting in

equation 3.5 and neglecting the second order terms:

qi(t) ≈ 1− β
n∑
j=1

Rijεj

Plugging into 3.6:

n∑
j=1

(
Rij −

µ

β
δij

)
εj = 0 ∀i = 1, ..., n (3.7)

whose solution is non trivial only if µ/β is the eigenvalue of the matrix

R. Since we are looking for the onset of the epidemic, we want to know the

lowest value of β that satisfies the latter condition, that is:

βc =
µ

Λmax
(3.8)

where Λmax is the maximum eigenvalue of the contact matrix R. The

Perron-Frobenius theorem ensures us that the maximum eigenvalue is posi-

tive, see Appendix A

In the case of a contact process (when λ = 1) the only solution corre-

sponds to β = µ since R becomes the Markov-chain transition matrix whose

maximum eigenvalue is always 1. While for a fully reactive process (when

λ→∞) it depends on the network, for example, for uncorrelated scale-free

networks it’s:

βc = µ
〈k〉
〈k2〉

(3.9)

In Figure 3.1 it’s visible how the threshold changes with the number of
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Figure 3.1: Phase diagram of the SIS contact based process in the case λ = 1
(Contact process), λ → ∞ (Fully reactive process). Erdös-Rényi graph with
〈k〉 = 6 and recovering rate µ = 0.2

contacts λ; in this case the eigenvalue of R is 7.11 so that the critical point

when in the reactive process when µ = 0.2 is at βc = 0.028. On the other

hand if it’s a contact process the critical point is at βc = 0.2.

Since the second order moment diverges with n, the critical point for

Scale-free graphs will approach zero as the size of the system increases.
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Chapter 4

Modelling the awareness

4.1 Formulation of the model

Let’s suppose now that, besides this epidemic spreading process, also infor-

mation spreading happens, creating awareness within the population. So

here it rises a natural question: how to model the awareness?

The most intuitive way of doing this is to use a multilayer network with

2 layers, one is related to the disease spreading and the other to the infor-

mation spreading. Then we consider that the only interconnections between

layers are made by each node and its counterpart in the other layer. So there

is a one to one correspondence between the two layers (multiplex network).

Let’s note with index 1 the elements (networks, degrees, adjacency matrix)

of the information layer and 2 the elements of the disease layer. The first

layer can be though as a "virtual" general social network where the infor-

mation is broadcast and the second one is a real network where each node

corresponds to a single individual. This problem has already been modeled

in some ways before, for example C. Granell, S. Gomez and A. Arenas [14]

made the infection rate change with the awareness that can be interpreted as

aware people taking preventatively medicines in order to avoid the infection.

However the idea now is to act on the activity of the individual and decrease

its number of contacts in the disease layer according to its awareness state.

We say that an individual can be in 3 different states: infected (I), suscepti-

ble and aware (A), susceptible and unaware (U). As it has been done for the

21
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normal SIS model in 3.1, these states can be associated to Bernoulli random

variables Xi(t),Yi(t), Zi(t), so that the state is fully described by the tuple

(Xi(t), Yi(t), Zi(t)):
(1, 0, 0) if node i is infected

(0, 1, 0) if node i is susceptible and aware

(0, 0, 1) if node i is susceptible and unaware

Let’s say that the system has the following possible transitions:

A + I β2−−→ 2I

U + I β2−−→ 2I

I + U β1−−→ I + A

I µ2−−→ U

A µ1−−→ U

the symbols above the arrows represent the probabilities to pass in the

right hand side state and they are named as:

• β1 = information rate

• β2 = infection rate

• µ1 = forget rate

• µ2 = recovery rate

In these transitions some assumptions have been done:

1. An aware individual can also forget the about the disease spreading,

passing then to the unaware state with rate µ1

2. When an individual recovers it goes directly to the unaware (or igno-

rant) state.

3. An aware and an unaware individual, once in contact with an infected

individual, contracts the disease with the same rate β2.
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4. Infected individuals are the core of both the spreading processes: they

pass both the infection and the information that they are infected (not

necessarly to the same individual, since this happens in two different

layers).

From the third point it can be seen that the infection rate is not suppose

to change with the awareness; one could think that an aware node could try to

prevent the disease taking some kind of vaccines or other medicines in order

to contrast the infection. Nevertheless, as already said, in this framework

the aim is to model the behavior of the individuals with their activity, which

directly manifests itself in the number of contacts (in the disease layer). The

hypothesis is then that as long as an individual is aware, it will do as few

contacts within its neighbors as possible in order to avoid the disease, so

let’s say 1 contact, λA = 1. It’s preferable not to choose λA = 0 otherwise

it would mean a completely isolation from the rest of the world which is not

realistic. On the other hand an unaware individual keeps doing the normal

number of contact λU = λ as usual. This concept can be written using the

contact matrix that has been shown in the previous chapter:

(RA2 )ij = 1−
(

1− (A2)ij
(k2)i

)λA
λA=1

=
(A2)ij
(k2)i

(4.1)

(RU2 )ij = 1−
(

1− (A2)ij
(k2)i

)λ
(4.2)

The contact matrix for the information layer is:

(R1)ij = 1−
(

1− (A1)ij
(k1)i

)λ
(4.3)

We assumed here that the number of contacts made in order to spread the

information is the same amount as the one made by an unaware individual

in the second layer.

In the case in which the number of contacts is really high, RU has only 1

or 0 entries and the infection process will be a mix of a contact process and

a fully reactive process.

Now it’s possible to start building the equations, call QAi , Q
U
i and Vi
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the Bernoulli random variables that respectively are equal to 1: whether the

individual avoids the infection while it belongs to the aware state (QAi ), if

the individual avoids the infection while it belongs to the unaware state (QUi )

and if the individual doesn’t get informed (Vi ).

QAi =
n∏
j=1

[1− B(β2)B((RA2 )ij)Xj ] (4.4)

QUi =
n∏
j=1

[1− B(β2)B((RU2 )ij)Xj ] (4.5)

Vi =
n∏
j=1

[1− B(β1)B((R1)ij)Xj ] (4.6)

As it has been said before only infected individuals spread the information

of the infection, otherwise it would be necessarily to add another productory

in equation 4.6 (this is the reason why there is Xj inside the equation)∏
j [1− B(β1)B((R1)ij)Yj ], making the equation less handy.


Xi(t+ 1) = Xi(t)[1− B(µ2)] +Wi(t)[1−QAi (t)] + Yi(t)[1−QUi (t)]

Yi(t+ 1) = Yi(t)[1− B(µ1)]Q
A
i (t) + Zi(t)Q

U
i (t)(1− Vi(t))

Zi(t+ 1) = Z(t)QUi Vi(t) +X(t)B(µ2) + Yi(t)B(µ1)Q
A
i (t)

(4.7)

As done for the single layer SIS model, applying the expectation, the

mean field approximation and exploiting the property of the Bernoulli ran-

dom variables, it’s possible to write everything in terms of the single proba-

bilities (similarly of what it has been done for rumor spreading by [9]):

E(Xi(t)) = P(Xi(t) = 1) = xi(t)

E(Yi(t)) = P(Yi(t) = 1) = yi(t)

E(Zi(t)) = P(Zi(t) = 1) = zi(t)
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
xi(t+ 1) = xi(t)[1− µ2] + yi(t)[1− qAi (t)] + zi(t)[1− qUi (t)]

yi(t+ 1) = yi(t)(1− µ1)qAi (t) + zi(t)[1− vi(t)]qUi (t)

zi(t+ 1) = zi(t)vi(t)q
U
i (t) + yi(t)q

A
i (t)µ1 + xiµ2

(4.8)

with:

qAi =
n∏
j=1

[1− β2(RA2 )ijxj ] (4.9)

qUi =
n∏
j=1

[1− β2(RU2 )ijxj ] (4.10)

vi =

n∏
j=1

[1− β1(R1)ijxj ] (4.11)

The initial point is given by a little percentage (usually 5%) of infected

population and the rest is formed by unaware. In this way it’s possible to

recover the classical SIS contact-based model imposing β1 = 0.

It’s important to notice that using the mean-field approximation all the

expectations coming out from the productories in equations 4.4, 4.5 and 4.6

factorize: this means that we have assumed all the neighbors of i indepen-

dents. This is true only if their are not each other’s neighbors as well, so for

example for tree-graphs, that don’t exhibit self-loops.

4.2 Threshold

Proceeding as done in the previous chapter, it’s possible to study the position

of the critical point in the ρ − β2 diagram taking xi ≈ 0 ∀i at the steady

state and approximating at the productories 4.9, 4.10, 4.11 at first order,

getting:

qAi ≈ 1−
n∑
j=1

β2(R
A
2 )ijxj (4.12)
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qUi ≈ 1−
n∑
j=1

β2(R
U
2 )ijxj (4.13)

vi ≈ 1−
n∑
j=1

β1(R1)ijxj (4.14)

Plugging them in the first equation of 4.8:

0 = −xiµ2 + yiβ2

n∑
j=1

(RA2 )ijxj + ziβ2

n∑
j=1

(RU2 )ijxj (4.15)

n∑
j=1

(
yi(R

A
2 )ij + zi(R

U
2 )ij −

µ2
β2
δij

)
xj (4.16)

Therefore, in order to have a non-trivial solution, the ratio µ2/β2 has to

be the eigenvalue of the matrix:

Hij = yi(R
A
2 )ij + zi(R

U
2 )ij (4.17)

(β2)c =
µ2

Λmax(H)
(4.18)

that depends strongly on the steady state values of the probabilities of

being aware and unaware yi and zi.

4.2.1 Case µ1 = 0: individuals don’t forget

Before reaching the steady state the system passes through a transient in

which the infected individuals spread the information, creating a portion of

aware individuals that remain as such even if the disease dies out. Since

xi ≈ 0 it’s possible to write zi as 1 − yi and if the second order term given

by xixj in 4.16 are neglected the matrix H can be written like:

Hij = (RU2 )ij − yi((RU2 )ij − (RA2 )ij) (4.19)

which lies always within (RA2 )ij ≤ Hij ≤ (RU2 )ij , since 0 < yi < 1. Then,

given an integer n:

||Hn||∞ ≤ ||(RU2 )n||∞
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||Hn||1/n∞ ≤ ||(RU2 )n||1/n∞

lim
n→∞

||Hn||1/n∞ ≤ lim
n→∞

||(RU2 )n||1/n∞

And the Gelfand’s formula for spectral radius of a matrix M states that:

Λmax(M) = lim
n→∞

||Mn||1/n∞

and then we can say:

µ2

Λmax(RU2 )
≤ (β2)c =

µ2
Λmax(H)

≤ µ2

Λmax(RA2 )
(4.20)

and since Λmax(RA2 ) = 1

µ2

Λmax(RU2 )
≤ (β2)c =

µ2
Λmax(H)

≤ µ2 (4.21)

This means that the threshold is different from the classical SIS case and

it’s shifted to the right in the phase diagram, depending on the probabilities

of awareness yi: the greater they are, the lower will be Hij and the higher

will be the threshold, up to the case yi = 1 ∀i where Hij = RAij producing

a contact process and a critical value at βc = µ. However it’s important to

remark that, as long as β1 6= 0, a fully contact process is impossible since

having all the xi = 1 is forbitten because there is always at least 1 unaware

node coming from the recovery of the last infected node.

Homogeneous networks

In the case of homogeneous networks ki = 〈k〉 ∀i, and assuming for semplicity

〈k1〉 = 〈k2〉 = 〈k〉 making:

(RA2 )ij =
(A2)ij
〈k〉

(4.22)

(RU2 )ij = 1−
(

1− (A2)ij
〈k〉

)λ
:= (A2)ijRλ(〈k〉) (4.23)

with Rλ(x) := 1−
(
1− 1

x

)λ.
Since for homogeneous network the solution doesn’t depend on the node,
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then xi = ρI ≈ 0, yi = ρA and zi = ρU and equations 4.12, 4.13 and 4.14

become:

qA = 1− β2ρI (4.24)

qU = 1− β2〈k〉Rλ(〈k〉)ρI (4.25)

v = 1− β1〈k〉Rλ(〈k〉)ρI (4.26)

plugging into 4.16:

ρI
(
−µ2
β2

+ ρA + ρU 〈k〉Rλ(〈k〉)
)

(4.27)

Using the second equation of 4.8 with µ1 = 0:

(
−ρAβ2 + ρU 〈k〉Rλ(〈k〉)β1

)
ρI = 0 (4.28)

and writing ρU = 1 − ρA − ρI we reach a second order equation whose

solution with respect to β2 is:

β2 =
〈k〉Rλ(〈k〉)β1 + µ2 +

√
(〈k〉Rλ(〈k〉)β1 − µ2)2 + 4(〈k〉Rλ(〈k〉))2µ2β1

2〈k〉Rλ(〈k〉)
(4.29)

In this case there are also explicit expressions for ρA and ρU at the

threshold:

ρA =
〈k〉Rλ(〈k〉)

β2 + β1〈k〉Rλ(〈k〉)
(4.30)

ρU =
β2

β2 + β1〈k〉Rλ(〈k〉)
(4.31)
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(a) Shape of the critical line in the β1 − β2 plane

(b) Value of ρA at the critical point in function of β1

Figure 4.1: Critical line and critical solution for an homogeneous network
changing with the initial number of contacts λ. 〈k〉 = 10
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4.2.2 Case µ1 6= 0: individuals can forget

In the case in which aware individuals can forget the information, that is

when µ1 6= 0, at the threshold also yi is approximately zero ∀i since the

aware individuals eventually forget about the disease and they don’t get

informed anymore as long as also xi ≈ 0. This means that the population is

mostly unaware (zi ≈ 1 ∀i). Then:

Hij = zi(R
U )ij ≈ (RU )ij (4.32)

(β2)c =
µ2

Λmax(RU )
(4.33)

This says that the threshold is the same as in the classical SIS contact-

based model (i.e. when β1 = 0). So the spreading of the information doesn’t

give any advantage in term of the critical point, in other words: as hard the

individuals try to avoid the infection decreasing their contacts, the onset of

the disease is given by the same parameters β2 and µ2 that were found in the

case β1 = 0. The advantage will be to decrease the entity of the infection,

so ρ is decreasing with β1 given the same parameters, but this will be seen

in section 5.2.



Chapter 5

Numerical results

5.1 Monte Carlo simulation

In order to validate the model, some pure stochastic simulations have been

done and then compared to the Mean-field solution of equations 4.8. First an

initial percentage of infected nodes is randomly selected, then the stochastic

simulation runs, following the same logic of equations 4.7. The stochastic

simulation can have random oscillations and reach the absorbing state (where

there aren’t infected individuals anymore) even if the parameters are above

the threshold; in order to avoid this it’s better to average the density of

infected individuals over many successful simulations. However this method

is really wasteful in terms of computational cost, since the survival runs

are rare close to the critical point. So it has been used the quasistationary

method (QS) [10] based on the idea of constraining the system in an active

state. In order to do so a list of M active configurations is stored during

the simulation and as soon as the system tries to visit the absorbing state,

where the number of infected is equal to zero, then the present configuration

is substituted with a random one chosen from these M configurations. The

density of infected is then computed within an averaging time ta after a

relaxation time tr.

In Figure 5.1 it can be seen that the agreement between steady state so-

lutions given by Monte Carlo method and Mean-field equations gets better

increasing the system size and also the dispersion decreases. But the mis-

31
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match between the two solutions is still present for two reasons: the first is

due to correlation dynamics that are neglected in the mean-field approxima-

tion, the second is because of the small system size used in the simulations.

Let’s try to explain these problems better: Monte Carlo solution matches

with the Mean-field solution only if the recovery rate is not to close to 1.

This problem rises because having a recovery rate equal to one µ = 1 means

that at each time step all the infected individuals, after infecting others, re-

cover with probability 1. So the systems follows really fast time scales and the

mean field approximation is less correct, because inside a time step each node

depends strongly on the connections between its neighbors (given by custer-

ing coefficient), breaking the condition E[Xi(t)Xj(t)] = E[Xj1(t)]E[Xj2(t)],

where j1, j2 are neighbors of i. If the time step represents 1 day and the dis-

ease is influenza, imposing µ = 1 is a really strong condition since it means

that an infected person can recover in just one day. So taking lower values

for µ, in a range [0, 0.5] makes the mean-field model more accurate and also

reasonable. In order to have a better approximation it’s necessary to change

the deterministic model and use another approximation; for example it has

been shown [10] that a pair-wise approximation [12] gives more precise so-

lutions, since it takes into account the correlations between neighbors. The

second reason is that for bigger system sizes the shape of the curve becomes

sharper, as it has been shown in [17, 8], but for practical reasons in this

framework it’s impossible to reach such dimensions.
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(a) n = 250
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(b) n = 2000

Figure 5.1: Comparison between Monte Carlo QS method and Mean-field
equation of the steady state density of infected. Vertical bars define the dis-
persion. Random regular graphs 〈k〉 = 6 and parameters β1 = 0.2, µ2 = 0.2,
µ1 = 0, λ = 50
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5.2 Phase diagrams

In order to see the effects of the the intensity of the information rate on the

system, first the dynamic equations 4.8 are iterated and then the steady state

solutions of the densities (so after the relaxation time is passed) are taken

and plotted in the phase diagram, varying the value of β1. First let’s define

the densities of infected, aware (or awareness) and unaware (or ignorance):

ρI =

∑N
j xj

N
(5.1)

ρA =

∑N
j yj

N
(5.2)

ρU =

∑N
j zj

N
(5.3)

In Figure 5.2 is shown the dynamics of the density of infected and aware

individuals when the information rate is high (β1 = 0.7) and it’s enough to

make the infection die out after few time steps. On the other hand in Figure

5.3 β1 is lower and the infection is still present at the steady state. The

blue and orange curve just define the difference between deterministic and

stochastic equation along the dynamics.
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Figure 5.2: Dynamics of the densities in the absorbing phase for Erdös-
Rényi graphs (randomly correlated) with 〈k〉 = 8 and parameters β1 = 0.7,
β2 = 0.2, µ2 = 0.5, µ1 = 0, n = 300, λ = 50

From Figure 5.4a it can be seen as (in the case of µ1 = 0) the information

rate shifts the threshold: this means that in order to have an onset of the



5.2. PHASE DIAGRAMS 35

0 50 100 150 200 250 300

t

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ρI

Mean field approximation
Monte Carlo

(a) ρI

0 50 100 150 200 250 300

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρA

Mean field approximation
Monte Carlo

(b) ρA

Figure 5.3: Dynamics of the densities in the active phase for Erdös-Rényi
graphs (randomly correlated) with 〈k〉 = 8 and parameters β1 = 0.1, β2 = 0.2,
µ2 = 0.5, µ1 = 0, n = 300, λ = 50

epidemic, it’s necessary to have a more "aggressive" disease (larger β2) as

β1 increases. While for large values of β2 the densities converge at the same

value, meaning that if the disease is strong enough, the spreading of the

information has no effects. Figure 5.4b shows that the maximum of awareness

corresponds to the critical point after which it starts to decrease up to zero.

From 5.4c it can be seen as the threshold corresponds to the lower number

of contacts. The average number of contacts is just the weighted average of

the contacts made by susceptible individuals:

〈λ〉 =
λρU + ρA

ρU + ρA
(5.4)

As long as the information rate is increased, the average number of con-

tacts at the threshold decreases. And it’s even more reduced when the infec-

tion rate approaches the critical point, since the two process are correlated

and when the number of infected grows, these infected nodes also pass the

information to some of their neighbors making the awareness grow as well.

When β1 approaches 1, every contacted node in the information layer receives

successfully the information and then changes its contacts to 1, making the

average number of contacts very low. At the threshold the average number

of contacts 〈λ〉 gets closer and closer to 1, but it will never become 1 since

the recovered nodes will still have λ contacts. Therefore after a while is no

more possible to decrease the average number of contacts further, since the
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most of the nodes will be aware, and the growth of the infection rate can

only have the effect to increase the spreading of the infection, but not the

information, since the latter is at its maximum value.

In Figure 5.5 are plotted the heat maps of the phase diagrams of ρI , ρA

and ρU in function of the 2 spreading rates: the blue area in 5.5a is the safe

region in which the disease is not present. In these plots is even more evident

how the information has effect mostly on lower values of the infection rate.

In the case in which µ1 6= 0 the behavior is completely different, as shown

in Figures 5.6 and 5.7: the critical point is no more shifted, as it has been

said in the previous section, and the only effect that the information has is

to decrease the entity of the infection, but not to nullify it. From now on

the research will be focused only on the case where µ1 = 0, which is more

interesting since the threshold is not trivial and it’s also more reasonable

since in the case of a real epidemic, people don’t drop the information after

a while, but just in the case when they are told that the infection is over.
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(c) Average number of contacts changing with β1

Figure 5.4: Effects of changing the information rate on the system for Erdös-
Rényi graphs (randomly correlated) with 〈k〉 = 8 and parameters µ2 = 0.5,
µ1 = 0, n = 300, λ = 50
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(a) ρI

(b) ρA

(c) ρU

Figure 5.5: Effects of changing the two spreading rates on the densities for an
Erdös-Rényi graph with 〈k〉 = 8 and parameters µ2 = 0.5, µ1 = 0, n = 300,
λ = 50
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Figure 5.6: Effects of changing the information rate on the system for Erdös-
Rényi graphs (randomly correlated) with 〈k〉 = 8 and parameters µ2 = 0.5,
µ1 = 0.5, n = 300, λ = 50
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(a) ρI

(b) ρA

(c) ρU

Figure 5.7: Effects of changing the two spreading rates on the densities for
an Erdös-Rényi graph with 〈k〉 = 8 and parameters µ2 = 0.5, µ1 = 0.5,
n = 300, λ = 50
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5.3 Degree densities

So far only the global properties of the systems have been studied, such as

the global densities, but it can be interesting to see where the disease and the

awareness concentrate more inside the network. Let’s take then two identical

networks for both layers and let’s see whether the hubs are mostly occupied

by the disease or by the information at the steady state and with conditions

not too far from the critical point. The degree densities are defined as follows:

ρIk =

∑
i∈Vk xi

Nk
(5.5)

ρAk =

∑
i∈Vk yi

Nk
(5.6)

ρUk =

∑
i∈Vk zi

Nk
(5.7)

where Vk is the set of nodes with degree equal to k and Nk is its size.

From Figure 5.8 it can be seen how the partition of the degree-densities

changes with the degree, varying the information rate. Looking at the green

and yellow area it can be noticed that the the hubs show always a "disease

prevalence", in the sense that, despite the increasing value of β1, most of the

disease will concentrate on the highest degree nodes, while the awareness

is more distributed in lower degree nodes, until β1 is high enough to make

the information prevail. This is even more evident for a Barabasi-Albert

network, Figure 5.9, that is a particular power-law network with exponent

equal to 3. This happens because it was supposed at the beginning that

only the infected nodes spread the information, therefore when the infection

starts, it’s more likely for the spreading process to concentrate on the hubs;

so in the case in which β1 < β2, the hubs are more likely to be infected

and only at the next time step they can communicate their status to the

remained nodes, that are lower degree nodes. Since we assumed for now

that individuals don’t forget (µ1 = 0), the aware nodes will keep just 1

contact until they get infected (but it’s really unlikely for them to contract

the infection), this means that the infection will keep bouncing between the

higher degree nodes, followed by the information, until the steady state. It’s
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better to emphasize that this qualitative explanation only works when β2 is

close to the critical point and such that there exist a β1 such that it makes

the infection die out. Because it has already been said that for high values

of β2 the information spreading has no effects on the systems.
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Figure 5.8: Degree densities for an Erdös-Rényi graph with 〈k〉 = 8 and
parameters µ2 = 0.5, µ1 = 0, β2 = 0.3 n = 500, λ = 50
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Figure 5.9: Degree densities for an Barabasi-Albert graph with 〈k〉 = 8 and
parameters µ2 = 0.5, µ1 = 0, β2 = 0.25 n = 500, λ = 50

5.4 Numerical localization of the critical point

The position of the critical point is one of the most important feature when

one studies the epidemic spreading processes since it clearly divides the en-

demic phase of the process with the absorbing phase, where the disease dies

out after a while. There is then a plethora of studies about this that involves

knowledge and techniques used mainly in statistical mechanics, thanks to

the similarity that comes upon in these kind of processes. All the follow-

ing methods are based on the statistics of pure stochastic simulations, that

are performed with quasi-stationary Monte Carlo methods that have been

described in 5.1. Moreover, from now on only pure homogeneous networks

(Random Regular graphs) are used, since they are the only networks for

which an analytic expression of the critical point has been found (see 4.29).

To fix a reference we’re going to use random regular graphs with 〈k〉 = 6

for both layers (but different) and parameters β1 = 0.2, µ2 = 0.2, µ1 = 0,
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(a) β2 = 0.0669 (b) β2 = 0.0958

(c) β2 = 0.1008 (d) β2 = 0.1500

Figure 5.10: Distribution of the density of infected before and after the crit-
ical point

λ = 50, which critical point in the mean field approximation is β2 = 0.13.

However it’s better to stress again that the analytic solution will differ a bit

from the pure stochastic solution, as it has been explained in 5.1, but the

methods that are used here can still find the effective critical point since

they disregards approximations and they are only affected by the number of

simulations where to average on.

In Figure 5.10 it can be seen how the distribution of the density of infected

changes from the absorbing phase to the active phase: before the critical

point the density has a peak in zero and decays up to little value of ρI ≈
0.008; on the other hand over the critical point it distributes like a gaussian

whose standard deviation decreases with n. In this case the critical point

is around the value β2 = 0.0958 since from the picture it’s evident how the

distribution (and therefore the system) is passing through a transition.
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5.4.1 Finite size scaling

Statistical mechanics shows how continuous (or second order) phase transi-

tions are characterized by power-law behaviors of the thermodynamics vari-

ables with respect to the temperature, such as magnetization, susceptibility,

latent heat etc. This means that while approaching the critical temper-

ature Tc every thermodynamic function F behaves like F (t) ∼ |t|α, with

|t| = (T − Tc)/Tc. For example, taking the phase transition from ferromag-

netic to paramagnetic, without external magnetic field (H = 0), it comes out

that the magnetization m goes to zero with a power-law behavior (therefore

the exponent must be positive) while the susceptibility χ and the correlation

length ξ diverge at the critical temperature (then the exponents are negative)

as:

m ∼ |t|α , α > 0 (5.8)

χ ∼ |t|−γ , γ > 0 (5.9)

ξ ∼ |t|−ν , ν > 0 (5.10)

This phenomena and the phase transition itself make sense only at the

thermodynamic limit so when the size of the system approach infinity (n→
∞), which is unfeasible for obvious reasons, but the study for finite dimen-

sions in this case comes out to be useful to investigate the threshold.

The finite size scaling method [10, 16] allows to estimate numerically the

critical point and the critical exponents studying the density for different

system sizes. The main concept of this method is based on the hypothesis

of Fisher and Barber [11, 16] which said that there must be only a char-

acteristic length of the system describing the change of the thermodynamic

singularities from the infinite case to the finite one. This means that the cor-

relation length in finite system is assumed to be cut off to L when it reaches

the system size, while in the case in which ξ << L it’s equal to the infinite

system one, calling with L the system size in the general case. Plugging 5.10

into 5.8 we get:

m ∼ L−α/ν (5.11)
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which tells us that m decays as a power law also with respect to the system

size at the critical point.

Therefore, in our case where the system size is defined by the network

size n, the order parameter by ρI , the control parameter as β2, this reasoning

still holds and we have:

ρI ∼ (β2 − βc)α (5.12)

ξ ∼ (β2 − βc)−ν (5.13)

Putting them together using ξ ∼ n

ρI ∼ n−α/ν (5.14)

if the control parameter β2 stays under the critical point βc then ρI ∼ 1
n

since it’s limited to only one infected node because of the QS method. While

when β2 > βc the density is constant with respect to the system size. The

critical point is characterized by a power-law decay ρI ∼ nx, x > 0 [17].

Plotting in logarithmic scale ρI in function of the dimensions and for different

control parameters β2 it can be estimate where the critical point is: for

example in Figure 5.11 we have that approximately until β2 = 0.08 the

system is in the absorbing phase, since the lines have slope close to 1, when

β2 = 0.09 instead the slope increases until it reaches zero (so when the system

is in the ordered phase). Therefore we can conclude that the critical point

is in between 0.08 < βc < 0.10. This critical point doesn’t match with the

analytic one from equation 4.29 for the reasons said in section 5.1.
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Figure 5.11: Random regular graphs with 〈k〉 = 6 and parameters β1 = 0.2,
µ2 = 0.2, µ1 = 0, λ = 50

5.4.2 Susceptibility peak

The susceptibility is a measure of the oscillation of the density which in the

finite size case it presents a peak at the critical point, since it’s the point

in which the biggest oscillations are found. The modified susceptibility is

defined as follows [10]:

χ = N
〈(ρI)2〉 − 〈ρI〉2

〈ρI〉
=
〈n2I〉 − 〈nI〉2

〈nI〉
(5.15)

with nI the number of infected individuals. The average is taken among the

last ta values of the density of infected individuals coming from the QS Monte

Carlo simulaton. It’s been used equation 5.15 and not the classical expression

for susceptibility χ = N〈(ρI)2〉 − 〈ρI〉2 since it leads to clearer numerical

results keeping the same scaling properties [10]. It can be verified in Figure

5.12 since the peak seems to coincide with the critical point. Moreover,

if we plot the susceptibilities altogether we can see that the maximum of
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χ increases with the system size, as it can be seen in Figure 5.14 and in

order to see it clearer the susceptibility is zoomed in near the critical point

(Figure 5.13b). Since the closer to the threshold the system is, the bigger the

oscillations are, it has been necessary to pass it through an moving average

filter, as it has been shown in Figure 5.13b. When we plot the values of

these maximum in a logarithmic scale plot in function of the system size,

they concentrate along a straight line, as predicted in the finite size scaling

theory. In fact taking equation 5.10 and plugging it into 5.9 it comes out

that

χ ∼ nγ/ν (5.16)

The slope of the line is the value of the critical exponent. In this case

then γ/ν = 0.45

The position of the maximum of the susceptibility is actually shifted from

the real critical point (for infinite systems βc(∞)) and it places itself in a

pseudo critical point βc(n). It can be expected that [16], for sufficiently large

system (L→∞):

(βc(n)− βc(∞)) ∼ L−λ′ (5.17)

where λ′ is the so called shift exponent. Moreover, the more the dimension

is small, the broader the curves are, and this can be described defining a

rounding parameter β?2 such that if |β2 − βc| ≥ |β?2 − βc| than the finite

size susceptibility is equal to the one from the infinite case χ(n) = χ(∞).

Equivalentely to the shift exponent one may define the rounding exponent,

for sufficiently large system (L→∞), as:

(β?2 − βc(∞)) ∼ L−θ (5.18)

If we use the assumption proposed by Fisher and Barber [11] described in

5.4.1 (ξ = n) it comes out that λ′ = θ = 1/ν since ξ ∼ (β2 − βc)−ν close to

the critical point.
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Figure 5.12: Showing the corrispondency between the critical point and the
peak of susceptibility
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Figure 5.13: Random regular graphs with 〈k〉 = 6 and parameters β1 = 0.2,
µ2 = 0.2, µ1 = 0, λ = 50
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Figure 5.14: Maximum of the susceptibility χ changing the system size n.
Random regular graphs with 〈k〉 = 6 and parameters β1 = 0.2, µ2 = 0.2,
µ1 = 0, λ = 50

5.4.3 Lifespan method

Another way to distinguish the absorbing and the epidemic phase relies on

the average lifetime of the infection over the simulations, in other words, the

lifespan of the infection [18]. Theoretically speaking, just above the epidemic

threshold, the lifespan of the infection is infinite while below it’s finite and

then it’s possible to compute it averaging the time it takes to reach zero

along the simulations. With the quasi-stationary Monte Carlo method it’s

defined in a slightly different. Calling P (nI) the probability of having nI
infected nodes, computed along a given time ta in a single simulation, the

lifespan will be then:

〈T 〉 =
1

P (1)
(5.19)

that is the rate at which configurations with a single infected nodes ap-
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pear.
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Figure 5.15: Random regular graphs with 〈k〉 = 6 and parameters β1 = 0.2,
µ2 = 0.2, µ1 = 0, λ = 50

In the practical cases the endemic phase won’t be characterized by infinite

lifespan, but it’s cut-off a the final simulation time, which is going to be larger

for bigger network size as can be seen in Figure 5.15; when the ending time

of the simulation is achieved without reaching nI = 1, the lifespan is not

considered. In Figure 5.15 then the critical point is given by the ending

point of the curves. Since close to the critical point the oscillations are huge,

firstly the lifepan is passed through an average filter to clarify better the

results. The critical point is estimated better for larger running time for the

simulations, which is here limited to tmax = 3000 with a relaxation time of

1000 for the biggest sizes, that leads to ta = 2000.



Conclusions

This thesis proposed a new idea to face the human reaction to the infection,

based on the activity of the individuals: it took several months of work,

because from intuition to modeling there is a really big step. The main result

is that the spreading of the information have a clear impact on the infection

when people don’t forget the information (µ1 = 0) since it shifts the critical

point to an higher value and the density of infected at the steady state is

always lower or equal to the ordinary case in which information is not present.

While, when individuals lose the information, the threshold stays at the same

point such as in a fully reactive process and the only effect of being aware

is to decrease the value of the density of infected. The analytical equations

built from the mean-field approximation have been always compared to the

Monte Carlo simulation so that it was possible to check the consistency of

the solutions. The main problem in this case is the imperfection of the mean-

field equations close to the critical point where the approximation leads to a

non exact solution. Moreover, also Monte Carlo would need to be taken to

heavier simulations since here, for numerical limitations of a simple laptop,

it’s restricted to the order of 103 time steps and up to a maximum of 2000

nodes per layer. In order to fix this it could be necessary to do stronger

Monte Carlo simulations and to use finer models with other approximations

instead of the mean-field one, but this would mean to rewrite everything

from the beginning. For future perspectives it could be also interesting

to couple this model to similar other ones, for example the one made by

C. Granell et al. [14] which assumes that the individuals react trying to

prevent the infection taking medicines (reducing β2), which is another kind

of hypothesis. Furthermore here the approach is only probability-modeling

53
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driven, while one could see the problem from the data and statistical point of

view, that would mean to first study data from both real networks and social

network and find a pattern on how the people aware of the infection pass the

information and react to it. This needs to take into consideration to be able

to have access to data related to health and social networks, which is not so

straightforward. However this thesis could be a really good launchpad where

to begin if someone wanted to get involved in this transverse and complex

world of the epidemic and social dynamics.
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Appendix A

Perron-Frobenius theorem

A ∈ Rm×n is said to be a nonnegative matrix whenever each aij ≥ 0 and

this i denoted as A ≥ 0

Perron-Frobenius theorem for nonnegative and irreducible matrices states

that [20]:

If An×n is irreducible the following statements are true.

• r = ρ(A) ∈ σ(A) and r > 0

• r has algebraic multiplicity equal to 1

• There exists an eigenvector x > 0 such that Ax = rx

• The unique vector defined by

Ap = rp, p > 0, and ||p||1 = 1

is called the Perron vector.
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Appendix B

Main codes

ML_functions_2L.py

import numpy as np

import networkx as nx

# Use fu l f unc t i on s used in mean− f i e l d equa t i ons

def contact_mat (A, n , l , k ) :

# −−−−−−−
# Creates the con tac t matrix o f 1 l a y e r g i ven :

# A = adjacency matrix

# n = number o f nodes

# l = number o f con tac t s t h a t an i n f e c t e d does

# k = vec to r o f the node degrees (number o f

ne i ghbor s )

# −−−−−−−
k = k . astype ( f loat )

RR = A/k [ : , None ]

R = np . empty ( [ n , n ] )

R = 1−np . power ( ( np . ones ( ( n , n) ) − RR) , l )

return R
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def iter_dynamic_eq_lambda (p , w, x , beta2 , beta1 , R1 ,

A2 , l1 , l2 , k1 , k2 , mu2 , mu1 , n) :

# I t e r a t i o n o f the dynamic equa t i ons

# −−− INPUTS −−−
# − p ,w, x = p r o b a b i l i t y o f r e s p e c t e v e l y be ing

in f e c t e d , aware and unaware at time t . n−dim
ve c t o r s

# − beta2 , be ta1 = i n f e c t i o n rate , in format ion ra t e

.

# − R1 = contac t matrix o f in format ion l a y e r

# − A2 = adjacency matrix o f i n f e c t i o n l a y e r

# − l1 , l 2 = lambda , so number o f con tac t s in l a y e r

1 and 2 ( f o r unaware peop l e ) .

# − mu2, mu1 = recovery rate , f o r g e t ra t e

# − n = number o f nodes

# −−− OUTPUTS −−−
# p_new , w_new, x_new = p r o b a b i l i t y o f r e s p e c t e v e l y

be ing in f e c t e d , aware and unaware at time t+1

q_a = np . ones (n)

q_u = np . ones (n)

v = np . ones (n)

R2_u = contact_mat (A2 , n , l2 , k2 )

R2_a = A2/k2 [ : , None ]

for j in range (n) : # perform productory

patrick2_a = np . array (R2_a [ : , j ] ) . f l a t t e n ( )

patrick2_u = np . array (R2_u [ : , j ] ) . f l a t t e n ( )

pa t r i ck1 = np . array (R1 [ : , j ] ) . f l a t t e n ( )

q_a = q_a∗(1−beta2 ∗patrick2_a∗p [ j ] )

q_u = q_u∗(1−beta2 ∗patrick2_u∗p [ j ] )

v = v∗(1−beta1 ∗ pa t r i ck1 ∗p [ j ] )

p_new = p∗(1.−mu2)+w∗(1.−q_a)+x∗(1.−q_u)
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w_new = w∗q_a∗(1.−mu1) + x∗(1.−v ) ∗q_u

x_new = x∗v∗q_u + w∗q_a∗mu1 + p∗mu2

return p_new , w_new, x_new

funct_MC_contacts3.py

import numpy as np

import matp lo t l i b . pyplot as p l t

import networkx as nx

import s c ipy as sp

import s c ipy . opt imize

import math

from Create_RR_2L import create_RR_2L

import random

from ML_functions_2L import contact_mat

# Monte Carlo dynamics f unc t i on s us ing the con tac t

matrix R in s t ead o f doing a pure MC

def MC_time_step3( i n f e c t ed , aware , ignorants ,G1,G2,R1 ,R2 ,

A2 , k1 , k2 , beta1 , beta2 ,mu2 ,mu1 , l1 , l2 , n ) :

# Dynamics o f the Monte Carlo s imu la t i on in 1 time

s t ep

# Ind i c e s o f i n f e c t e d nodes

i n f = np . where ( i n f e c t e d==1)

i n f = np . array ( i n f ) . f l a t t e n ( )

# Ind i c e s o f aware nodes

aw = np . where ( aware == 1)

aw = np . array (aw) . f l a t t e n ( )

# ind i c e s o f i gnorant nodes

ign = np . where ( i gno rant s == 1)

ign = np . array ( ign ) . f l a t t e n ( )
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# New s t a t e s f o r t+1

infected_new = np . z e r o s (n)

ignorants_new = np . z e r o s (n)

aware_new = np . z e r o s (n)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Dynamics o f i n f e c t e d i n d i v i d u a l s

# The i n f e c t e d nodes can recover and become unaware

Ber_recover = np . random . binomial (n=1,p=mu2, s i z e=np

. s i z e ( i n f ) )

infected_new [ i n f ] = 1−Ber_recover # x∗(1−mu2)

ignorants_new [ i n f ] = Ber_recover # x∗mu2

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Dynamics o f aware i n d i v i d u a l s

# Aware i n d i v i d u a l s can f o r g e t ( or not ) and then

can be i n f e c t e d ( or not )

for a in aw :

Ber_forget = np . random . binomial (n=1,p=mu1) # =1

i f the node f o r g e t s , = 0 i f i t ’ s s t i l l

aware

neighbors2_a = G2. ne ighbors ( a )

nnb2 = np . s i z e ( neighbors2_a )

neighbors2_a = np . array ( neighbors2_a )

R2_a = 1 ./ f loat ( nnb2 )

contaminated = 0

c = 0

for i in neighbors2_a :

r1 = np . random . uniform (0 , 1 )

# r2 = np . random . uniform (0 ,1)
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# i f r1 < beta2 and r2 < R2_a and i n f e c t e d [

i ]==1:

i f r1 < beta2 ∗R2_a∗ i n f e c t e d [ i ] :

contaminated=1

# c = 1

# contaminated = np .max ( [ contaminated , c ] )

infected_new [ a ] = contaminated # w∗(1−
q_a)

aware_new [ a ] = (1−contaminated ) ∗(1−Ber_forget )

# w∗q_a∗(1−mu1)

ignorants_new [ a]=(1− contaminated ) ∗( Ber_forget )

# w∗q_a∗mu1

# −−−−−−−−−−−−−−−−−−−−−−−−−−−
# Dynamics o f i gnorant i n d i v i d u a l s

for m in ign :

neighbors1_m = G1. ne ighbors (m)

neighbors2_m = G2. ne ighbors (m)

# Hypothes i s : on ly i n f e c t e d nodes comunicate

t h e i r own s t a t u s

informed = 0

d=0

for j in neighbors1_m : # node m can ge t

informed by the ne i ghbor s

r1 = np . random . uniform (0 , 1 )

i f r1 < beta1 ∗R1 [m, j ] ∗ i n f e c t e d [ j ] :

informed = 1

# d = 1

# informed = np .max ( [ informed , d ] )

contaminated = 0
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c=0

for i in neighbors2_m :

r2 = np . random . uniform (0 , 1 )

i f r2 < beta2 ∗R2 [m, i ] ∗ i n f e c t e d [ i ] :

contaminated=1

# c = 1

# contaminated = np .max ( [ contaminated , c ] )

infected_new [m] = contaminated

aware_new [m] = (1−contaminated ) ∗ informed

ignorants_new [m] = (1−contaminated ) ∗(1− informed

)

return infected_new , aware_new , ignorants_new

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−
def QS_MC3(G1,G2,R1 ,R2 ,A2 , k1 , k2 , l1 , l2 , beta1 , beta2 ,mu2 ,

mu1 , n , tmax , in f0 , M) :

# Quasi−s t a t i ona r y Monte Carlo

i n f 0 = np . random . rand int (0 , n , np . int (n∗ i n f 0 ) ) #

s e l e c t randomly which nodes are i n f e c t e d

i n f e c t e d = np . z e r o s (n)

i n f e c t e d [ i n f 0 ] = 1 # Mark wi th one the i n f e c t e d

nodes

aware = np . z e r o s (n)

i gno rant s = np . ones (n)− i n f e c t e d

rho_MC = np . z e r o s ( tmax)

awareness_MC = np . z e r o s ( tmax)

ignorance_MC = np . z e r o s ( tmax)

awww = np . z e r o s ( tmax)

rho_MC[ 0 ] = sum( i n f e c t e d ) / f loat (n)

awareness_MC [ 0 ] = sum( aware ) / f loat (n)

ignorance_MC [ 0 ] = sum( i gno rant s ) / f loat (n)
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awww[ 0 ] =rho_MC[ 0 ]

h i s t o ry_ in f = np . z e r o s ( ( n , tmax) )

h i s t o ry_ in f [ : , 0 ] = i n f e c t e d

history_aw = np . z e r o s ( ( n , tmax) )

history_aw [ : , 0 ] = aware

for t in range (1 , tmax) :

infected_new , aware_new , ignorants_new =

MC_time_step3( i n f e c t ed , aware , ignorants ,G1,G2

,R1 ,R2 ,A2 , k1 , k2 , beta1 , beta2 ,mu2 ,mu1 , l1 , l2 , n

)

rho_MC[ t ] = np .sum( infected_new ) / f loat (n)

awareness_MC [ t ] = np .sum( aware_new) / f loat (n)

i f rho_MC[ t ] == 0 :

# Take an a c t i v e s t a t e

r = random . randint (1 ,min( t ,M) )

infected_new = np . copy ( h i s t o ry_ in f [ : , t−r ] )
aware_new = np . copy ( history_aw [ : , t−r ] )
ignorants_new = np . ones (n)−infected_new−

aware_new

#pr in t t , ’ s u b t i t u t i n g wi th ’ , t−r

h i s t o ry_ in f [ : , t ] = np . copy ( infected_new )

history_aw [ : , t ] = np . copy (aware_new)

i n f e c t e d = np . copy ( infected_new )

i gno rant s = np . copy ( ignorants_new )

aware = np . copy (aware_new)

rho_MC[ t ] = np .sum( infected_new ) / f loat (n)

awareness_MC [ t ] = np .sum( aware_new) / f loat (n)

ignorance_MC [ t ] = np .sum( ignorants_new ) / f loat (n

)
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return rho_MC, awareness_MC , ignorance_MC

def QS_steady3 (G1,G2,R1 ,R2 ,A2 , k1 , k2 , l1 , l2 , beta1 , beta2 ,

mu2 ,mu1 , n , tmax , in f0 , M, av_last ) :

# Take the average o f the l a s t M va lu e s o f the

quasi−s t a t i ona r y MC

rho_MC, awareness_MC , ignorance_MC = QS_MC3(G1,G2,

R1 ,R2 ,A2 , k1 , k2 , l1 , l2 , beta1 , beta2 ,mu2 ,mu1 , n , tmax ,

in f0 , M)

rho_mean = np .mean(rho_MC[(− av_last ) :−1])

aware_mean = np .mean(awareness_MC[(− av_last ) :−1])

ignorance_mean = np .mean( ignorance_MC[(− av_last )

:−1])

return rho_mean , aware_mean , ignorance_mean , rho_MC

[−av_last : ] , awareness_MC[−av_last : ]

MC_vs_det_steady.py

import numpy as np

import matp lo t l i b . pyplot as p l t

import networkx as nx

import s c ipy as sp

from ML_functions_2L import contact_mat ,

Create_SF_Configuration , bui l t_adj ,

iter_dynamic_eq_lambda , solve_until_steady_lambda

import s c ipy . opt imize

import math

from Create_RR_2L import create_RR_2L

from funct_MC_contacts3 import MC_contacts_steady3 ,

QS_steady3

import p i c k l e
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# ==== DESCRIPTION ====

# Phase diagram of rho−be ta2 comparing both the Monte

Carlo s o l u t i o n and the Markov s o l u t i o n .

# Markov s o l u t i o n i s made i t e r a t i n g the equat ion up to

a time tmax

# Index 1 i s r e f e r e d to the in format ion l a y e r

# Index 2 i s r e f e r e d to the d i s e a s e l a y e r

# −−−−−−−−−− PARAMETERS −−−−−−−−−−
n = 300 # Number o f nodes per l a y e r

beta1 = 0 .2

mu = 0.2

nu = 0

i t e r a t i o n s = 30

change2_min = 0 .

change2_max = 0 .6

tmax = 400

i n f 0 = 0.05 # i n i t i a l number o f i n f e c t e d

M = 30 # choose from ac t i v e c on f i g u r a t i on o f MC

tmax_MC = n∗2

av_last = n

# −−−−−−−−−− INITIALIZATION −−−−−−−−−−
change2 = np . z e r o s ( i t e r a t i o n s , f loat )

s tep2 = (change2_max−change2_min ) / f loat ( i t e r a t i o n s −1)
rho = np . z e r o s ( i t e r a t i o n s )

awareness = np . z e r o s ( i t e r a t i o n s )

rho_MC2 = np . z e r o s ( i t e r a t i o n s )

rho_MC = np . z e r o s ( i t e r a t i o n s )

awareness_MC = np . z e r o s ( i t e r a t i o n s )

ignorance_MC = np . z e r o s ( i t e r a t i o n s )

s u s c e p t i b i l i t y = np . z e r o s ( i t e r a t i o n s )
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STD = np . z e r o s ( i t e r a t i o n s )

num_inf = np . z e r o s ( ( av_last ) )

c o l o r s = [ ’b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ ]

# −−−−−−−− CREATE THE GRAPH −−−−−−−−
# Number o f con tac t s

l 1 = 50

l 2 = 50

# pick l e_in1 = open ( ’ER1_n500_k10 . p k l ’ , ’ rb ’ )

# G1 = p i c k l e . l oad ( p i ck l e_in1 )

# pick l e_in2 = open ( ’ER2_n500_k10 . p k l ’ , ’ rb ’ )

# G2 = p i c k l e . l oad ( p i ck l e_in2 )

k_mean1 = 6

k_mean2 = 6

p1 =f loat (k_mean1) / f loat (n−1)
p2 =f loat (k_mean2) / f loat (n−1)

G1 = nx . random_regular_graph (k_mean1 , n , seed=None)

k1 = nx . degree (G1) . va lue s ( )

A1 = nx . to_numpy_matrix (G1)

k1 = np . array ( k1 )

k1 = k1 . astype ( f loat )

G2 = nx . random_regular_graph (k_mean2 , n , seed=None)

k2 = nx . degree (G2) . va lue s ( )

A2 = nx . to_numpy_matrix (G2)

k2 = np . array ( k2 )

k2 = k2 . astype ( f loat )

R1 = contact_mat (A1 , n , l1 , k1 )

R2 = contact_mat (A2 , n , l2 , k2 )
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b1 = beta1

Rlam = 1.−(1.−1./ f loat (k_mean1) ) ∗∗ l 1

b2 = (−k_mean1∗Rlam∗b1+mu + np . sq r t ( (k_mean1∗Rlam∗b1−
mu) ∗∗2 + 4∗(k_mean1∗Rlam) ∗∗2∗mu∗b1 ) ) / f loat (2∗

k_mean1∗Rlam)

print b2 # Ana l y t i c a l c r i t i c a l po in t

# −−−−−−−−−−−−−−− COMPUTATIONS −−−−−−−−−−−−−−−−−
for i in range ( i t e r a t i o n s ) :

p_old = i n f 0 ∗np . ones (n)

w_old = 0.0∗np . ones (n)

x_old = (1−p_old ) ∗np . ones (n)

change2 [ i ] = change2_min + i ∗ step2

beta2 = change2 [ i ]

#rho [ i ] , awareness [ i ] , c =

solve_unti l_steady_lambda ( p_old , w_old , x_old ,

change2 [ i ] , beta1 , R1 , A2, l1 , l2 , k1 , k2 , mu, nu ,

n , tmax )

rho_MC[ i ] , awareness_MC [ i ] , ignorance_MC [ i ] ,

rho_last = QS_steady3 (G1,G2,R1 ,R2 ,A2 , k1 , k2 , l1 , l2

, beta1 , change2 [ i ] ,mu, nu , n ,tmax_MC, in f0 ,M,

av_last )

print i , change2 [ i ] , rho [ i ] , rho_MC[ i ]

# −−−−−−−− PLOT −−−−−−−−
p l t . f i g u r e (1 )

p l t . p l o t ( change2 , rho , l a b e l = ’Markov␣ chain ’ )

l a b e l = r ’ Awareness␣ f o r ␣$\beta1$ ␣=␣%1.1 f ’%change1 )

p l t . hold

p l t . p l o t ( change2 , rho_MC, ’ ∗ ’ , l a b e l = ’Monte␣Carlo ’ )

p l t . l egend ( )
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p l t . t i t l e ( r ’How␣ the ␣ steady ␣ s t a t e ␣ dens i ty ␣ changes ␣with␣$

\beta_D$ ’ ’ ␣\n ’ r ’ $\mu_2$␣=%1.1f , ␣$\mu_1$␣=␣%1.1 f , ␣n␣

=%i ␣ ’%(mu, nu , n) )

p l t . x l ab e l ( r ’ $\beta_D$ ’ )

p l t . y l ab e l ( r ’ $\ rho$ ’ )

p l t . show ( )

heat_map.py

import numpy as np

import matp lo t l i b . pyplot as p l t

import networkx as nx

import s c ipy as sp

from ML_functions_2L import contact_mat ,

iter_dynamic_eq_lambda , solve_until_steady_lambda

import s c ipy . opt imize

import math

from Create_RR_2L import create_RR_2L

import random

from matp lo t l i b . c o l o r s import ListedColormap

# Number o f nodes per l a y e r . Later I take them randomly

n = 300

# Number o f con tac t s

l 1 = 50

l 2 = 50

# In t r a l a y e r adjacency matr ices

k_mean1 = 8

k_mean2 = 8

p1 =f loat (k_mean1) / f loat (n−1)
p2 =f loat (k_mean2) / f loat (n−1)
m=0

while m == 0 :
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G1 = nx . erdos_renyi_graph (n , p1 )

m = min(G1 . degree ( ) . va lue s ( ) )

print ’G1␣done ’ , min(G1 . degree ( ) . va lue s ( ) )

m2=0

while m2 == 0 :

G2 = nx . erdos_renyi_graph (n , p2 )

m2 = min(G2 . degree ( ) . va lue s ( ) )

print ’G2␣done ’ , min(G2 . degree ( ) . va lue s ( ) )

A1 = nx . to_numpy_matrix (G1)

k1 = nx . degree (G1) . va lue s ( )

k1 = np . array ( k1 )

k1 = k1 . astype ( f loat )

k2 = nx . degree (G2) . va lue s ( )

A2 = nx . to_numpy_matrix (G2)

k2 = np . array ( k2 )

k2 = k2 . astype ( f loat )

mu1 = 0 .

mu2 = 0 .5

#beta1= 0.5

#beta2 = 0.1

R1 = contact_mat (A1 , n , l1 , k1 )

R2 = contact_mat (A2 , n , l2 , k2 )

i t e r a t i o n s = 80

change_min = 0 .

change_max = 1 .0

change = np . empty ( i t e r a t i o n s , f loat )

s tep = (change_max−change_min ) / f loat ( i t e r a t i o n s −1)
change1 = np . z e r o s ( i t e r a t i o n s )

change2 = np . z e r o s ( i t e r a t i o n s )
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rho = np . z e r o s ( ( i t e r a t i o n s , i t e r a t i o n s ) )

awareness = np . z e r o s ( ( i t e r a t i o n s , i t e r a t i o n s ) )

i n f 0 = 0.05 # i n i t i a l number o f i n f e c t e d

tmax = 200

p = in f 0 ∗np . ones (n)

w = np . z e r o s (n)

x = np . ones (n) ∗(1− i n f 0 )

for i in range ( i t e r a t i o n s ) :

change1 [ i ] = change_min+step ∗ i

for j in range ( i t e r a t i o n s ) :

change2 [ j ] = change_min+step ∗ j

rho [ i , j ] , awareness [ i , j ] , c =

solve_until_steady_lambda (p , w, x , change2 [ j

] , change1 [ i ] , R1 , A2 , l1 , l2 , k1 , k2 , mu2 ,

mu1 , n , tmax)

print i , j

# SAVE RESULTS

np . save ( ’heatmap_ER_n300_k8_mu1_0_mu2_05_rho ’ , rho )

np . save ( ’heatmap_ER_n300_k8_mu1_0_mu2_05_awareness ’ ,

awareness )

np . save ( ’heatmap_ER_n300_k8_mu1_0_mu2_05_betas ’ ,

change2 )

p l t . pcolormesh ( change1 , change2 , rho )

p l t . c o l o rba r ( )

p l t . x l ab e l ( r ’ $\beta_1$ ’ )

p l t . y l ab e l ( r ’ $\beta_2$ ’ )

#p l t . t i t l e ( r ’ $\mu_2$ =%1.1f , $\mu_1$ = %1.1 f , n =%i ’%(

mu2,mu1, n) )
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p l t . show ( )

change_n.py

import numpy as np

import matp lo t l i b . pyplot as p l t

import networkx as nx

import s c ipy as sp

from ML_functions_2L import contact_mat ,

Create_SF_Configuration , bui l t_adj ,

iter_dynamic_eq_lambda , solve_until_steady_lambda

import s c ipy . opt imize

import math

from Create_RR_2L import create_RR_2L

from funct_MC_contacts2 import MonteCarlo_contacts2 ,

MC_contacts_steady

from funct_MC_contacts3 import QS_steady3

import time

# Change the s i z e o f the networks and perform Monte

Carlo

# in order to see the e f f e c t o f the s c a l i n g on the

s u s c e p t i b i l i t y

# Parameters

beta1 = 0 .2

mu2 = 0 .2

mu1 = 0 .

l 1 = 50

l 2 = 50

M = 30

i n f 0 = 0.05

i t e r a t i o n s = 60

change2_min = 0.05



80 APPENDIX B. MAIN CODES

change2_max = 0.15

change2 = np . z e r o s ( i t e r a t i o n s , f loat )

s tep2 = (change2_max−change2_min ) / f loat ( i t e r a t i o n s −1)
nn = np . array ( [ 250 ,500 ,750 ,1000 ,1250 ,1500 ,1750 ,2000 ] )

s i z e = np . s i z e (nn)

tmax_markov = 300

# I n i t i a l i z e v a r i a b l e s

rho = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

awareness = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

ignorance = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

contac t s = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

rho_MC = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

awareness_MC = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

ignorance_MC = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

s u s c e p t i b i l i t y = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

STD = np . z e r o s ( ( s i z e , i t e r a t i o n s ) )

c o l o r s = [ ’b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ ]

# Computations

for j in range ( s i z e ) :

n = nn [ j ]

tmax_MC = np .min ( [ n ∗4 , 3000 ] )

av_last = np .min ( [ n ∗3 , 2000 ] )

k_mean1 = 6

k_mean2 = 6

G1 = nx . random_regular_graph (k_mean1 , n , seed=None)

k1 = nx . degree (G1) . va lue s ( )

A1 = nx . to_numpy_matrix (G1)

k1 = np . array ( k1 )
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k1 = k1 . astype ( f loat )

G2 = nx . random_regular_graph (k_mean2 , n , seed=None)

k2 = nx . degree (G2) . va lue s ( )

A2 = nx . to_numpy_matrix (G2)

k2 = np . array ( k2 )

k2 = k2 . astype ( f loat )

R1 = contact_mat (A1 , n , l1 , k1 )

R2 = contact_mat (A2 , n , l2 , k2 )

rho_last = np . z e r o s ( ( av_last , i t e r a t i o n s ) )

aw_last = np . z e r o s ( ( av_last , i t e r a t i o n s ) )

for i in range ( i t e r a t i o n s ) :

p_old = i n f 0 ∗np . ones (n)

w_old = 0.00∗np . ones (n)

x_old = (1− i n f 0 ) ∗np . ones (n)

change2 [ i ] = change2_min + i ∗ step2

#rho [ j , i ] , awareness [ j , i ] , i gnorance [ j , i ] =

solve_unti l_steady_lambda ( p_old , w_old ,

x_old , change2 [ i ] , beta1 , R1 , A2, l1 , l2 , k1 ,

k2 , mu2, mu1, n , tmax_markov )

num_inf = np . z e r o s ( av_last ) # l a s t av_las t

number o f i n f e c t e d in the s imu la t i on s

rho_s , awareness_s , ignorance_s , rho_last [ : , i ] ,

aw_last [ : , i ] = QS_steady3 (G1,G2,R1 ,R2 ,A2 , k1 ,

k2 , l1 , l2 , beta1 , change2 [ i ] ,mu2 ,mu1 , n ,tmax_MC,

in f0 ,M, av_last )

num_inf = rho_last [ : , i ] ∗ n

num_aw = aw_last [ : , i ] ∗ n

rho_MC[ j , i ] = np .mean(num_inf ) / f loat (n)

awareness_MC [ j , i ] = np .mean(num_aw) / f loat (n)
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s u s c e p t i b i l i t y [ j , i ] = np . var ( num_inf ) /np .mean(

num_inf )

STD[ j , i ] = np . std (num_inf/n)

print n , i # STD[ j , i ] , np . s q r t ( s u s c e p t i b i l i t y [ j ,

i ] ∗rho_MC[ j , i ] / f l o a t (n) )

time . s l e e p (3 )

# SAVE RESULTS

# np . save ( ’ change_n%i_ER_k%i_%iter_rho ’%(n , k_mean1 ,

i t e r a t i o n s ) , rho )

# np . save ( ’ change_n%i_ER_k%i_%iter_awareness ’%(n ,

k_mean1 , i t e r a t i o n s ) , awareness )

np . save ( ’ change_n%i_RR_k%i_%iter_rhoMC ’%(n , k_mean1 ,

i t e r a t i o n s ) , rho_MC[ j , : ] )

np . save ( ’ change_n%i_RR_k%i_%iter_awarenessMC ’%(n ,

k_mean1 , i t e r a t i o n s ) , awareness_MC [ j , : ] )

np . save ( ’ change_n%i_RR_k%i_%iter_aw_lastMC ’%(n ,

k_mean1 , i t e r a t i o n s ) , aw_last )

np . save ( ’ change_n%i_RR_k%i_%i t e r_ s u s c e p t i b i l i t y ’%(n

, k_mean1 , i t e r a t i o n s ) , s u s c e p t i b i l i t y [ j , : ] )

np . save ( ’ change_n%i_RR_k%i_%ite r_std ’%(n , k_mean1 ,

i t e r a t i o n s ) , STD[ j , : ] )

np . save ( ’ change_n%i_RR_k%i_%iter_rho_last ’%(n ,

k_mean1 , i t e r a t i o n s ) , rho_last )

for j in range ( s i z e ) :

n = nn [ j ]

c o l = c o l o r s [ j ]

p l t . f i g u r e (1 )

p l t . p l o t ( change2 , rho [ j , : ] , ’%s ’%col , l a b e l = r ’

Density ␣ o f ␣ i n f e c t e d ␣ f o r ␣n␣=␣%i ’%n)

p l t . hold
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p l t . p l o t ( change2 , rho_MC[ j , : ] , ’∗%s ’%col , l a b e l = r ’

Density ␣ o f ␣ i n f e c t e d ␣MC␣ f o r ␣n␣=␣%i ’%n)

p l t . hold

p l t . e r r o rba r ( change2 , rho_MC[ j , : ] , STD[ j , : ] , marker

=’ ∗ ’ , c o l o r = ’%s ’%co l )

p l t . t i t l e ( ’ $\mu_2$␣=%1.1f , ␣$\mu1$␣=␣%1.1 f , ␣n␣=%i ␣ ’

%(mu2 ,mu1 , n) )

p l t . x l ab e l ( r ’ $\beta_2$ ’ )

p l t . y l ab e l ( r ’ $\ rho$ ’ )

p l t . l egend ( )

p l t . f i g u r e (2 )

p l t . p l o t ( change2 , s u s c e p t i b i l i t y [ j , : ] , ’%s ’%col ,

l a b e l = r ’ S u s c e p t i b i l i t y ␣ f o r ␣n␣=␣%i ’%n)

p l t . t i t l e ( ’ $\mu_2$␣=%1.1f , ␣$\mu1$␣=␣%1.1 f , ␣n␣=%i ␣ ’

%(mu2 ,mu1 , n) )

p l t . x l ab e l ( r ’ $\beta_2$ ’ )

p l t . y l ab e l ( ’ S u s c e p t i b i l i t y ’ )

p l t . l egend ( )

# axes = p l t . gca ( )

# axes . set_yl im ( [ 0 , 1 ] )

p l t . show ( )


