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Abstract 

 

The supercritical impregnation of polycarbonate pellets with copper has been investigated in 

this study. The aim was to produce a nano composite polymer with enhanced electrical or 

biological properties. In this work the 2-step process previously developed by the Graz research 

group was studied. The method consists of 2 distinct and sequential stages; in the first one the 

pellets are impregnated with dithizone and in the second one the polymer is loaded with copper. 

Both steps were carried out in supercritical carbon dioxide media, with and without the addition 

of ethanol as modifier. Impregnation was performed in a range of 100–250 bar and 40–50 °C. 

The dithizone and the copper load were analysed by UV-spectroscopy and ICP-OES 

techniques, respectively. SEM coupled with an EDX detector was used to investigate the 

presence and the deepness of the copper particles in the polymer. The impregnation of 

polycarbonate pellets with dithizone was achieved and the method was successful also by using 

pure scCO2 as carrier. Dithizone proved to be soluble in scCO2, a result not reported in the 

literature yet. A maximum copper load of 131±103 mg/kg was reached. The samples produced 

with the studied process were highly inhomogeneous and a big standard deviation between 

pellets of the same sample was recorded. The reason of this phenomenon was investigated and 

a possible explanation of the process dynamic was proposed. The high standard deviation 

problem could not be solved with the available experimental apparatus. Copper clusters 

between 5–400 nm were found in the polymer matrix; the impregnation resulted deep and 

homogeneous inside the pellet. The impregnation depth achieved in this work resulted 

relevantly higher than the studies on the topic found in the literature. Eventually, an industrial 

process and plant has been proposed, however, before scaling it up, more studies have to be 

performed. 

 

 

 





  

Riassunto 

Questo lavoro di tesi è stato svolto presso “Graz University of Technology”, nell’istituto 

“Institute of Chemical Engineering and Environmental Technology”, durante un periodo di 

scambio di 5 mesi nell’ambito del programma Erasmus+. Il progetto è stato supervisionato dal 

Prof. Thomas Gamse.  

I polimeri nanocompositi sono considerati molto promettenti in un grande numero di 

applicazioni. Le nanoparticelle infatti, possono modificare notevolmente le caratteristiche della 

matrice polimerica; le proprietà particolari che il materiale può acquisire sono svariate: 

catalitiche, elettrochimiche, meccaniche, magnetiche, ottiche e biologiche. L’impregnazione 

supercritica è uno dei metodi utilizzabili per caricare il polimero con nanoparticelle metalliche. 

Tale processo, applicato anche a tessuti, aerogels, fibre e legno, risulta conveniente sia per 

quanto riguarda il consumo energetico, sia per gli impatti ambientali generati.  

In questo progetto è stata studiata l’impregnazione supercritica di rame in policarbonato sotto 

forma di pellet. Lo scopo del lavoro era la produzione di un polimero nanocomposito con 

migliorate proprietà elettriche o biologiche. Un nuovo processo a due stadi (2-step 

impregnation) è stato sviluppato dal gruppo di ricerca, e l’obiettivo dello studio è stato di 

comprendere e migliorare questo nuovo metodo. Il procedimento consiste in due impregnazioni 

consecutive, tutte e due eseguite con anidride carbonica (CO2) pura o con l’aggiunta di etanolo 

come modificatore. Nel primo step, i pellet di policarbonato sono impregnati con dithizone, un 

composto molto reattivo con gli ioni metallici, utilizzato per la loro analisi e separazione da 

soluzioni acquose. Successivamente, nel polimero impregnato vengono assorbiti direttamente 

ioni rame (Cu2+) con due metodologie diverse. Il processo a fase singola utilizza una miscela di 

CO2 ed etanolo come carrier, mentre il processo a doppia fase comprende una fase supercritica 

ed una soluzione acquosa all’equilibrio. Il processo a doppia fase si è dimostrato più 

promettente ed è stato approfondito e studiato in maniera molto maggiore. 

Il policarbonato in forma di pellet è stato procurato da Saudi Arabian Basic Industries 

Corporation (SABIC, LEXAN 121 resin) mentre l’anidride carbonica (purezza 99.5%) è stata 

fornita da Linde Gas GmbH; il Dithizone, i sali di rame e altri prodotti chimici sono stati 

ordinati, invece, presso Sigma-Aldrich Austria. Gli esperimenti sono stati eseguiti in un 

contenitore per alta pressione variando le condizioni operative negli intervalli tra 100–250 bar 

e 40–50 °C. Nell’ambito dello studio tre diversi riempimenti del contenitore sono stati utilizzati, 

in modo da modificare il volume del sistema ed il miscelamento interno secondo le esigenze.   

Il contenuto di dithizone è stato misurato tramite spettroscopia UV, mentre il carico di rame è 

stato determinato con una tecnica ad emissione atomica (ICP-OES). La presenza, la forma e la 



 

profondità di assorbimento del rame sono state valutate tramite un SEM (Scanning Electron 

Microscope) equipaggiato con un detector EDX, che è stato utilizzato per determinare la 

composizione atomica delle particelle trovate. 

L’impregnazione dei pellet di policarbonato con il dithizone è stata ottenuta con successo anche 

utilizzando l’anidride carbonica senza modificatori. Il dithizone è risultato solubile in scCO2, 

fatto non ancora riportato in letteratura. Sono state proposte osservazioni sulla cristallizzazione 

del policarbonato in presenza di CO2 supercritica con e senza l’aggiunta di etanolo come 

modificatore. I materiali così ottenuti possono essere sviluppati come sensori ed adsorber 

selettivi per soluzioni contenenti ioni metallici.  

Il massimo contenuto di rame misurato è di 131±103 mg/kg; ma i risultati ottenuti sono soggetti 

ad una grande deviazione standard, che è causata da una distribuzione disomogenea del rame 

nei diversi pellet dello stesso campione. Queste variazioni nel prodotto finale costituiscono un 

problema significativo, che è stato approfondito. Come possibile spiegazione è stato proposto 

il mescolamento insufficiente all’interno del contenitore. Tuttavia, non è stato possibile ottenere 

un carico di rame omogeneo nei pellet con l’apparato sperimentale a disposizione. È stato anche 

dimostrato che il primo step, l’impregnazione con il dithizone, fa aumentare il contenuto di 

rame ottenuto con il secondo step, ma la funzione del composto nel meccanismo non è ancora 

nota. Con lo stesso metodo è stata eseguita con successo un’impregnazione con zinco, a 

conferma della flessibilità del processo e della possibilità di estenderlo anche ad altri ioni 

metallici.  

Tramite l’analisi con il SEM sono state trovate particelle di rame della grandezza di 5–400 nm, 

distribuite omogeneamente ed in profondità nei pellet. La profondità dell’impregnazione risulta 

essere molto alta rispetto agli esempi trovati in letteratura, dove gli studi inerenti 

all’impregnazioni di metalli interessano, il più delle volte, film di polimero molto fini (25-39 

µm). 

Infine, a completamento dello studio, è stato proposto lo schema di un impianto industriale, 

considerando gli impianti di impregnazione con CO2 supercritica già esistenti. Tuttavia, prima 

di applicare il processo su larga scala, ulteriori studi devono essere condotti sia sulle proprietà 

del materiale prodotto sia, in particolare, per risolvere il problema della grande deviazione 

standard nella qualità dell’impregnazione. 
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Introduction  

Nowadays, many economic, environmental and political factors force the market to move 

towards sustainable processes. The main goal, in fact, is to reduce the overall impact (on the 

society, the environment and the economy) of products and organizations. Due to their unique 

intermediate and tuneable properties between gasses and liquids, supercritical fluids are 

considered a promising tool to decrease the energy consumption and to design new ‘green’ 

processes. This technology has been studied and applied recently in many fields, not only to 

replace conventional solvents, but also as a reprocessing technique to produce particles and 

foams [1].  

Nanoscale composite polymers have a very high potential in a wide range of applications. The 

original matrix can be modified with nanoparticles to gain many unique properties such as 

catalytical, electrochemical, mechanical, magnetical, optical and biological ones [2]. One 

sustainable way to produce these materials is by supercritical impregnation. This process is 

convenient, energy efficient and environmentally friendly and it is widely applied to polymers, 

textiles, aerogels, fibers and wood.  

The aim of this work is to successfully impregnate polycarbonate pellets with copper 

nanoparticles using supercritical carbon dioxide (CO2) as medium. Particularly the goal was to 

study the 2-step impregnation method with which the Graz research group had already achieved 

some good results. The studied process consists in a dithizone impregnation of the pellets and 

a second copper impregnation carried out with a copper salt instead of a metallic-organic 

compound (detailed description in paragraph 1.5). 

This document is composed by five chapters. In the first one, a brief presentation on 

supercritical fluids and the CO2-polycarbonate interaction is reported. The standard metal 

impregnation of polymers along with the state of the art is also described.  

The second chapter contains the materials description plus the experimental and the analytical 

methods used in the study.  

The third and the fourth chapters report, respectively, the study performed on the dithizone and 

the copper impregnation steps. The fourth describes also the proposed 2-step impregnation 

process dynamic.  

In the fifth chapter, the existing impregnation industrial plants are analysed and a plant layout 

for the studied 2-step process is proposed. 

This study was carried out at “Graz University of Technology” at the Institute of Chemical 

Engineering and Environmental Technology during an Erasmus+ exchange period of five 
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months. The work was supported by the PhD student Varga Dániel under the supervision of the 

Prof. Thomas Gamse. 

A special thank is due to both Prof. Thomas Gamse and Dániel Varga: Prof. Gamse for the 

possibility to come to Graz and to improve the knowledge on the high pressure technology 

topic; Varga Dániel for his great help, suggestions and support given during all part of the study.  

 

 



  

Chapter 1 

State of the art 

 

 

1.1 Supercritical Fluid Impregnation 

Impregnation in general is the process of incorporating a solute with a solid matrix. The purpose 

of this process is to modify the properties of the material upon impregnation. A medium is 

needed to carry the material (the solute) inside the solid matrix; organic solvents, water and 

supercritical solvents are usually used to this scope. In order to carry out a successful 

impregnation the substance has to be soluble in the medium. 

In this study we focus on supercritical fluid impregnation processes. There are many possible 

applications of these processes, and for that reason, a wide range of matrixes could be used, 

however the most commonly ones are polymers, wood and aerogels.  

A substance becomes supercritical above its critical temperature and pressure where there is no 

more distinction between liquid and gas phase [3]. Starting from 1970’s, they have been applied 

for many processes due to their unique properties [4].  

The interest in supercritical fluids arises because they have intermediate properties between 

those of typical gases and liquids. Compared with liquids, they have lower density and viscosity 

but the diffusivity is greater. Another important factor is that by changing their temperature and 

pressure the properties of the phase (like density, viscosity etc.) also change in a significant 

manner. Therefore, this additional degree of freedom can be used to optimize the process 

conditions [3]. The behaviour of the fluid and its solvent power can be tuned by adding small 

quantity of cosolvent which change its polarity. For example, strongly non-polar supercritical 

CO2 can be a good solvent for slightly polar compounds.  

Supercritical CO2 (scCO2) is the most used supercritical fluid and it is convenient, 

environmentally friendly, relatively cheap and not toxic. Due to its relatively low critical 

pressure and temperature (73.9 bar and 31.1°C, see figure 1.1), the usage of scCO2 does not 

require very special equipment and extraordinary security regulations [3]. In addition, CO2 is a 

by-product of many processes so there is no need of extra CO2 production for a new process. 

Considering all these factors it is easy to understand why it is studied in so many applications.  
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Figure 1.1 shows the phase diagram of the CO2.  

Figure 1.1. Schematic phase diagram of carbon dioxide. 

One of the problems of the conventional impregnation methods carried out by organic solvents 

is the removal of the solvent residue from the impregnated material, which is really energy 

consuming. Hence it is quite hard to completely remove an organic solvent and this can be a 

big issue particularly in the pharmaceutical field. Using, instead, scCO2 as an impregnation 

media, a complete separation can be achieved by simply depressurizing the system as CO2 

leaves in gas form. In several cases this CO2 can be cleaned and recycled, to be used again for 

the same process. 

 

1.1.1 Supercritical impregnation of polymers 

A lot of factors can influence the process of supercritical impregnation of polymers. 

The impregnation is feasible when the active substance (the solute) is soluble in the supercritical 

fluid, the polymer is swollen by the supercritical solution and the partition coefficient (that is 

the ratio between the concentration of the solute in the polymer and its concentration in the 

fluid phase) is favourable enough to allow the matrix to be charged with enough solute. [5] 

A supercritical impregnation can be classified on the base of the following criteria [5]: 

1. The solubility of the solute in the supercritical fluid. 

2. The solute modification inside the polymer matrix. 

For the first criterion two mechanisms can be identified. The first one is simply a deposition of 

the solute inside the polymer matrix upon depressurization. The substance can be trapped inside 

the matrix even if there is low affinity between the solute and the polymer. In this case a crucial 

factor is the solubility of the solute in the supercritical fluid. The second mechanism takes 

advantage of a high partition coefficient of the solute between the fluid phase and the polymer.   
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The second criterion distinguishes between solutes that are not modified and to those that 

undergo a modification within the polymer. In the first group we can find drugs and dyes 

molecules, in the second one there is the majority of the organometallic complexes.  

 

1.2 Polycarbonate-scCO2 interaction 

1.2.1 Polymer-Supercritical fluid general interactions 

When impregnating polymers it is important to take in account the polymer-supercritical fluid 

interaction. In fact the fluid can diffuse into the polymer modifying its properties. Depending 

on the chemical composition and their structures (crystalline, glassy, rubbery) the polymers 

behave differently when contacted with scCO2. Three phenomena can occur:  

1. Sorption of the supercritical fluid in the polymer phase 

2. Polymer swelling caused by sorption 

3. Polymer’s glass transition temperature (Tg) reduction 

The sorption time to reach the equilibrium and the amount of swelling are usually higher in 

rubbery polymers, but there are some exceptions. For example, in PMMA, a glassy polymer, 

scCO2 has a larger sorption than in certain rubbery polymers. This is probably due to the 

chemical composition of the PMMA and its strong interaction with the CO2 [6]. Another effect 

of the supercritical fluid is to decrease the glass transition temperature of the polymer. In fact 

the fluid molecules inside the polymer act like a lubricant that facilitates the sliding of the 

polymer chains. 

These phenomena are very relevant to the impregnation process because they increase the free 

volume of the polymer allowing the solute to enter deep into the matrix. Also the time needed 

for the process is decreased by the increase of the diffusion coefficient of the solute inside the 

matrix. 

 

1.2.2 Sorption, Swelling and Tg depression effect 

To perform an impregnation it is important to state and understand the polymer-supercritical 

fluid interaction. Many authors studied the polycarbonate-scCO2 behaviour. 

The CO2 solubility in polycarbonate was studied by Sun et al. [7] and by Tang et al. [8] at 

different temperature ranges. In both studies, it was shown that a saturation concentration is 

reached and that the amount of CO2 inside the polymer increases with increasing pressure and 

decreasing temperature. 
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Figure 1.2 shows the swelling percentage measured by Schnitzler at 100 and 300 bar and in a 

range from 40 to 120°C [9]. It can be seen that PC swelling is relatively higher compared with 

PET swelling. From 40 to 60°C a decrease of the swelling percentage with the temperature is 

observed. This is due to the temperature effect on CO2 density, in fact with a lower fluid density 

we observe less CO2 sorption in the polymer. 

At higher temperature, other factors become dominant and an increase of the swelling 

percentage is observed.  This can be related to a higher mobility of the polymer chains due to 

the temperature effect in the polymer [9]. 

 

Figure 1.2. Swelling percentage measured by Schnitzler et al.[9] for PET and PC. The swelling is measured by 

V/Vo where Vo is the volume of the polymer at the experiment temperature. 

Concerning the Tg depression, Schnitzler [9] shows that at 300 bar the depressed Tg of PC 

should be around 70°C. Zhang et al. [10] reported data below 100 bar and he showed that the 

glass transition temperature decreases with an increase of pressure. However, according to 

Beckman [11], Tg versus CO2 pressure should pass through a minimum. Beckman indicates also 

that such a minimum should be between 100 and 250 bar and over that point Tg should increase 

by 5°C/100bar (however there is not a direct measurement about this fact). 

 

1.2.3 Supercritical CO2 inducted crystallization and foaming 

Polycarbonate shows also additional interaction with scCO2. In its commercial form, PC is 

transparent and glassy; however, it can become semi-crystalline if it is contacted with scCO2 

for some time. This is probably due to the plasticizing effect of the supercritical fluid that allows 

the polymer chains to slide and rearrange.  
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Sun et al. [7] studied and modelled this phenomenon; Figure 1.3a-b shows the time dependence 

of  the CO2 sorption at 100°C and 15MPa.  

 

(a)                                                                                         (b) 

Figure 1.3a-b. Solubility of CO2 in PC. Figure a. CO2 sorption in a short time interval. Figure b. Effect of 

crystallization on CO2 sorption.  (Sun et al. [7]) 

It can be seen that, after a couple of hours, the glassy polymer saturation sorption is reached. 

Increasing the experiment time, crystallization is observed and the CO2 concentration decreases 

because the crystalline regions cannot dissolve the same amount of fluid.  After a longer period, 

a new plateau for the semi-crystalline polymer is reached (Figure 1.3b).  

This phenomenon is reported to happen after a certain induction time when the difference 

between the working temperature and the depressed Tg is above 40°C [7]. 

Another scCO2 dependant polymer modification can occur during the depressurization stage. 

When the polymer is subjected to high-pressure gas and the pressure is suddenly decreased, the 

gas will escape from the polymer rapidly. This fast gas release can cause the nucleation and 

growth of bubbles within the polymer. Once a significant amount of gas has left, the Tg of the 

polymer drops and, thus, “freezing” the foamed structure [4].  Data has not been found in the 

literature about the limiting depressurization rate for foaming to occur; Mascia et al. [12] 

obtained foaming in polycarbonate depressurising at 5MPa/min. Liao et al.[13] did not report 

any foaming depressurizing in 1.5 hours from 3.6 MPa (0.4MPa/min). 

 

1.2.4 Diffusion in the polymer 

The diffusion of CO2 in the polymer is a critical step for impregnation processes. Many authors 

[7], [14] and [8] obtained good results along the diffusion of the CO2 inside the polymer using 
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the Fickian model.  Solving the equation 1.1 (second Fick’s law), the effective diffusion 

coefficient D can be determined fitting the experimental data.  

                                                                 
∂

∂t
= D

∂2

∂x2
                                                                          (1.1) 

Where  = concentration of the substance [amount/volume], x = position [distance], t = time 

and D = Diffusion coefficient [Area/time] (usually m2/s). 

In particular two diffusion coefficient can be calculated, one measured during absorption 

experiments (Ds) and another one during desorption experiments (Dd). It was observed that Ds 

increases when increasing the pressure due to the plasticizing effect of the supercritical fluid, 

and Dd increases when the initial CO2 adsorbed amount increases.  

A different dependence in temperature was found. In fact, increasing the temperature, an 

increase in Ds and a decrease in Dd were observed  [8][14]. At least at low temperature Dd is 

higher than Ds. It is assumed that during the sorption process, the polymer substrate is rigid, so 

that the infusion of carbon dioxide has to overcome larger resistance due to lower chain mobility 

of polymer substrate. During the desorption process, however, the polymer substrate has 

already been swollen and plasticized, therefore the exudation of carbon dioxide suffers less 

resistance due to higher chain mobility of the polymer substrate [8]. 

In a semi-crystalline polycarbonate, a lower Ds was observed [7] and that is one of the reasons 

why CO2-induced polymer crystallization should be avoided. 

Regarding the diffusion of the solute inside the polymer matrix, no useful data for this study 

can be found in literature. This is due to the fact that each solute has its own diffusion 

coefficient. Berens et al. [15] reported the effect of high pressure CO2 on the diffusion 

coefficient of different compounds in plasticized and in non-plasticized polymers. It was proven 

that scCO2 sorption by the polymer can results in orders-of-magnitude increase of diffusion 

coefficient of the solute [16]. 

 

1.3 Nanoparticle modified polymers 

A nanoscale composite material is defined as a material that has a structure where at least one 

of its phases has one or more dimensions (length, width or thickness) in the nanometer size 

range [17]. 

Polymer nanocomposites are one of the most promising composite materials. Different 

nanometric scale compounds can enhance the properties and expand the applications of given 

polymers [2]. When such nanoparticles are homogeneously distributed inside the polymeric 
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matrix, the properties of nanocomposite material are superior to that of the single nanoparticles 

or the single polymer. Polymers can be modified with nanoparticles to gain many unique 

properties such as catalytical, electrochemical, mechanical, magnetical, optical and biological 

ones [2]. All these characteristics make nanoparticles modified polymers interesting in wide 

range of applications. 

  

1.3.1 Polymer nanocomposites production 

Various preparation methods have been used to synthesize these types of materials. The most 

commons involve the polymerization process. In fact, in this case the aim is to form the matrix 

directly around the nanoparticles. The conventional methods are: the sol-gel method, the one-

pot synthesis method, the emulsion polymerization method, the hot press method, the in situ 

polymerization method and the oxidative polymerization method, however, other newer 

procedures can be found in the literature as well [2]. 

The main problem of these processes is the control of size, loading and distribution of the 

particles within the polymer. For example concerning the sol-gel method, the metallic 

precursors in solution can interfere with the polymerization, generating a material with 

undesirable properties [17].  

This study intends to focus on the nanocomposite modification of raw polymers.  

The dispersion of such nanoparticles can be achieved by a simple mixing process by melting 

the polymer or during the extrusion process. However, this technology is characterized by 

serious problems of particle aggregation and uniformity of the distribution. In addition, the 

conditions needed to melt the polymer can degrade any temperature-sensible compounds. A 

way to produce nanocomposites films is the solvent casting procedure. The main drawbacks of 

this process are the high amount of organic solvent needed and the consequent solvent removal 

step required.  

Impregnation can be performed not only with conventional organic solvents but also with 

supercritical fluids. Due to the attractive properties of the supercritical impregnation discussed 

above and in order to overcome the drawbacks of recent techniques; this study is focused on 

nanoparticle modified polymers production by the use of scCO2. 
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1.4 Standard metallic compound impregnation procedure 

The production of metallopolymer nanocomposites through supercritical impregnation is 

carried out by a 3-step process. First the synthesis of an organometallic complex (metallic 

precursor) is needed. The aim is to produce a compound soluble in a supercritical fluid. This 

stage could be very expensive due to the high cost of the reactants and for the difficult 

purification of the final complex. Nevertheless, these syntheses can often be realized with a low 

yield. The impregnation step is already discussed in this chapter and the resulting product 

consists in an organometallic complex impregnated polymer.  

After this stage the metallic precursor have to be converted into metal nanoparticle. This can be 

done through three different reduction steps [17]: 

 Chemical reduction in the supercritical fluid (SCF) with a reducing agent, such as 

hydrogen or an alcohol; 

 Thermal reduction in the SCF 

 Thermal decomposition in an inert atmosphere or chemical conversion with hydrogen 

or air after depressurization. 

The reduction step, especially the thermal one, can cause a degradation in the polymer with the 

consequent loss of mechanical properties. Figure 1.4 summarizes the process steps. 

 

Figure 1.4. [17] Supercritical fluid impregnation steps after the metallic precursor synthesis. In this process the 

reduction is not carried out in SCF atmosphere. 
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The advantages of the process have been discussed by Kazarian et al. [5]: 

 ScCO2 shows high penetration into polymers. 

 The matrix tends to prevent an agglomeration of metal particles. 

 It is possible to control the solvent power and the impregnation rate and, therefore, to 

control the composition and morphology of the obtained composite. 

 The final product does not require special drying. 

 Low surface tension allows impregnation even of such barrier polymers as Teflon or 

obtaining of a continuous metal layer on their surface. 

There are also some possible drawbacks; the most important is the depth of impregnation that 

can be reached. In fact the majority of the supercritical impregnation studies found in literature 

are carried out on very thin polymer support samples, thick 39µm [18] and 25 µm [19]. In 

addition, the depth of impregnation is not investigated in these papers.  

The only study found that investigates this phenomena in polycarbonate is the one by Hasell et 

al. [20].  A silver complex impregnation was carried out and it was reported a nanoparticle 

depth was only 6.5 µm even after 24 hours in contact with the supercritical environment.  

It is noteworthy that Nikitin et at. [18], with this method, obtained a maximum copper load in 

polyarylate of 6.3 % wt.  

 

1.5 Aim of the work 

The aim of the work is to achieve a successful supercritical impregnation of copper 

nanoparticles in polycarbonate. In addition, the impregnation of zinc in the same polymer is 

studied. The goal is to enhance the properties of polycarbonate in particular the electrical ones.  

No examples of this material and this process were found in literature and for this reason, the 

new material behaviour needs to be investigated.  

An improvement also on the biological properties of the polycarbonate can be achieved 

according to some authors. It has been demonstrated by Borkov et al. [21] the broad-spectrum 

anti-bacterial, anti-viral, anti-fungal, and anti-mite activities of copper impregnated polyester 

fibres. Other authors report only the anti-bacterial activity but specifically for copper and zinc 

impregnated polycarbonate [22].   

In the research group at the Graz university of technology [23], the copper impregnation 

effectiveness with scCO2 in polycarbonate of three different complexes has already been 

investigated by using: Cu(hfac)2*xH2O copper hexafluoroacetylacetonate hydrate, Cu(HDz)2 

primary copper dithizonate and Cu(Dz) secondary copper dithizonate. The results were 
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unsatisfying; all the samples were below or slightly above the detection limit of the ICP-OES 

(4ppm). By using Cu(hfac)2 it is believed that the unsuccessful impregnation was due to the 

relatively high solubility of the complex in the scCO2, i.e. its low partition coefficient between 

the polymer and the fluid phase. Unlike CuDz, Cu(HDz)2 was found to be soluble in scCO2 

according to our observations carried out in a high pressure view cell. However, impregnation 

by using Cu(HDz)2 was not successful, as presumably the high molecular weight or size of the 

complex limited the impregnation. 

However, a successful impregnation was performed by a 2-step process. First a dithizone 

impregnated polycarbonate (DPC) was produced with both scCO2 alone and ethanol-CO2 

mixture in supercritical conditions. A concentration between 0.0055 and 0.1786 mg/g of 

dithizone in the polymer was reached. Only preliminary experiments were carried out on the 

dithizone impregnation in that work. Therefore, the impregnation efficiency of dithizone has 

been investigated in the first part of the study.  

Figure 1.5. Process steps of the new impregnation method  

The second step was an impregnation of the DPC with copper ions dissolved in water or in 

ethanol, in scCO2 environment. Figure 1.5 shows the 2 process steps of the impregnation 

method newly proposed. The aim was to carry out the complexation between copper and 

dithizone inside the polymer matrix. Three copper salts were investigated: copper nitrate 

trihydrate Cu(NO3)2*3H2O, copper sulphate CuSO4 and copper Chloride CuCl2, meanwhile the 

pH of the solution was also varied adding KOH or HNO3 to the system.  

Copper ions are not soluble in scCO2 but the impregnation was successful anyway. A similar 

result was achieved and patented by Perman et al. [24]. It was discovered that even additives 

that are substantially insoluble in a supercritical fluid can be impregnated in the polymer even 

if there is not compatibility with the substrate. This was achieved by contacting the polymer 
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with a liquid carrier (where the addictive is soluble) and in the presence of the supercritical 

fluid. It is supposed that sorption and the swelling induced by the fluid in the polymer allows 

the addictive to penetrate the matrix. 

 The best result, obtained by the Graz research group with a basic solution and with 

Cu(NO3)2*3H2O dissolved in water, was of 109±3 ppm of copper in the polymer matrix. The 

sample was analysed by scanning electron microscopy that determined an almost equal 

impregnation through the entire polymer pellet and a variable particle size between 5 and 400 

nm.  

The aim of this study is to optimize this technology to increase the copper load in the polymer 

matrix and to investigate the possible applicability of different metal ions in the process.  

Dithizone containing matrices have high importance. Gupta et al. [25] developed a Zn2+ 

selective potentiometric designing a PVC membrane containing dithizone. Yu et al.[26]  

produced a dithizone immobilized silica gel useful to the adsorption of trace amount of copper. 

For this reason, the kinetics for the dithizone uptake of polycarbonate has also been studied.





  

Chapter 2 

Materials and methods 

 

 

2.1 Materials 

Bisphenol A polycarbonate (PC) samples (LEXAN 121 resin) were provided by Saudi Arabian 

Basic Industries Corporation (SABIC) in pelletized form. Properties:  

 Tg = 147 °C,  

 Melt Flow Rate, 300 °C/1.2 kg = 17.5 g/10 min,  

 Density (ρ) = 1200–1220 kg/m3.  

The samples appear transparent and they are completely amorphous. The pellets have 

cylindrical shape with a diameter of 2.80±0.10 mm and a height of 3.50±0.10 mm.  

As the aim is to treat the polymer directly after the extrusion process, for this reason the pellets 

are not perfectly identical on shape and dimensions. Figure 2.1a highlights the slightly different 

pellets shape. Figure 2.1b shows a pellet with a cylindrical hole, as some pellets in the sample 

had this shape.  

                                                (a)                                                                                          (b) 

Figure 2.1a-b. Different pellet in the sample. Figure a. Pellets with different shape. Figure b. Pellets with long 

cylindrical hole 

Carbon dioxide (purity > 99.5%) was supplied by Linde Gas GmbH.  

Dithizone (IUPAC name = (1E)-3-anilino-1-phenylimino-thiourea, MW = 256.33 g/mol) was 

provided by Sigma-Aldrich Austria. Dithizone, at ambient conditions, appears to be like a black 

powder; it is soluble in ethanol and aqueous solutions with a basic pH. This compound is highly 
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reactive with metal ions and is used to separate and analyse ions like copper, silver, mercury, 

zinc, nickel, cadmium, lead and other heavy metals. The chemical structure of polycarbonate 

and dithizone is shown in Figure 2.2a-b. 

Metal ions combine with dithizone in basic solutions to yield nonpolar coloured complexes 

whose colours differ significantly from the  dithizone one [27]. These nonpolar complexes can 

be extracted from the aqueous solution with an organic solvent and their concentration can be 

measured by a spectrophotometer sensor. 

                                                  (a)                                                                      (b) 

 Figure 2.2a-b. Figure a.  Chemical structure bisphenol A polycarbonate. Figure b. Dithizone chemical 

structure 

Copper nitrate trihydrated (Cu(NO3)2*3H2O was ordered from Sigma-Aldrich Austria. 

Properties: MW= 241.60 g/mol, density = 2320 kg/m3. This salt has a very high solubility in 

water 3.81 g/mL at 40 °C [28]. 

 High purity ethanol 99.99%, potassium hydroxide, washing ethanol, nitric acid, copper salts 

and other chemicals were provided by Sigma-Aldrich Austria.  

 

2.2 Experimental Apparatus 

Impregnation experiments were carried out in a batch mode using a high pressure vessel (R-

01). Figure 2.3 shows the experimental apparatus scheme. 

The pump P-01 (Haskel ASF 100, USA) is a pneumatic liquid pump which allows to reach the 

experimental pressure. To maintain the CO2 liquid during compression, the pump is cooled by 

a recirculation cooling bath that maintains it below 5°C. The device is equipped with a pressure 

transmitter and a rupture disk (not reported in the figure) for safety reasons.  

The high pressure vessel R-01 is placed inside a thermostated heating chamber (H-01, Spe-ed 

SFE, Applied Separations, USA) which controls the temperature of the experiment. It can reach 

a maximum temperature of 250°C. 

A pressure control system is installed (PC-01, PT-01) and is used during the depressurization 

to achieve the desired pressure profile. The pressure data measured by PT-01 are recorded 

automatically by a computer. The control system is connected to a fail-open metering valve (V-

06, Kämmer Typ KA, Flowserve ltd, Germany). 
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Figure 2.3. The figure shows the P&I Diagram for the experimental equipment. 

High pressure tubes, fittings and valves were obtained from SITEC and Nova Swiss, 

Switzerland. The gear pump (P-02) was designed and custom manufactured at ETH Zurich, 

Switzerland. It is used to mix the vessel when the experiment is running and to avoid 

overheating problems, the pump is set to run 5 minutes every 15 minutes of experiment. 

 

2.2.1 High pressure vessel 

The high pressure vessel (R-01) was supplied by Thar design Inc. The maximum specification 

for pressure is set to 690 bar (10000 psi). Figure 2.3 shows the pieces and the assembled vessel. 

The equipment is a cylinder with an internal volume of 300 ml. The vessel can be opened from 

the top and from the bottom by two relatively big screw type closures. The sealing used are two 

carbon-filled PTFE groove rings. The bottom and the top closure are connected to the 

experimental apparatus by 1/16” pipe (Nova Swiss, Switzerland). The lower part can be closed 

with a conical joint, the upper one can be closed easily by hand with a special connection from 

Applied Separations (USA). To record the temperature, the vessel is equipped with a 

thermocouple (TT-01); the sensor is fixed on the lateral wall and it is protected from the 

environmental temperature by a PTFE cylindrical coating. 

To reduce the internal volume and to modify the behaviour of the fluid, some stainless steel 

fillers are introduced in the high pressure vessel. In this study, three vessel setups were used 

(Figure 2.4). For all the experiments the equipment was kept in vertical position (like it can be 

seen in Figure 2.3 and in Figure 2.4) 



18  Chapter 2 

Figure 2.3. Assembled vessel (on the left) and vessel pieces (on the right) cross section. 

Figure 2.4. Cross section drawing for the three vessel setups used. Setup A (on the left), Setup B (on the center) 

Setup C (on the left) 

Setup A Setup B Setup C 
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Setup A (Figure 2.4a) was used only for the dithizone impregnation of polycarbonate carried 

out only with scCO2 (without addition of ethanol). This configuration is adopted to obtain 

comparable results with the previous impregnation data of the Graz research group. The setup 

consists in various rings placed one over the other. 

Two screwed rings are laid at the bottom; they hold 2 sieves at two different levels. During the 

experiment the dithizone powder is placed on the lower sieve and the polymer pellets are placed 

on the one above.  

Setup B (Figure 2.4b) is used for the dithizone impregnation with scCO2 and ethanol and for 

the copper with both ethanol and water. A cylindrical pipe-shape filler is placed inside the 

vessel. This feature is mainly used to reduce the volume; the polymer pellets were simply laid 

on the vessel bottom. 

Setup C (Figure 2.4c) was used only for a few copper impregnation experiments. This 

configuration was developed to improve the mixing action of the gear pump (P-02). A two pipe 

shape cylinders are inserted inside the filler used for Setup B. The polymer is placed inside this 

narrow channel on a sieve located 10 mm above from the bottom of the vessel.  

The calculated effective volumes for the various setups are reported in table 2.1. 

Table 2.1. Calculated volumes for the high pressure vessel, the system with the mixing equipment excluded and 

the system with the running mixing for the 3 setups. 

  
Fluid volume in the vessel 

[ml] 

Fluid volume mixing 

equipment excluded [ml] 

Fluid volume mixing 

equipment included [ml] 

Setup A 144.3 147.2 157.7 

Setup B 58.6 61.6 72.0 

Setup C 42.6 45.5 56.0 

 

2.3 Experimental methods 

2.3.1 Impregnation with Dithizone 

First the material is weighted with an analytical balance (Sartorius, ± 0.0001 g) then the vessel 

is filled with the ingredients needed for the impregnation: polycarbonate pellets, dithizone 

powder and eventually 10.0 mL of high purity ethanol (>99.99%).  The amount of polymer 

charged in the vessel varies between 2.0 g (for the dithizone impregnation study) and 6.0 g (for 

the dithizone impregnated polycarbonate production). The amount of dithizone chosen for these 

experiments was 0.06 g. 

The vessel is sealed, connected to the system and placed in the thermostated heating chamber 

(H-01), where it is heated up to the desired temperature. Once the temperature is reached, the 
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pressure data recorder is switched on and the system is pressurized in 1–2 minutes. There is no 

indication from the literature where pressurizing rate is reported to be critical when using 

polymers for the impregnation. Successively the vessel is isolated from the pump P-01 by 

closing the valve V-02 and the mixing is started by switching on the gear pump (P-02). During 

the experiment pressure and temperature are maintained at ± 3.0 bar and ± 0.5 °C, respectively. 

The sorption time is measured from the moment which the desired pressure is reached until the 

depressurization is started. 

To start depressurization, the control system is switched on and valve V-05 is opened. The set-

point function is chosen to have, for all the range, a linear pressure decrease. In the dithizone 

impregnation experiment a depressurization time of 30 min is chosen. 

At the end, the polymer pellets and the vessel are washed with ethanol and dried in air at ambient 

temperature. 

 

2.3.2 Impregnation with Copper 

The copper impregnation procedure is similar to the dithizone one. The amount of polymer 

chosen for these experiment is between 1.75 g and 2.0 g. The amount of copper salt, water, 

ethanol, KOH, HNO3 was varied. Once the vessel is filled the same procedure as the dithizone 

impregnation is carried out. For this impregnation, a depressurization time of 60 min was 

chosen to obtain comparable results with the Graz research group previous experiment in the 

topic. 

During the impregnation experiment carried out with water, copper salt and KOH, copper 

hydroxide (Cu(OH)2) precipitated in the solution. For this reason, the samples were washed for 

one minute with a sulphuric acid aqueous solution (about 9%) to be sure to remove all the 

copper hydroxide from the polymer surface before the analysis.  

 

2.4 Analytical methods 

2.4.1 UV analysis 

The dithizone content in the polymer was measured by UV spectroscopy. The equipment is: a 

double beam UV-Vis spectrophotometer (UV-1800, SHIMADZU Handels GesmbH, Austria) 

and 1.00 ml quartz vials were used. To use this technique various dichloromethane-dithizone 

solutions with different concentrations were prepared to calibrate the measure. 
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To carry out the analysis the highest peak (that is, the adsorption maximum) within the analysed 

range (300–800nm) on the absorbance plot was chosen as reference with the aim to find a 

relationship between the concentration and the absorbance through the Lambert-Beer law. 

It was possible to use pure dichloromethane as reference because dissolving untreated PC 

pellets in dichloromethane does not change the absorbance in the wavelength range of interest.  

The highest value of the absorbance for dithizone in dichloromethane was found at a 

wavelength of 609 nm. Figure 2.5 shows the measured and calculated calibration line. 

Figure 2.5. Experimental data and obtained calibration line for the dithizone content analysis. 

From the plot of Figure 2.4 it was possible to determine the coefficient for the Lambert-Beer 

law (linear relation between absorbance and dithizone concentration) for the studied system 

(relation shown in equation 2.1). 

                                                            𝐶 = 𝐴/167,58                                                             (2.1) 

With:  C = Dithizone concentration in dichloromethane [mg/ml] 

           A = Absorbance [-] 

To measure the dithizone content in the impregnated polymer, 3 groups of 4–8 pellets each 

(depending on the dithizone concentration) are taken (4 pellets weight between 75 and 90 mg 

of polycarbonate). The 4 pellets are weighted and put into a vial. After the addition of 2.000 

mL of dichloromethane, the vial was closed and left for 1-2 hours until the polycarbonate was 

completely dissolved.  

After dissolution the sample was analysed with the UV device between 300 and 800 nm; the 

absorbance and the wave length of the highest peak were recorded. From the absorbance value, 

with the equation 2.1, it is possible to calculate the concentration of the dichloromethane 

solution and thus determine the dithizone content of the polymer.  
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This procedure means 3 parallel measurements for each sample; in this way it is also possible 

to have an indication of the homogeneity of each impregnation. The average was calculated on 

the three values. 

Dithizone is very reactive with metallic ions and even traces of metals can lead to a slightly 

different absorbance spectrum and errors in the measurement. For this reason, the analysis was 

carried out paying attention to all the possible contamination sources.  

 

2.4.2 ICP-OES/MS analysis 

It was not possible to perform the analysis at the Institute of Chemical Engineering and 

Environmental Technology so it was carried out externally. The copper load in the polymer was 

measured by Helmar Wiltsche and by IKEMA d.o.o. (Lovrenc na Dravskem polju, Slovenia) 

with the ICP-OES technique. The same procedure is followed by the two laboratories. The 

digestion step was carried out with closed ceramic crucibles; 100 mg of sample (5-6 pellets) are 

taken and 6 ml of aqua regia (4 ml of HNO3 and 2 ml of HCl) was added. Then the sample was 

brought at the temperature of 240°C in 20 min. The increase of the temperature causes the 

system to reach a pressure of 40 bar. The system was left at the conditions for 15 min; the 

digestion was aided with microwaves (Anton Paar Multiwave 3000 SOLV, Austria). The 

resulting solution was diluted to 50 ml and then it is measured by the ICP-OES. In the 

equipment used (Spectro Ciros Vision EOP, 1350 W power, Spectro, Kleve, Germany), λ = 

324.754 nm was applied for copper determination. 

 

2.4.3 Scanning electron microscope investigation 

Copper impregnation was studied with a Scanning Electron Microscope. A single pellet from 

the sample was cut with a diamond knife (Leica Ultracut UCT, Diatome) and the surface was 

coated with graphite to ensure surface conductivity. The sample was then measured with SEM 

(Zeiss Ultra 55). A backscattered electron detector (BsE) was also used to make easier the 

individuation of metallic particles into the polymer matrix; this is done increasing the contrast 

between the two solid phases. To analyse the elemental compositions an Electron Dispersive 

X-ray Spectroscopy (EDX) detector was used. EDX was measured by applying 5 and 20 kV 

accelerating voltage.  
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2.4.4 X-ray photoelectron spectroscopy investigation 

The X-ray photoelectron spectroscopy (XPS) technique was applied to determine the oxidation 

state of copper in the polycarbonate matrix. To perform the measure inside the matrix a pellet 

was cut. The spectrophotometer (PHI 5700) worked with X-ray radiation from two types of Al 

Kα source (1486.6 eV), standard and monochromatic. The base pressure in the equipment was 

2*10-10 mbar. To analyse the energy of the emitted photoelectron a hemispherical electron 

analyser operating at pass energies of 29.3 eV and 58.7 eV for high-resolution spectra and 187.8 

eV for survey spectra was used. The take-off angles of 5°, 20°, 45°, and 90° with respect to the 

sample surface were scanned during the analysis to evaluate the polymer at different depth. In 

the performed analysis the depth (90° take-off angle) was in a range of 1.5 – 5 nm. The analysed 

area had a radius of 0.4 mm. The accuracy of the binding energy scale is estimated to be 0.2 

eV. In the XPS spectra the pure core-level transitions (Cu 2p, C 1s, O 1s, N 1s, and S 2p) were 

analysed. 

 

 

 





  

Chapter 3 

Dithizone impregnation 

 

 

3.1 Impregnation with CO2 and Ethanol 

The dithizone impregnation of polycarbonate in scCO2 (first step of the process investigated) 

was studied both with pure scCO2 and with ethanol as a modifier. In this paragraph the results 

of the impregnation carried out with the addition of 10 ml of EtOH in the vessel are reported. 

The high pressure vessel configuration used is Setup B; for all the experiments the valves V-03 

and V-04 (Figure 2.3) were open and the gear pump was running. The entire volume for this 

configuration (included pipes and fitting) was calculated as 72.0 ml (Table 2.1). 

 

3.1.1 ScCO2-Ethanol equilibrium 

The aim of this part of the study is to perform a dithizone impregnation with the mixture of 

scCO2-EtOH. The equilibrium of CO2-ethanol system was checked to avoid the presence of 

two separate phases. Figure 3.1 reports the data by Lim et al. [29] for the mixture and the 

experimental conditions studied at 40 and 50°C.  

                                                (a)                                                                                       (b)  

Figure 3.1a-b. Equilibrium and experimental conditions points for CO2- Ethanol system at 40 °C (a) and at 50 

°C (b). Data by Lim et al. [29] 



26  Chapter 3 

Figure 3.1 proves the presence of a single fluid phase in the experimental apparatus; particularly 

at the working pressures, the CO2-EtOH system results to be a single phase for all ethanol 

compositions. The experimental ethanol concentration, reported in Figure 3.1a-b, was 

determined with the method described in paragraph 3.1.2. 

 

3.1.2 ScCO2-Ethanol density calculation 

As already reported in this chapter, for every experiment 10 mL of ethanol are loaded in the 

vessel and then the system is pressurized. For this reason, the ethanol concentration is not 

known in advance and it has to be calculated. Besides, information on the excess volume of the 

system is needed. Unfortunately, the only data on the mixture at 40 °C available in the literature 

are recorded at 100 bar, and information at higher pressure are missing. For this reason, an 

extrapolation is needed to have an estimation on the behaviour at 15 0, 200 and 250 bar. 

(a)                                                                                  (b) 

Figure 3.2a-b. Data by Kato et al. [30]. Figure a. Experimental density for CO2- Ethanol system at 40 °C and 

100 bar. Figure b. Excess volume calculated for the system 

Figure 3.2b shows a relevant excess volume for the mixture and by consequence the ideal 

mixture cannot be assumed. To model the system, it has been decided to use a cubic equation 

of state; however, with these models, the determination of the density near the critical point is 

inaccurate. For this reason, the volume shift proposed by Peneloux et al. [31] has been applied. 

Between the models investigated, the predictive Soave-Redlich-Kwong equation of state (P-

SRK) was chosen because it fits better the experimental data. Equation 3.1 reports the Soave-

Redlich-Kwong model with Peneloux volume shift correction (additional parameter c). 

                                                  𝑃 =  
𝑅𝑇

𝑣+𝑐−𝑏
− 

𝑎 𝛼(𝑇)

(𝑣+𝑐)(𝑣+𝑐+𝑏)
                                                (3.1) 
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The volume shift was calculated by taking into account the difference on the calculated and the 

experimental molar volume for an ethanol molar fraction (YEth) of 0.1. This choice was made 

to improve the accuracy in the studied range (YEth = 0.05–0.15). Figure 3.3a-b reports the 

experimental data and the model before and after the Penelux correction. 

(a)                                                                                  (b) 

Figure 3.3a-b. Experimental points, P-SRK and Peneloux modified P-SRK. Experimental data by Kato et al. 

[30].  Figure a. Density. Figure b. Molar volume. 

With the calculated volume shift (0.00424 m3/kmol) it was possible to reach a good accuracy 

in the studied range of compositions. This model was then used to calculate the ethanol molar 

fraction in the various experimental pressures. The results obtained with this method are 

reported in Table 3.2. 

The data from Pöhler et al. [32] were used to calculate the compositions at 50 °C; the 

publication reports data at different pressures for various concentrations. The same equation of 

state (P-SRK with Peneloux volume shifting) was chosen to model the system. Also, in this 

case, a reference concentration has been selected to determine the volume shift. To assure a 

good accuracy the correction was calculated considering the closest data (in terms of 

concentration and pressure) to the impregnation experimental conditions. The chosen 

conditions and the calculated volume shifts are reported in Table 3.1. The calculated ethanol 

molar fractions are reported in Table 3.2. All the calculations have been made using the 

software SimSci ProII process simulator. 

Table 3.1. Conditions and data used to determine the volume shift, calculated volume shift. Experimental data 

by Pöhler et al. [32]. 

T [°C] P [bar] YEth [-] ρ [kg/m3] V. shift [m3/kmol] 

50 100.6 0.193 630 -0.00793 

50 156.9 0.096 764 0.00456 

50 193.5 0.096 805 0.00458 
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Table 3.2. Calculated molar volume and ethanol molar fraction at the experimental conditions. 

T [°C] P [bar] YEth 
Mixture molar 

volume [m3/kmol] 

40 100 0.144 0.0566 

40 150 0.128 0.0535 

40 200 0.122 0.0513 

40 250 0.118 0.0495 

50 100 0.170 0.0715 

50 150 0.135 0.0566 

50 200 0.128 0.0537 

 

The concentrations reported in Table 3.2 are displayed graphically in Figure 3.1a-b. 

 

3.1.3 Reproducibility 

While studying the copper impregnation step, it was important to maintain the same starting 

conditions. So, to obtain comparable results, polymer samples with the same dithizone content 

needed to be produced. For that reason, many experiments at the same conditions were 

performed and, in this way, it was possible to check the reproducibility of the process. The 

chosen conditions are: 100 bar, 40°C and 2 hours of impregnation time. The external mixing 

was running 5 min every 15 min (5 min ON, 10 min OFF). Table 3.3 reports the results obtained 

in all the experiments; Figure 3.4 displays them graphically.  

Table 3.3. Dithizone content measured for 4 different experiments carried out at the same conditions  

P [bar] T [°C] 
Ethanol 

amount 

Impregn. 

Time [h] 

Depress. 

Time [h] 

Gear pump 

Mixing 

schedule 

Dithizone 

load 

[mg/g] 

100 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.1085 

100 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.1151 

100 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.1122 

100 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.0970 

 

Three different groups of pellets were analysed for each experiment. Since the difference on 

the measurements was minimal, the dithizone was assumed to be equally distributed through 

the sample. Due to the relatively low standard deviation shown in Figure 3.4, the process was 

considered to be reproducible. Starting from these results, the average and then the standard 

deviation was calculated. The standard deviation calculated is mg/g (7.4%); the value of this 
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parameter can be related with the process itself but also with the analytical method. In fact, 

dithizone is very reactive with metallic ions and even traces of metals can lead to a slightly 

different absorbance spectrum and errors in the measurement. 

Figure 3.4. Dithizone content measured for 4 different experiments carried out at the same conditions (100 bar, 

40°C and 2 hours). The calculated standard deviation for the process is displayed. 

The dithizone impregnated polycarbonate obtained with this process had a dark green colour 

and it looked transparent. Cutting a pellet in a half, the impregnation visually appears 

homogeneous and no gradient on the colour was noticeable. Figure 3.5a-b shows some pellets 

(entire and cut) obtained with the reported process.  

(a)                                               (b) 

Figure 3.5a-b. Dithizone impregnated polycarbonate pellet obtained with scCO2 and ethanol. Figure a. Entire 

pellets in different position. Figure b. Cut pellet. 

 

3.1.4 Time dependence 

The dependence on the impregnation time was investigated for the same conditions of the 

reproducibility study (100 bar and 40°C); the aim was to determine if higher concentrations can 

be reached, and eventually the maximum uptake. The results obtained for an impregnation time 

of 1, 2 and 3 hours are reported in Table 3.4 and displayed in Figure 3.6. 
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Table 3.4. Results for the dithizone impregnation with ethanol at different impregnation. 

P [bar] T [°C] 
Ethanol 

amount 

Impregn 

Time [h] 

Depress. 

Time [h] 

Gear pump 

Mixing 

schedule 

Dithizone 

load 

[mg/g] 

100 40 10 ml 1.0 0.5 
5min ON, 

10min OFF 
0.0711 

100 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.1122 

100 40 10 ml 3.0 0.5 
5min ON, 

10min OFF 
0.1199 

 

Figure 3.6. Results for the dithizone impregnation with ethanol at different impregnation time for the conditions: 

100 bar, 40°C. 

These results show that the concentration increases at higher times; however, the results 

obtained at 2 and 3 hours are close to each other, so that, looking at the standard deviations the 

equilibrium can be assumed.     

 

3.1.5 Temperature and pressure dependence 

To study the impregnation, the experimental conditions were changed. The temperatures 

investigated were 40 and 50°C; it was not further increased in order to avoid the scCO2 induced 

polycarbonate crystallization. The experimental pressure at 40°C was between 100 and 250 bar, 

whereas at the 50°C ones the investigation was stopped at 200 bar because the crystallization 

was noted. The results obtained are summarized in Table 3.5 and displayed in Figure 3.7.  

From Figure 3.7, an unusual pressure dependence is observed at 40 °C. Except for some 

fluctuation, the dithizone content results to be more or less independent of pressure and 

consequentially of the supercritical phase density. The data were explained with some 

consideration on the ethanol effect. Comparing the results with the ones shown in paragraph 
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3.2 (impregnation without ethanol), it is possible to state the big improvement on the dithizone 

content thanks to ethanol addition.  For each experiment the same amount of ethanol was used 

(10 ml) and this entails a different EtOH concentration in the vessel at different pressure. The 

consequence of this experimental method is that the concentration (and the partial density) of 

the ethanol inside the apparatus remains constant, a fact which may explain the pressure 

independence result.  

Table 3.5. Results for dithizone impregnation experiments carried out at different temperature and pressure.  

P [bar] T [°C] 
Ethanol 

amount 

Impregn. 

Time [h] 

Depress. 

Time [h] 

Gear pump 

Mixing 

schedule 

Dithizone 

load 

[mg/g] 

100 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.1122 

150 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.0918 

200 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.0908 

250 40 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.1179 

100 50 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.2056 

150 50 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.2480 

200 50 10 ml 2.0 0.5 
5min ON, 

10min OFF 
0.2130 

 

Figure 3.7. Results for dithizone impregnation experiments carried out at different temperature and pressure. 

The impregnation time was kept constant at 2 hours. The semicrystalline samples are highlighted in the plot.  

The impregnation values obtained at 50 °C are relevantly higher than the one at 40 °C. Indeed, 

even if the CO2-EtOH density is lower, an increase of temperature enhances the dithizone 

solubility and increases the chain mobility in the polymer. The dithizone content increases when 
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the pressure is brought from 100 to 150 bar. The decrement on the experiment at 200 bar is 

probably due to polycarbonate crystallization; in fact, the amorphous structure is easier to 

penetrate than the crystalline one that is characterized by a relevantly lower diffusion. The 

crystallinity was not measured by DSC but it was clearly visible. The comparison between an 

amorphous impregnated pellet and a semicrystalline one is displayed in Figure 3.8.   

Figure 3.8. Opaque semicrystalline pellet (on the left), amorphous pellet (on the right). 

Due to the fact that crystallization was detected at 200 bar, the impregnation study at this 

temperature was stopped and the experiment at 250 bar was not carried out. 

 

3.2 Impregnation with scCO2 

The impregnation carried out without the addition of ethanol as modifier was studied. The 

dithizone content achieved with this technique resulted of an order of magnitude lower than the 

one described in the previous paragraph. This impregnation was studied to obtain a product 

with less dithizone concentration but also to improve the process itself. Without ethanol it is 

possible to maximize the advantages of supercritical CO2 and to design an environmentally 

friendly process completely free of organic solvents. No investigation on the reproducibility 

were made for this specific process, however, comparing a result of this study to an old result 

of the Graz research group, a standard deviation of 0.0006 mg/g has been calculated. The 

standard deviation has been reported in the plots (Figure 3.9a-b, Figure 3.11, Figure 3.12).  

 

3.2.1 Temperature and pressure dependence 

To understand the effect of the operating variables on the process, experiments were carried out 

varying pressure (100–200 bar), temperature (40–50 °C) and impregnation time (3–6 hours). 

Table 3.6 and Figure 3.9a-b report and display the results obtained.  
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Table 3.6. Dithizone content reached with impregnations at different conditions 

P [bar] T [°C] 
Impregn. 

Time [h] 

Depress. 

Time [h] 

Gear 

pump 

Mixing 

schedule 

Dithizone 

load [mg/g] 

100 40 6.0 0.5 
5min ON, 

10min OFF 
0.0003 

200 40 3.0 0.5 
5min ON, 

10min OFF 
0.0013 

200 40 6.0 0.5 
5min ON, 

10min OFF 
0.0027 

100 50 3.0 0.5 
5min ON, 

10min OFF 
0.0002 

200 50 3.0 0.5 
5min ON, 

10min OFF 
0.0090 

200 50 6.0 0.5 
5min ON, 

10min OFF 
Crystalline, 

Not analyzed 

 

                                         (a)                                                                                         (b) 

Figure 3.9a-b. Results for the condition dependence experiments. Figure a. Results obtained for 3 hours of 

impregnation time. Figure b. Results obtained at 40 °C for 6 hours of impregnation time. 

The data on Figure 3.7a-b show the really low concentration reached when impregnation is 

carried out at 100 bar. This fact is probably due to a really low solubility of dithizone at this 

pressure; based on this results, it was decided to move to 200 bar to achieve better ones.  

The highest dithizone content was reached in the experiment at 50 °C, 200 bar and 3 hours. 

Unfortunately, when increasing the experimental time at these conditions a crystallization 

problem was encountered. Impregnating the sample for 6 hours, the pellets displayed in Figure 

3.10 were obtained. Due to the sample crystallinity the dithizone content was not measured. 



34  Chapter 3 

Figure 3.10. Crystalline pellets obtained at 50 °C, 200 bar and 6 hours of impregnation time.  

As in the experiments with ethanol as modifier (paragraph 3.1.3) crystalline pellets were 

encountered after only two hours of impregnation, it was concluded that the presence of ethanol 

accelerates the crystallization phenomenon; no literature reference was found on this fact. 

Therefore, it was decided to perform the study on the impregnation time dependence at the 

conditions: 40 °C and 200 bar to avoid crystallinity. 

 

3.2.2 Time dependence 

The dithizone impregnation has been studied for the conditions: 40 °C and 200 bar, varying the 

process duration. Table 3.7 and Figure 3.11 report the results obtained in these experiments. 

Table 3.7. Results for experiments carried out at different impregnation time. 

P [bar] T [°C] 
Impregn. 

Time [h] 

Depress. 

Time [h] 

Gear 

pump 

Mixing 

schedule 

Dithizone 

load [mg/g] 

200 40 1.5 0.5 
5min ON, 

10min OFF 
0.0002 

200 40 3.0 0.5 
5min ON, 

10min OFF 
0.0013 

200 40 6.0 0.5 
5min ON, 

10min OFF 
0.0027 

200 40 15.5 0.5 
5min ON, 

10min OFF 
0.0048 

200 40 24.0 0.5 
5min ON, 

10min OFF 
0.0052 

 

From the plot in Figure 3.11 it can be noted that the impregnation needs a certain time to start; 

in fact, the CO2 needs to be sorbed by the polymer (at least at the surface) and the dithizone 

powder has to be dissolved in the supercritical phase. Even after 24 hours of impregnation time 

the equilibrium concentration cannot be assumed; it is suggested that this is due to the relatively 

high polycarbonate pellet thickness. 

 



Dithizone impregnation  35 

Figure 3.11. Results for experiments carried out at 40 °C and 200 bar at different impregnation time. 

 

3.2.3 Diffusion coefficient estimation 

The diffusion coefficient of dithizone molecules in the polycarbonate matrix under supercritical 

CO2 has been estimated. To do this, the equation derived by Fu et al. [33] was used. The 

relation, initially developed for drug release system, is the Fick diffusion model for cylindrical 

geometries. Equation 3.2 calculates the amount of dithizone transferred across the cylinder 

(pellet) surfaces. 

                       
𝑀(𝑡)

𝑀(∞)
= 1 −

8

𝑙2𝑎2
∑

exp(−𝐷𝛼𝑚
2𝑡)

𝛼𝑚
2

∞
𝑚=1 𝑥 ∑

exp(−𝐷𝛽𝑛
2𝑡)

𝛽𝑛
2

∞
𝑛=0                      (3.2) 

With:  

- 𝛽𝑛 =  
(𝑛+1)∗𝜋

𝑙
         

- αm = roots of Jo(aα) = 0 (Jo is a zero order Bessel function) 

- a = pellet radius [mm] 

- 2l = pellet length [mm] 

- D = diffusion coefficient of dithizone [mm2/sec] 

- t = time [sec] 

- M(t) = dithizone uptake in function on time [mg/g] 

- M(∞) = dithizone uptake for t = ∞ [mg/g] 

The equation has been used under some assumptions: 

- Diffusion coefficient independent on time 

- Perfectly cylindrical and identical pellets 

The diffusion coefficient has been determined fitting the experimental data in Table 3.5 (Figure 

3.11). The calculation was carried out using the software Matlab (MathWorks®). The diffusion 
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coefficient, the equilibrium concentration and an induction time (D, M(∞), to respectively) were 

chosen as fitting parameters. The induction time was introduced in the equation to take into 

account the time that the process needs to be triggered (polymer swelling, dithizone 

solubilisation). To compute the equation 3.1 numerically, the two series terms were cut at m,n 

=25. The analysis of samples with higher dithizone concentration was considered more 

accurate; for this reason, into the fitting calculations, it was decided to factor with a double 

weight the values obtained with an impregnation time of 15.5 and 24 hours. 

The parameters obtained from the fitting are listed in Table 3.8. 

Table 3.8. Calculated values for the fitting parameters 

D 1.88E-06 mm2/sec 

M(∞) 0.0081 mg/g 

to 5478 sec  

 

The value estimated for the diffusion coefficient is one order of magnitude less than the one 

reported by Tang et al. [8] for the CO2 into polycarbonate at the same conditions (1.22x10-5 

mm2/s). This difference is due to the different size of the dithizone and the CO2 molecules that 

allows carbon dioxide to diffuse much faster between the polymer chains. For all these reasons, 

the calculated value for the diffusion coefficient was considered realistic. Figure 3.12 displays 

the experimental data and the calculated curve. 

Figure 3.12. Plot of the experimental results and the curve resulted from the fitting. 

The value calculated for the dithizone equilibrium concentration in polycarbonate, and in 

general the parameters of the fitting, should be taken only as a first estimate. The results have 

been obtained only through five experimental data; to obtain more reliable results more 

experiments need to be carried out. 
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3.3 Conclusively remarks 

The dithizone impregnation of polycarbonate pellet has been studied both with and without 

ethanol as a modifier and the crystallization phenomenon has been observed and reported. 

The investigation of the dithizone impregnated polycarbonate as a product is not the final aim 

of this study. However, as already reported in the first chapter, some dithizone containing 

material has already been developed as a potentiometric sensor and a solid adsorber [25] [26]. 

Probably, to use this polymer, it is necessary to make some modification in the polymer 

structure to gain, for example a membrane or a porous structure. Also for this reason the 

diffusion coefficient (for the conditions that does not lead to crystallinity) has been estimated; 

in this way the application on other polymer shape/structures results easier. 

 





  

Chapter 4 

Copper impregnation 

 

 

4.1 Single phase process 

The second stage of the 2-step process consists in copper impregnation. As already stated in the 

first chapter two different methods were applied. The single phase process was performed with 

a mixture of ethanol and scCO2, the aim was to solubilize the copper salt (Cu(NO3)2) in the 

mixture to obtain a standard impregnation. Due to the supposed absence of solubility of 

inorganic salts, no experiments were carried out in scCO2 only.  

The single phase copper impregnation was successful during the preliminary experiment carried 

out by the Graz research group, but the measured copper load resulted lower than the 2 phases 

process (see details in paragraph 4.2). The presence of the single fluid phase in the vessel can 

be proved looking at the CO2-EtOH equilibrium data (reported in paragraph 3.1.1). The results 

of these preliminary experiments are shown in Table 4.1. 

Table 4.1. Results of the preliminary single phase copper load experiments [23]. 

P 

[bar] 

T 

[°C] 

Dithizone 

content 

[mg/g] 

EtOH 

amount 

[ml] 

Calculated 

EtOH molar 

fraction 

Impregn. 

Time [h] 

Depress. 

Time 

[h] 

Gear 

pump 

Mixing 

schedule 

Copper 

load 

[mg/Kg] 

100 40 0.0055 10.0 0.1367 2.2 1.0 1x15 min 45±2 

100 40 0.1785 10.0 0.1367 2.0 1.0 2x15 min 10.9±0.3 

 

From the values in Table 4.1, it seems that the copper load decreases when increasing the 

dithizone concentration. However, starting from commercial polycarbonate (not dithizone 

impregnated) no impregnation could be achieved. Due to the fact that, from the beginning, the 

2 phases process was more promising, only a few experiments with ethanol were carried out. 

Table 4.2 reports the results obtained. 
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Table 4.2. Results obtained for single phase copper impregnation experiments. 

P 

[bar] 

T 

[°C] 

Dithizone 

content 

[mg/g] 

EtOH 

amount 

[ml] 

Calculated 

EtOH molar 

fraction 

Impregn. 

Time [h] 

Depress. 

Time 

[h] 

Gear pump Mixing 

schedule 

Copper 

load 

[mg/Kg] 

100 40 / 10.0 0.1367 2.0 1.0 5min ON, 10min OFF 15.49±1 

100 40 0.1122 10.0 0.1367 2.2 1.0 5min ON, 10min OFF 25.09±15.4 

 

In the latest experiments the copper load was significantly lower compared to the preliminary 

experiment and the dithizone content effect seems to be the opposite. The low amount of 

experiments carried out do not allow to state the reproducibility of the process and to define the 

dithizone content dependence. The high standard deviation measured in the second sample can 

be caused by a number of factors: the mixing performance, the dithizone distribution through 

the polymer, an error in the experimental procedure and others.   

Due to the different results and to the data inconsistency, it was decided to focus on the more 

promising 2 phase process.  

 

4.2 Two phase process 

In the 2 phases process the polymer is contacted with an aqueous solution of copper and with 

the supercritical CO2 phase. A similar impregnation was carried out and patented by Perman et 

al. [24], but this patent lacks in details about the procedure. The 2 phases process results to have 

a complicated dynamic, which is still unclear. Later on, in this chapter is reported a possible 

explanation of the process mechanics made after the results analysis.  

For this impregnation the preliminary results were really promising; a copper load of 109±3 

mg/kg was reached. Table 4.3 reports the preliminary results for the experiment carried out by 

the Graz research group. 

From Table 4.3, where many results are reported, some general remarks on the process can be 

obtained. However, the data are too few to have certain information. As can be seen various 

copper salts were studied; the best results were achieved with copper nitrate. For this reason, 

the following experiments were all carried out using this salt. 

The preliminary experiment carried out on commercial polycarbonate (without the dithizone 

impregnation step) turned out to be unsuccessful. This proved that the first impregnation step 

induced the increase on the copper load; the improvement seems not to be influenced by the 

dithizone content. In fact, a similar result was achieved with a difference of a couple of order 

of magnitude on the dithizone load (0.0055 to 0.1785 mg/g).  
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Table 4.3. Results of the preliminary experiments for the 2 phases process [23]. 

P 

[bar] 

T 

[°C] 

Dithizone 

content 

[mg/g] 

Aqueous 

phase 

composition  

Impregn 

Time [h] 

Depress. 

Time [h] 

Gear pump 

Mixing 

schedule 

Copper salt 

Copper 

salt 

amount  

[g]  

Copper 

load 

[mg/Kg] 

100 40 / 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 2x15 min 
Cu(NO3)2* 

3H2O 
0.440 4±1 

100 40 0.0055 

8ml H2O + 

2ml KOH 

0.1M 

2.3 1.0 2x15 min 
Cu(NO3)2* 

3H2O 
0.290 109±3 

100 40 0.1785 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 3x15 min 
Cu(NO3)2* 

3H2O 
0.468 90±3 

100 40 0.0970 

8ml H2O + 

2ml KOH 

0.1M 

2.2 1.0 
5min ON, 

10min OFF 

Cu(NO3)2* 

3H2O 
0.317 43+11 

100 40 0.1100 

8ml H2O + 

2ml KOH 

0.1M 

2.3 1.0 

15 min only 

at the 

beginning 

Cu(NO3)2* 

3H2O 
0.267 < LOQ 

100 40 0.1100 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 3x15 min CuCl2 0.278 9.2±0.3 

100 40 0.1100 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 2x15 min CuSO2*5H2O 0.476 15±7 

 

A lot of different experiments were carried out and it seems too confusing to report them all 

together. Therefore, it was decided to divide the results in order to better analyse and understand 

dependences and characteristics of the process.  

 

4.2.1 ScCO2-Water equilibrium 

Differently from the scCO2-Ethanol system, at the studied conditions, the scCO2-water mixture 

results to be two phase one. Figure 4.1 reports the data at 40°C of the solubility of water in 

scCO2 published by King et al. [34]. 

As can be seen from Figure 4.1, the molar fraction of water in scCO2 is really low, so that the 

amount of water in the supercritical phase results to be negligible. It has been calculated that, 

for the high pressure vessel used, only 0.08g (at 100 bar and 40°C) of water are in the CO2 

phase. Considering all the experimental conditions (pressure and vessel setup) used, the amount 

of water in the supercritical phase is 0.13g at maximum. 
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Figure 4.1. Data of solubility of water in scCO2 at 40°C [34]. 

The studied system involves an aqueous solution of salts instead of pure water, and it is assumed 

that the salts do not relevantly modify the equilibrium, so that presence of the two phases can 

be assured. 

 

4.2.2 Reproducibility and pressure effect 

The first information that needed to continue the study is about the reproducibility of the 

process. In fact, if the impregnation is not reproducible no further experiment should be carried 

out before modifying and fixing the procedure. 

To check the reproducibility two equivalent experiments are carried out and the results are 

compared. This procedure was made twice at two different pressures. Table 4.4 reports the 

results obtained for the 2 experiment sets. 

From the data reported in Table 4.4 the process seems reproducible; the results for the two 

experimental sets are similar and can be overlapped. However, the values for the copper load 

suffers from a huge standard deviation, that indicates an inhomogeneous impregnation 

occurring in the various pellets in the same sample.  

A high value of standard deviation is a significant problem for a research study. These big 

variations on the final results make the data not comparable and the analysis itself is influenced 

by randomness. A huge difference on the values, in fact, can be obtained only choosing different 

pellets to analyse. Comparing the data of two equivalent experiments (81±75 and 131±103 

mg/Kg, reported on Table 4.4), it is impossible to say if the average copper load of the two 

samples is similar or not.  

 

 



Copper impregnation  43 

Table 4.4. Results for the reproducibility experiments. 

P 

[bar] 

T 

[°C] 

Dithizone 

content 

[mg/g] 

Aqueous phase 

composition  

Impregn 

Time [h] 

Depress. 

Time 

[h] 

Gear pump 

Mixing 

schedule 

Cu(NO3)2 

amount  

[g]  

Copper 

load 

[mg/Kg] 

100 40 0.0643 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3200 81±75 

100 40 0.0643 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3195 131±103 

200 40 0.1151 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3260 10,65±3,5 

200 40 0.1151 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3230 14.37±2.7 

 

A remarkable effort was made in this study to reduce the standard deviation and to understand 

the causes of it. Possible explanations supported by experimental results are reported later on 

in this chapter. 

Results for experiments carried out at different pressure can be seen in Table 4.4. The reason 

of the lower copper load for experiments at higher pressure is unknown and it was not studied 

in depth. The hypothesis is that the modification of the density and the viscosity of the scCO2 

due to the higher pressure influences the circulation of the aqueous solution. The influence of 

the solution circulation and the mixing in the vessel is discussed in paragraph 4.3.5.  

 

4.2.3 Effect of the acid/basic solution 

The process was studied changing the amount and the composition of the aqueous solution. 

Particularly, the solution pH was varied adding nitric acid or potassium hydroxide. Table 4.5 

compares the results for the experiments carried out modifying these two additives amounts. 

The data in Table 4.5 show that all the experiments performed with an acid and a neutral 

solution were unsuccessful. It was found that KOH is needed to achieve the impregnation 

however the KOH addition does not lead necessary to a significant increase of the solution pH. 

In fact, a reaction takes place between the copper and the OH- ions and the copper hydroxide 

(Cu(OH)2) precipitates.  Cu(OH)2 has a really low solubility in water so that the majority of the 

hydroxide ions, come from the KOH, precipitates with the copper (this is also due to the fact 

that, in our conditions, the OH- ions are the limiting reactant).  
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Table 4.5. Results for the experiments performed varying the solution pH. 

P 

[bar] 

T 

[°C] 

Dithizone 

content 

[mg/g] 

Aqueous phase 

composition  

Impregn 

Time [h] 

Depress. 

Time 

[h] 

Gear 

pump 

Mixing 

schedule 

Cu(NO3)2 

amount  

[g]  

Copper 

load 

[mg/Kg] 

100 40 0.0033 
9ml H2O + 1ml 

HNO3 65% 
2.4 1.0 

5min ON, 

10min OFF 
0.3260 < LOQ 

100 40 0.0970 10ml H2O  2.0 1.0 
5min ON, 

10min OFF 
0.3684 < LOQ 

100 40 0.0033 1ml H2O  2.0 1.0 
5min ON, 

10min OFF 
0.3210 11.6±2.3 

100 40 0.0055 
15ml H2O + 

1.5ml KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
1.5409 25±8 

100 40 0.0643 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3195 131±103 

100 40 

between 

0.0013 and 

0.0055 

10ml H2O + 5ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3141 98±7 

 

The amount of KOH in the solution does not seem to be a key parameter for this process, and 

increasing its concentration leads only to a higher amount of solids in the vessel. However, the 

experimental data show that the impregnation results to be less effective when the ratio between 

the KOH and the copper ions is too low. 

 

4.2.4 Dithizone content effect 

To understand the dithizone effect on the impregnation some experiments were carried out 

starting with polymer pellets with a different dithizone content. Table 4.6 reports some of the 

results obtained. 

Table 4.6. Results for the experiments performed varying the dithizone content of the starting polymer. 

P 

[bar] 

T 

[°C

] 

Dithizone 

content 

[mg/g] 

Aqueous phase 

composition  

Impr. 

Time 

[h] 

Depress

. Time 

[h] 

Gear pump 

Mixing 

schedule 

Cu(NO3)2 

amount  

[g]  

Copper 

load 

[mg/Kg] 

100 40 / 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3194 26±8 

100 40 

between 

0.0013 and 

0.0055 

10ml H2O + 5ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3141 98±7 

100 40 0.0643 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min OFF 
0.3195 131±103 

 

It was found that the dithizone enhances copper impregnation. With the first impregnation step 

significantly higher results are achieved. Surprisingly, similar and comparable copper loads 
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were reached with a difference of one order of magnitude on the dithizone concentration in the 

polymer. However, it was preferred to carry out most of the experiments with a constant 

dithizone content of 0.1080±0.0080 mg/g (see paragraph 3.1.2) to be sure of producing 

comparable data. 

The mechanism of copper absorption by dithizone has been studied by Yu et al. [26]. Figure 

4.2 displays the reaction reported in that paper. 

Figure 4.2. Dithizone role on copper absorption proposed by Yu et al. [26]. 

In the study, dithizone molecules are bound on the silica gel to improve the sorption efficiency 

with respect of copper ions. The described mechanism consists in a bond formation between a 

molecule of dithizone and a single copper ion. In this work, the reported reaction has been 

excluded because of the copper load achieved. From the experimental data obtained, it was 

calculated that the impregnated copper ions (1.54*103 mmol/g) are 4 to 70 times higher than 

the dithizone molecules (from 2.13*105 to 3.91*104 mmol/g). 

The role of dithizone in the process is still unknown. Due to the small dependence on the 

concentration, it is assumed to have a catalytical-like function acting on the transportation of 

the copper inside the matrix. 

 

4.2.5 Effect of mixing 

The external mixing in the high pressure vessel resulted to be a key parameter in this study. 

Table 4.7 reports the results obtained changing the 2 phases recirculation in the vessel. The 

recirculation can be modified by changing the experimental setup, the pump action and the 

aqueous solution amount. 

The data in Table 4.7 report that the experiment carried out with the gear pump circuit closed 

was unsuccessful; the copper load reached is one of the lowest achieved. During this experiment 

the polycarbonate pellets were completely under water and no polymer was in contact with the 

supercritical phase. Another experiment reported in the paragraph 4.3.3 (1ml water) shows that 

the simple contact with the scCO2 phase, even with water as modifier, is not enough to achieve 

impregnation.  

 

 



46  Chapter 4 

Table 4.7. Results for the different 2 phases recirculation in the vessel. 

P 

[bar] 

T 

[°C] 

Dithizone 

content 

[mg/g] 

Aqueous 

phase 

composition  

Impregn 

Time [h] 

Depress 

Time 

[h] 

Gear pump 

Mixing 

schedule 

Cu(NO3)2 

amount  

[g]  

Vessel 

Setup 

Copper 

load 

[mg/Kg] 

100 40 0.0643 

13.5ml H2O 

+ 1.5ml 

KOH 0.1M 

2.0 1.0 No mixing 0.463 B 4±1 

100 40 0.0643 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 
5min ON, 

10min OFF 
0.320 B 81±75 

100 40 0.0643 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 
5min ON, 

10min OFF 
0.320 B 131±103 

100 40 0.0033 

18ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 
5min ON, 

10min OFF 
0.606 B 15,57 

100 40 0.1122 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 
5min ON, 

10min OFF 
0.326 C 10±4 

100 40 / 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 
5min ON, 

10min OFF 
0.326 C 5±2 

100 40 0.1122 

8ml H2O + 

2ml KOH 

0.1M 

2.0 1.0 

5min ON, 

10min OFF 

Inverted 

0.320 C 5±2 

 

These results prove that the polymer should be in contact with both the supercritical phase and 

the aqueous solution. For this reason, the high standard deviation of the successful results is 

probably related to an inhomogeneous mixing. In the studied system, it is really difficult to 

circulate the two phases in a way they can contact all the polymer pellets; particularly some 

pellets can remain in contact only with the scCO2 or the aqueous solution during all the 

impregnation time. Consequently, not all the pellets would result to be impregnated and the 

high standard deviation is generated. 

To improve the process, the amount of the solution was changed from 10 ml to 15 and to 20 

ml. The results obtained were similar to the previous ones and the standard deviation problem 

was not solved. 

The high pressure vessel setup was changed to ensure that all the pellets were homogeneously 

contacted by the 2 phases. Setup C (Figure 2.4) was developed but a copper load comparable 

with the previous experiments was not achieved (lower rows, Table 4.7). It was not possible to 

give a certain explanation to these results, probably the solution path in the vessel was not the 

expected one. The vessel C setup is designed to have the solution droplets coming from the top 
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and fall directly in the 1cm diameter polymer container. It can be imagined that the droplets 

descent is not in the centre, in this way it would be possible for the solution to reach the bottom 

moving by the wall without efficiently contacting the polymer. This could be due to the inlet of 

the solution (top of the vessel) that deviates the droplets or, alternatively, to an imperfect 

vertical positioning of the vessel. 

To improve the mixing, another attempt was made changing the direction of the circulation, in 

this way the scCO2 was bubbled through the aqueous solution. With this setup the impregnation 

was unsuccessful as well. 

 

4.2.6 Zinc impregnation 

A preliminary experiment on the two phases process has been carried out with zinc. The aim 

was to better understand the procedure and to state if the method could be useful to other metals 

impregnation. Zinc nitrate hydrate (Zn(NO3)2*6H2O) has been used as salt. The result and the 

same conditions of 100 bar and 40°C are reported in Table 4.8.  

Table 4.8. Result for the Zinc impregnation 

P 

[bar] 

T 

[°C] 

Dithizone 

content 

[mg/g] 

Aqueous phase 

composition  

Impregn 

Time [h] 

Depress. 

Time 

[h] 

Gear 

pump 

Mixing 

schedule 

Zn(NO3)2*6H2O 

amount  [g]  

Copper 

load 

[mg/Kg] 

100 40 0.1085 
8ml H2O + 2ml 

KOH 0.1M 
2.0 1.0 

5min ON, 

10min 

OFF 

0.4047 201±145 

 

The experiment was successful and a relatively high zinc load was reached. A really high 

standard deviation is observed also in this case. So, the main reason why this process is 

considered promising is that it can be extended to other systems and for other metals. 

 

4.3 Scanning electron microscope investigation 

The impregnation was assessed using a SEM. A sample obtained with the 2 phases process with 

relatively high copper load (109±3 mg/kg) was measured. The pictures and the results are 

shown in Figure 4.3a-b-c-d and in Figure 4.4a-b. 
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(a)                                                                                      (b) 

(c)                                                                                      (d) 

Figure 4.3a-b-c-d. Results obtained with the SEM investigation. Figure a. polycarbonate pellet cut and coated. 

Figure b. highlight of the particles occurred in the polymer matrix. Figure c. picture of a single copper particle. 

Figure d. picture of the particle obtained with the backscattered electron detector 

Figure 4.4a-b. Plots obtained with the EDX detector measuring the spots of two different particles found in the 

matrix. 
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These results give a good information on the final impregnation achieved. Deep inside the 

polycarbonate pellet copper was found in the form of relatively big clusters (in the order of 200-

400 nm) surrounded by a lot of smaller particles (Figure 4.3c). The EDX detector confirmed 

that the particles were made of copper (Figure 4.4a-b). 

With this technique, it was found that a deep impregnation has been achieved (not only a surface 

deposition) and information on the copper particles size and their distribution were obtained. 

 

4.4 XPS analysis 

A XPS technique was used to determine the oxidation state of the copper inside the polymer 

matrix. This measurement was performed to understand how this process works. The same 

sample investigated with SEM was analysed. The determination of the oxidation state is done 

evaluating the spectra obtained; particularly, the pure core-level transition is assessed. Figure 

4.5 shows the theoretical binding energy plot (Cu 2p) for the three oxidation states of copper. 

Looking and evaluating the sample binding energy plot between 960 and 930 eV is possible to 

determine the oxidation state of the copper into the polymer matrix. Figure 4.6 report the 

complete binding energy plot; Figure 4.7 focus on section between 960 and 910 eV.  

 

Figure 4.5. Comparison of the three oxidation state of copper theoretical binding energy plot for the pure core-

level transition Cu 2p [35]. 
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Figure 4.6. Complete binding energy plot measured 

Figure 4.7. Section between 960 and 910 eV for copper determination. 

The copper peak in the plot (Figure 4.6) results to be really small; this is probably due to the 

low copper load in the polymer and to the small analysed depth with the polymer surface. For 

this reason, the signal in Figure 4.7 appears really noisy and the fluctuations are somehow 

comparable with the height of the peaks studied. The noise of the measurement causes the 

impossibility to make a round hypothesis on the oxidation state of the copper. 
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However, an idea on the oxidation state can be proposed overlapping Figure 4.7 with the 

theoretical binding energy plot (Figure 4.5). Looking at the general shape of the measured signal 

and at the position of the main peak, the Cu2+ oxidation state results to be the most probable 

copper state in the matrix. 

 

4.5 Possible explanation of the process dynamic 

To explain the experimental results, an assumption on the 2 phase-process dynamic is proposed. 

The high pressure vessel is charged with the polycarbonate pellets, water, the KOH solution 

and the copper nitrate hydrate; suddenly the copper hydroxide is produced and due to its low 

solubility it precipitates immediately. Once the vessel is pressurized, some of the CO2 is 

solubilized in the aqueous phase and a little amount of water passes into the supercritical phase. 

At the end of the pressurization step, four phases are in the vessel: the aqueous solution, the 

supercritical phase, the polycarbonate pellets and the solid copper hydroxide.  

A key factor for the process is the acid behaviour of the CO2 in water. In fact, when CO2 

dissolves an important reaction takes place modifying the pH of the solution. 

                                               𝐶𝑂2(𝑎𝑞)
+ 𝑂𝐻−

(𝑎𝑞) ⇆  𝐻𝐶𝑂3
−

(𝑎𝑞)
                                             (4.1) 

The pH as function of temperature and pressure for the water-CO2 binary system was measured 

by Meyssami et al. [36]. These authors report an equilibrium pH close to 3.20 for the studied 

conditions (100bar and 40°C). In our work, it is assumed that the acid behaviour of the CO2 

allows the copper hydroxide to be solubilize, at least in part, in the aqueous solution. The 

solubility equilibrium, in fact, is highly dependent on the hydroxide ions concentration in the 

solution. Equation 4.2 reports the reaction that leads to the copper hydroxide formation. 

                                            𝐶𝑢2+
(𝑎𝑞) + 2𝑂𝐻−

(𝑎𝑞) ⇆  𝐶𝑢(𝑂𝐻)2(𝑠)
                                             (4.2) 

Also the polymer-CO2 interaction plays an important role in the process. In paragraph 4.3.5 the 

necessity of contacting the polymer with both the aqueous and the supercritical phase has been 

discussed, suggesting that the scCO2 has to penetrate inside the pellets, inducing the swelling 

and the Tg depression. The solution, when in contact with the swollen polymer, can partially 

diffuse inside the matrix.  

During the depressurization step, CO2 leaves gradually the water phase making the copper 

hydroxide precipitate again. Some of the copper is trapped inside the matrix and forms the 

particles seen at the microscope. 
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This theory might explain our experimental results, like the mixing effect and the KOH role in 

the process. The dithizone function in the impregnation is still unknown. It is suggested that it 

is able to improve the transportation of the aqueous solution into the polymer matrix. 

It has to be noted that this possible explanation of the impregnation dynamic is just a 

speculation. Many factors of the process are still unknown and to state something more certain 

more experimental data have to be collected and analysed.  

 

4.6 Conclusively remarks 

A new process for copper impregnation of polycarbonate pellets was proposed and tested. The 

procedure is promising manly for the depth of the impregnation and the possibility to be applied 

for other metal ions. However, a better understanding of the dynamic is needed and the standard 

deviation problem needs to be solved. 

The aim of the work was to modify the properties of the polycarbonate pellets, especially the 

electrical ones, however the produced material has not been investigated yet. Moreno et al. [37] 

increased the polycarbonate conductivity up to 6 order of magnitude (from 10-10 S/cm to 10-4 

S/cm) introducing only 400 mg/Kg of silver nanowires. The highest concentration reached in 

this study (131±103 mg/Kg) can be sufficient to modify this kind of properties but also the 

particles shape (spherical instead of wire-like) and the oxidation state of the copper (unknown) 

play an important role.  

An alternative and promising application for this polymer could be in the biological field, as 

already explained in the first chapter. The material, with the achieved copper load, can be used, 

for example, to reduce the number of bacteria and viruses in aqueous streams or to prevent the 

growth of microorganism in medical applications. 

 

 



  

Chapter 5 

Supercritical impregnation and industrial 

plants 

 

 

5.1 Existing plants 

The supercritical impregnation technique of solid materials is currently studied by many 

research groups, all over the world, for its promising features, as already described in chapter 

1. Even if this technology has a lot of possible applications, only few industrial plants have 

been built so far. This fact is probably due to the high initial investment cost that makes the 

process somehow unappetizing for investors. 

The first plant of this type, for wood impregnation plant, was built by FLS miljø (Valby, 

Denmark) through a new joint venture company named Supertræ (Superwood). The plant was 

developed with an annual capacity of 40–60.000 m3 and is situated in Hampen, Denmark. The 

plant started operation in March 2002 [38]. The supercritical carbon dioxide penetrates inside 

the microcapillary network in the wood and carries the organic fungicide deep in the matrix. In 

this way the wood is protected against rot and decay.  

Another supercritical dyeing process was developed by DyeCoo to dye textiles. A plant was 

built in Taipei (Taiwan) in 2014. The company NIKE Inc. utilises already this technology 

through its Taiwanese contract manufacturer Far Eastern New Century Corp (FENC). This 

process allows a water-free textile dyeing with a lot of environmental benefits and 

unprecedented colouring quality achieved [39].  

 

5.1.1 Plants characteristic 

Probably due to the relatively new process, not much information of the existing plants was 

found. The reported scheme and the plant operation are described taking into account the data 

found and the probable analogies with the supercritical extraction plants. Iversen et al. reported 

a schematic visualization of the process for the wood impregnation [38] (Figure 5.1). A patent 
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by Schollmeyer et al. [40] describes more in details a similar plant also for the supercritical 

dyeing. 

 

Figure 5.1. Plant scheme for wood impregnation reported by Iversen et al. [38] 

In the reported processes (Figure 5.1, [38]), the wood and the organic fungicide are charged in 

the vessel and the system is pressurized. A pump pressurizes and recirculates the CO2 in the 

system. The fungicide is dissolved in the supercritical phase, then it is transported through the 

wood where the impregnation takes place. At the end of the process the system (or only the 

wood vessel) is depressurized through a lamination valve and all the components (CO2, 

fungicide not absorbed) are recovered. The treated wood is discharged and raw wood is loaded 

to start a new cycle. The charging and the discharging of the wood are carried out automatically 

by some carriages to reduce the manual work and to decrease the cycle time (Figure 5.2). 

Figure 5.2. Automatic charging of the wood in the impregnation vessel. The 3 vessels can be seen. [41] 

Considering the evidences found, the existing industrial plants do not include a single 

impregnation vessel. The wood impregnation description [38] indicates the presence of 3 

different wood impregnation vessels. His corresponds also in the pictures found for the for the 

wood and the dyeing plant (Figure 5.2 and 5.3). 
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Figure 5.3. Impregnation vessels of the supercritical dyeing plant [39] 

For this reason, successively it is reported the suggested (wood and dyeing) plant layout. It has 

been chosen to display in Figure 5.4 and Figure 5.5a-b only the wood impregnation plant, 

because the two schemes are practically the same. The plant layout is proposed taking into 

account the supercritical extraction process which has a lot of similarities with the impregnation 

[42]. Figure 5.4 displays the suggested plant layout. 

Figure 5.4. Industrial wood impregnation plant layout proposed. 

In Figure 5.4, three impregnation vessels can be pressurized and depressurized independently. 

The proposed plant operation is described with the help of Figure 5.5a-b. The system is 

designed in a way that only two vessels are working while the other is involved by the 

discharging and charging operations. In Figure 5.5a, the impregnation takes place only in 

vessels V-01 and V-02, while vessel V-03 is not under pressure. When vessel V-03 is charged 

and ready, vessel 1 is depressurized and the CO2 path is changed like shown in Figure 5.5b. 

The CO2, passing through the vessel V-04, is enriched with the fungicide (or the dye); then the 
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supercritical phase is sent to two of the treatment vessels where impregnation occurs. These 

two vessels are operated in series in a way that the one with the raw wood (or the textile) (vessel 

V-03) is downstream with respect of the other vessel (V-02). This is due to the fact that there 

is a slight decrease on the fungicide amount between the two equipment and it is preferable to 

have the higher concentration for the ‘final’ treatment of the wood (this allows to keep the 

driving force of the process as high as possible). 

(a)                                                                                     (b) 

Figure 5.5a-b. Suggested plant layout with the CO2 path highlighted at different moments. Figure a. Plant 

operation with vessel V-03 in the charging/discharging phase. Figure b. Plant operation with vessel V-01 in the 

charging/discharging phase. 

The plant reported in Figure 5.4 has some benefits with respect of the one in Figure 5.1. The 

proposed plant results to be semi-continuous instead of the completely discontinuous one. The 

new configuration permits a constant operation of the recirculation pump and, then a smaller 

pressurization pump can be used. The proposed layout allows easier and quicker charging-

discharging operations. 

 

5.2 Proposed plant layout  

The process studied in this thesis is a two-step impregnation and for this reason the plant has to 

be different from the one described in the previous paragraph. Therefore, it is suggested a plant 

similar to the wood impregnation one, but it integrates additional inlet and outlet to the 

impregnation vessels to allow the aqueous solution recirculation. Figure 5.6 displays the 

proposed plant layout.  
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Figure 5.6. Proposed industrial plant for the 2-step impregnation process. 

Considering the fact that a similar copper load was reached also without adding to the 

supercritical phase ethanol as modifier, it was chosen to carry out the first impregnation using 

pure scCO2. In this way, a ‘green’ process, completely free of organic solvents, is designed. 

The recovery of the dithizone from the supercritical phase results easier because it can be 

achieved by a simple depressurization.  It was considered to carry out the first step at 200 bar, 

40 °C and 6 hours to achieve a good dithizone content and to avoid any crystallization problem.  

The impregnation vessels shown in Figure 5.2 and 5.3 are designed respectively for wood and 

textile. Due to their shape and characteristic, these materials are easy to transport and charge in 

the reactor. The polycarbonate used in this process is on pelletized form and, due to its powder-

like behaviour, a different vessel structure is needed to allow a fast operation (charging or 

discharging). Two different solutions are available in the market for this type of material and 

both require a vertical impregnation vessel. The first option is used for supercritical extraction 

of rice; this technology has been applied to minimize plant-protective agents and fatty oils from 

the product and, therefore, achieve substantial quality improvements [42]. This vessel consists 

of a gate that separates the bottom closure from the rice itself; in this way it is possible to charge 

the material from the top and then discharge everything by gravity (Figure 5.7a). The second 

solution, used in most of the extractions, consists of an internal container where the material is 

charged (Figure 5.7b); when the vessel is open it is sufficient to remove the basket with the 

product and to insert a new one with the raw material. 
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                                             (a)                                                                                       (b) 

Figure 5.7a-b. Different types of impregnation vessels. Figure a. Rice treatment vessel. Figure b. Impregnation 

vessel with the material container. [42] 

The vessel proposed here is the “basket configuration” (Figure 5.7b). This choice is linked to 

the second impregnation step of the studied process. The solid copper hydroxide in the aqueous 

solution can cause fouling accumulation in the system; this, through the various cycles, can lead 

to a complexation between the dithizone and the copper outside the polymer matrix. The 

internal container, in the chosen configuration, can separate the water from the vessel itself; in 

this way it is possible to clean the container only without stopping the plant. 

 

5.2.1 Impregnation vessels sizing and operation 

Taking into account the condition chosen for the industrial process, (200 bar, 40 °C, 6 hours for 

the dithizone impregnation and 100 bar, 40 °C, 2 hours for the second step) the sizing of the 

impregnation vessels has been carried out. The three vessels plant configuration showed in 

Figure 5.6 has been considered, and the calculations have been made fixing an annual 

productivity of 5000 tons of copper-nanoparticles impregnated polycarbonate. 

To size the vessels correctly, a more specific process schedule needs to be defined. With the 

conditions chosen, the single vessel operation shown in Figure 5.8 is proposed.  

Figure 5.8. Proposed pressure profile inside an impregnation vessel. 



  59 

Figure 5.8 reports a copper-nanoparticles impregnation time of 1.5 hours, instead of 2. The time 

was reduced by taking into account the differences between the industrial application and the 

laboratory study. In fact, during the research, the experiments start from the atmospheric 

conditions, and additional time is needed for the CO2 to penetrate inside the polymer. Instead, 

in the industrial application the polymer has already been swollen at the time it gets in contact 

with the copper solution. Unfortunately, no experiment has been carried out to quantify this 

phenomenon; however, a shorter or longer impregnation time can be implemented easily in the 

proposed process operation without changing the cycle duration. Slightly less than one hour (55 

minutes) has been assigned to the charging and discharging operations. Figure 5.9 reports the 

pressure profile for the three impregnation vessels simultaneously and shows better the overall 

plant operation. The proposed operation allows to discharge/charge a vessel every 190 minutes.    

Figure 5.9. Pressure profiles in the 3 impregnation vessels with respect of the time. 

The sizing has been made considering the plant to operate 24 hours per day and 351 days per 

year. The measured pellets bed porosity of 47% has been used to determine the three vessels 

volume. Table 5.1 reports the values calculated for the three vessels. 
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Table 5.1. Productivity, vessels specifications and consumption estimation for the proposed plant. 

Productivity 5000 ton / year 

Polymer treated every 190 min. 1876 kg 

Polymer volume 2.92 m3 

Vessel diameter 1.25 m 

Vessel height 3.00 m 

CO2 consumption 115063 kg/year 

Minimum Dithizone consumption 13.5 kg/year 

 

Both for the dyeing and the wood impregnation, a CO2 recovery higher than 95% has been 

reported.  The same value was assumed for the proposed plant. The total dithizone consumption 

was not determined because its solubility data in scCO2 were not available; for this reason, it 

was impossible to calculate the amount loss in the recovery. Table 5.1, in fact, reports only the 

amount of dithizone loaded in the polycarbonate matrix. In the same way it was impossible to 

determine how much of the aqueous solution makeup is needed. The copper impregnation step 

is a new process and the information needed for the liquid phase cannot be assumed a priori. 

 

 



  

Conclusions 

The aim of the study was to impregnate polycarbonate pellets with copper nanoparticles by a 

supercritical fluid technology. In this work the 2-step process developed by the Graz research 

group was studied. The method consists of 2 sequential stages; in the first one the pellets are 

impregnated with dithizone and, in the second one, the polymer is loaded with copper. Both 

steps were carried out in supercritical carbon dioxide media, with and without the addition of 

ethanol as modifier.  

The proposed method allows to avoid the expensive organometallic complex synthesis and uses 

a cheap salt as a copper source, thus reduce significantly the operative cost of the process. 

The experiments were carried out in a high pressure vessel in the range of 100–250 bar and 40–

50 °C. The samples were analysed with an UV-spectroscopy technique to determine the 

dithizone content reached after the first impregnation. After the second step, the overall metal 

load was measured by ICP-OES. The impregnation was studied and evaluated with a SEM and 

with an EDX detector to determine the atomic composition of the metal clusters in the polymer 

matrix.  

The impregnation of polycarbonate pellets with dithizone was successful by using pure scCO2 

as carrier, but adding ethanol as modifier it was possible to reach a load of one order of 

magnitude higher. Dithizone proved to be soluble in scCO2, fact that was not reported yet in 

the literature. Observation on the polycarbonate crystallization under supercritical CO2 and an 

estimation of the observed diffusion coefficient have been reported. 

In the second process step, copper nanoparticles were encapsulated in the dithizone containing 

polymer. The maximum copper load reached with this process was 131±103 mg/kg; the high 

standard deviation is caused by an inhomogeneous distribution of copper in the pellets of the 

same sample. The reason of this result was investigated and a possible explanation of the 

process dynamic was proposed, in which the poor mixing in the vessel has been suggested as 

the main cause of the standard deviation. It was also demonstrated that, the presence of 

dithizone increases the copper load reached in the second step, even if its role is still unclear. A 

successful zinc impregnation was carried out simply by changing the salt used; the results 

suggests the possibility to extend the methods also for other metals ions.  

Through SEM analysis, copper clusters in a range of 5–400 nm were found deep and 

homogeneously distributed inside the polymer pellet. The high impregnation depth reached is 

interesting because the studies found in the literature are mostly carried out on thin polymer 

support samples ( 39µm [18] and 25 µm [19]).  
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Eventually, an industrial plant layout has been proposed for the studied process, however before 

scaling it up, more experiments have to be carried out.  

In summary, this process has great potentials thanks to its lower cost and to its high flexibility. 
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