
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
Corso di Laurea Magistrale in Bioingegneria

TESI DI LAUREA

Anatomical comparison between Gilles
de la Tourette syndrome patients and

control subjects based on the
framework of currents

Laureando: Pietro Gori
Relatore Padova: Prof. Maria Elena Valcher
Co-relatore DTU: Prof. Line Katrine Harder Clemmensen
Co-relatore ICM: Prof. Stanley Durrleman

Anno Accademico 2011-2012





Summary

Gilles de la Tourette syndrome (GTS) is a childhood-onset chronic neuropsychiatric dis-
order characterised by multiple motor tics and vocal tics which lead to significant social
and educational impairments. Several studies ([Kim10],[MM11],[TM09],[Sin05]) show an
increase of the prevalence of this syndrome in the last decades. This discovery has brought
many research teams to focus their studies on this syndrome. The diagnosis is still based
predominantly on the history and observation of the tics and the causes and the develop-
ment of this disease are still unclear.

The data set of this project is composed by cortical surfaces, sub-cortical structures and
neural fiber bundles segmented from MRI and DWI images belonging to two populations:
one of controls and another one of patients subject to GTS. The goal of this Master’s
Thesis, associated to a future PhD project, is to understand if there are anatomical dif-
ferences between these two populations especially in the main neuronal circuits described
in Worbe et al. [WGH+10] (cortico-striato-thalamo-circuits).

The recent development of a new framework based on mathematical objects called "cur-
rents" seems very promising in this regard [Dur10]. Currents can represent both surfaces
(cortical surfaces, sub-cortical structures) and curves (fiber bundles) and it’s also possible
to compare them without the need of any kind of correspondence.

In the spirit of the method proposed in Durrleman et al. [DPK+12], an atlas is built,
namely a template shape, for each kind of object (surfaces and curves) present in the
population. Each template captures the anatomical invariant of the population and it
is then deformed to each subject’s object using a parametrizable smooth, one-to-one,
non-linear deformation of the underlying 3D space (diffeomorphism). Every template
is deformed in the same 3D space but each deformation is characterized by different
parameters. These deformations represent the variability of the anatomical objects within
the population.
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This methodology was tested only on surfaces using a gradient descend scheme which
allows to estimate both the templates and the deformations while preserving the topology
of the initial template given by the user. One of the main contributions of this project is
to adapt this methodology also for fiber bundles. From a geometrical point of view fiber
bundles can be seen as sets of curves. The connectivity between points is exactly what we
want to keep. This permits to retrain information about the starting and ending point of
the bundles and therefore also about the linked areas in the cortical surface and internal
structures. This allows us to detect the parts of the main neuronal circuits more variable
between the two populations.

We propose also a generic method to initialize the bundle template by selecting the most
representative fibers among all the subjects present in the population. This atlas con-
struction method applied on both populations will give as result a template for each kind
of object with its relative parametrizable deformations to each object. Analysing both
the templates and their main variability (i.e. PCA), it will be possible to understand if
there are anatomical differences between the two populations and above all where they
are present. We will use this information to test the hypothesis described before of Worbe
et al. [WGH+10] about Gilles de la Tourette syndrome.
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Introduction

In the last decades, with the advances in digital imaging and computation, more and
more researchers focused their studies on the biological variability of human anatomy.
This kind of study can be traced back to the beginnings of modern science. In fact
already Albrecht Dürer studied the variability of faces in his work: "Vier Bücher von
Menschlicher Proportion" in 1528, where he also used the works of Leonardo da Vinci.
He chose some landmarks "a priori" like the end of the nose or the beginning of the
forehead to study how they can vary among a population of about 200-300 living persons.
Moreover he also applied the mathematical simulation of convex and concave mirrors to
deform some faces studying the results. But the aim of this deformation was mainly
physiognomy (i.e. the study of the character of a person from his outer appearance).
Only in 1917 D’Arcy Thompson with his book "On Growth and Form" had a clear vision
of what would happen more than 70 years later. He understood that the essential task
of morphology is not to define in a precise way each shape but to find a comprehensive
way to compare them. He emphasized the fact that the study of the variability among
a population of shapes could be easier to understand than the study of each figure itself.
Thus, looking at the deformations of a "common average shape" (i.e. template) into every
different shape can bring more information than the shapes themselves.

Thompson also underlined the importance of Mathematics, above all the "Method of
Coordinates" on which is based the Theory of Transformation [Mil04]. Thompson’s vision
is exactly the mathematical structure being studied in Computational Anatomy [GM98]
that presents three main aspects [MQ09]:

1. Automated construction of anatomical manifolds ∈ R3 such as points, curves, sur-
faces, or volumes.

2. Comparison of these manifolds.
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3. Statistical codification of the variability of anatomy between subjects for testing
hypothesis, for example, related to disease states.

This project is mainly based on the two last points. The extraction of 3D curves and 3D
surfaces from T1-weighted MRI and DWI images was carried out by Linda Marrakchi-
Kacem in her PhD Thesis [MK11].

The problem of comparing two different structures such as curves or surfaces received
tremendous focus by many research teams and it is usually achieved by matching the
two objects. This means transforming (i.e. deforming) the first object such that it is as
similar as possible to the second one and eventually studying the transformation.

In order to analyse the similarity between two objects, one needs a definition of distance.
This dissimilarity measure should not be limited to a particular kind of data since, like in
this project, one wants to process both curves and surfaces or a mix of them. Furthermore
it should not rely on any "a priori" knowledge such as a correspondence between distinct
parts of the two objects (i.e. landmarks) chosen by the researchers. In fact, this can bias
the result making it also highly dependent on the choice of the landmarks. Moreover it
should also be weakly sensitive to the sampling of the objects (i.e. when they are charac-
terized by different amount of points). A framework which fulfils all these requirements
is the one of currents. Currents are generalized distributions which represent the geomet-
rical objects such as curves or surfaces in 3D. They are equipped with an Hilbert Space
structure and an easily computable norm. The norm of the difference between two cur-
rents (i.e. representations of curves or surfaces in 3D) is exactly the measure of distance
used throughout this project.

Once it is defined how to represent the geometrical objects and how to compare them,
it is necessary to introduce a deformation framework which enables to explain how to
deform and match an object to another one. The deformation should localize most of the
anatomical differences, which include also non-linear variations, it should be compatible
with the modeling of shapes as currents and it should also be possible to compute statistics
on it. Among other possible choices it seems that the Large Diffeomorphic1 Deformation
Metric Mapping (LDDMM) framework is particularly adapted for these requirements
[Dur10] [Gla05]. In fact, it has already been shown that this deformation framework can
be used for the registration of shapes modeled as currents and also that it’s possible to
infer statistics on it [Dur10].

The aim of this project is to combine these two frameworks to analyze the differences
between two populations of curves and surfaces in 3D representing part of the brains
of healthy controls and of patients subject to Gilles de la Tourette syndrome. In the
perspective of Grenander’s approach, we decided to build a template for each population

1smooth, one-to-one deformation of the underlying 3D space with smooth inverse.
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which can be seen as an average of the objects. This deformable template creates an
orbit under the group of diffeomorphisms: a whole family of new objects with similar
structure as the template. Therefore one can build a template which shows the common
features of the population and deform it towards each object of the population. In this
way it’s possible to compare the two templates of the populations, which represent the
two averages of the objects of the populations, looking for anatomical differences that
can be useful for medical studies. Moreover, since the deformation used in this project
is parametrizable, it’s also possible to analyse the variability of the deformations of each
population (i.e. PCA) as suggested by D’Arcy Thompson.

Several medical studies present in the Literature show that there is a connection between
the shape of the constituents of the brain and the disease of Gilles de la Tourette (Chapter
2). This has also inspired different hypothesis about the evolution of the Gilles de la
Tourette syndrome (GTS) and about the area mostly influenced by it. Among them, we
decided to test the one of Worbe et al. explained in [WGH+10] and in Chapter 2. This is
mainly based on the link between the shape and size of the cortico-striato-thalamo-cortico
circuits (Chapter 2) and the seriousness of the disease.

Thus the main goal of this project is to check this last hypothesis on two populations
of healthy and diseased subjects (subject to GTS) using the framework of currents for
representing the anatomical objects and a diffeomoprhism of the 3D space to deform the
template towards each object. Both the template and the deformations will be analyzed
with a visual inspection and statistical tools such as PCA looking for anatomical differ-
ences between the two populations. This can be really helpful and useful from a medical
point of view since it helps the doctors in understanding which are the parts mostly
involved with this syndrome.
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Chapter 1

The framework of Currents

In this chapter the framework of currents is presented starting with a practical and more
physical definition linked with the Faraday’s law of induction. For a more rigorous math-
ematical definition please see Appendix A.2. It is afterwards explained how it can be used
in practice in the context of neuroscience dealing therefore especially with surfaces and
curves in 3D. We show that currents can represent both curves and surfaces in 3D and
they create a vector space provided with a norm and therefore a metric to compare two
different objects. This dissimilarity measure doesn’t assume any arbitrary correspondence
and it takes into account the local orientation of curves or surfaces. Numerical tools for
working with currents in a more efficient way are also presented. First of all how to build
a regular lattice where it’s possible to approximate the framework of currents going there-
fore from continuous to discrete coordinates. And after that it’s also described a method
for obtaining a sparse representation of currents: a Matching Pursuit Algorithm presented
for the first time in [Dur10]. Lastly it is shown that this representation it’s really good
for compression and for a better interpretation of the data, but it has also a drawback:
it doesn’t keep the topology of the initial object loosing the connectivity between points.
This makes impossible the employment of this representation for the initialization of the
template in the atlas construction as it will be described at the end of this chapter.



2 The framework of Currents

1.1 What is a current?

Let L be a piecewise differentiable curve in 3D, it can be seen also as a current via the
path-integral equation:

L(w) =

∫
L

w(x)T τ(x)dλ(x) (1.1)

for every square integrable 3D vector field w (i.e.
∫ +∞
−∞ |w(x)|2dx <∞), where τ(x) is the

unit tangent vector of the curve L at point x and dλ(x) denotes the Lebesgue measure
on the curves so that

∫
L
dλ(x) equals the total length of the curve.

Similarly, let S be a piecewise differentiable surface, it can be seen also as a current thanks
to the flux equation:

S(w) =

∫
S

w(x)T (u(x)× v(x))dλ(x) =

∫
S

w(x)Tη(x)dλ(x) (1.2)

for every square integrable 3D vector field w, where η(x) = (u(x) × v(x)) is the unit
normal vector of the surfaces S at point x and (u(x)× v(x)) is the orthonormal basis of
the tangent plane of the surface S at point x.

The idea of current is to characterize every curve and surface, from now on called "shape",
by the collection of the real numbers S(w) and L(w) or, in other words, to probe shapes
using vector fields w. A practical interpretation of the concept of current is linked with
Electromagnetism. In fact, Eq. 1.2 is exactly the flux equation present in the Faraday’s
law of induction where w(x) is the magnetic field.

This law states that a time varying magnetic field will induce an electric current in a wire
loop. More precisely the induced electromotive force (emf)1 in a wire loop is proportional
to the variations of the flux of a magnetic field passing through the surface delimited
by the wire loop. Thus it’s possible to induce an emf by varying the magnitude of the
magnetic field with time or by varying the angle between the magnetic field and the
Surface. In fact we assume that the size and shape of the surface enclosed by the wire
loop doesn’t change with time. This means that we can measure the current within the
wire using the flux equation (Eq. 1.2) with w(x) equal to the magnetic field B and η(x)
equal to the normal on the surface enclosed by the wire loop. Thus, measuring the current
within the wire for every possible variation of the magnetic field (in this case in space not

1Potential difference between two points, measured in Volts, and it is the cause of charge separation
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in time), we can then retrieve the geometry of the wire. Or, in other words, we can use
the magnetic field to probe the geometry of the wire loop.

Thus, when dealing with surfaces and curves in 3D, the space of currents (denoted as
W*) can be defined as the set of continuous linear mappings from a test space of square
integrable vector fields W to R. And, by definition, W* is exactly the dual space of W.
More information about this test space will be given in paragraph 1.3. Every shape can
therefore be represented by a current and, being a space of mappings, currents build a
vector space with its usual properties, denoting T as a generic current:

• (T1+T2)(w)=T1(w)+T2(w)

• (λT )(w)=λT (w)

• (-T )(w)=-T (w) → (T1-T1)(w)=T1(w)-T2(w)=0

From these properties one can understand that the response of a sum of shapes (curves or
surfaces) is equal to the sum of the responses of each shape. Furthermore that the scaling
of a shape by a factor λ is equal to the scaling of the flux equation (or path-integral) by
the same factor. And eventually it is important to notice that, considering for example a
curve, changing the orientation of the curve means changing the sign of the path integral
along the curve and therefore obtaining an opposite current. The union of a curve with
itself but with opposite orientation cancels out in the space of current.

Figure 1.1: At each point x, it is associated a tangent vector τ(x) (i.e. curves) or normal
vector η(x) (i.e. surfaces) and the value of the vector field w(x). Using Eq.
1.1 or Eq. 1.2 for all the possible vector fields, one obtains a characterization
of the geometrical object. Picture taken from [Dur10].
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1.2 Discrete setting

From a practical point of view, when one deals with curves or surfaces, it’s useful to shift
to a discrete setting. In fact, bundles or fibers from a brain are usually the result of a trac-
tography method, which produces polygonal lines (sets of connected points which build
segments). Similarly surfaces in 3D may be seen as triangle mesh which are collections
of vertices and faces (triangles) that define the shape of an object (in this project the
cortical surface of the brain or the basal ganglia).

Both segments and triangles can be seen as Dirac delta currents. In fact all the points
along one segment share the same tangent vector, while all the points inside a triangle
have the same normal vector. Thus one can approximate the integral along the segment C
(Eq. 1.1) by a single value w(c)T τ where τ is the tangent vector (difference between last
and initial point of the segment) and c is the center of the segment. The same operation
could be done also for the triangles where the flux equation (Eq. 1.2) on the triangle S
is approximated by a single value w(c)Tη where η is the normal of the triangle and c the
center. Thus for both cases, segments and triangles in 3D, one can approximate the entire
set of N polygonal lines or N triangle mesh by a finite sum of Dirac delta currents δαx :

T (w) ∼
N∑
k=1

δαk
xk

(w) =
N∑
k=1

w(xk)
Tαk (1.3)

where xk are the centres of the segments (or of the triangles) and αk are respectively the
tangents of the segment if dealing with curves or the normals of triangle if one is working
with surfaces. The oriented points (xk, αk) are called momenta and the magnitude of αk
is equal to the length of the segment for curves and the area of the triangle for surfaces.

L(w) =

∫
L

w(x)T τ(x)dλ(x) ∼
N∑
k=1

w(xk)
T τk =

(
N∑
k=1

δτkxk

)
(w) (1.4)

S(w) =

∫
S

w(x)Tη(x)dλ(x) ∼
N∑
k=1

w(xk)
Tηk =

(
N∑
k=1

δηkxk

)
(w) (1.5)

So L =
∑N

k=1 δ
τk
xk

and S =
∑N

k=1 δ
ηk
xk
.
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Figure 1.2: Vision of a curve from a discrete point of view as sum of oriented points
(momenta) in green, each one positioned at the center of a segment. The
axis are unitless on purpose since it’s a general example that works with
any unit of measure (for space).

1.3 Definition of distance in the metric of currents and
RKHS

The space of currents is provided with the following operator norm:

Definition 1.1 Let T be a current. The mass-norm of T is defined as the operator
norm:

M(T ) = sup
‖w‖∞≤1

|T (w)| (1.6)

Thus, if T is a current in the discrete setting (a sum of Dirac delta current), like T =∑N
i=1 δ

ηi
xi
, for N distinct points xi and vectors ηi; then the mass-norm of T is given as:

M(T ) =
∑N

i=1 |ηi|. For the Proof of this Proposition please see [Dur10].

Moreover it can also be demonstrated that the mass-norm of the difference of two finite
sums of Dirac delta currents located at different points is M(T − T ′) = M(T ) + M(T ′),



6 The framework of Currents

and so, calling T =
∑N

i=1 δ
αi
xi

and T ′ =
∑N ′

i=1 δ
βi
yi
, one could write:

M(T − T ′) = M(T ) +M(T ′) =
N∑
i=1

|αi|+
N∑
i=1

|βi| (1.7)

From this equation it turns out that the dissimilarity between two currents (surfaces or
curves) is constant as long as the points xi and yi are different.

In fact, taking as example two currents composed only by one point each, we will have that
M(δαi

xi
−δαi

yi
) = 2|α| as long as x 6= y. But once x=y the mass-norms is equal to zero and so

it shows that this metric is blind to shape dissimilarities until the two shapes are perfectly
aligned [Dur10]. In other words it means that the metric captures the shape similarity
only if the curves are perfectly superimposed, but if a curve is copied and translated from
the original one, the difference will be always constant, independently of the magnitude
of the translation. Thus the mass-norm does not seem to be very useful and it is also
not well-posed from a numerical point of view due to the discontinuous behaviour of the
metric with respect to the positions x and y of the two curves.

A reason of this behaviour comes from the fact that the test space of vector fields doesn’t
have any spatial smoothness constrain. This means that it’s always possible to find a
vector field which perfectly interpolates the vectors of the momenta (tangents for curves
or normals for surfaces) as long as these curves do not overlap. A vector space that enables
to map every square integrable vector field to a smooth one is the one called Reproducible
Kernel Hilbert Space (RKHS) and it is the set of the convolutions between any square
integrable vector field and a smoothing kernel KW . The Kernel plays the role of a low-
pass filter on the spatial frequencies of the vector fields. In this project, the Kernel will be
a Gaussian one: KW (x, y) = exp(−|x − y|2/λ2

W )Id for any points (x,y), where Id stands
for the identity matrix (3x3 in case of a 3D space) while λW is the standard deviation of
the Kernel and it is one of the most important parameter in this framework. In fact, it
is the typical scale at which the vector fields w may vary spatially in this new test space
W. This means that it allows to control the metric on the space of currents which means
the measure of the distance between curves (or surfaces).

By construction this new space W has two important properties:

1. W is the dense span of the vector fields of the form w(x) = KW (x, y)β for any fixed
point y and vector β. This means that any vector field w can be written as an
infinite linear combination of the basis elements KW (x, y)β.
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2. W is provided with an inner product which is defined on these basis vectors by

〈
KW (·, x)α,KW (·, y)β

〉
= αTKW (x, y)β (1.8)

Denoting with w the vector field KW (·, y)β, the previous equation can be written as

〈
KW (·, x)α,w

〉
= αTw(x) (1.9)

and since the set of vector fields is dense in the RKHS W, this last equation still holds for
any vector field w in W. This is called the "reproducing property" since every vector field
"reproduces" itself in the points of the other vector field denoted by the basis element.

This new test space brings several advantages.
First of all, the standard deviation λW determines the rate of decay of the RKHS norm
to zero. This means that when one is computing the norm of the difference between two
different currents (i.e. ‖T-T’‖W∗, where W* is the dual space of W, which means the
space of currents) this parameter sets the "distance" within which the two currents start
to interact. Or, in other words, the shape dissimilarities are captured up to its magnitude
[Dur10]. So if this parameter is set to zero, then the RKHS norm tends to the mass-norm.
While when this parameter is too big, the vector field is too much smoothed and it can
not adapt to the small-scale variations of the two currents (curves or surfaces).
Second, with this new test space, the norm defined by a supremum has a closed form,
making the overall framework particularly well suited from a computational point of view
(See later Eq. 1.15).

Also in this new context, it will be denoted as W* the dual space of the RKHS W, which
means the space of currents. One of the key property of the RKHS W is that there is
a canonical isometric map between W and its dual space W*. This mapping is denoted
LW , it maps every vector field w ∈ W to LW (w) ∈ W* and it is defined by:

LW (w)(w′) = 〈w,w′〉W (1.10)

∀ w,w’∈ W. Thus LW (w) is a current (i.e. a mapping from W to R). In this context the
dual representation of the basis vectors KW (·, x)α are exactly the Delta Dirac currents:
δαx = LW (KW (·, x)α). Combining Eq. 1.10 and Eq. 1.9 with this last one, one obtains:

δαx (w) = LW (KW (·, x)α)(w) =
〈
KW (·, x)α,w

〉
W

= αTw(x) (1.11)
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which is another definition of Delta Currents but with RKHS as test space.

Therefore, with this new test space, being W* a vector space of linear maps, it’s also
provided with the supremum operator norm which is equal to ‖T‖W∗ = sup‖w‖W≤1 |T (w)|.
Thus, using the isometric map LW , the norm of the difference between two currents can
be written as:

‖T − T ′‖W∗ = sup
‖w‖W≤1

|T (w)− T ′(w)| = ‖L−1
W (T − T ′)‖W (1.12)

and the supremum is achieved for a particular vector field denoted by w = L−1
W (T − T ′).

This means that if T and T’ are two curves, this vector field is the one which maximizes the
difference between the integrals T (w) =

∫
T
w(x)T τ(x)dx and T ′(w) =

∫
T ′
w(x)T τ ′(x)dx

over all possible vector fields w ∈ W. In some sense, this vector field w is the one which
best separates the two curves [Dur10].

Of course, the result of the norm 1.12 depends on the choice of the test space W, which
is uniquely linked to the Kernel used, and in this project (since we are going to use only
Gaussian Kernels) to the value of the standard deviation λW . Thus, as it is possible
to notice from Fig.1.4, changing λW one changes also the resulting vector field. The
smaller the magnitude of λW , the higher the spatial frequencies not smoothed of w, and
consequently the maximizing vector field w captures more differences between the two
curves T and T ′.
λW is thus chosen in relation to the scale of detail that one wants to have in comparing
two different curves or surfaces. Practically λW determines the scale under which shape
variations are considered as noise. Looking at Fig.1.3 one can notice that the small bump
in the red curve is not seen by the algorithm in the left figure since λW is too big and the
bump is smoothed while it is seen as a shape dissimilarity in the right figure since λW is
smaller than the distance between the two curves red and blue.

(a) Noise (b) Feature of interest

Figure 1.3: Impact of the kernel std. on the distance between two curves T and T’.
Picture taken from [Dur10].
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(a) λW=1 (b) λW=2

(c) λW=4 (d) λW=5

(e) λW=10 (f) λW=50

Figure 1.4: Impact of the standard deviation of the Kernel on the resulting vector field
of the norm of the distance between two curves T and T’.
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The results shown in Fig.1.4 highlights the effect of the kernel size (dependent on λW ).
For small values of λW the vector field can vary fast enough to follow almost every change
in direction of both curves (see Fig.1.4b) but only when the size of the kernel is close to
the distance between the two curves, the vector field can almost perfectly interpolate all
the points between the directions of the curves [Dur10] (see Fig.1.4c and Fig.1.4d). In the
first case, with λW=2, the two curves are almost orthogonal in the space of currents with
an angle equal to arccos

(
|〈T1,T2〉W∗|
‖T1‖W∗‖T2‖W∗

)
= 89.98o. Instead, for large values of λW (see

Fig.1.4e, Fig.1.4f) the vector field can’t vary fast enough to follow all the small variations
in the directions of the two curves since the highest spatial frequencies are smoothed out.
Consequently the two curves become more and more aligned in the space of currents (the
angle with λW=50 is equal to 17.4o) and thus the value of the inner product decreases
and as a consequence one obtains a smaller value of the distance between the two curves
bigger is the value of λW .

One of the consequences of this behaviour is shown in Fig.1.5a and Fig.1.5b where when
λW is too small the norm of the difference between the two curves remains the same also
translating one of the curve in another position. In fact, the inner product is always equal
to zero. This means that, as shown before, the behaviour of this norm is similar to the
one of the mass norm and therefore it is useless unless the two curves don’t superimpose.
Instead, when the value of λW is close to the average distance between the two curves,
the vector field can interpolate almost perfectly all the points in between them and this
means that the norm is no more blind to the positions of the two curves. In fact, as it is
possible to see comparing Fig.1.5c and Fig.1.5d, the norm of the difference between the
two curves changes translating one of the curves.

Since the norm in the space of currents (Eq.1.12) derives from an inner product, one can
rewrite it using the following usual formula:

‖T − T ′‖2
W∗ = ‖T‖2

W∗ + ‖T ′‖2
W∗ − 2 〈T, T ′〉W∗ (1.13)

Using the second property of the RKHS shown before (Eq.1.8) and the fact that there
is an isometric mapping between W and its dual space W*, it’s possible to compute the
inner product between two Dirac delta currents in the following way:

〈
δαx , δ

β
y

〉
W∗ =

〈
KW (·, x)α,KW (·, y)β

〉
W

= αTKW (x, y)β (1.14)
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(a) λW=1, norm difference = 1563 (b) λW=1, second curve translated, norm difference
= 1563

(c) λW=6, norm difference = 1076 (d) λW=6, second curve translated, norm difference
= 1153

Figure 1.5: Effect of the translation of one curve on the norm of the difference changing
the value of λW .

and thus, by linearity, the inner product between two finite sets of Dirac delta currents
T =

∑N
i=1 δ

αi
xi

and T ′ =
∑N ′

i=1 δ
βi
yi

is given by:

〈T, T ′〉W∗ =

〈
N∑
i=1

KW (·, xi)αi,
N ′∑
i=1

KW (·, yi)βi

〉
W

=
N∑
i=1

N ′∑
j=1

αTi K
W (xi, yj)βj (1.15)

This equation gives explicit and easy tractable closed form formula to compute the inner
product between two discrete shapes [Dur10].
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Thus the norm of the difference between two curves T and T’ can be computed in the
following way:

‖T−T ′‖2
W =

N∑
i=1

N∑
j=1

αTi K
W (xi, xj)αj+

N ′∑
i=1

N ′∑
j=1

βTi K
W (yi, yj)βj−2

N∑
i=1

N ′∑
j=1

αTi K
W (xi, yj)βj

(1.16)

Using Eq.1.10 and the fact that LW is an isometric map, one can also rewrite the norm
of the difference between two curves in a different way:

‖T − T ′‖2
W∗ = 〈T − T ′, T − T ′〉W∗ =

〈
L−1
W (T − T ′),L−1

W (T − T ′)
〉
W

= LW
(
L−1
W (T − T ′)

) (
L−1
W (T − T ′)

)
= (T − T ′)

(
L−1
W (T − T ′)

)
and calling the vector field

(
L−1
W (T − T ′)

)
= w, it results (T − T ′)(w) = T (w) − T ′(w).

Thus, using the approximation seen before in Eq.1.3, both T and T’ can be discretized as
finite sets of momenta, ({xi, αi}) for T and ({yj, βj}) for T’, resulting in:

‖T − T ′‖2
W∗ = T (w)− T ′(w) =

N∑
i=1

w(xi)
Tαi −

N ′∑
j=1

w(yi)
Tβj (1.17)

The vector field
(
L−1
W (T − T ′)

)
= w, belonging to the RKHS, is equal to the convolution

of the momenta (xi, αi) and (yj, βj) by the kernel KW , namely:

w(x) = L−1
W (T − T ′)(x) =

N∑
i=1

KW (x, xi)αi −
N ′∑
j=1

KW (x, yj)βj (1.18)

Combining these two last Equations 1.17 and 1.18 it results exactly Eq.1.16.

1.3.1 An efficient computational framework

As seen in the previous section, it exists an easy way to compute the norm of a current
via a double sum: ‖T‖2

W∗ =
∑N

i=1

∑N
j=1 α

T
i K

W (xi, xj)αj which can be rewritten in matrix
notation as αTKα.
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This offers an efficient way to compute the norm of a current via matrix multiplication
when the number of momenta is finite and not too big. Unfortunately in this project
the size of meshes and curves is such that it is necessary to find a more efficient way to
compute the metric on currents.

In fact, the main problem is that it is necessary to compute a different matrix K for every
current, since it depends on the points of the curves or surfaces. Thus a possible solution
is to introduce a linearly spaced grid which defines a finite-dimensional sub-space of the
RKHS W and therefore also a sub-space of the space of currents W* [Dur10]. In this way,
momenta will be constrained to be located only in a particular set of points Λ and the
matrix K can be pre-computed and stored once for all, at the beginning of the process,
allowing also a fast parallelization of the computation on currents.

It was shown in [Dur10] that when the set Λ becomes dense in Rd, the approximation
space converges to the original space. Therefore, all the results and equations shown so
far can be brought also in this new context. So the new subset of the RKHS W will be
called WΛ and a basis of this vector space will be given by the vector K(x, ·)εk for any
point x belonging to the set Λ (∈ Rd) and for any εk being an orthonormal basis of Rp2.
So, if the number of points in WΛ is N, its dimension is Np since all the points belong to
Rp and any vector field γ ∈ WΛ has a unique decomposition of the form:

γ(x) =
∑
i∈Λ

K(x, xi)αi (1.19)

This last equation is exactly the one seen before as first property of the RKHS but with
one important difference. Now this decomposition is unique since the set of points (and
therefore momenta) is constrained and not arbitrary and so the dimension of WΛ is equal
to Np and not infinite. In fact, by contrast to infinite dimensional spaces, a set of linearly
independent vectors which spans a finite dimensional space is a basis of the vector space.
Therefore the extra condition needed before in the infinite dimensional space, like the
orthonormal condition, is no more necessary. It’s important to enhance the fact that
Dirac Delta Currents are linearly independent and span the space of currents but they
are not orthogonal (

〈
δαx , δ

β
y

〉
W∗ = αTKW (x, y)β 6= 0) and that’s why the decomposition

of a current as linear combination of Dirac Delta Currents in the previous infinite space
W was not unique.

Also in this case we can rewrite all the equations seen before in matrix notation: calling
α the concatenation of the N vectors αi of dimension p and γ the concatenation of the N
vector fields L−1

W (T )(xi) of dimension p, one can write γ=KΛα, whereKΛ is the Np-by-Np
block-circulant matrix. From a computational point of view, the norm and inner product

2In this project Rd is always the set for points x or y while Rp is the set for vectors like α or β. From
a practical point of view both d and p are always equal to 3.
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operations have a complexity equal to N2p2 which is the number of elements ofKΛ. But,
since this matrix is built on a linearly spaced grid with periodic boundary conditions 3 and
with blocks given by scalar and translation-invariant kernels (i.e. K(x,y)=K(|x-y|)Id), it
can be reduced to a circulant matrix with N2 elements. An example of block-circulant
matrix is:


K0 K1 K2 ... KN

KN K0 K1 ... KN−1

... ... ... ... ...
K1 K2 K3 ... K0


In fact, using as example p=2 (which means a 2D representation), each block of the KΛ

is equal to K =

[
b 0
0 b

]
where b is equal to exp(−[(xi − xj)T (xi − xj)]/λ2) (i.e. Gaussian

Kernels). Moreover, being the grid linearly spaced with periodic boundary conditions,
K(xi, xj) = K(x0, xj−i) for 0 ≤ i, j ≤ N − 1, which means that KΛ is indeed a block-
circulant matrix where each block is a matrix K(x,y). But since every matrix K(x,y) has
only one value different from zero, it can be taken into account only this value b in the
computation, reducing the number of elements from N2p2 to N2.

Therefore, the matrix KΛ becomes a circulant matrix with N2 elements and it’s com-
pletely determined by its first row k of size N .

So any vector field γ = L−1
W (T ) associated to a generic current T, restricted to the set of

momenta given by Λ, can be computed with p discrete convolutions between the first row
k of the matrix KΛ and α which has been divided in p vectors of size N:

γi = (KΛα)i = k ?αi 1 ≤ i ≤ p (1.20)

where ? denotes the discrete convolution between matrices.

Each discrete convolution between matrices can be computed via FFT at a costO(N log(N)) :
A ? B = FFT−1(FFT (A) · FFT (B)), where · denotes the element-wise multiplication
of matrices. Therefore the total cost is O(pN log(N)) which is definitely lower than the
direct computation using the double sum O(N2p2). 4

Due to the periodic boundary conditions of the grid, the result of the computation in Eq.
1.20 using FFT can also be not strictly equal to the result using discrete convolution. This

3It means that the grid has the geometry of a torus: points at two opposite borders are at distance 0
from each other.

4The number of points in the grid is chosen as a power of two (Λ = 2M ) for FFT computation purpose.
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is because momenta close to a border of the grid may influence the result of the vector
field at a point close to the opposite border. In order to avoid that, the grid borders
are enlarged and located at a distance equal to at least 3λW from every momenta. It’s
important to recall that we are using Gaussian Kernels.

The next step is how to project a current T onto the grid WΛ. As shown in [Dur10] the
best approximation (in the sense of the norm in W) is given by the orthogonal projection
of the complete vector field γ ∈ W on WΛ and consequently of T on W*Λ (dual space
of WΛ). Unfortunately it turned out that this operation is ill-posed from a numerical
point of view (see [Dur10] for more information). Therefore another strategy is used:
Partial Volume Projection (PVP) with which all the components of the momenta are
projected in different grids. Using as example a 3D representation, every momenta has
three components (x,y,z) and for each one of them a grid is created. These grids are
divided in "cubes" where the components are first inserted and then projected at the
surrounding 8 nodes of the "cube" where they belong to. In fact, one can split a 3D
momenta (a point joined to a vector: an oriented point) into three different "weighted-
points" which are defined as the points in 3D linked to each component of the vector:
([x, αx],[x, αy],[x, αz]). Each one of these "weighted-points" is afterwards projected to a
linearly spaced grid (seen before) with the technique of the PVP:

1. Insert the point x in the grid

2. Find the 8 nodes around x

3. Add to each node the value of the component under examination αi multiplied by
an interpolating functions ρi

It’s useful to recall the definition of interpolating function ρi:

•
∑

i ρi(x) = 1

•
∑

i ρi(x)(x-xi)=0

In three dimensions, each grid is divided into cubes. A point inside a cube creates 8
sub-volumes. ρi(x), where x is the point inside the cube and i the index related to one of
the 8 nodes, is equal to the sub-volume opposite to the node i divided by the length of
the cube (l) to the power of 3 (l3).

At this point, one has 3 linearly spaced grids with periodic boundary conditions (one
for each component x,y,z), and using the FFTs as seen before it can be computed every
component of the vector field at each point giving as result a 4D matrix (3 grids of 3D).
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The FFT of the Kernel is computed once for all at the beginning of the process since the
three grids are exactly the same and therefore also the distances between grid points (the
Kernel depends only on the distance between two poins since it’s Gaussian). After that
the FFT of the αi values projected at each grid point is computed (for each grid). The
inverse FFT applied to the product of the two FFTs (Kernel and αi) for each grid gives
as result the vector field. Now, computing the sum of every point value squared at the
same position in each grid, one obtains exactly the "total" vector field at each grid point.
But if one wants to compute the vector field in another series of points (not at the grid
points), it is necessary to have an interpolation scheme.

The third step is therefore to define an interpolation scheme which can reconstruct a
dense vector field from samples on grid nodes. Or, in other words, to find the values of
the vector field in a series of points different from the grid nodes. A natural choice of
interpolation scheme is the PVI (Partial Volume Interpolation) since it was used before
PVP. It is exactly the inverse operation. In fact, each new point y can be associated to
a voxel of each grid (the cube whose nodes are around y) and every component of the
vector field can be computed using the following equation:

f(y)j =
∑
i

ρi,j(y)fi,j (1.21)

where j is the component (x,y,z) of the vector field and i is the index for the nodes. Thus
the result of this operation in a space R3 is a series of vectors ∈ R3, one for each new
point y.

All the demonstrations about the construction of a finite-dimensional approximation of
RKHS and how it converges to the original space can be found in [Dur10]. Moreover
it’s also interesting to remark that always in [Dur10] it was demonstrated that in this
framework the approximation error depends only on the ratio between the grid step ∆
and the rate of decay of the kernel λW , which is set equal to 0.2 in this project.

1.4 Sparse Representation of currents

As seen before, a surface or a curve can be approximated by a finite sum of Dirac Delta
Currents. This approximation may be redundant at the scale of analysis which is given by
the standard deviation of the Kernel λW . This means that two segments, approximated
by two Dirac Delta Currents which are closer than λW , are almost undistinguishable in
the space of currents. This results from the effect of the smoothing Kernel. In fact, the
action of any vector field w on the current δαx + δβy gives as result w(x)Tα + w(y)Tβ =
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K(·, x)α+K(·, y)β and if |x−y| � λW , the vector field is almost constant between x and
y and therefore w(x)Tα + w(y)Tβ might be well approximated by w(x+y

2
)T (α + β). This

means that the sum of the two initial Dirac Delta Currents δαx + δβy may be approximated
by a single one δα+β

x+y
2

.

Exploiting this idea, it’s possible to approximate the momenta located in every patch of
size λW by a single momenta and therefore to have a sparser representation. This means
also that the resulting Dirac Delta Currents are almost orthogonal since their relative
distances are greater than λW , which means that taking any couple of resulting momenta
(x, α) and (y, β) their inner product will be close to zero (

〈
δαx , δ

β
y

〉
W∗ ∼ 0) since we are

using Gaussian Kernels (exp(−|x− y|2/λ2
W ) ∼ 0 if |x− y| � λW ).

In an optimal decomposition one would like also to choose the momenta in order that the
new approximation is similar to the original current. Or, in other words, one looks for
the set of Dirac Delta Currents (

∑N
i=1 δ

αi
xi
) that have a strong correlation with the original

current T, which means maximizing
〈∑N

i=1 δ
αi
xi
, T
〉
W∗

.

A greedy approach to this idea is the one introduced in [Dur10]: a matching pursuit
algorithm. Matching pursuit algorithm is based on the iteratively research of the linear
combination of atoms (momenta in this project) that best correlates with the residual
function. Of course, at the beginning of the process, the residuals are equal to 0 and
therefore one looks for the atom that best correlates with the initial function. The basic
idea is therefore to reduce an initial dictionary of atoms to a sparser one and the resulting
subset is the one which can best explain the initial function. In the context of currents,
given an initial current T =

∑M
i=1 δ

αi
xi
, one looks for the set of momenta {

∑N
i=1 δ

βi
yi
} that

best approximates T (with N �M).

If one knows the positions of the points of the best set of momenta Yn = {yi}1≤i≤N ,
it can be defined a sub-space of currents, as in the previous section, called W ∗

Yn
,where

the previous subset Λ is substituted with Yn for a clarity purpose. This subset is the
space given by all the linear combinations of the momenta δεkyi , with yi being the points
belonging to Yn, k = 1, 2, 3 since we are dealing only with curves and surfaces in 3D
and εk is a canonical basis of R3 (i.e. W ∗

Yn
= span(δεkyi )). After that, one needs to

find the vector βi linked to each best point inside this new sub-space, and the closest
approximation to T in W ∗

Yn
is given by the orthogonal projection of T onto W ∗

Yn
, which

means
〈
T, δεkyi

〉
W∗ =

〈∑N
p=1 δ

βp
yp , δ

εk
yi

〉
W∗

. Both parts of this last equation can be rewritten
in the following way:
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〈
T, δεkyi

〉
W∗ =

〈
L−1
W (T ) ,L−1

W

(
δεkyi
)〉

W
(1.22)

= 〈γ,KW (·, yi)εk〉W
= γ(yi)

T εk

= γ(yi)k

where γ = L−1
W (T ) and it was used the definition of Dirac Delta Currents: δαx = LW (KW (·, x)α),

the reproducing property from Eq1.9 and the isometric mapping LW .

〈
N∑
p=1

δβpyp , δ
εk
yi

〉
W∗

=

〈
L−1
W

(
N∑
p=1

δβpyp

)
,L−1

W

(
δεkyi
)〉

W

(1.23)

=
N∑
p=1

εTkK
W (yi, yp)βp

=
N∑
p=1

(
KW (yi, yp)βp

)
k

where it was used Eq.1.14. Merging these two equations, one obtains a set of 3N linear
equations:

N∑
p=1

(
KW (yi, yp)βp

)
k

= γ(yi)k (1.24)

solving this linear system leads to the values of the N optimal vector βi linked to the best
positions Yn.

Finding the optimal points {yi}1≤i≤N has been proved to be NP-hard in general [Dur10]
[DMA97]. The orthogonal matching pursuit algorithm is a suboptimal greedy approach
to this problem. At each iteration one chooses as new optimal point the one for which the
projection of the residual current onto W ∗

Yn
is maximal. The first point is chosen using

the whole initial current T . Thus:

〈T, δεkz 〉W∗ = 〈γ,KW (·, z)εk〉W = γ(z)k (1.25)
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and y1 (the first optimal point) is the one for which |γ(z)| is maximal. It’s important to
notice that {z} are all the points of the grid where T is projected (see Section before) but
they are not the points of the momenta of T , which are called {x}. On the other hand,
{y} are the optimal points resulting from the Matching Pursuit algorithm and they are
chosen from the whole set of points in the grid {z} and, therefore, they can be different
from {x}.

After finding the first optimal point y1, one solves Eq.1.24 obtaining β1
1 = KW (y1, y1)−1γ(y1),

which is the value of β for the first optimal point at the first iteration. After that one
removes from the original vector field γ its orthogonal projection on LW−1(δεky1) for each
dimension k, which gives the first residual vector γ1(z) = γ(z) −KW (z, y1)β1

1 . It should
be clear that only the {z} points closer than 3λW from y1 are modified in a significant
way by this operation since we are using a Gaussian Kernel with standard deviation equal
to λW .

After n steps the algorithm finds yn which is the point where the residual vector field γn−1

is maximal. Solving Eq.1.24,
∑n

p=1

(
KW (yn, yp)βp

)
k

= γn−1(yn)k, leads now to n vectors
β: βn1 , βn2 , ..., βnn and therefore the approximation of T on W ∗

Yn
becomes:

∑n
i=1 δ

βn
i
yi .

Therefore at each step one finds an optimal point and removes the "effect" of this point
and of all the other optimal points from the original vector field. The magnitude of the
"effect" of the optimal points is given by the standard deviation of the Kernel λW . And
it’s exactly like removing at each step a "patch" centred on each optimal point whose size
is defined by λW .

It was proven in [Dur10] that the approximation
∑n

i=1 δ
βn
i
yi converges towards T as n tends

to infinity, which means ‖T −
∑n

i=1 δ
βn
i
yi ‖W∗ → 0 when n → ∞. Moreover it was also

demonstrated that the L∞-norm of the residual vector field tends towards zero as n tends
to infinity (‖L−1

W (T )− L−1
W

(∑n
i=1 δ

βn
i
yi

)
‖∞ → 0, when n→∞). This means that one can

use the infinity norm of the residual vector field as stopping criteria, since it will go below
a certain threshold η after a finite time.

Depending on the application, the threshold η can be chosen in different ways. If one is
dealing with sets of objects from different subjects, one can choose a certain percentage
of the standard deviation as threshold. Let {Ti} be a set of objects of the same kind
from different subjects and N the total number of subjects, one can write the variance
as: σ2 = 1

N−1

∑N
i=1 ‖Ti−T‖∞ where T is the mean 1

N

∑N
i=1 Ti. And the Matching Pursuit

algorithm stops when the residual vector field ‖γn‖∞ is smaller than a certain percentage τ
of the standard deviation. In this way one can assure that the mean of the approximations
is not so far from the initial mean since the new currents

∑n
i=1 δ

βn
i
yi have a distance smaller

than τ% of the std from the initial Ti.
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A sketch of the Matching Pursuit algorithm is presented in Table 1.1.

Algorithm - Orthogonal Matching Pursuit for Currents

Input: vector field γ, standard deviation σ, percentage threshold τ>0

0: Set γ0 = γ,n=0
1: while ‖γn‖∞ ≥ τσ do
2: yn+1 = argmaxy∈Rr |γn(y)|
3: Find (βn+1

i )1≤i≤n+1 by solving
∑n+1

q=1

(
KW (yi, yq)β

n+1
q

)
k

= γ(yi)k
4: γn+1 = γ −

∑n+1
i=1 K

W (·, yi)βn+1
i

5: n ← n+ 1
6: end while

Output set of momenta {yi, βni }1≤i≤n

Table 1.1: Sketch of the Orthogonal Matching Pursuit Algorithm applied to this project.

Comments about Matching Pursuit representation A sparser representation can
be very important for two main reasons: Compression and Interpretation. Raw anatomical
data such as mesh or sets of curves can be composed by many points and therefore it could
be very useful to reduce their size in order to speed up any operation conducted with them.
Furthermore, using the Matching Pursuit algorithm, one can also reduce the redundancy
of information present in the initial current. As seen before, the scale of analysis is given
by the standard deviation of the Kernel λW and it determines also the "resolution" of the
current since it sets the minimum distance between different momenta. In this way one
can decide the degree of detail of an image/mesh/curve keeping only the information that
permits a better interpretation.

An example of Matching Pursuit Algorithm applied to a fiber bundle (set of curves) is
shown in Fig.1.6 using different λW but with the same fixed error (τ=0.05). It is easy
to notice that: the greater λW , the sparser the approximation. It means that increasing
λW the number of resulting momenta is smaller but their magnitude is bigger. That’s
because one should imagine a "patch of influence" around each resulting momenta which
increases with λW . All the segments passing through this patch are approximated by
the new resulting momenta. Therefore, more curves intersect this patch, bigger is the
magnitude of the momenta.

Looking at Fig.1.6 it seems quite difficult to decide which is the best sparse representation
of the initial bundle. This choice depends on the degree of detail one wants to keep. If
one is looking for an accurate and precise representation where also the central bending
of the bundle is kept, a good choice could be λW=1. Instead, if one wants just to restrain
the main shape of the bundle a value of 3 or greater would be a better choice.
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Unfortunately, this kind of sparse representation has also a drawback. It can’t keep the
connectivity between points. This means that, as it is possible to notice from Fig.1.6,
the resulting representation is composed only by momenta (oriented points) and not by
segments. Therefore one can’t use this sparse representation for other processes in which
it’s important to keep the information about connectivity. For example, in this project,
we want to check which are the parts of the brain, among which also brain bundles, which
show a greater variability between a population of healthy controls and of patients subject
to Gilles de la Tourette syndrome. In order to do that, we need to keep the connectivity
between the points of the fibers. In fact, without this information, it would be impossible
to understand exactly which are the parts of the bundle more variable.

Thus, on one hand we would like to have a sparse representation to speed up the computa-
tion and, in some cases, also for a better interpretation. But, on the other hand, we need
to keep the connectivity of the fiber bundles to comprehend which are the parts of the
brain bundles more variable. A possible solution to this problem is the technique of atlas
construction (Chapter 3 and Chapter 4) where an average template is estimated using all
the objects of the population. The template keeps the connectivity between points while
all the other objects are modified using the Matching Pursuit algorithm. After that the
template is moulded such that it shows all the common features among the population.
Deforming and matching afterwards the template towards each object gives the possibility
to understand which are the parts of the template more variable inside the population.
This process is repeated for both the two populations (controls and patients) in order to
check if the most variable parts in each template are different. Of course this raises also
another question about the initialization of the bundle template. A possible solution will
be shown in Chapter 3.

In conclusion, it’s important to highlight the fact that this technique is not used for sur-
faces (mesh). In fact, as seen before, this sparse representation looses the initial topology
of the object. Therefore, during the matching of the template in the atlas construction,
it would be more difficult to superimpose a surface template on a surface object without
keeping a closed surface or, in other words, the same topology between them. This can be
seen as a constrain that we decided to use in order to be sure that similar parts belonging
to the template and to the object match together.

In contrast with that, fiber bundles are the results of tractography algorithms. These
algorithms were never shown to produce stable and reproducible results, therefore these
bundles shouldn’t be compared relying only on individual fibers but rather on the global
shape of the bundle. In fact, fiber bundles present a great variability among them and it
would be really difficult (probably impossible) to match perfectly two bundles considering
also all the complete fibers (keeping the connectivity). It seems a better idea to match a
complete template, keeping the connectivity of the fibers, to a set of oriented momenta
which is exactly the result of the Matching Pursuit algorithm. In this way we take into
account the information about the orientation of the single fibers but at the same time
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we can understand also which are the parts of the bundle most variable and above all we
can keep the information about the start and end-point of the bundle which are linked
with other area of the brain (i.e. cortical surface). Examples of fibers bundles and mesh
used in this project will be shown later in Chapter 3.

(a) bundle (b) λW=1

(c) λW=2 (d) λW=3

Figure 1.6: Matching Pursuit result using different λW and the same approximation
error (5% of the standard deviation).



1.5 Conclusion about Currents 23

1.5 Conclusion about Currents

Currents represent an interesting framework to work with geometrical data. In fact they
represent a vector space where it is defined an inner product and therefore also a natural
metric. Moreover this is a space of continuous linear mapping from a test space given
by the convolutions between any square integrable vector fields and a smoothing kernel
(RKHS) to R. This permits also to have an isometric mapping between the vector field
space and the space of currents but above all an explicit and easy tractable formula to
compute the inner product between two shapes and therefore a measure of distance.

In addition to that, there is no need to assume any point correspondence (or other fea-
ture) between the two shapes. This is extremely important when dealing with objects of
different size due to a different sampling or simply due to normal anatomical differences.

Another important quality of this framework is mainly linked with the fiber bundles (sets
of connected segments, see Fig.1.6). As seen in the previous section fiber bundles should
be compared as a whole and not as individual fibers but on the other hand one shouldn’t
loose the information about the orientation of the fibers. The framework of currents is
exactly the answer of all these problems. In fact, it doesn’t see the bundle as a set of
unconnected points but it takes into account also the local orientation of the momenta.

Furthermore this framework is also robust to fiber connectivity which is fundamental
for the template estimation. One of the main contribution of this project is indeed to
estimate an atlas (template) for fiber bundles which keeps the connectivity of the fibers
and therefore that can show exactly the most variable parts of the objects of a population.

A sparse representation of currents was also presented. This can be used to compress the
data in order to reduce the computational time of the process or also to give an easier
interpretation of the results. An important characteristic is that it doesn’t keep the initial
topology of the object. Therefore it can’t be used to represent the bundle template since
information about the exact location of the parts showing the greatest variability would
be lost.
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Chapter 2

Gilles de la Tourette Syndrome

In this section it is presented a brief description of Gilles de la Tourette syndrome, which
includes also an explanation of the course, prevalence and causes linked to this syndrome
(TS). Moreover it is also described a new hypothesis introduced by Yulia Worbe et al. in
[WGH+10] which can have clear implications for the current neuroanatomical model of
this syndrome. One of the goals of this project is to start the analysis of this hypothesis
using the framework of currents on a data set presented in chapter 3.

2.1 Clinical Description

Tourette sydrome (TS) is a childhood onset inherited neuropsychiatric disorder charac-
terized by the presence of sudden, rapid, recurrent and nonrhythmic movements (motor
tics) or sounds (vocal or phonic tics) which are often accompanied by psychiatric co-
morbidities such as obsessive-compulsive disorder (OCD), attention deficit-hyperactivity
disorder (ADHD) or other behavioural problems [Kim10], [MM11] [TM09], [Sin05]. Gilles
de la Tourette’s name was given to this syndrome by Jean-Martin Charcot, once director
of the well known Pitié-Salpêtrière Hospital in Paris, after that his student Gilles de la
Tourette described 9 cases with a bizarre neurological condition that he referred to as
"maladie de tics" [TM09], [MM11], [dlT85]. The generally accepted research definition of
this syndrome is based on four diagnostic criteria:

1. Multiple motor tics and at least one vocal tic have been present at some time during
the illness although not necessarily concurrently.
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2. Tics occur many times a day, nearly every day throughout a period of more than
one year. During this period there must not be any tic-free period of more than
three consecutive months.

3. The onset is before age 18 years.

4. Disturbances are not due to any direct physiological effects, drugs or any other
general medical condition (i.e. Huntington’s disease). [Ass00]

2.2 Course

Typically the disorders begin in early childhood, on average between the ages of 3 and 8
years [Lec02] with transient bouts of simple motor tics such as eye blinking or other facial
tics. Phonic tics, such as repetitive bouts of sniffing or throat clearing can begin as early
as 3 years of age, but typically they follow the onset of motor tics by several years [Lec02].
These tics may initially wax and wane but eventually they become persistent reaching the
maximum tic severity at an age around 8-12 years. After that there is usually a steady
decline in symptoms [LZV+98]. However, the most severe cases of TS arise in adulthood
with extreme form of self-injurious motor tics or socially unacceptable obscenities and
gestures such as coprolalia (uttering of obscene words) which is probably the most known
effect of TS but it occurs only in about 10% of patients [Lec02].

2.3 Prevalence

Once thought to be rare, current estimates change this view. From 1988 to 1998 it passed
from an estimation of 2.9 per 10.000 to 299 per 10.000. In the past ten years the prevalence
increased again since it was shown in 2003 that in a cohort of children aged 7-15 years the
percentage with TS was 5.6 per 1000 while another study in 2006 showed a result of 3.3
per 1000 in pupils aged 6-12 years [Lec02]. Another work [SBR05] showed that 1% of the
schoolchildren in the UK between the ages of 5 and 17 years presented the TS syndrome.
All this data show that this syndrome is not as rare as it was thought and an increasing
level of interest in the world of research has accompanied these discoveries. In fact, as
shown in [MM11], the number of publications about TS in PubMed changed from around
20 in 1970 to 180 in 2008.
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2.4 Causes

The causes of this syndrome are still unclear and the tremendous variability of disor-
ders linked to TS suggests that these conditions have probably several different causes.
Different living environment and lifestyle factors such as tobacco, stress, infection or au-
toimmune dysfunction are implicated in the development of Tourette syndrome [MM11].
Genetic factors have a major role in the development of TS. Family studies showed that
the incidence of TS is 10-100 times greater in first-degree relatives of a patient with TS
than in the general population and twin studies have demonstrated higher concordance
rates of TS in monozygotic than in dizygotic (50-77 % versus 10-23 %) [MM11]. But
with the arrival of new Imaging methods in the last years there has been an increasing
interest for the neuroanatomical and neurobiological causes of this syndrome. Many re-
searchers focused their attention on multisynaptic neural circuits (loops) that link the
cerebral cortex with subcortical regions. Structural MRI studies have identified regional
abnormalities in grey matter especially in the basal ganglia (a group of nuclei strongly
connected with cerebral cortex and thalamus such as putamen and caudate) [HSL+10].
All these results support the hypothesis that Gilles de la Tourette syndrome is a neurode-
velopmental disorder associated with dysfunction of cortico-striato-thalamo-cortical loops
[WGH+10].

2.5 Circuits linking Basal Ganglia and Cortex

From earlier data it had appeared that the basal ganglia served primarily to integrate
diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the
thalamus, to the motor cortex. In particular, the basal ganglia was thought to provide a
route for the information coming from the cortical association areas towards the motor
cortex area, participating in the initiation and control of the movement. As demonstrated
in [ADS86] cortical projections to the basal ganglia are functionally and topographically
organized, leading to the concept of functional divisions of cortico-striato-thalamo-cortical
loops into sensorimotor, associative and limbic circuits that are implicated in motor,
cognitive and motivational aspects of behaviour respectively (see Fig. 2.2) [WGH+10].
Each one of these circuits receives multiple inputs from several functionally related cortical
areas (A,B,C in Fig. 2.1). These projections are partially overlapping and are sent to a
restricted portion of the striatum (caudate, nucleus and putamen). These striatal regions
send further projections to the globus pallidus and substantia nigra, which in turn project
to a specific region of the thalamus. Each thalamic region projects back to one (or more) of
the same cortical areas that feeds the circuit at the beginning completing the “closed loop”.
As enhanced by Alexander et al. in [ADS86] the term "circuit" is not intended to imply
a rigidly self-enclosed pathway without inputs or outputs to other structures. Rather a
main and central path in the closed loops that starts from particular and functionally
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related areas in the cortex and it terminates in one of them (or more).

Figure 2.1: Generalized cortico-striato-thalamo-cortical circuit. Image taken from
[ADS86]

Figure 2.2: Schematic diagram illustrating the main cortico-striato-thalamo-cortical cir-
cuits. Image taken from [KHB+10].
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2.6 Hypothesis to test

The three most important circuits linked with Tourette’s syndrome are the ones presented
in Fig. 2.2. According to the model presented before, it was suggested in [Sin05] that
the motor tics may result from the dysfunction of premotor and motor circuits, while
behavioural disorders may be linked to dysfunction of associative and limbic circuits. This
hypothesis was supported by many experiments both in primate model and in humans
[WGH+10]. Moreover structural changes were observed in different regions of the cortex
and, as said before, also in the striatum, globus pallidus and in the thalamus. Tics and
psychiatric co-morbidities have been correlated with cortical thinning in the sensorimotor
cortex, with volume reduction in areas such as putamen or caudate nucleus and also
with volume increase in the amygdala. Thus, all these results bring evidence of a link
between abnormalities in the cortico-striato-thalamo-cortical circuits and the presence of
Tourette’s syndrome.

Eventually Worbe et al. [WGH+10] divided a set of patients in 3 different groups:

1. simple tics

2. simple and complex tics

3. tics with associated obsessive-compulsive disorders

The purpose of that study was to find the structural changes most correlated with each
group. The results are summed up in Table 2.1:

Cortical Thickness
Simple tics Mostly found in primary motor regions
Simple and complex tics Motor, premotor, prefrontal and parietal regions
Tics with OCD Reduced cortical thickness in the anterior cingulate cortex

Table 2.1: Results of the work of Worbe et al. [WGH+10]

These results support "the hypothesis that different symptom dimensions in Gilles de la
Tourette syndrome are associated with dysfunction of distinct cortical areas". The purpose
of this project is to verify this hypothesis with the same data-set used in [WGH+10] but
with a different methodology. Moreover, it will be also checked if there are some changes
in the white matter tracts that link the cerebral cortex to the basal ganglia and constitute
the main cortico-striato-thalamo-cortical circuits explained before.
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Chapter 3

Data Set and first steps towards the
Atlas construction

The aim of this chapter is to describe the data set used in this project and all the pre-
processing steps applied to the raw data. The data set was kindly offered by the Institute
NeuroSpin and in particular by Linda Marrakchi-Kacem and Cyril Poupon [MK11].

The first part will focus on a brief description of the methods used to acquire the data,
MRI and DWI, and the first processing steps performed on them (by Linda Marrakchi-
Kacem) to remove artifacts and extract the main structures such as cortical surface, basal
ganglia nuclei and fiber bundles.

In the second half of this chapter, a definition of atlas construction will be given and
all the pre processing steps related to it will be presented (conducted by the student).
Moreover a general technique for bundle template initialization will be shown where it is
kept the topology of fiber bundles which means the connectivity between the points of
the fibers. As said before, one of the main goal of this project is to build an atlas for
both surfaces and curves keeping also their topological structures. It can be seen as the
sequel of Durrleman et al.’s paper [DPK+12] where they considered only surfaces and not
curves. One of the main contribution of this project will be therefore to extend this atlas
construction method also to fiber bundles.
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3.1 Introduction and Description

The data set consists of T1 MRI (Magnetic Resonance Imaging) and DWI (Diffusion
weighted Imaging) of 47 patients and 27 controls (16 males, 11 females, average age of
29.78±11.11 years). The patients were divided by the neurologists Dr Yulia Worbe and
Dr Andreas Hartmann in 3 groups based on the complexity of the tics and on the pres-
ence or not of OCD (obsessive compulsive disorders) as described in the previous section
[WGH+10]. The three groups were composed by:

- Group 1: 17 patients with simple tics . 11 males, 6 females, average age of 30.82±9.80
years.
- Group 2: 17 patients with simple and complex tics. 10 males, 7 females, average age
of 33.00±13.63 years.
-Group 3: 13 patients with tics and OCD. 11 males, 2 females, average age of 29.46±8.72
years.

Severity of tics was assessed using the Yale Global Tic Severity Scale (YGTSS) [LRH+89]
while the presence and severity of associated obsessive compulsive disorders was eval-
uated during the psychiatric consultation using the Yale-Brown Obsessive Compulsive
Scale (Y-BOCS) assessment [GPRM89].

As described in [MK11], the results of the T1 MRI were initially processed with two
software: FreeSurfer [fCNAAMCfBI12] and BrainVISA [dRnIN12] in order to extract the
cortical surface and the basal ganglia. Instead, about DWI results, they were first treated
to correct some artefacts using Connectomist 2.0 (a tool of BrainVISA) and afterwards a
tractography method was used to extract fiber bundles of the whole brain [MK11].

3.1.1 T1-weighted MRI (Magnetic Resonance Imaging)

MRI is a radiologist technique used to visualize internal structures of the body in detail.
It makes use of the property of nuclear magnetic resonance (NMR) to give as a result a
3D or 2D image, for example, of the brain. For this project the patients were treated with
a strong static magnetic field of 3T using a Siemens Tim Trio 3T MRI system.

Every brain contains a lot of water and each water molecule has two hydrogen nuclei
(protons) which have a spin equal to +1

2
. Under the static magnetic field, the spin of the

protons inside the brain start to align with the direction of the magnetic field in a parallel
or anti-parallel way. In reality this alignment is never total but rather the spins start
to show a precession around the direction of the magnetic field. This movement show a
typical frequency, called Larmor frequency, which is in the field of Radio Frequency (3 kHz
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Figure 3.1: Example of a T1-weighted image with the segmentation of the internal struc-
tures (left and right caudate, putamen, globus pallidus and thalamus). Im-
age taken from [MK11].

- 300 GHz) and in this case in the scale of MHz. If it is then produced an electromagnetic
field at the same Larmor frequency, the protons will absorb the energy produced and their
rotation will be enhanced by a specific angle, called flip angle. When the electromagnetic
field is turned off, the spins of the protons will start to come back to their initial rotation
around the direction of the magnetic field (relaxation). During this relaxation period a
radio frequency signal is generated and it is measured on the plane perpendicular to the
main magnetic field (Free Induction Decay or FID). At this moment it can be registered
how the z component of the magnetization vector comes into thermodynamic equilibrium
with its surroundings ("Spin-lattice relaxation"), which is characterized by a time constant
called T1. Or how the transverse component of the magnetization vector decays towards
its equilibrium value of zero ("Spin-spin relaxation") and in this case it is characterized by
a time constant called T2. In reality, due to local inhomogeneities of the magnetic field,
not all the proton spins gain the same velocity after switching on the electromagnetic
field. Therefore it is usually used a 180 degree pulse to bring all the spins towards the
main moment. This process will end up with a complete refocusing of the proton spins
but, above all, with a deletion of the the effects due to inhomogeneities of the magnetic
field. Moreover, when the horizontal component of all the momenta catch up with the
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relative component of the main momenta (complete refocusing of the spins) it can be
registered an echo from which the constant T2 can be measured. After the 180 degree
pulse also the vertical components of the momenta reach the main momenta and the T1

constant can be computed since it characterizes the rate of this process.

Different tissues have different time constants and since T1 is significantly different be-
tween gray matter and white matter it is usually used for brain scans. Information about
the origin of the signal in 3D space can be learned by applying additional magnetic fields
during the scan. In fact, in this way, the strength of the magnetic field will vary depending
on the position, making also the frequency of the released radio signal dependent on its
origin in a predictable manner.

Sequence parameters were as follows: T1-weighted 3D MPRAGE, FOV=256mm, ma-
trix 256x256, TE/TR=2.98ms/2.3s, TH=1.1mm, Phase FOV=93.8%, 160 slices per slab,
RBW=240Hz/pixel. For more information about the parameters used during the scans
please refer to [MKDG+12].

3.1.2 DWI (Diffusion weighted Imaging)

Diffusion-weighted magnetic resonance (MR) imaging provides image contrast that is
different from the one given by conventional MR techniques. The aim of DWI is to provide
images whose contrast is influenced by the differences in water molecules mobility.

Diffusion is a passive process driven by the ambient temperature and it is also known as
Brownian motion. Since MRI is sensitive to the protons in water molecules, the main
interest of neuroscience is in the diffusion of water molecules present in the brain and
driven by body heat. In biological tissues, diffusion is not truly random because there
are some structures as cell membranes or nerve fibers that constrain the movement of
these molecules. Therefore it’s not observed a "free" diffusion coefficient of water but an
"apparent diffusion coefficient" (ADC).

In DWI, in addition to a strong static magnetic field present also in conventional MR
techniques, two extra gradient pulses are also used which are equal in magnitude but
opposite in direction and they are applied in a symmetric way with respect to the 180o
refocusing pulse. These two identical and opposite gradient pulses change linearly in the
space. Therefore, if there isn’t any movement in a tissue voxel, these two pulses cancel out
since in each point there are two signals of the same magnitude but opposite direction.
Instead, if the water molecules move in the same direction of the two gradient pulses
(i.e. direction x), they are subjected to the first gradient pulse at one location and to the
second one at a different position. The difference between the two gradient pulses is no
more zero and it is proportional to the movement along the x-direction of the molecules.
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The resulting signal differs from the one obtained using normal MRI by an amount related
to the rate of diffusion which can be computed as follows:

SDW

SMRI
= exp(−b x ADC) (3.1)

where SDW is the signal intensity on the DW image, SMRI on the MRI image and b is
the diffusion sensitivity factor which is proportional to the gradient amplitude, duration
of the applied gradients and the time interval between paired gradients. Due to the high
anisotropy of the brain the apparent diffusion coefficient is considered as a tensor. Since
we are working in a 3D space, the three diagonal elements of the tensor give information
about the magnitude of ADC in each dimension, while the off-diagonal elements show
the correlations between the ADC values of different directions. In order to be able to
study the anisotropic nature of diffusion in the brain (i.e. compute the tensor values) one
needs to compare at least three different images obtained applying DW gradients in three
orthogonal directions [SGG00].

Sequence parameters were as follows: Single-shot twice refocused spin-echo DW-EPI,
FOV=256mm, TH=2mm, matrix 128x128, TE/TR=86ms/12s, GRAPPA 2, partial Fourier
6/8, 80 slices, RBW=1630 Hz/pixel, b-value=1000s/mm2, 50 directions. For more in-
formation about the DW Imaging please refer to [ST65], while more details about the
parameters used during the scans can be found in [MKDG+12].

3.1.3 Data Processing

As described in [MKDG+12], cortical surface, basal ganglia nuclei (left and right cau-
date, putamen and globus pallidus) and left/right talamus can be extracted from the
T1-weighted MRI using the automatic segmentation tools of FreeSurfer and BrainVISA.
Information about the whole brain tracts (bundles) are taken both from the T1-weighted
MRI and DW images. An Orientation Distribution Function (ODF)1 field is computed
for each subject using the analytical Q-ball model of Descoteaux et al. [DAFD07]. After
that a whole brain streamline probabilistic tractography [PPC+05] is performed using this
ODF field within a robust tractography mask obtained from the T1-weighted MRI data
and registered to the DW data [MKDG+12]. The resulting "plate of spaghetti" is shown
in Fig. 3.2. From the obtained whole brain tracts, the fiber bundles (set of tracts) linking
each basal ganglia nuclei and thalamus to the cortex are selected obtaining 8 different
bundles (4 left and 4 right). In order to do that, only the fibers having at least three
points inside the considered nucleus and at least one point with a distance lesser than

1Approximation of the probability density function (PDF) of the average spin displacement of water
molecules.
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3mm from the cortical surface are considered. This process produces bundles which don’t
have any connexion with the contralateral hemisphere as it can be seen from Figures 3.3.
In this project only 8 bundles are considered which connect Left and Right Caudate,
Putamen, Globus pallidus and Thalamus to the Cortical surface. Moreover the fibers
linking two different nuclei are not taken into account. Thus only a part of the cortico-
basal ganglia-thalamus-cotical circuits is studied. The other links will be integrated in a
future development of this study.

(a) Anterior view (b) Lateral view

Figure 3.2: Example of whole brain bundles.

Furthermore, in order to be able to analyse surfaces from different subjects, a common
spherical coordinate system is created [SRA+04]. This is based on the hypothesis that
each hemisphere is topologically equivalent to a sphere as explained in [FSTD99]. Every
cortical surface from all the subjects is inflated to a sphere and then warped to fit a
spherical surface template so that the sulcal patterns (a specific part of the brain) match
those of the template. The aim is to create a standard-mesh surface identical in geometry
to the original one but with a topology shared among all the subjects. In order to do
that it’s first build a triangulated icosahedron (with 81924 nodes in this project) whose
co-centred sphere has a radius equal to the one of the template sphere. Each node of the
icosahedron, projected radially onto the warped sphere, falls into a triangle. It’s important
to notice that the warped sphere is exactly the original mesh inflated to a sphere and after
modified so that it has the same radius as the template sphere. Therefore it’s still divided
in triangles as a mesh file.
After that, it’s assigned to each icosahedron node a coordinate value for each dimension,
as explained in Fig.3.4 this is done using the following set of equations:
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(a) Left Caudate and respective bundle, anterior
view

(b) Left Caudate and respective bundle, lateral
view

(c) Right Globus Pallidus and respective bundle,
anterior view

(d) Right Globus Pallidus and respective bundle,
lateral view

Figure 3.3: Examples of internal structures and relative bundles.

xn = a1xn1 + a2xn2 + a3xn3 (3.2)
yn = a1yn1 + a2yn2 + a3yn3 (3.3)
zn = a1zn1 + a2zn2 + a3zn3 (3.4)

Each coordinate of the icosahedron node is a weighted sum of the coordinates of the
vertices of the triangle of the warped sphere where the icosahedron node falls into. The
weight relative to a vertex is the area of the triangle given by the barycentre and the
opposite two vertices. Eventually one obtains a cortical surface with the same number
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of vertices and triangles of the icosahedron but with a structure (geometry) similar to
the initial mesh. Therefore this can be seen as an interpolation scheme to compute the
coordinates of the standardize cortical surface using the original ones.

Using this procedure we obtained a set of 74 cortical surface meshes sharing the same
number of vertices and triangles. This permits to greatly simplify the inter-subject surface-
based analysis as explained in [SRA+04]. However, in this project, since we are using the
framework of currents, we don’t need to have necessarily the same number of vertices
and faces between two different cortical surfaces. In fact, as explained in Chapter 1, the
framework of currents is robust to different sampling.

Anyway, all the processing steps shown so far throughout Chapter 3 were carried out
by Linda Marrakchi-Kacem and not by the student. We described them for the sake of
completeness since the data received at the beginning of this project were exactly the
results of all these procedures.

Figure 3.4: Inflating and warping of cortical surface (Anat) to spherical template and
creation of a standard-mesh (AnatStd) with the sulcal patterns highlighted
in yellow. Image taken from [SRA+04].
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3.2 Towards the atlas construction

To sum up what explained so far, for each one of the 74 subjects present in the data set,
there are:

1. 1 cortical surface saved as 3D mesh (".mesh" in Anatomist/BrainVisa)2.

2. 8 shapes saved as 3D mesh of left and right Caudate, Putamen, Globus Pallidus
and Thalamus.

3. 8 fiber bundles saved as 3D segment sets (".bundlesdata" in Anatomist/BrainVisa)
representing the tracts linking left and right Caudate, Putamen, Globus Pallidus
and Thalamus to the Cortical Surface.

All the ".mesh" files are polygon mesh which are constituted by a collection of vertices
and triangular faces and they approximate the shape of the 9 objects listed before. The
set of vertices is the collection of all the points while the faces are defined by 3 index
representing the 3 vertices of each triangle. The ".bundlesdata" files are collections of 3D
curves. Each file is constituted by a set of points and, for each curve, a series of index.
Each index is linked to one point.

All the mesh files come from the T1 frame while the fiber bundles are extracted from the
DW frame. Using a tool of BrainVisa/Anatomist it is possible to compute the Rotation
matrix and the Translation vector of the transformation to go from one referential to the
other. In this way all the bundles points are converted in the T1 frame.

3.2.1 Definition of Atlas construction

The construction of an atlas from a set of anatomical shapes of different subjects belonging
to the same population is a process based on two main steps [DPTA08]:

1. Construct a template (or "mean anatomy") for each anatomical object inside the
population.

2. Estimate the variations of these templates within the population by deforming them
into each subject’s object present in the population.

2Where Anatomist is just a visualisation software of the files produced by BrainVisa.
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Usually, in order to avoid biases introduced by separate processing, these two opera-
tions are carried out together and so the template as well as its deformations are jointly
estimated.

In this project, using as source of inspiration [DPTA08] [MMTY08] and [AAT07], the
statistical estimation of the atlas is based on a forward model which considers the obser-
vations (Ti) as noisy deformations (φi ∗ Ti) of an unknown template (T ), and it can be
written as:

Ti = φi ∗ T + εi ⇔ T = φ−1
i ∗ Ti − φ−1

i ∗ εi (3.5)

where εi are i.i.d. random variables (i.e. Gaussian), whereas the backward model is defined
as:

φi ∗ Ti = T + εi ⇔ Ti = φ−1
i ∗ T + φ−1

i ∗ εi (3.6)

which means that, in contrast with the forward model, the template is an average of
deformed observations (see Fig.3.5). Assuming that it is possible to define probabilities
on the shapes and deformations, one is interested in both finding the probability of having
a template given a training database {Ti}: p(T |{Ti}), and computing the likelihood of a
new observation Tnew given the template T : p(Tnew|T ). Looking at Eq.3.5 and 3.6 it is
trivial to notice that these two passages have a reverse difficulty in the two methods. In
fact, if one uses a Gaussian distribution for the noise εi, the distribution of p(T |{Ti}) is
also Gaussian using the backward model while it follows the distribution of φ−1εi in the
forward model becoming therefore more difficult to estimate. About the likelihood of a
new observation p(Tnew|T ), the result is exactly the opposite with an easier computation
in the forward model. Since it is better to spend more time to build the atlas, which is
done once for all at the beginning of the process, and to consume less time for each new
observation, the forward model seems to be more suitable from a computational point of
view.

When dealing with a forward model one would like also to find the "best" template. In this
process there are two main passages: at the beginning all the observations Ti are jointly
used to mould the template and after the new template T 0 is used to compute all the
deformations φi to the Ti. In this way it’s possible to find a template which captures the
common features across the population. More information about the atlas construction
and about the kind of deformation used in this project will be given in Chapter 4.
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Figure 3.5: Forward scheme model on the left and Backward scheme model on the right
taken from [DPTA09].

3.2.2 Pre processing for the Atlas construction

Centring During the atlas construction, for each kind of object, the template is de-
formed and matched to each object within the population. This is the technique used in
this project to study the variability of the template which can be seen as a characteristic
of the population. The position of the template is initialized as an average of the positions
of the objects. Therefore, if the objects are far from each other, the matching procedure,
which can be seen as a minimization process, requires a lot of energy (and time) just
to superimpose the template onto the object. A possible solution to this problem is to
reduce the distances between the objects. The first step is to have all the elements of the
brains of each subject not only in the same frame, but also around the same midpoint.
Thus, every brain is centred subtracting the mean along every dimension from all the
points. The mean is computed considering only the mesh files (internal objects and corti-
cal surface) while it is subtracted from all the objects, both mesh and bundles. The reason
of this choice is that we want to center around 0 mainly the cortical surfaces in order to
eliminate the "artefact" created by the different positions adopted by the subjects during
the scans. The fiber bundles are not used in the computation of the mean because their
estimation was based on a probabilistic method and so they might have more points in
a part of the brain with respect to the others. This can influence the centring process
making it less reliable since the number of points of the bundles is similar to the one of
the cortical surface.
This centring process is therefore carried out to decrease the distances between the same
kind of objects of different subjects keeping the relative distances between the objects and
the cortical surface.
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(a) Before centring (b) After centring

Figure 3.6: Example of cortical surfaces before and after being centred.

(a) Before centring (b) After centring

Figure 3.7: Example of internal structures before and after being centred.

Rigid Registration After that, as it is possible to see from Fig.3.6, the cortical surfaces
of the subjects are all aligned while the internal structures are still a bit far from each
other (see Fig.3.7 and Fig.3.8). This is because the number of points of the cortical surface
is about 4 times bigger than the number of points of the internal objects (81924 Vs 20500
on average). Therefore the centring process regards more the cortical surface than the
basal ganglia nuclei.
A send step is then needed to push also the internal objects close together. We decided
to use a rigid registration between all the objects and a target one chosen as reference
(subject 1, in this project). All the objects of every subject are moved in a rigid way, which
means rotation and translation, in order to be more "aligned" and "better superimposed"
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(a) Left Caudate after centring (b) Left Globus Pallidus after centring

Figure 3.8: Example of internal structures after being centred.

with the objects of the first subject. This process reduces the distances between the same
kind of objects and therefore also the distances between the template and each object.
The choice of aligning every object with respect to the ones of the first subject was purely
random.

For this rigid registration we decided to use a model based on Gaussian mixtures whose
Matlab and C++ implementation was freely available at http://gmmreg.googlecode.com
[JV11]. In most of the rigid registration schemes one wants to find the transformation
that best aligns the "source" shape to the "target" shape. Usually the two objects can be
seen as sets of unstructured points which don’t have any spatial information or label. In
the paper of Jian et al. [JV11], the authors investigate the idea of representing discrete
point sets by continuous density functions, namely Gaussian mixture models (GMM).
The probability density function of a general Gaussian mixture is defined as:

p(x) =
N∑
i=1

wiφ(x|µi,Σi) (3.7)

where

φ(x|µi,Σi) =
exp

[
−1

2
(x− µi)TΣ−1

i (x− µi)
]√

(2π)d| det(Σi)|
(3.8)
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and x is a vector of points in Rd space while the other elements are:

- N , the number of Gaussian components.
- wi, the weights.
- µi, the mean vectors.
- Σi, the covariance matrix.

As suggested in [JV11], we decided to approximate both the "source" shape and the
"target" shape using one component for each point present in the set, weighting all the
components in the same way (wi=w), using also the same spherical covariance matrix
Σi=Σ for all the components (i.e. a diagonal matrix proportional to the identity matrix)
and settings the mean vectors µi equal to the spatial coordinates of each point. The
resulting density is an over-parametrized Gaussian mixture which can be modified clus-
tering or grouping some points which come from the same Gaussian distribution. In this
project, since the number of points wasn’t excessive and therefore also the computational
time, the clustering method wasn’t applied.

After having approximated both the "source" shape and the "target" shape as GMM an
optimization procedure is carried out using as dissimilarity measure a L2 distance since it
is strongly related to the inherently robust estimator L2E [JV11] and also because it exists
a closed-form expression for the L2 distance between Gaussian mixtures. Formally, given
two point sets: S for the source shape and T for the target shape, this registration method
finds the parameters θ of the rigid transformation V which minimizes the following cost
function:

dL2(S, T, θ) =

∫
(GMM(S)−GMM(V (T, θ)))2dx (3.9)

where writing f(x) = GMM(V (T, θ)) and g(x) = GMM(S) it can also be written as:

∫
f 2(x)dx+

∫
g2(x)dx− 2

∫
f(x)g(x)dx (3.10)

and since g(x) is fixed during the optimization and
∫
f 2(x)dx is invariant under rigid

transformations, the only part updated during the procedure is the inner product between
the two GMMs. The transformed set of target points T and the original set T0 are related
by the rigid motion: T = RT0 + t where R is the rotation matrix and t is the translation
vector. Therefore the parameters θ of the transformation V are exactly the elements of R
and t. Moreover, noting that the integral of the product of two Gaussian component den-
sities is :

∫
φ(x|µ1,Σ1)φ(x|µ2,Σ2)dx = φ(0|µ1−µ2,Σ1 + Σ2), one can write

∫
f(x)g(x)dx

in a closed form. In fact, if f(x) =
∑M

i=1 αiφ(x|µi,Σi) and g(x) =
∑N

j=1 βjφ(x|γj, χj)



3.2 Towards the atlas construction 45

are two points sets (target and source respectively) modeled by Gaussian mixtures, the
transformed target set can be written as: fV (x) =

∑M
i=1 αiφ(x|Rµi + t,R(Σi)R

T ) and
their inner product is:

∫
f(x)g(x)dx =

M∑
i=1

N∑
j=1

αiβjφ(0|Rµi + t− γj,R(Σi)R
T + χj) (3.11)

This last equation is the cost function of the optimization procedure and it is also dif-
ferentiable with respect to the rotation and translation parameters. Jian et al. [JV11]
found out that both a gradient descend scheme and a non-stochastic gradient-free op-
timization method, such as the Powell’s method, are usually sufficiently fast to achieve
quite accurate results. But in the Matlab implementation of the algorithm they suggested
to use the function fminunc with a large scale optimization. This algorithm is a sub-
space trust-region method and it is based on the interior-reflective Newton method. For
more information about this algorithm please check the Matlab help. About the stopping
criteria we used 100 as maximum number of function evaluations allowed and 10−10 for
the termination tolerance on both the function value and on the parameters value. The
whole algorithm can be summed up in the following way:

1. Approximate both source and target shape with a GMM.

2. Specify initial parameters θ (i.e. identity transform).

3. Set up the L2 distance between the two GMMs.

4. Optimize the objective function with a gradient descend scheme (or a Powell’s
scheme).

5. Repeat the last point until a certain stopping criteria is satisfied.

This method works also for non-rigid transformations but in this project it was used only
for the rigid one. For more information about this algorithm please refer to [JV11] and
to [JV05].

As it can be seen from Fig.3.9 and Fig.3.10 this Rigid Registration scheme achieved the
expected result. In fact all the objects are now better aligned with the objects of the first
subject and therefore they have all a similar position but they haven’t been deformed
since the transformation was rigid.

As it is shown in the next chapter, we are looking for a specific non-rigid deformation
that best matches a common template to all the objects of different subjects. The rigid
registration is useful to reduce the amount of possible configurations that the deformation
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procedure must take into account. Translations and rotations are related only with the
relative positions between brains of different subjects. But we are more interested in the
non-linear features of the shapes of the objects and not in their positions.

(a) Left Putamen after centring (b) Left Putamen after registration

Figure 3.9: Example of left putamen after rigid registration.

(a) Left Caudate after centring (b) Left Caudate after registration

Figure 3.10: Example of left caudate after rigid registration.

Bundles Template Initialization The atlas construction procedure uses a gradient
descend scheme to estimate both the templates of each kind of object and their deforma-
tions into each object of the population. Therefore it is very important the initialization
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of the template for each kind of object. As written before, the goal of this project is to ex-
tend the atlas construction method used in [DPK+12] (only with surfaces) also for curves
(fiber bundles). The principal characteristic is that the topology of the objects must be
preserved also in the templates. Thus the bundle template must keep the connectivity
between the points of the fibers.

In this project the number of types of bundles is 8. Therefore one needs to have 8 bundles
templates which start from 6 different basal ganglia nuclei (left and right caudate, putamen
and globus pallidus) and also from the left and right thalamus, ending in one of the two
hemisphere of the cortical surface.

The initialization of a template for the bundles is pretty complicated since they are con-
stituted by thousands of fibers which show a great variability among the population.
Therefore one is tempted to investigate the global shape of the whole bundle which seems
more stable (less variable) between different subjects. But, in order to keep the same
topology, one is obliged to build the template with fibers. A simple idea could be to select
for each kind of bundle an area in the cortical surface and in the correspondent starting
nucleus and to initialize the bundle with straight lines (sets of segments) connecting these
two areas. The problem linked to this method is that, while the part of the nucleus from
which the fibers start is not so spread, the receiving area in the cortical surface is really
big and it’s difficult to find a rule with which decide from where the fibers should start
and where they should end. Moreover the number of fibers for each bundle is really high
(3000-20000 fibers per bundle).
Thus we decide to employ another method. As first step we reduce the amount of data of
each bundle by keeping randomly only 10% of the fibers using an uniform random distri-
bution. In this way, as it is possible to see from Fig.3.11, there is not only a benefit from
a computational point of view (less points to analyze) but also for a better comprehension
since it seems to be more enhanced the internal structure of the bundles. Therefore it can
be easier to check if the bundle template preserves the common shape of the population.

After reducing the number of fibers in each bundle of every subject we decide to create a
bundle template in the following way:

For each kind of bundle
- Select randomly 2% of the fibers from the initial bundle of each subject (before the
random selection) using a constrain.
- Discard a certain number of fibers of the bundle obtained after the previous step using
a greedy approximation method based on the framework of currents.

In this way we can create a template which preserves the same topology of the bun-
dles and we can also regulate its number of fibers.
In the first step we use a uniform random distribution to select a fiber from a subject bun-
dle but we keep this fiber in the template bundle only if the following condition is fulfilled:
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(a) Initial "left putamen" bundle (b) 10% of fibers random selected from the "left
putamen" bundle

(c) Initial "right putamen" bundle (d) 10% of fibers random selected from the "right
putamen" bundle

Figure 3.11: 10% of fibers uniformly random selected from two different bundles.

Each selected fiber has to pass through a parallelepiped whose sides are equal to the mean
± std of the 3 projections of the subject’s bundle onto the three Cartesian axes x,y,z

The aim of this procedure is to keep only the fibers which have at least one point inside
the "most well-travelled part" of the bundle, trying therefore to reject all the fibers which
are far from the main anatomical "waves" of the bundle considering them as outliers.
Moreover this technique seems to be quite correct since, using a visual inspection, a lot of
projections mimic an unimodal normal distribution as it is possible to see from Fig.3.12.
These projections are exactly the distributions of each coordinate of the points of the
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bundles. Therefore the utilization of the mean ± one standard deviation seems to be
quite reasonable since it considers as outliers the points less present in the bundle and
it covers 68.2% of the data. But at the same time some of the projections present a
bimodal behaviour which can’t be well approximated using the mean ± one standard
deviation. Therefore it could be used also here a Gaussian mixture model to approximate
the projections and another rule to select the fibers but, due to lack of time, we decide to
leave it as a future development. Nevertheless this method seems to work quite fine since
it rejects the fibers more aside of each bundle creating a big and dense initial template as
it is possible to see from Fig.3.13.

(a) Example of unimodal distribution (b) Example of bimodal distribution

Figure 3.12: Distributions of points of the first bundle of subject 5 in the x-axis and of
subject 8 in the y-axis respectively. The first one is unimodal while the
second one seems to be bimodal. The black arrow represents the interval
between the mean ± one standard deviation.

At the end of the first step we have 8 prototypes of bundle template, one for each kind.
Since the number of subjects is 74 and we have selected 2% of the fibers from each subject,
these 8 prototypes are characterized by a number of fibers equal to

∑74
i=1 0.02 ∗Bi where

Bi is the number of fibers of a bundle of one subject before the 10% random selection. Of
course we would like to have a bundle template with a number of fibers similar to the av-
erage one considering all the bundles after the 10% random selection. Therefore we want
to reduce the number of fibers in each bundle template until it reaches 1

74

∑74
i=1 0.1 ∗ Bi.

Thus the second step regards the selection of the most important fibers of these proto-
types until their number of fibers is equal to the average number of fibers considering
all the bundle after the 10% random selection. In order to do that, it is used a greedy
approximation method for each type of bundle:

- It is first computed, in the framework of currents, the norm of the difference between
the bundle template and 50 fibers belonging to the same bundle template.
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(a) 10% of fibers of the right globus pallidus bundle
of subject 58

(b) 2% of fibers from each subject

Figure 3.13: Comparison between a bundle of a subject and the result of the first step
of the bundle template initialization.

- This process is carried on for all the fibers of the bundle template selecting every time
50 different fibers.
- The norm of the difference is stored at each step.
- The 50 fibers linked with the minimum norm of the difference are saved in a new bundle
template and removed from the initial bundle template.
- The process is repeated until the new bundle template reaches a certain number of fibers
which is, in this project, the average number of fibers considering all the 10%-reduced
bundles of every subjects.

From a mathematical point, one wants to minimize the following equation:

min
k
‖T −

(k+1)∗50∑
i=(k∗50)+1

Fi‖W∗ k = 0 :

(
N

50

)
− 1 (3.12)

where N is the total number of fibers of the initial bundle template which is updated
(N = N−50) every time that 50 fibers are selected and saved in the new bundle template.
Eq.3.12 can also be rewritten in the following way:
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min
k
‖T −

(k+1)∗50∑
i=(k∗50)+1

Fi‖2
W∗ = ‖T‖2

W∗ + ‖
(k+1)∗50∑
i=(k∗50)+1

Fi‖2
W∗ − 2〈T,

(k+1)∗50∑
i=(k∗50)+1

Fi〉W∗

= 〈T, T 〉W∗ + 〈
∑
i

Fi,
∑
i

Fi〉W∗ − 2〈T,
∑
i

Fi〉W∗

= 〈L−1
W (T ), L−1

W (T )〉W + 〈L−1
W (
∑
i

Fi), L
−1
W (
∑
i

Fi)〉W

− 2〈L−1
W (T ), L−1

W (
∑
i

Fi)〉W

= LW (L−1
W (T ))(L−1

W (T )) + LW (L−1
W (
∑
i

Fi))(L
−1
W (
∑
i

Fi))

− 2LW (L−1
W (T ))(L−1

W (
∑
i

Fi))

= T (L−1
W (T )) +

∑
i

Fi(L
−1
W (
∑
i

Fi))− 2T (L−1
W (
∑
i

Fi))

=
N∑
j=1

αTj γT (xj) +
M∑
i=1

βTi γF (yi)− 2
N∑
j=1

αTj γF (xj) (3.13)

where T =
∑N

j=1 δ
αj
xj and

∑
i Fi =

∑M
i=1 δ

βi
yi

and γT = L−1
W (T ) is the vector field related

to the bundle T while γF = L−1
W (
∑

i Fi) is the vector field linked to the 50 fibers under
examination. Throughout the passages it was used both the definition of currents in
Eq.1.3 and the definition of mapping between the space of vector fields W and its dual
space (the space of currents) W∗ in Eq.1.10.

The computation of Eq.3.13 requires at each step the vector field of the bundle γT and
the vector field of the 50 fibers under examination γF . γT is computed once for all at the
beginning of the process while γF is computed at the beginning of each iteration. After
that it’s also necessary to use the interpolation scheme PVI (explained in section 1.3.1)
to find the values of the vector field γT in the points of the 50 fibers. The longest (in
time) computation is the estimation of the vector field of the bundle since its associated
grid is usually very big and the number of points is relatively large (usually the dimension
of the grid is [512,512,512] points). Moreover, being a greedy approximation, not all
the possible combinations of 50 fibers are estimated but at each step 50 fibers are taken
randomly and each fiber is used only in one iteration. Nevertheless the time for finding
one bundle template is about 1-2 days, depending on the size of the bundle and on the
server used. For example, with an initial bundle template of 13597 fibers, it took about 34
hours to complete this greedy approximation method finding the "final" bundle template
of 13597∗0.1

0.02∗74
= 918 fibers, approximated to 900 since we analyse 50 fibers at each iteration.

The specification about the server used are: Intel (R) Xeon(R) model 44, CPU X5650 @
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2.67GHz with cache size 12288 KB.

Furthermore it’s important to notice that only the two last terms of Eq.3.13 differ at
each iteration, and since we are interested in the differences between the results of each
iteration, the first term ‖T‖2

W∗ is not computed. Other techniques for bundle template
estimation were tested but we obtained the best results, in terms of visual inspection and
time consumed, with the one explained before.

Two examples of bundle template are shown in Fig.3.14 and in Fig.3.15 for the right
globus pallidus bundle and right putamen bundle respectively. The amount of fibers in
the final template is equal to the mean value of the number of fibers of the 10%-reduced
bundles considering all the subjects. The resulting bundle is therefore similar to the
ones obtained after the 10% reduction, as it is possible to notice comparing Fig.3.13a
and Fig.3.14b. A scheme of the template initialization process for each kind of bundle
is presented in Fig.3.16. The two columns at the two extremities represent the bundles
of each subject. In the left part it is shown the result of the first step with the bundle
composed by 2% of fibers from each subject bundle. Instead, in the right part, there are
all the resulting bundles after selecting 10% of the fibers from each subject bundle. In
the central part it is shown the resulting Initial template after the second step of our
algorithm. It can be noticed that, also from a visual inspection, its number of fibers is
similar to the ones of the subject bundles after the 10% selection.

(a) 2% of fibers from each subject (b) Final template

Figure 3.14: Comparison between the result of the first step and second step of the
template initialization method for the right globus pallidus bundle.
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(a) 2% of fibers from each subject (b) Final template

Figure 3.15: Comparison between the result of the first step and second step of the
template initialization method for the right putamen bundle.

3.2.3 Conclusions

In this chapter it was shown a method to initialize a bundle template which should re-
veal all the common features among a set of subject bundles. This is necessary since we
are using a gradient descend scheme in the atlas construction. Moreover it preserves the
same topology of the bundles which is crucial in the medical research of biomarkers for
syndromes like the Gilles de la Tourette’s one. In fact, as shown in Chapter 2, we are
seeking the main differences between the brain objects of an healthy population and the
ones of a population with the GTS syndrome. Therefore we are interested in keeping
the information about the path of the fibers and this is possible only maintaining the
connectivity between the points. On the other hand, if one uses a sparse representation
of the template like in [DFP+09] (see Chapter 1 for more information about sparse rep-
resentation in the framework of currents), it’s no more possible to know where the fibers
start and where they end and therefore it becomes impossible to verify the hypothesis
linked with the cortico-striato-thalamo-cortical circuits explained in Chapter 2.
Thus it is fundamental to have a template which preserves the connectivity but at the
same time it becomes very important also the choice of the number and position of its
fibers. We decided to have a template with a number of fibers equal to the average number
of fibers of the subject bundles (after the 10% random selection of their fibers). We chose
the fibers directly from the subject objects in two passages. The first one was a random
selection of 2% of the fibers from each subject object creating a big and dense bundle.
In the second step we used a criteria based on the framework of currents to select the
"most representative" fibers. In this way we remained also consistent with the rest of the
project.
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In the next chapter we will show the atlas construction method which means how to up-
date this initial bundle template and how to deform it to each subject bundle in order to
find the variability of the template within both populations (controls and patients subject
to GTS).

Figure 3.16: Scheme of the bundle template initialization. In the left part there are the
results of the two steps of our algorithm. In the right part are shown all
the bundles after the 10% random selection of their fibers.



Chapter 4

Atlas construction based on
diffeomorphic deformations of

currents belonging to the LDDMM
framework

Let [X1,...,XN ] be a set of N shapes belonging to N different subjects, in order to build
an atlas one needs to:

• Estimate a common average shape called template shape X0

• Estimate the N template-to-subject deformations φs from X0 to [X1,...,XN ]

In this project, both the template and the subject shapes are meshes or curves and there
are 8 curves (fiber bundles) and 9 surfaces (cortical surface and internal structures). It
is used a gradient descend scheme to jointly estimate both the template shapes and the
deformations. Therefore it is necessary an initial template for each kind of shape. The
computation of an initial template for fiber bundles was described in Chapter 3 while we
decided to use an ellipsoid for each kind of mesh centred at the mean values of the objects
used in the atlas estimation. The objects are also used to create a "bounding box" which
gives the dimensions of the ellipsoid.

The goal of this project is to find the differences between the population of controls and the
one of patients subject to Gilles de la Tourette syndrome, therefore we need to find a way
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the LDDMM framework

of comparing them. In the perspective of Grenander’s approach [GM98] the differences
between two populations (i.e. healthy and pathological) lie in their variations from a
common template representing the features shared by both populations. The variability
can be explained using the deformations of the template to each object and hence we need
a parametrizable deformation in order to quantify and compare the variations. Moreover,
we want to have a kind of parameters which permit to compute statistics on it.

The choice of the deformation framework depends also on the kind of deformation one
is dealing with. In this project, since the data are anatomical shapes of the brain, the
deformation should capture local non linear variations. The deformation should also be
invertible since the flow of information should go back and forth from the template to
each object: the template is deformed to the object and looking at the difference between
them it can be updated the position of the points/vertices of the template. In addition
to that, the deformation framework should also preserve properties such as smoothness of
curves or surfaces. Therefore, as suggested in [Dur10], a good choice is diffeomorphism.
More exactly, as shown in [Tro95], the Large Diffeomorphic Deformation Metric Map-
ping (LDDMM) framework seems to be particularly adapted since it can be used for the
matching of shapes modeled as currents [VG05] and the metric on its tangent-space uses
the same mechanism of RKHS (described in the previous chapters). The tangent-space
of a manifold is intuitively a linear approximation to the manifold in a neighbourhood of
each point x. This space is given by the linear combinations of the derivatives in all the
directions tangent to the manifold. A tangent-space is therefore a vector space where it’s
possible to compute statistics.

A main characteristic of the atlas estimation used in this project is the utilization of only
one diffeomorphism of the underlying space which deforms each template into its relative
objects. Every deformation is parametrized by a finite set of elements that we can compare
since they come from the same diffeomorphism (more exactly, as we will see later, every
deformation share the same set of control points). Moreover, we take into account all the
parts of the brains examined in this project and therefore each set of parameters shows the
variation of the subject "brain" from the template "brain" estimated. This is also why in
the rest of this chapter the word "template" refers to the set of all the different templates
which are concatenated together in a single vector in the optimization procedure.

In the first part of this chapter it will be described the kind of deformation used in the
atlas construction. Afterwards it will be shown how to match (register) the template
into each object and finally how to take into consideration all the objects to estimate the
common template.
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4.1 Deformation framework: Diffeomorphism

A diffeomorphism is a smooth invertible transformation with smooth inverse. It means
that using this kind of transformation connected sets remain connected also after the
deformation, disjoint sets remain disjoint and coordinates are transformed consistently
[BMTY05]. But of course the inter-subject anatomical variability is likely to involve also
topological changes which cannot be captured by diffeomorphism [Dur10]. Thus, the
result of a registration (matching) between two shapes will capture only the diffeomor-
phic variations while the remaining variations will be taken into account in the residuals
(difference between the deformed source shape and the target shape).

The main issue of diffeomorphism is its infinite number of degrees of freedom. In fact,
differently from a linear transformation which has a finite dimensional parametrization,
optimizing a registration criterion over the whole group of diffeomorphism might not
be possible [Dur10]. Thus it’s necessary to constrain this transformation in a one with
a finite number of parameters. In order to do that we use a framework of diffeomor-
phism constructed via integration of time-varying vector fields which belong to RKHS
[GTY04],[JM00].

Let x be the position of a particle and t the time, the integration equation used to define
a time-varying deformation is:

φt(x) = x+

∫ t

0

vs(φs(x))ds (4.1)

or equivalently, as flow equation:

{
δφt(x)
δt

= vt(φt(x))
φ0(x) = x

(4.2)

where vt can be seen as the speed vector field in the Eulerian-Lagrangian coordinates
and the mapping t → φt is called flow. Therefore the mapping x → φt(x) gives the
transformation (deformation) of x at time t. The flow starts at time t=0 with φ0 being the
identity matrix (idR3 in this project) and it ends at t=1 where φ1 = φ, which means that it
reaches the desired transformation. In this way one doesn’t know only the correspondence
between the initial position x and the solution φ(x), but it is known also the path φt(x).
As an example a particle that goes through the position x at time t has velocity vt(x),
and a particle that starts from position x at t = 0 will be located at φ1(x) at the end of
the process (t=1).
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This is a clear and easy way of seeing the motion of particles (points in shapes) due
to a time-varying vector field acting on the whole space. But it remains to see under
which conditions the solution of this process can be considered a diffeomorphism. This
is well known from Mechanics and more exactly the mapping x → φt(x) is considered a
diffeomorphism ∀t ∈ [0, 1] if the corresponding time-varying vector field v is a mapping
from [0,1] to V , a Hilbert Space of vector fields satisfying certain conditions, such that:

∫ 1

0

‖vt‖2
V dt <∞ (4.3)

then it exists a flow φt(x) which satisfies Eq. 4.1.

V is a Hilbert Space of vector fields with the following restrictions on every element v ∈ V :

1. v is differentiable with continuous differential

2. v(x) tends to zero when |x| → ∞

3. The Jacobian matrix of v(x) (dxv) tends to zero when |x| → ∞

Moreover we suppose that there is also a constant cV such that for any v ∈ V :

sup
x

(|v(x)|+ |dxv|) ≤ ‖v‖V (4.4)

This last condition ensures that ‖v‖∞ ≤ cV ‖v‖V and, as explained in [Dur10] and [Gla05],
this proves that V is a RKHS. Thus any vector field v ∈ V can be seen as the speed of
a point x at a certain time t and it is the result of the convolution between a squared
integrable vector field and a smoothing kernel KV , also in this case Gaussian, with a a
standard deviation equal to λV .

4.2 Registration

At each iteration of the atlas estimation the template is deformed into every object. This
process is called registration. It can be seen as finding the "best" deformation of the
space which enables to minimize the dissimilarity between the deformed template and
one object. Since the deformed template is also a current, it’s possible to use the same
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metric as in Chapter 1 and therefore the norm of the difference between the deformed
template and an object can be written as:

‖(φs(1))∗T −Os‖2 (4.5)

where the index s refers to one subject. This can be seen as a fidelity-to-data term and
the "best" deformation can be found by minimizing it with respect to all the possible
deformations φ. In fact, as said before, we are looking for one deformation of the entire
underlying space which can best match the deformed template into an object. Of course,
since the problem might be ill-posed, one needs also a regularity term Reg(φ). One
possibility is to use the total kinetic energy needed to deform the space from identity
mapping to the final deformation. In [Gla05] it has been proved and shown that it’s
possible to pass from the minimization over all possible deformations φ to the minimization
over all possible time-varying vector fields v (such that Eq.4.3 is still valid). Therefore the
minimization process of the registration between the deformed template and an object
can be written as:

J(v) = min
v
‖(φs(1))∗T −Os‖2 + γReg(v) (4.6)

where γ is the trade-off between the fidelity-to-data term and the regularity term. The
fidelity-to-data term depends only on the last value (t = 1) of the deformation φ and not
on the whole flow and it can be seen as the distance between the deformed template shape
T and the target shape O. Instead the regularization term is defined as:

Reg(v) =

∫ 1

0

‖vt‖2
V dt (4.7)

and it depends on the whole span of time [0, 1].

Let GV be the set of all diffeomorphisms x → φt(x) for all possible time-varying vector
fields vt ∈ RKHS described by the kernel KV , it was demonstrated in [Tro95] that Reg(v)
is a distance on GV and that there is a unique v which achieves the minimum of Reg(v).
The associated flow of diffeomorphism φt is the geodesic path between Id and the resulting
deformation φ.

Thus the result of the registration process is a time-varying vector field v which depends
on the regularization term for the period of time [0,1] and also on the fidelity-to-data term
at t=1. Therefore the fidelity-to-data term can be seen as a constrain applied on the final
values of the time-varying vector field v.
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The flow which minimizes the criterion 4.6 is geodesic in the whole interval [0,1] and, as
demonstrated in [Dur10], it is entirely determined by the initial speed vector field v0.

In a discrete setting, the time-varying vector field v ∈ RKHS is given in the form:

vt(x) =
∑
i

KV (x, ci(t))α
s
i (t) with ci(t) = φt(ci) (4.8)

where ci(t) are controlled points1 and x is a generic point. And it is proven in [MTY06]
that the geodesic evolution of vt is such that it has always the form

∑
iK

V (·, xi(t))αi(t)
at every time step t and such that the momenta (ci(t),αi(t)) are solutions of the Euler-
Lagrange equations:

{
dci(t)
dt

= vt(ci(t)) =
∑

mK
V (ci(t), cm(t))αm(t)

dαs
i (t)

dt
= −αsi (t)T dvtdci

= −
∑

m α
s
i (t)

Tαsm(t)∇1K
V (ci(t), cm(t))

(4.9)

These differential equations can be interpreted as the motion of a certain number of self-
interacting particles (the control points) without external forces. The interaction between
particles is given by the Gaussian Kernel KV and also in this case its standard deviation
(λV ) determines the distance between particles which share the same "movement" and
deformation. The first equation gives the speed of the control points while the second one
explains their accelerations. The speed of any other point x in the space is given by the
interpolation with the control points and it is described by Eq.4.8.

As seen before the whole flow of diffeomorphism is entirely determined by the initial values
of the time-varying vector field v which are uniquely determined by the values of αsi and
ci at t=0, this is called the initial state of the system S0={αi(0),ci(0)}. As said before
the Regularity term is the total kinetic energy needed to deform the space from identity
mapping to the final deformation. But we have already seen that the flow which minimizes
the optimization criterion is geodesic and therefore it depends only on the initial values
of the time-dependent vector field v. Thus it’s possible to use only the initial values of v
in the regularization term. Since we are using the RKHS framework, Eq. 4.7 becomes:

‖v0‖2
V =

Nc∑
i=1

Nc∑
j=1

αsi (0)TKV (ci(0), cj(0))αsj(0) (4.10)

1Control points are selected initially from a regular lattice and therefore they are not forced to be on
the shapes. They are variables of the minimization process and they should move towards the area more
variable.



4.3 Results of the Registration Procedure 61

where Nc is the number of control points.

The set of {αi(0)}, which are the vectors of the momenta linked with the control points
{ci(0)}, is exactly the tangent-space representation of the diffeomorphism and it can be
seen as a finite dimension parametrization of it. Moreover, being a vector space, one can
work on it computing statistics or, for example, finding the directions which explain most
of the variability using PCA. This is exactly what it will be shown later.

4.3 Results of the Registration Procedure

Theoretically any "source" shape which is a surface or a curve can be deformed and
registered to any other "target" shape with the same technique explained in the previous
section. In order to be consistent with the rest of the project we decided to show here the
registration process of the initial templates with objects present in both the populations.
During the registration process Eq.4.9 is integrated forward in time given initial values of
αsi (0) and ci(0). The final values are inserted in Eq.4.8 which is also integrated forward
in time for computing the values of the deformed points/vertices of the template. Finally
it is computed the gradient of Eq.4.6 with respect to αsi (0) and ci(0) in order to update
their values using the gradient descend scheme. When a maximum number of iteration
is reached or when the difference between two objective functions of two consecutive
iterations is smaller than a tolerance, the algorithm stops.
In the next paragraphs we show the flow of the vertices/points of the template at the final
iteration discretized in 20 steps.

Surfaces/mesh As said before the initial templates of each kind of mesh are ellipsoid.
In the next examples we created ellipsoids using 8 subjects and we register them into one
of these subjects.

In Fig.4.1 it is shown a flow with parameters: λW=2 mm (std Kernel Currents) and λV=3
mm (std Kernel Diffeomorphism). An ellipsoid is registered to a left Caudate whose size
is about [15mm x 40mm]. 6 different steps of the flow are shown and it’s possible to notice
that the deformation is really good since the final deformed ellipsoid is quite similar to the
object. Only the last part of the horn and other small parts are not well matched. This
can be related to the size of λW and λV but also to the tolerance chosen (the algorithm
stops before the maximum number of iterations). λW defines the degree of details "seen"
by the vector field during the computation of the difference between the template and the
object, smaller its value smaller the details seen. λV defines the patch of points/vertices
of the template which deform in a correlated manner.
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In this case, if one wants a better registration, it could be decreased the value of the
tolerance or also the values of λW and λV . But this must be done carefully considering
that a lower value of λW would permit to the vector field to "see" smaller details but at
the same time it reduces the distance "seen" by the vector field between the two objects.
Therefore, in this case, the last part of the horn of the object could be too far from the
deformed template and the fidelity-to-data term wouldn’t participate in the computation
of the stepsize in the gradient descend scheme. On the other hand a value too big of λW
would bring practically to the same situation since any movement of the points/vertices of
the deformed template wouldn’t change the fidelity-to-data term. From a mathematical
point of view one tries to minimize the norm of the difference between the deformed
template and the object. If λW is too small the two objects are almost orthogonal in
the space of currents and therefore their inner product is almost zero. If λW is too big
the two objects are parallel and their inner product would depend only on their own
norms. Therefore the minimization of the norm of the difference would involve only the
minimization of the norm of the template without taking into account the target object
(since it doesn’t change).

On the other hand λV is more related to the exactness of the matching and to the number
of controls points and relative momenta. Smaller λV better the matching between the
deformed template and the object (keeping the other parameters constant). λV is therefore
fundamental since a big value would bring to a too rigid deformation while a value too
small could bring to overfitting. In fact, if one wants to analyse the deformations, a "too
perfect matching" would detect only features linked to the specific subjects and not to the
population. Moreover, the control points are initially positioned in a regular lattice with
a distance between them equal to λV . This is because the movement of each point/vertex
of the space is given by the interpolation with all the control points which depends on the
size of the Kernel λV (See Eq.4.8). Thus a small value of λV brings to a high number of
control points.

Other three examples of registration using as "target" objects: left Putamen, left Globus
Pallidus and left Thalamus are shown in Fig.4.2. Also in these cases the matching seems
quite good but not perfect. In fact, as explained before, we don’t want to overfit. This is
also really important in the atlas construction since the parameters of the deformations
(the set of αs(0)) are used to analyse the differences between the two populations.
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(a) t = 1 (b) t = 4

(c) t = 7 (d) t = 13

(e) t = 15 (f) t = 20

Figure 4.1: Example of registration of an ellipsoid to a left caudate. The diffeomoprhic
flow is divided in 20 steps and 6 of them are shown. Parameters: λW=2
mm and λV=3 mm.
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(a) Left Putamen t = 1 (b) Left Putamen t = 20

(c) Left Globus Pallidus t = 1 (d) Left Globus Pallidus t = 20

(e) Left Thalamus t = 1 (f) Left Thalamus t = 20

Figure 4.2: Example of registration of an ellipsoid to a left Putamen, left Globus Pallidus
and left Thalamus respectively. The diffeomoprhic flow is divided in 20 steps.
Only the first one and the last one are shown. Parameters: λW=2 mm and
λV=3 mm.
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Fiber Bundles The bundle templates used in the following paragraph are the ones
obtained with the technique explained in the previous Chapter 3.2.2.

In Fig.4.3 and in Fig.4.4 it is shown respectively the registration between a template of left
Globus Pallidus and left Caudate with two different objects approximated by the sparse
representation explained in Chapter 1. The results are more complicated to understand
than the ones of the surfaces. The high number of fibers doesn’t permit to check the
exactness of the deformation as easily as with mesh. Nevertheless it seems that the
bundle template "shrinks" towards the momenta of the objects. In fact, as explained in
Chapter 1, the sparse representation approximates the object with a series of momenta.
Thus it seems that the registration process is working also for curves which is one of the
new contribution of this project.

We decided to show a sparse representation as object since this is exactly what we are
going to use later to build the atlas. In fact, we decided to use an approximation and
not the whole subject’s bundle for two main reasons. First the computational time is
drastically reduced using the sparse representation since the number of points and mo-
menta is smaller. Second, as described in Chapter 1, a sparse representation makes the
object also more interpretable which means that we can choose the degree of precision
of the approximation in order to enhance the main "internal structure" of the bundles.
This is of course risky since the choice is subjective and it depends on the user but an
automatic procedure should also take into account the fact that the bundles are estimated
with tractography algorithms which were never shown to produce stable and reproducible
results. This is something really complicated that can be seen as a future improvement
of this project.
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(a) Left Globus Pallidus bundle t = 1 (b) Left Globus Pallidus bundle t = 15

(c) Left Globus Pallidus bundle t = 1 (d) Left Globus Pallidus bundle t = 15

Figure 4.3: Example of registration of a left Globus Pallidus template bundle into a sub-
ject’s bundle approximated by the sparse representation shown in Chapter
1. The diffeomoprhic flow is divided in 15 steps. Only the first one and the
last one are shown. Parameters: λW=2 mm and λV=10 mm.
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(a) Left Caudate bundle t = 1 (b) Left Caudate bundle t = 15

(c) Left Caudate bundle t = 1 (d) Left Caudate bundle t = 15

Figure 4.4: Example of registration of a left Caudate template bundle into a subject’s
bundle approximated by the sparse representation shown in Chapter 1. The
diffeomoprhic flow is divided in 15 steps. Only the first one and the last one
are shown. Parameters: λW=2 mm and λV=10 mm.
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4.4 Atlas estimation

In this section it is described how to build an atlas from a set of N subjects which is
composed, in this project, by the two populations. The main difference from the previous
section is that the template is updated at each iteration in order to become an average
shape of the population which captures the common features. Moreover, we chose also to
share all the control points among the population leaving only the momenta values as a
characteristic of each subject. This is also why we have always used so far a superscript
s for the α and not for the c.

Consequently the criterion to minimize becomes:

E(X0, c(0), αs(0)) =
N∑
s

{
D(φs(1)(X0),Xs) +

Nc∑
i=1

Nc∑
j=1

αsi (0)TKV (ci(0), cj(0))αsj(0)

}
(4.11)

where c(0) represents the initial set of control points while αs(0) is the set of initial αi for
the N subjects and X0 are the points/vertices of the template. As before the superscript
index s refers to the different subjects, instead the subscript index i or j to the different
momenta or different control points. All the momenta αi are vectors starting from the
control points. And each control point ci has N different αi starting from it, one for each
subject. Furthermore, for a clarity purpose, the fidelity-to-data term is indicated with a
D.

The main difference from the registration is that now the criterion depends also on the
points/vertices of the template and that all the contributions of the subjects are summed
together. Moreover now the regularity term can be seen as the kinetic energy needed to
deform the template in the N different subject shapes. Or also as the sum of the geodesic
distances connecting the template to all the N shapes.

Additionally a L1 penalty was added to select the most relevant subset of control points
[DPK+12]:

Nc∑
i=1

‖αsi (0)‖1 (4.12)
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Thus the complete criterion can be written as:

E(X0, c(0), αs(0)) =
N∑
s

{
1

2σ2
D(φs(1)(X0),Xs) +

Nc∑
i=1

Nc∑
j=1

αsi (0)TKV (ci(0), cj(0))αsj(0) + γ

Nc∑
i=1

‖αsi (0)‖1

}
(4.13)

The two values σ2 and γ balance the fidelity-to-data term and the L1 term against the
regularity term. Eventually the only variables to be optimized are:

1. X0 : the position of the vertices (for surfaces) or of the points (for curves) of the
template.

2. c(0) : the position of the control points which are in the same domain of the
template.

3. αs(0) : the set of initial momenta that parametrizes each template-to-subject de-
formation

Using as optimization method a gradient descend scheme, it is easy to notice that only
the first two quadratic terms are differentiable. The differentiation criterion can be done
independently for each subject s, and while for the regularity therm it is really easy to
compute the derivatives with respect to αi and to ci, it can not be said the same for the
fidelity-to-data term. In fact the differentiation of the L2 regularity term brings to:

∂
{∑Nc

i=1

∑Nc
j=1 α

s
i (0)TKV (ci(0), cj(0))αsj(0)

}
∂αi

= 2
Nc∑
j=1

KW (ci, cj)α
s
j (4.14)

∂
{∑Nc

i=1

∑Nc
j=1 α

s
i (0)TKV (ci(0), cj(0))αsj(0)

}
∂ci

= 2
Nc∑
j=1

(αsj)
Tαsi∇1K

W (ci, cj) (4.15)

where, since in this project we are using a Gaussian Kernel which is symmetric, scalar
and isotropic of the form : KW (x, y) = exp(−‖x− y‖2/λ2

W )Id, the value ∇1K
W (ci, cj) is

equal to ∂KW (ci,cj)

∂ci
= − 2

λ2
(ci − cj)KW (ci, cj).
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Instead the computation of:


∇αi

D(φs(1)(X0),Xs)
∇ciD(φs(1)(X0),Xs)
∇X0D(φs(1)(X0),Xs)

(4.16)

is really much more difficult and it can be found in [DPK+12]. Practically the idea behind
it is to integrate forward in time the flow equations 4.9 and 4.8 where x are the vertices
or points of the template. In this way one finds the final deformations φs(1)(X0) of the
template which is used to compute the gradient of the fidelity-to-data term with respect to
the points of the template at time t=1: ∇X0(1)D(φs(1)(X0),Xs) as shown in [VG05]. This
indicates the direction to move the vertices/points of the template in order to decrease
the most the residual current. This information is consequently propagated to the control
points and momenta integrating backward from t = 1 to t = 0 two ODEs shown in
[DPK+12]. The results are exactly the gradients of D(φs(1)(X0),Xs) with respect to the
momenta and control points which are used to update the initial positions of control points
c(0) and the initial momenta αs(0). Another ODE is afterwards integrated backward from
t = 1 to t = 0 giving as result the gradient of the fidelity-to-data term with respect to the
vertices/points of the template (at t = 0) which is used in the gradient descend scheme
to update the initial positions of the vertices/points of the template. Control points and
template points/vertices are shared among all the subjects and thus all the contributions
from each subject are summed together. Whereas the momenta α are a characteristic of
each subject.

At this point one can compute the values of the template points/vertices and control points
summing the results from the fidelity-to-data term and regularization term. But, in order
to find the momenta αs values, one needs also to take into account the L1 penalty. In
order to do that, as suggested in [DPK+12], it is used an adapted gradient-descent scheme
called Fast Iterative Shrinkage and Thresholding Algorithm (FISTA) [BT09], [YGSM10].

This algorithm belongs to the class of Proximal Gradient Methods and it is a faster version
of the well known method ISTA. Let F(x) be a cost function to minimize and Q(x,y) a
quadratic approximation of F(x) around a well chosen point y, the goal of this kind of
methods is to minimize Q(x,y) instead than F(x).

As an example, let F(x) be a composite objective function given by:

• f : R3 → R a smooth convex function of the type C1,1 which means continuously
differentiable with a Lipschitz continuous gradient:

‖∇f(x)-∇f(y)‖ ≤ L(f) ‖x-y‖ ∀ x,y ∈ R3
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where L(f) is always greater than zero and it’s called the Lipschitz constant of ∇f.

• g : R3 → R a continuous convex function which is possibly non smooth.

Thus, F(x) can be written as:

F (x) = f(x) + λg(x) (4.17)

and in this project f(x) is the fidelity-to-data term with the regularity term while g(x) is
the L1 penalty which is therefore separable and it can be written as:

g(x) =
∑
i

gi(xi) =
∑
i

|xi| (4.18)

From now on we will consider x as the only variable of this minimization process which
can be seen as the set of momenta αs used in this project. In fact, both the vertices/points
of the template and the control points don’t depend on the L1 penalty and they can be
considered already updated and therefore they are not variables of the FISTA process.
Thus x is a set of vectors belonging to R3.

In order to minimize Eq.4.17 it is used, as in ISTA, an updating rule based on a second-
order approximation of f(x) where the Hessian is diagonalized by: LId and L is a positive
Lipschitz constant which plays the role of stepsize:

xk+1 = min
x
f(xk) + (x− xk)T∇f(xk) +

1

2
‖x− xk‖2

2∇2f(xk) + λg(x)

∼ min
x

(x− xk)T∇f(xk) +
Lk
2
‖x− xk‖2

2 + λg(x)

= min
x

1

2
‖x− uk‖2

2 +
λ

Lk

∑
i

gi(xi)

= pL(xk)

(4.19)

where

uk = xk −
1

Lk
∇f(xk) (4.20)
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The constant term f(xk) was subtracted in the first passage and the two constant terms
− (∇f(xk))T xk

2Lk
and (∇f(xk))T (∇f(xk))

2(Lk)2
were added in the last passage since they don’t change

the result of the minimization (i.e. differentiation with respect to the variable x, which
is not present in these constant terms). Moreover in the last passage f(x) and g(x) are
divided by the constant Lk, since also this computation doesn’t change the result.

Now, it’s easy to see that this cost function has a closed form solution with respect to
each xsi where the superindex s refers to the different subjects and the subindex i to each
momenta. In the following the subindex k is used to indicate the different iterations:

xsi,(k+1) = min
xsi

(xsi − usi,k)2

2
+
λ|xsi |
Lk

= soft
(
usi,k,

λ

Lk

) (4.21)

where

soft(u, L) = sgn(u)max(|u| − L, 0)

=

{
sgn(u)(|u| − L) if|u| > L

0 otherwise
(4.22)

is called soft-thresholding or shrinkage function [YGSM10].

This algorithm is called ISTA and it has a worst-case complexity result of O( 1
k
). The

FISTA algorithm used in this project is faster with an improved complexity result of
O( 1

k2
) [BT09]. The main difference with the previous algorithm is that x at iteration k+1

is not found using xk but another point yk which is a very specific linear combination of
the previous two points (xk,xk−1).

This idea behind FISTA was firstly introduced by the Russian Nesterov [Nes83] in 1983
for minimizing a smooth convex function. In the paper of Beck et al. [BT09] the problem
is instead convex but nonsmooth due to the L1 penalty (exactly as in this project).

Also in FISTA, Eq.4.17 is minimized by a quadratic approximation Q(x,y) which takes
exactly the same form as before:

min
x
Q(x, y) = soft(uk,

λ

Lk
) (4.23)
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where uk = yk − 1
Lk
∇f(yk). But in this case yk is not equal to xk but it is:

yk = xk +
tk−1 − 1

tk
(xk − xk−1) (4.24)

where tk is a positive real sequence satisfying t2k − tk ≤ t2k−1.

A possible drawback of this scheme is that the Lipscitz constant L (the stepsize) can be
hard to compute. Therefore it can be used a backtracking line search strategy to generate
a scalar sequence of step sizes that approximates Lk. Given a constant value η greater
than 1 and yk, it’s possible to define Lk = ηjLk−1, where j is the smallest nonnegative
integer such that the following inequality holds:

F (pL(yk)) ≤ Q(pL(yk), yk) (4.25)

where pL(yk) is the result found in Eq.4.19, and it means that one needs to find the smallest
Lk for which the approximation is still valid (i.e. since Q(x,y) is always greater than F(x),
the minimum of Q(x,y) will be the smallest value of F(x) using that approximation). Then,
once the stepsize is computed, one can apply the FISTA method using the following three
equations:

tk =
1 +

√
4t2k−1 + 1

2
(4.26)

yk = xk +
tk−1 − 1

tk
(xk − xk−1) (4.27)

xk+1 = soft(yk −
1

Lk
∇f(yk),

λ

Lk
) (4.28)

The specific Eq.4.26 emerges during the proof of the gain in convergence rate from O( 1
k
)

to O( 1
k2

) in Nesterov’s paper [Nes83].

As said before, the f(x) function used so far can be substituted with the fidelity-to-data
term and the regularity term while the function g(x) is the L1 penalty term. Thus, calling
∇αs

i (0)f the gradient of f with respect to the ith α at time 0 and belonging to subject
s, it’s possible to write a sketch of the algorithm applied to this project, where αsi,k(0)

means the value of αsi (0) at the kth iteration. The soft function ensures sparsity since it
zeros out the values of αsi (0) which are too small in magnitude [DPK+12].
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Algorithm FISTA

Input: f: R3 → R

0: for each subject s
1: for each momenta αsi
2: Set αsi,0=0, αsi,1=0, t0=1, t1=1, k=1
3: Initialize L0>0, η>1, λ>0
4: while not converged do
5: ysi,k = αsi,k + tk−1−1

tk
(αsi,k − αsi,(k−1))

6: if (k>1) Find the smallest nonnegative integer i, such that L=ηiLk−1 and the condition
F (pL(yk)) ≤ Q(pL(yk), yk) is respected. Then, set Lk=ηiLk−1.

7: usi,k = ysi,k − 1
Lk
∇f(ysi,k)

8: αsi,(k+1) = soft(usi,k,
λ
Lk

)

9: tk+1 =
1+
√

4t2k+1

2

10: k = k+1;
11: end while

Output αsi (0)=αsi,k

Table 4.1: Sketch of the FISTA Algorithm applied to this project
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4.5 Considerations

In this section it has been shown how to build an atlas preserving the topology of the
template throughout the construction. In fact, the template points/vertices are moved
preserving the connectivity between them. Moreover the template and the control points
are shared among all the subjects and therefore they show the anatomical features in
common. Instead the momenta α(0) are unique for each subject and, as explained before,
they can be used to perform statistical analysis such as PCA. Furthermore the sparsity
prior permits to have a compact representation of shape variability within the population
which has great potential for clinical studies since it helps the interpretation of the results.
In conclusion it’s useful to recapitulate the 4 parameters set manually by the user and
used throughout the atlas construction:

1. λW : Kernel size used in the currents framework. It’s fundamental in the fidelity-
to-data term since it describes the area of influence of the vector field w around the
shapes. It means that, using for example two curves, only when they are inside the
area of influence of the other, a movement of one of them is "seen" by the vector
field w and it influences the fidelity-to-data term. But if the curves are further from
each other than their area of influence, any variation of one curve is not "seen" by
the vector field w and therefore the fidelity-to-data term remains constant. From
a mathematical point of view when λW is too small the two curves are almost
orthogonal in the space of currents and therefore their inner product is almost
zero. On the other hand if λW is too big the two curves are parallel in the space
of currents and their inner product depends only on their own norms. Therefore
the minimization of the fidelity-to-data term involves only the minimization of the
norm of the template without taking into account the target object since it doesn’t
change.
This behaviour brings to two considerations. When the two curves are far away
from each other, one needs a big value of λW to compare them. But in this way
it’s impossible to check the small details of every curve since the vector field is too
smoothed and it can’t interpolate perfectly all the points between the two curves.
On the other way, if the two curves are superimposed (as in this project) we can use
also a small value of λW which enables us to compare the small variations of each
curve. Therefore, the degree of detail of the anatomical features one wants to detect
is related also to the distance between the two curves. This also why we decided
to use a rigid registration at the beginning of the atlas estimation: reducing the
distances between the objects gave us the possibility to use any λW and its choice
was only related to the anatomical detail we wanted to take into account.

2. λV : Kernel size used in the diffeomorphic deformation framework. This parameter
controls the "rigidity" of the diffeomorphism which means that bigger is this pa-
rameters more points move in a correlated manner during the deformation. Thus,
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this parameter controls the type of deformation one wants to use: a value towards
zero means that each point can move in an autonomous way from the rest (many
degrees of freedom) while a value towards infinite means that every point will move
in the same way as the others creating an almost rigid transformation (few degrees
of freedom). That’s why this value is important to set up the quality of deformation
one wants to achieve. Moreover when the value of this parameter is too low the
registration between the template and each object can be "too perfect" bringing to
overfitting. This is typical of models too complex since they adapt too much to the
data and an analysis of the deformations might not detect features characterizing
the whole population but only the few subjects under examination. Thus it’s im-
portant to find a good compromise between the exactness of the registration and the
smoothness of the time-varying vector field v. This is also linked to the number of
control points one wants to have. In fact, Eq.4.8 describes the deformation of each
point in the template shape which depends on the interpolation with the control
points and their momenta using the Gaussian Kernel KV . λV defines the maximum
distance that a control point can have in order to modify the template point/vertex.
Thus, smaller λV more the control points and longer the computational time of the
whole atlas construction.

3. σ2 : it’s the trade off value between the fidelity-to-data term and the regularity
term. Bigger this value, greater the importance of the regularity term and therefore
smaller the norm of the vector field v. This is extremely important in the Atlas
construction since it balances the position of the updated common template. A
value too small brings to a good matching of the template to each object but it
prevents the updated template to move towards the center of the population. A
good trade-off is therefore fundamental in the Atlas construction and its choice
should be automatic. This can be seen as a future improvement of this project.

4. γ : it’s the parameter linked with the L1 penalty. Bigger this value, greater the
importance of the L1 term which gives a sparser solution and therefore less control
points with an αsi value different from zero. It’s the trade-off between the number
of degrees of freedom and the variability captured by the atlas. Also in this case
the choice of the value of the parameter should be automatic.

4.6 Results of the Atlas Construction

In this section we show the results of the Atlas construction procedure. We focus mainly
on the difference with respect to the Registration process, which means the update of the
template using the contribution of all the subjects under examination.

Two independent Atlas Construction are shown in Fig.4.5 and in Fig.4.6 respectively.
In the first one 4 kind of brain structures are used (left Caudate, Putamen, Globus Pal-
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lidus and Thalamus) with 8 subjects (4 controls and 4 patients). The parameters are:
λW=2 mm for each object and λW=5 mm for the diffeomorphism. The final number of
momenta is 636.
The second Atlas Construction regards only two kind of bundles: left Caudate and left
Globus Pallidus. Also in this case we use 4 controls and 4 patients. The parameters
are:λW=2 mm for each bundle and λW=10 mm for the diffeomorphism. The final number
of momenta is 819.

Also in this case it’s easier to notice the change in the mesh initial template than in the
bundle one. This is also related to the fact that we begin the atlas construction in the
mesh case with an ellipsoid which is quite different from the objects used in the Atlas
Construction while in the bundle case the template is already a "common shape" and
therefore the change is smaller than in the mesh case. Moreover the shape of the bundle
is not a closed surface as in the mesh case but it is constituted by different "open" fibers
which make the visual inspection of the results more difficult. Nevertheless it’s possible
to notice some changes looking at the initial and final template of the two bundles super-
imposed in Fig.4.6. Theoretically this change should take into account the information
from all the subjects in order to show the common features.

After that, we decide to show also an example of sparse representation used in the second
Atlas construction and the relative registration of the final template (Fig.4.7). It’s possible
to notice how the sparse representations are quite different among them and the final
template moves a little bit towards the center of this small population deforming also its
fibers in order to become an "average shape" of this particular set of subjects.

The choice of the parameters is quite difficult especially for fiber bundles. The value of
λW used in the sparse representation is also used in the Atlas Construction since it sets
the "resolution" of the fiber bundle seen as a current. This value is set manually by the
user. Of course, an automatized general procedure would be better but this would depend
on, for example, the tractography method used, the degree of redundancy one wants to
keep and the kind of data analysed. This is out of the scope of this Master’s Thesis and
it can be seen as a future improvement.
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(a) Initial template of left Caudate (b) Last template of left Caudate

(c) Initial template of left Putamen (d) Last template of left Putamen

(e) Initial template of left Globus Pallidus (f) Last template of left Globus Pallidus

Figure 4.5: Initial and last template of three internal structures: left Caudate, left Puta-
men and left Globus Pallidus. The Atlas Construction procedure takes into
account 8 subjects (4 controls and 4 patients). Parameters used are: λW=2
mm for each object and λW=5 mm for the diffeomorphism. The object in
the background with a greater opacity is one of the objects used in the Atlas
construction.
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(a) Initial template of left Caudate bundle (b) Final template of left Caudate bundle

(c) Initial and last template of left Caudate bundle
together

(d) Initial and final template of left Globus Pal-
lidus bundle together

(e) Initial template of left Globus Pallidus bundle (f) Final template of left Globus Pallidus bundle

Figure 4.6: Initial and last template of left Caudate bundle and left Globus Pallidus
bundle. The Atlas Construction procedure takes into account 8 subjects (4
controls and 4 patients). Parameters used are: λW=2 mm for each bundle
and λW=10 mm for the diffeomorphism.
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(a) Final template of left Caudate bundle (b) Deformation of final template of l.C. bundle

(c) Final template of left Globus Pallidus bundle (d) Deformation of final template of l.G.P. bundle

(e) 2 sparse representations of left Caudate bundle (f) 3 sparse representations of left G.P. bundle

Figure 4.7: Example of deformation of the final template into a subject’s bundle. The
Atlas Construction is based on 8 subjects (4 controls and 4 patients) with
λW=2 mm for each bundle and λW=10 mm for the diffeomorphism. The
sparse representation is based on a λW=2 mm with τ=15% of std.
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4.7 Analysis of the results

There are several ways to analyse the results of the Atlas Construction procedure. In the
following we show three of them:

1. Visual Inspection of the templates of the two populations resulting from two inde-
pendent Atlas Constructions.

2. Visual Inspection of the "mean deformation" of only controls or patients starting
from the same common template.

3. Principal Component Analysis (PCA) of the diffeomorphic deformations of an Atlas
built using both the populations.

Template Comparison The first technique is about comparing the final templates of
two different and independent Atlas Constructions using in the first one only controls and
in the second one only subjects. In this way it’s possible to compare the common features
of both the populations. A visual inspection is easy to understand and really practical for
sharing information with people from other research area such as doctors or neurologists.

In Fig.4.8 are shown two different examples of template comparison. The first two figures
refer to the template mesh of the left Caudate and left Putamen while the last two are
about the templates of the left Globus Pallidus bundle. In these three cases we used 4
controls (red) and 4 patients (blue). Unfortunately 4 subjects don’t represent a significant
population and therefore we can’t draw any conclusion from these images. But it’s possible
to understand how this method could be very useful if employed with bigger populations.
In fact, if these figures had been taken from a bigger population, one could have observed
that the Left Caudate template is definitively longer in the population of patients than
in the one of controls. This could be a starting point of a deeper analysis in order to
understand if it is a biomarker of Gilles de la Tourette syndrome.

The visual analysis of the differences between two bundle templates is more difficult than
using meshes. Anyway it can also be useful if linked to the analysis of the internal
structures and cortical surface. In fact, if one observes a difference between the templates
of an internal structure (as with the left Caudate before), it’s possible to check that
particular area of the brain also looking at the bundle templates in order to understand
exactly which are the parts involved in this change.
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(a) Left Caudate (b) Left Putamen

(c) Left Globus Pallidus bundle (left lateral view) (d) Left Globus Pallidus bundle (right lateral view)

Figure 4.8: Comparison between the final templates of two different and independent
Atlas Constructions using only controls in the first one (blue) and patients
in the second one (red).
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Analysis of the "mean deformations" As said before the parameters of each defor-
mation are the sets of initial momenta αsi (0) that define the tangent-space of the diffeo-
morphism. If one computes the average values of the αsi (0) of each population (controls
and patients), it’s possible to find a kind of "mean deformation" which can characterize
each population. In order to do that, we estimate the common template of both the
populations with one Atlas Construction procedure. In this way, the template shows the
common features among the two populations while the two "mean deformations" represent
the traits of each population.

Looking at the results in Fig.4.9, it’s possible to notice how they highlight the differences
between the two populations in an easily understandable way. Also in this case we used
only 8 subjects (4 controls and 4 patients) and therefore we can’t draw any conclusion.
Anyway it’s easy to understand how this analysis can be really useful in a medical or
neurological field since it permits to show directly the differences between the populations
without giving as result a number or a function which can be difficult to "decipher" by a
doctor.
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(a) Left Caudate (b) Left Putamen

(c) Left Caudate bundle (d) Left Globus Pallidus bundle

Figure 4.9: Comparison between the "mean diffeomorphism" of controls (blue) and pa-
tients (red) starting from the same common template.
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PCA To compute statistics on the deformations we take advantage of the tangent-space
representation of the diffeomorphism which is given, as said before, by the sets of initial
momenta. Each set determines one specific deformation of the template to an object and
it can be seen as an "observation". Let X be a matrix in which each column is a different
"observation", which means a set of initial momenta representing one deformation of the
template to an object. Each column has a length of 3d where d is the number of control
points (and therefore also momenta) and it can be seen as the concatenation of the 3
directions x,y,z of each momenta in a single vector. This matrix X has therefore a size of
[3d x N ] where N is the number of subjects taken into account. More exactly, we compute
twice the matrix X, once using only controls, and the second time with only patients.
In fact, as before, we construct the Atlas using both the populations (finding therefore
a common template) and after we look for the first mode of deformation considering
independently controls and patients.

X is a matrix usually characterized by a high number of rows (αsi (0)) and a relatively small
number of columns (subjects). Thus, the computation of the eigenvectors and eigenvalues
of the covariance matrix Σ = 1

N
XXT might be very difficult. A possible solution to this

problem is to compute first Σ̃ = 1
N
XTX which is smaller since its dimensions are no

more [3d x 3d] but [N x N ] and therefore also the computation of the eigenvalues and
eigenvectors becomes easier and faster. Moreover it can be demonstrated that Σ̃ has the
same eigenvalues different from zero as Σ. After that, calling Λ̃ this set of eigenvalues, λ̃i
a single eigenvalue and Ṽ the set of eigenvectors of Σ̃, it’s possible to write:

Σ̃Ṽ1 = λ̃1Ṽ1

1

N
(XTX)Ṽ1 = λ̃1Ṽ1 (4.29)

1

N
XXTXṼ1 = λ̃1XṼ1 (4.30)

ΣV1 = λ̃1V1 (4.31)

where we demonstrated that the eigenvectors of Σ are computable from the eigenvectors
of Σ̃ and more exactly: V = XṼ .

Now, in order to be consistent with the rest of the project, we decided to compute the
covariance matrix not with an Euclidean metric but with the RKHS metric used so far.
This means that each element of Σ̃ is equal to

〈
(αsi (0)− α), (αsj(0)− α)

〉
W

for every i and
j between 1 and 3d, where α is the mean value of α in order to center the data. Now
calling ci a control point and K the Gaussian Kernel matrix it’s possible to rewrite the
previous equation as: Σ̃W

i,j =
∑3d

i=1

∑3d
j=1(αsi (0)− α)TK(ci, cj)(α

s
j(0)− α).

In this way it’s possible to compute the eigenvectors of Σ̃W and, multiplying them by X,
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also the eigenvectors of ΣW . The eigenvector relative to the biggest eigenvalue is exactly
the first principal component which is a new direction in the α space. The aim of this
process is to "shoot" in that direction the flow of the diffeomorphism in order to analyse
the resulting deformation of the template. Before doing that we decided to normalize the
eigenvector in order to know the "length" of the geodesic shooting. As usual we divided
by the norm of the eigenvector multiplying by the standard deviation which is exactly the
square root of the biggest eigenvalue:

√
λ̃1

XṼ1

‖XṼ1‖W
(4.32)

and since

‖XṼ ‖2
W = (XṼ )TK(XṼ ) = Ṽ TXTKXṼ = N Λ̃ (4.33)

it can be written:

√
λ̃1

XṼ1

‖XṼ1‖W
=

√
1

N
XṼ1 (4.34)

Using the first eigenvector normalised it’s possible to find the direction which explains
most of the diffeomorphic variability (first mode of deformation) and multiplying it by
the standard deviation we obtain a deformation of the template within the 90% range of
the shape variation within the population.

In Fig.4.10 examples of first mode of deformation at ±σ are shown near the template.
We built a common template using both the populations and after we compute the first
principal component considering only the set of initial momenta of controls or patients.
Deforming the template with the resulting set of initial momenta, we can check the main
variability of the common template in both the populations. Looking at the first two
figures about the Left Caudate, we notice that there is a stretching/shortening of the small
horn in both the populations while there is a reduction/expansion of the part opposite
to the horn only in the Controls. The other two figures regard the left Caudate bundle.
Here the main variability seems to be a torque in the upper/middle part of the bundle in
both populations. But the population of patients is also characterised by a movement of
fibers from left to right and viceversa in the middle area.
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(a) Left Caudate - CONTROLS - First mode deformation at -σ (red), template
(green) and first mode deformation at +σ

(b) Left Caudate - PATIENTS - First mode deformation at -σ (red), template
(green) and first mode deformation at +σ

(c) Left Caudate bundle - PATIENTS - First mode deformation at -σ (red),
template (green) and first mode deformation at +σ

(d) Left Caudate bundle - PATIENTS - First mode deformation at -σ (red),
template (green) and first mode deformation at +σ

Figure 4.10: First mode of deformation at ±σ using only momenta of controls or pa-
tients.
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4.8 Conclusion about Atlas Construction

In this section it was shown an atlas construction method to build a common template and
relative deformations from a population of mesh and/or curves. The template shows the
common features of the population while the parametrizable deformations of the template
into each object permit to characterize the variability of the population. The deformation
framework used was based on one diffeomorphism of the space: a smooth one-to-one
deformation of the 3D space with a smooth inverse. It means that, using different kind of
objects (mesh or curves), we deformed the 3D space in order that each deformed template
(one for each kind of object) best matches all the objects present in the population. Thus,
given for example M different objects of N subjects, we have in total MN objects and N
templates. The goal of the Atlas Construction method is to estimate the N templates and
their relative MN deformations using a diffeomorphism of the whole underlying space.

We decided to use for each deformation the same set of the control points but different
initial momenta (α(0)) which represent its parametrization. Since they build a vector
space it’s also possible to compute statistics on it. We showed an example computing
the first principal component at ±σ considering only patients or controls and using the
resulting sets of initial momenta to deform a common template. In this way it’s possible
to check which is the main variability of both the populations.

In order to compare the two populations of controls and patients we used also other two
techniques: we compare the templates resulting from two different and independent Atlas
constructions using only controls or patients and we compare the "mean deformations" of a
common template of both the populations. In both cases it’s easy to check the differences
just with a visual inspection of the results. This can be really useful in medical and
neurological field since it permits to the neuroscientists to see directly the results and the
differences between the two populations. Therefore it can be seen as a good starting point
for a deeper and more rigorous research in the area that show the main differences to drive
the search for hypothesis on the anatomical underpinnings of neurological pathologies.

We have demonstrated that this technique can be used not only for mesh (already shown
in [DPK+12]) but also for curves, in this case fiber bundles. This was exactly one of the
goal of this Master’s Thesis. The other main aim was to check the hypothesis of Worbe
et al. [WGH+10] linked to Gilles de la Tourette syndrome and explained in Chapter 2.
This is a project much bigger than a Master’s Thesis and it will be indeed a future PhD
project. In fact, such an analysis requires more tools, especially statistical, for analysing
the results and above all it needs more time. It was pretty slow the analysis of the data
(i.e. 200 hours for one atlas construction with 1 bundle and 10 subjects) and this is
another challenging issue to solve in a future development.

Nevertheless we managed to demonstrate the usefulness of this method also applied to
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the bundles and we showed a lot of possible ways to improve it. Future studies will focus
mainly on an automatic way for choosing the parameters and on the selection of suitable
statistical tests.
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Chapter 5

Conclusions

The atlas construction method shown for the first time in the paper of Durrleman et al.
[DPK+12] and tested only on surfaces was successfully implemented also for fiber bundles
modelled as 3D curves. The data set of this project is composed by cortical surfaces and
sub cortical structures modelled as 3D meshes and by fiber bundles of 74 subjects divided
in 27 controls and 47 patients with Gilles de la Tourette syndrome.

One of the main goals of this project was to lay the groundwork for a deeper study of the
hypothesis presented in Worbe et al. [WGH+10] about Gilles de la Tourette syndrome. We
checked the differences between a population of controls and one of patients in the cortico-
striato-thalamo-cortico circuits composed by white matter tracts (fiber bundles) and also
in the linked cortical/sub cortical areas. We could not draw any neuroscientific conclusion
from our results due to the limited number of subjects involved in the experiments. But
we showed how to check and interpret the differences between the two populations using
the atlas construction method presented.

Moreover we showed also how to build an atlas using together 3D curves and 3D meshes
in a way which preserved their topology. In order to study the hypothesis linked to GTS
it is indeed necessary to have a bundle template which keeps the connectivity between
points. During the atlas construction, a template and its deformations to each object
of the population are estimated. The analysis of the deformations can give an insight
into the variability of the population. If a bundle template is not composed by fibers
(i.e. without connectivity between points), it’s much more difficult to keep track of the
motion of its starting and ending points and therefore also to find alterations in the neural
connectivity. This makes less feasible the analysis of the neural circuits and therefore also
the test of the hypothesis of Worbe et al.
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We applied this methodology using both populations (controls and patients) or separately.
First we constructed two atlases comparing the templates since they show the common
features of each population. Looking at the results, if the number of subjects had been
bigger, we could have drawn the conclusion that the sub cortical objects seem to be bigger
in the population of patients while it’s really difficult to see any clear difference between
the templates of the bundles. We are still investigating a better way for displaying them
in order to simplify the comprehension of their differences.

After that we also built one single atlas taking into consideration both the populations and
we compare the deformations of the common template to the objects of one population
with respect to the deformations to the objects of the other population. In this way
we checked the variability of the common template in both populations. In order to
do that, we compared first the "mean deformations" to each population and after also
the deformations which explain most of the variability of the common template in both
populations (i.e. the first principal component). Also in this case the results weren’t
meaningful since the number of subjects wasn’t adequate, but we noticed some differences
between the populations that could have driven the search for markers of GTS. It’s also
important to highlight the fact that looking at the first principal component at ±σ helped
a lot the analysis of the fiber bundles. It was the only technique that showed pretty clearly
some differences between the two populations.

As said before, this Master’s Thesis represents a first step in a longer and deeper research
of GTS markers which will continue with a PhD. Throughout this project we showed
the merits but also the limitations of the Atlas construction method proposed. Future
developments will focus mainly on an automatic choice of the parameters, on the selection
of suitable statistical tests and on the addition of more subjects. This will make our
results more precise and above all more meaningful and hopefully statistically significant.
Moreover we will include also the cortical surfaces in this study, which is fundamental in
order to check the change in connectivity between different gray matter structures.
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A.1 Vector Spaces

Considering V a set (not empty) and K a field (an algebraic structure with notions
of addition, subtraction, multiplication and division satisfying certain axioms) with the
following two operations:

1. addition inV, which means a correspondence between each couple of elements (x,y)
belonging to V and another element of V called sum of x and y and represented
by x+y.

2. multiplication of the elements in K by the elements in V, which means a correspon-
dence between each couple of elements (a,x) with a ∈ K and y ∈ V and another
element of V called product and represented by ax.

Definition A.1 one can call V a vector space over the field K if and only if the
operations respect the following properties:

• Commutative property : x+y=y+x

• Associative property : (x+y)+z=x+(y+z) and (ab)x = a(bx)

• Existence of Neutral element for addition : it’s an element in V called 0 in order
that 0+x=x ∀ x.
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• Existence of Neutral element for multiplication : it’s an element in K called 1 in
order that 1x=x ∀ x.

• Existence of the opposite : ∀ x it exists an element y such that x + y = 0.

• Distributive property of the multiplication with respect to the addition between
vectors in V and scalars in K : a(x+y)=ax+ay and (a+b)x=ax+bx.

It’s important to notice that all the elements of V are vectors and all the elements of K
are scalars. K is usually chosen as R or C.

Being V a v.s. (vector space) over a field K; if x and y are two vectors and a,b two
scalars, the vector ax+by is called linear combination of x and y with the coefficients a
and b.

Definition A.2 If V is a vector space over K with the previous defined operations,
and W is a subset of V; it is possible to define W as a subspace of V if:

(a,b ∈ K ∧ x,y ∈W) =⇒ ax + by ∈W

Practically also W is a vector space with the same operations and hypothesis as before
and it can be called v.s. if and only if it contains all the linear combinations of vectors
belonging to it. There are two kinds of subspaces of V: the proper subspace and the
improper subspace. The only two examples of the latter are V itself and the subspace
composed only by the null vector 0, while all the other possible subspaces are called
proper.

Definition A.3 The vectors ~x1, ~x2,..., ~xn of the v.s. Vare called linearly independent if
and only if it follows from:

0 = a1 ~x1 + a2 ~x2 + ...an ~xn (A.1)

that a1 = a2 = ... = an = 0. Otherwise the vectors are called linearly dependent.

From the previous definition it follows that if the vectors are linearly independent all
of them are different from the null vector and if they are linearly dependent one can
express the vectors with the coefficients different from zero as a linear combination of the
other vectors. In R2 two vectors are linearly independent if they are not null and not
proportional, which means that they don’t belong to the same line passing through the
origin. Instead, three vector of R3 are linearly independent if and only if they are different
from the null vector and they are not coplanar.
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Definition A.4 A set of vectors ~x1, ~x2,..., ~xn is called a basis of Wif :

• Wis generated by this set of vectors, which means that is equal to all the linear
combinations of the vectors or that this set of vectors spans the whole space of W.
Practically any vector xcan be expressed as a finite sum of the basis vectors (if the
basis is finite).

• and if the set of vector is minimal which is made formal by requiring the set of
vectors to be linearly independent.

Linear independence ensures that the representation of any vector in terms of basis vectors
is unique and the existence of a linear combination of the basis vectors equal to the vector
chosen is guaranteed by the requirement that the basis spans W.

For all the sets of vectors that span W is possible to find a basis, discarding the null
vectors and all the vectors that can be written as linear combination of the vectors already
accepted in the basis. This means that it’s possible to have more than one basis for each
v.s. W but it can be demonstrated that all the basis of W must have the same number
of vectors. This number is called dimension of W.

It can also be demonstrated the following important proposition:

Proposition A.5 Being ~x1, ~x2,..., ~xn n vectors of a v.s. V of dimension n, the two
following conditions are equivalent:

1. ~x1, ~x2,..., ~xn span V

2. ~x1, ~x2,..., ~xn are linearly independent

Linear maps or Linear Transformations

Definition A.6 Let V and W be two vectors spaces over the same field K. A function
f : V → W is said to be a linear map if for any vector ~x1, ~x2,..., ~xn ∈V and any scalar
a1,a2,...,an ∈ K, the following equality holds:

f(a1 ~x1+...+an ~xn) = a1f( ~x1)+...+anf( ~xn)

This is equivalent to requiring that: for any two vectors ~x and ~y ∈ V and any scalar a ∈
K, the following two conditions are satisfied:
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1. f(~x+~y)=f(~x)+f(~y)

2. f(a~x) = af(~x)

So practically a linear map is a function that preserve the vector space structure, which
means the operations of V and W based on the same field K. From a practical point of
view, ifV andW are finite-dimensional with their respective bases also finite-dimensional,
a linear map f from V to W can be represented as a matrix. In fact:

• Any vector ~v ∈V can be represented as a linear combination of each basis of V
(a1 ~x1+a2 ~x2+...+an ~xn), which means that v is uniquely determined by the coeffi-
cients a1, a2, ..., an.

• Using A.6, f(a1 ~x1+a2 ~x2+...+an ~xn) can be rewritten as: a1f( ~x1)+...+anf( ~xn)

• And all the functions present in the second part of the previous equation can be
rewritten as linear combination of any basis (~y1,..., ~ym) ofW : f(~xj)=c1j ~y1+c2j ~y2+...+cmj ~ym

• So one can write: f(~v)= a1(c11 ~y1+...+cm1 ~y1)+...+an(c1n ~y1+...+cmn ~y1)

Thus the function f of any vector present in any basis of V is entirely determined by
the coefficients aj and cij. The last equation can also be written in matrix notation as
f(~v)=CA where C is the matrix m-by-n containing all the cij, while A is a column vector
containing all the aj. The result is a column vector containing the coefficients of all the
basis vectors ~yi. Of course a linear map can be represented in many ways, since the matrix
CA depends on the choice of the basis.

Using a more general term from a mathematical point of view, one could say that a linear
transformation f : V → W is an endomorphism of V , which means a mathematical
structure that preserves the mapping from a mathematical object to itself. This means
that it’s a morphism (or homomorphism) where the mapping is between two identical
algebraic structures and not between two generic ones.

In the case that the morphism is also bijective, f can be called isomorphism from V to
W. It can be said also that V and W are isomorphic if it exists an isomorphism which
transforms V into W (and since it is bijective also W in V ).

An endomorphism of V which is also an isomorphism is called automorphism of V.
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Normed vectored space

Definition A.7 Let V be a v.s. real or complex (which means that K⊆Rn or K=
C), it is called norm on Vthe function ‖‖ : V → R with the following properties:

1. x 6= 0 =⇒ ‖x‖ > 0

2. ‖ax‖ = |a| ‖x‖, ∀a ∈ K, x ∈ V

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖, ∀x,y ∈ V

The pair (V,‖·‖) is called normed vector space. The first two properties imply that ‖x‖
= 0 if and only if x = 0. Instead a useful variation of the third property (called "triangle
inequality") is ‖x- y‖ ≥ ‖x‖ - ‖y‖.

The most used and general form of norm is:

‖x‖p =

(
n∑
k=1

|xk|p
)1/p

where, when p = 2, it becomes the most commonly used norm on Rn called "Euclidean
norm" or when p = 1 it is called the Manhattan norm or L1 norm. Instead another
important norm is ‖x‖∞ which is called Maximum norm or also supremum norm or
infinity norm and it is defined as ‖x‖∞

.
= max(|x1|, ..., |xn|).

A normed vector space is automatically also a metric space where the metric (or distance
function) is a function which defines a distance between elements of the set, in this case
vectors, and it is defined as:

d(x,y) = ‖x− y‖ (A.2)

In order to check if the norm can be a distance function it is useful to recall the definition
of distance:

Definition A.8 Let Y be a set (not empty) and d a function d :YxY=⇒R, a metric
on Y is a function that satisfies the following conditions:

1. d(x,y) ≥ 0 ∀ x,y∈ Y
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2. d(x,y) = 0 ⇐⇒ x=y ∀ x,y∈ Y

3. d(x,y) = d(y,x) ∀ x,y∈ Y

4. d(x,y) ≤ d(x,z) + d(z,y) ∀ x,y,z∈ Y

From this definition it is easy to demonstrate that Eq. A.2 is correct and that it can be
applied to all the Normed vector spaces. It must be also clear that different norms induce
different distances in the v.s.

Another important concept in the metric space is the one of "Balls".

Definition A.9 Let (V,‖·‖) be a n.v.s. (normed vector space); the open ball of radius
r>0 centered at p ∈ Vand denoted as Br(p), is defined by:

Br(p) := x ∈ V : ‖x− p‖ < r (A.3)

Instead the closed ball, denoted as Br[p], is defined by:

Br[p] := x ∈ V : ‖x− p‖ ≤ r (A.4)

Consequently, since any normed vector space is also a metric space, every ball Br(p) can
be considered as a copy of the unit Ball B1(0), scaled by r and translated by p. For
example, in Fig. A.1 are showed three kind of unit balls for the norms ‖·‖p with p = 1,2
and ∞.

Figure A.1: Unit Balls centred in 0 with unit ray for three different norms ‖·‖p with p=
1,2 and ∞.

Another important concept linked with the definition of "Ball" is the one of equivalence
between norms.
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Definition A.10 Being ‖·‖1 and ‖·‖2 two norms over the same n.v.s. V, they are said
to be equivalent if every ball around a point using one norm contains a ball of the other
norm, which means that there are two constants c1 and c2 for which:

‖x‖1 ≤ c1‖x‖2 and ‖x‖2 ≤ c2‖x‖1 ∀x ∈ V (A.5)

Using this definition it can be demonstrated that in a n.v.s. of finite dimension (like Ror
C) all the norms are equivalent, which means for example that:
‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤ c‖x‖∞.

After the definition of Open Ball it is possible to extend the usual topological notions to
all the normed vector spaces.

In fact, as said before, all the normed vector spaces are also metric spaces which are
topological spaces in a natural manner since the Open Balls defined before form the basis
Bfor a topology Ton the metric space, making it a topological space X.

A basis B for a topological space X with topology T is a collection of open sets in T such
that every open set in T can be written as a union of elements of B. Strictly speaking
one could say that the basis B generates the topology.

In order to better understand this part it is useful to recall the definition of Topology and
Topological Space.

Definition A.11 Let X be a set and let T be a family of subsets of X. Then T is
called a topology on X if:

1. ∅,X ⊂ T : both the empty space and X are elements of T.

2. (T1,T2, ...Tn)⊆ T implies (T1 ∪T2 ∪ ... ∪Tn) ⊆ T : Any union of elements of T
is an element of T.

3. (T1,T2, ...Tn)⊆ T implies (T1 ∩ T2 ∩ ... ∩ Tn) ⊆ T : Any intersection of a finite
number of elements of Tis an element of T.

The pair (X,T) is called a topological space and all the members of T are open sets in X.
An open set Y is a set consisting only of interior points which means that Y contains a
Ball of a certain ray around all the interior points. From this definition it’s possible to see
the link between Open Balls and Open Sets and thus why a metric space is automatically
a topological space.
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Definition A.12 A normed vector spaceV is called complete if every Cauchy sequence
defined in V converges to an element of V.

Definition A.13 A sequence (xn) of elements of a normed vector space V is called
Cauchy sequence if, for every ε>0, it exists an index p (which depends on ε) for which:

∀n,m > p =⇒ ‖xn − xm‖ < ε

Thus a normed vector space V is called complete if for every Cauchy sequence (xn) it
exists a point x ∈V where the sequence converges. Or, in other words, the elements
of the sequence become arbitrarily close to each other (depending on ε) as the sequence
progresses. All the complete normed vector spaces are also called Banach spaces. And it
can be demonstrated that:

Proposition A.14 Every normed vector space over R or C characterized by a finite
dimension is complete, which means a Banach space.

Inner product space

In mathematics an inner product space (or pre-Hilbert space) is a vector space V with an
additional structure called inner product.

Definition A.15 The inner product related to the inner product space V is a function
〈·〉 :V xV→K (whereK can beR or C) that satisfies the following properties: ∀ x,y,z∈
V and α ∈ K:

• 〈x,y〉= < y,x >

• 〈αx,y〉=α〈x,y〉

• 〈x,y+ z〉=〈x,y〉+〈x,z〉

• x 6= 0 =⇒ 〈x,x〉 > 0

From these axioms it follows that 〈x,0〉=0 and from the first property it follows that
〈x,x〉∈Ralso if K= C. Moreover, if K=Rit is trivial to see from the first two axioms that
the inner product is symmetric.

Definition A.16 Two vectors x,y of an inner product space V are called orthogonal
if 〈x,y〉=0.
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In every inner product space it is defined in a natural way a norm generated or induced by
the inner product itself. This is : ‖x‖ :=

√
〈x,x〉. The first two properties of the definition

of norm (Def. A.7) are straightforward but, in order to demonstrate the third condition
(triangular inequality), it is necessary to introduce the Theorem of the Cauchy-Schwarz
inequality:

Theorem A.17 If H is a inner product space and x,y∈H, it is true the following
condition:

|〈x,y〉|2 ≤ 〈x,x〉 · 〈y,y〉 (A.6)

which is equal to:

|〈x,y〉|2 ≤ ‖x‖2 · ‖y‖2 (A.7)

Moreover, the equal sign is valid if and only if x and y are linearly dependent (which
means if they are parallel or one of them is equal to 0).

Definition A.18 A Hilbert Space His a real or complex inner product space which is
also complete with respect to the norm induced by the inner product.

Since an inner product space Vcan also be considered a normed vector space (the inner
product always induces a norm), if it’s of finite dimension, using Preposition A.14, it can
be considered also complete and thus a Hilbert Space.

Probably the most famous example of Hilbert space is the l2 space. This is the set of all
infinite sequences (xi) of numbers (real or complex) such that the series

∑∞
i=1 |xi|2 <∞.

Furthermore this set has the structure of a vector space by applying addition and scalar
multiplication coordinate by coordinate:

α(xi) := (αx1, αx2, ..., αxn, ..) and (xi) + (yi) := (x1 + y1, x2 + y2, ..., xn + yn, ...)

with α,β ∈ Ror C. Moreover, in the the l2 space, it can also be defined the inner product:

〈(xi), (yi)〉 =
∞∑
i=1

xiyi
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And thus also the induced norm:

‖(xi)‖ =

√√√√ ∞∑
i=1

|xi|2

Eventually one can also demonstrate that l2 is complete with respect to the norm induced
by the inner product and thus it’s an Hilbert Space.
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A.2 Formal mathematical definition of Currents

The concept of current was introduced by Georges de Rham in the 20th century [dR73]
and it was mainly based on the work of another great mathematician, L. Schwartz, who
built up the whole theory of distributions [Sch66]. Distributions are a class of linear
functionals1 that map a set of test functions2, infinitely differentiable (smooth) and with
a compact support, onto the set of real numbers. Thus a distribution is a linear mapping
from the set of test functions to R. Instead a current is a linear functional that maps a
space of smooth m-forms with compact support onto R and the functional is continuous
in the distribution sense.

A m-form w on Rd is a linear map from the vector space spanned by m vectors ∈ Rd via
the wedge product ∧ to R. The wedge product is a generalization of the cross-product
which extends the usual measure of area and volume in 3D [Dur10] and it can be defined
by the following properties:

(λu+ v) ∧ w = λ(u ∧ w) + v ∧ w
w ∧ (u+ v) = w ∧ u+ w ∧ v
u ∧ u = 0

u ∧ v = −v ∧ u
u ∧ v ∧ w = (u ∧ v) ∧ w

where u, v, w ∈Rd and λ ∈ R. Therefore the wedge product is a bilinear anticommutative
operation which vanishes if two vectors are equal and it is provided with an associativity
law. The result of a wedge product between two vectors is no more a vector but a bivector,
between three vectors it is called trivector and between m vectors it is a m-multivector.
As said before, the wedge product u∧v is similar to the cross product u x v but it doesn’t
require the vector space to have a metric while the cross product necessarily assumes a
metric since it generates a vector orthogonal to u and v [Bro09]. Moreover the exterior
(wedge) product is not only confined to products of two vectors in 3D but is valid in
any dimension and also for more than 2 vectors. For example, u ∧ v ∧ w is a trivector
whose magnitude is equal to the triple product between the three vectors which means
the signed volume of the parallelepiped created by the three vectors.

This leads to the definition of the vector space of the m-forms spanned by m vectors via
the wedge product (u1∧u2...∧um), usually denoted as ΛmRd, and called the m-th exterior
power of Rd whose vectors are called m-multivectors. The space of m-forms is therefore
the dual space of ΛmRd since it is the set of all linear maps from the vector space ΛmRd to

1linear map from a vector space to its field of scalars
2Test functions are functions compactly supported and continuously differentiable of any order D =

C∞(R). A distribution is a continuous linear functional on every test function of D and the action of
any functional f on a test function φ is given by 〈f, φ〉 =

∫
f(x)φ(x)dx.
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its field R. It can be shown that each multivector that spans the vector space of a m-form
can be decomposed into a sum of the canonical basis of Rd and thanks to the linearity
and alternating properties of the wedge product it can also be demonstrated that ΛmRd

is spanned by the canonical basis of Rd. When m is equal to 1, ΛmRd is the vector space
Rd which can be provided of the standard Euclidean inner-product and norm, becoming
an inner product space, moreover since it is of finite dimension (at least in this project) it
is also complete and therefore it can be considered a Hilbert Space. Thus, thanks to the
Riesz representation theorem [Rie09], every element of the 1-form can be represented by
the inner product with a fixed vector w such as: w(u) = wTu where u is a vector in Rd

and it belongs to Λ1Rd = Rd and w(u) ∈ R.

Now it’s useful to introduce the concept of differential m-forms on Rd. They map every
point x ∈ Rd to w(x) a m-form in (ΛmRd)∗ which is the space of m-forms on Rd. The
space of differential m-forms which are continuous and tend to zero at infinity is called
C0(Rd, (ΛmRd)∗) and it is also provided with a supremum norm ‖w‖∞:

‖w‖∞ = sup
x∈Rd

sup
|u1∧...∧um|≤1

|w(x)(u1 ∧ ... ∧ um)| (A.8)

Using this last concept, it can be provided another definition of current : the dual space of
the space of differential m-forms C0(Rd, (ΛmRd)∗). With this last definition it is enhanced
the link with the Schwartz distributions, and above all the continuity of the functional
and the compactness of the support. In fact currents behave like distributions but on a
space of differential m-forms instead of test functions. And, when m is equal to zero, the
differential 0-form is a scalar field and thus a 0-current is simply a Schwartz distribution.

Instead when m is equal to one, a differential 1-form may be represented by a vector
field w such that for all vectors u ∈ Rd and for all points x ∈ Rd it can be written:
w(x)(u) = w(x)Tu ∈ R. Practically, for each point x there is a vector attached u which is
linked to a scalar value due to the m-form. Moreover, thanks to the Riesz representation
theorem, this linear form can be represented by an inner product with a fixed vector which
is in this case the vector field w(x) for every point x.

This result is a key point for this project, and it can be demonstrated that when m=1
the differential 1-form is a vector field whatever is the value of d. In this project d will
take only the value of 3 which means that all the vector fields will belong to a 3D space.
Reminding the definition of currents as a continuous linear map from a space of differential
m-forms to R, it’s useful to give some practical examples.
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Let L be a piecewise differentiable curve, it can be seen also as a 1-current via the equation:

L(w) =

∫
L

w(x)T τ(x)dλ(x) (A.9)

for every vector field w, where τ(x) is the unit tangent vector of the curve L at point x.
In this last equation dλ(x) denotes the Lebesgue measure on the curves so that

∫
L
dλ(x)

equals the total length of the curve. w is a vector field that plays the role of the 1-form.

As explained in [Dur10] also a differential 2-form (m=2) in dimension 3 (d = 3) is of
dimension 3 and thus it may be represented by a vector field w(x). Thus each 2-form w
is associated to a 3D vector field such that w(u, v) = det(u, v, )w = wT (u x v). From a
practical point of view, a 2-form in dimension 3 is exactly a surface in 3D which is the
second object used throughout this project together with the curves in 3D (m=1, d=3).

Let S be a set of piecewise differentiable surfaces, it can be seen as a 2-current via the
following equation:

S(w) =

∫
S

w(x)T (u(x)× v(x))dλ(x) =

∫
S

w(x)Tη(x)dλ(x) (A.10)

for every vector field w, where η(x) = (u(x) × v(x)) is the unit normal vector of the
surfaces S at point x, (u(x)× v(x)) is the orthonormal basis of the tangent plane of the
surface S at point x.
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