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Abstract

This work focuses on plasma shape reconstruction and control problems with refer-

ence to the configuration of the RFX-mod device, a large RFP experimental machine built

for plasma physics studies and operating in Padua, Italy. Nuclear fusion experiments

require a strong engineering effort to provide the conditions where particular plasma

configurations can be reproduced. The critical aspects of plasma geometry diagnosis and

of active plasma shape control will be analyzed in depth, referring when possible to con-

siderations emerging from experimental results.

The thesis is organized as follows. The first chapter provides an introduction to

plasma physics, and reviews the basic energetic issues that underlie the development

of devices with increasing complexity and with performances that are approaching the

conditions where net power generation from nuclear fusion reactions is possible.

The second chapter lists the main features of the RFX-mod experiment, and resumes

the key aspects of its use as a Tokamak, producing a plasma configuration that differs

from the nominal use of the machine as a RFP device.

The third chapter focuses on the use of a simulator that allows the study of equi-

librium plasma configurations and that will be used to evaluate dynamic properties as

well. Particular attention will be put on critical aspects of plasma parametrization to

obtain results that are consistent with experimental data. The simulator already imple-

ments a modelization of the RFX-mod machine, and some modifications to the existing

mesh representing the design of the device will be implemented in the following of this

work.

The fourth chapter defines the plasma shape reconstruction problem, reviews the

available methods for geometry parameters reconstruction currently used on the exper-

iment, and proposes original contributions to adapt the existing methods to the plasma

configuration considered hereby.
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The fifth chapter deals with the derivation of a linear model, required to use linear

control techniques commonly implemented in automation engineering. The validity of

the model will be assessed, and its limitations will be accurately reviewed.

Finally, the sixth chapter defines the shape control problem, presents the main guide-

lines that were adopted to design the controller, and proposes extensive tests that should

assess the possibility to apply the control scheme to the experimental framework.
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Chapter 1

Fusion energy and plasma modelling

1.1 Introduction: Energy issues and nuclear reactions

Energy is the most primary resource that our society requires for its own support and

development. The economic system on which modern countries are based on is strongly

influenced by energy price and availability, and international balances heavily depend on

energy trade. While the most relevant part of energy production comes today from fossil

fuels, a prospective decrease in availability of these resources, together with a growing

sensibility towards environmental issues among the population, is demanding structural

changes in energy production and distribution schemes.

There is growing interest towards renewable energy sources. While hydroelectric

power still contributes predominantly to production of electricity from renewable sources,

a small but growing percentage comes from solar and wind energy. However, it is de-

batable whether these sources will be able to significantly lessen the dependence on non

renewable sources in the long term. An alternative possibility comes from nuclear en-

ergy, that exploits nuclear mass reactions to release energy from the involved reagents.

The total mass of protons and neutrons composing an atom nucleus is higher than the

mass of the nucleus as a whole. The mass difference, ∆m, is related to a variation in

binding energy by the relation

∆E = ∆m c2.

Binding energy per nucleon (figure 1.1), that is the ratio between the amount of energy

needed to break the atomic nucleus and its mass number, has its maximum value around

mass number 50. This means that it’s possible to free energy by breaking heavier ele-

ments in lighter ones, which is a fission reaction, or by merging together light elements,

which is a fusion reaction.

9
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Figure 1.1: Binding energy per nucleon

Nuclear fission has been used for quite a long time now as a source of thermal energy

for electricity production, exploiting the process of breaking heavy uranium-235 nuclei

by absorption of a slow-moving neutron. However, nuclear fission technology has some

unsolved issues that make it less attractive; nuclear fusion could overcome some of these

problems, but fusion reactors are still at an experimental stage and may be commercially

available only in several decades. We can compare the two approaches in terms of the

major issues concerning nuclear energy safety and sustainability. In the following, when

talking about nuclear fusion, we refer to the magnetic fusion approach, that tries to keep

a gas of hydrogen isotopes hot and dense enough to favor fusion reactions by confining

it with intense magnetic fields; inertial confinement will not be considered in this work.

• Fission reactors contain the amount of fuel needed for several days of operation.

If control on the reaction is lost, there is enough energy to produce an explosion,

and even when the reaction is stopped, thermal power production will not stop im-

mediately, but will exponentially decrease instead because of a process called decay

heat. This means that cooling systems must be operational even after an emergency

stop. On the other hand, fusion reactors would contain reagents in the form of

very rarefied gases, and the conditions where the reaction may occur are so diffi-

cult to obtain that if control on the reaction is lost there would be immediately no

net power output.
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• Some fission products are unstable elements with a very long half-life, ranging up

to the scale of million years. It is almost impossible to assure that radioactive waste

will remain isolated from the environment for the time needed to make long-lived

fission products unharmful to the biosphere, since the time scale to deal with is

several degrees of magnitude the time scale of human life. On the other hand,

fusion reactions would produce no long-lived radioactive products, although the

inner layer of the reactor may be activated by neutron bombardment. First wall

materials must be accurately chosen to minimize activation.

• Uranium is a finite resource, although its availability depends on the price one

is willing to spend to extract it, and breeder reactors can use uranium-238 that is

much more common in nature than uranium-235. Considering this, there could be

enough resources for a very long time from now, so availability is not a major issue.

Fusion uses deuterium, which can be found in parts of 1/10000 in sea water, and tri-

tium, that can be obtained as a short-lived fission product of lithium. Again, lithium

is a finite resource but its availability does not seem to pose a problem. Moreover,

at a second stage, when fusion technology will be mature, one can expect to sustain

a deuterium-deuterium reaction, that does not require tritium.

• A very critical aspect that has an impact on international balances is the risk of nu-

clear proliferation. Nuclear fission fuel mostly consists in enriched uranium, that is

uranium with a higher percentage of uranium-235 with respect to the natural ratio

between uranium-235 and uranium-238, (around 0.72%). To produce nuclear fuel

for common fission reactors, the ratio must be increased to 3% − 5%, but if high-

enrichment levels are reached (> 20%), it could be used to build atomic weapons.

The enrichment ratio to produce an atomic bomb is commonly around 80%. Con-

versely, magnetic fusion does not rely on processes that could be directly exploited

to produce weapons.

1.2 The Lawson criterion

As mentioned before, fusion research studies the conditions where hydrogen isotopes

fusion reactions may occur. The deuterium-tritium reaction is particularly of interest:

2
1H +3

1 H →4
2 He+ n+ (WDT ), WDT = 17.58MeV.
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Figure 1.2: The Lawson criterion

The reaction is clearly exergonic, but when evaluating the power balance of a prospec-

tive fusion reactor, one must consider the power balance of macroscopic energy exchanges,

and seek for the working point where power input to the reactor equals power output.

The most common formulation of power balance equations for a fusion reactor comes

from the Lawson criterion. Power input consists of a term, Pext, representing power

from external sources and PN , representing nuclear power. The latter depends on the

deuterium-tritium reaction cross-section and on temperature, that translates in kinetic

speed of the reagents. This dependence can be expressed by the term 〈σv〉:

Pin = PN + Pext, PN =
n2

4
〈σv〉WDT .

In the hypothesis of the Lawson criterion, all the nuclear power is also output to

the system, assuming that reagents that have incurred in a fusion reaction could not

be confined. Power output is then composed of transport power, PT , that depends on

the energy confinement time τE , and of bremsstrahlung power PB , that is due to the

irradiation generated by continuous accelerations of charged particles:

Pout = PN + PT + PB, PT =
3nkT

τE
, PB = bn2

√
T .

The Lawson criterion then assumes that Pext = ηPout, where η is the efficiency of

energy conversions. This defines the conditions where reactor temperature can be main-

tained, without providing power to external appliances. The power balance equation can



1.3. PLASMA, THE FOURTH STATE OF MATTER 13

be solved with respect to the term nτE , leading to

nτE =
3kT

1
4

(
η

1−η

)
〈σv〉WDT − b

√
T
.

This relation is graphed in figure 1.2 as a function of temperature. Since it is extremely

critical to obtain high values for the product nτE , an optimal working point for T is

found where the function reaches its minimum value; other considerations lead to the

individual target values for n and τE :

T ≈ 20keV, n ≈ 1020m−3, τE ≈ 1s.

We should now focus on the physical properties of the reagents, initially a rarefied

gas of deuterium and tritium, when approaching these extreme conditions.

1.3 Plasma, the fourth state of matter

As seen in the previous section, it is necessary to heat a gas of hydrogen isotopes to

an extremely high temperature, and to keep it confined long enough to reach the condi-

tions specified by the Lawson criterion. In these conditions, the gas is fully ionized, this

means that electrons and ions are not bound to each other but are free to move almost

independently. An ionized gas can be called a plasma in the sense of fusion physics when

its charged particles are not affected by the electric field generated by spatial charge sep-

aration between electrons and ions. This concept can be formalized defining the Debye

length, λD, as a limit for charge separation. Calling n the number density of ions/elec-

trons in the volume, T the temperature, and being k the Boltzmann constant and e the

electron charge, we have:

λD =

√
kTε0

ne2
.

Plasma is then a fully ionized gas where particles are shielded from fields due to

charge separation. There must then be a large enough number of particles in a Debye

sphere, that is a sphere of radius λD. One must have that

n
4

3
πλ3

D � 1.

Another common assumption is that λD � L, where L is a measure of the scale of

the system considered. Plasma has two important properties that make it very different

from a non ionized gas, and these properties are so unique that sometimes plasma is
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referred to as the fourth state of matter. Being composed by charged particles, it is a good

electricity conductor, and its dynamics are influenced by external electric and magnetic

fields; in the same way, current flowing through a plasma can generate its own magnetic

field. Secondly, the Debye length limit on charge separation implies that plasma particles

show a collective behavior. Plasma modelling should then reflect in an accurate way

these properties. Different approaches are possible:

• One can study the dynamics of the single particles composing a plasma as if they

were influenced only by the effect of external fields, neglecting interaction with

other particles, but this approach would not lead to a self-consistent model.

• The previous approach can be reformulated conforming to the kinetic theory of

gases, by considering the dynamics of electrons or of ions as a whole, and consider-

ing quantities such as particle density and flow instead of single particle mass and

speed. Interaction between electrons and ions is then taken into account with an

impact term in the force balance. This leads to a more accurate model, but it’s not

totally self-consistent yet, because the external fields effect on particle dynamics is

taken into account, but the reciprocal effect of particle motion on the existing fields

is not modelled.

• Magnetohydrodynamics (MHD) leads to a simpler yet self-consistent model. The

existence of different species (electrons and ions) is neglected, and plasma is treated

as a single conducting fluid. Maxwell equations give reason of the interaction with

external fields, and Navier-Stokes equation models fluid dynamics.

1.4 MHD Equations

In fusion engineering, MHD is the approach of interest for plasma modelling, because

equilibrium and stabilization aspects require self-consistency. Simpler models rely on

ideal MHD, in which plasma is modelled as ideally conductive. However, for the sake

of generality, resistive MHD equations are reported, where a conductivity coefficient σ is

defined. It is also assumed that no net charge unbalance is possible inside the plasma:

this approximation is acceptable when the conditions on λD are satisfied. The quantities

involved are the electric field E; magnetic field B; current density J; fluid velocity v;

pressure p; mass density ρ. Ei is the impressed field, a term defined to model external
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forces per unit charge. The resulting equations are:

∇×E = −∂B

∂t
(1.1)

∇×B = µ0J (1.2)

∇ ·E = 0 (1.3)

∇ ·B = 0 (1.4)

J = σ(E + v ×B + Ei) (1.5)

ρ(
∂v

∂t
+ v · ∇v) = J×B−∇p (1.6)

1.5 The Tokamak and RFP configurations

Nowadays, experimental devices built to develop knowledge on magnetic fusion

physics and engineering are toroidal geometry machines: deuterium and tritium are

injected into a doughnut-shaped vacuum chamber, and plasma conditions are created

inside this chamber. The first experiments on magnetic confinement were carried out on

linear geometry discharge tubes. The principle that leads to close the geometry in a torus

is to allow a current Jφ to flow in the plasma, and to avoid losing the charged particles

at the edges of the configuration. In toroidal geometry it is common to refer to the set of

cylindrical coordinates (R,φ, Z), the Z axis corresponding to the axis of symmetry of the

torus. However, for some considerations it is useful to refer to another set of coordinates,

(θ, r, φ) (fig. 1.3).

Figure 1.3: Toroidal and cylindrical coordinates

Studying plasma equilibrium means to produce equations that take configuration ge-

ometry into account and that are verified when velocity and ∂·
∂t terms are equal to zero.
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The momentum balance equation (eq. 1.6) becomes:

J×B = ∇p. (1.7)

Assuming that current is mostly flowing in the îφ toroidal direction (Jφ), confinement

is possible when there is a component of B in the îθ direction (Bθ), generating pressure

gradient in the îr direction (∂p/∂r). However, the Tokamak configuration is character-

ized by a prevalence of the Bφ component over the Bθ component, to obtain a stable

configuration. In this respect, the safety factor q(r) is defined as

q(r) =
r

R

Bφ(r)

Bθ(r)
.

This parameter defines a property of magnetic field lines: it is equal to the number

of turns in the toroidal direction corresponding to a complete turn in the poloidal direc-

tion. Charged particles tend to orbit around magnetic field lines, and a consequence of

ideal MHD (Alfvén theorem) states that plasma flows conserving magnetic flux locally.

It is then possible that plasma assumes a helical configuration when magnetic field lines

close in a toroidal turn. There could be a perturbation in plasma displacement, ξ̄, that is

resonant with the configuration of magnetic field lines. This happens whenever

ξ̄ = ξ̄0cos(mθ − nφ),
m

n
= q(r). (1.8)

It could be shown that such a perturbation would lead to an instability, destroying

the toroidal equilibrium configuration. If the Bφ component is not null, then all pertur-

bations characterized by m = 0 will be stabilized, because the condition of resonance

(eq. 1.8) between plasma displacement and magnetic field lines can never be verified.

Sometimes these instabilities are referred to as sausage instabilities, because they consist

in a deformation of plasma shape that is a function of the φ coordinate only. However,

one also commonly wants to stabilize kink instabilities, that are also dependent from θ.

The minimal requirements to have a macroscopically stable Tokamak configuration are

defined by the following conditions [2], that impose to stabilize all internal kink instabil-

ities with m = 1 (Kruskal-Shafranov limit) and all those with m ≤ 3 through the limit of

the first wall (ra):

q(0) ≥ 1

q(ra) ≥ 3
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(a) Safety factor profiles in Tokamak and RFP (b) Magnetic field profile in RFP

Figure 1.4: Radial profiles for equilibrium configurations

These conditions have a consequence on the ratio between Bφ and Bθ at the first wall

limit: in fact, the following relation should be verified:

Bφ(ra) ≥ 3
R

ra
Bθ(ra). (1.9)

The Tokamak configuration is then characterized by a prevalence of the Bφ compo-

nent over the Bθ component, to provide stability to the configuration. Instead, the RFP

configuration obtains plasma stability with an alternative approach [3]. As mentioned

before, the safety factor q(r) shows whether there are resonant field surfaces at a given

radius. It is important that q(r) always has a non null derivative: in fact, if q(r) is rational

for a given r, a resonant surface exists and an instability could grow from it. However,

if q(r) varies, there will not be a resonant surface at a higher radius, and the instability is

stopped. This property is called shear. In the RFP configuration, shear is obtained with

a monotonically decreasing profile for Bφ(r), that changes sign when approaching the

edge of the configuration (fig. 1.4).

The British physicist J. B. Taylor [4] has shown that both Tokamak and RFP config-

urations are states of minimal plasma energy with the constraint of magnetic helicity

conservation. Thus the RFP configuration naturally obtains the reversal of the Bφ com-

ponent, without forcing it with the external coils. The F and Θ parameters are used to
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Figure 1.5: F -Θ graph: Taylor equilibrium states

graph Taylor states, and are defined as follows:

F =
Bφ(ra)

〈Bφ〉
, Θ =

Bθ(ra)

〈Bφ〉

The 〈 〉 brackets indicate average values. With these definitions, the F -Θ graph (fig.

1.5) represents the possible equilibrium configurations in helicity conservation, and shows

the typical evolution of a RFP discharge, that starts as a Tokamak discharge and then

evolves with growing values of Θ over time.



Chapter 2

The RFX-mod experiment

2.1 Specifications and structure

RFX-mod is an experimental device built to study RFP operation at high plasma cur-

rent (up to 2MA). In table 2.1 are reported the main specifications of the machine. The

plasma is formed in a toroidal vacuum chamber internally covered with graphite tiles.

The vacuum vessel is closely surrounded by a thin copper shell, meant to stabilize fast-

growing unstable MHD modes. These structures are important when developing an ax-

isymmetric model of the machine, and will be now analyzed in more detail; a sectional

view of the main layers composing the machine is presented in figure 2.1.

Major radius (structure) 2 m

Major radius (vessel) 1.995 m

Max. inductive energy 72.5 MJ

Max. toroidal field 0.6 T

Max. plasma current 2 MA (RFP) 200 kA (Tok.)

Current rise time 15− 50 ms (RFP) 200 ms (Tok.)

Flat-top time 250 ms (RFP) ∼ 1 s (Tok.)

Discharge time 350 ms (RFP) ∼ 1.2 s (Tok.)

Table 2.1: RFX-mod specifications

Graphite first-wall The first layer facing the plasma consists in 2016 trapezoidal graphite

tiles. Graphite (carbon) as first-wall material was chosen for the properties of low acti-

vation, good resistance to high energy fluxes, and low mass number: in fact, when sput-

tering of first wall material occurs, some atoms of first wall material contaminate the

19
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plasma, and high mass number elements would cause high energy losses for irradiation.

The first-wall layer is only 16 mm thick, to keep the plasma edge as near as possible to

the stabilizing shell.

Vacuum vessel The material chosen for the vacuum vessel is INCONEL 625, a special

paramagnetic type of steel. The vessel comprises 72 wedge-shaped elements, each of

which consists of a sandwich structure, with a 2 mm thick inner wall and a 1 mm thick

outer wall connected by a 0.5mm corrugated sheet and two poloidal stiffening end rings,

providing the necessary resistance to support the ultra high vacuum regime.

Thin copper shell Before the machine modifications that were carried out in years 2000-

2003 [5], RFX was equipped with a 65 mm thick aluminium shell with a time constant of

450ms, that was meant to stabilize MHD modes on a time scale comparable with the

duration of the discharge. The machine has then been modified to include a flexible

active control system made up by 192 saddle coils that can be controlled independently

and that can react on the time scale of 50ms: this is the characteristic time for magnetic

field penetration of the thin copper shell, that has the purpose of stabilizing fast-growing

MHD modes with time constants lower than 50ms. The shell is characterized by the

presence of an equatorial gap and a poloidal gap, that allow transformer action from

external fields to induce loop voltage on the plasma. The presence of the poloidal gap

imposes that the total toroidal current flowing in the shell must be zero; this fact will be

accurately taken into account when developing mathematical models of the device.

Supporting structure The supporting structure is made of AISI 304 stainless steel, and

it sustains the vessel, shell, saddle coils and toroidal field coils. Like the shell, it presents

Graphite first-wall 0.459 m

Vessel, inner face 0.475 m

Vessel, outer face 0.505 m

Shell, inner face 0.5115 m

Shell, outer face 0.5145 m

Structure, inner face 0.553 m

Structure, outer face 0.600 m

Table 2.2: Radius of assembly layers
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Figure 2.1: Sectional view of RFX-mod toroidal assembly

Figure 2.2: RFX-mod shell and structure, exploded view
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Figure 2.3: RFX-mod section

toroidal and poloidal gaps, but the inner toroidal gap is short-circuited. Exploded views

of the shell and structure are reported in figure 2.2, while table 2.2 lists the radius of the

various layers of the toroidal assembly.

2.2 RFX-mod diagnostics

Many diagnostics operate on the experiment: density and temperature probes, but

also x-ray tomography, interferometry and Thomson scattering diagnostics, to mention

some. A top view of RFX-mod with the position of the main diagnostics is reported in

figure 2.5. However, the real time control system for plasma position control is based

uniquely on magnetic diagnostics, so only these will be considered in the rest of this

work.

Magnetic probe arrays RFX-mod is equipped with several probe arrays that provide

measurements of magnetic field, loop voltage, and magnetic flux. Together, these probes

form the magnetic diagnostic system. We will consider inner magnetic probe arrays, that

are positioned on the outer face of the vessel. Other magnetic probe arrays are present at

outer surfaces, but inner probes are less influenced from the effect of passive structures
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Figure 2.4: Machine room of RFX-mod

Figure 2.5: Top view of RFX-mod main diagnostics
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and provide the most informative measurements to diagnose plasma characteristics. Ta-

ble 2.3 lists the magnetic probes of interest and their position around the torus.

Sensor / position r [m] θ [◦] Pol. # φ [◦] Tor. #

Pol. and tor. B field 0.508 72 + k · 90 4 l · 7.5 48

Pol. and tor. B field

(dense array)
0.508 27 + k · 45 8

30, 142.5,

210, 322.5
4

Radial B field 0.507 0 + k · 90 4 l · 7.5 48

Tor. loop voltage 0.507 22.5 + k · 45 8 - 1

Poloidal flux ψ 0.507 22.5 + k · 45 8 - 1

Table 2.3: RFX-mod inner magnetic probes (k, l ∈ Z)

2.3 RFX-mod magnetic field coils

Poloidal field circuit The poloidal field coil system is composed by a magnetizing cir-

cuit (M coils) that is used to provide transformer action on the plasma and induce plasma

current without generating field in the plasma region, and a field shaping circuit (F coils)

that is used to control plasma shape and does not provide transformer action. The po-

sition of these coils is visible in a section of the machine (fig. 2.3). Since the system is

perfectly top-down symmetric, no net horizontal field can be generated on the equatorial

plane of the machine. The magnetizing circuit is coupled with the field shaping circuit

because of the particular circuit layout [6], visible in figure 2.6. In the rest of this work, M

coils will be referred to with the number of the the S sector they belong in the poloidal

circuit. In fact, in RFX-mod the M coils are actually numbered as in fig. 2.3, and are

interconnected in series interleaving them to maximize inductive balance (table 2.4).

S sector M coils in series

1 1 5 9 14 17

2 2 6 10 15 19

3 3 7 11 16 18

4 4 8 12 13 20

Table 2.4: RFX-mod PF circuit sectors with M coils interconnection
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In RFP operation, typically the M coils are pre-charged to the maximum (positive)

current value using the PMAT converter (1350 V/50 kA). In this phase PMSS is open

and PT is closed; then the discharge is started by closing PMSS and opening PT: the

current in the M coils will decrease with the time constant of the resulting LR circuit,

providing transformer action on the plasma; PCAT converters (1350 V/12.5 kA) are used

to control the current decay rate, while F coil current is controlled by PVAT converters

(1350 V/6.25 kA). Machine operation in a Tokamak discharge is quite different, and will

be summarized in the next paragraph. It is important to point out that all the power

supply units connected to the poloidal circuit can operate only in one quadrant (positive

voltage, positive current).

Figure 2.6: RFX poloidal field circuit

RFX-mod as a Tokamak RFX-mod is a very flexible machine, that can operate also in

Tokamak configuration since the F − Θ diagram (fig. 1.5) suggests that a RFP discharge

starts as a Tokamak discharge. As mentioned before, in Tokamak operation the poloidal

field circuit follows a different sequence to initiate the discharge. It is not necessary to

pre-charge the M coils, since the machine will operate at much lower plasma current

(∼ 100 kA for the Tokamak, 2 MA max. for RFP); transformer action is provided by gen-
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erating a growing (negative in sign) current in theM coils with the PCAT converters. The

limit on plasma current in Tokamak configuration descends from the fact that Bθ should

be limited to comply with eq. (1.9). The prevalence of the Bφ component over the Bθ
component also has a consequence on the magnetic diagnostic system, since Bθ pickup

coils will be affected by a relevant offset due to spurious pickup of the Bφ component

because of small angular errors in pickup coil positioning. These errors will have to be

accurately taken into account in the following.

Regarding F coils, in double-null Tokamak configuration F3 and F8 must carry a

positive current to produce null points and to horizontally elongate the plasma, result-

ing in a highly triangular shape. All the other F coils carry negative current. To obtain

this configuration, PVATs feeding F3 and F8 must be physically inverted before the dis-

charge. Sign constraints of the converters must be accurately taken into account when

designing the shape controller, that ultimately regulates voltage applied to the F coils.

Figure 2.7: RFX toroidal field circuit

Toroidal field circuit Toroidal field coils are used to provide stability to the plasma

in the first phase of a RFP pulse and are critical in Tokamak discharges, since as seen in

section 1.5 the toroidal field must be prevalent over the poloidal field. The toroidal circuit

is composed of two identical groups, each feeding 6 of the 12 toroidal winding sectors

[7]. The electric scheme of the circuit feeding one of the groups is reported in figure

2.7. The circuit is composed of ac/dc converters (TFAT - 3 kV/16 kA), blocking diodes

(TCDB - 4 kV/5.5 kA), capacitor banks (TCCB - 4 kV/16 mF ), chopper groups (TCCH
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- 3 kV/4.6 kA), inverters (TCAC - 3 kV/6 kA) and static breakers (TCIS - 4 kV/16 kA,

128 MA2s). The circuit is designed to allow field reversal during RFP discharges, and a

maximum toroidal field of 0.67 T can be produced. In Tokamak discharges, the toroidal

field is ideally constant over time so this circuit does not require dynamic modelling for

the purpose of this work.

Saddle coils The 48 × 4 saddle coils (SC) for active MHD control (figure 2.8) are in-

dependently fed by 192 AC/DC switching converters (400 A/650 V ) that are not bound

to sign constraints that affect the poloidal field circuit converters, and have very quick

dynamics: they can produce 40 mT DC field and 1 mT at 100 Hz. In RFP discharges,

saddle coils are operated out of axisymmetry, aiming at controlling specific m 6= 0 MHD

modes. In axisymmetry, the SC are important because they can provide a horizontal field

component on the equatorial plane that other coils cannot provide because of top/down

symmetry. These will be introduced in the model (sect. 5.4) to stabilize plasma position

in double null Tokamak configuration.

Figure 2.8: A subset of 12 saddle coils
In red, the conductors that will be included in the axisymmetric model
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Chapter 3

The nonlinear model and simulator

3.1 The Grad-Shafranov equation

A common assumption in order to carry out calculations in toroidal geometry is ax-

isymmetry: physical quantities of interest are assumed to be invariant with respect to the

toroidal angle φ. This assumption is well verified in the Tokamak configuration because

its ideal equilibrium does not show a dependence of plasma displacement and shape on

the toroidal angle. Under the hypothesis of axisymmetry, the plasma equilibrium prob-

lem can be reformulated on the 2D space of a section of the torus located at an arbitrary

angle φ, thus simplifying the original 3D equilibrium problem. The possibility to model

non-axisymmetric instabilities (n > 0) is lost, but in Tokamak configuration this is accept-

able if one assumes to have high enough values for q(r), so that these instabilities would

be characterized by a high poloidal numberm, and their impact would be less important.

It is still possible to analyze plasma displacement stability in terms of the position of its

axis on the poloidal plane, and it is possible to study the shape of the plasma section as

well.

Under these assumptions, B and J can be expressed in terms of two scalar functions,

namely, the poloidal flux function ψ(R,Z) and the poloidal current function f(R,Z).

ψ(R,Z) is the magnetic flux linked with the circumference obtained by revolving the

point (R,Z) around the z axis. The Grad-Shafranov equation is usually expressed in

terms of poloidal flux scaled by a factor 2π: ψ̃ = ψ/2π is the poloidal flux per radian.

f(R,Z) is the total current linked with the same circumference, scaled by a factor µ0/2π.

29
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The following relations can be derived from MHD equations [8]:

B =
1

R
∇ψ̃ × îφ +

f

R
îφ

J =
1

R
∇
(
f

µ0

)
× îφ −

1

µ0R
∆∗ψ̃ îφ.

In the previous equation, ∆∗ψ̃ is the differential operator defined by

∆∗ψ̃ = R
∂

∂R

(
1

R

∂ψ̃

∂R

)
+
∂2ψ̃

∂Z2
.

Substituting the expressions for B and J in the equilibrium momentum balance equa-

tion (1.7) , we have the Grad-Shafranov equation (GSE):

∆∗ψ̃ = −f df
dψ̃
− µ0R

2 dp

dψ̃
. (3.1)

3.2 The free boundary problem

The Grad-Shafranov equation is a nonlinear elliptic partial differential equation link-

ing the poloidal flux function to pressure and toroidal current profiles in the plasma; it is

usually convenient to refer to the normalized flux function ψ̄, defined with respect to the

flux value at the magnetic axis ψax and at the plasma boundary, ψb:

ψ̄ =
ψax − ψ
ψax − ψb

.

The plasma boundary is the last closed magnetic flux surface inside the discharge

chamber. There are two possibilities in a Tokamak: this surface could be tangent to the

first wall, in which case the plasma is in a limiter configuration, or it could be a line that

passes through a saddle point of the flux function, that is called an x-point, in which

case the plasma is in a diverted configuration and the magnetic line that represents the

plasma boundary is a separatrix (figure 3.1). The diverted configuration is important in a

Tokamak because it allows better energy confinement time; the points were the separatrix

intersects with the first wall are the points with the highest energy flux and thermal load,

and their position can be accurately controlled by monitoring the position of the x-point.

In the divertor region there is also the possibility to extract heavier ionized particles that

would contaminate the plasma.

In an experimental context, the plasma boundary is a well-defined entity. However,

we are now interested in how the GSE could be implemented in a simulator that provides
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Figure 3.1: Limiter and diverted configuration for a generic Tokamak

detailed information on plasma equilibrium calculating the profile of the main physical

quantities of interest and a map of the flux function on the poloidal cross section. Obvi-

ously, the location of the plasma boundary is part of the unknown; for this reason, the

simulator must solve a free boundary problem.

3.3 Maxfea, a free boundary solver for the GSE

Maxfea is a free boundary GSE solver, written in FORTRAN77 in the early 1990s. It

processes the following data:

• A parametrization for the toroidal plasma current density Jφ(ψ̄)

• The position of the magnetic axis of the configuration

• The current flowing in the external poloidal field coils

• The total plasma current

• Geometric design of the machine section over a 2D mesh of first-order elements

(triangles)

• Magnetic and electric properties of the materials composing the machine

The toroidal plasma current density profile depends on two parameters - α and β -

and has the following form, where Rax is the horizontal position of the magnetic axis:

Jφ(ψ̄) = λ

[
R

Rax
β +

Rax
R

(1− β)

]
(1− ψ̄α)
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The parameters α and β are chosen consistently with expected experimental condi-

tions, as will be shown in the following. The parameter λ is used to impose the value of

the total plasma current. The profile adopted for Jφ(ψ̄) is consistent with the GSE (eq.

3.1) and with the chosen parametrization for the f and p functions [9]:

p(ψ̄) = pax

[
−α+ 1

α
ψ̄ +

1

α
ψ̄α+1 + 1

]
f(ψ̄) = fax

√(
1 +

1

α

)[
α

α+ 1
− ψ̄ +

ψ̄α+1

α+ 1

]
.

Maxfea requires an additional degree of freedom so that currents in some of the

poloidal field coils can be altered from the predetermined value, to converge to the re-

quired magnetic axis position. The code uses an iteration scheme based on the Picard

algorithm to converge to a reconstruction of the flux map ψ(R,Z) on the whole domain

of the poloidal section.

After the program has converged to an initial plasma configuration, a time transient

evolution can be performed to evaluate stability of the initial equilibrium or to simulate

an experimental scenario. The time transient simulation can be performed imposing the

current flowing in the control circuits, or the applied voltage. In the latter case, the pro-

gram evolves the current in the poloidal field coils accordingly to self and mutual induc-

tances and resistances, and to inductive coupling with the plasma and with passive struc-

tures. At every step of the simulation, the program computes the new magnetic axis of

the configuration, and finds the location of the plasma boundary according to the result-

ing flux map. The user is prompted to choose whether the simulation should conserve

the poloidal flux at the magnetic axis, or the plasma current. In plasma current conserva-

tion mode, the program can follow a predetermined evolution for plasma current values,

consistent with experimental data. In flux conservation mode, it is relevant to point out

that Maxfea does not account for dissipative phenomena in the plasma, so plasma cur-

rent would grow at higher values than those achieved in experimental conditions with

the same evolution for external coil currents. However, one can easily implement in the

routine reserved for user-defined control an equation to simulate a decay in the poloidal

flux over time due to plasma resistivity, so simulations can be made self-consistent in the

case of resistive plasma. In flux conservation mode, the program applies the following

law:

ψax(t) = ψref (t) = ψref (0) ∀t ≥ 0;
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however, the value ψref (t) is accessible, so the following law can be implemented1 to

produce the effect of a constant plasma resistance Rpla

∂ψref
∂t

(t) = −RplaIpla(t). (3.2)

3.4 Validation against experimental data

As mentioned before, Maxfea can provide virtual measurements from sensors placed

at user defined points. We can compare the data provided by virtual measurements with

experimental measurements from RFX-mod when trying to emulate the experimental

conditions on the simulator. The current in poloidal field coils is imposed to be the same

as in the experiment, and plasma parameters will be tuned to achieve the best matching.

In particular, we will consider the poloidal beta parameter βθ

βθ =
〈p〉

B2
θ (ra)

2µ0

and the normalized plasma inductance li

li =

∫ ra

0

(
B2
θ (r)

2µ0

)
2πrdr(

B2
θ (ra)

2µ0

)
πr2

a

.

Limiter (circular) Tokamak discharge We will consider the circular Tokamak discharge

obtained in shot #29648. In the simulations involving plasma with circular cross section,

the parameters of current and pressure profiles in the simulator were set as follows

α = 3, β = 0.25

leading to the following plasma parameters:

li = 0.76, βθ = 0.26.

The first evaluation that will be proposed concerns the validity of formula 3.2 to sim-

ulate the dynamics of resistive plasma. RFX plasma is characterized by high resistivity

1In Maxfea, this is achieved applying discrete variations on ψref at every k-th simulation step ∆t:

ψref ((k + 1)∆t) = ψref (k∆t) − RplaIpla(k∆t). ψax and ψref are stored in user-accessible variables as

normalized values of flux per radian e.g. psa= ψax/2π, psaref= ψref/2π.
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when compared to big tokamaks. We will be assuming an equivalent resistance for the

plasma with value

Rpla = 12.9 µΩ.

This value has been obtained by considering the ratio between average loop volt-

age and plasma current in equilibrium regime. In figure 3.2 is reported the evolution

of plasma current in the experimental case and the resulting plasma current with re-

sistive plasma when operating the simulator in flux conservation mode, imposing the

experimental values of active circuits current. The resulting model provides an accept-

able approximation of resistive plasma, since the resulting values of plasma current are

comparable with experimental values. However, in the following, we will consider the

comparison with experimental data forcing the simulator to impose the experimental

values of both active circuits current and plasma current. Eventually, the resistive model

can be used to benchmark a controller that regulates transformer action to sustain plasma

current. For the purposes of this work, we will consider the design of a controller that reg-

ulates plasma position and shape assuming that plasma current remains constant, thus

assuming that the control loop for plasma current regulation is external and indepen-

dent from the shape controller. The use of the resistive model can be seen as a possible

extension of this work.

0.25 0.3 0.35 0.4 0.45 0.5
0.8

1

1.2

1.4

1.6

1.8

2
x 10

5 Ipla [A]

time [s]

 

 

experimental

maxfea (flux conservation)

maxfea (resistive)

Figure 3.2: Shot #29648, plasma current
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We will now consider the comparison of virtual measures provided by Maxfea with

experimental measures. The choice of the parameters α, β used in simulation is criti-

cal: the vertical equilibrium field Bv,eq required to counteract plasma radial expansion

depends on the Λ parameter

Λ = βθ +
li
2
− 1 (3.3)

and in the case of a circular plasma of major radiusR0 and minor radius ra, it is expressed

as follows [16]:

Bv,eq = −
µ0Ipla
4πR0

(
ln

8R0

ra
+ Λ− 1

2

)
.

If plasma parameters are not well matched to experimental values, the equilibrium

field generated by F coils current, valid for the experimental conditions, will not match

the equilibrium field required for the chosen parametrization. This would produce simu-

lations affected by a horizontal displacement of the plasma column when imposing active

circuits current. For this reason, comparison with experimental data shows overall good

agreement but some discrepancies are to be addressed to plasma parametrization and

plasma centroid displacement.

To check the correctness of these parameters, we can compare two estimates of Λ that

can be obtained from magnetic measures. Actually, we have a measure of poloidal field

Bθ(r, θi) at r = rb and at 8 different angles, θi ∈ Θb. Calculating the terms of the harmonic

expansion of Bθ(r, θ) so that

Bθ,0(rb) =
1

8

8∑
i=1

Bθ(rb, θi), Bθ,c(rb) =
1

4

8∑
i=1

Bθ(rb, θi)cos(θi)

we can calculate the following value, that is an equivalent of Λ at the measurement ra-

dius:

Λ∗ =
Bθ,c(rb)

Bθ,0(rb)

R0

rb
.

The actual value of Λ at r = ra can be derived with the following correction, account-

ing for toroidal geometry:

Λ = 2

(
1 +

r2
a

r2
b

)−1(
Λ∗ +

1

4

(
1− r2

a

r2
b

)
− 1

2
ln
rb
ra

)
.

In RFX, however, it is important to take into account the effect of eddy currents in the

vacuum vessel, that would make a difference in the resulting field at the inner graphite

radius. Actually, the experimental routine for plasma parameters estimations (sect. 4.1)

has been used to produce figure 3.3, where the resulting estimates of Λ in Maxfea and in
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Figure 3.3: Shot #29648, Λ estimates from magnetic data

experimental conditions are compared, showing an overall good agreement on average

values.

In figure 3.4 are reported the measures of poloidal field and of flux difference with

respect to the flux loop probe at θ = −112.5◦. These measures are available with higher

precision in the experiment than the absolute value of the poloidal flux, and will be used

in radial expansion methods to reconstruct some estimates of plasma-first wall distances

(gaps).
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Figure 3.4: Shot #29648, experimental and simulated magnetic data
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Figure 3.5: Shot #29746, Λ estimates from magnetic data

Double-null Tokamak discharge To compare the simulation with impressed current to

the experimental data in a double-null Tokamak configuration, the parametrization has

been adjusted as follows

α = 1, β = 0.25

leading to the following values for plasma parameters:

li = 1.00 (circular), li = 0.95 (double null)

βp = 0.26 (circular), βp = 0.29 (double null)

The chosen parametrization has an overall good average agreement in terms of re-

sulting estimates for Λ (fig. 3.5), and there is good agreement between experimental data

and reconstructed magnetic data (fig. 3.6). The parametrization chosen is acceptable, and

the virtual measures can be used to assess the performance of plasma boundary recon-

struction methods that will be considered in the next chapter, comparing the results with

the boundary reconstruction provided by the simulator itself.



3.4. VALIDATION AGAINST EXPERIMENTAL DATA 39

0.3 0.4 0.5

−0.04

−0.02

0

0.02

Bp [T], θ=27°

time [s]

 

 
exp (dequ)

maxfea

0.3 0.4 0.5
−0.06

−0.04

−0.02

0

0.02

Bp [T], θ=72°

time [s]
0.3 0.4 0.5

−0.06

−0.04

−0.02

0

0.02

Bp [T], θ=117°

time [s]
0.3 0.4 0.5

−0.06

−0.04

−0.02

0

0.02

Bp [T], θ=162°

time [s]

0.3 0.4 0.5
−0.06

−0.04

−0.02

0

0.02

Bp [T], θ=342°

time [s]
0.3 0.4 0.5

−0.06

−0.04

−0.02

0

0.02

Bp [T], θ=297°

time [s]
0.3 0.4 0.5

−0.06

−0.04

−0.02

0

0.02

Bp [T], θ=252°

time [s]
0.3 0.4 0.5

−0.06

−0.04

−0.02

0

0.02

Bp [T], θ=207°

time [s]

(a) Poloidal field

0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=22.5°

time [s]

 

 

exp (dequ)

maxfea

0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=67.5°

time [s]
0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=112.5°

time [s]
0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=157.5°

time [s]

0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=−22.5°

time [s]
0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=−67.5°

time [s]
0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=−112.5°

time [s]
0.3 0.4 0.5

−0.1

−0.05

0

0.05

dFp [Wb], θ=−157.5°

time [s]

(b) Flux differences

Figure 3.6: Shot #29746, experimental and simulated magnetic data
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3.5 Estimation of vertical instability growth rate

Before the experimental sessions where double-null Tokamak discharges were actu-

ally obtained, the nonlinear simulator has been used to analyze the prospected plasma

configuration (table 3.1) for what concerns stability. It was expected that a vertical dis-

placement instability would exist, due to the shape of the equilibrium field and to the fact

that F3 coils would exert an attractive force on the plasma.

Coil F1 F2 F3 F4 F5 F6 F7 F8

I[A] -2746 -889 2349 0 -1692 -1157 -233 426

Table 3.1: dnfat38 double-null configuration, field shaping coils current

Field shaping coils have been assumed to be ideally conductive, and a voltage pulse

(∆V = 5000 V, ∆t = 0.3ms) has been applied to the F4 coil, leading to a peak current of

+230A on F4, and perturbing the other coils as well because of inductive coupling. This

type of perturbation cannot be produced on the real machine, since F4 can carry only

negative current and the maximum voltage pulse amplitude is limited by PVAT voltage

saturation; voltage sign constraints could be respected applying a positive voltage per-

turbation on F3 coils, but F4 coils have been chosen instead because they are horizontally

more central, and have a greater impact on vertical stability. In fact, the purpose of this

analysis was to actually explore the existence of the vertical unstable mode, and to study

the sensitivity of the simulator to the initial position of the magnetic axis. Combinations

of F4 and F5 coils have also been tried, but results were not much different. The current

centroid of the plasma has been considered to estimate growth rates; the resulting time

constants for the vertical instability have been obtained by considering the derivative of

Zj over time, and performing a polynomial fit of the logarithm of the curve.

Initial conditions Time constant

Rax [±0.002 m] Zax [±0.002 m] Rj [m] Zj [m] τvert [ms]

2.030 0.000 2.0141 0.0000 65.4

2.010 0.000 1.9927 0.0000 64.5

2.050 0.000 2.0374 0.0000 61.8

2.030 0.005 2.0148 0.0070 117.5

2.030 -0.005 2.0148 -0.0071 109.3

Table 3.2: Estimates of vertical instability growth rate
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Figure 3.7: Exponential fit of plasma vertical displacement
Initial conditions: Rax = 2.03, Zax = 0.005

This analysis has been useful since it suggested that it was necessary to use a finer

mesh in the simulator to lessen the dependence on the initial position of the magnetic

axis. With the older mesh, small perturbations in the position of the magnetic axis led

to large differences in resulting time constants. The simulator can only place the mag-

netic axis in the center of a triangle of the mesh, and the previous mesh had an average

precision of ±1 cm in magnetic axis placement. The finer mesh allowed higher precision

(±0.2cm), and led to consistent growth rate estimates in the case of∼ 1 cm changes of the

magnetic axis in the horizontal direction. Strong variations emerged instead perturbing

the initial conditions with displacements of the magnetic axis in the vertical direction, but

this is consistent with the fact that in this case the simulator would converge to an initial

equilibrium with non top-down symmetric values of current in F7, u and F7, d. In table

3.2 are reported the resulting time constants estimates for the vertical instability, and in

figure 3.7 is reported an example of curve fitting with the exponential law associated with

the calculated time constant.
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Chapter 4

Plasma boundary reconstruction

Using the finite element code Maxfea presented in the previous section, one can ob-

tain a reconstruction of the plasma boundary that should agree with particular experi-

mental conditions. To be more precise, Maxfea produces a reconstruction of the bound-

ary and a simulated value of all the magnetic measurements (magnetic field and flux),

given its reconstruction of the equilibrium on the basis of general plasma parameters

and known values of current flowing in the active coils. However, the reconstruction is

strongly influenced by the chosen parametrization, and Maxfea uses iterative procedures

that do not assure a finite time of convergence. The complexity of the code itself makes it

unsuitable for real-time use. For these reasons, the simulator can be used as a diagnostic

tool over experimental data to reconstruct equilibrium configurations and time evolu-

tions, and it is a valuable tool to perform closed loop simulations and to benchmark the

performance of controllers in a simulated environment. However, when implementing

the same controllers in the experimental environment, one must be able to reconstruct

the variables of interest (e.g. plasma centroid position or plasma boundary to first-wall

distance) from sensor measurements, in real-time. For this reason, the following chapter

will deal with the validation of some equations and algorithms that should provide an es-

timate of these variables complying with real-time constraints. Magnetic measurements

and eventually active circuits current will be used as input variables for reconstruction,

without requiring additional information on plasma parametrization. The algorithms

will be tested using virtual magnetic data produced by Maxfea, to compare the estimated

variables to their “real” value, that is directly accessible in simulations.

43
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Figure 4.1: Definition of plasma geometric measures

4.1 Radial expansion method for gap estimation

The relation between the poloidal flux ψ(r, θ) and the the poloidal field Bθ(r, θ)

Bθ(r, θ) =
1

2π(R0 + r cos(θ))

∂ψ

∂r
(r, θ) (4.1)

suggests that, knowing an estimate of ψb, the value of the poloidal flux at the boundary,

one can reconstruct the plasma-first wall gap ∆r(θ) = ra − rpla(θ) using a linear expan-

sion between the measurement point (r0, θ) and the plasma boundary with a first order

approximation:

∆r(θ) ≈ ra − r0 +
ψ(r0, θ)− ψb

2πBθ(r0, θ)(R0 + r0 cos θ)
.

Actually, this approximation is too rough for several reasons. First of all, in RFX-mod

the pick-up probes providing a measurement of Bθ and flux loop probes are located at

different radius/angle (see table 2.3). Secondly, in RFX-mod both kind of measures are af-

fected by a spurious component, due to eddy currents in the vessel. It is then convenient

to reconstruct the measures at the first wall radius ra, removing the effect of eddy cur-

rents in the vessel. The program eqflu [10] implemented in the real-time control system of

RFX-mod actually adopts this strategy, using several approximations to correct the mea-

sures and reconstruct the distance between the first wall and the plasma boundary. In the

version of the program that was used to diagnose RFX-mod shots before the double-null

Tokamak campaign, it was assumed that Bθ(r, θ) satisfies the following relation:

Bθ(r, θ) ≈
A

r
+B(θ) + µ0J(θ)

rL
r
, (4.2)
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J(θ) represents the toroidal current flowing in the vessel, that is assumed to be propor-

tional to the measured loop voltage at angle θ; A and B(θ) group the terms of the Fourier

expansion of Bθ(r, θ), that can be computed at the poloidal field measurement radius rb:

A =
rb
n

n∑
i=1

Bθ(rb, θi), B(θ) =

m∑
k=1

[Bk,c cos(θ) +Bk,s sin(θ)] , where

Bk,c =
2

n

n∑
i=1

cos(kθi)Bθ(rb, θi), Bk,s =
2

n

n∑
i=1

sin(kθi)Bθ(rb, θi), k = 1...m ≤ n

2
.

The previous version of the program used only 4 measures of Bθ (n = 4) and com-

puted only the first harmonic (m = 1), while it has recently been updated to use 8 mea-

sures of Bθ (n = 8), taking an average value on dense arrays, and to use the first 3 har-

monics (m = 3). Actually, in the case of double null Tokamak discharges, there is a higher

variability of Bθ(r, θ) with respect to the angle, and it is more difficult to reconstruct the

poloidal field with a simple harmonic expansion.

A measure ofψ(rfl, θi) is available at flux-loops measurement points (r = rfl, θi ∈ Θfl).

Integrating eq. (4.1) one can extrapolate the flux ψ(ra, θi):

ψ(ra, θi) = ψ(rfl, θi) + 2π

∫ ra

rfl

(R0 + r cos(θi))Bθ(r, θi) dr, θi ∈ Θfl. (4.3)

This integral can be expressed in explicit form given the approximations of eq. (4.2).

For a limiter configuration, to actually compute the plasma-first wall distance, an esti-

mate of ψb is obtained computing the interpolating spline f(θ) for the flux function at the

first wall radius ra:

f(θ) : f(θi) = ψ(ra, θi), θi ∈ Θfl,

and the maximum value of the flux at the first wall is extrapolated as follows:

ψb = max
θ
f(θ). (4.4)

Equation (4.3) can be rewritten to link ψb and ψ(ra, θ), and it should be solved with

respect to ∆r(θ). However, the resulting equation does not have a closed-form solution.

In the previous version of the routine an explicit solution for ∆r(θ) was obtained by

assuming that (R0 + r cos(θ)) ≈ (R0 + ra cos(θ)). In this case, the solution would be

∆r(θ) = ra

[
1− exp

(
−
∣∣∣∣ ψ(ra, θ)− ψb
2πra B(ra, θ) (R0 + racos(θ))

∣∣∣∣)] .
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This approximation has been removed in the new version of the program eqflu, and

the value of ∆r(θ) is now computed numerically [11]. Moreover, the approximation ex-

pressed in (4.2) has also been changed to take into account the fact that the m > 0 har-

monics of B(θ, r) depend on r as well. Actually, these approximations gave accurate

results in the case of circular plasma, when ∆r(θ) is small, but have a stronger impact in

the case of double null plasma, when the resulting distance from the first wall is higher.

Experimental session as well as application of the old routine to Maxfea data in the case

of double null shots gave inaccurate results and often showed that the estimated value

for ∆r(θ) diverged. The program has been updated and now exploits the approximation

of cylindrical geometry, where the magnetic scalar potential Φ, such that B = ∇Φ, can be

expressed as

Φ(r, θ) = Φ0 +
m∑
k=1

[(
Ak,cr

k +Bk,cr
−k
)

cos(kθ) +
(
Ak,sr

k +Bk,sr
−k
)

sin(kθ)
]
.

The coefficients of the series up to m = 3 can be computed from the measurements

exploiting the relations

Bθ(r, θ) =
1

r

∂Φ

∂θ
(r, θ),

∂ψ

∂θ
(r, θ) = −2πrR0

∂Φ

∂r
(r, θ).

The first relation can then be used in eq. (4.3) to extrapolate the flux at the first wall,

and then to numerically find the value of ∆r(θ) with a procedure that iterates on different

values of r, computing at every step the value of ψ(r, θ). The updated routine has been

tested on both the cases of circular plasma and double null shots simulations, applying

the eqflu program to Maxfea data (fig. 4.2, plot: radial exp.). In the circular plasma case,

results are accurate. In the double null case, the estimates of ∆r(θ) don’t diverge anymore

but top/down asymmetries emerge in some cases (e.g. gaps at ±112.5◦ and ±157.5◦ in

fig. 4.2.b).

These asymmetries could be related to the fact that Bθ measurements are actually

taken at non top/down symmetric points. Moreover, the routine still relies on the hy-

pothesis of limiter plasma, searching for the maximum as in eq. (4.4) to estimate the flux

at the boundary. Actually, in double null shots the boundary is a separatrix, and the flux

at the boundary should be computed estimating its value at the null points of the config-

uration. To overcome these limitations, a different approach is proposed in next section,

where magnetic data is used together with information on external coils current, trying

to reconstruct the complete flux map of the configuration.
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Figure 4.2: Application of gap estimation methods to Maxfea virtual measures
maxfea: plasma boundary intersection with radius at given angle

radial exp: updated experimental routine eqflu that will be in use on RFX-mod

t.p.spline: flux map reconstruction from virtual measures + gap postprocessing
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4.2 Integral flux map and boundary reconstruction

Most real-time boundary reconstruction codes (e.g. XLOC on JET) [12] [13] recon-

struct the flux map ψ(R,Z) on the whole cross-section of the torus, using an appropriate

set of base functions Fm = {ψi(R,Z), i = 1 ... m} such that

ψ(R,Z) =
m∑
i=1

aiψi(R,Z).

In the case of XLOC, the set of base functions is a polynomial base, e.g. assuming

ξ =
(
R2 −R2

0

)
,

F27 =
{

1, ξ, ξ2, ... ξ7, Z, Zξ, Zξ2, ... Zξ6, ... Z7
}
.

The choice of a polynomial base is particularly suited for computing derivatives with

respect to R or Z, and this is useful to express equivalent measures of magnetic field

at given measurement points from the reconstructed flux map, and to impose the Grad-

Shafranov equation in vacuum: ∆∗ψ = 0. The problem can be finally led to a least squares

problem, trying to minimize the quadratic error at measurement points. This approach

however has also some drawbacks, since a simple polynomial is not suited to match the

flux map on the whole cross-section. The region has to be split in different areas with

different polynomials, and continuity constraints (soft-tie points and hard-tie points, fig.

4.3) must be introduced. Moreover, it is necessary to take into account explicitly the

effect of divertor coils in the x-point region, subtracting their effect from measures, and

superimposing their impact on the flux map using Green’s functions.

Trying to adapt the XLOC code to the configuration of RFX-mod would be out of

range for this work. However, it is interesting to evaluate whether some of the ideas

that underlie the XLOC code could be exploited in a simpler, tentative method for flux

map reconstruction. The eqflu code described in the previous section provides an esti-

mated value of ψ(r, θ) at the 8 angles corresponding to flux-loop probes, and at r ≤ ra.

XLOC integrates flux measures and field measures by defining opportunely the least

squares problem. In RFX-mod, instead, the program eqflu already uses field measures

to correct flux measures, exploiting radial expansion methods. It is possible to use the

reconstructed value of ψ(r, θ) and to interpolate it using standard surface interpolation

routines. In this case, the information available from flux and field measures is integrated

by eqflu, and it is possible to use a set of base functions F that is not affect to the limita-

tions of the polynomial base, reconstructing the flux map on the whole cross section. The
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Figure 4.3: XLOC approach to plasma boundary reconstruction

Grad-Shafranov equation is no longer imposed. The capability to model the exact phys-

ical properties of the flux map in the vacuum region, expressed by ∆∗ψ = 0, is lost, but

it is possible to reconstruct a continuous map even inside the plasma region, where the

vacuum GS equation is no longer valid, and it is not necessary to divide the cross section

in different regions. Actually, the hypothesis that underlie the eqflu program imply that

the reconstructed value of flux is reliable only outside the plasma boundary line, since a

relation of inverse proportionality between magnetic field and radius r is assumed; this

is valid only outside the region where plasma current flows. However, the reconstruction

could be reliable enough in the case of strongly peaked plasma current profile (high inter-

nal inductance), and we are interested in evaluating how reliably the plasma boundary

is located by the program, more than in how well the actual value of the flux function is

matched. Finally, for what concerns the use of an interpolant of the flux function, it can

be noted that the eqflu program already uses a spline interpolation to find the value of ψb
in limiter configuration, as in eq. (4.4). The use of an interpolating surface can be seen as

a 2D extension of the original idea.

The interpolating surface of choice is the thin-plate spline [14]. This is a standard 2D
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interpolating method for scattered data, readily available on scientific codes like Matlab,

and has the interesting property that the interpolating surface is found as the solution

of a linear problem, without iterative procedures, thus making it suitable for real-time

applications. We will use this method to interpolatem = 24 points of the flux function, of

whom 8 are measurement points and 16 are reconstructed points. The thin-plate spline

interpolates the data

Y = [F1(Rc,1, Zc,1) · · · Fm(Rc,m, Zc,m)]′

using a set of basic functions that are centered in the points above, and that depend on

the distances

ρ2
i (R,Z) = (R−Rc,i)2 + (Z − Zc,i)2, i = 1 ... m;

the resulting set of basis functions is

Fm+3 =
{
φ
(
ρ2

1(R,Z)
)
... φ

(
ρ2
m(R,Z)

)
, R, Z, 1

}
where the function φ(·) is defined as

φ(ρ2) = ρ2 log(ρ2).

Actually, the thin-plate spline also has the advantage that once the interpolating sur-

face coefficients have been computed, it is possible to compute partial derivatives, for

example with respect to R, that can be expressed on the following basis:

F ′m+1 =
{
φ′
(
ρ2

1(R,Z)
)
... φ′

(
ρ2
m(R,Z)

)
, 1
}

where

φ′(ρ2(R,Z)) =
(
log(ρ2(R,Z)) + 1

) ∂ρ2(R,Z)

∂R
.

Exploiting this fact, it should be possible to use the thin-plate spline as a method to

integrate flux and field measures, as it’s done in XLOC. By now, we will use the thin-

plate spline as an interpolant of the flux function only, and not of its partial derivatives

that could express the magnetic field.

The thin-plate spline fA(R,Z) is a linear combination of the basis function with coef-

ficients

A1 = [a1 ... am]′ , A2 = [am+1 ... am+3]′ , A =

[
A1

A2

]
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and is often used as a smoothed approximating surface, where the smoothness parameter

ν appears as a weight to a term expressing the roughness of the surface in the total energy

function:

W (fA) = (1−ν)

m∑
i=1

|Fi − fA(Rc,i, Zc,i)|2+ν

∫
R2

(
∂2fA
∂R2

)2

+2

(
∂2fA
∂R∂Z

)2

+

(
∂2fA
∂Z2

)2

dRdZ.

It could be shown that the integral on the right is well defined. Actually, the resulting

surface is asymptotically flat. In this context, we will set ν = 0 when elaborating Maxfea

data, since we want to find the surface that exactly passes through the given (measured

or reconstructed) values of flux at predefined points. The solution will be characterized

by coefficients A such that W (fA) = 0. Setting ν > 0 (typically ν = 0.04) has shown to

be useful when processing experimental data, since it lessens the effect of measurement

noise. The solution of the minimization problem

min
A
W (fA)

is obtained by considering the representation of the data points in homogeneous coordi-

nates,

X =


Rc,1 Zc,1 1

...
...

...

Rc,m Zc,m 1

 ,
and applying a Q−R decomposition

X =
[
Q1 Q2

] [R1

0

]
;

the value of the basis functions is computed in the data points and collected in Φ

Φ =


φ
(
ρ2

1(Rc,1, Zc,1)
)

... φ
(
ρ2
m(Rc,1, Zc,1)

)
...

...

φ
(
ρ2
m(Rc,1, Zc,1)

)
... φ

(
ρ2
m(Rc,m, Zc,m)

)
 ,

and the solution is finally found as

A1 = Q2

(
Q′2ΦQ2 +

ν

1− ν
Im−3

)
Q′2Y

A2 = R−1
1 Q′1(Y − ΦA1).

The solution of the minimization problem has thus the same complexity of a least

squares problem of size m. The data points are now defined as the 8 flux measurement
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points (r = rfl, θ ∈ Θfl), plus 16 reconstructed points, where the value of the flux is

extrapolated with the eqflu program. The procedure can be applied to experimental data

or to Maxfea virtual measures. The reconstructed points are found at the same angle of

the measurement points, and on two inner circumferences, for a total of 24 points:

r ∈
{
rfl,

3

4
rfl,

1

2
rfl

}
, θ ∈ Θfl.

The interpolating surface is an approximation of the flux function on the poloidal

cross section. Applying the procedure described above to Maxfea virtual magnetic data,

the resulting flux map reconstruction showed good agreement with the flux map pro-

vided by the simulator in the case of circular plasma, but the structure of the set of basis

functions made it difficult to reconstruct the flux map of a double null plasma, since this

configuration is strongly shaped by the field generated by external coils.

To obtain better results in the case of double null plasma, the same approach used by

XLOC to better reconstruct the flux map in the divertor region was adopted: the effect of

F coils was subtracted from measures; eqflu has been used to reconstruct the flux at the

inner circumferences, and the interpolating thin-plate spline relative to these points has

been obtained as ftp(r, θ). This is equivalent to reconstructing the flux map due to plasma

current distribution and to current in passive elements. Actually, the thin-plate spline is

defined in (R,Z) coordinates, but from now on we will be referring more conveniently

to (r, θ) coordinates. Finally, the effect of F coils on the whole flux map has been added

back. The effect of the external coils on the flux map can be reconstructed using Green’s

function; it would be very simple to reconstruct a correct flux map in the hypothesis of

circular coil cross section, using only one filament of current per coil. Since in RFX-mod

F coils have a rectangular cross section, the reconstruction gave better results using the

flux maps ψF,i(r, θ), i = 1 ... 8, obtained from Maxfea when imposing a current only in

one of the F coils at a time, without plasma. Maxfea actually computes this flux map

modeling an uniform current distribution in active coils, using a filament of current per

mesh triangle. When reconstructing the resulting flux map given the current IF,i in every

i-th coil circuit, the flux maps were then linearly combined, proportionally to the current

flowing in these coils. With these considerations, an approximation of the flux function

is found as

ψtp(r, θ) = ftp(r, θ) +
8∑
i=1

IF,iψF,i(r, θ).

The next step of the algorithm consists in the calculation of the estimated value of ψb.

The algorithm handles correctly the transition between limiter and double null plasma
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Figure 4.4: Regions for the calculation of ψb

by dividing the circumference at r = ra in three regions:

C1 =
{
r = ra,

π
3 ≤ θ < π

}
C2 =

{
r = ra, π ≤ θ < 5

3π
}

C3 =
{
r = ra, −1

3π ≤ θ <
1
3π
}
.

On the three sectors of circumference, the maximum value of the reconstructed flux

function is found as

ψb,i = max
(r,θ)∈Ci

ψtp(r, θ), i = 1 ... 3.

Next, the gradient of ψtp is computed in regions O1 and O2 (fig. 4.4), where the for-

mation of the null points of the configuration is expected, and if a null point is found in

these regions within a certain tolerance υ, then ψb,1 and ψb,2 are overridden by the value

at the null point:

ψb,1 = ψtp(ro,1, θo,1) if (ro,1, θo,1) ∈ O1, |∇ψtp(ro,1, θo,1)| < υ

ψb,2 = ψtp(ro,2, θo,2) if (ro,2, θo,2) ∈ O2, |∇ψtp(ro,2, θo,2)| < υ

Finally, the value of the flux at the boundary is obtained as

ψb = max
i
ψb,i.

The final stage of the algorithm is the application of a contour routine to trace the line

of the boundary, searching for the points

(r, θ) : ψtp(r, θ) = ψb. (4.5)
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While the interpolation routine is efficient and suitable for real time use, since the size

of the problem is fixed, the contour routine should be studied ad-hoc to eventually comply

with real time constraints. However, often it is not required to compute the full recon-

struction of the plasma boundary in real time. Most commonly, shape controllers need

the reconstruction of plasma-first wall distance only at gaps. In this work, we will con-

sider the design of a shape controller that uses 8 gap measures: ∆r(θ), θ ∈ Θfl. To obtain

the estimates of these measures, the value of the interpolating surface could be computed

only on the circumference at r = ra and in the O regions to estimate ψb, and finally at

some points along the radius at selected angles only to estimate gaps. A simple linear in-

terpolation between values along the radius should provide a good localization of points

satisfying eq. (4.5), with little computational load. In the present implementation, the

estimation of gap measures is obtained through postprocessing of the reconstructed con-

tour line, returning the estimates proposed in fig. 4.2 (plot: t.p.spline).

Application to Maxfea data In figure 4.5.a is reported the application of the algorithm

to Maxfea data in the case of circular Tokamak equilibrium (shot #29648, t = 0.4s), and

in figure 4.5.b is the case of DN tokamak equilibrium (shot #29746, t = 0.4s). These

are equilibrium simulations, obtained referencing the simulator with current values at

t = 0.4s. The data points for the thin-plate spline are represented as pink crosses, while

the black crosses are the reconstruction of plasma-first wall distance obtained with the

eqflu routine. Red crosses are the reconstructed position of null points. In these figures

it is possible to compare the reconstructed boundary line (red) with the boundary line

traced by the simulator (blue), showing good agreement.

Application to experimental data In figure 4.6 is the application of the boundary recon-

struction algorithm to experimental data, at the time instants corresponding to Maxfea

figures. The thin-plate spline flux interpolation returns a contour that is consistent with

the expected plasma shape obtained in simulation. This is a supporting evidence that the

double-null configuration has actually been obtained in experimental sessions, although

the reconstructed flux map suggests that the configuration degraded to a limiter config-

uration at successive time instants (fig. 4.7). This undesired behavior could be corrected

with the feedback action of a shape controller, that was absent in the experimental con-

figuration when shot #29746 was performed.



4.2. INTEGRAL FLUX MAP AND BOUNDARY RECONSTRUCTION 55

Maxfea data, shot =  29648; time = 0.400 s; Ipla_stim = 138334 A
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Figure 4.5: Application of thin-plate spline reconstruction to Maxfea virtual measures
Magenta crosses: interpolation points of reconstructed eqflu flux.

Black crosses: eqflu gap estimation. Red crosses: estimated null points.
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Figure 4.6: Thin-plate spline flux map reconstruction, experimental data
Red line: boundary reconstruction, thin-plate spline contour.

Magenta crosses: interpolation points of reconstructed eqflu flux.

Black crosses: eqflu gap estimation. Red crosses: estimated null points.



4.2. INTEGRAL FLUX MAP AND BOUNDARY RECONSTRUCTION 57

1.4 1.6 1.8 2 2.2 2.4 2.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Est. flux, real data, shot =  29746; time = 0.450 s; ipla = 63721 A

 

 

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

Figure 4.7: Reconstructed evolution of the experimental discharge
Red line: boundary reconstruction, thin-plate spline contour.

Magenta crosses: interpolation points of reconstructed eqflu flux.

Black crosses: eqflu gap estimation. Red crosses: estimated null points.
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4.3 Plasma centroid: the current moment method

An estimate of plasma geometric centroid can be obtained once the plasma radius

has been estimated at various angles with the methods presented in previous sections,

considering the harmonic expansion of the function rpla(θ) and evaluating the first order

terms r1,c and r1,s, such that

rpla(θ) = rpla,0 +
+∞∑
k=1

rk,c cos(kθ) + rk,s sin(kθ)

to obtain an estimate of horizontal and vertical displacement as δh = r1,c, δv = r1,s.

However, often plasma displacement is controlled by estimating the location of the cur-

rent centroid, using this as the controlled variable. The current centroid is defined as an

average over the axisymmetric surface Ω that includes the plasma region, weighted by

toroidal plasma current density Jφ = J · îφ:

Ipla =

∫
Ω
Jφ(R,Z)dΩ (4.6)

Rj =
1

Ipla

∫
Ω
RJφ(R,Z)dΩ (4.7)

Zj =
1

Ipla

∫
Ω
ZJφ(R,Z)dΩ (4.8)

It will be evident that to produce an estimate of Rj and Zj , it’s necessary to have a

measure of field and flux at the same radius/angle. Since in RFX-mod field and flux mea-

sures are available at slightly different locations, we will be considering the reconstructed

first-wall value of field and flux computed by the eqflu routine at r = ra, θi ∈ Θfl, that

also removes the effect of eddy currents in the vessel from measures. We will thus be

assuming that ∂Ω = {(r, θ) : r = ra, θ ∈ [0, 2π]}, and we will refer to the set of coordi-

nates (R,φ, Z) to derive the equations of interest. The plasma current can be estimated

considering that

Ipla =
1

µ0

∮
∂Ω

B · dl ≈ − 1

µ0

8∑
i=1

Bθ(ra, θi)∆l, ∆l =
2πra

8
. (4.9)

The vertical centroid Zj can be calculated with the following relations:

µ0ZjIpla =

∫
Ω
µ0ZJ · îφdΩ =

∫
Ω
Z∇×B · îφdΩ =

=

∫
Ω
∇× (ZB) · îφdΩ−

∫
Ω
∇Z ×B · îφdΩ =

=

∮
∂Ω
ZB · dl−

∫
Ω

B · îRdΩ;
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the first term can be estimated with the following formula∮
∂Ω
ZB · dl ≈ −

8∑
i=1

ZiBθ(ra, θi)∆l;

the second term instead can be expressed in terms of the poloidal flux (ψ̃ = ψ/2π) as

−
∫

Ω
B · îRdΩ = −

∫
Ω

∇ψ̃ × îφ
R

· îRdΩ =

∫
Ω

(∇ψ̃ ×∇ lnR) · îφdΩ =

−
∫

Ω
∇× (lnR∇ψ̃) · îφdΩ = −

∮
∂Ω

lnR∇ψ̃ · dl ≈ +
8∑
i=1

lnRi(∇ψ̃)i∆l.

To estimate the horizontal centroid Rj , an explicit relation with field and flux mea-

surements can be obtained considering the integral expressing the second order moment

instead of the first order moment written in eq. (4.7):

µ0R
2
jIpla =

∫
Ω
µ0R

2J · îφdΩ =

∫
Ω
R2∇×B · îφdΩ =

=

∫
Ω
∇× (R2B) · îφdΩ−

∫
Ω
∇R2 ×B · îφdΩ =

=

∮
∂Ω
R2B · dl + 2

∫
Ω
RB · îZdΩ; (4.10)

the first term is readily expressed as∮
∂Ω
R2B · dl ≈ −

8∑
i=1

R2
iBθ(ra, θi)∆l

while the second results

2

∫
Ω
RB · îZdΩ = 2

∫
Ω
R
∇ψ̃ × îφ

R
· îZdΩ = −2

∫
Ω

(∇ψ̃ ×∇Z) · îφdΩ =

2

∫
Ω
∇× (Z∇ψ̃) · îφdΩ = 2

∮
∂Ω
Z∇ψ̃ · dl ≈ −2

8∑
i=1

Zi(∇ψ̃)i∆l.

In the previous formulas, the gradient∇ψ̃ can be computed considering the harmonic

expansion of the flux function

ψ(ra, θ) = ψ0(ra) +
4∑

m=1

[ψs,m(ra) sin(mθ) + ψc,m(ra) cos(mθ)]

and deriving the right hand side term to obtain

∂ψ

∂θ
(ra, θ) =

4∑
m=1

[mψs,m(ra) cos(mθ)−mψc,m(ra) sin(mθ)] ;
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the gradient appearing in previous formulas is finally expressed as

(∇ψ̃)i =
1

2πra

∂ψ

∂θ
(ra, θi).

The resulting estimates of Rj and Zj are reported in figure 4.8: there’s a certain offset

(∼ 1 cm) from the value computed by the simulator numerically evaluating integrals of

eq. (4.7) and eq. (4.8). In the case of the estimate of Rj , the offset is due to the fact that the

simulator computes the first order moment (eq. 4.7), while we estimate the second order

moment (eq. 4.10). The offset on the estimate of the vertical centroid in DN configuration

is more suspect. It is present also using the data at the measurement radius, without

applying eqflu. It was argued that the spatial resolution of magnetic probes over the

circumference was too low in RFX-mod to allow a good determination of these quantities;

however, the reconstruction of these estimates using 16 virtual measures (fig. 4.9) shows

little improvements. Nonetheless, applying the algorithm to experimental data (fig. 4.10)

shows an overall agreement between displacement of the current centroid and estimates

of δh and δv as defined at the beginning of this section. Since the problem of horizontal

and vertical displacement seems not to be very relevant in the experiment, the position

of the current centroid will be used to actually set up a controller for plasma position, to

address the problem of plasma displacement instability in the simulator and in the linear

model derived in the next chapter. In simulations, we will be assuming to use ideal

estimates of Rj and Zj as first order moments. Controlling the current centroid allows

better decoupling between the position control problem and the shape control problem,

the latter being the key topic of this work.
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Figure 4.8: Shot #29746, current centroid reconstruction, simulated data
Measures are reconstructed at r = ra with eqflu
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Figure 4.9: Shot #29746, current centroid reconstruction, higher probe resolution
Measures are taken at r = rb without applying eqflu
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Figure 4.10: Shot #29746, application to experimental data



Chapter 5

Derivation of a linear state-space model

Our purpose is to control the shape of the plasma boundary in a double-null Tokamak

configuration, using standard feedback control techniques for linear state-space systems;

it is then necessary to calculate a linearized plasma response model. A way to achieve

this result is to apply a discretization of the vessel, shell and mechanical structure in ax-

isymmetric elements, and to consider toroidal currents flowing in these elements as state

space variables. The presence of plasma has to be taken into account when deriving the

linear model. The initial equilibrium configuration is obtained from experimental data of

shot #29746, taking average values in the time interval between 0.395 s and 0.415 s. The

resulting equilibrium point is characterized by plasma parameters reported in table 5.1,

and by external coils current reported in table 5.2.

Plasma current [A] 62567

Plasma inductance li 0.96

Poloidal β 0.30

Current centroid Rj [m] 2.016

Current centroid Zj [m] 0

Gap [cm], θ = ±22.5◦ 8.95

Gap [cm], θ = ±67.5◦ 15.49

Gap [cm], θ = ±112.5◦ 6.73

Gap [cm], θ = ±157.5◦ 15.58

Table 5.1: Plasma parameters in shot #29746, t ≈ 0.4s

63
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Coil M1 M2 M3 M4

I[A] -2253 -1119 -1705 -4812

Coil F1 F2 F3 F4 F5 F6 F7 F8

I[A] -2531 -910 2580 -24 -1514 -1035 -96 390

Table 5.2: Coil currents in shot #29746, t ≈ 0.4 s

These are the equilibrium currents when double-null configuration is obtained

5.1 Calculation of the modified inductance matrix

The linearized model will substantially consist in an electric network inductively cou-

pled. Without plasma, network dynamics are regulated by vacuum resistance and induc-

tance matrices:

V = L0İ +RI, Ψ = L0I.

The presence of the plasma is taken into account by substituting the L0 matrix with

the modified inductance matrixL∗, numerically obtained with a flux perturbation method,

as described in [15]. The method relies on the use of a free-boundary equilibrium solver,

so a special mesh was used in Maxfea where the vessel and shell are both divided into

60 elements, and the structure is divided in two layers of 60 elements (figure 5.1). Firstly,

the simulator must be initialized with the equilibrium external coil current and plasma

current. The resistivity of all passive elements is set to zero, since the procedure aims

at identifying the inductive part of the model only. Other methods that aim at identi-

fying the modified inductance matrix prescribe to apply current perturbations to all the

elements included in the model: this is known as the current perturbation approach.

However, the flux perturbation approach has the advantage that it is sufficient to perturb

magnetic flux linked to plasma facing elements only, to obtain a model that accounts for

the dynamics of the whole system; moreover, the flux perturbation approach guarantees

that plasma will evolve through stable equilibrium points when applying the lineariz-

ing procedure, since flux conservation and the presence of ideal conductors surrounding

the plasma assure plasma stability during the simulation. Eventually, unstable dynamics

will emerge when introducing material resistivity by means of the matrix R. The system

can be partitioned as follows:

I = [ I ′v︸︷︷︸
nv

I ′sh︸︷︷︸
nsh

I ′st︸︷︷︸
nst

I ′a︸︷︷︸
na

]′.
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Figure 5.1: Discretized mesh used to derive the linear model

Iv are the currents in vessel elements, Ish in shell elements, Ist in structure elements

and Ia in active coils. The same partitioning is done on the flux vector:

Ψ = [ Ψ′v︸︷︷︸
nv

Ψ′sh︸︷︷︸
nsh

Ψ′st︸︷︷︸
nst

Ψ′a︸︷︷︸
na

]′.

If we group in Iz currents not related to vessel elements, Iz = [ I ′sh I
′
st I
′
a ]′, and in the

same way Ψz = [ Ψ′sh Ψ′st Ψ′a ]′, we obtain[
Ψv

Ψz

]
= L∗

[
Iv

Iz

]
, L∗ =

[
L∗vL

∗
vz

L∗vzL
∗
z

]
, K∗ = (L∗)−1 =

[
K∗vK

∗
vz

K∗vzK
∗
z

]
;

nv flux perturbations are imposed on vessel elements:

Ψv → Ψv + δΨv,i,

each one of these perturbations is imposed in the simulator by applying for a time inter-

val ∆t a voltage proportional through the constant κ/∆t to a column of L0,v, the part of

the vacuum inductance matrix relative to vessel elements, leading to

δΨv,i =

∫ t+∆t

t

κ

∆t
coliL0,v dt = κ coliL0,v.
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Since all the other circuits are assumed to be ideally conductive, they will have no

variation in linked flux. The resulting current perturbations in vessel elements δIv can

be grouped in ∆Iv = [δIv,1 · · · δIv,nv ] . The following relation can be used to calculate the

part of the inverse modified inductance matrix relative to vessel elements, K∗v :

∆Iv = κ K∗vL0,v.

The rest of the K∗ matrix is unchanged from the vacuum matrix K0 = (L0)−1:

K0 =

[
K0,vK0,vz

K0,vzK0,z

]
, K∗vz = K0,vz, K∗z = K0,z.

The full modified inductance matrix is finally obtained as L∗ = (K∗)−1. It is now easy

to reintroduce circuit resistance and to obtain a state space dynamic model

ẋ = Ax+Bu

y = Cx

where the state space variables are currents in the discretized circuits, x = I , and the

input is applied voltage to the active coils:

A = −(L∗)−1R (5.1)

B = cola(L∗)−1; (5.2)

cola indicates the operation of extracting the columns of (L∗)−1 relative to active coils.

The flux perturbation method is also very effective to identify the matrix C that will

produce a set of outputs y including plasma-first wall distance, plasma centroid displace-

ments, and other plasma-related measurements. Actually, a variation of these quantities

can be ascribed to flux perturbations in a closed line surrounding the plasma. Firstly,

a proportionality relation between flux perturbations in vessel elements and plasma-

related quantities y is identified by grouping the resulting perturbations of output quan-

tities in a rectangular matrix δY = [δy1 · · · δynv ]. The perturbations are columns of L0,v,

so the matrix Cψ,v linking flux perturbations in vessel elements and outputs is computed

as follows:

y = Cψ,vΨv, Cψ,v = δY (L0,v)
−1. (5.3)

There is no direct dependence of plasma-related measurements from flux perturba-

tions in the other circuits (eventually, the dependence from external circuit dynamics is

accounted by inductive coupling), so

y = CψΨ, Cψ = [Cψ,v| 0 ].
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It is easy to derive the final C matrix linking circuit currents and outputs, since flux

perturbations in vessel elements in the presence of plasma are derived from the whole

current distribution by considering the modified inductance matrix:

C = CψL
∗. (5.4)

5.2 Calculation of the resistance matrix

To take into account conductor resistivity in the linear model, the R matrix must be

derived. The matrix is assumed to be diagonal. Active coil circuits are assumed to be

not resistively coupled: actually, resistive coupling exists between F and M coils, but it

will be considered at a successive stage. Discretized conductors are assumed to be not

resistively coupled since the most relevant coupling effect is provided by the inductive

term; resistive coupling will eventually be considered at a successive stage as well, when

passing from side current equations to mesh current equations (sect 5.3).

The intrinsic resistance of the active coils is known, and is reported in table 5.3. It

is notable that in double null Tokamak configuration, some resistances are connected in

series to F coils, to increase system controllability.

Coil M1 M2 M3 M4

R[mΩ] 3.618 3.820 3.626 3.930

Ra[mΩ]

600

Coil F1 F2 F3 F4 F5 F6 F7 F8

R[mΩ] 34.64 37.34+Ra 50.34 59.59+Ra 68.77 77.54 83.35+Ra 86.73

Table 5.3: Intrinsic M and F coil resistance
Ra is connected in series in DN Tokamak discharges

Resistance of passive elements is calculated by the simulator on the basis of toroidal

geometry and material conductivity, that is set as follows for vessel, shell and structure

elements:

σv = 0.112 · 106[Ω−1m−1], σsh = 0.556 · 108[Ω−1m−1], σst = 0.9259 · 106[Ω−1m−1].

These values of conductivity are scaled values that take into account, for instance,

the fact that the vessel has a corrugated structure and thus has a higher resistance than

that of a full torus. Maxfea calculates the total resistance of the material with a numerical

integration that is in good agreement with the analytical solution for a toroidal conductor
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with thickness δ, average radius r and axis R0:

Rtor =

(
σ δ r√
R2

0 − r2

)−1

.

The resulting total toroidal resistance of vessel, shell and structure the non discretized

mesh used for model validation is also equal, considering roundoff errors, to the value

obtained considering the three circuits formed respectively by the parallel connection of

the elements composing vessel, shell and structure in the discretized mesh with material

resistivity. This version of the 2D mesh has actually been used to compute the resistance

of elements Rv,i, Rsh,i, Rst,i composing the linear model, so the total toroidal resistance

of the three passive conductors can be computed as follows

Rv =

(
nv∑
i=1

1

Rv,i

)−1

, Rsh =

(
nsh∑
i=1

1

Rsh,i

)−1

, Rst =

(
nst∑
i=1

1

Rst,i

)−1

and, as stated before, these values are in good agreement with the resistance of passive

toroidal elements in the non discretized resistive mesh. Values of total resistance for

passive structures are reported in table 5.4.

Rv[Ω] 1.178 · 10−3

Rsh[Ω] 2.261 · 10−5

Rst[Ω] 7.758 · 10−5

Table 5.4: Total resistance for toroidal structures

5.3 Reconnection of the electromagnetic model

Passive conductors Circuit equations for the electric network representing the electro-

magnetic model must be manipulated to impose some of the constraints that exist on the

real system. One of these constraints is the condition of zero total toroidal current in the

shell and structure, due to the presence of poloidal gaps (visible in fig. 2.2) that break

electric continuity.

This condition can be imposed by reconnecting the elements composing discontin-

uous structures, passing from side currents representation (ik variables in fig. 5.2, left)

to mesh currents representation (̃ik variables in fig. 5.2, right). This is a transformation
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Figure 5.2: Side currents and mesh currents representations

that removes one degree of freedom so it is not invertible. The transformation is defined

considering T matrices that allow to obtain linked flux with reconnected model elements

starting from linked flux in the non reconnected model. In the case of shell and structure

elements involved in the reconnection, this can be expressed as

Ψsh =


ψ1

ψ2

...

ψn,sh


Tsh−→ Ψ̃sh =


ψ̃1

ψ̃2

...

ψ̃n,sh−1



Ψst =


ψ1

ψ2

...

ψn,st

 Tst−→ Ψ̃st =


ψ̃1

ψ̃2

...

ψ̃n,st−1

 .

Once mesh currents Ĩsh and Ĩst are computed considering the dynamics of the recon-

nected model, it is possible to obtain the resulting side currents as

Ĩsh =


ĩ1

ĩ2
...

ĩn,sh−1


T ′sh−→ Ish =


i1

i2
...

in,sh


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Ĩst =


ĩ1

ĩ2
...

ĩn,st−1


T ′st−→ Ist =


i1

i2
...

in,st

 .
When considering the sum of side currents obtained from the reconnected mesh cur-

rent model, the condition of zero total toroidal current will be satisfied. It is important

to stress that we are performing a reconnection of the electromagnetic model instead of

defining a linear transformation between two equivalent linear models, or a projection to

a linear subspace. Shell and structure elements are reconnected by imposing

Tsh =


1 −1 0 · · · 0

0 1 −1 · · · 0
. . . . . .

0 · · · 0 1 −1

 ∈ Z(n,sh−1)×n,sh

Tst =


1 −1 0 · · · 0

0 1 −1 · · · 0
. . . . . .

0 · · · 0 1 −1

 ∈ Z(n,st−1)×n,st;

these matrices define the following transformations that are used to obtain the recon-

nected model:

Ψ̃sh = TshΨsh (5.5)

Ψ̃st = TstΨst (5.6)

Ish = T ′shĨsh (5.7)

Ist = T ′stĨst. (5.8)

If Ish and Ist are obtained through transformation (5.7) and (5.8), the conditions

n,sh∑
k=1

ish,k = 0,

n,st∑
k=1

ist,k = 0

will hold. These transformation can be applied to the submatrices of L∗ and R relative to

shell and structure elements to define equivalent inductance and resistance submatrices

for the reconnected model:

L̃∗sh = TshL
∗
shT

′
sh L̃∗st = TstL

∗
stT
′
st

R̃sh = TshRshT
′
sh R̃st = TstRstT

′
st.
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However, mutual inductances with other elements must also be transformed. Tsh

and Tst can be completed by the identity matrix in positions relative to other elements to

define a transformation on the whole L∗ and R matrices. This task will be formalized at

the end of this section.

Active conductors We will now perform electromagnetic reconnection of active con-

ductors. The first operation that must be done is the reconnection of F7 coils since, as

mentioned in sect. 3.3, the simulator needs to alter current distribution in active coils

to converge to an equilibrium with the magnetic axis imposed by the user. The perfect

top/down symmetry of RFX-mod has to be broken, and while all the other coil circuits

are already defined complying with series interconnections in the real machine, F7 is di-

vided in its upper F7, u and lower F7, d elements in the linearizing procedure. However,

the reconnection of these elements is straightforward defined, considering that

ψF7 =
[
1 1

] [ψF7,u

ψF7,d

]
,

[
IF7,u

IF7,d

]
=

[
1

1

]
IF7.

The first manipulation is thus trivial, and can be obtained by summing the two ad-

jacent rows and columns relative to the F7 coil in the L∗ and R matrices. We will not

formalize this technical passage, assuming that L∗ and R are already reduced so that the

separation between F7, u and F7, d is not present.

It is convenient to focus on circuit reconnection equations that must be applied to

model more realistically the poloidal circuit of RFX-mod (2.3), that is characterized by

the presence of sector interconnections that introduce resistive coupling between M and

F coils. We consider a condition of perfect balance between sectors: the resistance R0

in figure 2.6 is assumed to be infinite, and all sectors are subject to zero total current, so

coupling between different sectors can be neglected:
IS1 = IM1 + IF2 + IF7 = 0

IS2 = IM2 + IF1 + IF8 = 0

IS3 = IM3 + IF4 + IF5 = 0

IS4 = IM4 + IF3 + IF6 = 0

(5.9)
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These assumption are valid since we do not need to model PCAT converters. Current

in the F coils is controlled by PVAT converters, so a variation in total sectors current is

substantially a variation in M coils current, required to provide transformer action and

sustain plasma current; in validation, however, we will set the simulator to conserve

plasma current, and plasma resistivity will not be modelled. We will simply assume

that it is possible to study the equivalent equilibrium point with IM rescaled to comply

with the condition of zero total sector current. This hypothesis simplifies the nonlinear

model of the poloidal circuit used in simulations (appendix C), and is not restrictive for

what concerns controller design: M coils are arranged to generate no net magnetic field

in the plasma region, so it will be still possible to apply the shape controller in the case

of nonzero total sector current without modification. The equilibrium point defined by

table 5.2, obtained from experimental data, is characterized by the IS currents reported

in table 5.5.

Sector S1 S2 S3 S4

I[A] -3259 -3259 -3243 -3266

Table 5.5: Sector currents in shot #29746, t ≈ 0.4s

We will thus consider the rescaled equilibrium currents reported in tab. 5.6, where

IM are changed to comply with the constraints imposed by eq. (5.9).

Coil M1 M2 M3 M4

I[A] 1006 2140 1538 -1545

Coil F1 F2 F3 F4 F5 F6 F7 F8

I[A] -2531 -910 2580 -24 -1514 -1035 -96 390

Table 5.6: Rescaled coil currents, complying with IS,i = 0, i = 1 ... 4

Before reconnection, circuit equations model the situation that is represented in fig.

5.3.a (sector S1 only): there are 3 independent currents per sector. Imposing eq. (5.9)

allows to express IM currents in function of IF currents, reducing the model to 2 inde-

pendent currents per sector. The resulting model (fig. 5.3.b) is obtained applying the
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(a) Sector S1 before reconnection (b) Sector S1 after reconnection

Figure 5.3: Poloidal circuit sector representations in the linear model

following reconnection matrix

Ta =



0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0

0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I8×8


that allows to obtain IM and IF currents separately once ĨF currents are computed for

the reconnected network. Clearly, IF = ĨF while IM is computed as the opposite of the

sum of the two F coils currents in the same sector. The resulting relations for linked flux

and currents are expressed as

Ψ̃F = Ta

[
ΨM

ΨF

]
,

[
IM

IF

]
= T ′aĨF .

Complete reconnection matrix The definition of reconnection matrices that allow to

obtain a complete reconnected electromagnetic model can be resumed by the following

scheme: T matrices allow to obtain linked flux to circuit elements in the reconnected
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model from linked flux in the non reconnected model :

Ψsh
Tsh−→ Ψ̃sh

Ψst
Tst−→ Ψ̃st

Ψa
Ta−→ Ψ̃a.

In the same way, after currents in the reconnected model have been computed ac-

cording to reconnected model dynamics, the resulting side currents can be computed

considering T ′ matrices:

Ĩsh
T ′sh−→ Ish

Ĩst
T ′st−→ Ist

Ĩa
T ′a−→ Ia.

The linear model of the reconnected network can be finally obtained applying a re-

connection matrix T to the inductance matrix L∗ and resistance matrix R, so that

L̃∗ = TL∗T ′, R̃ = TRT ′. (5.10)

The T matrix takes the form

T =


Inv×nv 0 0 0

0 Tsh 0 0

0 0 Tst 0

0 0 0 Ta

 . (5.11)

We can now apply eq. (5.10) to obtain matrices L̃∗ and R̃; state space matrices are

finally obtained as follows:
Ã = −(L̃∗)−1R̃

B̃ = cola(L̃∗)−1

C̃ = [Cψ,v 0]L̃∗.

(5.12)

Resistive compensation It is useful to calculate input voltage required to sustain the

equilibrium configuration reported in tab. 5.6. At equilibrium, VPV AT,ref = R̃IF,ref ,

where R̃ is not diagonal, accounting of resistive coupling in the poloidal circuit. The

resulting PVAT equilibrium voltages are reported in tab 5.7. Here and in the following,

we will express PVAT applied voltage with the sign convention of the actuators, that can

produce only positive voltage in the range

VPV AT,i[V ] ∈ [0, 1350] , i = 1 ... 8.
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It is important to note that PVATs 3 and 8 are inverted with respect to standard ma-

chine operation to produce the double-null configuration.

PVAT 1 2 3 4 5 6 7 8

[V] 95.8 583.6 135.9 21.4 109.7 74.2 69.2 25.6

Table 5.7: PVAT voltages for resistive compensation

5.4 Plasma displacement instabilities

The linear system defined by eq. (5.12) contains two unstable eigenvectors, whose

components over state space variables relative to vessel elements are graphed in figure

5.4. These eigenvectors are relative to horizontal and vertical plasma displacement insta-

bilities, since they denote a distribution of currents in vessel, shell and structure elements

that compensates for plasma displacement. If passive structures were ideally conduc-

tive, the effect of induced currents would be that of generating magnetic field producing

a stabilizing force on the plasma. Passive structures resistivity leads to a dissipation of

the stabilizing current distribution, so the horizontal/vertical instabilities will grow. The

presence of a vertical unstable mode was actually expected and some estimates of its time

constant have been already calculated in the case of ideally conductive coils (cfr. sect.

3.5). Actually, in the resistive model the horizontal unstable mode is dominant over the

vertical mode, since time constants of the two modes (before the introduction of saddle

(a) Horizontal instability (b) Vertical instability

Figure 5.4: Components of unstable eigenvectors (vessel), and resulting field
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Figure 5.5: Decay index of the field generated by external coils

coils circuits) are:

τhorz = 51.12 ms τvert = 60.72 ms.

The presence of the horizontal instability can be explained considering that F8 coils

carry a positive current that exerts an attractive force on the plasma; the role of F8 coils in

this configuration is actually to increase plasma volume and triangularity, elongating the

plasma outwards. More formally, the presence of the instability is consistent with values

of the decay index n [16] for this configuration:

n = − R

BZ

∂BZ
∂R

.

In the case of a circular plasma, the condition for vertical stability is n > 0, while for

horizontal stability n < 3
2 is required. The decay index for the double null configuration

of interest has been computed from the external equilibrium field produced by active

coils on the equatorial plane of the machine (Z=0), and is plotted in figure 5.5. Both the

conditions stated above are violated.

Introduction of saddle coils circuits The two unstable modes have to be stabilized be-

fore setting up the shape control problem. In fact, F coils cannot be used to stabilize the

vertical mode, since they cannot generate radial field on the equatorial plane. It is neces-

sary to introduce in the model some conductors representing the saddle coils system of
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Figure 5.6: Mesh modifications to include saddle coils circuits, detail

RFX-mod, that can actually generate radial field in the real machine. 4 state space vari-

ables have been added, representing the axisymmetri current flowing in the saddle coils

on the external side, on the upper side, on the internal side and on the bottom side of

the machine. If these coils are all controlled with the same current, the effect of currents

flowing along the îθ direction cancels between adjacent coils, so in axisymmetry it is only

necessary to represent conductors that are parallel to the îφ direction (fig. 2.8). The mesh

used in Maxfea has been modified to include these circuits (fig. 5.6), and the linearizing

procedure has been repeated.

The introduction of ideally conductive saddle coils led to a model where the two un-

stable modes were still present, even if characterized by a longer time constant. Since it

is necessary to feedback control saddle coils circuits to stabilize the system, it has been

considered useful to model saddle coils circuits as resistive. As a matter of fact, the pres-

ence of ideal conductors in a voltage controlled system introduces poles in s = 0, making

the system more difficult to control, and less realistic. To produce an equivalent value

of resistance for the axisymmetric circuit, the section of the copper wire actually used in

saddle coils windings has been calculated as hc · wc; values of equivalent resistance of

each saddle coil circuit have been computed considering the total length lc,i of the two

conductors composing every circuit in toroidal geometry, and total number of turns per

winding:

hc = 1.3 mm, wc = 2.8 mm, Rsc,i = 60
ρ lc,i
hcwc

leading to the following values of resistance:

Rsc,ext = 8.74Ω, Rsc,up = Rsc,down = 7.25Ω, Rsc,int = 5.76Ω.

The initial R matrix has been extended including these values of resistance, and the
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modified inductance matrix has been computed again considering the mesh with saddle

coils conductors. The reconnection matrix Ta relative to active circuits has also been

extended properly with the identity matrix in positions relative to saddle coils circuits.

The vector of active coils currents including saddle coils, Īa, is now defined as

Īa =

[
Ia

ISC

]
, ISC = [ ISC,ext, ISC,up, ISC,int, ISC,down ]′ .

We denote with L̄∗, R̄, T̄ the modified inductance and resistance matrices and the re-

connection matrix relative to the model including saddle coil circuits. The inductance and

resistance matrices of the reconnected model including saddle coils circuits are defined

as

L∗C = T̄ L̄∗T̄ ′, RC = T̄ R̄T̄ ′, (5.13)

and the resulting linear model is defined as

AC = −(L∗C)−1RC

BC = cola(L∗C)−1

CC = [Cψ,v 0]L∗C .

(5.14)

The components of the two unstable eigenvectors, after introduction of resistive sad-

dle coil circuits, are reported in figure 5.7. Time constants of the two unstable modes are

slightly longer

τhorz = 54.29 ms τvert = 65.30 ms

and in the case of the vertical instability, the inductive effect of plasma vertical displace-

ment over external and internal saddle coils (#13 and #15) is clearly visible.
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Figure 5.7: Unstable eigenvectors after introduction of saddle coils circuits
Coils #1− 4 are M coils, #5− 12 are F coils and #13− 16 are saddle coils
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Pert. # Coil currents tstart [ms] tend [ms] ∆V [V]

1 IF,1(−), IF,2(−), IF,5(−), IF,6(−) 1.0 1.4 3000

2 IF,3(+) 1.0 1.4 5000

3 IF,8(+) 1.0 1.4 3000

4 ISC,ext(+), ISC,int(−) 1.0 3.0 208× 48

Table 5.8: Voltage perturbations for linear model validation

5.5 Validation of the linear model

To evaluate the correctness of the linear model that has been derived, some voltage

pulses have been applied to the active circuits, comparing the response of the linear and

nonlinear model. Table 5.8 lists the properties of the perturbations applied. In validation

simulations, sign constraints of the PVAT converters are taken into account in terms of

applied voltage sign and current sign, while voltage saturation limits are not imposed

when applying voltage perturbations; voltage limits however will be applied to feedback

control action in the next chapter.

By now, we will consider the effect of perturbations #1 and #2 applied to F coils.

Perturbation #3 strongly impacts on the horizontal unstable mode both in the linear and

nonlinear model, so it will be used to test the position stabilizing controller, together with

perturbation #4 that affects the vertical mode. The application of the first two perturba-

tions (figures 5.9, 5.10) shows that linear model shows good tendency agreement with

the nonlinear model, but the presence of the horizontal unstable mode, whose impact

is slightly overestimated in the linear model (figure 5.8), makes the agreement worst on

longer time scales. The vertical unstable mode does not appear explicitly in the nonlinear

model.

In section 3.5, the time constant of the vertical mode had been estimated for a similar

double-null configuration, in the case of ideally conductive coils; the effect of a voltage

perturbation would in that case produce a current variation in active coils that would

remain over time, perturbing the equilibrium field on longer time scales, and the diver-

gence of the vertical position was actually observed. In the case of resistive coils, the

perturbation of the equilibrium field is restored, since current in the F coils tends to re-

turn to the equilibrium value supported by applied voltage for resistive compensation.

For this reason, voltage perturbations on F coils are not very effective to produce the ver-

tical instability; a destabilizing radial field produced by saddle coils (pert. #4) has a more
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direct impact on vertical displacement; the effect of this perturbation will be analyzed

in next chapter, where validation tests will be repeated after the inclusion of feedback

action for plasma position stabilizing control. Overall agreement suggests however that

the linear model that has been obtained represents a good starting point for controller

design.
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Figure 5.8: Perturbations #1 and #2, open loop. Current centroid
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Figure 5.9: Perturbation #1, open loop. F coils currents and gaps
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Figure 5.10: Perturbation #2, open loop. Currents and gaps
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Figure 5.11: Definition of plasma-first wall distance measures
Green: geometric distance. Black: distance along r.

Gap measures in Maxfea An important improvement in the identification of the out-

put relation between state space variables and gaps has been obtained by implementing

in the nonlinear simulator a function that calculates plasma-first wall distance along the

radius linking the machine axis to the first wall at the angle relative to flux-loop probes.

In fact, Maxfea would normally compute first wall distance from user-defined points as

a geometric distance, intersecting plasma boundary orthogonally (fig. 5.11, green solid

line). The measure of interest is instead the evaluation of plasma-first wall distance along

a line passing through the machine axis (fig. 5.11, black solid line). This measure is co-

herent with radial expansion methods described in section 4.1 suggesting that, in first

approximation, a linear relation exists between flux perturbations in plasma facing ele-

ments and gaps along the radius. The difference between the two measures of distance

are evident in gaps at θ = ±112.5◦, that are very close to the null point of the configu-

ration. In fig. 5.12.a is reported the comparison between the output of the linear model

derived considering the geometric distance computed by Maxfea and the same measure

in nonlinear simulations (perturbation # 1); in figure 5.12.b is the same comparison when

considering the distance along the radius both in the derivation of the linear model and

in nonlinear simulations. The gap along the radius is actually the measure that has been

used to produce validation plots reported in figures 5.9,5.10, and that will be used for

controller design, since it leads to better adherence of the gap variations predicted by the

linear model to the corresponding nonlinear simulation output.



5.5. VALIDATION OF THE LINEAR MODEL 85

0 0.02 0.04 0.06 0.08 0.1

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Gap [m], θ=112.5
°

 

 
n.l.

lin.

(a) Geometric distance

0 0.02 0.04 0.06 0.08 0.1

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Gap [m], θ=112.5
°

 

 
n.l.

lin.

(b) Distance along r

Figure 5.12: Perturbation #1, different plasma-first wall distance measures
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Chapter 6

Plasma position and shape control

6.1 Stabilization of the plasma current centroid

As seen in the previous chapter, the presence of unstable plasma displacement modes

degrades the matching between the linear and nonlinear model, and poses a problem

since the vertical unstable mode cannot be stabilized using F coils. The first task to

be executed to successfully design the shape controller is to stabilize the vertical and

horizontal displacement modes appearing in the linear model. A position stabilizing

controller will be designed and applied to both the linear and the nonlinear model, to

allow closed loop time domain response comparison.

Saddle coils power supply systems have no voltage sign constraints, and these coils

have quicker dynamics than field shaping coils (sect. 2.3), thus the set can be used to

suppress the unstable modes with timely action, leaving field shaping coils for shape

control only. Therefore, the best way to achieve position stabilization is to use the set

of saddle coils introduced in RFX-mod. Using these coils as actuators, the control action

required to stabilize the two unstable modes can be decoupled: internal/external (cosine)

saddle coils can generate radial field to stabilize the vertical unstable mode; top/down

(sine) coils can generate vertical field to stabilize the horizontal mode.

We will be referring to the linear model 5.14; the controlled output variable for plasma

position stabilization will be the current centroid position. The reason of this choice is

that this measure can be estimated on the experiment from magnetic data with simple

formulas (sect. 4.3), leading to a more robust control action. Plasma centroid coordinates

have been included among the output variables in the derivation of the linear model:

in the state-output matrix CC , we will denote with rowR(CC) and rowZ(CC) the rows

respectively relative to Rj and Zj . The input of the linear model is the voltage applied to

87
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active circuits; we will now consider the input matrices that take the form

BR = BC

[
0 · · · 0 0 −1 0 1

]′
, BZ = BC

[
0 · · · 0 1 0 −1 0

]′
;

these are the matrices required to obtain two single-input models, where inputs are re-

spectively voltage applied to saddle coils circuits to generate vertical field (horizontal

force on the plasma) and radial field (vertical force). The PBH test proves that the hor-

izontal unstable mode is observable and reachable in the SISO model of the horizon-

tal displacement, defined by the set of state-space matrices (AC , BR, rowR(CC), 0), with

transfer function G0,R(s). The same holds for the vertical mode, in the model defined by

(AC , BZ , rowZ(CC), 0) with transfer function G0,Z(s). Actually, the following matrices[
AC − λhorzI BR

] [
AC − λvertI BZ

]
[
AC − λhorzI
rowR(CC)

] [
AC − λvertI
rowZ(CC)

]

have all full rank. It will now be shown that the application of two proportional feedback

controllers, designed to stabilize the horizontal and vertical mode separately in the two

SISO models, will actually stabilize the system as a whole.

When designing SISO controllers for the models defined hereby, the application of

model reduction methods is mandatory, since classic SISO controller design techniques

(e.g. root locus) would be unusable given the high number of poles and zeros. However,

the open-loop bode diagram of the systems (fig 6.1.a and 6.2.a) shows a rather simple

low-pass dynamic for both models, suggesting that the model can be approximated by

a simpler one in terms of frequency response using PEM identification techniques. In

fact, PEM identification leads to the minimization in the space of parameter vector ξ of a

L2 norm between G0(s), that in this case represents the full-state transfer function, and

Gξ(s), the one obtained with PEM:

min
θ

∫ ω2

ω1

||G0(jω)−Gξ(jω)||2dω.

In this case, ω1 = 1 rad/s, ω2 = 104 rad/s provide a good approximation in the

band of interest. A notable result is that PEM transfer functions reduce the order of

the SISO models to 4, showing only one unstable pole. Actually, also model reduction

techniques based on Hankel norm minimization have been tried, giving good approxi-

mation in terms of frequency response with 5 poles, but Hankel model reduction is based
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Figure 6.1: Bode diagrams for horizontal position stabilization
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Figure 6.3: Root locus of reduced order (PEM) transfer functions, detail

on the hypothesis that the original system is stable, since the Hankel norm of a system

S = (A,B,C,D) is defined as

||S||2H = sup
u∈L2(−∞,0]

∫ +∞
0 y(t)2dt∫ 0
−∞ u(t)2dt

(6.1)

where y(t) is obtained from u(t) through the reachability gramian. Hankel model reduc-

tion would operate only on the stable part of the system, maintaining the two unstable

poles, and the root locus of the resulting transfer functions would show that the unstable

pole relative to the horizontal instability is not controllable in the vertical displacement

transfer function, and vice-versa (quasi-cancellation of unstable pole and zero). How-

ever, Hankel norm model reduction techniques will be considered to reduce the order of

the stabilized system (sect. 6.2). Calling Gξ,R(s) the PEM TF between sine saddle coils

voltage and horizontal displacement, and Gξ,Z(s) the PEM TF between cosine saddle

coils voltage and vertical displacement, we have

Gξ,R(s) =
−0.0006796(s− 870.8)(s+ 418.7)(s+ 6.291)

(s+ 903.9)(s+ 84.86)(s− 16.75)(s+ 7.116)

Gξ,Z(s) =
0.00070302(s+ 470.1)(s2 − 2356s+ 2.29 · 106)

(s+ 3035)(s+ 649)(s+ 113.8)(s− 13.6)
.

The root locus (fig 6.3) suggests that a proportional controller will stabilize the re-

duced order transfer functions. Feedback gains were chosen to maximize closed-loop
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bandwidth maintaining a phase margin of approx. 45◦:

KR = 2.0 · 104 [V/m] KZ = 2.6 · 104 [V/m]

The resulting loop gain frequency response of the two SISO systems has been evalu-

ated on the original full-state model (fig 6.1.b and 6.2.b), showing good stability margins.

It is also confirmed that the application of the decoupled feedback action to the state

space system provides stabilization, in fact considering the closed loop system

S0 = (AS , BC , CC , 0) : AS = AC −BRKRrowR(CC)−BZKZrowZ(CC), (6.2)

the dominant eigenvalue and the relative time constant τS results

max
i
Re[λi(AS)] = −4.7765, τS = 209 ms.

Simulations have been performed on both the linear and nonlinear model to test the

controller, and the stabilization is effective (fig. 6.4 and 6.5). Validation tests are per-

formed applying PVAT resistive compensation voltages, as reported in table 5.7, and

altering the equilibrium with some of the voltage perturbations reported in table 5.8.

The destabilizing input for the horizontal displacement is a +3000 V, 0.4 ms impulse

on the F8 coils (perturbation #3). To rise the vertical instability, the F coils are not very

effective, since they will not generate net radial field on the equatorial plane, and an im-

pulse on cosine saddle coils is used instead. An impulse of 10000 V (48× 208.33 V ), 2 ms

(perturbation #4, tab. 5.8) is applied to the axisymmetric circuit, leading to a peak current

over the 400A saturation limit of the real system. This represents a strong perturbation in

terms of radial field; however, the nonlinear simulation does not show divergence on the

vertical displacement of the plasma column in open loop (fig. 6.5.a): if the currents in the

F coils are not altered, the plasma moves to another equilibrium point, with a vertical

offset with respect to the original position; this could explain why on the experimental

sessions the vertical instability was not clearly observed.
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Figure 6.4: Volt. perturbation #3, radial position controller test
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Figure 6.5: Volt. perturbation #4, vertical position controller test
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Validation of the stabilized model In the following graphs, voltage perturbations that

have been applied in the previous chapter (#1 and #2, figures 5.9, 5.10) to validate the

linear model will be considered again, comparing the response of the stabilized linear and

nonlinear model. The stabilization is effective (figure 6.6 compared with figure 5.8), and

it is confirmed that the stabilized linear model has good agreement in terms of voltage

pulse response with the nonlinear model with applied feedback (figures 6.7, 6.8).
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Figure 6.6: Volt. perturbations #1, #2, closed loop on Rj and Zj . Controlled variables
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Figure 6.7: Volt. perturbation #1, closed loop on Rj and Zj . F coils current, and gaps
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Figure 6.8: Volt. perturbation #2, closed loop on Rj and Zj . F coils current, and gaps
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6.2 Model order reduction for gap control

The high-dimensionality of the linear model obtained hereby could pose some prob-

lems in terms of numerical reliability and computational load when designing a regu-

lator for real-time shape control. Moreover, the Kalman filter based on a model where

state space dimensions are much higher than input/output dimensions would lead to

high variance in state space estimates. For these reasons, it is convenient to apply model

reduction techniques to obtain a model with lower dimensionality. It will be shown that

a model with state-space dimension one order of magnitude lower will suffice to provide

good adherence to time domain response of the full-state model. As mentioned before,

Hankel model reduction routines will be used to perform this task. The Hankel norm

of a linear system S = (A,B,C,D) of size n, defined in eq. (6.1), is equivalent to the

following:

||S||2H = σ2
1, σ1 ≥ σ2 ≥ ... σn

where σi are Hankel singular values, obtained considering the Gramians P and Q of S:

σi =
√
λi(PQ) (6.3)

P = lim
t→∞

∫ t

0
eAτBB′eA

′τdτ (6.4)

Q = lim
t→∞

∫ t

0
eA
′τC ′CeAτdτ. (6.5)

In this case, we want to find the Minimum Degree Approximation (MDA) of the stabi-

lized full-state system S0 (eq. 6.2) of size n = 250, whose transfer function matrix is S0(s),

with a reduced order model SR of size k < nwith transfer function matrix SR(s), defined

by the following set of matrices:

SR = (Ã, B̃, C̃, 0). (6.6)

It can be shown that using Hankel model reduction techniques, based on the calcula-

tion of the original model singular values and the truncation of these to the k-th order, a

H∞ bound on the response of the error model is satisfied [17]:

||S0(ω)− SR(ω)||∞ ≤ 2

n∑
i=k+1

σi.

Figure 6.9 reports log σi for the system S0. The plot of singular values shows a steep

descent when passing from order 5 to 6 and from order 11 to 12, but truncating the model

to k = 5 or k = 11 would show poor consistence with S0 in terms of frequency response;
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Figure 6.11: Gaps response to voltage perturbations, reduced order models
Only 4 of 8 gaps are reported, considering top-down symmetry
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the plot is otherwise quite flat at higher orders. The choice of k is thus based on evaluation

of the response of two selected models in the band of interest: the models obtained with

k = 18 and k = 26 are considered instead. These are firstly compared in terms of singular

values of their frequency response matrices (fig 6.10), showing that it is convenient to

choose k = 26 to have a good adherence of the first 12 singular values of the frequency

response in terms of system gain at ω = 0 and in the range ω ∈ 102 ÷ 103 rad/s.

Next, the two models are compared in terms of time-domain response to voltage

pulses #1 and #2 of table 5.8 and considering the resulting variations in gaps (fig 6.11).

There is very good adherence with the full-state model in the case k = 26, with small

discrepancies due to not perfect matching with the original model at high frequencies;

these discrepancies are heavier in the case k = 18, so in the following we will consider

the model obtained with k = 26.

To set up the LQG control scheme for feedback regulation of plasma-first wall dis-

tance, it is important to choose input and output variables of interest. Output variables

provide information to the Kalman filter to produce state estimates; input variables also

provide information to the Kalman filter, and will be used by the LQ regulator to apply

the linear feedback. Since we want to maximize the information available to the Kalman

filter, all output variables (including saddle coils currents) will be kept. Instead, since we

operate on the stabilized model, and we don’t want to use saddle coils circuits as actua-

tors for the shape control regulator, voltage input variables relative to saddle coils circuits

will be removed. Finally, in the model obtained hereby, plasma current is one of the out-

put variables, but when deriving the linearized model, and when performing validation

# Input variables

1 ÷ 8 VPV AT,i, i = 1 ... 8 [V ]

# Output variables

1 Ipla [A] (trivial)

2 Rj [m]

3 Zj [m]

4 ÷ 11 Gaps [m]

12 ÷ 19 IF,i, i = 1 ... 8 [A]

20 ÷ 23 ISC,i, i = 1 ... 4 [A]

Table 6.1: Input/output variables for LQG control
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simulations, Maxfea was always set to operate at constant plasma current. So, the corre-

sponding row ofCC is trivial (row of zeros), and in validation there are no plasma current

variations so this variable provides no information to produce state estimates. Neverthe-

less, to maintain a more general representation of the control scheme, the variable is kept

in the set of outputs, in the case the model should be extended with a control loop on

plasma current. Table 6.1 resumes the input/output variables in the reduced model used

for LQG control. We will substantially refer to the reduced order model SR with k = 26,

and remove the input variables relative to saddle coils circuits.

Controllability and observability Since the singular values kept by the Hankel reduc-

tion routine are all positive, the resulting reachability and observability gramians must

be both full rank in the reduced order model SR (consider eq. 6.3), that consequently

is both reachable and observable. Removing the inputs relative to saddle coils circuits

means that we are referring to the model SL obtained from SR (eq. 6.6) by the following

positions:

SL = (AL, BL, CL, 0),

AL = Ã, BL = B̃

[
I8×8

04×8

]
, CL = C̃.

Controllability is preserved, since the matrix R(AL, BL) has full row rank; the toler-

ance of the rank() routine in Matlab must be manually set to a value lower than the

smaller singular value of SR (σ26 = 0.0031) to obtain reliable results when performing

the numeric test1.

6.3 Kalman filter design

In the hypothesis that SL describes the dynamics of the process to be controlled, a state

estimator can be obtained as a linear observer, characterized by the following dynamics:

˙̂x(t) = (AL − LCL)x̂(t) +BLu(t) + Ly(t). (6.7)

The general criterion to choose observer pole allocation is to have quicker observer

dynamics than closed loop process dynamics. However, the choice of the L matrix is

1It is also possible to remove unused inputs for LQG control on the original stabilized full state model

S0, before applying the Hankel reduction routine. In this case, reachability and observability of the reduced

order model would be assured and no numeric test would be needed.
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more conveniently obtained expressing the problem as an optimal estimation problem,

assuming one wants to find the estimator in the class defined by eq. (6.7) that minimizes

the asymptotic variance P of the estimation error e(t) = x(t)− x̂(t)

P = lim
t→∞

E[e(t)e(t)′],

given that measurements are affected by additive white gaussian noise v(t) and model

state dynamics are affected by additive white gaussian noise w(t), whose variance matri-

ces are

E[w(t)w(t)′] = Q, E[v(t)v(t)′] = R.

The effect of additive noise on SL is expressed by the following equations:

ẋ(t) = ALx(t) +BLu(t) + w(t)

y(t) = CLx(t) + v(t).

Under these hypothesis, the estimator minimizing P exists in the class (6.7), and it is

the Kalman filter, characterized by

L = PC ′LR
−1

where P is the positive definite solution of the associated continuous-time algebraic Ric-

cati equation:

A′LP + PAL − PC ′LR−1CLP +Q = 0.

We choose to design R as a diagonal matrix (uncorrelated measurement errors); the

diagonal terms can be chosen on the basis of experimental measurement variances. We

will consider the application to experimental data from shot #29746 of plasma current

estimation formula (4.9), of current centroid estimation formulas derived in section 4.3, of

thin-plate spline based gap reconstruction of section 4.2 (considering a top/down sym-

metric average) and finally an average of variances for measured F coils currents; saddle

coil circuits current variance is assumed to be the same as F coils. The time range con-

sidered for variance estimation is t ∈ [0.43, 0.45]s. The resulting measurement variances

are reported in table 6.2.

State noise variance Q should be tuned accordingly to how reliable is model SL in

predicting state dynamics. The choice of state noise variance is complicated by the fact

that state space variables do not have any physical meaning in SL, since they cannot be

expressed as a linear combination of state space variables of S0. We must also remember
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Measure Variance ( [ · ]2 )

Ipla [A] 2.45 · 104

Rj [m] 9.1 · 10−8

Zj [m] 5.2 · 10−7

gaps [m], θ = ±22.5◦ 1.17 · 10−7

gaps [m], θ = ±67.5◦ 2.73 · 10−7

gaps [m], θ = ±112.5◦ 6.26 · 10−7

gaps [m], θ = ±157.5◦ 2.38 · 10−7

IF , ISC [A] 135

Table 6.2: Output variances from experimental data

that the estimator should finally process data generated by the nonlinear simulator, that

could be forced to operate in conditions where plasma parametrization itself differs from

the one used to derive the linear model (section 6.5); we should thus adopt a conservative

approach, assuming that SL is not reliable to perform open-loop prediction; to obtain

frequency separation between the state estimator and the process, we will choose Q to be

diagonal and to take the form

Q = q2I26×26.

The parameter q is chosen so that resulting observer poles, eigenvalues of (AL−LCL),

are characterized by a fast enough time constant, considering the expected time constant

of the closed-loop shape controller. The resulting choice of q and the resulting Kalman

filter dominant time constant τF is as follows:

q = 800, τF = 3.80 ms.

In figure 6.12 is reported the application of the Kalman filter to data from simulations

on the full-state linear model (perturbation # 1 with current centroid position control,

without shape control, cfr. fig. 6.7). Measures are altered with the addition of measure-

ment noise of variance as in tab. 6.2, and the performance of the Kalman filter in lessening

measurement noise is assessed. In figure 6.13 is reported the application of the Kalman

filter to Maxfea data. The filtered measures accurately track the measures generated by

the nonlinear model, thanks to the choice of high enough model variance.
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Figure 6.12: Pert. #1, linear sim. + meas. noise, and Kalman (reduced order) filtering
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Figure 6.13: Pert. #1, Maxfea simulation, and Kalman (reduced order) filtering
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6.4 LQR controller design

LQR control is based on the definition of the following index, to be minimized on a infi-

nite time horizon:

JLQR =

∫ ∞
0

x(t)′Mxx(t) + u(t)′Muu(t)dt; (6.8)

the linear state-feedback controller minimizing 6.8 is found searching for the definite

positive solution S of the continuous-time algebraic Riccati equation

A′LS + SAL − SBLM−1
u B′LS +Mx = 0

leading to the definition of the feedback matrix

K = M−1
u B′LS.

A common rule to choose weights appearing in matricesMx andMu prescribes to use

diagonal matrices, with the following positions ([18], p.537):

Mx(i, i) =
1

max. acceptable value for x2
i

, i = 1 ... 26 (6.9)

Mu(i, i) =
1

max. acceptable value for u2
i

, i = 1 ... 8; (6.10)

however, since state space variables do not have physical meaning in the reduced order

model, we will adapt rule 6.9 choosing values for maximum variations in output quanti-

ties, e.g.

My(i, i) =
1

max. acceptable value for y2
i

, i = 1 ... 23;

next, we will compute Mx considering the state-output relation existing in the linear

model:

Mx = C ′LMyCL.

Table 6.3 resumes the choices for maximum acceptable values of input/output sig-

nals. The maximum values for ui = ∆VPV AT,i can be chosen to regulate LQR controller

responsiveness; we choose to set these values as proportional (through the constant r) to

coefficients approximating equilibrium resistive compensation voltages, to avoid prob-

lems due to lower saturation limits: in fact, applicable PVAT voltage variations are

∆VPV AT,i ∈ [−VCOMP,i, 1350− VCOMP,i] ,
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Measure Max. exp. variation

∆VPV AT,1 [V ] r · 100

∆VPV AT,2 [V ] r · 200

∆VPV AT,3 [V ] r · 130

∆VPV AT,4 [V ] r · 30

∆VPV AT,5 [V ] r · 110

∆VPV AT,6 [V ] r · 80

∆VPV AT,7 [V ] r · 130

∆VPV AT,8 [V ] r · 30

Rj , Zj [mm] 3

gap [mm] 2

IF [A] 600

ISC [A] 400

Table 6.3: LQR weights: max. expected variations for input/output variables

where VCOMP,i are as in table 5.7. The values appearing in table 6.3 are actually tuned to

obtain a more balanced control action. The chosen value for r and the resulting dominant

time constant τR in the closed-loop system with this allocation is

r = 2.5, τR = 37.3 ms.

Different allocations are possible; however, designing the LQR controller it has emerged

that the dominant pole cannot be allocated at values much lower than τR = 25 ms, and

with faster allocations, undesired oscillating behavior would emerge.

As has been done in previous sections, the LQG regulator (Kalman filter+LQR con-

troller) has been firstly tested using voltage perturbations. It can be seen that gap control

is effective (fig. 6.14, 6.15), since the variation in gap measures is much lower than in pre-

vious simulations (compare with fig. 6.7, 6.8). In figure 6.16 is reported the PV AT voltage

applied by the regulator. With voltage perturbations, the nonlinear model and linear full

state model can still be compared considering closed-loop performance when applying

the reduced order controller. On both models, the effect of PV AT voltage saturations is

taken into account; the agreement of the two closed loop responses is very good. In the

following section, we will apply some perturbations to plasma parametrization, thus it

will not be possible to compare the linear and nonlinear models. The perturbations that

will be proposed provide a more realistic benchmark for controller performance.



108 CHAPTER 6. PLASMA POSITION AND SHAPE CONTROL

0 0.05 0.1

−2800

−2600

−2400

−2200

F1, I[A]

time [s]

 

 

n.l.

lin.

ref

0 0.05 0.1

−1200

−1000

−800

−600

F2, I[A]

time [s]

0 0.05 0.1

2200

2400

2600

2800

F3, I[A]

time [s]

0 0.05 0.1

−400

−200

0

200

F4, I[A]

time [s]

0 0.05 0.1

−1800

−1600

−1400

−1200

F5, I[A]

time [s]

0 0.05 0.1

−1400

−1200

−1000

−800

F6, I[A]

time [s]

0 0.05 0.1

−400

−200

0

200

F7, I[A]

time [s]

0 0.05 0.1
0

200

400

600

F8, I[A]

time [s]

(a) F coils current

0 0.05 0.1

0.08

0.09

0.1

0.11

time [s]

Gap [m], θ=22.5
°

 

 

n.l.

lin.

ref.

0 0.05 0.1

0.14

0.15

0.16

0.17

Gap [m], θ=67.5
°

time [s]

0 0.05 0.1

0.05

0.06

0.07

0.08

Gap [m], θ=112.5
°

time [s]

0 0.05 0.1

0.14

0.15

0.16

0.17

Gap [m], θ=157.5
°

time [s]

0 0.05 0.1
0.07

0.08

0.09

0.1

Gap [m], θ=−22.5
°

time [s]

0 0.05 0.1

0.14

0.15

0.16

0.17

Gap [m], θ=−67.5
°

time [s]

0 0.05 0.1

0.05

0.06

0.07

0.08

Gap [m], θ=−112.5
°

time [s]

0 0.05 0.1

0.14

0.15

0.16

0.17

Gap [m], θ=−157.5
°

time [s]

(b) Plasma-first wall gaps

Figure 6.14: Voltage pert. #1, LQG control. F coils current, and gaps
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Figure 6.15: Voltage pert. #2, LQG control. F coils current, and gaps
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Figure 6.16: PV AT applied voltage to compensate perturbations
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6.5 Regulator benchmark: Tokamak perturbations

Since the LQG regulator has been implemented in Maxfea, it is interesting to test dif-

ferent kinds of perturbations, that can be simulated only on the nonlinear model. We will

consider minor disruption perturbations, which are the worst-case perturbations that can

be controlled to avoid the termination of the discharge. These perturbations can be mod-

eled as variations in plasma parametrization, involving changes in α and β parameters

in Maxfea.

Perturbations with recovery Firstly, we will consider perturbations of plasma param-

eters with recovery: we will apply a step variation in parameters, that will decay with

exponential law to the original value. The perturbations are applied at t0 = 5ms, and the

transition law is

α(t) = α0 + (α1 − α0) · 1(t− t0) · e−
t−t0
τα (6.11)

β(t) = β0 + (β1 − β0) · 1(t− t0) · e
− t−t0

τβ . (6.12)

Table 6.4 resumes the applied perturbations; the resulting variations in li and βθ are

visible in graphs of figure 6.17.

Pert.# α1
α0

β1
β0

li,1
li,0

βθ,1
βθ,0

τα [s] τβ [s]

1 4 1.05 66.8% ∼ 1 0.040 0.040

2 1 3/5 ∼ 1 59.8% - 0.060

3 3 4/5 72.5% 77.0% 0.040 0.060

Table 6.4: Tokamak perturbations with recovery

Initial plasma parameters: li,0 = 0.95, βθ,0 = 0.29.

Perturbation #1 is meant to be a perturbation with recovery on li only; the β parame-

ter is slightly variated to maintain the resulting βθ (that mostly depends from β, but also

shows a slight dependence from α) as constant as possible. Perturbation #2 is a pertur-

bation with recovery on βθ only and #3 a perturbation with recovery on both βθ and

li; in the latter case, since we are altering both parameters, the variations on the single

parameter are slightly reduced to allow numerical convergence.
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Norm. plasma internal inductance Plasma poloidal beta
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(c) Pert. #3 with recovery

Figure 6.17: Tokamak perturbations with recovery
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Figures 6.18, 6.20 and 6.22 show the comparison between the perturbation effect on

gaps without LQG control, and the perturbation effect with LQG control. Applied PV AT

voltage to compensate perturbations and variations on F coils current is also reported in

figures 6.19, 6.21 and 6.23 respectively. The macroscopic effect of these perturbations on

horizontal equilibrium (variation of the Λ parameter) is compensated by the fast stabi-

lizing loop of plasma current centroid position. Enabling the LQG controller, gap errors

are restored in all the cases; this did not happen without shape control in the case of per-

turbation #2 with recovery (variation of β parameter). Restoring of gap measures is also

confirmed by the graph related to instantaneous quadratic error on gaps: the component

related to gaps only in the argument of integral (6.8) is reported in figures 6.18.c etc.

Another critical parameter of plasma geometry is plasma-first wall distance on the

horizontal plane at θ = 0◦, since this is the point where undesired plasma boundary con-

tact with the first wall is most likely to happen. As figures 6.18.b etc. show, this measure

is indirectly kept under control when the LQG controller is enabled, and a clearance of at

least approx. 3 cm from the first wall is assured.
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Figure 6.18: Pert. #1 with recovery
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Figure 6.19: Pert. #1 with recovery, LQG control
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Figure 6.20: Pert. #2 with recovery
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Figure 6.21: Pert. #2 with recovery, LQG control
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Figure 6.22: Pert. #3 with recovery
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Figure 6.23: Pert. #3 with recovery, LQG control



120 CHAPTER 6. PLASMA POSITION AND SHAPE CONTROL

Perturbations without recovery We will now consider the application of tokamak per-

turbations without recovery, complying to eq. (6.11), (6.12) if one assumes τα → +∞ and

τβ → +∞. Since an integral control law is not implemented, this kind of perturbations

will be useful to check whether static gain of the controller is sufficient to assure that

critical geometric parameters are kept within a safe range of values. The controller will

prove to be adequate in this sense, but some additional considerations will emerge.

For the purpose of these tests, perturbations #1 and #2 have the same step variations

as in the case with recovery, while perturbation #3 is slightly different. Instead of model-

ing a decay of both α and β, that would model a loss in plasma internal inductance and

plasma pressure, we model a variation that implies a loss in plasma internal inductance

together with an increase in plasma average pressure. This kind of perturbations is less

likely to be physically realistic, but it is advantageous as it keeps the Λ parameter (eq. 3.3)

constant. This means that the vertical field required to maintain the plasma in equilib-

rium is, with some approximation, unchanged. The position stabilizing controller does

not react to the perturbation in this case, which leads to more interesting conclusions in

the case of parameter perturbations without recovery.

Table 6.5 resumes the applied perturbations, while the resulting variations in li and

βθ are reported in graphs of figure 6.24.

Pert.# α1
α0

β1
β0

li,1
li,0

βθ,1
βθ,0

1 3 1.03 72.7% ∼ 1

2 1 3/5 ∼ 1 59.8%

3 3 1.466 72.7% 142.7%

Table 6.5: Tokamak perturbations without recovery

Initial plasma parameters: li,0 = 0.95, βθ,0 = 0.29.

In all of these cases a steady state error on gaps remains (figures 6.25, 6.27 and 6.29),

while a static control action altering the equilibrium currents configuration is visible in

figures 6.26, 6.28 and 6.30: this is consistent with the fact that the plasma nonlinear model

changes, due to the permanent change of the internal parameters. The linear model,

derived for the initial value of the parameters, is less matched to the nonlinear model in

these conditions, and the absence of integral tracking on gap measures explains why the

steady state error emerges.
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Figure 6.24: Tokamak perturbations without recovery
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Figure 6.25: Pert. #1 without recovery
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Figure 6.26: Pert. #1 without recovery, LQG control
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Figure 6.27: Pert. #2 without recovery



6.5. REGULATOR BENCHMARK: TOKAMAK PERTURBATIONS 125

0 0.05 0.1

−3000

−2800

−2600

−2400

−2200

F 1, I[A]

time [s]

 

 

n.l.

ref.

0 0.05 0.1
−1400

−1200

−1000

−800

−600

F 2, I[A]

time [s]

0 0.05 0.1

2200

2400

2600

2800

3000

F 3, I[A]

time [s]

0 0.05 0.1

−400

−200

0

200

400

F 4, I[A]

time [s]

0 0.05 0.1
−2000

−1800

−1600

−1400

−1200

F 5, I[A]

time [s]

0 0.05 0.1

−1400

−1200

−1000

−800

−600

F 6, I[A]

time [s]

0 0.05 0.1

−600

−400

−200

0

200

F 7, I[A]

time [s]

0 0.05 0.1

0

200

400

600

800

F 8, I[A]

time [s]

(a) PVAT applied voltage

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 1

time [s]

 

 

n.l.

ref.

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 2

time [s]

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 3

time [s]

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 4

time [s]

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 5

time [s]

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 6

time [s]

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 7

time [s]

0 0.05 0.1
0

200

400

600

800

1000

1200

Vpvat 8

time [s]

(b) F coils current

Figure 6.28: Pert. #2 without recovery, LQG control
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Figure 6.29: Pert. #3 without recovery
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Figure 6.30: Pert. #3 without recovery, LQG control



128 CHAPTER 6. PLASMA POSITION AND SHAPE CONTROL

Even if a steady state error exists, it is nevertheless better to enable the LQG controller,

since plasma-first wall distance at θ = 0◦ is kept under control (figures 6.25.b, etc.) and

is asymptotically stabilized to a constant value. Without shape control, plasma-first wall

clearance on the horizontal plane varies with longer time constants, and reaches lower,

less safe values.

Perturbations #1 and #2 cause a non recovered excess of vertical field and an oscilla-

tion of the horizontal position of the plasma ring due to the interaction with the position

stabilizing controller when the LQG controller is disabled, or with both the control loops

when the LQG controller is enabled. The shape controller assures better control of plasma

displacement, preventing the double-null configuration from degrading to a limiter con-

figuration, since a clearance of at least 3 cm is always assured in these cases. This should

increase the quality of experimental discharges, avoiding the condition reconstructed in

figure 4.7.

Perturbation #3 without recovery is interesting because, as will be proved in the next

section (figure 6.32.f), the position stabilizing controller does not exert almost any control

action in this case, yet the steady state error on gap measures emerges, confirming that

this is caused by the increased difference between the perturbed nonlinear model and the

nominal linear model, and is not due to the interaction between the position stabilizing

controller and the shape controller. In this case, too, clearance from the first wall on the

horizontal plane is better controlled enabling the LQG regulator.

Finally, considering total quadratic error on gaps measures, it can be observed that the

controller seems to be more sensitive to permanent variations of the li parameter (figure

6.25.c) than to variations on the βθ parameter (figure 6.27.b), since only in the latter case

the controller is able to significantly reduce total quadratic error on gaps. The controller

is designed on the basis of the linear model, whose dynamics are those of a network

inductively coupled, and it is reasonable that a macroscopic variation on plasma inter-

nal inductance has a relevant effect on the modified inductance matrix, and in network

dynamics as well.

In the following section, some considerations about power consumption are pro-

posed.
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6.6 LQG regulation: power consumption

The graphs on the left column of figures 6.31 and 6.32 report power consumption re-

quirements of the poloidal field circuit, defined as the total power consumption of PV AT

converters, in the cases where plasma parameters perturbations are applied. The dashed

line represents static power consumption required to compensate for resistive losses and

maintain the equilibrium configuration without perturbations, and is the power con-

sumption of the converters when the LQG controller is disabled. The solid line repre-

sents actual consumption when the LQG controller is enabled. Peak power consump-

tion is not excessive, considering the rating of PV AT converters; the derivative of total

power consumption over time is however very high when perturbations are applied. We

are considering a limit case design for the LQG controller, to evaluate its performance in

restoring perturbations on gaps. However, it is possible to lessen peak power consump-

tion by choosing a less demanding allocation (e.g. r = 1 instead of r = 2.5, table 6.3) that

could be more suited to experimental conditions.

The right column of the same figures features power consumption of the position sta-

bilizing controller before and after the introduction of the shape controller. Enabling the

shape controller lessens peak power consumption of the saddle coils circuits, suggest-

ing that the shape controller actually helps in maintaining the horizontal stability of the

configuration. However, an increase in static power consumption of saddle coils circuits

when the LQG controller is enabled suggests that the two control loops are partly inter-

acting. An interaction between the two control loops could only exist with regard to the

control of horizontal displacement, since vertical stabilization is completely decoupled

from shape control action given that F coils cannot generate net radial field on the equa-

torial plane. In the cases of tokamak perturbations without recovery (figure 6.32), the

interaction between the two control loops is more evident because a certain static power

consumption of the position stabilizing controller appears.

Possibly, the position stabilizing controller could be designed giving more emphasis

to frequency separation from the shape controller, e.g. using a proportional-derivative

controller with a less dominant proportional component. Since the shape controller has

been designed ad-hoc for the stabilized system, it is not the case to apply modifications

to the stabilizing controller at this point. However, two considerations suggests that the

examined configuration is acceptable.

Firstly, power consumption of the position stabilizing controller is degrees of magni-

tude lower than that of the shape controller (graphs are scaled in kW and MW respec-
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(c) Pert. #2 with recovery, PV AT with LQG on
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(d) Pert. #2 with recovery, saddle coils
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(e) Pert. #3 with recovery, PV AT with LQG on
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(f) Pert. #3 with recovery, saddle coils

Figure 6.31: Power consumption, perturbations with recovery



6.6. LQG REGULATION: POWER CONSUMPTION 131

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6
PVAT tot. input power [MW]

time [s]

 

 
LQG

ref.

(a) Pert. #1 without recovery, PV AT with LQG on

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

40

45

50

time [s]

Saddle coils tot. input power [kW]

 

 
LQG off

LQG on

(b) Pert. #1 without recovery, saddle coils
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(e) Pert. #3 without recovery, PV AT with LQG on
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(f) Pert. #3 without recovery, saddle coils

Figure 6.32: Power consumption, perturbations without recovery
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tively), so a worst-case static power consumption of 10 kW by the position stabilizing

controller when the plasma parametrization changes (figure 6.32.b) is negligible.

Secondly, the presence of a static error on gaps measures when plasma parametriza-

tion is not restored to initial values is not caused by the interaction between the two

control loops, since, as can be seen in figure 6.32.f, it is possible to model a perturbation

that does not lead to the activation of the plasma position stabilizing controller. In this

case, there is surely no interaction between the two control loops, and, as it was shown

in the previous section, static error on gaps is still present (figure 6.29).

A concluding test that evaluates the performance of the shape controller in tracking

a ramp-up variation of gap references, leading to the transition from a circular plasma

configuration to a double null plasma configuration, is reported in the following section.

6.7 Circular-DN transition with LQG control

The LQG controller will now be tested simulating the time-domain evolution of an

experimental double-null discharge. As a matter of fact, the experimental discharge in

RFX-mod starts with a circular plasma where F coils 3 and 8 are kept at zero current, and

then evolves to double-null configuration increasing a positive current in those coils. The

transition between circular and double null configuration has already been reproduced

on the simulator imposing the experimental value of current in active coils (figure 4.2.b).

However, we will now consider the evolution from circular plasma using the LQG con-

troller to track a predefined reference for gap measures over time. In the time scale of

the simulation, the transition begins at t = 0.050 s and ends at t = 0.100 s, and a linear

transition is imposed both for F coils currents and gap measures. The LQG controller is

activated at the beginning of the transition, at t = 0.050 s, when the plasma is still in a

circular configuration. The initial configuration is very different from the DN configura-

tion used to derive the linear model; nevertheless, tracking of gap reference for the whole

duration of the transition is good (fig. 6.33).

Since the LQG controller was designed with an emphasis on gap control, this task

has a priority over active coils current control, and the tracking of F coils current refer-

ence is less precise, since a larger error is allowed on these quantities to favour control

action; this is a consequence of the maximum allowed variations that define LQ index

weights, chosen in table 6.3. Since plasma boundary dynamics are strongly nonlinear, a

linear transition on F coils current does not assure a linear transition on gaps measures.

As a consequence, the current on some of the F coils (fig. 6.34), F2 and F3 in particu-
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lar, undergoes strong variations during the transition. This could be unacceptable in an

experimental context; however, it is possible to use a controller that focuses on F coils

current control during the transition, allowing a degree of freedom on gap measures.

Finally, the LQG controller can be enabled at the end of the transition. This could be

achieved designing another version of the LQG controller to be used during the transi-

tion, simply arranging different weights in tab. 6.3 (e.g. more gap variation allowed, less

F coils current variation allowed), and then switching to the original version of the LQG

controller considered hereby at the end of the transition. The two versions of the con-

troller would differ only by the state-feedback matrix used to compute PV AT applied

voltage. Results of this simulations are however very encouraging in suggesting that the

LQG controller could actually be a valuable tool to increase transition control and overall

discharge quality in the experimental framework of RFX-mod.
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Figure 6.33: Circular-DN transition with LQG control, gaps
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Figure 6.34: Circular-DN transition with LQG control, actuators



Conclusions

Several aspects of plasma discharge diagnosis and control have been considered in

this work. Firstly, it has emerged how plasma shape reconstruction routines are crit-

ical when the design of a shape controller is prospected, since the ability to correctly

reconstruct the controlled variables (plasma clearance from the first wall at gaps) directly

impacts the precision of the control action. The plasma double-null configuration con-

sidered in this work has emphasized some critical aspects of reconstruction routines that

were adopted for circular plasma configurations. Nevertheless, it was shown how the

inclusion of information related to the effect of active coils current could extend existing

routines, leading to more reliable reconstruction of plasma geometry. A routine that ac-

tually reconstructs the complete boundary line of the plasma was set up, and provided

interesting results for what concerns the adaptation of existing integral plasma shape

reconstruction methods applied to other experiments to the configuration of RFX-mod.

Further work could be developed in testing different reconstruction schemes to merge

information provided by magnetic flux measurements and magnetic field measurements.

In particular, the least square problem that originates the thin plate spline could be de-

fined in terms of interpolation of flux and field measures instead of flux measures at

different radii. The hypothesis needed to extrapolate the flux inside the plasma region

could be removed in this case, and the reconstruction routine would adopt an approach

more similar to the one used in early versions of XLOC. Also, different sets of basis func-

tions for the interpolating surface could be tested, and the performance of the different

sets could be assessed comparing the reconstruction with the boundary line provided by

the simulator. The results proposed in this work are encouraging in suggesting that an

accurate reconstruction of plasma shape for complex configurations is possible in RFX-

mod, and the proposed method is worth to be further analyzed and extended for what

concerns compliance to real time constraints and efficient implementation.

A shape controller has been designed and tested assuming that ideal gaps measures
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were available. The possibility that the controlled variables are affected by measurement

noise has accurately been taken into account, but further validation tests could be per-

formed once a reliable plasma shape reconstruction routine has been implemented in the

nonlinear simulator. The complete implementation of the reconstruction routine in the

simulator could provide a very realistic benchmark for the shape controller, that at this

point would be ready to be implemented in the experimental framework.

Other possible extensions of this work include position control of the two null points

of the configuration, since the reconstruction of the complete flux map produces an esti-

mate for their displacement; different sets of gaps could be tested, and it should also be

possible to set up a control law to make the complete reconstructed flux map converge to

a desired configuration. Actually, it should be possible to set up a LQG control scheme

to directly regulate the coefficients of the interpolating surface. As it is easy to under-

stand, the shape reconstruction problem and the shape control problem are intimately

linked, and several aspects could be further developed when considering the similarities

between the two problems.

For what concerns the shape control problem itself, a standard LQG control technique

for linear systems has been used. The linear model that has been derived has proven to

be reliable as long as the plasma parametrization is set to nominal values, but a certain

sensitivity to variations in plasma parameters has emerged, in particular for what con-

cerns plasma internal inductance. This could be one of the limiting factors when testing

the controller in an experimental context, since plasma characteristics could be subject to

strong variations in a real discharge.

Another limiting factor of the LQG control technique resides in the fact that it is im-

possible to adapt the controller to the asymmetric saturation limits that characterize the

actuators in RFX-mod. In this work, it has been shown that an accurate choice of LQR

weights allows the design of a controller with acceptable performance. In particular,

weights were chosen as if saturation limits were symmetric. Different approaches could

possibly better exploit the full range of the actuators.

In conclusion, the implementation of the complete shape controller in the experiment

is mandatory to actually assess whether the considerations and the hypothesis that led

the development of this work were thoughtful and the results reliable. The attention that

has been posed on theoretical aspects and the extensive use of the simulator support this

work, and the experiment, seen as the starting point and the final goal of this study, could

provide a more accurate review of the critical aspects of the models that have been used.
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Appendix A

Linear model and LQG control: Simulink scheme

without integral

−Klq* u

with integral

−Kint* u

gaps only

U Y

Zj only

U Y

VsaddleBZ

[0 −1 0 1]’

VsaddleBR
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Figure A.1: Simulink scheme for LQG control
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138 APPENDIX A. LINEAR MODEL AND LQG CONTROL: SIMULINK SCHEME

Figure A.1 reports the Simulink scheme used to perform linear simulations with the

full-state model derived in chapter 5, and to test the LQG regulator designed in chapter

6. The stabilizing loop with feedback on saddle coils circuits is visible, while in the lower

part of the scheme there are the Kalman filter and the LQ regulator based on the reduced

order stabilized model. The scheme accurately models actuator saturation and allows the

application of voltage perturbations or emulated measurement noise to the simulation.



Appendix B

Plasma boundary reconstruction: Matlab code

This section features the complete Matlab code used to obtain a reconstruction of the

plasma boundary contour, as described in sect. 4.2. The code applies a subtraction of

the effect of active coils currents on flux and field measures under the hypothesis that

the linear superposition principle is valid. A Matlab implementation of the eqflu routine

(NewComputeDelta()) is applied to the data obtained this way, to reconstruct magnetic

flux in a more populated set of points. The Matlab tpaps() routine is used to obtain an

interpolant of the flux function, and finally a set of flux maps computed by Maxfea is used

to add back the effect of active coils to the thin-plate spline surface. The flux function is

computed on a grid of 100 × 100 points, and the value is computed by interpolation on

a finer grid using the interp2() routine when the gradient of the flux map needs to be

computed to search for null points. The function GapFromContour() is used to post-

process the contour line representing the plasma boundary to compute gaps measures.

The calculation of the flux function on a 100 × 100 grid spanning the whole device

cross section, and the application of contour routines to compute the whole boundary

line, make the program somewhat resource intensive; this has been done to produce a

graphical reproduction of the complete flux map and of the plasma boundary line, but

the code can easily be adapted to be more suited to real-time use when one is interested

in computing gap measures only. Actually, in this case the flux function could be recon-

structed only along the first-wall to estimate flux at the boundary in limiter configuration;

in expected null points regions (O regions in figure 4.4) to estimate flux at the boundary

in double null configuration, and finally along gap lines to estimate plasma-first wall

distance at selected points.
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140 APPENDIX B. PLASMA BOUNDARY RECONSTRUCTION: MATLAB CODE

c l e a r a l l ; c lose a l l

shot =29746

% C a r i c o mappa d e l f u s s o dovuta a b o b i n e F a 1000A

load . . / f s _ c o i l _ f i e l d _ e f f e c t /FxFsAll . mat

fps =3;

f i g u r e s i z e =[320 100 600 6 0 0 ] ;

f igure ( ’ P o s i t i o n ’ , f i g u r e s i z e ) ;

eval ( [ ’ mkdir . . / . . / ’ , i n t 2 s t r ( shot ) , ’/movie ’ ] ) ;

i f ~ e x i s t ( [ ’ . . / dat i_exp/ ’ i n t 2 s t r ( shot ) ’ ExpData . mat ’ ] ) ;

run . . / ReadRFXExpDataRid

e lse

eval ( [ ’ load . . / dat i_exp/ ’ i n t 2 s t r ( shot ) ’ ExpData . mat ; ’ ] ) ;

end ;

% Range t e m p o r a l e e i n t e r v a l l o f r ame

t_frame = [ 0 . 4 3 0 : 0 . 0 0 0 1 : 0 . 4 5 0 ] ; % p e r s t i m a v a r i a n z a

% S o g l i a p e r l a d e t e r m i n a z i o n e d e l n u l l o , i n t e s a come modulo quadro d e l

% g r a d i e n t e d i p s i

nulSogl ia =1. e−9;

% Co rr ez . o f f s e t p i c k u p t o r o i d a l e con a n g o l i M a r r e l l i , f a c o l t a t i v o

corr_ang ( 1 , : ) = [ 0 . 3 0 9 2 6 0 6 4 , 0 . 4 1 3 5 0 8 0 6 , −0 . 5 7 0 1 3 3 3 3 , 0 . 3 2 1 1 8 6 1 6 , . . .

0 . 5 4 5 9 2 7 3 5 , 0 . 5 4 2 0 5 0 4 2 , 0 . 1 9 3 3 9 8 3 4 , 0 . 9 2 1 3 1 1 4 4 ] ;

corr_ang ( 2 , : ) = [ −0 . 0 3 2 6 8 6 1 3 , 0 . 4 1 4 8 0 5 4 4 , 0 . 2 0 4 6 9 7 1 9 , 0 . 2 9 3 1 9 8 8 8 , . . .

−0 . 3 6 6 3 0 8 8 1 , 0 . 3 3 8 0 8 0 1 1 , 0 . 2 2 5 4 3 8 4 9 , 0 . 5 9 0 0 9 9 6 3 ] ;

corr_ang ( 3 , : ) = [ −0 . 2 4 4 0 0 6 9 5 , 0 . 3 1 1 9 9 9 5 0 , 0 . 6 5 6 4 9 5 2 1 , 0 . 4 2 3 1 5 9 9 0 , . . .

−0 . 2 4 5 3 4 8 0 4 , 0 . 8 3 8 3 5 8 1 6 , 0 . 4 4 7 3 7 9 8 9 , 0 . 4 5 6 4 1 8 7 2 ] ;

corr_ang ( 4 , : ) = [ 0 . 9 9 8 1 2 6 0 9 , 0 . 1 4 8 1 3 8 4 6 , −0 . 0 0 6 1 6 6 5 0 , 0 . 2 0 1 8 2 5 3 8 , . . .

−0 . 1 9 8 6 0 0 7 8 , 0 . 2 7 6 1 0 6 9 5 , 0 . 3 5 5 7 2 3 1 7 , 0 . 7 6 7 1 1 6 0 1 ] ;

corr_ang ( : , : ) = corr_ang ( : , : ) . ∗ ( pi / 1 8 0 ) ;

for i =1 :4

for j =1 :8

B p _ f i t t i ( i , j , : ) = −B t _ f i t t i ( i , j , : ) ∗ sin ( corr_ang ( i , j ) ) + . . .

B p _ f i t t i ( i , j , : ) ∗ cos ( corr_ang ( i , j ) ) ;

end

end ;
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% Medio c o n s i d e r a n d o l a sonda g u a s t a

for j = 1 : 2 ; B p _ f i t t i _ a v e ( : , j )=mean ( B p _ f i t t i ( : , j , : ) , 3 ) ; end ;

% l a t e r z a sonda d e l q u a r t o s e t t o r o i d a l e e ‘ r o t t a

j =3 ; B p _ f i t t i _ a v e ( : , j ) = ( B p _ f i t t i ( : , j , 1 ) + B p _ f i t t i ( : , j , 2 ) + B p _ f i t t i ( : , j , 3 ) ) / 3 ;

for j = 4 : 8 ; B p _ f i t t i _ a v e ( : , j )=mean ( B p _ f i t t i ( : , j , : ) , 3 ) ; end ;

%% Range p e r s t i m a d i un o f f s e t p e r p i c k u p Btor c o s t a n t e

removeoffset =1;

t s t i m a o f f s e t = [ −0 . 0 5 , 0 ] ;

t s t i m o f f f p =[−2 −0 .5 ] ;

i f removeoffset

inds t1=find ( t_dequ >= t s t i m a o f f s e t ( 1 ) , 1 , ’ f i r s t ’ ) ;

inds t2=find ( t_dequ >= t s t i m a o f f s e t ( 2 ) , 1 , ’ f i r s t ’ ) ;

o f f s e t B =mean ( B p _ f i t t i _ a v e ( inds t1 : indst2 , : ) ) ;

B p _ f i t t i _ a v e = B p _ f i t t i _ a v e−ones ( numel ( t_dequ ) , 1 )∗ o f f s e t B ;

indfp1=find ( t_dequ > t s t i m o f f f p ( 1 ) , 1 , ’ f i r s t ’ ) ;

indfp2=find ( t_dequ > t s t i m o f f f p ( 2 ) , 1 , ’ f i r s t ’ ) ;

o f f s e t F p =mean ( d_fp ( indfp1 : indfp2 , : ) ) ;

d_fp=d_fp−ones ( numel ( t_dequ ) , 1 )∗ o f f s e t F p ;

end

%% Switch v a r i

% p e r s o v r a i m p o r r e gap s t i m a t i da c o m p u t e d e l t a

gapstima =1;

% p e r g e n e r a r e un f i l e a v i in movie / mov_<sho t >_exp . a v i

avioutput =0;

% p e r s f r u t t a r e i n f o r m a z i o n e su c o r r e n t i b o b i n e F

% ######## 1 2 3 4 5 6 7 8

u s e f s c u r r =[1 1 1 1 1 1 1 1 ] ; % Qual i c o r r e n t i f s u s a r e

%% Dat i g e n e r a l i

ra = 0 . 4 5 7 ; % r a g g i o i n t e r n o g r a f i t e

r f l = 0 . 5 0 6 ; % r a g g i o sonde f l u x l o o p s

r i n t e r n o 1 =0.75∗ r f l ;

r i n t e r n o 2 =0.5∗ r f l ;

r l i n = 0 . 4 9 ; % r a g g i o medio v e s s e l

R0 = 1 . 9 9 5 ; % a s s e macchina

rpb = 0 . 5 0 8 5 ; % r a g g i o sonde BpINT

th_Bp =[27 72 117 162 207 252 297 3 4 2 ] ’ ;

th_Fp = [ 2 2 . 5 6 7 . 5 112 .5 157 .5 202 .5 247 .5 292 .5 3 3 7 . 5 ] ’ ;
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th_Bp_rad=pi /180∗ th_Bp ;

th_Fp_rad=pi /180∗ th_Fp ;

t h e t a f l =th_Fp_rad ;

R l i n e r =1.17 e−3;

mu0 = 4∗pi ∗1 . e−7;

x f l =R0+ r f l ∗cos ( t h e t a f l ) ;

y f l = r f l ∗ sin ( t h e t a f l ) ;

x interno1=R0+ r i n t e r n o 1 ∗cos ( t h e t a f l ) ;

y interno1= r i n t e r n o 1 ∗ sin ( t h e t a f l ) ;

x interno2=R0+ r i n t e r n o 2 ∗cos ( t h e t a f l ) ;

y interno2= r i n t e r n o 2 ∗ sin ( t h e t a f l ) ;

xy = [ [ x f l ; x in terno1 ; x interno2 ] [ y f l ; y interno1 ; y interno2 ] ] ’ ;

% Per p l o t c i r c o n f e r e n z a v e s s e l

N=360;

t h e t a = ( 0 : 2∗ pi/N: 2∗ pi ) ;

r_fw = 0 . 4 5 9 ;

r_vv_i=ra ;

r_vv_o = 0 . 5 0 5 ;

xvi=R0+r_vv_i ∗cos ( t h e t a ) ;

yvi=r_vv_i ∗ sin ( t h e t a ) ;

xvo=R0+r_vv_o∗cos ( t h e t a ) ;

yvo=r_vv_o∗ sin ( t h e t a ) ;

xfw=R0+r_fw∗cos ( t h e t a ) ;

yfw=r_fw∗ sin ( t h e t a ) ;

% P r e p a r a z i o n e g r i d p e r p r o d u z i o n e g r a f i c i

points =100;

xmin = 1 . 4 ; xmax = 2 . 6 ; ymin=−0.6; ymax = 0 . 6 ;

X=[xmin : ( xmax−xmin ) / ( points −1) :xmax ] ;

Y=[ymin : ( ymax−ymin ) / ( points −1) :ymax ] ;

XCrow=zeros ( 1 , points ^ 2 ) ;

YCrow=zeros ( 1 , points ^ 2 ) ;

for i =1 : points

for j =1 : points

XCrow( i +( j −1)∗points )=X( j ) ;

YCrow( i +( j −1)∗points )=Y( i ) ;

end

end

% Punti p e r l a g r i d i n f i t t i t a p e r d e t e r m i n a r e i l g r a d i e n t e d i p s i e l a
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% p r e s e n z a d e l n u l l o s u p e r i o r e ( i n d i c a t o d a l l ’ 1 f i n a l e )

p o i n t s n u l l =200;

xminu = 1 . 6 ;

xmanu=2;

yminu1 = 0 . 1 ;

ymanu1 = 0 . 4 6 ;

Xnu1=[xminu : ( xmanu−xminu ) / ( pointsnul l −1) :xmanu ] ;

Ynu1=[yminu1 : ( ymanu1−yminu1 ) / ( pointsnul l −1) :ymanu1 ] ;

XCnu1=zeros ( 1 , p o i n t s n u l l ^ 2 ) ;

YCnu1=zeros ( 1 , p o i n t s n u l l ^ 2 ) ;

for i =1 : p o i n t s n u l l

for j =1 : p o i n t s n u l l

XCnu1( i +( j −1)∗ p o i n t s n u l l )=Xnu1 ( j ) ;

YCnu1( i +( j −1)∗ p o i n t s n u l l )=Ynu1 ( i ) ;

end

end

% Punti p e r l a g r i d i n f i t t i t a p e r d e t e r m i n a r e i l g r a d i e n t e d i p s i e l a

% p r e s e n z a d e l n u l l o i n f e r i o r e ( i n d i c a t o d a l 2 f i n a l e )

yminu2=−ymanu1 ;

ymanu2=−yminu1 ;

Xnu2=[xminu : ( xmanu−xminu ) / ( pointsnul l −1) :xmanu ] ;

Ynu2=[yminu2 : ( ymanu2−yminu2 ) / ( pointsnul l −1) :ymanu2 ] ;

XCnu2=zeros ( 1 , p o i n t s n u l l ^ 2 ) ;

YCnu2=zeros ( 1 , p o i n t s n u l l ^ 2 ) ;

for i =1 : p o i n t s n u l l

for j =1 : p o i n t s n u l l

XCnu2( i +( j −1)∗ p o i n t s n u l l )=Xnu2 ( j ) ;

YCnu2( i +( j −1)∗ p o i n t s n u l l )=Ynu2 ( i ) ;

end

end

% Punti p e r l a s t i m a d i p s i b s u l l a c i r c o n f e r e n z a , c a s o l i m i t e r

numtpsib =360;

t h e t a 0 =2∗pi /6; % p e r d i v i d e r e s t i m a p s i b in 3 s e t t o r i

t h e t a p s i b =( t h e t a 0 +2∗pi/numtpsib : 2∗ pi/numtpsib : t h e t a 0 +2∗pi ) ’ ;

s e c t o r 1 =1: numtpsib /3;

s e c t o r 2 =numtpsib /3:2∗numtpsib /3;

s e c t o r 3 =2∗numtpsib /3: numtpsib ;

x c i r c p s i b =R0+ra∗cos ( t h e t a p s i b ) ;

y c i r c p s i b =ra∗ sin ( t h e t a p s i b ) ;

% C a l c o l o e f f e t t o d e l l e bob ime FS s u i p u n t i u s a t i p e r l a s t i m a d i p s i b .

% Ogni c o l o n n a c o r r i s p o n d e a una b o b i n a .
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f s f x o n c i r c =zeros ( numtpsib , 8 ) ;

for i =1 :8

f s f x o n c i r c ( : , i )= interp2 (X , Y , FluxFs ( : , : , i ) , x c i r c p s i b , y c i r c p s i b ) ;

end

% I n t e r p o l o i d a t i exp su una s c a l a t e m p o r a l e meno f i t t a

[ t_du , m_du]= unique ( t_dequ ) ;

[ t_pu , m_pu]= unique ( t_p ) ;

[ t_au , m_au]= unique ( t_a ) ;

Bp_frame= interp1 ( t_du , B p _ f i t t i _ a v e (m_du , : ) , t_frame , ’ l i n e a r ’ ) ;

fp_frame_ugly= interp1 ( t_du , fp (m_du , : ) , t_frame , ’ l i n e a r ’ ) ;

dfp_frame= interp1 ( t_du , d_fp (m_du , : ) , t_frame , ’ l i n e a r ’ ) ;

vt_frame= interp1 ( t_du , vt (m_du , : ) , t_frame , ’ l i n e a r ’ ) ;

i f s _ f r a m e= interp1 ( t_pu , i f s (m_pu , : ) , t_frame , ’ l i n e a r ’ ) ;

i f s _ r e a d =i f s _ f r a m e ;

ipla_frame= interp1 ( t_au , i _ p l a (m_au , : ) , t_frame , ’ l i n e a r ’ ) ;

% Come f l u s s o uso i l 6 d i f p e g l i a l t r i l i r i c o s t r u i s c o d a l l e d i f f e r e n z e

% d i f l u s s o p e r a v e r e meno rumore

fp_frame=fp_frame_ugly ( : , 6 ) ∗ ones ( 1 , 8 ) + dfp_frame ;

i f avioutput

f igure ( ’ Paperunit ’ , ’ inches ’ ) ;

a v i j o b = a v i f i l e ( [ ’ . . / . . / ’ , i n t 2 s t r ( shot ) , ’/movie/mov_exp . avi ’ ] , ’ fps ’ , fps ) ;

end

Contour= c e l l ( numel ( t_frame ) , 1 ) ;

Time=zeros ( numel ( t_frame ) , 1 ) ;

rpla_t ime=zeros ( numel ( t_frame ) , 1 ) ;

rpla_tpaps=zeros ( numel ( t_frame ) , 8 ) ;

addpath . . /

%%%%% MAIN ’FOR’ LOOP

for campione =1: numel ( t_frame )

tsim=campione ;

P s i f l =fp_frame ( campione , : ) ’ ;

Bpcurr=Bp_frame ( campione , : ) ’ ;

Vtcurr=vt_frame ( campione , : ) ’ ;
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i f gapstima

% Stima e q f l u d e i gap , p a s s o a c o m p u t e d e l t a i d a t i ’ v e r i ’

[ dh , dv , r p l a d e l t a ]=NewComputeDelta ( 1 , Bpcurr ’ , P s i f l ’ , Vtcurr ’ ) ;

xrst im=R0+r p l a d e l t a ’ . ∗ cos ( th_Fp_rad ) ;

yrst im=r p l a d e l t a ’ . ∗ sin ( th_Fp_rad ) ;

end

% Deupuro i d a t i d a l l ’ e f f e t t o d e l l e b o b i n e f i e l d s h a p i n g

for bob =1:8

i f u s e f s c u r r ( bob )

Bpcurr=Bpcurr−( i f s _ r e a d ( tsim , bob )/1000)∗ bp_fs ( : , bob ) ;

P s i f l = P s i f l −( i f s _ r e a d ( tsim , bob )/1000)∗ f l _ f s ( : , bob ) ;

end

end

% Uso ’ e q f l u ’ p e r r i c o s t r u i r e i l f l u s s o a i r a g g i i n t e r n i

[ trashh , trashv , t rashr , P s i r i 1 ] = . . .

NewComputeDelta ( 1 , Bpcurr ’ , P s i f l ’ , Vtcurr ’ , r i n t e r n o 1 ) ;

[ trashh , trashv , t rashr , P s i r i 2 ] = . . .

NewComputeDelta ( 1 , Bpcurr ’ , P s i f l ’ , Vtcurr ’ , r i n t e r n o 2 ) ;

%% TPAPS i n t e r p o l a t i o n

va ls =[ P s i f l ’ P s i r i 1 P s i r i 2 ] ;

t i c

s t = tpaps ( xy , vals , 0 . 9 6 ) ; % u l t i m o p a r a m e t r o 1 s i g n i f i c a i n t e r p o l a

% v a l o r i piu ‘ b a s s i r e g o l a r i z z a n o l a mappa

% l e p r e s t a z i o n i m i g l i o r i con un po ’ d i r e g o l a r i z z a z . e s p =0.96

toc

% Valuto l a t h i n p l a t e s p l i n e n e l l a g r i d 100X100 , p e r p l o t

avals=fnva l ( s t , xy ) ;

Fvals=fnva l ( s t , [ XCrow ; YCrow ] ) ;

Fvals=reshape ( Fvals , 1 0 0 , 1 0 0 ) ;

for bob =1:8

i f u s e f s c u r r ( bob ) % Sommo mappa d i f l u s s o dovuta a l l e FS

Fvals=Fvals +( i f s _ r e a d ( tsim , bob )/1000)∗ FluxFs ( : , : , bob ) ;

end

end

% Valuto l a p r e s e n z a d e l n u l l o d i B s u l l a p a r t e s u p e r i o r e

FvalsNull1= interp2 (X , Y , Fvals , XCnu1 , YCnu1 , ’ cubic ’ ) ;

FvalsNull1=reshape ( FvalsNull1 , po intsnul l , p o i n t s n u l l ) ;
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[ FvGx1 FvGy1]= gradient ( FvalsNull1 ) ;

FvGrad1=FvGx1.^2+FvGy1 . ^ 2 ;

nulVal1 =1; % b i g number

imin1 =1;

jmin1 =1;

% A t t e n z i o n e c h e mat l ab o r d i n a l e v a r i a b i l i come F (Y ,X)

% e s i a s p e t t a c o n t o u r (X, Y , F )

for i i i =1 : numel ( Xnu1 )

for j j j =1 : numel ( Ynu1 )

i f FvGrad1 ( j j j , i i i ) < nulVal1

nulVal1=FvGrad1 ( j j j , i i i ) ;

imin1= i i i ;

jmin1= j j j ;

end

end

end

nulRaggio1=sqr t ( ( Xnu1 ( imin1)−R0)^2+(Ynu1 ( jmin1 ) ) ^ 2 ) ;

disp ( [ ’ nulRaggio1 : ’ , num2str ( nulRaggio1 ) ] ) ;

psib_nul1 =−100; % − b i g number

nul1 =0;

i f ( nulVal1 <nulSogl ia && nulRaggio1 <ra )

% c a s o n u l l o s u l l a meta ’ s u p e r i o r e

nul1 =1;

xnul1=Xnu1 ( imin1 ) ;

ynul1=Ynu1 ( jmin1 ) ;

psib_nul1=FvalsNull1 ( jmin1 , imin1 ) ;

disp ( ’ Individuato nul lo SUP ’ ) ;

end

% Idem p e r c e r c a r e i l n u l l o i n f e r i o r e

FvalsNull2= interp2 (X , Y , Fvals , XCnu2 , YCnu2 , ’ cubic ’ ) ;

FvalsNull2=reshape ( FvalsNull2 , po intsnul l , p o i n t s n u l l ) ;

[ FvGx2 FvGy2]= gradient ( FvalsNull2 ) ;

FvGrad2=FvGx2.^2+FvGy2 . ^ 2 ;

nulVal2 =1; % b i g number

imin2 =1;

jmin2 =1;

for i i i =1 : numel ( Xnu2 )

for j j j =1 : numel ( Ynu2 )

i f FvGrad2 ( j j j , i i i ) < nulVal2

nulVal2=FvGrad2 ( j j j , i i i ) ;

imin2= i i i ;

jmin2= j j j ;
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end

end

end

nulRaggio2=sqr t ( ( Xnu2 ( imin2)−R0)^2+(Ynu2 ( jmin2 ) ) ^ 2 ) ;

psib_nul2 =−100; % − b i g number

nul2 =0;

i f ( nulVal2 <nulSogl ia && nulRaggio2 <ra )

% c a s o n u l l o s u l l a meta ’ i n f e r i o r e

nul2 =1;

xnul2=Xnu2 ( imin2 ) ;

ynul2=Ynu2 ( jmin2 ) ;

psib_nul2=FvalsNull2 ( jmin2 , imin2 ) ;

disp ( ’ Individuato nul lo INF ’ ) ;

end

disp ( [ ’ nulVal1 : ’ , num2str ( nulVal1 ) , ’ nulVal2 : ’ , num2str ( nulVal2 ) ] ) ;

disp ( [ ’ nulRag1 : ’ , num2str ( nulRaggio1 ) , ’ nulRag2 : ’ , num2str ( nulRaggio2 ) ] ) ;

% c a s o l i m i t e r : va c a l c o l a t o sempre n e l c a s o in c u i c i s i a i l n u l l o ma

% i l p lasma t o c c h i l a p a r e t e e s t e r n a d a l l a t o dove i l n u l l o non c ‘ e , e

% c o n f r o n t a t o i l v a l o r e l i m i t e r c o l v a l o r e n u l l o

% s t i m o p s i b v a l u t a n d o i l massimo su v a l o r i i n f i t t i t i s u l l a

% c i r c o n f e r e n z a

FvalsCirc=fnval ( s t , [ x c i r c p s i b ’ ; y c i r c p s i b ’ ] ) ;

for bob =1:8

i f u s e f s c u r r ( bob )

Fva lsCirc=Fva lsCirc +( i f s _ r e a d ( tsim , bob )/1000)∗ f s f x o n c i r c ( : , bob ) ’ ;

end

end

% Divido l a s t i m a in 3 s e t t o r i : I p r i m i 2 sono n e i

% p r e s s i d e l l e zone d i n u l l o . I l t e r z o e ‘ l a p a r t e piu ‘ e s t e r n a ,

% dove i l p lasma s e i n t e r a g i s c e e ‘ sempre in l i m i t e r .

p s i b _ l i m i t e r _ 1 =max ( Fva lsCirc ( s e c t o r 1 ) ) ;

p s i b _ l i m i t e r _ 2 =max ( Fva lsCirc ( s e c t o r 2 ) ) ;

p s i b _ l i m i t e r _ 3 =max ( Fva lsCirc ( s e c t o r 3 ) ) ;

% Vedo s e i l boundary e ‘ a l n u l l o o a l l i m i t e r in c i a s c u n o d e i 3

% s e t t o r i

i f nul1

psib_st im_1=psib_nul1 ;
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e lse

psib_st im_1= p s i b _ l i m i t e r _ 1 ;

end

i f nul2

psib_st im_2=psib_nul2 ;

e lse

psib_st im_2= p s i b _ l i m i t e r _ 2 ;

end

psib_st im_3= p s i b _ l i m i t e r _ 3 ;

psib_st im=max ( [ psib_st im_1 ; psib_st im_2 ; psib_st im_3 ] ) ;

% P r o d u z i o n e g r a f i c i

disp ( ’ −−− Ora p l o t t o i g r a f i c i −−− ’ ) ;

f igure ( 1 ) ;

plot ( xvi , yvi , ’ k ’ , ’ LineWidth ’ , 1 ) ; hold on ;

axis equal ; grid on ;

plot ( xvo , yvo , ’ k ’ , ’ LineWidth ’ , 1 ) ;

plot ( xfw , yfw , ’ k ’ ) ;

i f gapstima

plot ( xrstim , yrstim , ’ k+ ’ , ’ LineWidth ’ , 2 , ’ MarkerSize ’ , 1 0 )

end

i f nul1

plot ( xnul1 , ynul1 , ’ r+ ’ , ’ LineWidth ’ , 3 , ’ MarkerSize ’ , 1 2 )

end

i f nul2

plot ( xnul2 , ynul2 , ’ r+ ’ , ’ LineWidth ’ , 3 , ’ MarkerSize ’ , 1 2 )

end

plot ( xy ( 1 , : ) , xy ( 2 , : ) , ’m+ ’ , ’ LineWidth ’ , 2 , ’ MarkerSize ’ , 8 ) ;

% c o n t o u r (X, Y , Flux , 5 0 ) ;

contour (X , Y , Fvals , 3 0 ) ;

t i t l e ( [ ’ Est . f lux , r e a l data , shot = ’ , num2str ( shot ) , ’ ; time = ’ , . . .

num2str ( t_frame ( campione ) , ’ %4.3 f ’ ) , ’ s ; i p l a = ’ , . . .

num2str ( ipla_frame ( campione ) , ’ %8.0 f ’ ) , ’ A ’ ] ) ;

colorbar ;

[C, h ] = . . .

contour (X , Y , Fvals , [ ps ib_st im psib_st im ] , ’ LineColor ’ , ’ r ’ , ’ LineWidth ’ , 2 ) ;

Contour { campione }=C;

Time ( campione )= t_frame ( campione ) ;

s e t ( gca , ’ n e x tp l o t ’ , ’ r e p l a c e c h i l d r e n ’ ) ;
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mov_exp ( campione )= getframe ( gcf ) ;

i f avioutput

a v i j o b =addframe ( avi job , gca ) ;

end

%% C a l c o l o gap r i c o s t r u i t i

rpla_t ime ( campione )= t_frame ( campione ) ;

rpla_tpaps ( campione , : ) = GapFromContour (C, th_Fp_rad ) ;

end

i f avioutput , a v i j o b =c lose ( a v i j o b ) ; end

eval ( [ ’ save . . / . . / ’ , i n t 2 s t r ( shot ) , ’/movie/mov_exp . mat mov_exp ’ ] ) ;

eval ( [ ’ save . . / . . / ’ , i n t 2 s t r ( shot ) , ’/rpla_tpaps_exp . mat rpla_t ime rpla_tpaps ’ ] ) ;

disp ( ’ Varianza stime gap : ’ ) ;

disp ( num2str ( var ( ( rpla_tpaps+ f l i p l r ( rpla_tpaps ) ) / 2 ) ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rplasma=GapFromContour (C, ang )

% R i c e v e in i n p u t un c o n t o u r mat l ab [C] , r e l a t i v o a l l a s u p e r f i c i e d i f l u s s o d e l

% boundary , e c a l c o l a l e i n t e r s e z i o n i c o i r a g g i p a s s a n t i p e r i l c e n t r o

% macchina ( R0 , 0 ) a g l i a n g o l i [ ang ] .

R0 = 1 . 9 9 5 ;

ra = 0 . 4 5 9 ;

nang=numel ( ang ) ;

rplasma=ra∗ones ( 1 , nang ) ;

% Trovo p u n t i c h e s t an no d e n t r o a l l a camera da vuoto ( mat l ab dà un v a l o r e

% f u o r i range p e r i l pr imo punto )

gp=find ( (C( 1 , : ) −R0 ) .^2+C( 2 , : ) . ^ 2 <= ( ra ) ^ 2 ) ; % good p o i n t s : p u n t i buoni

gploop =[gp gp ( 1 ) ] ; % R i c h i u d o primo e u l t i m o punto

xc=C( 1 , gploop ) ’−R0 ;

yc=C( 2 , gploop ) ’ ;

prevha=zeros ( 1 , nang ) ; % p r e c e d e n t e a l t e z z a r i s p e t t o a ogn i a n g o l o

prevpr=zeros ( 1 , nang ) ; % p r e c e d e n t e p r o i e z i o n e r i s p e t t o a ogn i a n g o l o

for cc =1: numel ( gploop )

for aa =1: nang
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rtemp=ra ;

% Ruoto s i s t e m a d i r i f e r i m e n t o

pr=xc ( cc )∗ cos ( ang ( aa ) ) + yc ( cc )∗ sin ( ang ( aa ) ) ; % p r o i e z i o n e s u l r a g g i o

ha=−xc ( cc )∗ sin ( ang ( aa ) ) + yc ( cc )∗ cos ( ang ( aa ) ) ; % a l t e z z a r i s p . r a g g i o

i f pr >0 % devo r e s t r i n g e r m i a r a g g i o p o s i t i v o

% Caso : c o p p i a d i p u n t i a c a v a l l o d e l r a g g i o e a b b a s t a n z a v i c i n i

% C a l c o l o i n t e r s e z i o n e d e l l a c o n g i u n g e n t e i 2 p u n t i c o l r a g g i o e a g g i o r n o rp la sma

i f ( prevha ( aa )∗ha<0)&&(abs ( prevpr ( aa)−pr ) <0.1∗ ra )

df=abs ( prevha ( aa ) ) ;

dl=abs ( ha ) ;

pf=prevpr ( aa ) ;

pl=pr ;

rtemp =( pl∗df+pf∗dl ) / ( df+dl ) ;

end

i f ha==0 % c a s o d e g e n e r e : punto d i c o n t o u r e s a t t a m e n t e s u l r a g g i o

rtemp=pr ;

end

i f rtemp<rplasma ( aa )

rplasma ( aa )= rtemp ;

end

end

prevha ( aa )= ha ;

prevpr ( aa )= pr ;

end

end



Appendix C

Controller implementation: FORTRAN77 code

The code implemented in the user-defined control routine of Maxfea is presented in

this section. It provides the implementation of poloidal circuit equations, modeling the

reconnection of M and F coils, since in the simulator these are represented as indepen-

dent circuits. Inductive coupling is computed according to their position and shape, and

the simulator would evolve currents in these circuits without complying to the condition

expressed by eq. 5.9. To actually force this condition, and to correctly model resistive

coupling between coils composing a sector of the circuit, a condition similar to that of

figure 5.3.b is modeled, but a resistance R_gr of value 10 Ω is connected in parallel to

the circuit. This element applies a feedback voltage whenever total sector current is not

null, forcing the desired condition. This is actually a simplification of the original code [6]

modeling the complete poloidal circuit as in figure 2.6, that used to include PCAT con-

verters and RT elements. Here, the 4 sectors of the circuit are modeled as independent

and no loop voltage can be applied, consistently with the hypothesis of the linear model.

We consider a simplified implementation that still guarantees consistence between the

linear and nonlinear model, and produces comparable simulation outputs.

Next, the code provides the implementation of the position stabilizing controller and

of the shape controller using ideal Maxfea measures as controlled variables; the func-

tion that computes the gap along the radius (gap_along_r()) is an adaptation of the

original algorithm that by default computes geometric distances in Maxfea. The imple-

mentation of diagnostic routines in the nonlinear model to estimate output variables from

magnetic data and to evaluate their impact in closed loop performance is a possible ex-

tension of this work.
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∗∗∗ Def in iz ione v a r i a b i l i , r i f e r i m e n t i , caricamento m a t r i c i c o n t r o l l o r e ∗∗∗
[ . . . ]

∗∗∗ Codice esegui to a ogni s tep di simulazione ∗∗∗

∗ Perturbazione a l f a /beta

i f ( ( p e r t u r b _ a l f a ) . and . ( ztime . ge . ( t s t a r t d i s r p t−zeps i ) ) ) then

a l f a p =a l fap0+d_alfap∗exp(−( ztime−t s t a r t d i s r p t )/ t a u _ a l f a )

endif

i f ( ( perturb_beta ) . and . ( ztime . ge . ( t s t a r t d i s r p t−zeps i ) ) ) then

betap=betap0+d_betap∗exp(−( ztime−t s t a r t d i s r p t )/ tau_beta )

endif

∗ Calcolo gap lungo i l raggio

c a l l gap_along_r ( R0 , ra , th_f lux , 8 , r p l a _ p r o j )

do i =1 ,8

gap_proj ( i )= ra−r p l a _ p r o j ( i )

enddo

∗ Azzerramento t e n s i o n i a p p l i c a t e a i c i r c u i t i

do i =1 ,17

plc ivu ( i )=0

enddo

∗ Azzerramento t e n s i o n i PVAT

do i =1 ,8

vpvat ( i )=0

enddo

∗ Rifer imento posiz ione c o n t r o l l o r i : cent ro ide di c o r r e n t e

R_meas=datplasma ( 4 )

Z_meas=datplasma ( 5 )

∗ Contro l lo posiz ione su bobine s e l l a

i f ( pos_contr ) then

errR=R_meas−R_ref

errZ=Z_meas−Z_ref

∗ Radiale : BcampoZ=[0 −1 0 1] ma segno − dovuto a l feedback

plc ivu (13+2)= plc ivu (13+2)+kpR∗errR

plc ivu (13+4)= plc ivu (13+4)−kpR∗errR

∗ V e r t i c a l e : BcampoR=[1 0 −1 0] ma segno − dovuto a l feedback
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plc ivu (13+1)= plc ivu (13+1)−kpZ∗errZ

plc ivu (13+3)= plc ivu (13+3)+kpZ∗errZ

endif

∗ Preparazione per e l a b o r a z i o n i di s e t t o r e e per s c r i t t u r a c o r r e n t i

∗ nei f i l e di output

do i =1 ,10

pol_current ( i )= p l c i c o ( i )

enddo

pol_current ( 1 1 ) = ( p l c i c o (11 )+ p l c i c o ( 1 2 ) ) / 2

pol_current (12 )= p l c i c o ( 1 3 )

∗ u KF per aggiornamento stima . Uso l a vpvat a l passo precedente .

∗ Adatto l e convenzioni di segno

do i =1 ,8

ukf ( i )= sign_pvat ( i ) ∗ ( vpvat_old ( i )−vcomp_pvat ( i ) )

enddo

∗ y0 KF per aggiornamento stima

y0kf (1 )= xipla−i p l a _ r e f

y0kf (2 )= R_meas−R_ref

y0kf (3 )= Z_meas−Z_ref

do i =1 ,8 ! gap

y0kf (3+ i )= gap_proj ( i )−gap_ref ( i )

enddo

do i =1 ,8 ! c o r r e n t i b o b i n e FS

y0kf (11+ i )= pol_current (4+ i )− i f s _ r e f ( i )

enddo

do i =1 ,4 ! c o r r e n t i b o b i n e a s e l l a

y0kf (19+ i )= p l c i c o (13+ i )

enddo

write ( 1 1 0 5 ,∗ ) ztime , ( y0kf ( i ) , i =1 ,ymr)

∗ azzerro var iaz ione s t a t o

do i =1 ,dmr

dxkf ( i )=0

enddo

∗ evoluzione l i b e r a KF

do i =1 ,dmr

do k=1 ,dmr

dxkf ( i )= dxkf ( i )+Akf ( i , k )∗ xkf ( k )∗dtimep

enddo
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enddo

∗ correz ione dovuta a l l ’ ingresso

do i =1 ,dmr

do k=1 ,umr

dxkf ( i )= dxkf ( i )+Bmr( i , k )∗ ukf ( k )∗dtimep

enddo

enddo

∗ correz ione dovuta a l l ’ u s c i t a

do i =1 ,dmr

do k=1 ,ymr

dxkf ( i )= dxkf ( i )+Lmr( i , k )∗ y0kf ( k )∗dtimep

enddo

enddo

∗ aggiorno s t a t o KF

do i =1 ,dmr

xkf ( i )= xkf ( i )+ dxkf ( i )

enddo

write ( 1 1 0 0 ,∗ ) ztime , ( xkf ( i ) , i =1 ,dmr)

∗ Calcolo u s c i t a s t imata ( usata in s c r i t t u r a e per i n t e g r a l e e r r o r e a i gap )

do i =1 ,ymr

ystimkf ( i )=0

do k=1 ,dmr

ystimkf ( i )= yst imkf ( i )+Cmr( i , k )∗ xkf ( k )

enddo

enddo

write ( 1 1 1 0 ,∗ ) ztime , ( yst imkf ( i ) , i =1 ,ymr)

∗ Calcolo i n t e g r a l e var iaz ione a i gap usando l a stima del KF

do i =1 ,8

gapint ( i )= gapint ( i )+ yst imkf (3+ i )∗dtimep

enddo

∗ Calcolo ingresso c o n t r o l l o r e l q r

do i =1 ,umr

ulq ( i )=0

i f ( . not . i n t g r _ c o n t r ) then ! uso Kmr

do k=1 ,dmr

ulq ( i )= ulq ( i )+Kmr( i , k )∗ xkf ( k )

enddo
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e lse ! uso Kint

do k=1 ,dmr

ulq ( i )= ulq ( i )+ Kint ( i , k )∗ xkf ( k )

enddo

do k=1 ,8

ulq ( i )= ulq ( i )+ Kint ( i , dmr+k )∗ gapint ( k )

enddo

endif

enddo

write ( 1 1 2 0 ,∗ ) ztime , ( ulq ( i ) , i =1 ,umr)

∗ Applicazione vpvat per i l c o n t r o l l o LQR con cambio convenzioni di segno

∗ ! ! ! Segno meno d a v a n t i in quanto r e t r o a z i o n e n e g a t i v a A [−] BK ! ! !

i f ( shape_contr ) then

do i =1 ,8

vpvat ( i )= vpvat ( i )−ulq ( i )∗ sign_pvat ( i )

enddo

endif

∗ Compensazione r e s i s t i v a ( c o s t a n t e )

i f ( comp_res ) then

do i =1 ,8

vpvat ( i )= vpvat ( i )+ vcomp_pvat ( i )

enddo

endif

∗ Saturazione t e n s i o n i pvat

i f ( satura_pvat ) then

do i =1 ,8

i f ( vpvat ( i ) . gt . max_pvat ) then

vpvat ( i )= max_pvat

endif

i f ( vpvat ( i ) . l t . min_pvat ) then

vpvat ( i )= min_pvat

endif

enddo

endif

∗ Applicazione perturbazione PVAT e bobine s e l l a

∗ ( e s c l u s a d a l l a sa turaz ione )

write (∗ ,∗ ) ztime

i f ( ztime . ge . t s t a r t s t e p−zeps i . and . ztime . l e . t s t o p s t e p +zeps i ) then

do i =1 ,8
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vpvat ( i )= vpvat ( i )+ voltamp∗dis turbapvat ( i )

enddo

do i =1 ,4

plc ivu (13+ i )= plc ivu (13+ i )+ voltamp∗ b o b i n e s e l l a ( i )

enddo

endif

∗ Memorizzo tens ione pvat

vpvat_old=vpvat

∗ S u l l a base d e l l e t e n s i o n i VPVAT appena c a l c o l a t e , c a l c o l o t e n s i o n i

∗ plc ivu ( 1 . . . 1 3 ) a p p l i c a t e a i c i r c u i t i dovute a l l e equazioni di s e t t o r e .

∗ Ogni s e t t o r e del c i r c u i t o polo ida le e ’ cons idera to come i l p a r a l l e l o

∗ di 4 elementi : es . M1 // F2 // F7 // R_gr .

∗ La r e s i s t e n z a di ground e ’ n e c e s s a r i a per in t ro durre un feedback

∗ n e l l a simulazione : A ogni s tep i n f a t t i es . Im1 , I f 2 , I f 7 evolvono

∗ in modo che l a loro somma non s i a piu ’ nul la . Con R_gr " grande " ,

∗ se c ’ e ’ sbi lanciamento s i crea tens ione di s e t t o r e

∗ grande che tende a r i b i l a n c i a r e l e c o r r e n t i .

∗ c a l c o l o l e c o r r e n t i del s e t t o r e polo ida le (M+FS )

∗ numerate come i l c o r r i s p o n t e n t e c i r c u i t o M

i _ s ( 1 )= pol_current ( 1 )+ pol_current (6 )+ pol_current ( 1 1 )

i _ s ( 2 )= pol_current ( 2 )+ pol_current (5 )+ pol_current ( 1 2 )

i _ s ( 3 )= pol_current ( 3 )+ pol_current (8 )+ pol_current ( 9 )

i _ s ( 4 )= pol_current ( 4 )+ pol_current (7 )+ pol_current ( 1 0 )

∗ Calcolo l e t e n s i o n i a p p l i c a t e a l s e t t o r e supponendolo in s e r i e con R_gr

v_s (1)=− i _ s ( 1 )∗R_gr

v_s (2)=− i _ s ( 2 )∗R_gr

v_s (3)=− i _ s ( 3 )∗R_gr

v_s (4)=− i _ s ( 4 )∗R_gr

∗ Eventuale sa turaz ione c o r r e n t i con vdiode

do j =1 ,8

vdiode ( j )=0

enddo

i f ( satura_pvat ) then

i f ( pol_current ( 4 + 1 ) . gt . 0 ) vdiode (1)=100∗ pol_current (1+4)

i f ( po l_current ( 4 + 2 ) . gt . 0 ) vdiode (2)=100∗ pol_current (2+4)
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i f ( po l_current ( 4 + 3 ) . l t . 0 ) vdiode (3)=100∗ abs ( pol_current ( 3 + 4 ) )

i f ( po l_current ( 4 + 4 ) . gt . 0 ) vdiode (4)=100∗ pol_current (4+4)

i f ( po l_current ( 4 + 5 ) . gt . 0 ) vdiode (5)=100∗ pol_current (5+4)

i f ( po l_current ( 4 + 6 ) . gt . 0 ) vdiode (6)=100∗ pol_current (6+4)

i f ( po l_current ( 4 + 7 ) . gt . 0 ) vdiode (7)=100∗ pol_current (7+4)

i f ( po l_current ( 4 + 8 ) . l t . 0 ) vdiode (8)=100∗ abs ( pol_current ( 8 + 4 ) )

endi f

∗ Applicazione tens ione a l l e bobine : suppongo che l a loro r e s i s t e n z a

∗ s i a i n t r i n s e c a nel c i r c u i t o maxfea , vanno d e f i n i t e come r e s i s t e n z e

∗ e s t e r n e nel f i l e . pla

plc ivu (1 )= v_s ( 1 )

plc ivu (2 )= v_s ( 2 )

plc ivu (3 )= v_s ( 3 )

plc ivu (4 )= v_s ( 4 )

plc ivu (5 )= v_s (2)−vpvat (1)−vdiode ( 1 )

plc ivu (6 )= v_s (1)−vpvat (2)−vdiode ( 2 )

plc ivu (7 )= v_s (4 )+ vpvat (3 ) + vdiode ( 3 )

plc ivu (8 )= v_s (3)−vpvat (4)−vdiode ( 4 )

plc ivu (9 )= v_s (3)−vpvat (5)−vdiode ( 5 )

plc ivu (10)= v_s (4)−vpvat (6)−vdiode ( 6 )

plc ivu ( 1 1 ) = ( v_s (1)−vpvat (7)−vdiode ( 7 ) ) / 2

plc ivu ( 1 2 ) = ( v_s (1)−vpvat (7)−vdiode ( 7 ) ) / 2

plc ivu (13)= v_s (2 )+ vpvat (8 ) + vdiode ( 8 )

∗∗∗ S c r i t t u r a d a t i nei f i l e di output ∗∗∗
[ . . . ]

∗∗∗ Subroutine per c a l c o l o dei gap lungo i l raggio ∗∗∗

subroutine gap_along_r ( R0 , ra , th_f lux , totang , rplasma )

∗ Calcolo l a dis tanza s e p a r a t r i c e−bordo g r a f i t e lungo i l raggio , anziche ’

∗ in termini di dis tanza geometrica come viene f a t t o in mx2slp2 ,

∗ r ighe 1100−>1300.

∗ R0 : centro geometrico macchina ; ra : raggio bordo plasma

∗ t h _ f l u x : angol i r i s p e t t o a i q u a l i s i vuole c a l c o l a r e i l gap

∗ totang : numero t o t a l e angol i in t h _ f l u x

∗ rplasma : raggio st imato r i s p e t t o a ( R0 , 0 )
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INCLUDE ’ v e c t o r s . f ’

l o g i c a l debug_on

in teger nplasmael , i i ( 3 ) , nmat , ang , totang

r e a l ∗4 R0 ra ztime psib , u ( 3 ) , v l

r e a l ∗4 xxx ( 3 ) , yyy ( 3 ) , zmin , zmax , t t t 1 , t t t 2 , t t t 3

r e a l ∗4 rplasma ( totang ) , t h _ f l u x ( totang )

r e a l ∗4 pf , pl , df , dl , rtemp

∗ d e f i n i z i o n e v a r i a b i l i e parametri

debug_on =. f a l s e .

nmat=50 ! p lasma m a t e r i a l

ztime=datplasma ( 2 )

psib=datplasma ( 5 1 )

vl=psib /(2∗ pigrec )

do ang =1 , totang

rplasma ( ang )= ra

enddo

i f ( debug_on ) write ( 6 7 9 ,∗ ) ’ time= ’ , ztime , ’ ps i /2 pi= ’ , v l

∗ Copio da mx2slp2 l a procedura per r i c a v a r e xl , x f : per ogni t r i a n g o l o

∗ d e l l a mesh appartenente a l plasma , sono i due punti di i n t e r s e z i o n e d e l l a

∗ l i n e a del boundary con i l a t i del t r i a n g o l o

DO 300 i = 1 , n t r

IF ( t r 2 ( i , 7 ) . NE. nmat ) GO TO 300

i i ( 1 ) = 1

i i ( 2 ) = 2

i i ( 3 ) = 3

zmin = 1 . E30

DO 120 k = 1 , 3

u ( k ) = pnode ( t r 2 ( i , i i ( k ) ) )

xxx ( k ) = wnode( t r 2 ( i , i i ( k ) ) , 1 )

yyy ( k ) = wnode( t r 2 ( i , i i ( k ) ) , 2 )

IF ( u ( k ) . LT . zmin ) THEN

n = k

zmin = u ( k )

END IF
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120 CONTINUE

IF ( u ( 1 ) . EQ. u ( 2 ) .AND. u ( 1 ) . EQ. u ( 3 ) ) GO TO 300

zmax = max( u ( 1 ) , u ( 2 ) , u ( 3 ) )

zmin = min ( u ( 1 ) , u ( 2 ) , u ( 3 ) )

IF ( ( ( zmin−vl ) ∗ ( zmax−vl ) ) . GT . 0 . ) GO TO 300

t t t 1 = u ( n )

t t t 2 = xxx ( n )

t t t 3 = yyy ( n )

u ( n ) = u ( 1 )

xxx ( n ) = xxx ( 1 )

yyy ( n ) = yyy ( 1 )

u ( 1 ) = t t t 1

xxx ( 1 ) = t t t 2

yyy ( 1 ) = t t t 3

IF ( u ( 2 ) . GT. u ( 3 ) ) THEN

t t t 1 = u ( 3 )

t t t 2 = xxx ( 3 )

t t t 3 = yyy ( 3 )

u ( 3 ) = u ( 2 )

xxx ( 3 ) = xxx ( 2 )

yyy ( 3 ) = yyy ( 2 )

u ( 2 ) = t t t 1

xxx ( 2 ) = t t t 2

yyy ( 2 ) = t t t 3

END IF

l a = 0

IF ( ( v l . LT . max( u ( 1 ) , u ( 2 ) ) ) .AND. ( vl .GT. min ( u ( 1 ) , u ( 2 ) ) ) )

& THEN

xf = xxx ( 1 ) + ( vl−u ( 1 ) ) ∗ ( xxx (2)−xxx ( 1 ) ) / ( u(2)−u ( 1 ) )

yf = yyy ( 1 ) + ( vl−u ( 1 ) ) ∗ ( yyy(2)−yyy ( 1 ) ) / ( u(2)−u ( 1 ) )

l a = 12

GO TO 140

END IF

IF ( ( v l . LT . max( u ( 3 ) , u ( 2 ) ) ) .AND. ( vl .GT. min ( u ( 3 ) , u ( 2 ) ) ) )

& THEN

xf = xxx ( 2 ) + ( vl−u ( 2 ) ) ∗ ( xxx (3)−xxx ( 2 ) ) / ( u(3)−u ( 2 ) )
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yf = yyy ( 2 ) + ( vl−u ( 2 ) ) ∗ ( yyy(3)−yyy ( 2 ) ) / ( u(3)−u ( 2 ) )

l a = 23

GO TO 140

END IF

xf = xxx ( 1 ) + ( vl−u ( 1 ) ) ∗ ( xxx (3)−xxx ( 1 ) ) / ( u(3)−u ( 1 ) )

yf = yyy ( 1 ) + ( vl−u ( 1 ) ) ∗ ( yyy(3)−yyy ( 1 ) ) / ( u(3)−u ( 1 ) )

l a = 13

140 IF ( v l . LT . max( u ( 2 ) , u ( 3 ) ) .AND. vl .GT. min ( u ( 2 ) , u ( 3 ) ) .AND.

& l a .NE. 2 3 ) THEN

x l = xxx ( 2 ) + ( vl−u ( 2 ) ) ∗ ( xxx (3)−xxx ( 2 ) ) / ( u(3)−u ( 2 ) )

y l = yyy ( 2 ) + ( vl−u ( 2 ) ) ∗ ( yyy(3)−yyy ( 2 ) ) / ( u(3)−u ( 2 ) )

GO TO 160

END IF

x l = xxx ( 1 ) + ( vl−u ( 1 ) ) ∗ ( xxx (3)−xxx ( 1 ) ) / ( u(3)−u ( 1 ) )

y l = yyy ( 1 ) + ( vl−u ( 1 ) ) ∗ ( yyy(3)−yyy ( 1 ) ) / ( u(3)−u ( 1 ) )

i f ( debug_on ) write ( 6 7 9 ,∗ ) ’ t r i a n g = ’ , i , xl , yl , xf , yf

∗ A questo punto ho c a l c o l a t o corre t tamente ( xl , y l ) e ( xf , yf )

∗ Tras lo nel s is tema di r i f e r i m e n t o c e n t r a t o in ( R0 , 0 )

x l =xl−R0

xf=xf−R0

∗ Calcolo l e p r o i e z i o n i dei due punti s u g l i o t t o raggi : ruoto

∗ i l s is tema di r i f e r i m e n t o in modo che s i a quel lo del raggio c o r r e n t e

160 do ang =1 , totang

∗ pf e pl sono l e p r o i e z i o n i di ( xf , yf ) e ( xl , y l ) su l raggio

∗ df e dl sono l e a l t e z z e d e g l i s t e s s i punti r i s p e t t o a l raggio

pf=xf ∗ cos ( t h _ f l u x ( ang ) ) + yf∗ s i n ( t h _ f l u x ( ang ) )

df=(−xf ∗ s i n ( t h _ f l u x ( ang ) ) + yf∗ cos ( t h _ f l u x ( ang ) ) )

pl= x l ∗ cos ( t h _ f l u x ( ang ) ) + yl ∗ s i n ( t h _ f l u x ( ang ) )

dl=(−x l ∗ s i n ( t h _ f l u x ( ang ) ) + yl ∗ cos ( t h _ f l u x ( ang ) ) )

i f ( debug_on ) write ( 6 7 9 ,∗ ) ’ angle= ’ , ang , pf , df , pl , dl

rtemp=ra

∗ vedo se sono opposte : df∗dl minore di 1 . In t a l caso i l raggio

∗ passa per i l t r i a n g o l o
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i f ( ( df∗dl ) . l t . 0 ) then

∗ considero i moduli per usare l e a l t e z z e n e l l a proporzione

df=abs ( df )

dl=abs ( dl )

∗ c a l c o l o i n t e r s e z i o n e con proporzione

rtemp =( pl∗df+pf∗dl ) / ( df+dl )

i f ( debug_on ) write ( 6 7 9 ,∗ ) ’ rtemp= ’ , rtemp

endif

∗ g e s t i s c o i c a s i degeneri

i f ( df . eq . 0 ) then

rtemp=pf

endif

i f ( dl . eq . 0 ) then

rtemp=pl

endif

∗ aggiorno rplasma

i f ( ( rtemp . l t . rplasma ( ang ) ) . and . ( rtemp . ge . 0 ) ) then

rplasma ( ang )= rtemp

endif

enddo

300 CONTINUE

return

end
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