
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea

Parallel Stack Distance Computation for the
Least Recently Used Replacement Policy

Advisor: Prof. Gianfranco Bilardi Student: Alberto Chimetto

9 Ottobre 2017
Anno Accademico 2016/2017

iii

In God we trust.
All others must bring data.

W. EDWARDS DEMING

iv

Abstract

Storage hierarchies have been a staple in the organization of the memory in
a computer system. Faster levels of memory are placed closer to the CPU,
while further devices have higher storage capacity, but take considerably
more time to access. In this work we focus on caches, and specifically on the
stack distance computation problem. This problem involves the calculation
of the minimum cache capacity containing a given page reference encountered
while processing the address trace of a computer program.

Stack distance computation has been widely investigated for a single pro-
cessor; our objective is to design a parallel algorithm in order to speedup
this operation. To this end, we present a theoretical framework which in-
volves Finite State Machines and prefix computation on semigroups. With
this framework, we have focused on the LRU policy and developed a parallel
algorithm capable of analyzing a trace of L references to V distinct addresses
in time O((L log V)/P), when executed by P ≤ L/V processors. This repre-
sents a linear speedup with respect to the best known sequential algorithm.
We have implemented our algorithm in C++ and evaluated its performances
on an IBM Power 770 machine.

v

vi

Contents

Abstract v

1 Introduction 1
1.1 Replacement policies for the memory hierarchy 3
1.2 The LRU policy . 4
1.3 The stack distance framework 6
1.4 Sequential algorithms for LRU stack distance computation . . 8

1.4.1 O(LV) algorithms . 9
1.4.2 O(L log V) algorithms 10

1.5 Objective of the thesis: parallel computation 14
1.5.1 Performance objective: T = O((L log V)/P) 15
1.5.2 Obstacles to be overcome 15

1.6 Related work . 17

2 Finite state machine evolution and prefix computation 19
2.1 Definition of finite state machine 21
2.2 The FSM corresponding to LRU stack 22
2.3 Definition of prefix computation 22
2.4 Semigroup of a machine . 23
2.5 Reduction of state evolution to prefix computation 24

2.5.1 Output computation 25
2.6 Analysis of the machine semigroup and choice of representation 25
2.7 Algorithms for semigroup multiplication under the chosen rep-

resentation . 26
2.8 Review of parallel algorithms for prefix computation 27

3 The FSM-prefix framework for LRU stack computation 29
3.1 The semigroup . 30
3.2 Representation and multiplication 32
3.3 The prefix algorithm for LRU stack computation 35

vii

viii CONTENTS

4 Experimental Results 39
4.1 Summary of results . 40
4.2 Open problems and future work 45
4.3 Conclusions . 46

Bibliography 47

Chapter 1

Introduction

As of today, it has been recognized that storage systems cannot achieve the
required performances of speed and capacity within a single technology at
an acceptable cost-performance balance. For this reason, the memory in a
state-of-the-art computer system is organized in several levels. This has led
to the development of storage hierarchies, where faster pieces of hardware are
closer to the CPU than slower ones. The goal is to maximize the number of
times items of interest are in the fast memory levels: most references to those
items will then be directed to the fast devices, while the majority of data is
still stored in the slow, large stores. The system will then acquire almost
the same speed of the fast levels, although maintaining the cost-per-bit of
the less expensive ones. This trade-off between cost and performances is the
main justification for storage hierarchies. In Figure 1.1 is depicted a typical
storage hierarchy:

• CPU registers: ∼ 0.3ns access time;

• L1 cache: ∼ 1ns access time;

• L2 cache: ∼ 4ns access time;

• L3 cache: ∼ 30ns access time;

• Main memory/RAM: ∼ 100ns access time;

• Secondary memory/HDD: ∼ 10ms access time.

At the top of the pyramid are located the fast and expensive devices,
while at the bottom we encounter levels of memory with higher access times,
but capable of storing great quantities of data at a reasonable price. Modern
architectures usually contain three levels of cache memory, while Solid State

1

2

Figure 1.1: Schematic of a typical storage hierarchy

Drives (SSD) can replace traditional Hard Disk Drives (HDD), granting lower
access times (∼ 100µs).

Following the path taken in [1], in this work we will focus on two levels
of memory called the buffer and the backing storage. The task of the CPU
is to process the instructions composing a computer program; when one of
these instructions contains an access request for a stored item, this request
is called a hit if said item is contained in the buffer, and a miss if it is in
the backing storage. Upon a miss, the item will be searched in the backing
storage and brought into the buffer. If the latter is full, a replacement policy
will choose one item in the buffer to discard to make place for the requested
one. A replacement algorithm is a procedure which implements one of the
policies. These replacement operations are transparent (except for timing)
to the remainder of the computer, so the work of the storage hierarchy can
be considered indistinguishable from that of a single-device system.

As a final remark, it is important to note that the hierarchy model will
probably remain the standard paradigm in future computational systems.
As mentioned in [2], even if we were able to reach the minimum chip-size of
silicon components, so that we could have CPU registers in large quantities
at a reasonable price, the principle of maximum information speed states
that a bit of information can not travel faster that the speed of light. This
means that the physical distance of memory blocks from the CPU core will
inherently introduce a hierarchy, since the access times will linearly grow as
the distances increase.

1.1. Replacement policies for the memory hierarchy 3

1.1 Replacement policies for the memory hi-
erarchy

As described in Chapter 1, the goal of a replacement policy is usually to
minimize the number of misses encountered while processing the sequence
of access requests. With the term address trace we indicate the sequence of
addresses where each item is represented by its address in a virtual space.
In today’s systems, the address space is partitioned into equal sized pages,
which are the block of information being moved between the various levels of
the hierarchy. We will then use the terms ’page’ and ’item’ interchangeably.
Below is a list of some of the most used replacement policies:

• Least Recently Used (LRU): the item (page) to be discarded when
the buffer is full is the least recently used one;

• Least Frequently Used (LFU): this policy counts how often each
page is referenced, and the least used ones will be discarded first. It
is very similar to LRU, but it stores the number of accesses for every
page instead of how recently it has been accessed;

• First In First Out (FIFO): the buffer behaves as a FIFO queue and
the page to be discarded is the first accessed, without any regard to
how many times or how often it has been accessed before;

• Last In First Out (LIFO): the buffer behaves in the exact opposite
way than a FIFO queue;

• Random Replacement (RR): the page to be discarded is selected
randomly between those in the buffer. This policy is extremely simple,
since it does not need to keep track of any information about the history
of the buffer;

• Belady’s algorithm (MIN): the purpose of this optimal replacement
policy is to minimize the number of misses. It is an off-line algorithm,
since it needs a certain amount of lookahead to determine the page to
be replaced in the buffer;

• Optimal algorithm (OPT): similar to MIN, this policy replaces the
page whose reference is farthest in the future. This optimal algorithm as
well cannot be realized on-line in modern computers, since it requires
the knowledge of the entire address trace to determine future page
references.

4 1.2. The LRU policy

As underlined in [3], it is important to note that both OPT and MIN
are optimal policies, since they achieve the minimum number of misses in
any address trace. There are however several differences between them: for
instance, MIN and OPT incur in a miss at exactly the same accesses, but
they may choose to replace different pages. Moreover, the look-ahead needed
to determine the item to evict may be smaller for MIN than for OPT.

1.2 The LRU policy
In this section we will briefly review the main aspects of the Least Recently
Used replacement policy. As mentioned before, under LRU policy the page
to be replaced is the one that has not been referenced for the longest time.
In Figure 1.2 is shown an example of LRU replacement; the buffers have
capacity up to four elements and the asterisks below them indicate a hit,
namely the access requests reference objects already in the buffer.

The figure also highlights one of the key features of the LRU replacement,
that is the inclusion property: the set of the C most recently used pages is
always contained in the set of the C+1 most recently used items. This means
that the success function F (C), the number of hits over the entire address
trace, will always be greater for buffers with greater capacity.

Figure 1.2: LRU replacement for buffers of different capacities.

We introduce the concept of stack distance, namely the distance of the
next page to be referenced from the top of the stack. If the next item to be

1.2. The LRU policy 5

processed is not in the buffer (i.e. it has been discarded or it has yet to be
seen for the first time), the distance is set to +∞.

Figure 1.3 illustrates how the LRU policy works in a buffer of four ele-
ments capacity. The stack distance is +∞ when the element is first inserted
in the buffer, while later it depends on its position in the stack. The distance
counters in the last row keep track of how many times each stack distance is
observed.

Figure 1.3: LRU stack for a buffer with four pages.

The stack distance strategy allows us to directly evaluate the success
function: by summing all the times a stack distance has been observed over
all the address trace, we are able to estimate the minimum buffer capacity
needed to reduce the number of misses encountered while processing the
sequence of access requests. Mathematically, let n(∆) be the number of
times the stack distance ∆ is observed, C the buffer capacity and L the
length of the address trace. The number of times that the next page is in
the buffer is

N(C) =
C∑

∆=1
n(∆) (1.1)

and the success function is hence given by the expression

F (C) = N(C)/L (1.2)

The set {n(∆)} can be determined from a set of distance counters, as
mentioned before. These counters are initialized to zero, and the counter

6 1.3. The stack distance framework

for a given distance ∆ is incremented when that distance occurs. For page
numbers of k-bit we need at most 2k + 1 counters, since 1 ≤ ∆ ≤ 2k and 1
counter is reserved for the infinity distance ∆ = +∞. At the end of the trace,
the set {n(∆)} is determined by the final values of each distance counter,
while the success function F (C) can be obtained from Equations 1.1 and 1.2.

In the remainder of this section we will show a numerical example of the
evaluation of the success function. In Figure 1.3 is shown the content of
the buffer in each moment of the address trace processing. The final values
for ∆’s of 1,2,3,4 and ∞ are, respectively, 2,1,2,1 and 4. This distribution
is shown in Figure 1.4A while the success function F (C) is computed using
Equations 1.1 and 1.2 and is shown in Figure 1.4B. The results are the same
as those obtained in the simulation in Figure 1.2.

Figure 1.4: Distance frequencies and success function.

We can note that under LRU replacement, as intuition may have sug-
gested, F (C) is always a monotonic, non-decreasing function of C. Moreover,
let V be the number of distinct pages in the whole address trace: F (C) never
exceeds (L − V)/L for any capacity, since all the pages are initially located
in the backing storage and need to be brought in the buffer at least once.

1.3 The stack distance framework
We will now formally review some of the concepts outlined before as well as
the notation used in the remainder of the thesis.

Addresses, buffers, traces. Let A be a totally ordered set of virtual ad-
dresses and {Ix ∈ A} the corresponding space of virtual items, where Ix is
the unique item identified by address x. A buffer of capacity C is a container
for up to C items. An address trace is a sequence x = (x1, x2, ..., xL) ∈ AL of
virtual addresses, where L indicates the length of the trace. With Bt(C) we
indicate the set of addresses of the items in the buffer after having processed

1.3. The stack distance framework 7

x1, x2, ..., xt−1. We call this set the buffer state.

Policies, hits, misses. A replacement policy is a function with three inputs:
(i) an address trace x, (ii) a buffer capacity C and (iii) an initial buffer state
B1(C). Its output is a sequence of buffer states B2(C), ..., BL+1(C). In our
notation xt ∈ Bt+1(C), that is the item xt at time t is brought in the buffer
at time t+ 1. If at time t = 1, 2, ..., L xt ∈ Bt(C), a hit occurs, while we will
have a miss otherwise. An algorithm which implements a given replacement
policy is called a replacement algorithm. A demand policy is a policy with
the following proprieties:

a) in case of a hit the buffer does not change;

b) upon a miss (b1) if the buffer is full (|Bt(C)| = C) only one item is
discarded and (b2) the requested item xt is brought into the buffer.

Inclusion, stack, stack distance. Let Vt be the number of distinct pages
processed up to time t and x the address trace being processed. A buffer
satisfies the inclusion property if at any time t (1 ≤ t ≤ L), for some Vt:

a) |Bt(C)| = min(C, Vt) for any C ≥ 1;

b) Bt(C − 1) ⊆ Bt(C) for any C ≥ 2.

An inclusion policy P is defined as a demand policy where the buffers sat-
isfy the inclusion property ∀t > 1, when they satisfy it for t = 1. For C ≤ Vt,
the distinguished item Σt(C) for C is defined as Bt(C) − Bt(C − 1). The
stack for an inclusion policy can then be defined as Σt = (Σt(1), ...,Σt(Vt)),
that is the sequence of distinguished items brought in the buffer. This means
that the stack is a permutation of the elements of Bt(Vt). Note that if xt is
a hit for the buffer, then Vt+1 = Vt, else Vt+1 = Vt + 1. The stack distance
∆t is defined as h if, for some h ≤ Vt, we have that Σt(h) = xt, and as +∞
otherwise. Hence the stack distance is the depth of a page from the top of
the stack, whether it has already been brought inside the buffer. The critical
capacity is labeled C∗t = min(∆t, Vt + 1), namely the smallest capacity that
does not discard an item at time t.

Time of previous access, LRU policy, LRU stack. We denote the time
of previous access to an address z ∈ A as rt(z) and define it as:

a) if z ∈ {x1, ..., xt−1}, then rt(z) = maxτ : 1 ≤ τ ≤ t− 1 : xτ = z;

b) if z /∈ {x1, ..., xt−1}, but Σ1(i) = z, then rt(z) = −i;

8
1.4. Sequential algorithms for LRU stack distance

computation

c) rt(z) = −∞ in all other cases.

When the buffer is full, the Least Recently Used policy discards the item
z with the smallest time of previous access rt(z); let us remember once more
that LRU is an inclusion policy. We denote the LRU stack ΣLRU

t as Λt =
(Λt(1), ...Λt(Vt)) and its stack distance as ∆t = ∆LRU

t . In this stack, items
are ordered according to their time of previous access, decreasing from top
(Λt(1)) to bottom (Λt(Vt)). When element xt is to be accessed, ΣLRU

t is
updated by inserting xt in position min(∆t, Vt + 1), if it is not already the
first element, and then by cyclically shifting the top min(∆t, Vt+1) positions
of the stack by one position to the bottom; by doing so, xt is moved to the
top position Λt+1(1) of the stack (Figure 1.5).

Figure 1.5: Update of an LRU stack.

1.4 Sequential algorithms for LRU stack dis-
tance computation

In this section we will examine two different implementations of the LRU
stack algorithm. We define a stack algorithm as a replacement algorithm
whose buffer contents in a demand-paged, two-level hierarchy satisfy the
inclusion property for every address trace and every point in time. These
algorithms are of particular interest to us, since it has been shown that

1.4. Sequential algorithms for LRU stack distance
computation 9

their stacks can be iteratively maintained, and that we can use their stack
distance frequencies to obtain the corresponding success function F (C) for a
given address trace, as already shown in Equations 1.1 and 1.2.

Assuming that the algorithm is operating on an address trace x of length
L with V distinct pages (of course V < L) and that the letter t is used to
index the trace, a three step description of the algorithm is as follows:

while (0 ≤ t < L):

• search: in the stack ΣLRU
t find the position of the most recent

reference to page xt;

• count: compute the stack distance ∆LRU
t for the current location,

by finding the last reference to the current location and counting
its depth from the top of the stack (i.e. the number of elements
above it). If there is no such reference, the stack distance is defined
as +∞;

• update: bring the most recent reference to the top of the stack.

1.4.1 O(LV) algorithms
A naive implementation of the LRU stack algorithm computes the stack
distances in time T = O(LV) and auxiliary space Saux = O(V), needed to
create the buffer ΣLRU . The LRU stack can be implemented as a doubly
linked list. For each page xt in the address trace, the first two operations
(search and count) are executed at the same moment, traversing the stack
from top to bottom. If the element is found in the stack, its stack distance is
recorded in a given distance counter. The update procedure, already shown
in Figure 1.5, finally moves the element to the top of the stack. As already
discussed, if no reference is found in the stack the element is still pushed to
the top, but the recorded distance is +∞.

Under these hypothesis it is easy to see that the algorithm runs in time
T = O(LV). Since many programs exhibit good locality (i.e. the program
works on small amount of data at the same time), the worst case does not
happen very often and many references are found close to the top of the
stack. However, the few cases where the reference is found near the bottom
of the stack cause severe slow-downs, and the overall performance is hence
greatly affected.

10
1.4. Sequential algorithms for LRU stack distance

computation

1.4.2 O(L log V) algorithms
This section is heavily based on [4]. The bottleneck of the naive implemen-
tation is the linear traversal at each step of the linked list that makes up the
stack. To implement a more efficient version of the LRU stack algorithm, we
hence need a different data structure. In the following definitions we will use
Bennet and Kruskal’s [5] notations:

• hashtable P: the hashtable contains, for each reference xi in the ad-
dress trace x, the time/index of its last use. We define J as the set of
indexes of references to z that happened before a certain index t in the
address trace:

Jt = {i|0 ≤ i < t ∧ xi = z}

We hence define the hashtable Pt as:

Pt(z) =
max{i|i ∈ J } if J 6= ∅
undefined otherwise

(1.3)

We can note that Pt is time dependent and that Pt(z) is empty in case
a miss occurs;

• mapping B: we define a mapping from the trace indexes 0, ..., L − 1
to {0, 1}. B, which is time dependent as P, intuitively flags all the
references that are already in the stack at time t. So Bt(i) is:

Bt(i) =
1 if Pt(xi) = i

0 otherwise
(1.4)

B is hence an alternative representation of the stack directly mapped
on the address trace: Bt(i) = 1 only for the elements xi of x that are
currently stored in ΣLRU

t ;

• stack distance ∆t: with P and B, we can now define the stack dis-
tance of an element xt: it is the number of 1’s between the last reference
to xt and the current index t.

∆t =
|H| if Pt(xt) is defined

+∞ otherwise
(1.5)

where H is defined as:

H = {i|Pt(xt) ≤ i < t ∧Bt(i) = 1}

1.4. Sequential algorithms for LRU stack distance
computation 11

Intuitively, H is the subset of trace indexes between Pt(xi) (i.e. the
last position where xi is referenced) and the current index t whose B
values are 1.

The LRU stack algorithm problem can then be redefined as follows with-
out using the stack:

while (0 ≤ t < L):

• search: compute Pt(xt);

• count: compute the stack distance ∆t. If Pt(xt) is undefined, the
stack distance is set to +∞;

• update: change B and P as follows:

Bt+1(i) =

1 if i = t

0 if i = Pt(xt)
Bt(i) otherwise

Pt+1(z) =
t if z = xt

Pt(z) otherwise

Having defined the alternative data structures, the stack algorithm just
needs to keep B and P updated, and compute the stack distances as defined
in Equation 1.5. However, to achieve time T = O(L log V) we need a more
efficient way to evaluate ∆t. An algorithm that reaches this bound is the
hole-based algorithm.

We define a hole as a memory reference that is not the latest reference
to a certain memory location at time t. Hence the holes are the 0’s in Bt.
Holes are of interest since, contrary to ones that are constantly created and
destroyed, they have the property of never being destroyed once they have
been created. The stack distance at time t can then be expressed as

∆t = t−Pt(xt)− holest(Pt(xt)) (1.6)

where holest(i) is the number of zeros in the address trace x between indexes
i and t. This means that we are counting the 0’s instead of the 1’s in B, and
adjusting Equation 1.5 to this new strategy.

Holes are more easily represented than last references, and will be stored
in an interval tree. This data structure is used to find intervals that overlap

12
1.4. Sequential algorithms for LRU stack distance

computation

with another given interval or point in an efficient way. These intervals need
to be mutually disjunct and ordered in a set I = {[i11, i12], [i21, i22], ..., [in1, in2]}.
In our case, the intervals in I are bounded by natural numbers that are in-
dexes in the address trace; therefore, each interval represents a contiguous
set of indexes t that are 0’s in the trace.

Interval trees (Figure 1.6) can be represented as quasi-balanced Binary
Trees BT such as the red-black trees ([6]). Each node n will then store a
closed interval [k1(n), k2(n)]. These intervals, contained in I, regulate the
ordering of the tree: defining as left(n) and right(n) the left and right
children of n respectively, we have that k1(n) < k2(left(n)) and k2(n) <
k1(right(n)).

Figure 1.6: An interval tree.

As shown in Equation 1.6, we can use the interval tree to compute ∆t by
counting the number of holes between P(xt) and t. However, since there are
certainly no holes beyond the current index t, our task is just to count the
number of holes beyond index P(xt). To this end, we need to store in each
node n of the tree the number of holes sum(n) contained in its two children.
The tree has now become equivalent to the partial sum hierarchy of Bennet
and Kruskal.

An optimization that reduces the number of dereferentiations on the right
subtree is to make sum(n) store only the number of holes in right(n), instead
of n itself.

In Figure 1.7 the shaded boxes store the number of holes in their right
subtree, as indicated by the dashed arrows. The cells marked with * will not
need to be dereferenced during the tree traversal. To count the number of
holes after index P(xt), we traverse the tree from top to bottom, searching for

1.4. Sequential algorithms for LRU stack distance
computation 13

Figure 1.7: Updating the interval tree.

the leaf node closest to P(xt). We then sum all the holes of the right subtrees
encountered along the path (i.e. those with indexes larger than P(xt)).

The update procedure of the LRU stack algorithm needs to consider
three cases, when we insert a new hole p into the tree:

• if p is adjacent to a stored interval [k1, k2] (i.e. p = k1−1 or p = k2 +1),
the interval is updated to include p;

• if p is adjacent to two existing intervals [k1, p − 1] and [p + 1, k2], the
two intervals are merged into a single [k1, k3]. This operation deletes
one of the two nodes and may trigger a rebalance of the tree;

• if p is not adjacent to any interval in the tree, a new node is created to
store the interval [p, p]. A rebalance may be needed.

Lastly, to update the partial sum hierarchy we need to change the values
of the sum of the holes in right(n) of all the nodes on the path from the root
to the leaf. The whole operation is shown in Figure 1.7.

The algorithm, based on a quasi-stationary binary tree, takes timeO(log V)
to find ∆t. The total run time is hence T = O(L log V) and space Saux =
O(V) is needed to store the binary tree.

14 1.5. Objective of the thesis: parallel computation

1.5 Objective of the thesis: parallel compu-
tation

Parallel computing has been investigated since the late 1950s, and has re-
cently become part of mainstream computing. Intuitively, the idea is to use
more processors, or cores, to simultaneously carry out the execution of sev-
eral processes. This is feasible when the problem to be solved can be easily
divided in independent sub-problems, whose results will be combined to ob-
tain the final solution once they have all been solved. The divide and conquer
paradigm we have just described can be easily integrated with parallel com-
puting, since we can assign each of the sub-problems to a different processor
to speed up calculations.

There is however a trade-off to be aware of, since coordinating the work
of the processors and moving the data between them comes with a temporal
cost: the time of communication Tcomm can sometimes even exceed the time
Texec needed to actually solve the problems. This means that simply using
more processors will not automatically yield better performances, and since
the total execution time Ttot = Texec + Tcomm, we need to strike a balance
between these two times.

One more aspect worth of consideration is the usage of the processors.
Let us suppose we have N CPUs available, so that we can solve N sup-
problems on the first iteration. In most cases only one CPU can work on a
given amount of data; this means that in the conquer phase, only a subset of
those N CPUs, usually N/2, will be used again in the second iteration. N/4
processors will be used in the third cycle and so on. It is clear that there
is a waste of resources, since we use our full computing capability only once
in the whole execution; it is therefore important to devise a strategy that
efficiently utilizes the available CPUs.

Let us now produce an example to show the usefulness of the parallel
approach on this type of problem. Let us suppose we want to run an online
simulation of a replacement policy on an address trace with V = 1000000
pages. In this hypothetical scenario, we are equipped with two hardware
cores: the first one will generate the address trace of a given program, while
the second one will run the simulation of the LRU policy and compute the
stack distances. Qualitatively, we can estimate that for each memory access
of the program we are observing, the algorithm that studies its trace can do
around 5 log V operations. Let us suppose the two cores run at the same
speed; the simulation will be about 100 times slower than the trace genera-
tion. If we want to carry out an on-line analysis, we will have to compensate
this disparity using parallelism. While we would need at least 100 processors

1.5. Objective of the thesis: parallel computation 15

to keep up with the program, a more realistic number would be around 250
cores.

A final remark worth mentioning is that parallelism is the only solution we
have to tackle problems of machine simulation. Solving this type of problems
allows us to build better machines, which in return will be able to examine
more complex programs. In this virtuous cycle, both our capabilities to
analyze information and to generate it will grow. However, the length L of
those programs as well as their number of pages V will increase, while our
improved computational power can only compensate for one of these two
factors, if we want to run a real-time analysis. By solving more complex
problems we also generate more difficult ones, and parallelism is the answer
to keep up in this vicious cycle.

1.5.1 Performance objective: T = O((L log V)/P)
As we have seen in Section 1.4.2, using a binary tree it is possible to compute
the LRU stack distance in time T = O(L log V). This result is obtained
using a sequential algorithm; what we set out to achieve in this thesis is the
implementation of a parallel algorithm that, using P processors, can achieve
T = O((L log V)/P). Let SP (n) be the speedup obtained using P processors
on a problem of size n:

SP (n) = T ∗(n)
TP (n) (1.7)

In equation 1.7 we labeled the complexity of the best sequential algorithm
as T ∗(n) and as TP (n) the total run time of a parallel algorithm which uses
P processors. We consider optimal a speedup proportional to the number of
processors used, hence in our case we have that:

SP (n) = O(L log V)
O((L log V)/P) ∝ P

In other words, we hope to achieve a speedup proportional to P using a
parallel approach to the stack distance evaluation problem.

1.5.2 Obstacles to be overcome
Let us examine the linear time sequential algorithm that computes the stack
distance in time T = O(LV); this algorithm could be easily sped up if we
were given P = V processors to use, since we could simply assign each of the
V processors to a single position Λ(i), i = 1, ..., V , of the LRU stack ΣLRU .
When a new page xt appears in the address trace, all the V processors can

16 1.5. Objective of the thesis: parallel computation

simultaneously check if their own position contains xt. If the page is found,
with a broadcast message they can inform the other processors and update the
stack accordingly, moving the data between them. With a Parallel Random
Access Machine (PRAM), this whole operation could be done in constant
time, thereby achieving a total temporal complexity of T = O(L). The main
issue of this approach is that we are trying to parallelize an inefficient version
of the algorithm: with V processors we obtain T = O(L), while the binary
tree version achieves T = O(L log V) using only one processor.

To truly take advantage of the parallel approach we hence have to focus
on the logarithmic version of the algorithm. Our goal is to devise a strategy
that allows us to work on different segments of the address trace at the
same time, since the data structure already operates in logarithmic time.
Our choice is furthermore justified by the realization that it is not easy to
parallelize the tree traversal, which is the core of the logarithmic algorithm.
There are however some complications with the divide and conquer approach
we are hoping to utilize, as we are going to explain next.

To the best of our knowledge, the problem of devising a parallel algorithm
for stack distance computation has only been tackled in [7], which proposes an
ad-hoc solution for the LRU policy. A possible reason for such an occurrence
is that this type of problem is not easy to parallelize. Let us recall the address
trace x and its length L, while V is the number of distinct pages in x; to
determine the exact composition of the buffer Bt at all times t = 1, ..., L, we
need to know the past history of the trace, that is which pages have been
brought inside and outside each buffer in all the previous steps. Intuitively,
if we want to compute the stack distances of address trace x starting from
t = L/2, the first obstacle we encounter is the lack of knowledge of the buffer
state BL/2, which is needed as shown in Figure 1.5. At first glance, only a
sequential algorithm seems to be able to satisfy this requirement, that is a
procedure that computes the buffer state in each moment t = 1, ..., L. This
means that simply dividing the trace between P processors, so that each
one can independently evaluate the stack distances of a segment of length
L/P pages, will not work, because we do not know the buffer state at the
beginning of each segment, except for the first one.

To summarize, theO(LV) algorithm is inefficient, but its inefficiency on V
can be mitigated by parallelism, with a trade-off involving a significant num-
ber of processors; the O(L log V) algorithm instead is more work-efficient,
but the single update step is hard to parallelize.

1.6. Related work 17

1.6 Related work
Parda was presented in 2012 ([7]) as the first parallel algorithm for stack
distance computation. While the algorithm presented in this thesis employs
a red-black tree as its core structure to simulate the stack, Parda uses a
splay tree. This particular tree is specifically designed to simulate cache
behavior, since recently accessed elements are positioned near the top of the
tree and are quick to access again. Basic operations of SEARCH, INSERT
and DELETE all take time O(log n), but the height of the tree in the worst
case, though unlikely, is O(n), which happens when all the n elements are
accessed in a non-decreasing order.

Parda is an algorithm specifically devised for the computation of reuse
distances (also known as LRU stack distances), namely it is tailored for the
LRU replacement policy. The strategy presented in this work instead takes
advantage of prefix computation, and has the potential to be developed for
the computation of the stack distances under different replacement policies.

18 1.6. Related work

Chapter 2

Finite state machine evolution
and prefix computation

In this chapter we will build the theoretical framework used in the remainder
of the thesis. Our objective is the reduction of state machine evolution to
prefix computation, since we already have efficient parallel algorithms to
compute the latter.

The sequential algorithms we have described in Section 1.4.1 and 1.4.2
can be thought of as the activity of the following machine:

• input: the address trace x = (x1, x2, ..., xt) up to time t;

• output: the stack distance ∆t;

• state: the stack ΣLRU
t , which stores informations about the trace up

to time t.

Information stored in the states is later used to correctly handle future
pages of the address trace. We also observe that the very description of LRU
stack distance given in Section 1.3 can be interpreted as the definition of a
finite state machine. From the classes on parallel computing by professor
Gianfranco Bilardi, we realize that the problem of parallelizing the evolution
of a finite state machine has already been studied. This means that we
know a general theory to deal with our problem, via reduction to prefix
computation on a suitable semigroup. However, if we were to directly insert
all possible transition functions between states in our semigroup, we would
soon realize that this semigroup would count |Q||Q| elements, were |Q| is
the number of states of the machine. Therefore, we want to verify if the
semigroup we actually need is smaller than the semigroup containing every
transition function. Our objective is hence twofold:

19

20

• inspect the minimum semigroup generated by the one-step transition
functions, which we will introduce in Section 2.5;

• find a suitable compact representation for the elements of the semigroup
to efficiently execute operations on said semigroup (Section 3.2).

Moreover, we can reasonably expect that the complexity of the semigroup
will somehow depend on the complexity of the finite state machine we are
simulating (i.e. if the machine is composed of two states, it is sensible to
presume that the corresponding semigroup will not be too complex).

Figure 2.1: Schematics of the problems to tackle.

In Figure 2.1 is shown the path that leads to the problem of the choice
of the semigroup. To summarize, it is already known how to set up the sim-

2.1. Definition of finite state machine 21

ulation of a finite state machine as a prefix computation problem on a given
semigroup. We can run this simulation for N steps in T = O(N/P), where
P ≤ N logN is the number of processors we can use. However, the constant
in the big O notation depends on which specific machine we are using, and
in particular on its number of states. Since this constant would be |Q||Q|,
the problem of parallelizing the LRU stack distance computation would be-
come essentially intractable; therefore, devising a minimum semigroup for
our machine is a problem yet to be tackled and is the core of this thesis.

2.1 Definition of finite state machine
A finite state machine (FSM), or simply a state machine, is an abstract
machine that is used as a computational model. A FSM is composed of
states and transitions between states, the latter being triggered by input
symbols from a given alphabet. A FSM is hence defined by its set of states,
its initial state and the conditions for each transition.

An important FSM is the Mealy machine M = (Σ,Q,Γ, δ, η), de-
fined as follows:

• Σ the input alphabet;

• Q the set of states;

• Γ the output set;

• δ : Q×Σ→ Q the state transfer function;

• η : Q×Σ→ Γ the output transformation function.

Figure 2.2: The FSM used for prefix computation.

In the Mealy machine, at time t, both the next state qt+1 and the output
zt depend on the current state qt as well as on the current input ut.

22 2.2. The FSM corresponding to LRU stack

Since the memory of a FSM is limited by its number of states, this model
has less computational power than other models such as the Turing Machine.
Nonetheless, FSMs are used in many applications ranging from hardware to
software (i.e. the lexical analyzer and parser of a compiler are implemented
using several state machines).

2.2 The FSM corresponding to LRU stack
Following the definition of finite state machine, we immediately provide an
example of the FSM we will use in the LRU stack distance problem. The
state machine M is the same quintuple (Σ,Q,Γ, δ, η) already defined in
Section 2.1, where:

• Σ = {set of trace addresses} where |Σ| = V ;

• Q = {(v,Λ) : v ∈ {0, 1, ..., V },Λ = (Λ(1),Λ(2), ...,Λ(v))} where v is
the number of different addresses encountered up until now and Λ is
the sequence of v distinct addresses;

• Γ = {1, 2, ..., V,+∞} is the set of stack distances;

• δ((v,Λ), u) =
(v + 1, (u,Λ)) if u /∈ {Λ}

(v, (u,Λ(1), ...,Λ(i− 1),Λ(i+ 1), ...,Λ(v))) if u ∈ {Λ}
where u = Λ(i) if u ∈ {Λ};

• η((v,Λ), u) =
+∞ if u /∈ {Λ}
i if u = Λ(i)

In the previous definitions we have used the notation introduced in Sec-
tion 1.3

2.3 Definition of prefix computation
Let us define

< A, • >

where A is a finite set and • is an undefined operation on A, that is • :
A × A → A. We will consider associative operations, that is • satisfies the
associative law. Hence we have that

∀x,∀y,∀z, (x • y) • z = x • (y • z)

2.4. Semigroup of a machine 23

Under these conditions, < A, • > is a finite semigroup.
We define prefix computation the following problem:

input: x = (x0, x1, ..., xN−1) ∈ AN ;

output: y = (y0, y1, ..., yN−1) ∈ AN , such that y0 = x0 and yj =
yj−1 • xj, j = 1, ..., N − 1.

This means that yj = x0 • x1 • ... • xj, and the problem requires the
computation of the products of each prefix of the input, hence the name
prefix computation. Let us provide an example of prefix computation: let

A = {0, 1, 2, 3}

be the finite set and let
a • b = (a+ b)mod4

Furthermore, let x = (3, 1, 2, 1, 0, 3) be our input sequence; our output
will be the sequence

y = (3, 0, 2, 3, 3, 2)

We can see that, as defined above, y0 = x0 = 3, y1 = y0•x1 = (3+1)4 = 0
and so on. Finally, let us consider prefix y4 to show the associativity of the
semigroup operator: y3 = (3 + 1 + 2 + 1)4 = 3 and y4 = (3 + 1 + 2 + 1 + 0)4 =
(7)4 = y3 • x4 = (3 + 0)4 = 3.

2.4 Semigroup of a machine
We now disclose the standard semigroup we can make use of under any
circumstances. This semigroup is not as efficient as the one we will utilize
for the LRU problem, which will be introduced in Section 3.1, but it can be
employed without the need for a thorough analysis of the specific problem to
tackle. The standard semigroup

< f(x), ◦ >

is composed of functions f(x) : Q → Q and by the composition operator
◦ of functions, which satisfies the associative law. This semigroup satisfies
the closure property, namely it is closed under ◦, since the composition of

24 2.5. Reduction of state evolution to prefix computation

two functions f(x) and g(x) will always yield another function (f ◦ g)(x) =
f(g(x)).

The formal justification behind this standard semigroup stems from Cay-
ley’s theorem. Knowing that an invertible function in a finite set is a permu-
tation, the theorem states that every finite group is isomorphic to a group of
permutations. The analogous theorem for the semigroup is as follows:

Theorem 1. Each finite semigroup is isomorphic to a semigroup of functions
with a composition operator.

Hence the standard semigroup, and FSMs by extension, allows us to
represent any finite semigroup.

2.5 Reduction of state evolution to prefix com-
putation

The problem of state evolution can be defined as follows:

input: q0, u0, u1, ..., ut−1;

output: q1, q2, ..., qt, such that qt+1 = δ(qt, ut).

In this description, q0 is the initial state of the machine, while u0, ..., ut−1
are the inputs from the alphabet at times 0, ..., t − 1. We can see that
q1 = δ(q0, u0), q2 = δ(q1, u1) and so on; our objective is to overcome this
dependency on previous states. Similarly to what happens in binary addition,
while we have to wait for previous carries it is still possible to simultaneously
work on the most significant bits. In order to achieve such a result, we define
one-step transition functions

δa(q) , δ(q, a), a ∈ Σ

which are a simple change of notation. If we set a and let q be free to change,
we have that δa : Q→ Q. Hence

qt = δut(δut−1(δut−2(...δu0(q0)...)))

Defining f(g(x)) = (g ◦ f)(x) which is another change of notation, we
finally obtain

qt = (δu0 ◦ δu1 ◦ ... ◦ δut)(q0) (2.1)

2.6. Analysis of the machine semigroup and choice of
representation 25

In this equation, ◦ is the composition of functions, already introduced in
Section 2.4; we can therefore combine the functions in the previous equation
as we please.

With this result we have reached our objective, since we can now work
in parallel on different parts of the sequence of δa thanks to the associative
property, while we only need the initial state q0 to find the state of the
machine at any moment. We have thus reduced the evolution of a FSM to
the prefix computation problem of Section 2.3.

2.5.1 Output computation
Starting from the problem defined in Section 2.5, we are now interested in
finding the output of prefix computation in the FSM framework. Namely,
we have to find a way to determine any state qi of the machine knowing only
the initial state q0. With Equation 2.5 at hand, this becomes a simple task,
since any state qi can be expressed as

qi = (δu0 ◦ δu1 ◦ ... ◦ δui−1)(q0)

We recall that the composition operator ◦ satisfies the associative law, so
this sequence of one-step transition functions can be evaluated in any order
we see fit. This result will be of crucial importance in the remainder of the
thesis.

2.6 Analysis of the machine semigroup and
choice of representation

The main drawback of the semigroup described in Section 2.4 is its dimension.
More specifically, in the context of the LRU stack distance problem, the
number of functions is directly related to V , the number of pages in the
address trace. The number of different states is |Q| = V !; this means that
functions f(x) from a state to another total |Q||Q| = V !V !. Nowadays, it is
not uncommon for programs to use hundreds of thousands if not millions of
different pages. With V = 10 using only ten different pages, we would have
36288003628800 different functions in our semigroup, which clearly make the
problem intractable.

We now have to choose a suitable representation for the elements of the
semigroup. It is worth noting that domain and codomain of the functions
of the standard semigroup coincide, since f(x) : Q → Q is a function from

26
2.7. Algorithms for semigroup multiplication under the

chosen representation

state to state. We can assume to already have a representation of the set of
states Q of the state machine, for instance via binary strings. To represent
the functions, we can firstly establish an ordering on Q, i.e. {Q1, Q2, ..., Qr}
and consider it our domain. In this case, the codomain will simply be the
list {F (Q1), F (Q2), ..., F (QR)}. If, instead, no ordering is established on
the set of states, a straightforward solution is to provide the list of couples
{(Q1, F (Q1)), (Q2, F (Q2)), ..., (Qr, F (Qr))}. It is obvious that the cardinality
of this list is |Q|. This can be considered the analogous of the table of truth
of a boolean function.

To save some space if an ordering is established, it is possible to determine
the exact value of the function from the list {F (Q1), F (Q2), ..., F (Qr)}. Since
in the LRU problem the set Q is generic, it is convenient to represent the
functions via list of couples, even if establishing an ordering would allow us
to find F (Q) in logarithmic time instead of employing a linear search.

2.7 Algorithms for semigroup multiplication
under the chosen representation

Devising an algorithm for semigroup multiplication is a straightforward task
if we are dealing with a boolean function; having available its table of truth,
via Karnaugh maps it is possible to synthesize a hardware circuit using the
minimum number of AND and OR gates.

However, in most cases, functions from states to states will not be strictly
boolean. In Section 2.6 we have discussed two viable solutions to represent
a generic function:

• {Q1,Q2, ...,Qr, F (Q1), F (Q2), ..., F (Qr)} if an ordering is estab-
lished, namely we simply list domain and codomain in sequence;

• {(Q1, F (Q1)), (Q2, F (Q2)), ..., (Qr, F (Qr))} which is the list of cou-
ples already mentioned in the previous section.

Devising the semigroup multiplicator means building the block that will
perform the ◦ operation in our prefix computation circuit. We hence have
to conceive a strategy to realize the composition f(g(x)) of two functions
f(x) : Q→ Q and g(x) : Q→ Q. Intuitively, the most immediate approach
is to substitute in both representation F (Qi) with its composition F (G(Qi)).
Thus we obtain

• {Q1,Q2, ...,Qr, F (G(Q1)), F (G(Q2)), ..., F (G(Qr))} if an order-
ing is established;

2.8. Review of parallel algorithms for prefix computation 27

• {(Q1, F (G(Q1))), (Q2, F (G(Q2))), ..., (Qr, F (G(Qr)))} otherwise.

Analogously to the reasoning at the end of the previous section, it is
possible to save half the space by listing only the final states if an ordering
is established on the set Q, namely {F (G(Q1)), F (G(Q2)), ..., F (G(Qr))}.

2.8 Review of parallel algorithms for prefix
computation

In this section we analyze the twisted reflected tree (TRT), that was intro-
duced in [8] and which allows parallel computation of the prefixes of a se-
quence. The advantage of this type of structure is that it reuses already
computed prefixes when they are needed, instead of treating them as inde-
pendent entities. A schematic of the TRT is given in Figure 2.3.

Figure 2.3: The TRT of a sequence of 16 elements.

In this network there are different types of nodes:

28 2.8. Review of parallel algorithms for prefix computation

Figure 2.4: Operational nodes.

• input nodes with no incoming edges are associated to the sequence
x, and make up the input of the TRT;

• output nodes with no leaving edges are the output of the network,
associated to the sequence y of prefixes;

• operational nodes divided in the two categories shown in Figure 2.4:

– the nodes with two input edges and one output (left side of the
figure) are the so called semigroup multiplicators (Section 2.7),
which realize the ◦ operation, that is xt ◦ yt−1 = yt;

– the nodes with two output edges simply split their input (right
side of the figure).

Each one of the multiplicators can be assembled with a boolean circuit
and a flip flop to store its state, but first of all it is important to choose
a suitable representation for the elements of the semigroup. Let us finally
recall that the ◦ operation is associative, but does not necessarily satisfy the
commutative law, so we can not switch the order of the input edges in the
nodes.

As an example, let us compute y6, the prefix of the first seven elements
of the input sequence x: y6 = x0x1x2x3x4x5x6. We can note that the first
four elements form the prefix y3, and that x4 ◦x5 is already computed by the
network as well. This means that instead of calculating six products, thanks
to the associative property we only need to compute two of them, because
y6 = (y3)(x4x5)(x6). As shown in Figure 2.3, the product of y3 and x4 ◦ x5 is
linked by the network to the semigroup multiplicator that outputs y6, which
will just have to compute the last product.

In the TRT, the number of operations is |V | < 2N while the critical path
L is L ≤ 2 log2N .

Chapter 3

The FSM-prefix framework for
LRU stack computation

In this chapter, which makes up the core of the thesis, we present the semi-
group to tackle the LRU stack distance problem. The state machine corre-
sponding to said problem has already been presented in Section 2.2; starting
from this result, we devise a suitable semigroup and a compact representa-
tion of its elements. The LRU semigroup represents the conjunction between
the theoretical framework built in Chapter 2 and the algorithm presented in
Section 3.3.

The FSM-prefix computation strategy we employed theoretically allows
us to use the same TRT scheme to calculate the stack distances under differ-
ent replacement policies: it is sufficient to find a suitable semigroup and the
appropriate multiplication to perform at every node of the tree. This aspect
constitutes the main difference between our work and [7], since the latter is
entirely conceived to work with the LRU policy.

Two distinct experiments could give us some insight into the actual per-
formances of the two solutions:

• compare communications: since both Parda and our algorithm em-
ploy Message Passing Interface (MPI) to allow communications be-
tween processors, it would be interesting to compare the results of
these two approaches regarding data exchanges;

• exchange trees: although the red-black tree we used grants that its
height will always be O(log V), the splay tree employed in Parda could
work quite as well in the stack distance computation problem, while
allowing easier maintenance.

Intuitively, our more general approach would not achieve the same effi-
ciency as the ad-hoc solution already known.

29

30 3.1. The semigroup

3.1 The semigroup
As we explained in Section 2.4, the main issue with the standard semigroup
for the LRU problem lies in its dimension: the number of transition functions
between states totals V !V ! elements, which would make the stack distance
evaluation intractable. The semigroup we devised does not represent the
entire semigroup of functions, but only a fraction of the whole set. This subset
is sufficient to tackle our problem, since we realize that transition functions
between states are either the already mentioned one-step transition functions
or a composition of the former. Hence, the finite set of our semigroup is
composed of

• one-step transition functions, or generators, of the semigroup, that
is transition functions δu associated to a single input u;

• compositions of generators, namely transition functions resulting
from the multiplication of several δu;

• an associative operator, which is again the composition of functions
◦.

By construction, the semigroup we have just described is a sub-semigroup.
Let us analyze the cardinality of the set of functions δLRU :

δLRU =
V∑
k=0

(
V
k

)
k! =

V∑
k=0

V !
(V − k)! < eV !

where V is again the number of pages in the address trace, while index
k indicates the number of different pages encountered up until now in the
current multiplication. As we can see, this intuition reduces the dimension
of the semigroup from V !V ! to V !, which is a remarkable saving.

This achievement stems from several observations:

• generators are idempotent, that is the composition δu◦δu does not alter
the stack further after we apply the first function;

• composition of functions is not commutative, namely δa ◦ δb 6= δb ◦ δa,
but the result of both transitions is the same except for the first two
elements of the stack;

• if a generator δu appears multiple times in a composition, we can sim-
plify the multiplication by considering only its rightmost occurrence.

3.1. The semigroup 31

The last intuition is a conjecture we will prove in Theorem 2. This obser-
vation allows us to simplify any given composition, which in the general case
could be of arbitrary length, by considering only the last V different genera-
tors. Let us provide an example; we examine the following multiplication of
generators:

δa ◦ δc ◦ δa ◦ δf ◦ δc ◦ δa ◦ δd
If our conjecture holds, the former composition will yield the same final

stack as this one:
δf ◦ δc ◦ δa ◦ δd

As we will see in Section 3.2, each element of the semigroup is thus rep-
resentable as a product of V distinct elements. Let us now provide a formal
proof of our conjecture:

Theorem 2. Let δi be the i-th generator, that is the one-step transition
function that places i at the top of the stack and shifts down all the other
pages by one position. Let also δrand be an arbitrary sequence of generators.
Finally, let δ = δrand ◦ δa ◦ δrand ◦ δa be the composition of a sequence of
generators. If we are under LRU replacement policy, the transition function
δ′ = δrand ◦ δrand ◦ δa yields exactly the same final stack as δ.

Proof. We are going to prove the previous statement by contradiction. Let us
suppose that δ and δ′ yield two different stacks Q and Q′. Let us now analyze
the two transition functions to determine said final stacks. The symbol at the
top of both buffers will be a, since LRU always places the last seen symbol
on top. This means that the difference between Q and Q′ will lie in the lower
positions, due to sub-sequences δrand◦δa◦δrand and δrand◦δrand respectively.
The difference between this two sequences is the generator δa, whose element
a is already included in the resulting stack. Hence, the only way to obtain
two different final stacks would be to change the order of composition of
the generators in the two sub-sequences, but, since LRU does modify the
ordering of the stack, we can only obtain two different final stacks by using
another replacement policy. However, this contradicts our initial hypothesis
of employing LRU replacement.

To conclude this section we provide a visual example of how transition
functions works:

In Figure 3.1 are shown two different transitions, resulting from applying
different functions to the same initial state. Let us suppose V = 5, so that the
set {A,B,C,D,E} includes all the pages of our address trace. By examining
the label of δDB, we automatically know which pages will be at the top of the
final stack. Also notice that the order of pages A,C,E, not included in the

32 3.2. Representation and multiplication

Figure 3.1: Stack update with two different functions.

label, will not be altered by the permutation. If we instead take a look at the
label in Figure B), which includes all the V pages of our trace, we can observe
that sequence A,E,C,D,B univocally specifies the exact composition of the
final buffer, even if we had not known the arrangement of the pages in the
initial stack.

3.2 Representation and multiplication
As explained in Section 3.1, once we realize that we do not need to repre-
sent every transition function between states, simplifying the semigroup is a
straightforward task. We then need a suitable representation for the elements
of said semigroup.

Let us recall from Section 1.3 that each stack, that is each state of the
FSM, is a permutation of the elements of the address trace. Hence, in case
the number of different pages V is set, all transition functions δ are functions
from permutations to permutations. The representation we require will have
to satisfy two requirements:

• it will have to be compact, that is it will have to employ the minimum
number of bits possible;

• the composition of functions, namely the semigroup multiplication, will
have to be efficient.

Firstly, we can observe that an input sequence z = z1, z2, ..., zk univocally
identifies a function δz1,z2,...,zk

: Q → Q. Therefore, we can recognize each
function by simply labeling every transition δ with the shortest sequence z
that leads to that function, that is to the final state reached when δ is applied
to an initial state q0. As highlighted in Section 3.1, this shortest sequence

3.2. Representation and multiplication 33

will be a list of pages with no repetitions, that is a "simplified" sequence we
name sub-permutation.

Let us now demonstrate that if an input sequence has no repetitions,
namely it is a sub-permutation, no shorter sequence can lead to the same
transition function δ.

Theorem 3. Let z = z1, z2, ..., zk be a sub-permutation and let δz1,z2,...,zk
be

the transition function univocally identified by that label. If z1, z2, ..., zk has
no repetitions, no input string shorter than z can lead to the same transition
function δz1,z2,...,zk

.

Proof. We provide a proof by contradiction. Let z′ = z1, z2, ..., zj be a sub-
permutation shorter than z, that is z′ lacks at least one page zi compared
to z. Furthermore, let δz1,z2,...,zj

and δz1,z2,...,zk
be the two transition func-

tions univocally identified by z1, z2, ..., zj and z1, z2, ..., zk respectively. If we
assume this two functions to be identical, applying them to an initial state
q0 will yield the same final state, that is δz1,z2,...,zj

(q0) = δz1,z2,...,zk
(q0) = q1.

Intuitively, the labels of these functions are exactly the pages they will insert
at the top of the final stack. However, since sequences z and z′ differ by at
least one element, the corresponding transition functions will lead to two dif-
ferent final states, unless there are duplicated pages in sequence z1, z2, ..., zk.
This contradicts our initial hypothesis, since we assumed sequence z to have
no repetitions.

To summarize, we can represent each state of our machine as a permu-
tation of the V pages of the address trace, hence |Q| = V !. However, our
transition functions as well are labeled with sequences of at most V different
pages, which in turn are permutations. It is hence important to bear in mind
the double role played by permutations in the LRU semigroup, that is being
both the elements of the set of statesQ and the labels of functions from state
to state.

We now focus on devising an efficient strategy to multiply functions of the
semigroup. Firstly, let us recall the definition of composition of functions.

Given two functions f : X → Y and g : Y → Z, we denote composite
function the function f ◦ g : X → Z, defined by (f ◦ g)(x) = g(f(x))∀x ∈
X.

The composition of functions satisfies the associative law, that is, given
three function f, g and h with suitable domains and codomains, (f ◦ g) ◦h =
f ◦ (g ◦ h).

34 3.2. Representation and multiplication

Let us now define the cleanup of a sequence, which stems from our con-
jecture enunciated in Section 3.1.

Let z1, z2, ..., zk be an arbitrary sequence of pages. We define
cleanup(z1, z2, ..., zk) = y1, y2, ..., yh the sub-sequence of pages such that

zi ∈ cleanup(z1, z2, ..., zk)⇔ @zj, i+ 1 ≤ j ≤ k : zi = zj

Hence, the cleanup of a sequence contains all the different single pages
of the original sequence z1, z2, ..., zk and the rightmost occurrence of the re-
peated ones. Let us give an example; let z1, z2, ..., zk = 2, 3, 5, 4, 3, 5, 3, 8, 2.
Then

cleanup(2, 3, 5, 4, 3, 5, 3, 8, 2) = y1, y2, ..., yh = 4, 5, 3, 8, 2

Having introduced the idea of cleanup, we can now define the multiplica-
tion of two sequences of generators.

Let z1, z2, ..., zk be a sub-permutation, that is a sequence with no rep-
etitions. Let δz1,z2,...,zk

be the state transition univocally identified by
z1, z2, ..., zk. We define the composition of two functions identified by
sub-permutations

δz1,z2,...,zk
◦ δy1,y2,...,yh

as the new function

δcleanup(z1,z2,...,zk,y1,y2,...,yh)

where cleanup(z1, z2, ..., zk, y1, y2, ..., yh) will contain at most h + k ele-
ments.

We now need to prove that any function identified by a sequence is equiv-
alent to the transition labeled with the cleanup of that sequence, that is they
both lead to the same final state when applied to an initial state q0.

Theorem 4. Let z1, z2, ..., zk be an arbitrary sequence of pages and let
y1, y2, ..., yh = cleanup(z1, z2, ..., zk). Furthermore, let δz1,z2,...,zk

and δy1,y2,...,yh

be the transition functions identified by z1, z2, ..., zk and y1, y2, ..., yh respec-
tively. If we are under LRU replacement, δz1,z2,...,zk

and δy1,y2,...,yh
are equiv-

alent functions.

3.3. The prefix algorithm for LRU stack computation 35

Proof. We will prove the former statement by contradiction. Let us suppose
that δz1,z2,...,zk

and δy1,y2,...,yh
are not equivalent functions, that is, given an

initial state q0, δz1,z2,...,zk
(q0) = q1 and δy1,y2,...,yh

(q0) = q2, where q1 and
q2 are two different final states. In Theorem 2 we have proven that, under
LRU replacement, the composition of only the rightmost repeated generators
of a sequence will yield the same final state as the multiplication of the
original sequence. Since the cleanup of a sequence is exactly a sequence
of symbols where every duplicated page is deleted except for its rightmost
occurrence, the only way to obtain two different final states would be to
employ a different replacement policy than LRU. This however contradicts
our initial hypothesis.

To conclude this section we provide a naive pseudocode to implement the
composition of two functions δz1,z2,...,zk

◦ δy1,y2,...,yh
.

Data: sequences z1, z2, ..., zk and y1, y2, ..., yh
Result: cleanup(z1, z2, ..., zk, y1, y2, ..., yh)

1 initialization;
2 cleanup← y1, y2, ..., yh;
3 while cleanup.length()≤ h+ k do
4 for i← k to 1 do
5 if zi == any yj then
6 i- -;
7 else
8 cleanup← zi + cleanup;
9 i- -;

10 end
11 end
12 end
13 cleanup.print();

Algorithm 1: Naive cleanup

3.3 The prefix algorithm for LRU stack com-
putation

In this section we will describe the algorithm developed for the parallel com-
putation of the stack distances. Since our implementation stems from the
procedure described in Section 1.4.2, the underlying data structure for the

36 3.3. The prefix algorithm for LRU stack computation

distance computation will be a red-black tree, that is a binary tree that
satisfies the following red-black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (an empty node NIL) is black.

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.

The usefulness of this data structure lies in its balance, since the basic
operations such as SEARCH, INSERT and DELETE all take time O(log n),
where n is the number of elements in the tree. The red-black tree used in our
algorithm is slightly different from the standard structure, since each node
contains two key values (key1,key2) and a sum field, alongside the values of
color,left,right and parent.

Figure 3.2: A red-black tree.

3.3. The prefix algorithm for LRU stack computation 37

In Figure 3.2 is shown a possible red-black tree of the interval tree in
Figure 1.7. Please note the double role played by the NIL node, acting as
both left and right child of the leaves and as parent of the root node.

Besides the methods for the management of the tree, the core of our
algorithm is composed by the procedure explained in [4] to calculate the
number of holes in an interval. This is a key step in evaluating the stack
distance, as shown in Equation 1.6, and it is coupled with a method to update
the sum value of every node when the structure of the tree is modified, namely
when the insertion or the deletion of a node takes place. With this set of
methods, we are able to sequentially compute the stack distances on a trace
of length L with V different pages in time OL(log V).

The joint employment of the twisted reflected tree (Section 2.8) and prefix
computation on this sequential algorithm finally allows us to make use of
more processors and achieve parallelism. For the sake of simplicity, we will
consider an address trace of length L, where L is a power of 2, and we will
describe the various operations performed by our algorithm with P processors
(P power of 2 as well).

Algorithm description:

• input split up: knowing L and P , the address trace is divided in
sections of equal length among the processors, so that each one will
analyze only a segment of length L/P ;

• backtrack: in this step, each processor computes the element of
the semigroup of its segment (the Q in Section 2.2). To do so, each
core traverses its assigned segment from the latest time to the least
recent index, to find the most recent reference to each page. The
result of this operation is an LRU stack computed on the sequence
of addresses assigned to each processor; the final stack of every
segment is stored in a hashtable, where each page is associated to
its most recent index;

• message passing: the hashtable storing the stack of each segment
makes up the input of the operational nodes of the TRT. Following
the schematic of Figure 2.3, each processor sends and/or receives
the element of the semigroup of previous segments and performs
the semigroup multiplication;

• semigroup multiplication: the processors involved in this step
receive the stack of previous segments in an inputStack. Since both

38 3.3. The prefix algorithm for LRU stack computation

stacks, namely the stack computed by the processor and the stack
received as input, are stored as hashtables, the multiplication, that
is the cleanup procedure, simply consists in merging the two hashta-
bles so that new pages and their time references can be added to the
stack. The steps of message passing and semigroup multiplication
are repeated until every processor receives in input its initial stack;

• tree creation: once all the cores have received their input stack,
that is the LRU stack at the first index of their segment, the re-
lated hashtable is transformed in an interval tree. This allows the
processor the perform the procedure explained in Section 1.4.2;

• distances computation: each processor can now independently
calculate the stack distances on its sequence of pages and store such
distances in its own hashtable;

• gathering of the results: once each core has collected all the
distances of its segment in a hashtable, it sends these results to the
master processor (the core with id = num_procs). The master core
collects the results of every segment and creates the final hastable
which contains the stack distances of the whole trace.

Chapter 4

Experimental Results

We tested our code using sequences of randomly generated integers as our
input, adjusting both the sequence length L and the number of different
’pages’ V to create different address traces. While this methodology allows
us to easily highlight several aspects of our code, such as the dependency
between V and the time needed to process each instruction, our inputs do not
correctly exhibits the principle of locality of actual address traces. This could
lead to slightly degraded performances, since the elements of the semigroup
processed in the first steps of the TRT could be a bit more complex than
those gathered in a true address trace.

Our program was run on an IBM Power 770 with a 3.1GHz clock and
32kB of L1 cache. We repeated each experiment five times (thus N = 5),
and in the figures below we reported the mean value and standard deviation
for each set of tests. The arithmetic mean is defined as

x = 1
N

N∑
i=1

xi (4.1)

while standard deviations are estimated using formula

std_dev =
√∑N

i=1(xi − x)2

N − 1 (4.2)

where {x1, x2, ..., xN} are the observed values and x is the mean value of
these observations.

Our source code is written in C++ and, since we are employing MPI,
compiled with the IBM mpCC compiler, using optimization flag -O2. We
also made use of IBM HPC Toolkit to gather precise data on the number of
instructions completed by each iteration of the program, but run times were
evaluated utilizing MPI internal timers.

39

40 4.1. Summary of results

4.1 Summary of results
As already mentioned, our input consists of sequences of L integers taking
random values between 0 and V − 1. In Table 4.1 we listed the run times
of our algorithm on inputs with V set to 217 and L ranging from 221 to
229; between parentheses we reported the standard deviations evaluated with
Equation 4.2. We tested our code with a number of threads varying from
P = 1 to P = 32 and we ran each experiment five times.

Number of threads P Address trace length L
221 223 225 227 229

1 3.99 (0.02) 18.82 (0.12) 73.21 (0.48) 348.31 (2.05) 1408.66 (9.39)
2 2.52 (0.07) 9.67 (0.03) 41.07 (1.36) 169.56 (6.86) 832.04 (47.27)
4 1.52 (0.09) 7.48 (0.72) 21.75 (0.25) 89.15 (4.51) 466.07 (3.45)
8 1.21 (0.11) 5.19 (0.21) 17.14 (1.76) 71.49 (9.43) 281.31 (36.46)
16 1.33 (0.14) 3.71 (0.56) 13.49 (2.02) 54.49 (8.15) 220.95 (29.24)
32 1.58 (0.13) 4.01 (0.54) 9.35 (0.87) 36.45 (2.46) 151.23 (30.02)

Table 4.1: Run times with V = 217

Performances are also depicted in Figure 4.1 on a logarithmic scale:

Figure 4.1: Run times with V = 217

Let us now examine these numbers: firstly, for L = 221 and V = 217, when
employing 16 threads or more we obtain worse run times than having P ≤ 8.
This is to be expected, since we are splitting the address trace in segments

4.1. Summary of results 41

of length L/P , that is 221/24 = 217 in this case. Remember that 217 is also
the number V of distinct pages in the trace: this means that the elements of
the semigroup relative to each segment will be O(V), that is around as big
as the segments themselves. When fed to the TRT, such elements will take a
considerable amount of time to be elaborated, thus negating the advantage
of employing more processors.

In Figure 4.2 are shown the trends of the speedup (Equation 1.7) on the
same address traces:

Figure 4.2: Speedup with V = 217

Before analyzing these results, let us summarize some ideas of parallel
computing. The total work W to be done to analyze the address trace is
O(L log V); if we have up to P = L/V threads at our disposal, the work
done by each one, which is equivalent to the run time of the algorithm,
would be W/P = O(V log V). If we could achieve this result, we would have
a linear speedup, that is a run time improvement proportional to the number
of CPUs we are employing.

However, let us take a closer look at the operations performed by each
thread:

• with P = L/V , every thread can extract the element of the semigroup
of its segment in time

Tsequential = O(V log V)

42 4.1. Summary of results

To this initial operation that each thread carries out independently, we
have to add another factor O(V log V) needed to calculate the stack
distances on its own segment;

• these elements are then sent to the Twisted Reflected Tree, which per-
forms semigroup multiplication in time O(V log V). By construction,
the TRT has a number of levels proportional to the logarithm of the
number of threads we are employing; thus, communications between
threads, which make up the parallel section of our program, takes up
to

Tcommunication = O(V log V) log 2(P)

It is clear that Tcommunication grows as we use more threads. Hence, we
can no longer consider P = L/V to be the optimal bound: we can achieve a
linear speedup only if we employ a number of threads smaller than

P ′ = L/V

logL/V
This means that we are increasing the sequential workload of each thread,
ensuring that more time is spent computing the stack distances rather than
the elements of the semigroup. Therefore, at the cost of a smaller degree of
parallelism, we are better exploiting our computational power. Please note
that in this equation, when L = V , that is when there are no two same pages
in the sequence, the number of threads needed to achieve a linear speedup is
P ′ = 1, namely it is useless to parallelize this problem.

To further prove our point regarding the correlation between run times
and the size of V comparatively to L, we ran several experiments varying the
number of different pages in the sequence, while keeping the same address
trace length. In Table 4.2 are shown the run times when L is set to 223 and
V ranges from 213 to 221:

Number of threads P Number of distinct pages V
213 215 217 219 221

1 6.15 (0.01) 11.89 (0.13) 18.82 (0.12) 29.27 (0.01) 35.15 (0.05)
2 3.17 (0.04) 6.42 (0.05) 9.67 (0.03) 18.22 (0.03) 27.49 (0.08)
4 1.57 (0.02) 3.77 (0.26) 7.48 (0.72) 12.39 (0.99) 17.85 (0.21)
8 1.72 (0.31) 3.22 (0.80) 5.19 (0.21) 9.54 (0.43) 14.52 (0.33)
16 1.79 (0.07) 2.85 (0.62) 3.71 (0.56) 7.67 (0.47) 16.13 (0.64)
32 1.64 (0.11) 2.79 (0.41) 4.01 (0.54) 7.99 (0.47) 20.82 (0.63)

Table 4.2: Run times with L = 223

As to be expected, analyzing the trace with L = 223 and V = 221 we
obtain another confirmation of our previous reasoning: once we exceed the

4.1. Summary of results 43

threshold P = L/V = 22, performances are not guaranteed to improve when
we add more threads. Run times are graphically reported as well in Fig-
ure 4.3.

Figure 4.3: Run times with L = 223

To conclude this analysis of the L = 223, V = 221 trace, we note that the
best run time is obtained when P = 8, which is a power of 2 higher than
our theoretical limit of L/V . This could be caused by several factors we are
going to discuss at the end of the section.

Using HPC Toolkit and the same set of traces, we collected the number
of instructions completed by a single thread when calculating the stack dis-
tances. We then divided the average run times by the number of instructions,
thus obtaining the average time needed to carry out a single instruction.
These results are presented in Table 4.3.

Distinct pages V Completed instructions Time per instruction (avg)
213 13.51*109 0.46ns
215 14.46*109 0.82ns
217 14.22*109 1.32ns
219 14.86*109 1.97ns
221 16.45*109 2.14ns

Table 4.3: Performances on one thread with L = 223

These numbers exhibit the existence of a relationship between the total

44 4.1. Summary of results

number of completed instructions and the number of distinct pages V . This
is not surprising, since V directly influences the size of the red-black tree,
that is how many nodes we pass through to find a given interval, and by
consequence the number of instructions needed to traverse it. The average
time to complete one instruction increases as well, since the interval tree will
occupy more space in the memory, thus involving lower levels of the storage
hierarchy and inevitably increasing access times.

Let us now consider the clock of our machine: the IBM Power 770 has
a clock of 3.1GHz, that is it can complete an instruction in around 0.32ns.
The trace with the smallest V we considered achieves the completion of an
instruction in 0.46ns. This time is very close to the actual speed of the
machine; it is then worth nothing that with V = 213, a tree of 32 bit integers
takes up around 32kB of memory, which is the size of the L1 cache of each
processor of our computer. Thus, when the red-black tree can be almost
entirely stored in the first level of cache, the time needed to recover data
from the lower levels of the memory hierarchy is significantly reduced.

We now address the previous topic regarding the run times with P = 8 on
the address trace with L = 223 and V = 221. The machine we used has three
racks with two processors each, for a total of six processors. Every processor
has eight cores that can have up to four threads running. Hence there is
a trade-off to consider: if we have more processes, that is threads, on the
same core, we will have smaller communication times at the cost of higher
Tsequential, since there is concurrency between the threads. When, instead,
the processes run on different cores, we will have no concurrency but Tparallel
will increase. Since we do not have full control over the scheduling of the
jobs, this factor could explain the run times we obtained above.

To summarize, to improve performances of a parallel algorithm we could
consider two different routes:

• reduce the number of operations: an approach independent from
parallelism which decreases the workload on the computer;

• boost parallelism: when the number of operations has been reduced
to the smallest possible amount, we can devise a strategy that takes
advantage of more processors.

The first strategy is intuitively quite hard to pursue, since there are lower
bounds to the number of operations that have to be performed. When we
consider the second approach instead, we have to remember that employing
more than a certain amount of processors will result in a waste of computa-
tional power, since we are doing more work than what is necessary. We have

4.2. Open problems and future work 45

already discussed that in our case this threshold is P = L/V , since with this
number of processors we obtain segments of length O(V), thus negating the
advantages of parallelism. With segments shorter than V we don’t obtain
a reasonable speedup, since it is also important to remember that the TRT
does not use all the processors at all times.

4.2 Open problems and future work
As shown in Section 4.1, some of our tests exhibit a non negligible standard
deviation. In order to obtain more accurate data on the run times of our
algorithm, all the experiments could be repeated increasing N from 5 to 20,
thus hoping to halve the estimated standard deviation. Once we have more
precise results at our disposal, an analysis that compares the performances
of our code with the theoretical bound could be performed. In particular,
the upper bound of T = O(L log V) is not particularly useful, since it does
not provide additional informations regarding temporal constants C1 and C2
in the form of T = C1(L log V) + C2L. Therefore, a more in depth analysis
should aim to estimate these two constants and provide a Θ temporal bound.

An interesting feature to add would be a method that outputs the stack
distance found at each time t, 0 ≤ t ≤ L−1. As of now, our code collects the
stack distances of the entire address trace and lists them once the analysis
of the whole trace has been completed, while to perform an on-line analysis
of the trace, all time indexes t should be associated with the distance found
at that moment.

However, the true purpose of the FSM-prefix computation paradigm we
presented is to serve as a framework for the employment of different replace-
ment policies: once the TRT scheme is established, it is sufficient to devise
a suitable semigroup and its related multiplication to be able to simulate
other replacement algorithms, such as LFU, MRU or OPT. OPT in particu-
lar could be the natural continuation of our work, since this policy naturally
employs LRU to compute the stack distances of an address trace.

46 4.3. Conclusions

4.3 Conclusions
In this thesis we have tackled the stack distance computation problem. We
have employed a strategy involving Finite State Machines and prefix com-
putation; after having devised a suitable semigroup for the LRU policy, we
have specified how to represent the elements of said semigroup, as well as the
operation to be performed to multiplicate two different elements, that is the
cleanup of a sequence. Using the Twisted Reflected Tree we have pinpointed
which multiplications are needed to calculate the prefix of every segment, thus
allowing several processors to independently compute the stack distance of
different segments at the same time. We have then implemented this strat-
egy using a suitable data structure, that is the red-black tree, and we have
conducted an analysis on the run times of our algorithm, thus confirming the
advantages of using parallelism to deal with this problem. While we have
focused on the LRU replacement policy, the theoretical framework we have
provided could be adopted to deal with different replacement algorithms.

Bibliography

[1] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,
pp. 78–117, 1970.

[2] G. Bilardi, K. Ekanadham, and P. Pattnaik, “On approximating the
ideal random access machine by physical machines,” J. ACM, vol. 56,
pp. 27:1–27:57, Aug. 2009.

[3] G. Bilardi, K. Ekanadham, and P. Pattnaik, “Optimal on-line
computation of stack distances for min and opt,” in Proceedings of the
Computing Frontiers Conference, CF’17, (New York, NY, USA),
pp. 237–246, ACM, 2017.

[4] G. Almási, C. Caşcaval, and D. A. Padua, “Calculating stack distances
efficiently,” SIGPLAN Not., vol. 38, pp. 37–43, June 2002.

[5] B. T. Bennett and V. J. Kruskal, “Lru stack processing,” IBM Journal
of Research and Development, vol. 19, pp. 353–357, July 1975.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.

[7] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan, “Parda: A fast parallel
reuse distance analysis algorithm,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 1284–1294, May
2012.

[8] G. Bilardi and F. P. Preparata, “Digital filtering in VLSI,” in VLSI
Algorithms and Architectures, Aegean Workshop on Computing,
Loutraki, Greece, July 8-11, 1986, Proceedings, pp. 1–11, 1986.

47

	Abstract
	1 Introduction
	1.1 Replacement policies for the memory hierarchy
	1.2 The LRU policy
	1.3 The stack distance framework
	1.4 Sequential algorithms for LRU stack distance computation
	1.4.1 O(LV) algorithms
	1.4.2 O(LlogV) algorithms

	1.5 Objective of the thesis: parallel computation
	1.5.1 Performance objective: T=O(LlogV)/P
	1.5.2 Obstacles to be overcome

	1.6 Related work

	2 Finite state machine evolution and prefix computation
	2.1 Definition of finite state machine
	2.2 The FSM corresponding to LRU stack
	2.3 Definition of prefix computation
	2.4 Semigroup of a machine
	2.5 Reduction of state evolution to prefix computation
	2.5.1 Output computation

	2.6 Analysis of the machine semigroup and choice of representation
	2.7 Algorithms for semigroup multiplication under the chosen representation
	2.8 Review of parallel algorithms for prefix computation

	3 The FSM-prefix framework for LRU stack computation
	3.1 The semigroup
	3.2 Representation and multiplication
	3.3 The prefix algorithm for LRU stack computation

	4 Experimental Results
	4.1 Summary of results
	4.2 Open problems and future work
	4.3 Conclusions

	Bibliography

