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Introduction

The security of exchanged data plays a central role in our modern and digitalized society. Every
information sent through Internet can be, in principle, intercepted by an attacker, listening over
our communication channel. In order to protect the transmitted data, these information are not
sent in their plain-text form, but complex algorithm are used to encrypt them, so that only the
legitimate parties can recover the original message. This cryptographic procedures are used for
example every time we access to our home baking platform.
Despite the research behind these cryptographic algorithms is in constant development, and
could provide really complex ways to encrypt data, the security of conventional cryptography is
not absolute, since it’s usually based on tasks that are hard to solve for our current technology. For
example, the RSA, the most common public-key encryption system, is based on the difficulty for
modern computers of factoring two big prime numbers. However, development of new mathe-
matical tools or better hardware can, in principle, break these systems. Moreover, advances in the
quantum information field, showed that such problems are not so hard to solve for a quantum
computer.
In other words, classical cryptography cannot be a definitive solution for this problem.
The fairly new field of quantum information, instead, showed that using the properties of quan-
tum mechanical systems, is possible to build an unbreakable secure communication protocol.
This new quantum protocol is called Quantum Key Distribution (QKD), since can generate and
distribute a pair of secure and identical keys between two users. The security of QKD doesn’t
relies, like the RSA, on hard to solve tasks but is directly linked to the physical properties of quan-
tum system, for example single photons, and so is assured directly by the law of physics.
QKD has been successfully tested experimentally, both in free-space and in fiber, and projects of
quantum networks are starting to appear.
Unfortunately, real-life implementations of QKD are usually afflicted by imperfections that are
not considered in the theoretical models used to prove their security. This opens security flaws
in the QKD, which can compromise the entire protocol.
For this reason, new QKD schemes that relax the assumption on the inner working of the em-
ployed devices are object of an intense research.



In this thesis we are going to explore one of these possible alternatives to "standard" QKD,
that can provide an higher lever of security, called Semi-Devi-Independent (SDI).
We are going to see how some particular properties of the dimension of the Hilbert space, can be
used in order to prove the secrecy of the communication. Moreover, the same theoretical back-
ground can be used also for the generation and certification of true randomness in a quantum
random number generator.
In this work, realized with the KIKO group at Stockholm University, we have performed a proof-of-
principle experiment over standard telecommunication optical fiber, aimed to show the feasibility
of Semi-Device-Independent protocols.
The encouraging results we have obtained, show that the realization of SDI protocols ,for both
QKD and Random Number Generation, is already possible with current technology, making these
protocols a valid alternative to the less secure "standard" quantum protocols implemented until
now.



CHAPTER1

Introduction to Quantum Information

1.1 Quantum Information’s basic block: the Qubit

In information theory and in computer science the basic building block is the bit. This is a math-
ematical construct, a boolean variable, that can assume only one of two possible values and
can be implemented in any physical two state system. For example, it can be implemented in
the position of a mechanical or electronic switch, in two different voltage levels, in the intensity,
wavelength or polarization of light, two direction of magnetization of a ferromagnetic material
and a numerous of others incredible ways.
All the modern society relies on the concept of bit: electronic, computation, digital communica-
tion are just an example of the applications that are possible thanks to this concept. The main
characteristic of the bit is the mutual exclusivity of the values it can assume: in any moment the
value of the bit is either 1 or 0.
When one is dealing with quantum mechanical system, however, a way richer phenomenology is
possible.
In fact is possible to build the quantum version of bit, the qubit, using a two level quantum me-
chanical system. Unlike the bit, quantum mechanics tell us is that the qubit can be in a linear
superposition of |0〉 and |1〉, the two possible outcomes of a measure. Thus the most general state
the system can assume can be written as:

|ψ〉 =α |0〉+β |1〉 (1.1)

The state of a qubit is a vector in a two-dimensional complex vector space. The special states |0〉
and |1〉 are known as computational basis states and form an orthonormal basis for this vector
space. However, like the bit, the outcomes of a measure performed on the qubit can be only
one of the two state that compose the computational basis and this, in the case of a state in the
form given by Eq 1.1, happens with probability α2 for |0〉 and β2 for for |1〉. The normalization
condition for probabilities implies that |α|2+|β|2 = 1, and so |ψ〉 is a vector of unitary length. With
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the above condition, Equation 1.1 can be written as:

|ψ〉 = eiη
(
cos

θ

2
|0〉+eiφ sin

θ

2
|1〉

)
(1.2)

where η is a global phase, carrying no information about the state, since physical states are
described by ray vectors on a Hilbert space. This reformulation is useful because permits to
express the state of a qubit in function of two angles, θ and φ representing a point on the surface
of a 3 dimensional sphere, called the Bloch sphere. This graphical representation is extremely
useful when one is working with qubit but unfortunately is not possible to easily generalize it for
dimension bigger than 2.

Figure 1.1: Representation of the Bloch sphere

This representation is useful to catch a fundamental difference between the bit and the qubit.
While the bit can assume only two different and discrete values, the qubit can represent an infi-
nite continuous set of states, spanning all over the surface of the sphere: this means that infinite
information can be represented by the qubit. However, whenever we try to access to the informa-
tion, by measuring it, we change the state of the qubit, making its state to collapse into one of the
eigenstate. So, at first sight the qubit could seem useless. How can we use the qubit as a resource
if we destroy its fundamental property in the moment we are reading it?
The answer is that, even if we can’t access the qubit, we can perform unitary operations on it
preserving all the information it contains. This is the power of quantum computation. Moreover
the qubit is quantum mechanical system, and must obey to the laws of quantum mechanics that,
as we are going to see, forbids or provides an advantage on some tasks performed on the qubit,
respect the classical predictions.
But how we can realize a qubit in practice?
As already said any quantum two level system can be used as a qubit: the states of an electron in
an atom, the nuclear spin in a uniform magnetic field, the polarization of a photon are just few
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examples of the physical realizations of a qubit system. One of the most widely used implemen-
tation is based on single photon’s polarization: here |0〉 and |1〉 can be the horizontal and vertical
polarization of the photon.

1.2 No-cloning theorem

Quantum mechanics, from the beginning, caused a sort of shock and surprise, mining the funda-
mental conception of how nature was believed to work. Many predictions were in contrast with
the common sense, so used to the macroscopic world ruled by the laws of classical physics. One
of this strange effects predicted by quantum mechanics, that is of absolute importance in quan-
tum information theory and cryptography, is linked to the action of copy. Copy of information is
performed everyday: fax, photocopiers, scanners but also copies on CD, DVD or USB-keys. All
of these actions are so normal in our classical world that the hypothesis that copy is forbidden
in the quantum world seems absurd. Quantum mechanics however states that is impossible to
create a perfect quantum cloning machine and the formalization of this idea is enclosed in the
No-cloning theorem [1].
Suppose we have a quantum system A in a pure state |ψ〉A that belongs to a generic Hilbert space
H . Now if we want to copy that state, what we need is another system B described by a pure state
|e〉B that belongs to the same Hilbert space H . The initial state of this composite system can be
described by

|ψ〉A ⊗|e〉B (1.3)

The operation of copy can be represented by an unitary operator U such that:

U (|ψ〉A ⊗|e〉B ) = |ψ〉A ⊗|ψ〉B ∀ψ (1.4)

Since it must be valid for all ψ we can require that:

U (|ψ〉A ⊗|e〉B ) = |ψ〉A ⊗|ψ〉B

U (|φ〉A ⊗|e〉B ) = |φ〉A ⊗|φ〉B

(1.5)

Taking the inner product of the two equations and remembering that U must preserve this oper-
ation we have:

〈φ|ψ〉 = |〈φ|ψ〉 |2 (1.6)

which is satisfied only in the case |ψ〉 = |φ〉 or for |ψ〉 orthogonal to |φ〉.
These few lines are describing a stunning and central feature of quantum systems: a quantum
cloning machine that can clone an unknown arbitrary quantum system can’t be built. However,
if we relax the requests and we admit also imperfect copies, an universal quantum machine is
possible and can reach a fidelity F = 5/6 [2]. This is the key point that assures security in many
quantum cryptography protocols: if information is encoded in a single quantum system, and
this system is transmitted, this cannot be copied without introducing errors, thus revealing the
presence of a possible eavesdropper.
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1.3 Local realism, entanglement and Bell inequalities

In the previous sections we saw how Quantum Mechanics describes effects that are in contrast
with our common sense and our expectation. But quantum mechanics attacked even deeper
aspects that were thought to belong to nature: reality and locality.
Reality states that the physical properties of objects exist in a defined state independently on
the observation. This is clearly true for classic physics but it can’t be said for QM, since QM give
us the probability to measure a certain state and, moreover, predicts that the value of two non-
commuting operators cannot be simultaneously determined. Locality, on the other end, states
that two space-like separated events must be independent. Again QM predicts that a system of
entangled particles can share correlations that are non-local, apparently violating the principle
of locality. Historically these two principles were thought so fundamental, that was a common
opinion believe that law of physics had to obey to both: any complete physical theory must be
consistent with local realism. For sure this was the opinion of Einstein, Podolsky and Rosen which
in 1935 published a ground-breaking article [3], where they showed that, if both reality and lo-
cality principles are assumed, quantum mechanics must be incomplete and that some "hidden
variables" must be included in the theory in order to make it complete.
But is this hidden-variable model just another reformulation of quantum mechanics or it can
be tested in some way? The answer to this question was given in 1964 by Jhon Bell in [4]. In his
remarkable work he showed that any local hidden variable theory has a bound on the correlation
experienced on space-like separated particles, and this bound can be calculated and tested ex-
perimentally. This limitation can be express in the form of an inequality: the expectation value of
some observables of the two particle must be below a certain threshold in the case of a local hid-
den variable theory. If experiments are performed, and value higher of this bound are obtained,
this means that nature cannot be described by such set of theories.
After few years experiments started to tests Bell’s predictions, starting with the one by Freedman
in 1972 [5], and then by Aspect in 1981,1982 [6] [7]. The reported results were well beyond the
bound predicted by local hidden variable theories, and in good agreement with the one predicted
by quantum mechanics. The conclusion was that nature is not-local or not-realistic, or both.
Unfortunately experiments performed suffered problems of experimental design or set-up that
affect the validity of the experimental finding. These problems are often referred to as "loop-
holes".
Despite being an old problem, is really challenging to design and realize a loophole-free Bell test
and until now no-one could perform such experiment, closing once for all the question. However,
recently, three experiments [8] [9] [10] claimed to have performed a loophole free Bell test and,
if the results will be confirmed, these test will be of crucial importance for both foundations of
quantum mechanics and for application in the quantum information field.

1.3.1 CHSH Inequality

The original inequality derived by Bell, was really hard to test experimentally since it required per-
fect (anti)correlated particles. A generalization of that inequality was derived in 1974 by Clauser,
Horne, Shimony and Holt where the authors proposed the experiment needed to test their in-
equality [11]. Suppose to have two space-like separated parties, Alice and Bob, each of them
receives a particle and on this particle they can measure a property. The outcome A(x),B(y) on
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Alice’s and Bob’s side respectively, depends on the settings they used and we assume that the
outcomes can only be ±1. One practical example could be the polarization of photons: if Alice
and Bob receive one photon each, they can measure polarization of the photons and the setting
in this case is the base they use to perform the measurement. Limiting to the case where only 2
settings are employed we have x = {a, a′} and y = {b,b′}.
If we now assume that there is a local hidden variable λ that describes the system, then A and
B must be function of this hidden variable yielding A(x,λ), B(y,λ). Finally, if the theory is local,
since Alice and Bob are space-like separated, A(x,λ) must be independent from B(y,λ). Thus we
can write the correlations between the two measurements as:

C AB (x, y) =
∫
Λ

A(x,λ)B(y,λ)ρ(λ)dλ (1.7)

where ρ(λ) is the probability density function associated to the hidden variable λ. Considering
another setting for Bob and using the fact that the measures take only ±1 values:

|C AB (a,b)−C AB (a,b′)| =
∣∣∣∣∫
Λ

(
A(a,λ)B(b,λ)− A(a,λ)B(b′,λ

)
ρ(λ)dλ

∣∣∣∣ (1.8)

≤
∫
Λ

∣∣(A(a,λ)B(b,λ)− A(a,λ)B(b′,λ
)∣∣ρ(λ)dλ

≤
∫
Λ
|A(a,λ)B(b,λ)|(1−B(b′,λ)B(b,λ

)
ρ(λ)dλ

≤ 1−
∫
Λ

(
B(b′,λ)B(b,λ)

)
ρ(λ)dλ

We can choose now another setting a′ such that

C AB (a′,b′) = 1−δ with 0 ≤ δ≤ 1 (1.9)

This parameter is introduced to relax the condition of perfect correlation in the original paper by
Bell.
Now we can divideΛ into two regions

Λ± = {λ|A(a,λ) =±B(b,λ)} (1.10)

Using 1.9 we can write:∫
Λ

A(a′,λ)B(b,λ)ρ(λ)dλ=
∫
Λ+

A(a′,λ)B(b,λ)ρ(λ)dλ+
∫
Λ−

A(a′,λ)B(b,λ)ρ(λ)dλ= 1−δ (1.11)

then using 1.10 ∫
Λ+

A(a′,λ)2ρ(λ)dλ−
∫
Λ−

A(a′,λ)2ρ(λ)dλ= 1−δ (1.12)

Using that A(x,λ) =±1 and the normalization on ρ(λ) we have:

1−2
∫
Λ−
ρ(λ)dλ= 1−δ (1.13)∫
Λ−
ρ(λ)dλ= 1

2
δ (1.14)
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We can now rearrange the second term in Eq 1.8:∫
Λ

(
B(b′,λ)B(b,λ)

)
ρ(λ)dλ=

∫
Λ+

A(a′,λ)B(b,λ)ρ(λ)dλ−
∫
Λ−

A(a′,λ)B(b,λ)ρ(λ)dλ (1.15)

=
∫
Λ+

A(a′,λ)B(b,λ)ρ(λ)dλ+
∫
Λ−

A(a′,λ)B(b,λ)ρ(λ)dλ (1.16)

−2
∫
Λ−

A(a′,λ)B(b,λ)ρ(λ)dλ (1.17)

=
∫
Λ

A(a′,λ)B(b,λ)ρ(λ)dλ−2
∫
Λ−

A(a′,λ)B(b,λ)ρ(λ)dλ (1.18)

≥
∫
Λ

A(a′,λ)B(b,λ)ρ(λ)dλ−2
∫
Λ−

|A(a′,λ)B(b,λ)|ρ(λ)dλ (1.19)

=
∫
Λ

A(a′,λ)B(b,λ)ρ(λ)dλ−2
∫
Λ−
ρ(λ)dλ (1.20)

=C AB (a′,b)−δ (1.21)

Substituting into the original equation we have:

|C AB (a,b)−C AB (a,b′)| = 1−C AB (a′,b)−δ= 2−C AB (a′,b)+ (1−δ) (1.22)

= 2−C AB (a′,b)−C AB (a′,b′) (1.23)

and finally obtaining ∣∣C AB (a,b)+C AB (a,b′)+C AB (a′,b)−C AB (a′,b′)
∣∣≤ 2 (1.24)

which is the usual form for the CHSH inequality. We can see that for the CHSH inequality the
bound for LHV theories is 2: any measured value above 2 would be a proof that the two particles
testes are experiencing correlations not explainable by a LHV theory, and so, in contrast with local
realism.

1.3.2 Quantum mechanics predictions

In Eq 1.24 we saw that the bound in the CHSH inequality for local hidden variable theories is
2, but which are the predictions of quantum mechanics? In the case of quantum mechanics we
don’t assume to have hidden variables, so the correlations C AB (a,b) = 〈A(a)B(b)〉 are given by the
expectation values of the measure operators on the wavefunction describing the two particles
state. Thus we ca rewrite the CHSH inequality in the form:∣∣〈A(a)B(b)〉+〈A(a′)B(b)〉+〈A(a)B(b′)〉−〈A(a′)B(b′)〉∣∣≤ BQM (1.25)

In the case Alice and Bob shares a maximally entangled state , for example |ψ−〉 = 1
2 (|1〉 |−1〉−

|−1〉 |1〉) where |±1〉 are the eigenstates of σx , they can choose their settings such that

A(a) =σx ⊗ I (1.26)

A(a′) =σz ⊗ I

B(b) = I ⊗−σx +σzp
2

B(b′) = I ⊗ σx −σzp
2

(1.27)
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For these value of the settings we obtain:

〈A(a)B(b)〉 = 〈A(a′)B(b)〉 = 〈A(a)B(b′)〉 =−〈A(a′)B(b′)〉 = cos
(π

4

)
=

p
2

2
(1.28)

This value coincides with the upper bound for the CHSH inequality predicted by quantum me-
chanics, BQM = 2

p
2. A rigorous proof has been proposed by Tsirelson and for this reason is

called Tsirelson’s bound [12]. This higher bound means that quantum mechanics violates the
CHSH bound for local hidden variable theory and so QM is not compatible with the principle of
local realism. For the sake of completeness is notable that a general theory subject only to the
no-signalling condition has an upper bound of 4.

Anyway there is still a way to reconcile QM and LHV theories which is called: superdetermin-
ism. Superdeteminism attacks directly one of the assumption of Bell’s theorem: the free will. In a
Bell test is assumed that the types of measurements performed at each detector can be chosen
independently of each other and of the hidden variable being measured. In other words is the
experimenter "free will" that chooses the settings for each round of the experiment. Superdeter-
minism instead states that there is no randomness in nature and everything is just evolving in
time, following the law of a deterministic physics. In this sense, also the choice of the settings of
the experimenter are already determined before they happen, in fact there is not even a choice,
the settings used are just the ones that had to be used. Since the chosen measurements can be
determined in advance, the results at one detector can be affected by the type of measurement
done at the other without breaking the local realism.

1.4 Quantum optics: the toolbox for quantum information experiments

Light has played historically a central role in the fundamental tests of quantum mechanics. Be-
cause of the easiness of optical setups compared to the particle-based ones, photonic experi-
ments in the last four decades, and still now, could give answer to important questions about the
foundations of quantum mechanics. The invention of the laser first, and single photon detectors
after, opened an entire world of possibilities to experimenters who wanted to work with single
quantum systems.
In the next section some of the commonly used optic components will be presented from a quan-
tum optic view and then the functioning of a single photon interferometer ,widely used in this
thesis, will be described.

1.4.1 Beamsplitters

The beamsplitter, presented in Fig. 1.2, is a multi-port device used to combine or split light
coming or exiting the ports. Classically the action of a such device can be described with two
complex parameters, t and r , the trasmissivity and the reflcetivity. If light enters from one port,
the incoming complex amplitude of electric field E1 is partially transmitted to one port, E2 = tE1

while the other is reflected to the second port E3 = r E1. If the device is lossless, the conservation
of energy requires |t |2+|r |2 = 1. This description holds for classic electromagnetism, but how can
be explained the action of these devices when a single photon is sent through?
To treat the beamsplitter quantum mechanically one can try to substitute the complex amplitude
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0

1

2

3

BS

Figure 1.2: Action of a beam splitter

Ei with annihilation operators ai . However, unlike the classical case, both the input port must be
considered, otherwise the commutation relations for creation and annihilation operators are not
preserved.[13]. The reason is that we must also consider the vacuum component. In this way the
relations between the operators can be written as:

a2 = t ′a0 + r a1 a3 = r ′a0 + t a1 (1.29)

Imposing the conservation of energy we have |r |2 = |r ′|2, |t |2 = |t ′|2, |r |2 + |t |2 = 1 and r∗t ′ +
r ′t∗ = r∗t + r t ′∗ = 0 and we have to remember that, in the dielectric beamsplitter, the reflected
component has its phase shifted by π\2. Combining everything together we can write:

a2 = |t |a0 + i (1−|t |)a1 a3 = i (1−|t |)a0 +|t |a1 (1.30)

that can be simplified for a 50:50 beamsplitter to:

a2 = 1p
2

(a0 + i a1) a3 = 1p
2

(i a0 +a1) (1.31)

Let’s now consider what happens when a single photon enters in the port 1 of the beamsplitter.
The state is described by:

|0〉0 |1〉1 = a†
1 |0〉0 |0〉1 (1.32)

if now we use the relation obtained above we get:

a†
1 |0〉0 |0〉1 =

1p
2

(i a†
2 +a†

3) |0〉2 |0〉3 =
1p
2

(i |1〉2 |0〉1 +|0〉2 |1〉3) (1.33)

At the output, the single photon is in a superposition of states, between the two ports, with equal
probability. This is an entangled state since cannot be described in terms of the modes 2 or 3
individually; in this case the single photon is entangled with the vacuum. The expectation value
out of one port is:

〈N3〉 = 1

2
((−i 〈1|2 〈0|1 +〈0|2 〈1|3)|a†

3a3|(i |1〉2 |0〉1 +|0〉2 |1〉3)) = 1

2
(1.34)

but the second order correlator:

〈N3N4〉 = 1

2
((−i 〈1|2 〈0|1 +〈0|2 〈1|3)|a†

3a3a†
4a4|(i |1〉2 |0〉1 +|0〉2 |1〉3)) = 0 (1.35)

meaning that is not possible to measure the position of the photon in the two ports simultane-
ously.
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1.4.2 PBS

The Polarization Beam Splitters (PBS) are special beamsplitters which can transmit horizontal
polarized light and reflect the vertically polarized one. These devices can be described using the
same framework above depicted with the following relations:

a0,H = a2,H a0,V = i a3,V a1,H = i a3,H a1,V = a2,V (1.36)

1.4.3 Circulator

The circulator, presented in Fig 1.3, is a 3 port device that transmits light from port 1 to port 2 and
from port 2 to port 3 blocking all the other possible configurations. Is really useful when working
with fibers and is widely used for building interferometers. Again the circulator can be described
by QM using the follow relations between the annihilation operators:

a†
0 → a†

1 a†
1 → a†

2 (1.37)

Note that a†
0 = a†

1 is not true.

0 1

2

Figure 1.3: Symbol of the circulator

1.4.4 Quantum interferometry

In the thesis a lot of the work is based on the single photon interferometry and, in this section,
we are going to apply the previous formalism in order to describe the internal functioning of a
Mach-Zehnder (MZ) interferometer when only one photon is sent into it. The setup of a basic

BS

BS
Mirror

Mirror

DA

0

1 3

2

3

2 4

5

DB

Figure 1.4: Setup for a Mach-Zehnder interferometer

MZ interferometer, represented in Figure 1.4, consists in two beamsplitters, two mirrors and a
phase modulator. With classical light, the incoming beam is split in two by the first beamsplitter,
then one of the two beam is modulated with a phase modulator and, using the mirrors, the two
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beams enter the two input ports of the second beamsplitter. The intensity of the light detected
by each detector depends on the value of the phase shift ∆φ with the relations:

I1(∆φ) = 1

2
I0

(
1+cos∆φ

)
(1.38)

I2(∆φ) = 1

2
I0

(
1−cos∆φ

)
where I0 is the total intensity of the incoming light. The effect is easy to explain in the context

of classical electomagnetism using the superposition principle for the electric field, but how can
be explained when only one photon is sent through the interferometer?
Using the conventions introduced in Sec 1.4.1 is possible to describe a single photon entering the
fist beamsplitter through port 1 with the state:

|ϕ〉 = |0〉0 |1〉1 (1.39)

Using the relations between creation operators in a beam splitter we have seen that the output
state is:

1p
2

(|0〉2 |1〉3 + i |1〉2 |0〉3) (1.40)

Both path employ a mirror, so a phase shift of π/2 is present in each and doesn’t affect the relative
phase. This relative phase instead is changed using a phase modulator in the upper arm (path 3).
After the modulation the state can be written as:

1p
2

(e i∆φ |0〉2 |1〉3 + i |1〉2 |0〉3) (1.41)

At the second beamsplitter (we numbered the entering port in the same way as the corresponding
output ports of the firs beamsplitter) we can reapply the relations for the creation operators,
obtaining:

|1〉2 |0〉3 =
1p
2

(|1〉4 |0〉5 + i |0〉4 |1〉5) (1.42)

|0〉2 |1〉3 =
1p
2

(i |1〉4 |0〉5 +|0〉4 |1〉5) (1.43)

so that the final state after the second beamsplitter is given by:

|ψ〉 = 1

2
(e i∆φ−1) |0〉4 |1〉5 + i (e i∆φ+1) |1〉4 |0〉5 (1.44)

The probability to see the photon in the detector A and B respectively is:

P A(∆φ) = |〈1|4 〈0|5 |ψ〉 |2 = 1

2
(1+cos(∆φ) (1.45)

PB (∆φ) = |〈0|4 〈1|5 |ψ〉 |2 = 1

2
(1−cos(∆φ)) (1.46)

The result is similar to the classic one but in this case is obtained for single photons. Moreover, the
formalism introduced can be used to explain other interesting effects with no classical analogue
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like the Hong–Ou–Mandel effect [14]. Finally, in the single photon case, the visibility of the
interferometer, that was defined as:

V = Imax − Imi n

Imax + Imi n
(1.47)

must be defined from a statistical point of view:

V = Nmax −Nmi n

Nmax +Nmi n
(1.48)

where Nmax , Nmi n are the counts seen by the detectors in a fixed amount of time for the construc-
tive and destructing interference.



CHAPTER2

Cryptography in the quantum era

Cryptography is the art of hiding information in a string of bits meaningless to any unauthorized
party. This is a really old discipline that plays a fundamental role in our modern society. The
first forms of cryptography were found in the Egyptian civilization, where nonstandard glyphs
were used to encode secret information. Since then all the civilization, from Chinese to Greeks
or Romans are documented to have been using different forms of cryptography [15], especially
during wars. In this case was essential to communicate with distant armies, in order to share
information and strategies, but the communication had to be encrypted in a way that if the
messenger had been intercepted by the enemy, no important information could be recovered.
Since then cryptography evolved, with the creation of more and more complex algorithm and,
little by little, entered in our everyday life. Today we rely on cryptography: e-commerce, home
banking, financial transaction but also secure web browsing and secure handling of digital data
are just few of the common operations performed everyday and made possible by cryptography.
Unfortunately in a really near future all the cryptography as we know now could be made useless.
Modern cryptography is based on hard NP problems that are solvable only in exponential time by
any powerful computer. Anyhow the invention of a Quantum Computer, whose field of research
is extremely active at the moment, has the possibility to solve this kind of problems in a faster
way, thus breaking all the current cryptosystems. Moreover, in 2013 internal NSA memos leaked
by Edward Snowden showed that the NSA was implicated in the insertion of a backdoor in the
Dual_ECl_DRBG standard used in almost every cryptography library. The implications of such
a backdoor were analysed in [16], where the author concluded that, depending on the protocol,
the NSA could have broken the security in seconds on a normal desktop computer.
Luckily, quantum mechanics provides us the tools to defend ourselves against this apocalyptic
future. The properties of single quantum system can, in fact, be used to build cryptographic
systems invulnerable to any possible attack, thus unconditionally secure.
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2.1 Classical cryptography

Classical cryptography can be divided in two big categories: private-key cryptography and public-
key cryptography. The first one is the typical form of cryptography that anyone imagines: Alice
and Bob have a secret key, Alice encodes, with some algorithm and a key, her message and sends
it to Bob who can fully reconstruct the message using his key. This kind of cryptography is the
oldest and the most commonly used before the 80’s. In the 70’s, another form of cryptography
was invented: public-key cryptography. In this case the security still relies on a private key but
the encryption can be done by anyone with a second, publicly shareable, key, avoiding the use of
a secure channel for the key exchange. In the following section some example of these algorithms
will be provided.

2.1.1 Protocols

A private key example: One time pad

In a private key cryptosystem, if Alice wants to send a message to Bob, she needs an encoding
key, which allows her to encrypt her message and Bob must have a matching decoding key, which
allows him to decrypt the encrypted message.
Over all the methods of encryption ever devised, there’s a special one that has been mathemati-
cally proved to be completely secure. This is the Vernam cipher or one-time pad (OTP) and was
invented in 1882 by Frank Miller. All the other ciphers, instead, are only computationally secure.
This means that the probability of cracking the encryption key, using current computational
technology and algorithms within a reasonable time, is supposed to be extremely small, yet not
impossible. The OTP instead was proven to be unconditionally secure if the keys are composed of
truly random data, are never used more than once and are kept secret. The mathematical proof
was given in 1949 by the father of modern information theory, Claude Shannon [17]. For this
reason, in theory, every cryptographic algorithm except for the OTP (if properly implemented)
can be broken given enough ciphertext and time. Despite it’s security the functioning of the OTP
is quite simple. Alice and Bob need to have a secret key that is as long as the message they want
to encrypt. Given the key and the message, Alice can perform a bitwise XOR operation with the
two strings. The result is the encrypted message that is sent to Bob. Bob, using the same key used
by Alice, can perform again the XOR operation with the incoming message and the key strings.
The result of the operation is the original message. A practical example is presented in Fig. 2.1
However, the OTP suffers of some big limitations, related to the secure distribution of key bits.
The OTP is secure only as long as the number of key bits is at least as large as the size of the
message encoded, and key bits cannot be reused. This requires an high number of key-bits, that
must be delivered in advance, kept secret and destroyed after the use since they are no longer
secure. This form of key sharing is not very convenient because exposes the key to many threats
and is not practical for very remote users that cannot have frequent physical contacts.
For this reasons, less secure but more practical scheme are commonly used today, like public key
cryptography.
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Message: SECRET 01010011 01000101 01000011 01010010 01000101 01010100 
Key: BITKEY 01000010 01001001 01010100 01001011 01000101 01011001 

00010001 00001100 00010111 00011001 00000000 00001101 

Alice

Bitwise XOR

ASCII Binary

Encrypted message

01010011 01000101 01000011 01010010 01000101 01010100 

Key: BITKEY 01000010 01001001 01010100 01001011 01000101 01011001 
00010001 00001100 00010111 00011001 00000000 00001101 

Bob

Bitwise XOR

ASCII Binary

Public channel

To ASCII: SECRET

Figure 2.1: Practical example of OTP

A public key example: RSA

Key distribution for private key cryptography has been the main problem for cryptographers
throughout history, and even with the development of new telecommunication systems the pro-
cess was too inefficient and subject to interception. For many years it seemed an unsolvable
problem. But in 1973 a new system, based on asymmetric keys, was developed by Whitfield
Diffie. The idea was further explored and the first implementation was published in 1976 with
Martin Hellman and it’s known as the Diffie-Hellman key exchange [18]. Unfortunately the Diffie-
Hellman key exchange turned out to be vulnerable to man-in-the-middle attacks. For this reason
in 1978, Ronald Rivest, Adi Shamir and Leonard Adleman published an improved version of the
Diffie-Hellman protocol known as RSA, in honor to the authors [19]. The RSA today is one of the
most used protocol for encryption and is widely used, especially for encryption over Internet.
The RSA, and public key encryption in general, relies on the use of a pair of asymmetrical keys.
Unlike OTP, where both Alice and Bob shared the same secret key, Bob generates a pair of key, a
public and a private one; the first is shared publicly and is used by Alice to encode the message
that can be decrypted only with the use of the private key, hold by Bob and never disclosed. But
how is possible to generate two keys with such properties? The best answer is to look how the
RSA protocol actually works.
Bob key generation:

• He randomly chooses two big prime numbers, p and q of similar bitlength and computes
the product n = p ·q . The length of n is the key length.

• He computes ϕ(n) =ϕ(p)ϕ(q) = (p −1)(q −1). ϕ(x) is Euler’s totient function.

• He chooses an integer e such that 1 < e <ϕ(n) and coprime with ϕ(n)

• He calculates d such d ·e = 1(mod(ϕ(n)))
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• The modulus n and e are publicly announced as public key.

• The private key consists of n and d . Also p, q , and ϕ(n) must be kept secret because they
can be used to calculate d.

Alice encryption:

• With an agreed padding protocol converts the message M to an integer m such that 0 ≤
m < n

• She converts m to a cyphertext c such that c = me (mod(n))

• She sends c to Bob over a public channel

Bob decryption:

• He recovers m using his private key and m = cd (mod(n))

• He uses the same padding protocol as Alice to recover M from m

The protocol relies its security on the fact that given the public key (n,e), is extremely hard to
compute p and q needed for computing d . This is a prime factorization problem, for witch
no polynomial-time factoring algorithms are known now. This means that the time needed for
modern computers to factorize n grows up exponentially in time with the length of n. On the
contrary the encryption operation is very fast and takes from fraction of second to few seconds
on modern PC, for the commonly used 2048 bit keys.
However, unlike the OTP, the RSA in not unconditionally secure, but only computational secure.
This means that is theoretically possible to break it but with the current knowledge and technology
this would take an enormous quantity of time.

2.1.2 Security and vulnerabilities

As stated above, the OTP was proven to be unconditionally secure, meaning that, if properly im-
plemented, OTP is secure even against adversaries with infinite computational power. Claude
Shannon’s proved that the encrypted message gives absolutely no additional information about
the original message and so even bruteforce attacks are useless. Trying all keys simply yields all
plaintexts, all equally likely to be the actual message. The real problem for OTP is the key distri-
bution. Given the high quantity of bits needed for the OTP and the fact that they cannot be used
again, is hard to find a secure key distribution system. The users could met once and exchange
a physical drive containing an huge quantity of pad-bits, but this solution is risky, because the
pads needs to be kept secret before and after the use (destroyed). Finally, the OTP is impractical
for web security, where the key point is the connection between users that cannot be physically
in contact.
For what regards RSA and public-key, the biggest problem is that is only computational secure.
Today no polynomial-time factoring algorithms are known, but there is no proof they don’t exist
and a more efficient algorithm could be found in future. Moreover, the security of public key cryp-
tography depends on the length of the key, and this has been increased many time in these years,
because advancing in math or technology proved that the used length was not secure anymore;
for example for n smaller than 300 bits the factorization can be done in hours on a modern PC.
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The record of factorization for the RSA is 768 bits and was performed in 2010 [20]. For this reason
today the suggested keylength is 2048 bit.
Another threat for RSA was discovered in 1994 by P. Shor in [21]: quantum computers. Shor
discovered a quantum algorithm that, executed on a quantum computer, performs the integer
factorization in polynomial time. This means that a stable quantum computer with a sufficient
number of qubits could use Shor’s algorithm to break public-key cryptography schemes such as
the RSA.
Finally, the RSA could be already be compromised. In 2013 leaks of NSA secret reports by Edward
Snowden showed that the NSA was implicated in the insertion of a backdoor in the Dual_EC_DRBG
random number generator used in RSA protocol. Many cryptography experts stated that this back-
door could have broken the RSA protocol completely, giving to the NSA full access to the plaintext
[20]. This scandal focused once more the attention to the need of a new "self-checking" cryptog-
raphy that can be trusted even if the maker of the protocol or of the devices are not trusted.
For all this reason in the last years a lot of effort has been put into Quantum Cryptography that
can, in principle, solve all these problems, once for all.

2.2 "Standard" Quantum Key Distribution

In the previous section we saw that modern cryptography suffers of few critical security flags that
can be used to compromise security in the near future. Quantum mechanics, the main enemy
with quantum computers, of modern cryptography, however, provides also a way to solve the
problem of secure key distribution. In fact, a theoretically secure protocol already exists within
the reign of classical physics and is the OTP. The problem that cannot be solved using only classic
physics is the distribution of the key, which is impossible to do safely and remotely. Quantum
mechanics, instead, provides a way to randomly generate and distribute a key over a public chan-
nel: this is Quantum Key Distribution (QKD). The central point in QKD is that this key generation
can be done securely, in the sense that, if the protocol is correctly implemented, the laws of QM
guarantees that any eavesdropper that tries to intercept the message would inevitably introduce
errors in the communication, revealing his presence to the users, that can abort the protocol and
start another key generation.
The idea of Quantum Cryptography was first proposed in 1970 by Stephen Wiesner and then
published in 1983 [22]. In this paper Wiesner proposed the use of conjugate observables for the
communication. His work was further explored by Bennett and Brassard, who, in 1984, published
an article [23] where they proposed and analysed a protocol for a secure quantum communica-
tion: the BB84. In the BB84, which is probably the most famous quantum protocol, the commu-
nication is performed using single qubit. The security of the resulting key is guaranteed by the
properties of quantum mechanics, and thus is conditioned only on fundamental laws of physics
on being correct. In another protocol, invented by A. Ekert in 1991 [24], the parties shared an
entangled pair of particle and the security was assured by the violation of a Bell inequality.
Since the BB84 is the most employed and is already used on commercial QKD system will be
taken as an example and discussed in the following section.
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2.2.1 BB84 Protocol

The BB84 protocol in its original proposal consisted in two users, Alice and Bob, that wanted to
communicate securely, and two communication channels: a quantum channel and a classical
public channel. With this protocol they want to protect themselves from an eavesdropper, Eve,
with an unlimited power that could do anything, within the laws of physics, to intercept their
communication. For the encryption part Alice and Bob agree to use an OTP scheme, while they
use the quantum protocol for the key generation and distribution. The QKD protocol schematized
in Fig 2.2 represents the BB84 protocol implemented with photon’s polarization.

Figure 2.2: Schematics of the BB84 protocol with photon’s polarization encoding[25]

Alice can prepare the photons she wants to send to Bob in one of the four polarization states
coming from two mutually unbiased bases: for example horizontal, vertical, +45◦,−45◦. The
states can be represented in a vector notation using Jones formalism (see Sec 3.1.2)

Base
⊕=

{
|H〉 =

(
1
0

)
, |V 〉 =

(
0
1

)}
(2.1)

Base
⊗=

{
|+〉 = 1

2
(|H〉+ |V 〉) = 1

2

(
1
1

)
, |−〉 = 1

2
(|H〉− |V 〉) = 1

2

(
1
−1

)}
(2.2)

These states can be described using two bits: bA for the base, such that bA = 0 for
⊕

and bA = 1
for

⊗
and sA , with sA = 0 for |H〉 , |+〉 and sA = 1 for |V 〉 , |−〉.

The procedure consists of six steps.
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1. For each round of the quantum communication Alice randomly generates two bits, bA , sA

and according to the value obtained she prepares the corresponding state and she sends it
to Bob along the quantum channel. Bob, at each round, randomly generates a bit bB and,
according to the value, chooses one base,

⊕
or

⊗
, and measures the photon in that base.

The outcome of the measure is a bit: sB . The process is repeated many times, until they
collect a large number of bits. At this point the quantum part of the protocol is finished.

2. Alice and Bob publicly announce the value of their base’s bits, bA ,bB , through the classical
public channel. They keep the rounds where they selected the same basis and they discard
the others

3. At this point they share a certain amount of bits (sA , sB ), randomly chosen, and they com-
pare the outcomes. This part is the security check. Ideally, if there is no noise in the channel
and no eavesdropper, the two bit-strings should match. If this is the case they go on with
the protocol using the remaining bits. On the contrary, if errors are present this means that
the channel is too noisy or that an eavesdropper is present. In this case, the protocol is
aborted and starts again. Actually, the BB84 can tolerate a certain level of noise and a secret
key can be established if the errors are less than a certain value. The actual parameter, used
to check the security, is called Quantum Bit Error Rate (QBER) and is defined as:

QBER = Nw

Nw +Nr
(2.3)

where Nw is the number of events giving out a wrong output and Nr is the number of events
leading to a successful results. The exchange is considered secure if the QBER is less then
11% for qubit [26].

4. After the security check, if successful, an error correction algorithm is performed. Alice
and Bob exchange on the public channel a small portion of the remaining bits. With this
operation they are able to correct the errors that could be still be present in their bitstrings.

5. Then privacy amplification is performed. This is a method for eliminating the information
that Eve could gain during the quantum communication or during the error correction.
After the privacy amplification Alice and Bob have two identical and secret bitstring.

6. The key is used by Alice to encrypt her message with an OTP cypher and is sent to Bob
through the classical channel. Bob, that holds a key identical to the one used by Alice, can
use it to recover the original message.

2.2.2 Security and vulnerabilities

The security of BB84 can be intuitively described using three facts:

• Alice and Bob use a set of non orthogonal states

• The no-cloning theorem

• Information gains implies perturbation in QM
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The idea is that if Alice and Bob are communicating non orthogonal states, for the No-Cloning
theorem, Eve cannot perfectly copy the quantum state transmitted and, if she tries to do it, the
state obtained by her necessary contains errors. On the other hand, if she tries to measure the
state, she introduces errors in the communication which can be revealed by Alice and Bob.
This is a very naive and simplistic way to describe the security of the BB84, but during these
years many physicists developed tools to formalize and rigorously demonstrate the security of
these protocols. While the security proof with a perfect apparatus and a noise-free channel is
quite straightforward, the fact that security can still be proven for an imperfect apparatus and
noisy channels is far from obvious. In 2000 Shor and Preskill demonstrated that under some as-
sumptions (that for the authors were quite practical) the BB84 protocol could offer unconditional
security even with non-null noise (QBER < 11%) [26]. This unconditional security assures that
QKD provides security against an Eve with an unlimited power, limited only by the law of physics.
However in these years many practical attacks were proposed and realized against both prototype
and commercial QKD systems. In Figure 2.3 some of them are listed.

Figure 2.3: List of attacks to QKD

But how is possible to crack security of QKD if this has been mathematically proven to be
unconditionally secure?
The key points are the assumptions made during the security proofs!
For the security proofs listed before some basic assumptions are always made:

• Eve must obey to the law of physics

• There is no information leakage from Alice and Bob laboratories (ie Eve doesn’t know the
settings used at each run)

• Alice and Bob have access to a trusted random number generator

• Alice and Bob have access to an authenticated public classic channel

• Alice and Bob have a perfect characterization of the physical functioning of their prepara-
tion and measurement apparatuses
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If one of these assumptions is not respected, the security of the entire protocol cannot be guaran-
teed anymore. Among all the assumptions, the last one is clearly the most difficult to meet, since
real devices always comes with some sort of imperfections. This discrepancy, between theoretical
assumptions and experimental implementation of the protocols, opens the doors to a multitude
of attacks that can completely compromise QKD. These attacks usually exploit the imperfections
of Alice preparation stage, included the single photon source, or the inefficiencies of Bob’s mea-
surement apparatus.
The most common and documented attacks are:

• Photon Number Splitting (PNS): The current technology doesen’t offer an on-demand
single photon source. For this reason, usually weak coherent pulses (WCP) from a laser
source are used. The photon number statistics of these sources, however, follows a Poisson
distribution and the probability to have multi-photon emission is always non-zero. In this
cases Eve can simply block all the single photon events, and for multiphoton events she
forwards one of the photons to Bob and she can measure the others, without disturbing
Bob’s system, thus breaking the protocol [27]. The attack can be discovered using Decoy
states: pulses with different mean photon number are used and by looking at the statistics
of the received pulses Alice and Bob can understand if Eve is manipulating the photon
number statistics.[28]

• Intercept and resend: Eve can intercept the qubit sent by Alice before it actually reaches
Bob and she can measure it along some basis. According to the value she obtained then she
can prepare and send a new qubit to Bob. However, doing so she introduces errors in the
final measures on Bob’s side. Using an optimal strategy Eve can lower the errors introduced
down to 11% [26], and so this attack can be avoided if the QKD protocol is aborted if the
security check finds out errors in the communication above this level.

• Trojan horse: In these attacks Eve can send bright pulses into Alice or Bob’s apparatus. By
looking at the reflections coming back from their devices she can learn the modulation
they used, and so their settings [29]. This is equal to an information leakage from their lab.
The vulnerability can be patched using insulators at the output of Alice and Bob’s devices
or attenuators but they are really insidious in 2-ways configurations.

• Detector’s blinding: This class of attacks is probably the most successful one and has
broken also commercial QKD systems [30]. In this attack Eve shines a continuous bright
laser to Bob’s detector, blinding it. In this regime, Bob’s detectors are not single photon
detector anymore: they click only if another bright pulse is shot at it, regardless of the
quantum properties of that pulse. In this way Eve has the full control of Bob’s detector and
can make it click when she wants, compromising the protocol.

• Misalignment: In the ideal BB84 the states are supposed to be the ones of the
⊕

and
⊗

base. Any real implementation of the protocol, though, will inevitably introduce misalign-
ment in the preparation of the states and in the alignment of the measurement bases with
respect to this ideal situation. If these misalignment are not taken into account, Alice and
Bob can incorrectly conclude that they have established a secure key[31].

These attacks show that, albeit QKD offers a theoretically unconditional security today real
implementation are still far form the ideality, opening serious security flags. Few solution to this
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problem can be addressed.
First, is possible to improve security proofs in order to include imperfection of the devices and
start to relax the assumptions used. This path however, requires to consider all the imperfections,
also the ones still unknown, making it quite impractical. Since the problem is technological, an
option could be to empower research on these devices in order to obtain nearly-ideal devices.
However, this is a big challenge and real devices will always have, even small, imperfections
respect the ideal one.
Finally, a third possibility is to develop protocols that intrinsically do not depends on the internal
functioning of Alice or Bob’s devices. These protocols are called Device-Independent and will be
discussed in the next paragraph.

2.3 Towards a more robust QKD implementation

The security flaws depicted in the previous section, profoundly worried researcher in the Quan-
tum Cryptography field, since they could be used to completely break security of QKD. For this
reason, in the last few years a lot of effort has been put to find a way out of this situation. In
1998 Mayers and Yao [32] conceived the idea of a "self testing" protocol, where security would be
guaranteed based solely on simple test performed on the system, while treating the quantum de-
vices as completely uncharacterized entities. After the initial proposal, many protocols followed
and with them, also security proofs [33]. Interestingly, there is one thing that all the DI proto-
col have in common: they are all entanglement-based. This Full-Device-Independent protocol,
however, requires many challenging technological problems to be solved before having a prac-
tical implementation. For this reason other protocols with a more feasible implementation, the
Measurement-Device-Independent (MDI) and the Semi-Device-Independent(SDI), have been
proposed.

2.3.1 Device-Independent QKD

Device independent protocols are all based on the violation of some Bell inequalities, and there-
fore they’re all entanglement-based. The simplest protocol is just a slight variation of the E91
protocol proposed by A.Ekert in 1991 [24].
The protocol works in this way:

• A source generates a pair of entangled photons (the protocols works also for others kind of
particles). One of these photons is sent to Alice and one to Bob. They both have a box that
is able to measure the polarization of the photons along some axis, which depends on the
settings of the machine. Alice can choose between three settings, and her choice can be
represented with a trit x = {0,1,2} while Bob’s device has only two settings, y = {0,1}.
At each round of the experiment Alice and Bob randomly choose a value for a,b and they
measure the incoming photon with that setting. The outcome of the measure is a bit a,b
for Alice and Bob respectively. The settings are chosen such that for x = {0,1} and y = {0,1}
they can obtain a maximum violation of the CHSH-inequality (Sec 1.3.1). The setting x = 2
instead should be aligned with the base of the setting y = 1. These settings are the one
for which the experiment has the maximum performance but they are not required for the
security of the protocol, where nothing is assumed about this devices.
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• After performing the quantum communication n times, Alice and Bob reveal a subset of
their settings and outcomes. They use the events with x = {0,1} and y = {0,1} to compute
the CHSH inequality, Smeas . If the value is lower than the security bound Sb chosen (Smax

is 2
p

2) they abort the protocol. In this case they conclude that Eve, by interacting with
their system, perturbed the states they’ve measured.

• If value measured is above or equal to the security parameter, they reveal their settings for
each round and they select the events with the settings xi = 2, yi = 1.

• With the corresponding ai and bi they perform error correction and privacy amplification.
They end up with two identical secure keys.

In this case the security relies only on violation of a Bell inequality and is guaranteed by a property
of entanglement, called monogamy. The monogamy of entanglement states that two quantum
systems that are maximally entangled cannot share any entanglement with a third system. In the
case of the CHSH inequality, if Alice Bob and Eve (A,B,E) share a quantum state ρ and BAB ,BAE

are CHSH operators for the pair Alice-Bob and Alice-Eve, the monogamy states that:

|Tr (BABρ)|+ |Tr (BAEρ)| ≤ 4 (2.4)

and so if Alice and Bob violate the CHSH inequality Alice and Eve (or Bob and Eve) cannot.[]
Thanks to this property, given a violation of a Bell inequality, between Alice and Bob, is possible
to upper-bound the information that Eve could have gained and so estimate the critical security
parameter Sb . Besides, is important to stress that the security is guaranteed only by looking to the
data obtained by the experiment, without assuming anything about the device used to perform
the protocol. In this way the last assumption in the list 2.2.2 can be dropped, making DI protocol
invulnerable to all the attacks described in the previous section.
The key point for the security of the DI protocol is the violation of a Bell inequality. Unfortunately
this is also its main drawback. As already discussed in Sec 1.3, violations of a Bell inequalities are
useful only if they are performed loophole-free. If this is not the case, the results are inconclusive.
For the same reason, the security of a DI protocol is guaranteed only by a loophole free violation
of the Bell inequality. This is a really tough challenge, especially for photonic implementation
due to the low efficiency of detectors, making hard to close the detection loophole (a detailed
explanation can be found in Sec 4.1.5). Moreover the rate achievable by DI is quite low (10−10 bits
per pulse) compared to the rates possible with BB84 for example [33].
Since no one could perform a loophole free Bell test, except for [10][9] [8] that are still in hands of
the peer-reviewer, other protocols, inspired by the DI have been proposed. These protocols offer
a more practical implementation and an higher security compared to the "standard" QKD but,
since they are forced to add some more assumption respect the DI, cannot reach the security of
the DI.

2.3.2 Measurement-Device-Independent QKD

The Measurement-Device-Independent (MDI) is a relaxation of the DI paradigm and is focused
on removing all the side-channels of the measurement device. This means that respect the DI
it has one more assumption: that the preparation devices are working perfectly or that they are
fully characterized. Despite the DI it can be implemented using standard optical components
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with low detection efficiency and highly lossy channels. Moreover,it doubles the transmission
distance that can be covered using conventional laser diodes.
MDI was first proposed in 2011 by Lo et al. [34] and since then many successful experimental
realization have been performed [35][36][37], up to the stunning distance of 200 km [38]. The
MDI is inspired by the DI protocol, where Alice and Bob receive an EPR pair, but completely
reverse the setup: now Alice and Bob both prepare a photon each and they send the photons to a
third untrusted relay (Charlie) that performs an entangling measure, known as Bell state measure.
This measure, if successful, projects the two-photon state into a Bell state, which is revealed using
two pairs of detectors. The scheme of the setup is sketched in Fig. 2.4 Alice and Bob can both

BS 

PBS PBS 

D1H

D1V

D2H

D2V

Measurement 
device 

Alice 

WCP 

Pol-M 

Decoy-IM 

Bob 

Decoy-IM 

Pol-M 

WCP 

Figure 2.4: Simple scheme of an MDI setup

prepare a photon in one of the BB84 states and they send it to an untrusted relay, Charlie, using
Decoy states. Charlie performs a Bell State Measurement (BSM) on the two particles, projecting
the two photons into an entangled state:

|ψ−〉 = 1

2
(|HV 〉− |V H〉) |ψ+〉 = 1

2
(|HV 〉+ |V H〉) (2.5)

Only 2 of the 4 possible Bell states are considered, because is impossible to build an optical imple-
mentation that can distinguish all the 4 Bell states without photon number resolving detectors.
For the setup in Fig 2.4, if a coincidence detection occurs in D1H and D2V or D2H and D1V ,
the BSM projected into the state |ψ−〉, while if the coincidence is in D1H and D1V or D2H and
D2V , the projected state is |ψ+〉. After the successful projection, Charlie broadcasts the successful
events and the outcomes. Alice an Bob can use the decoy states method to evaluate de QBER.
Alice and Bob then reveal their choices of bases over an authenticated channel and discard coinci-
dence events where they use different bases to generate a sifted key. A secret key can be generated
after error correction and privacy amplification.
This protocol, if one assume a perfect preparation from Alice and Bob, is equivalent to the time-
reversed DI. Intuitively, the security of MDI-QKD relies on the fact that Charlie is post-selecting
entanglement between Alice and Bob, who can verify such post-selected entanglement via au-
thenticated public discussion of their polarization data. Since the detection system can be placed
in an untrusted third party in MDI-QKD,the detection side channel are completely removed.
The main issues for the realization of MDI is linked to the BSM. To successfully obtain such mea-
sure, the two users must prepare and distribute the two photons in a way that when they arrive at
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the BSM they are completely indistinguishable. In fact physics behind this protocol is based on
the photon bunching effect of two indistinguishable photons at a 50:50 BS. This requirement is
not an easy task to obtain for photons coming from completely different sources. Moreover also
the distribution must be carefully controlled in order to have at BSM two photons with the same
spectrum and arrival time.
Despite these big challenges, MDI has been already implemented in fiber using both polarization
[37] and time-bin encoding [38], with key-generation rates of many order of magnitudes higher
than the DI case (≈ 10−5 ÷10−6).

2.3.3 Semi-Device Independent QKD

Besides DI and MDI, another protocol was proposed in order to strengthen the security of "stan-
dard" QKD and is called Semi-Device-Independent (SDI). The SDI, like the MDI, cannot offer
a security as high as the DI, but was conceived to be more applicable. This protocol has been
first proposed in 2011 by Pawlowski and Brunner [39] for QKD and then has been studied and
applied also for the generation of true random numbers [40][41]. Also here one more assumption
is introduced, respect the DI case, and regards the dimension of the quantum system exchanged:
for the security proof is assumed that the dimension of the quantum system exchanged by the
users is known. This is because the security is based on the violation of Dimension Witness (DW)
inequality. This dimension witness can test the lower bounds on the dimension of classical or
quantum systems. Like the DI case if a violation of this dimension witness is obtained, is possible
to certify the security of the communication by only the results of the data extracted from the test,
thus without assuming anything of the preparation and measurement devices (a more detailed
overview is presented in Sec. 4.1). The SDI, unlike the DI, is designed to be a prepare’n’measure
protocol and not an entanglement-based one, thus reducing a lot the experimental difficulties for
its realization. Compared to the MDI, it seems to offer an higher level of security since apart from
the dimension of the Hilbert space of the quantum system, doesn’t assume anything else about
the preparation device. However, like the DI, it needs high detection efficiencies to be secure and
the security proofs are still in an early stage.
The SDI is probably the least explored protocol among all the above discussed and potentially
offers a good trade off between the security of the DI and the experimental feasibility of the
MDI. This is why in this Thesis we focused our attention on the experimental realization of this
protocol.

2.3.4 Comparison

In order to better summarize the peculiarities and the drawbacks of each protocol, in Table 2.1,
is presented a comparison of the pro and cons of each protocol.
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Protocol Pro Cons

DI

• Minimal number of assump-
tions

• Highest grade of security

• Proven secure against the most
general attack

• Requires entanglement, no
p’n’m

• Requires near unity transmis-
sion and detection efficiency

• Hard to scale to networks

• Low keyrate

MDI

• Removes detector’s sidechan-
nels

• Already implemented

• Double the distance

• Good keyrate

• Good for star-network

• Assumption about preparation

• Very fine-tuned preparation

SDI

• Prepare’n’measure

• More secure than MDI

• Scalable to multi-party

• Good for any-network

• Assumption on dimension

• Requires high efficiency

• Lacks of general security proofs

Table 2.1: Summary of the pro and cons of each DI-like protocol



CHAPTER3

Polarization Stabilization

Working with optical fibers offers a lot of advantages respect the free-space alternative, but at the
same time many new problems appear in this scenario. One crucial problem comes out when
the control of polarization is needed and is caused by the intrinsic and induced birefringence of
the fiber. The fiber’s inner core is a circularly symmetric cylinder made of silica: because of the
circular symmetry two orthogonal polarization mode should propagate with the same propaga-
tion factor inside the fiber. However because of internal defects, or because of external stress, the
core exhibits effects of birefringence that can also change locally, thus resulting in a modification
of the state of polarization. This means that, unless special polarization maintaining fibers are
used, the state of polarization in input and at the output of the fiber will be, in general, different
and can evolve with time. For many of our experiments we want to finely control the state of
polarization of the light we are using ( just think the importance of polarization transmission
for a polarization-encoded BB84 protocol) and so we must find a way to control this dynamical
polarization shift for all the duration of the experiment. One possible solution consists in the
implementation of an active feedback system, that regularly measures the output state of po-
larization and automatically compensates for the change of polarization induced by the fiber.
The components needed for the implementation of this real-time polarization stabilization are
a polarimeter, needed for measuring the state of polarization of the light inside the fiber, and a
polarization controller, placed before the polarimeter, which lets us change the in coming state
of polarization of the photon to another arbitrary state of polarization .
Since for our application we need a fast polarimeter which can reconstruct all the four Stokes
parameters Si , and since the commercial ones couldn’t fit all our needs, we decided to build our
own polarimeter.
For the modulation we used a MPC1-01 Polarization Controller built by FiberControl.
In this chapter will be discussed the principle of operation of the polarimeter and the building
process, from the optical part to the electronic and software point of view. Then the principle of
working of the Polarization Controller will be presented and in the end we are going to discuss
our feedback algorithm and the performance we can achieve with this setup.

http://www.fibercontrol.com/MPC1.htm
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3.1 Polarization

Polarization is a property of electromagnetic waves, that describes the direction of the oscillation
of the electric field in a fixed position of space. So if ε(x, t ) is the electric field of the wave , fixed
x, the direction of ε over time defines the polarization of the wave. Polarization is widely used
in all field of classical telecommunication, since provides a physical way to encode information,
and is widely used in quantum optics since the polarization of a single photon is a two level
quantum system and so can be used as a qubit . In the next section will be briefly described
the properties of polarization, a very helpful formalism for dealing with polarized states and the
common elements used in optics for the control and modification of polarization.

3.1.1 Polarization Ellipse

The electric field ε(~x, t ) of an electromagnetic monochromatic plane wave travelling in vacuum
along the z axis can be written as:

ε(z, t ) =ℜ(Ae i 2πν(t− z
c )) (3.1)

where A is the complex amplitude of the wave that lies in a plane orthogonal to the z direction
and can be decomposed as A = Ax x̂+ Ay ŷ, ν is the frequency of the wave and c is the speed of
light in vacuum. Since we want to take the real part of ε(z, t ) we can decompose A j = a j e(iφ j ),
and we can write

ε(z, t )x = ax cos(2πν(t − z

c
)+φx ) (3.2)

ε(z, t )y = ay cos(2πν(t − z

c
)+φy ) (3.3)

These are the parametric equations of an ellipse of the form:

ε2
x

a2
x
+
ε2

y

a2
y
−2cos(φy −φx )cos(

εxεy

ax ay
) = sin(φy −φx )2 (3.4)

This ellipse, visible in Fig 3.1, is characterized by two angles: Ψ, that defines the rotation between
the x axis and the mayor axis and χwhich determines the ellipticity, the ratio between mayor and
minor axis.
These two angles are related to the previously defined quantities by the relations:

r = ay

ax
(3.5)

φ=φy −φx (3.6)

tan(2Ψ) = 2r

1− r 2 cosφ 0 ≤Ψ≤π (3.7)

sin(2χ) = 2r

1+ r 2 sinφ
−π
4

≤χ≤ π

4
(3.8)
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Figure 3.1: Polarization ellipse

The elliptical polarization is the most general case of polarization for a fully polarized wave,
but, as we can see from equations 3.5-3.8, for particular values of the amplitude, this ellipse
morphs into a circle or a line. The linear polarization can be obtained in two ways: by taking
one of the two amplitude equal to zero ( ai = 0 ), making the ellipse to collapse into a line along
the other axis. Another possibility is to set φ=φy −φx = 0+nπ for n ∈Z, having that χ= 0; the
direction of the line now is given by the ratio r = ay /ax between the amplitudes.
The other special case is the one regarding circular polarization; this is achieved by setting φ=
±π/2+2nπ for n ∈Z and ax = ay = a, so that equation 3.4 becomes

ε2
x +ε2

y = a2 (3.9)

These particular states are very important for Quantum Information Theory since they can
be used for the encoding of photonics qubits.

3.1.2 Jones calculus

The Jones calculus is a formalism, introduced by R. Clark Jones [42], aimed to describe the state
of polarization of an electromagnetic wave using a two component vector. This representation is
very useful for understanding how polarised light evolves through mediums and is a simple and
powerful way for the characterization of linear optics elements with 2x2 matrices.
Considering a monochromatic plane wave, Eq 3.1 describes the two orthogonal components
of the electric field. These are determined by the complex amplitudes Ax , Ay and by the global

phase e i 2πν(t− z
c ), which describes the propagation of the wave in time. By dropping the last term,

that doesn’t affect the shape of the polarization ellipse, the two components can be written in a
vector form:

J =
(

Ax

Ay

)
=

(
ax e iφx

ay e iφy

)
(3.10)

called Jones vector. Since usually one is interested only in the polarization state of the wave
and not in it’s intensity, the Jones vector is usually written in a normalized form obtained by
dividing this vector by the total intensity I = |Ax |2 +|Ay |2 and by factoring the phase of the first
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component φx . In this way the vector depends only on the ratio r of the amplitudes and by
the phase difference φ=φy −φx which, as seen in 3.8, are the parameters that characterize the
polarization ellipse and the state of polarization. The special polarization states, described in the
previous section, can be written using the Jones formalism are presented in Table 3.1.

Polarization State Jones Vector Polarization State Jones Vector

Horizontal |H〉 =
(
1
0

)
Left Circular |L〉 = 1p

2

(
1
i

)
Vertical |V 〉 =

(
0
1

)
Right Circular |R〉 = 1p

2

(
1
−i

)
Linear at +45° |+〉 = 1p

2

(
1
1

)
Linear at angle θ

(
cos(θ)
sin(θ)

)
Linear at −45° |−〉 = 1p

2

(
1
−1

)
General form

(
cos(θ)

e iφ sin(θ)

)
Table 3.1: Jones representation of useful states of polarization

By using this notation, the action of every linear optical component on the polarization of the
light, can be expressed by a simple 2x2 matrix. This is a very powerful way to compute the action
of even complicated setups: they can be modeled by writing the appropriate matrix for every
basic component and then, by multiplying them, we obtain the matrix representing the action
of the whole apparatus. Only few basic components are usually employed in common optical
circuits, thus only these needs to be analyzed, all the others can be obtained as a combination.
Some of these components will be presented now.

Linear Polarizer

One of the most common element is the linear polarizer. This element transmits the compo-
nent of the electric field that lies along the direction of its transmission axis while blocking the
orthogonal component. Considering its transmission axis parallel to the x-axis, the matrix for
this element is given by:

Mp =
(
1 0
0 0

)
(3.11)

Is easy to see that the output of a linear polarizer is always a linear polarized wave. Moreover the
linear polarizer shows that these operators are not, in general, restricted to unitary operators.

Polarization rotator

Another component is the polarization rotator, which can be used to convert any incident linear
polarization into linear polarization with a different angle respect the x-axis. The matrix is given
by

Mpr =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(3.12)

For example, if the incoming light is a linearly polarized with an angle φ the output will be a
linearly polarized with an angle θ+φ.
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Wave retarders

Another important class of optical devices are the wave retarders or wave-plates. These compo-
nents are made of birefringent crystals, with a fast and a slow axis that exhibits different refraction
indexes along the two axes. When a plane wave passes through a wave retarder, the electrical
field component along the fast axis propagates with a smaller refraction index compared to the
component along the slow axis and at the output of the wave-plate, a relative phase difference is
introduced between the two components. This phase difference depends on the thickness of the
plate by:

φ= 2π∆nd

λ
(3.13)

with ∆n the difference between the refraction indexes along the fast and slow axis, λ is the wave-
length of the light and d the thickness of the plate.

The matrix for this type of components is given by:

MW R =
(
1 0
0 e iφ

)
(3.14)

and the component unchanged is the fast-axis while the retarded one is the slow-axis. Among
all the wave retarders we can select two special types of retarders called: half-wave plate (HWP)
and quarter-wave plate (QWP). The half-wave plate is a wave retarder with φ= π and converts
+45° polarized light into -45° and vice versa. It also converts left circular to right circular and
vice versa. The quarter-wave retarder instead has φ= π/2 and converts ±45° linearly polarized
light into circular and vice versa. These components are at the basis for any kind of polarization
modulation in experiments.

Rotated components

Until now we have considered elements whose optical axis is aligned with the x-axis of the Jones
vector but in general they can be misaligned and this clearly modifies the behaviour of the com-
ponent. This can be modelled by a simple change of reference system, in fact the coordinate
system transformation that relates the same element in two different reference systems rotated
by an angle θ, is given by the rotation matrix:

R(θ) =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(3.15)

so that the Jones vector and matrix of the two systems are connected by the relations:

Ĵ(θ) = R(θ)J

M̂(θ) = R(θ)MR(θ)−1 (3.16)

For example the matrix for half-wave and quarter-wave retarders rotated at angle θ is given by:

MHW P (θ) =
(

cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
(3.17)

MQW P (θ) =
(

cos2(θ)+ i sin2(θ) (1− i )cos(θ)sin(θ)
(1− i )cos(θ)sin(θ) i cos2(θ)+ sin2(θ)

)
(3.18)

In appendix A are reported some useful example of how polarization states can be converted
using half and quarter wave retarders.
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3.1.3 Partially polarized light

Until now we considered only one monochromatic plane electromagnetic wave and we discussed
about what is polarization for that single wave. But what happens, from the point of view of po-
larization, when we consider light produced by different sources, like the de-excitation of a group
of atoms? The resulting electric field of the wave, thanks to the superposition principle, will be
composed by the sum of all the electric fields of the waves produced by every source. If the all
atoms emit light at the same time, with the same frequency and the same phase, the resulting
light will be again a plane monochromatic wave with different amplitude and hence still fully
polarized since the variation of the direction of the electric field is still a deterministic process.
But if the emission of light is a random process and the atoms emit at different time and/or with
different phases, the resulting electric field will fluctuate in random way, and so the light won’t be
fully polarized.
A quantitative way to define the degree of polarization of light is achieved by looking at the statis-
tical properties of the random electrical field and, in particular, to the correlation function of the
field ε [43] defined:

Gi , j (τ) =< ε∗i (t )ε j (t +τ) > (3.19)

where i , j = x, y is the considered component of the field and < > represents the time average:

< A(t ) >= lim
t→∞

1

T

∫ T

0
A(t )d t (3.20)

For the degree of polarization, the relevant information is contained in the cross-correlation Gx y

which can be expressed in a normalized form:

gx,y (τ) = Gx y (τ)√
Gxx (0)Gy y (0)

(3.21)

This quantity express the mutual correlation between the x and the y component of the field,
respect the time-lag τ and satisfies 0 ≤ |gx y (τ)| ≤ 1 for any value of τ.
For quasi-monochromatic light the dependence from τ in Eq. 3.19 can be factorized as a global
phase e iωτ so that the relevant quantity becomes |gx y | which is independent from τ.
A value of |gx y | = 1 means that the two component are perfectly correlated and so the light is
fully polarized. On the other side if |gx y | = 0 there is no correlation and the light is completely
unpolarized. These are the two extreme cases, but intermediate states exist where correlation is
not maximal and the corresponding light is called partially polarized; the continuous parameter
that describes the degree of polarization is given by:

p =
√

1−4
Ix Iy

(Ix + Iy )2 (1−|gx y |2) (3.22)

with Ii =< ε∗i (t )εi > the intensity of the i-th component.

3.1.4 Stokes parameters

Jones formalism is a really powerful tool for working with full polarized light or with a single
electromagnetic waves, but it cannot describe partially polarized light.
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In 1851 G. Stokes introduced [44] a new formalism which is better suited for dealing with partially
polarized light and offers a different way for represent the state of polarization of a wave.
Instead of building his description on the electric field of the wave, Stokes shifted his attention
on the intensity of the wave, and defined four parameters:

S0 = IH + IV =< |εx |2 >+< |εy |2 >=Gxx +Gy y = It (3.23)

S1 = IH − IV =< |εx |2 >−< |εy |2 >=Gxx −Gy y = I p cos(2φ)cos(2χ) (3.24)

S2 = I+− I− = 2ℜ(< ε∗xεy >) = 2ℜ(Gx y ) = I p sin(2φ)cos(2χ) (3.25)

S3 = IL − IR = 2ℑ(< ε∗xεy >) = 2ℑ(Gx y ) = I p sin(2χ) (3.26)

(3.27)

We can see from the relations above that Stokes parameters can be obtained in many different
ways, and they’re basically related to any aspect of polarized light described so far. The first
column shows how Stokes parameters can be obtained using only the information about the
intensity of the analyzed wave; in fact I j is the intensity of the wave measured in the j -basis. As
we can easily see the S0 parameter is just the total intensity of the wave It . The second column
points out how Stokes parameters are related to the coherence matrix, while the third express the
relation between Stokes parameters and the two angles of the polarization ellipse. The degree of
polarization presented in Eq 3.22 can be also expressed in terms of Stokes parameters:

p =
√

S2
1 +S2

2 +S2
3

S0
(3.28)

The four parameters over described are usually grouped in a 4-vector:

S =


S0

S1

S2

S3

 (3.29)

called the Stokes vector.
If we are not interested in the intensity of the wave but only in the polarization properties, we can
divide each of the Stokes parameters for S0 so that Si ≤ 1 obtaining the normalized Stokes vector.
A list of common normalized stokes vector is present in Table 3.2
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|H〉 =


1
1
0
0

 |L〉 =


1
0
0
1

 |+〉 =


1
0
1
0

 Linear at angle θ =


1

cos(θ)
sin(θ)

0



|V 〉 =


1
−1
0
0

 |R〉 =


1
0
0
−1

 |−〉 =


1
0
−1
0

 Unpolarized =


1
0
0
0


Table 3.2: Normalized stokes vectors

3.1.5 Poincaré Sphere

From Table 3.2, one can immediately see that, by dropping the first component S0, all the possible
normalized Stokes vectors belong to an unity radius sphere, called the Poincaré Sphere. This
representation was first proposed in 1892 by H. Poincaré.[45].

V

S₁
S₂

S₃

H

+

-

R

L
Figure 3.2: Representation of the Poincaré Sphere

This is an useful graphical representation for any possible state of polarization (SOP), where all the
linear polarizations states lie on the sphere’s equator, while the right and left circular polarizations
are located on the north and south poles, respectively. All the remaining points on the surface are
associated to the elliptical polarization states. Moreover, the radius of the Stokes vector on the
sphere is equal to the degree of polarization, so every point on the surface of the sphere represents
fully polarized light, while the origin of the sphere is an unpolarized state. All the other points
inside are states of partially polarized light.
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In this way is also easy to visualize the difference between Jones and Stokes vector, since the first
can only describe points on the surface and not the entire sphere.

3.1.6 Mueller Calculus

The concepts of Jones matrix and Jones Calculus, presented in Sec. 3.1.2, can be extended to
Stokes vectors by using a 4x4 matrix instead of a 2x2 like in Jones calculus. This generalization
was first presented by H. Mueller in 1943 and is called Mueller calculus. Every Jones matrix J can
be converted into a Mueller matrix M using:

M = A(J ⊗ J∗)A−1, (3.30)

with A defined as: 
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 (3.31)

3.2 Polarimeter

The final goal is to obtain a fast polarization stabilization that must be way faster than the time
scale on which polarization drift occurs. Clearly, the whole apparatus will be as fast as the slowest
component, thus is mandatory to optimize every single element in order to get the best accuracy
and speed. The first component analyzed is the polarimeter: a device that can measure the
state of polarization of the incoming light. The requirements for this instrument are: complete
reconstruction of the Stokes vector, be as fast as possible, have good accuracy and being able to
be interfaced with a PC through a programming language. The few fast polarimeter commercially
available didn’t offered enough flexibility for our purpose, so we decided to build our own Stokes
polarimeter.

3.2.1 Design of the Polarimeter

One of the first, and still very common, way to fully measure the all the Stokes parameter of
a light beam, was proposed by G. Berry in 1977 [46] and is based on a rotating quarter-wave
plate and a linear polarizer that can extract the information of the Stokes parameters through
a Fourier analysis. This method can reach high precision but inevitably requires moving parts,
limiting the maximum speed achievable. Moreover the alignment of the waveplate must be very
precise and this can limit the accuracy obtainable by this kind of polarimeter. Since speed and
accuracy are our main concerns, we decided to focus on other designs and implementations. A
possible way to measure all four Stokes parameters simultaneously, employs division of wavefront
(DOW) technique [47]. The beam is divided at least into four segments and a different stationary
analyser is placed in each segment. Photodetectors positioned behind these fixed analysers
record signals from each portion of the wavefront and determine the four Stokes parameters. The
DOW technique, unfortunately, is limited by few factors: the beam must be uniformly polarized
over its cross-section, the proportions of the total light flux in different wavefront segments has
to be known, and the absolute response of all photodetectors must be the same or has to be
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calibrated. Furthermore this technique requires very precise tuning of all the optical components,
such lenses, and is more difficult to employ with coherent illumination, due to coherent scattering
and interference.
Another no moving parts design uses liquid crystals as variable and electrically-driven, wave
retarders [48]. The main drawbacks of this implementation are: the requirement of expensive
LCD, and the fact that LCD modulation has to be serial, limiting the speed of the entire apparatus.
One of the most interesting implementation that do not require moving parts and provides a
simultaneous reconstruction is called Division of Amplitude (DoA) polarimeter and was first
proposed in 1982 by R. M. Azzam [49] and then further developed in [50] and [51] for a four
detector configuration. The idea behind this kind of polarimeter is simple and powerful at the
same time. We have seen in section 3.1.4 that one possible way to calculate the Stokes parameters
is registering the intensity in different basis:

S0 = IH + IV

S1 = IH − IV

S2 = I+− I−
S3 = IL − IR

(3.32)

The DoA polarimeter uses beamsplitters (BS) to divide the beam to be measured in two or more
beams that are processed simultaneously. In particular, using wave plates and polarizing beam
splitter (PBS), one can simultaneously measure the intensity of the light in two or more basis, and
so using Eq 3.32, all the Stokes parameters can be retrieved. This method can employ as few as
two detectors with analysis of two orthogonally polarized components of light, or it can measure
the complete Stokes vector using four detectors, although an higher number of detectors can be
used in order to improve the precision [52],[53],[54],[55],[56].
This method has many advantages: can be entirely built using common optical elements like BS,
PBS and waweplates, is fast and the speed is virtually limited only by the speed of the detectors
or the ADC and is stable respect temperature fluctuations. Anyway the main disadvantage of this
setup is the calibration that can be tricky and will be deeply discussed after in this thesis.
For these reasons the DoA was selected as a starting point for our polarimeter and the final design
adopted is presented in Figure: 3.3.

3.2.2 Theory of operation

While in the previous section we explained why we have chosen this particular design for the
polarimeter among all the possible configurations, in this section will be presented the theory of
operation of the polarimeter. By looking at Figure: 3.3, we see that the first element is the light
source; we used mainly 2 different sources for testing the polarimeter: the first one is an Thorlabs
FPL1009S: a continuous laser source working at 1550 nm and powered by a Fabry-Pérot laser
diode with 100 mW typical max power and 10 nm FWHM spectral width. The output is a fully
polarized light along the horizontal direction. The other is a Thorlabs SLD1005S, a non coherent,
super-bright LED source, with 22 mW of continuous maximum power, 50 nm FWHM spectral
width. The both are mounted inside a Thorlabs CLD1015, a LED/Laser driver with TEC that give
us the possibility to easily change the optical power. We decided to use two different sources, a
coherent and a non-coherent one, in order to test the response of the polarimeter to both fully
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Figure 3.3: Setup of the polarimeter

and partially polarized light. From now on, for simplicity, only fully-polarized light is considered
so when the source’s properties are mentioned they are referred to the first one.
Since we want to be able to generate any possible state of polarization, in order to fully charac-
terize the polarimeter, and since the laser can give us only horizontally polarized light, after the
source a half-wave and a quarter-wave plate are placed. In this way the light coming from the
laser is transformed to any possible state of polarization, by simply changing the angles of the
two waveplates. By using the Jones formalism we can describe the action of the waveplates by an
unique matrix:

HW P (φ) ·QW P (θ) =
(− cos(2(θ−φ))−i cos(2φ)p

2

sin(2(θ−φ))+i sin(2φ)p
2

i sin(2φ)−sin(2(θ−φ))p
2

− cos(2(θ−φ))+i cos(2φ)p
2

)
(3.33)

The angles of the waveplates used are reported in table 3.3.

Final state Half wave φ(rad) Quarter wave θ (rad)

|H> 0 0
|V> π

2 0
|+> π

8
π
4

|-> −π
8

π
4

|L> π
4

π
4

|R> −π
4

π
4

Table 3.3: Settings used for converting |H> into any other state of polarization

The system composed by the laser and the waveplates is our "simulated" source and will be
used for characterization and calibration. The real part relative to the polarimeter will be now



3.2
P O L A R I Z A T I O N S T A B I L I Z A T I O N

P O L A R I M E T E R
39

described. The incoming beam goes through a beamsplitter that divides it into two different
beams. Then these are divided again using two beamsplitters, one for each optical path.
So after three beamsplitters the initial beam is divided into four, each one with 1/4 of the intensity
of the initial one.
Then one of the four beams goes directly into one of the detectors; this is used as a power mon-
itor and is also needed in the reference-free calibration method that will be discussed after. As
explained in section 3.2.1 the DoA polarimeter requires to measure the polarization of the beam
in two or more basis ( three in our case), but how is possible to do that with standard free-space
components? In fact, the polarization beamsplitters are built to transmit and reflect horizontally
and vertically polarized light respectively, giving the possibility to measure only in the |H >, |V >
base. To measure in other basis, we placed an appropriate waveplate before the PBS. In this way
the polarization of the incoming beam is “rotated” into the |H >, |V > base and then measured
by a common PBS. In order to clarify this statement lets give an example. Suppose the incoming
light is fully polarized along, lets say |+ >. If we measure this in the |+ >, |− > base we should get
the maximum intensity in one detector and nearly nothing (there will always be some noise or
imperfection of the components) in the other one. If we use only a PBS we will get half of the
maximum intensity in both detectors. But if we place an half wave plate rotated at π/8, |+ > will
be converted into |H > and |− > will be converted into |V > and so the PBS will give full intensity
in one detector and zero in the other, exactly what we wanted from a |+ >, |− > base measurement.
Everything said before can be exactly applied also for the |L >, |R > case if we change the HWP at
π/8 with a QWP at π/4.
Summing up: the initial beam is processed and divided into 7 beams whose intensity is registered
by 7 detectors. The detectors convert the light intensity into an electric current which is ampli-
fied and then acquired with an Analog-to-Digital converter and recorded by a PC. Now there are
several ways to reconstruct the Stokes parameters from these raw electrical signals: all depends
on the specific calibration procedure one wants to apply. The calibration at first sight can appear
as a trivial step but many factors contribute to make it quite tricky. For this reason a detailed
description of the calibration is given in section 3.2.4.

3.2.3 Electonics

The electronic part of the apparatus consists only in the photodetector’s circuit and in the ADC
converter. The ADC is a NI-6001 from National Instruments, it consists of 8 Analog Inputs rated up
to ±10V and 20kS/s. The photodetector used is Hamamatsu G8370-01, a InGaAs PIN photodiode
with low noise and low dark counts. This photodiode has a typical efficiency of 0.95 AW−1 at
wavelength of 1550nm. The maximum dark current is 5 nA. However these photodiodes don’t
include a pre-amplifier in the package so, in order to collect a nice shaped signal, we had to design
and build our own transimpedance amplifier circuit. The aim of this circuit is double: first, acts
as a transimpedance circuit so it converts a current signal, the output of the photodiode, into
a voltage signal and, at the same time, it provides an amplification of the original signal so that
the output level can be optimized in order to use all the range offered by the ADC, improving
the accuracy of the data gathering. Is also crucial to have this circuit as near as possible to the
photodiode in order to minimize noise and interference.
At this point there are usually two ways to deal with a photodiode, called photoconductive and
photovoltaic mode: with the first one one can reach grater speed while the second one offers a

http://www.hamamatsu.com/resources/pdf/ssd/g8370_series_kird1050e.pdf
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better accuracy and lower noise. The practical difference is whatever a bias voltage is applied or
not, between the P-I-N junction of the photodiode; if a reverse voltage is applied, the carriers are
forced to move faster, thus increasing the speed of the photodiode, but also increasing the dark
counts rate: this is the photoconductive mode. If no bias voltage is applied to the junction, the
carriers are slower and the device itself has a lower bandwidth but the dark count rate and the
noise is minimized.
By testing the photovoltaic mode, we saw that the speed we could reach was sufficient for our
needs and we decided to use the photodetector in this mode. It provides a better accuracy and
a lower noise, having no inverse current of saturation [57]. In figure 3.4 is showed the scheme of
the circuit
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Figure 3.4: a) Schematic of the transimpedence amplifier used for the photodiode. b) PCB of the finished
circuit

The amplifier circuit is realized using an operational amplifier (OPA), an TI OPA129 [58] with
a resistor (R f ) of 1 MΩ and a capacitor (C f ) of 5 pF in feedback. The photodiode is connected
between ground and the inverting input of the opamp, while the non-inverting input of the OPA
is connected to ground. This provides a low impedance load for the photodiode, which keeps
the photodiode voltage low. The high gain of the OPA keeps the photodiode current equal to the
feedback current through the feedback resistance. In this configuration the gain of the circuit is:

Vout =−R f · Iphot (3.34)

Since we are interested in the DC level of the output, we need to care also of the possible
offsets. The input offset voltage due to the photodiode is very low in this self-biased photovoltaic
mode. This permits a large gain without any large output offset voltage. Other possible offset
can be caused by bias current of the OPA. This current is caused by the gate/base currents of the
transistor that can flow through the input stage because the input impedance of a real opa is finite
and not infinite. These tiny currents can flow to external impedances, and in particular through
the big feedback resistance giving to birth to a noticeable voltage offset. For this reason we choose
the OPA129 among a wide selection of OPAs. The OPA129 in fact is designed for precision and low
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noise applications and is able to keep the bias current below 100fA [58]. One could ask why we
have not chosen a smaller resistance and implement a two-stage amplifier in order to overcome
this problem? The answer is that the resistor thermal noise is described by

V RMnoi se =
√

4KbT Nbw R f (3.35)

where Kb is the Boltzmann constant, T is the temperature, Nbw is the noise bandwidth and R f is
the feedback resistance. If we consider the SNR as:

SN R = Vsi g nal

Vnoi se
∝

√
R f (3.36)

so from the point of view of noise is way better to use a big resistor in the transimpedence stage
since the SNR grows if R f grows.
For what regards C f , the purpose of this capacitor is to prevent the circuit to oscillate or gain-
peaking effects. In fact the the non-null photodiode capacitance can raise instability problems
because it creates a low-pass filter in the feedback path. Adding a capacitor in feedback creates a
zero and modifies the pole of the low-pass filter. If the compensation is done right is possible to
obtain stability for the circuit. The drawback of this approach is that, adding a feedback capacitor,
causes the bandwidth of the amplifier to be reduced depending on the size of the capacitor. For
our purpose we found that a CF of 5 pF is the best compromise between stability and bandwidth.

Another thing to consider when one works with fast signals are decoupling capacitors. A
decoupling capacitor’s job is to supress high-frequency noise in power supply signals. They take
tiny voltage ripples, which could otherwise be harmful to delicate ICs, out of the voltage supply.
In a way, decoupling capacitors act as a very small, local power supply. If the power supply very
temporarily drops its voltage, a decoupling capacitor can briefly supply power at the correct
voltage.

The response of the amplifier to a 300 ps laser pulse is showed in Figure 3.5

Figure 3.5: Voltage response of the preamp plus photodiode circuit to a 300 ps laser pulse.

We can see that the signal response of the whole circuit to a typical 300 ps laser pulse is
≈ 26.6µs equivalent to a frequency of ≈ 37.594kHz which is higher than the 28.57kHz acquisition
frequency of the ADC we are using, confirming that the photovoltaic mode is fast enough for our
needs and so represents the best option for the preamplification circuit.
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Figure 3.6: Test of the linearity for one of the detector plus amplifier system

Linearity

Before starting to use the photodiodes with the amplification stage is necessary to check that the
response of the entire system is linear. The output voltage from the amplification stage should
be ideally proportional to the light hitting the photodedectors. We already know that both the
photodiode and the preamp are linear only in a certain region of operation, so we must ensure
that the range we want to work with is inside the linear region. If this is not the case, a calibration
of the Voltage(Light Intensity) relation is necessary in order to get non-biased results. In order
to check the linearity we used an S122C optical power sensor based on a Ge Photodiode with a
PM100D powermeter both from Thorlabs. The power sensor is specifically designed for the 700 -
1800 nm range and is certified from the company to have an uncertainty ≤ 5%. This powermeter
was used to measure the power of the light coming from one end of a 50:50 beamsplitter con-
nected to the CLD1015. The other end of the beamsplitter was directly connected to the input
port of the polarimeter. The voltage output from the amplifier was digitalized and recorded with
a National Instrument NI-6001 14bit ADC working in the 0-10 V range, thus having a resolution of
0.6 mV. Every value of the voltage recorded is obtained by averaging 1000 recordings and the er-
rors associated are the standard deviations. With the CLD1015 we could easily change the power
of the laser and then, by registering the output of the powermeter and the voltage output of each
detector, we first plotted and then fitted the data with a linear function in the form y = ax +b.
An example of the plot and the fit is presented in Fig 3.6 The result of the fit for each channel is
presented in Table 3.4.

As we can see from the presented figures, both the fit and the residuals plot are showing a
good agreement between the linear model and the data. Moreover, also the Pearson’s R2 is really
close to unity, suggesting the validity of the linear relation. Anyway we need a quantitative and
objective way for claiming that the data are linearly distributed. We choose to use the χ2 test as a
goodness-of-fit test for the data. For every value the critical χ2

ci r t is computed from the ν degrees
of freedom and from the significance level α = 0.05, a typical value for this kind of tests. Since
for none of the channels the measured value of the χ2 is larger than the corresponding χ2

ci r t , we
cannot reject the null-hypothesis, that the data are consistent with the linear model.
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Channel a( V /µW) b (V) R2 χ2 ν(DoF ) χ2
cr i t (α= 0.05)

1 0.0772±0.0002 0.021±0.001 0.99989 8.8 14 23.7
2 0.0802±0.0003 0.013±0.002 0.99981 3.2 14 23.7
3 0.0735±0.0001 0.0036±0.0006 0.99996 2.2 14 23.7
4 0.0704±0.0002 0.013±0.001 0.99985 12.6 14 23.7
5 0.05985±0.00009 0.0106±0.0006 0.99997 2.1 14 23.7
6 0.06020±0.00005 0.0101±0.0004 0.99998 1.0 14 23.7
7 0.1664±0.0003 0.014±0.001 0.99997 6.6 11 19.7

Table 3.4: Results of the fit for the linearity of the photodetection system

3.2.4 Non idealities and calibration

Ideally the reconstruction of the Stokes parameters can be done using the optical power-voltage
calibration discussed in the previous section and the definition of Stokes parameters given by
Eq 3.32. Unfortunately this relation is good for our setup only if it is completely ideal. This, in
practical terms, means that all the BS must be 50:50 and have no polarization-dependent losses,
the PBS must have perfect transimissivity and refelctivity for horizontally and vertically polarized
light, the waveplates must be perfectly aligned, the response of the photodiodes must be the
same for all and there must be a perfect alignment of every component in the apparatus. These
requirements are really strict and is almost impossible to satisfy all of them because of the limited
precision reachable by the manufacturer of the components and because of the limited precision
on the overall alignment. One possible solution is to perform a calibration, by launching known
state of polarizations and retriving the intensities recorded by each detector, in order to create
a model for the polarimeter that takes into account the non-idealities before described. One
of the first calibration method was proposed in [51] and relies on the fact that, even with the
defects taken into account, the intensities recorded by each detector are linear functions of the
Stokes parameters. In vector form this means that the vector of intensities I = (I1, I2, I3, I4, I5, I6)t

is related to the Stokes vector S = (S0,S1,S2,S3)t by the application of a matrix A

I = AS (3.37)

and so S can be retrived by just inverting the equation:

S =C I (3.38)

where C = A−1 is a 4×6 matrix and is called instrumental or calibration matrix. This matrix con-
tains all the information about the internal working of the polarimeter, defects included. The
instrumental matrix can be evaluated launching 6 non degenerate known states of polarization
Si i = {0, ...,6} and recording the corresponding intensities from the detectors Si and then calcu-
lating:

C =


S0,1 S0,2 . . . S0,6

S1,1 S1,2 . . . S1,6

S2,1 S2,2 . . . S2,6

S3,1 S3,2 . . . S3,6

 ·



I1,1 I1,2 . . . I1,6

I2,1 I2,2 . . . I2,6

I3,1 I3,2 . . . I3,6

I4,1 I4,2 . . . I4,6

I5,1 I5,2 . . . I5,6

I6,1 I6,2 . . . I6,6



−1

(3.39)
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In the case where more than 4 detector are used, the current matrix Ii j has usually a null or
nearly-null determinant [52], due to redundancies in the over-constrained system. This implies
that the inversion of the matrix is impossible in the null case or is numerically unstable for the
nearly-null case. In these cases Eq 3.39 can be rearranged in the form

C =





I1,1 I1,2 . . . I1,6

I2,1 I2,2 . . . I2,6

I3,1 I3,2 . . . I3,6

I4,1 I4,2 . . . I4,6

I5,1 I5,2 . . . I5,6

I6,1 I6,2 . . . I6,6

 ·


S0,1 S0,2 . . . S0,6

S1,1 S1,2 . . . S1,6

S2,1 S2,2 . . . S2,6

S3,1 S3,2 . . . S3,6


−1



−1

(3.40)

where the inverse is replaced by the Moore-Penrose pseudoinverse for non square matrices [59].
The use of the pseudoinverse gives better and consistent results since provides a least squares
solution to a system of linear equations. After the calibration process is done, we know C for
the wavelenght we used in the calibration, and we can compute the Stokes parameters by using
Eq. 3.38. Although this method hugely improves the naive reconstruction given by Eq 3.32, still
doesn’t give good enough results. The main reason behind the limited accuracy obtainable using
this method can be imputed to the way we generate the input states of polarization. In fact, as we
can see in Figure 3.3, the different states of polarization are obtained rotating an half-waveplate
and a quarter-waveplate and checking the intensity out of the corresponding detector. This is
a very practical way for generate all the possible polarization from a linearly polarized source
but the precision is limited to the precision on the angular setting of the waveplate and, without
having a pre-calibrated source, cannot be improved.

"Reference-Free" Self-Calibration

A way to improve the previously presented calibration is described in [60] where the authors
found a new method that doesn’t require the states launched to be known. The advantage of
this approach goes beyond the simple accuracy improvement and allows the experimenter to
perform the calibration in a fully automated and remote way. Moreover, by only adding one more
detector (for a total of 7 in our configuration) for monitoring the total intensity, also Polarization
Dependent Losses (PDL) can be taken into account in the calibration matrix.

This calibration procedure relies on the imposition of a constraint on the input signals used to
perform the calibration. The simplest and most robust constraint is to use signals with DOP = 1.
This condition is relatively easy to verify in narrow linewidth lasers and can be transported over
long lengths of fiber without significant degradation. The calibration matrix of the polarimeter is
then adjusted so that measurements made at the polarimeter match the constraint on the input
polarizations. The calibration procedure is performed in various steps:
First N different states of polarization are launched and for each one the intensities I j j = {1, ..., N }
from the "basis" detector and the total intensity P j from the new detector are recorded. Then we
recall that S0 j = P j by definition and using Eq 3.38 to explicit S0 j we have:

P j =
5∑

i=0
C0i Ii j (3.41)
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Applying the least squares method the first row of the calibration matrix can be determined
minimizing:

Q =∑
j

(
5∑

i=0
C0i Ii j −P j

)2

(3.42)

which is satisfied for:

C0i = Z−1X |i (3.43)

Zki =
N∑

j=1
Ik j I j i (3.44)

Xk =
N∑

j=1
Ik j P j (3.45)

Now that we have determined the first row of the calibration matrix we can use Eq 3.38 to
express for each run Sj in function of the 18 variables left in the calibration matrix:

Si j =
k=5∑
k=0

Ci k Ik j (3.46)

Now we can impose the initial constraint of DOP = 1 that can be expressed in terms of the Stokes
parameters as:

S2
0 = S2

1 +S2
2 +S2

3 (3.47)

In order to estimate the 18 variables we can minimize the function:

W =
N∑

n=1

(
S2

1n +S2
2n +S2

3n −S2
0n

)2
(3.48)

that express the relation (DOP 2 −1)2 and is an internal metric of the accuracy of the calibration.
This expression has a minimum value of 0. Since this is a nonlinear least squares fit, it is useful
to obtain an appropriate first guess that is as accurate as possible. To do this, we used the ideal
calibration matrix for a polarimeter that measures projections onto a octahedron on the Poincaré
sphere. This matrix assumes perfect polarizers and unity gains:

C00 C01 C02 C03 C04 C05

η −η 0 0 0 0
0 0 η −η 0 0
0 0 0 0 η −η

 (3.49)

where η is a scaling factor given by the average of the first row. In our case the calibration was done
with N = 100 and the state of polarization were launched by sending random value for the angle
of the polarization controller placed before the polarimeter, but it can be done by simply shaking
the fiber of the link. Then the nonlinear minimization was performed by the Minuit2 class of
Cern’s ROOT framework [61], using a combination of the MIGRAD and SIMPLEX algorithms. The
whole process usually takes ≈ 11−12s. Note that this optimization also has a sphere of minima in
the space of the 18 variables, since a Stokes rotation R gives the same DOP = 1 condition, and so
the matrices C and RC yield the same solution. The DOP metric is completely unchanged under
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such rotations, making W exactly the same. This means that the orientation of the reference
system in the Poincaré sphere will be arbitrary and will depend on the specific minimum that the
minimizer found. Anyway this is not a big problem since usually we are interested in differential
measurements, for cancelling out the systematics, and so the effect of the random orientation
is not important. However if we apply the same concept, after the reconstruction of C we can
build a rotation R to rotate the C matrix, and so the reference system, without compromising the
accuracy.

3.2.5 Optimization

Given the number of detectors, the best accuracy obtainable by the apparatus is the one that max-
imize the determinant of the calibration matrix[51]. This is obtained by choosing analyzers that
maximize the spread of optimally detected states on the Poincaré sphere. For a four-detector sys-
tem, this maximum spread requires that the optimally detected incident states represent vertices
of a tetrahedron occupying the largest possible volume. Thus the arrangement with 4 detector
projecting into two of the three {H ,V }, {+,−} and {R,L} basis are not optimal. Moreover the re-
alization of an optimal tetrahedron with only waveplates in the setups is quite tricky and much
complex than considered six-detector geometry. In fact using six detectors the maximal spread
is obtained if polyhedron is an octahedron and the combination of the three basis ({H ,V }, {+,−}
{R,L}) are optimal. A graphical representation of this concept is showed in Figure 3.7

Figure 3.7: Disposal of measuments on the Poincaré sphere for optimal reconstruction in the case of a)
Four detectors b) Six detectors [60]

Moreover, even if the DoA polarimeter requires only four measurands to uniquely determine
four unknown Stokes parameters, an higher sampling in the space of parameters, and the inclu-
sion of additional data, can be helpful to reduce disturbances that may perturb the system and
can also help to average out noise with the consequent increase of the measurement accuracy.
The first researches on this path were performed by R. M. A. Azzam in [62] [54] an then further
explored in [56] and [52]. In these last two articles the authors studied how the increased number
of measurands could help to lower the noise on the Stokes parameters introduced by the Shot
and Gaussian noise, that inevitably affects the detectors. The results showed that the increased
number of detectors improved by at least 20% the accuracy over the optimized 4-detector and,
more important, the accuracy does not depend on the measured state. In Figure 3.8 is presented
the noise on the reconstructed Stokes parameters depending on the input state of polarization
for the non-optimized 4 detector configuration and for the 6 detector configuration.
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Figure 3.8: Noise on the reconstruction of the Stokes parameters in the case a) non-optimized 4-detector
b) optimized 6 detector configuration [56]

3.2.6 Performance

The performance of the first calibration was tested using another reference polarimeter (rated
to have ≈ 1% SOP accuracy ) and calibrating our polarimeter respect the reference one so that
they both have the same orientation on the Poincaré sphere. The results showed in Table B.1, pre-
sented for convenience in Sec A of the Appendices, shows that the discrepancy between the two
polarimeters goes between the 0.1% and the 10% depending on the input state. For the second
calibration method, the "Reference Free", since the orientation of reference system couldn’t be
aligned to the one of the reference and since we expect the accuracy to be comparable to the one
of the reference polarimeter we decide to test it in a independent way. We used the HWP and the
QWP before the polarimeter, and by rotating them by steps of 2deg, we recorded the value of the
corresponding Stokes parameters. Then the distribution of Si (θ) is fitted with a curve in the form:

Si = a cos(w · x +b) (3.50)

The fitted value are then compared with the expected values: A = 1 and w = 4 while b depends
only on the relative alignment between the "standard" reference of the Ponicaré sphere and the
polarimeter’s one. The results of the fit are presented in Figure 3.9 and in Table 3.5

Stokes parameter a w( ◦C−1)

S1 0.996±0.004 3.970±0.007
S2 0.991±0.004 3.954±0.008
S3 0.993±0.004 3.957±0.009

Table 3.5: Results of the fit

As we can see the results are all compatible inside the 1% with the theoretical values. We also
checked the Degree of Polarization of during this test and, as we can see from Figure 3.5 , it always
lies inside the 2% deviation from the theoretical value expected that is 1. We can see that in some
cases the physical bound Dop ≤ 1 is exceeded, but the deviation from the bound are still inside
the errors, so compatible with the theoretical expectation and explainable in terms of statistical
fluctuation or limits of our calibration procedure.
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Figure 3.9: In figure is showed the fit with the datapoint for S1,S2,S3 and the DOP

3.3 Polarization Controller

In order to control the polarization along the fiber we used a FiberControl MPC1-01, inline po-
larization controller. The device is an electronic polarization controller that can be operated and
programmed remotely through GPIB IEEE 488.2 & RS-232 and BTM standard. The MPC1 is rated
to have less than 1dB of insertion loss, a minimum rotational resolution of 0.15deg/step that can
be varied to 1.5,6,15 deg/step.

3.3.1 Theory of operation

Internally the MPC1-01 is based on the electronic implementation of a Lefèvre loop, like the one
showed in Fig. 3.10. This device, invented in 1980 by H.C Lefèvre [63], consist of three wave
plates in a QWP-HWP-QWP configuration. Each wave plate is entirely fiber based and is made
from a fiber coil where the radius and the number of turns determined the phase shift. The
coil introduces stress in a fiber and therefore a change in the propagation index, and hence the
phase, of two orthogonal polarizations. A rotation of the coil, will rotate the fast and slow axis
of the coil, thus realizing a fixed-phase, rotating wave plate. For what concerns the QWP-HWP-
QWP configuration, this is not casual. In fact this combination can transform any input state
of polarization into any other state of polarization at the output. The idea in this case is quite
intuitive. If we recall the Jones matrix of a QWP from Eq 3.18 and we do a bit of algebra we can
find that for any input SOP it exist an angle θ that transforms that SOP into a linearly polarized
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Figure 3.10: An example of a Lefèvre controller

one. The angle is given by:

θ = 1

2
arctan

S2

S1
(3.51)

then is possible to use the HWP to rotate the input state along the plane of linear polarization and
then by using again the other QWP is reconverted into the desired SOP. The MPC01-01 uses the
internal electronic to control the motors mounted on the coil is such a way that when the user
request a rotation of an angle θ the electronics knows how much rotation on the coil is needed
to reach the equivalent of a rotation of θ on a standard waveplate. Each coil can be controlled
independently with its own step size, having in total 6 degrees of freedom: three angles and three
step-size.

3.4 Polarization Stabilization System

The polarization stabilization system in our case is composed by the polarization controller dis-
cussed in the previous section and by the polarimeter presented before. In our tests we inserted
the polarization controller right after the laser, then we connected the fiber under test and the
end of the fiber was finally coupled into the input of the polarimeter. The principle of working of
the stabilization system is simple: first we set a reference SOP, this is the SOP we want to obtain
out of the fiber and so the one read by the polarimeter. Then the the polarimeter reads the Stokes
parameters of the incoming light and sends the data to a feedback system that calculates the
variation that the polarization controller needs to perform in order to get closer to the reference
SOP. The process is iterated until the distance between the reference and the measured SOP goes
below a certain value (in our case dc = 0.001 ). If the distance, in any moment, goes over dc , the
whole procedure starts again. The need of this iterative method is forced by the fact that we don’t
know the incoming state of polarization and also we don’t know the reference system of both
the polarization controller, and the polarimeter, so we cannot calculate the three angles of the
waveplates a priori.

3.4.1 Feedback system

The feedback system, thus, is a crucial point in the entire polarization stabilization system. It
can be implemented in a numerous of different an surprising ways; for example can be imple-
mented directly on hardware with only analog electronics or it can exploit all the power of genetic
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algorithms. We decided to implement it directly in C++, incorporating it inside the software for
the control of the polarimeter. In this way the complexity of an inter-process communication is
avoided.
The algorithm works in the following way: First, given the reference vector Sref, the algorithm
reads the current value from the polarimeter Smeas and computes the distance

d =
√

(Sr e f
1 −Smeas

1 )2 + (Sr e f
2 −Smeas

2 )2 + (Sr e f
3 −Smeas

3 )2 (3.52)

Depending on the value of d the algorithm selects the optimal step size for the increment; if d
is large, we are far away from the reference point and so big steps will help us to converge faster,
while if d is small, we already are near the reference point and so smaller steps will help us to have
a better resolution. Then the first waveplate of the polarization controller is selected and a step is
made randomly forward or backward. If the new distance is lower the process will continue until
d decreases. If d is bigger the other direction is selected and the process goes on until d decreases.
When d increases or sticks to the same value the process exits and selects the next waveplate
repeating the above described procedure iteratively. When d goes below a specific tolerance
value the algorithm keeps computing d without acting on the controller. Despite its simplicity
the codes performs really well and is typically able to converge at the 95% of the reference value in
6−7 iterations while at least 15−20 iterations are needed to go below the 1−2%. The response of
the stabilization system sadly is limited not by the feedback or the readings from the polarimeter
but by the GPIB protocol used for the communication between the MPC1 and the software. The
protocol in fact requires at least 50ms between two consecutive commands, limiting the overall
performances of the system.

3.4.2 Software

The software for controlling the polarimeter and the entire polarization stabilization system has
been written from scratch in C++ using only open source and multi-platform libraries including:
Qt(5.x), ROOT, Eigen and Boost. In this way the software can be compiled and distributed on both
Windows and Unix machines and all the sources are currently available under the Apache License
2.0 via https://github.com/marcoavesani/untitled2. The software is object-oriented and
modularized with each class providing a wrapper to the basic functions; in this way if adding new
hardware or function is needed the changes are localized inside the specific class and nothing
has to be changed in the general function of the program itself. Currently the project is composed
of 41000 lines of code and performs:

• Communication with the ADC and reading of voltages

• Conversion from raw voltage to optical power

• Plot of each voltage in realtime for monitoring

• Both method of calibration

• Import export of settings

• GPIB interface for the polarization controller

 https://github.com/marcoavesani/untitled2 
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• Polarization stabilization algorithm

• Output of raw and extracted data in pipeline or text file

• Graphical User Interface(GUI) for a simplified interaction with the user

Figure 3.11: GUI of the control program
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3.4.3 Results

The stabilization system has been tested on different fibers (Polarization mantaining and non)
and on various length. In Figure 3.12 is presented a test where 50km of spooled non polarization
maintaining fiber are used.
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Figure 3.12: Comparison of the polarization drift in 50km of spooled fiber with and without the stabiliza-
tion system
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Figure 3.13: Zoom of the S1 parameter for the stabilized case

From what we can see from the figures the stabilization system was working really well in the
cases considered. One note on the spikes that can be seen in the stabilized case: the spikes are
happening just after something perturbed for a short time the system. The two big ones, the first
and the last, are caused by the close of one of the doors of the cabinet that was supporting the
spooled fiber. The other small peak, visible in the zoomed picture, was caused by the closing of
the door of the lab. This can show how polarization in fiber is sensible to external perturbation
and so why an active stabilization is needed in fine-tuning applications.



CHAPTER4

Semi-Device-Independent QKD: The experiment

In this thesis one of the main goals is to design and perform a Semi-Device-Independent (SDI)
QKD experiment. The advantages of the SDI approach were discussed before but a global and
deeper view will be developed through all this section. The initial part will describe the theory
and the tools needed to understand the SDI framework, while the second part will be focused on
the experimental realization of this QKD system.

4.1 Theoretical background and protocol description

In Section 2 we presented the actual limitations and threats that are mining the security offered by
QKD. Although QKD is expected to provide theoretical unconditional security, the gap between
theory and practical implementation can be exploited to completely crack the QKD system. We
saw that is possible to build a protocol where the devices are completely uncharacterized to the
users: they’re black box and nothing is known or assumed on their internal functioning. This DI
approach is based on non-locality and requires a loophole free violation of a Bell inequality, which
is extremely hard to realize and, more important, to scale up to a network. For this reason the SDI
was developed: it is based on the DI approach, but is realizable with the current technology paying
the price of making one more assumption. Moreover SDI is based on a "prepare’n’measure"
scheme and not on entanglement, making it less fragile and easier to generalize to 3 or more
users.
The core of SDI QKD is presented in Fig. 4.1 and works in this way:
Alice holds an uncharacterized box,the state preparator, that can generate a system based on a
set of possible settings a = {0,1,2, .., N − 1}. Depending on the value of a, the box sends as an
output a quantum system, ρa , of dimension d . Since Alice’s preparator is a blackbox, the only
thing we know is the dimension of ρ and we also assume that Alice preparations are unentangled
from a possible eavesdropper, Eve. Bob holds another black box, the measurement box, with a
set b = {0,1, ..., M −1} of settings that can be used to measure ρa . The output of Bob’s measure can
take k values and is denoted as x = {0,1,2, ...,k −1}. The boxes can also share classical variablesλ
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Figure 4.1: Schematic representation of the SDI QKD protocol

known to Eve but independent on the choice of the state.
The protocol, in order to be SDI, requires that the security of the system must be guaranteed with
only the knowledge relative to the dimension of ρ and the data table P (x|a,b), the probability of
the outcome x, given the knowledge of a,b. The protocol above depicted is valid for any quantum
system of dimension d , but in our case we will be focused in the qubit case.

4.1.1 Dimension assumption

The classical assumptions made by "standard" QKD (like BB84) are:

• The eavesdropper must obey to the law of physics

• There is no information leakage from Alice and Bob’s lab

• Alice and Bob have access to trusted true random number generator

• Alice and Bob have an authenticated classical channel

• Alice and Bob have a perfect characterization of the physical functioning of their prepara-
tion and measurement apparatuses

The SDI QKD removes the last assumption, which is the most critical one, but adds one more
assumption. This is often called the dimension assumption: it assumes that the dimension of the
system used for the communication is known. Like all the other assumptions if it is not satisfied,
security cannot be guaranteed anymore. The communication protocol realized in this thesis is
based on qubits, so the case d = 2 will be discussed.
Imagine that Alice has a source capable of sending to Bob one of four different quantum states
ρA,x = {ρ,ρ′,σ,σ′} ∈ H A , that belong to a certain Hilbert space H A . During the transmission
an adversary, Eve, can perform arbitrary unitary operations on the state sent, trying to obtain
some information from it. After the operation, the transmitted state can be shared between Bob
and Eve, and so acts on a Hilbert space given by HB ⊗HE . The assumption requires that the
differences ρ−ρ′ andσ−σ′ between the source states (after the unitary attack) share their support
on a common two dimensional subspace H̃ A of HB ⊗HE [64].
This assumption is fundamental for the SDI protocol and clearly weakens the security respect the
DI case. However, the assumption is quite reliable making the whole SDI protocol interesting.
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In fact, with this formulation, we see that only the differences ρ−ρ′ and σ−σ′ are bounded,
and not the absolute states ρA,x , which are free to live in higher dimensional Hilbert space. For
instance, in an optical implementation, each qubit may be encoded in the polarization degree
of freedom of a single photon, but may also possess a vacuum component and thus formally be
a three-level system. Still, the differences only involve the genuine qubit parts and thus satisfy
the qubit source assumption. Moreover, if there is no prior entanglement between Alice and
Eve or Bob, the states sent by Alice are such that ρ−ρ′ and σ−σ′ have support in the same two-
dimensional subspace. Under these conditions, after Eve’s unitary attack the states will still share
the same two-dimensional support and thus the qubit source assumption will be satisfied.

4.1.2 Dimension Witness: a lower bound on the system’s dimension

Like the fully DI QKD, SDI QKD relies its security in the violation of an inequality. In the DI case,
the inequality is a Bell inequality and its violation implies that non-local correlations are shared
by the users. For SDI, the inequality that needs to be violated is a dimension witness inequality.

The concept of Dimension Witness (DW) was first introduced in 2008 [65] by Brunner and
then realized in [66] [67] [68]. The authors showed that is possible to put a lower bound on
the dimension of the Hilbert space of a quantum system transmitted between two parties. In a
prepare and measure experiment, like the one depicted in 4.1, users can obtain the conditional
probabilities P (x|a,b) performing many times the exchange. Is then possible to build a linear
function of the P (x|a,b) called linear dimension witness, with the form:

W = ∑
a,b,x

αa,b,x P (x|a,b) ≤Cd (4.1)

for some well chosen coefficients αa,b,x and where Cd is the maximal value obtainable for W
using a classical system of dimension d . Like what happens for Bell’s inequalities, a quantum
system can violate the dimension witness’s classical bound, meaning that for a given dimension
is possible to obtain values of W higher than Cd but less or equal than Qd , the quantum bound.
Thus, given the experimental value of W is possible to certify that the exchanged system had a
classical (quantum) dimension higher than d (d̃), where d (d̃) is the highest dimension for which
Cd (Qd̃ ) is violated. Moreover, since this dimension test is performed using only the information
from P (x|a,b), is also device independent [66]. The type of dimension witness depends directly
on the choice of the coefficients αa,b,x and they can also be constructed in non-linear forms.
Recent researches proved that they’re also deeply related to Bell inequalities and DI protocols
[69][64]. Dimension witness allows to turn the dimension of Hilbert space, from a very abstract
concept into an experimentally measurable property.

4.1.3 RAC and QRAC: the quantum advantage

Dimension witness and the SDI protocol described in Section 4.1, are connected with the so
called Random Access Code (RAC) and its quantum version (QRAC).
The RAC is a communication task between two users: the first one, Alice, has n bits which is
allowed to encode in m bits. These m bits are then sent to the second user, Bob, whom is asked
to guess the value of any of the n initials bits. If n ≥ m, Bob can always recover any bit with
probability 1, since Alice is allowed to send all the information about the values she is holding.
In the case n ≤ m, Bob cannot know deterministically the values of the bits but, together with
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Alice, can try to maximize his guessing probability pg uess . Both in fact are allowed to discuss a
common strategy to apply before the beginning of the RAC. In the presented case the RAC is
denoted with the symbol n → m, meaning that Alice has n bit but she can send only m bit to Bob.
We can perform this task also with quantum mechanical system, where Alice is allowed to encode
the n bit in a m dimensional quantum system, obtaining a QRAC. The interesting thing is that
sharing a single m-level quantum system, somehow gives an advantage respect the classical case,
thus allowing Bob to retrieve the bits with an higher pg uess . We are now interested in the 2 → 1
case, where Alice holds 2 bits but can send only one to Bob, who must try to get the one of the two
values. In the classical case their best strategy is simple: Alice always sends the first bit to Bob,
then if Bob wants to retrieve the first one, he just need to read the value of the bit received, while
in the case he wants the second he can randomly guess its value, having 1

2 of probability to pick
the right one. So on average the pC

g uess = 3
4 for the classical case. In the quantum case, Alice can

encode the two bits in a qubit, with the encoding presented in Table 4.1

a0

a1 0 1

0 |0〉 |1〉
1 |+〉 = |0〉+|1〉p

2
|−〉 = |0〉−|1〉p

2

Table 4.1: Encoding for the optimal 2 → 1 QRAC

Then Bob can measure with the basis:

M1 = σz +σxp
2

(4.2)

M2 = σz −σxp
2

(4.3)

In this case, given the symmetry, the measures have the same distance in the Bloch sphere from
all Alice’s states, and so the probability of reconstruction for the QRAC does not depend on the
input state. The situation is represented in Fig: 4.2.

In this case the guessing probability is pQ
g = 1

2

(
1+ 1p

2

)
≈ 0.854, so higher than the classic case,

giving a clear advantage to the QRAC over the RAC. The quantum advantage can be expressed

with the ratio rg = pQ
g

pC
g

, taking in this case a value of rg ≈ 1.138. The above described strategy was

proven in [70] to be the optimal strategy for the 2 → 1 QRAC, thus yielding the highest rg . This
advantage of the quantum system against the classic one is the key feature in the SDI, that enable
us to guarantee security in the communication. The relation with the SDI protocol, described
in section 4.1, is in fact clear: the bits hold by Alice are represented in the SDI protocol by the
settings on her preparator, while the settings on Bob machine are representing the way for Bob
to select which of the n bits he wants to recover. In this way we see that the SDI protocol can be
also seen from the QRAC point of view.
Finally, since the maximum pg is related to the classical or quantum dimensionality of the system,
is directly connected to the dimension witness:

pg = 1

8

∑
a,b,x

P (x|a,b) = W +4

8
(4.4)
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Figure 4.2: Representation on the Bloch sphere of the optimal quantum strategy for the 2 → 1 QRAC

in the case of the CHSH-inspired witness [39].
The language of QRAC so can be used to address SDI properties from another point of view: we
will se that they turns out to be useful tool in the analysis of security for the SDI protocols.

4.1.4 Connection with Entanglement witnesses and DI protocols

In the description of DI and SDI protocols is possible to see common features shared by the two
protocols. First, they both relies on the violation of some inequality. For the DI is a Bell inequality
while for the SDI is a dimension witness. They both put constraints on the performance achiev-
able by classic theory in some tasks, and the violation of both inequalities is an indicator that
the system used for the communication doesn’t admit a classical description. In the case of BI,
limits are imposed on the correlation experienced by two space-like separated users, while in
the case of DW, is the guessing probability pg of a RAC that is limited. However, while for "stan-
dard" QKD, where devices can be trusted or characterized, exists a very well known equivalence
between entanglement-based and prepare’n’measure implementation [71], for the DI protocol
this equivalence is broken. The essence of the DI protocol is based on a Bell test, so on a test of
non-locality, making it intrinsically entanglement based. On the other hand, prepare’n’measure
scheme cannot be fully DI, since Alice could transmit her settings classically. Nevertheless a rela-
tion between BI and DW actually exists and is in general possible to build one starting from the
other [69]. Let’s take for example the simpler BI: the CHSH.
The scenario of the CHSH inequality has already been described in Sec 1.3.1 and if we call
x, y = 0,1 the settings for Alice and Bob and a,b = 0,1 their outcomes, the CHSH can be writ-
ten as:

I = ∑
a,b,x,y

(−1)a+b+x y P (a,b|x, y) (4.5)
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which is a particular form of
I = ∑

a,b,x,y
αa,b,x,y P (a,b|x, y) (4.6)

Now if we consider the prepare’n’measure, Alice doesn’t register an outcome a but she can choose
the state to send according to the setting given by two bits, that we can call x, a = 0,1, in order to
better show the similarities between the two protocols. Thus we can write:

P (a,b|x, y) = P (a|x, y)P (b|a, x, y) (4.7)

and since the settings are chosen randomly from a flat distribution, we have P (a|x, y) = 1/A,
where A is the size of the alphabet for a, in our case A = 2.
We have

W = ∑
a,b,x,y

αa,b,x,y

A
P (b|a, x, y) (4.8)

that can be rewritten in the form:

W = ∑
a,b,x,y

βa,b,x,y P (a,b|x, y) (4.9)

For the particular case of the CHSH this takes the form:

W = 1

2

∑
a,b,x ′,y

(−1)a+b+x y P (b|a, x ′, y) (4.10)

which is the form of the CHSH-inspired dimension witness. Sometimes in the thesis, or in other
works, is possible to encounter another form of the CHSH-like dimension witness, written as:

D = (Ex1,y1 +Ex1,y2)− (Ex2,y1 +Ex2,y2)+ (Ex3,y1 −Ex3,y2)− (Ex4,y1 +Ex4,y2) (4.11)

with
Exi ,y j = P (1|xi , y j )−P (−1|xi , y j ) (4.12)

This form is identical to the one in Eq.4.10 except for being a factor 2 larger. Finally, is worth to
mention that in [64] author showed that the DI and SDI share another common quantity: the
min-entropy Hmi n(A|E) of Alice’s outcome conditioned to the side information of a potential
eavesdropper. If the CHSH correlator S = I for Eq 4.5 or S = W 4.10 is used, Hmi n(A|E) was
proven to be:

Hmi n(A|E) ≥ 1− log2

1+
√

2− S2

4

 (4.13)

This relation is very useful, both for the randomness certification in SDI QRNG protocols but also
for security proofs for the SDI QKD.

4.1.5 The role of Detection Loophole in SDI QKD

It has already been stressed the Semi-Device-Independent QKD relaxes the assumption of perfect
characterization of the preparation and measurement devices respect the standard QKD, thus
making it more robust and secure. However any experimental implementation of SDI QKD still
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suffer noise and loss. Thus is important to understand if these losses or noises can influence
and affect the security of the protocol. The non ideal efficiency is actually one of the biggest
experimental problem, and is known as the detection loophole. The concept of detection loophole
has been first developed in the context of experimental tests of Bell inequalities, and points out
that a Bell test performed with non-ideal detectors, ( efficiency η< 1) can be inconclusive even if
it register a violation of the classical bound. In fact, if the detectors are not 100% efficient, they
will inevitably lead to events where they not register a coincidence. In these cases the event is
simply rejected. This procedure, however, implicitly assume that the photons actually seen by
the detectors belong to the same distribution of the photons sent, in other words that there is a
fair sampling. If this inefficiency is taken into account Eq. 1.24 must be modified and becomes

∣∣E AB (a,b|coi nc)+E AB (a,b′|coi nc)+E AB (a′,b|coi nc)−E AB (a′,b′|coi nc)
∣∣≤ 4

η
−2 (4.14)

where the expectation values E AB are now conditioned to the event of having a coincidence [72]
[73]. In this case the classical bound was found to be higher respect the ideal case, since a local
hidden variable model can exploit the non-ideal efficiency to reproduce an higher correlation.
From (4.14) is possible to see that there is a critical efficiency, ηcr i t , under which the violation
doesn’t exclude LHV theories. The ηcr i t is obtained when the right side of the equation is equal to
the QM bound 2

p
2 and this happens for ηcr i t = 2p

2+1
≈ 0.8284. This value can be lowered using

non-maximally entangled states to ηcr i t = 66.7 [74].
A similar problem is present also in the SDI approach, where the violation of the dimension
witness must be guaranteed without any knowledge of the devices, so without taking into account
the expected efficiency of the detectors. This problem has been deeply explored in [75], looking
also to the effects of noise in the communication channel. It has been found that for symmetric

detection efficiency of the detectors (ie identical detectors at Bob), the critical ηc =
p

2
2 . If one

of the detectors has unity efficiency the ηc for the other can be arbitrary low. Recently some
solutions have been found, but they requires some additional assumptions. The first solution,
presented in [76][41], uses a nonlinear dimension witness in the form:

W = det

(
P (1|0,0)−P (1|1,0) P (1|2,0)−P (1|3,0)
P (1|0,1)−P (1|1,1) P (1|2,1)−P (1|3,1)

)
(4.15)

With this witness is possible to violate the classical bound for every non-zero value of the effi-
ciency η, if the preparation and measurement device are assumed independent. Anyhow there’s
another price to pay when using this witness. While for the linear dimension witness there is a
linear dependence on η, when taking into account inefficiencies, for this witness the dependence
is quadratic. This means that if one wants to reach a value near to the quantum bound, he needs
a much more higher η in this case respect the linear one.
Another approach has been proposed in [77], where a trusted blocking device is used in order
to limit the possible shared randomness between the preparation and measurement stage. The
idea of using an extra assumption regarding the shared randomness between the devices was
first proposed in [78], where is proved that with this assumption the detection loophole can be
closed for any (non-null) value of the detection efficiency.
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4.1.6 Parallel QRAC

The detection loophole is a serious threat for SDI protocols and we have seen that it can be lifted
using today’s technology only adding more assumptions, like the independence of the devices or
the lack of shared randomness. However, these are strong assumptions, hard to justify in practice.
In a recent paper [79], the authors introduced and experimentally performed a non classicality
test, based on dimension witness, without the fair sampling assumption or other auxiliary as-
sumption, with an arbitrarily non-zero detection efficiency. The core of this new approach is the
use of two preparation and two measurement devices, which are randomly paired in each round.
The setup proposed for their protocol is presented in Figure. 4.3

Figure 4.3: Setup of the proposed protcol

In practice what is performed is a parallel QRAC, with two sending devices and two mea-
surement devices. Between these, an optical switch is interposed, that can connect the first two
devices with the measurement one, in a straight o crossed configuration, depending on the set-
ting he receives. The users, however, do not have access to information about the pairing before
the conclusion of the quantum communication. In addition the strategy for handling the incon-
clusive events is changed: if the measurement devices do not register a click in a round, they pick
a random value for the output. In this way the efficiency is faked to be 100%, but at the cost of a
reduced maximum violation of the DW. In fact, if Q is the bound predicted by QM, the maximum
value obtainable is:

Qη = ηQ + 1

2
(1−η) (4.16)

In the article the authors show that is possible to find a test for which the classical value is 1
2 , and

so any non-null value of η is sufficient to achieve a violation for QM. Moreover, the parallel setup
is used to limit the amount of shared randomness that the users can experience. So the critical
detection efficiency, depends only on one parameter δ, that express the shared correlation in the
outcomes. In an experiment this parameter is determined by the correlations present because of
the finite sample size. Thus, the picture can be seen from another point of view: given a certain
value of the expected efficiency, is possible to roughly estimate how many runs of the experiment
are needed to get a value of δ low enough to be a conclusive test. After the test, the correlation
can be checked and, if is low enough, the test can be considered conclusive.
For our experiment we decided to modify the setup in order to be compatible with this kind of test.
In this way, we can both test the feasibility of SDI QKD in fiber and we can collect data which can
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be used to adapt this idea to our QKD protocol. However, even if the experiment was performed
with a full parallel setup, this idea won’t be discussed more in this thesis because is still under an
heavy development.

4.1.7 Security proof

The central feature, in all the SDI protocols, is the violation of a dimension witness. This violation
can be read in the language of QRAC, as a certification that the system exchanged by the users
is quantum and not classical. In the previous sections the classical and quantum bound for the
CHSH-like dimension witness was given, but the interesting question is: is sufficient to violate the
classical bound (even with the fair sampling assumption) to claim security between the parties?
This question was analyzed in the first paper about SDI QKD by Pawłowski and Brunner in 2011
[39]. Their answer to the question is: no.
The violation of the classical bound is enough for a non-classicality test but the requirements for
a secure QKD protocol are way stricter. Their (asymptotic) analysis takes into account individual
attacks, a subclass of the possible attacks performed by Eve, and is based on a really nice result
by Csiszar and Körner [80], where they showed that Alice and Bob can obtain a secret key if
I (A : E) > I (A : E), where I (X:Y) is the mutual information between X and Y and is defined:

I (A : X ) =∑
j

1−h(Px (ay j )) (4.17)

where y j is the basis chosen by X in the j th run and h(p) is Shannon’s binary entropy

h(x) =−x log2(x)− (1−x) log2(1−x) (4.18)

Another possible way is described in [40] and directly bounds the min-Entropy Hmi n thanks to
the relation with the dimension witness. Anyway, independently from how the proof is obtained,
the bound for security was found to be:

pc
g uess >

5+p
3

8
≈ 0.8415 (4.19)

for the guessing probability described in Sec 4.1.3. This critical value can be reformulated in
terms of critical value for the witness using Eq. 4.4

W c > 2.6403 Dc > 5.2806 (4.20)

The critical value obtained are just below the quantum limit meaning that a practical realization
of the protocol must be really fine-tuned, because the margin between security and maximal
violation is very narrow.
One of the most successful class of attacks on QKD systems is composed by detector blinding
attacks and in general in device manipulation attacks. In these attacks Eve can fully control the
devices of Alice and Bob exploiting the imperfections of their apparatus. The most common is
the detector blinding attack, where the characteristics of Single Photon Avalanche Diode (SPAD)
are exploited. In particular, if the incoming intensity of the light is above a certain threshold the
SPAD starts working in a linear regime and Eve, by sending special bright pulses to Bob can select
which event are seen by him or not, breaking the security protocol [81]. This class of attacks



62
S E M I - D E V I C E - I N D E P E N D E N T Q K D : T H E E X P E R I M E N T

T H E O R E T I C A L B A C K G R O U N D A N D P R O T O C O L D E S C R I P T I O N
4.1

have been studied in the case of SDI QKD in [82]. Here the authors show that Eve cannot get any
kind of informations taking control of Alice apparatus, instead controlling Bob’s detectors can
be harmful and this only depends on the detection efficiency on Bob’s side. Interesting, critical
detection efficiency, which depends on Bob’s success probability, can be as low as 50%.
Is worth to mention that research in the field of security proofs for SDI protocols is still at the
beginning and more optimal bounds are expected to be found in the near future.

4.1.8 The protocol

In Section 4.1 is reported the basic idea behind the SDI implementation: the security check.
Alice chooses one over four states, depending on her input, and sends the state to Bob, who can
measure the state in two basis, again depending on his settings. The optimal states and measure
for the witnesses in Eq 4.10 and 4.11 are given by the states in Tab 4.1 and the measurments
in 4.2. This minimal protocol is intended only for checking the security of the communication
between Alice and Bob, but cannot be used for the generation of a secret key. Moreover the BB84
protocol cannot be re-implemented in this SDI and the reason is quite straightforward to show.
Let Alice to send the 4 BB84 states, namely the eigenstates of σz = {|ψ0〉 = |H〉 , |ψ1〉 = |V 〉} and
σx = {|ψ2〉 = |+〉 , |ψ3〉 = |−〉} that have the property to form a mutually unbiased base in an Hilbert
space of dimension 2. In the BB84 protocol Bob measures the incoming qubit along M0 =σz and
M1 =σx .
For this combination of states and measurement the CHSH-like dimension witness, considered
in the form of Eq. 4.11 we have

E0,0 = P (1|0,0)−P (−1|0,0) = 〈H |σz |H〉−〈H |σz |H〉 = 1 (4.21)

and the same calculus leads to E0,0 = E2,1 = +1 E1,0 = E3,1 = −1 E0,1 = E1,1 = E2,0 = E3,0 = 0 with
a value of D = 4 equivalent to W = 2. So the BB84 cannot be, in any possible way, safe in a SDI
approach since doesn’t even violate the dimension witness and so can be reproduced by a clas-
sical system. Our solution to the problem is a "mix" of both strategies: the BB84 states are used
for the key generation while the optimal states for the CHSH-like dimension witness are used
for checking the security. Alice can now send not 4 but the 8 states presented in Table 4.2 and
plotted in Fig 4.4 (the states are represented in function of θ while the notation for Tab 4.2 is the
one of 1.2 that depends on θ

2 ). Bob on the other hand can choose not 2 but 4 basis, Z,X,D,A,

Base First state Second state

Z |H〉 |V 〉
X |+〉 = 1p

2
(|H〉+ |V 〉) |−〉 = 1p

2
(|H〉− |V 〉)

D |P〉 = (cos π8 |H〉+ sin π
8 |V 〉) |Q〉 = (cos 5π

8 |H〉+ sin 5π
8 |V 〉)

A |T 〉 = (cos 3π
8 |H〉+ sin 3π

8 |V 〉) |U 〉 = (cos 7π
8 |H〉+ sin 7π

8 |V 〉)

Table 4.2: List of the states prepared and sent by Alice

for the measurement. During the quantum communication phase, the states for Alice, and the
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Figure 4.4: Graphic representation of Alice states in function of the angle θ

settings for Bob are chosen randomly at each run. When this part of the protocol is finished, they
both announce their basis on an authenticated classical channel. Now, when the base selected
by Alice matches the one picked by Bob, they both select that event as a key-generation event.
If Alice picks X or Z and Bob D or A, or vice versa, the event is marked as a security check event.
If the Alice and Bob bases are a pair of mutually unbiased basis, they discard the event. After
they have marked all the events, they can compute the expectation values Ex,y from the security
check events, from which they obtain the value of the dimension witness. If the value is above the
security level, they proceed to the secret key generation with the events marked as key-generation
events. The protocol now is the same as the BB84 without the sifting part.

According to what said in Sec 4.1.6, the entire protocol can be adapted to the case of parallel
QRAC. The only differences are that 2 state preparators and 2 measurement devices are present
in this case, and that the settings of the switch are publicly announced only after the end of the
quantum communication.

4.2 Classical postprocessing: the need of two identical keys

After the security check, Alice and Bob hold a pair of bitstring that form the raw-keys. These raw
keys should be identical in an ideal experiment with no noise and no actions from Eve. Clearly
this is quite unlikely in real experiments, where noise is always present. The two bitstrings, in
general, are only correlated but they must be identical if they have to be used in a OTP protocol.
For this reason error correction is performed. Error correction allow Alice and Bob, by exchanging
information on the public channel, to correct their bitstrings until they exactly match. Using any
possible attacks however Eve can gain some information about the key, introducing errors. After
the error correction she can exploit these information to recover the key. For this reason Alice and
Bob, after the error correction, perform a procedure of privacy amplification where they reduce
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the key and the information that Eve gathered. At the end of this procedure they have two secure
identical keys, ready to be used.

4.2.1 Error Correction

Error correction is the first step of the classical post-processing and can be divided in three cate-
gories: direct, reverse and two-way. In the direct, Alice’s key is supposed to be correct and Bob’s
one is corrected, in the reverse Alice and Bob’s role are exchanged, while in the two-way none is
considered correct, but the objective is to have at the end a pair of identical bitstrings. The best
approach depends on the specific algorithm used for error correction and from the noise of the
channel. The two-way iterative protocol used in this thesis is known as CASCADE and has been
proposed in 1994 in [83]. The protocol works in this way: at each iteration i , Alice and Bob agree
on a random permutation which they apply to their strings. After, they agree on the block size ki

and they divide their strings in blocks of ki bits. At each pass the block size is doubled. Alice sends
the parity p A

j of each block to Bob, while Bob sends the parity of his block pB
j to Alice. If p A

j = pB
j

they change block, but if p A
j 6= pB

j an error is present and a binary search is performed. They split
the block in half and they exchange the parity of the first half. If the parity agrees they go on with
the other half, otherwise the sub-block is split again and the procedure continues until they find
the error in a position x. During the preceding passes the position x belonged to different blocks,
the collection of this blocks is called C . If we take the smallest block with a odd error in C , another
error can be corrected with the binary search. The process continues until C is empty.
The minimum number of bits that must be exchanged c ,to correct a key of length N , is called
Shannon limit and is given by:

c = N h(e) (4.22)

where e is the QBER and h(x) is Shannon’s binary function 4.18. However all the error correction
protocols known so far cannot reach this bound, but they are characterized by an efficiency
f (e) > 1 that must be multiplied to c in order to obtain the real number of bits disclosed. A study
of the dependence of f (e) on the QBER for the CASCADE can be found in [84].

4.2.2 Privacy amplification

The attacks performed by Eve can give her partial information about the key that Alice and Bob
are holding. For this reason, after the error correction, they must ensure to reduce to minimum
the amount of information that Eve has. This is possible to do using a process called privacy
amplification. Alice and Bob, exploiting the knowledge they have about the QBER, can use an
error-dependent hash-function to map the original key in a shorter output key. An upper bound
on the information that Eve can get in function of the QBER, has been presented in [84] and the
number of bit that must be removed is given by:

τ1(e) ≤
{

log2(1+4e −4e2) : e ≤ 1
2

1 : e > 1
2

(4.23)

Considering both privacy amplification and error correction, the number of bits of the final key
is given by:

n f = N (1− f (e)h(e)−τ1) (4.24)
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In this implementation the privacy amplification is performed using a Toeplitz matrix with di-
mension n f ×N .

4.3 Designing the experiment

While the previous section was focused on the theoretical aspects behind the SDI QKD, the next
section will be focused on the practical ones and the experimental realization of the protocol
above depicted.
In Sec 4.1.8 the theoretical protocol used is presented, but the experimental implementation of
this protocol can be done in an big number of creative and surprising ways, thus making fun-
damental to carefully plan and reflect on the optimal design. The first thing to consider, in the
realization of a quantum communication experiment, is how to encode the qubit. In section 1.1
we saw that the qubit can be encoded using different particles: atoms, electrons, photons, and
properties like spin, polarization and phase; but what is the optimal choice in this case? The
common choice in the field of quantum communication are the photons. They travel at the high-
est possible speed and they can be transmitted for many kilometers with little attenuation with
nearly no-interference along the communication. This is the reason why also classical telecom-
munication has switched from electrical to optical encoding in the last years. Today, optical fibers
are the most promising medium for quantum key distribution and only a small part of the ex-
periments are done in free-space, focused mainly on satellite quantum communication. All the
commercial QKD systems are now fiber-based and quantum fiber communication achieved huge
results for what concerns the distance of links, proving quantum secure communications at over
300km [85]. Moreover optical fiber are already used by classic telecommunication systems in the
same wavelength band and a global fiber optical network is already deployed and used. Anyhow,
sending quantum states over an optical fiber presents a lot of challenges. The main drawbacks of
using optical fiber for QKD are:

• Fiber’s birefringence. The core of optical fibers is made of silica and has a natural and
induced birefringence, that changes the state of polarization of the light transmitted by the
fiber randomly in time. In this case an active polarization stabilization system is required.
(These aspects are deeper discussed in Sec 3)

• Polarization dependence of optical components. Many fiber optical components are po-
larization dependent and can introduce unwanted effect that must be compensated. The
main example are LiNBo3 modulators that usually are polarizing components.

• Phase drifts. In fiber based interferometric setups the stability of the interference depends
on phase difference, that usually drifts randomly in time, because of the external stress
applied to the fiber. This problem can be solved using an active phase tracking control or
auto-stabilized setups (like the Plug’n’Play that will be discussed soon)

All these problems are present in a fiber-based QKD setup and the dominance of some over
the others mostly depends on the encoding system used. If a polarization encoding is used for
qubits, the first two effects are dominant while the last one is nearly negligible. On the contrary if
phase encoding is used, only the last effect is really a problem.
In this experiment the encoding method is the phase, because if compared to polarization it can
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better stabilized, with a Plug’n’Play setup, without an active monitoring. Another advantage of
phase encoding is given by the modulation devices: while for phase encoding is possible to use
standard phase modulator for classical telecommunication, that are commercially available and
are rated up to 40GHz, fiber polarization controller are rare and expensive. Moreover they have
only up to 1MHz of bandwidth.

But how does the phase encoding work? And how is possible to realize it in fiber?

4.3.1 Phase Encoding

The first proposal of a phase-encoding scheme was formulated in 1992 by Bennett et al. in [86]
and was first realized by Townsend et al in 1993 [87]. The scheme relies on a interferometric setup,
presented in Fig. 4.5, and the superposition properties of qubit.

Figure 4.5: Phase-encoded qkd system [88]

Let’s consider that only one photon at time is shot by the source. After the first beam-splitter
or fiber coupler, the particle propagates, with some probability amplitudes, via two different
paths: a the lower arm "0" and a upper "1". Then another beam-splitter or coupler directs the
particle to one of the two possible output, connected to two detectors,D0,D1. Along each path
between the two beam-splitters, there is a phase modulator(PM). After the first beam splitter, the
wavefunction is a superpostion of two possible states, |ψ〉 = 1p

2
|0〉+|1〉, then after the modulators,

a relative phase difference φ0 −φ1 is added, and the state becomes, |ψ〉 = 1p
2
|0〉+ e i (φA−φB ) |1〉.

Finally the second beam-splitter combines all the paths back together, leading to a single photon
interference effect. The functioning of this single photon interferometer is presented in Sec
1.4.4, where the probability of seeing the photon in one of the two detectors is computed. This
probability depends on ∆φ=φA −φB , and is

P0(∆φ) = 1

2

(
1+cos∆φ

)
(4.25)

P1(∆φ) = 1

2

(
1−cos∆φ

)
(4.26)

The described setup is suitable for QKD with phase encoding, in fact if one Phase Modulator is on
Alice’s side (P MA) and one in on Bob’s side (P MB ), they can implement any prepare’n’measure
QKD protocol. For values of ∆φ = 0 we have P0 = 1,P1 = 0, for ∆φ = π P0 = 0,P1 = 1 while, for
∆φ= {π2 , 3π

2 } we have P0 = 0.5,P1 = 0.5. This is exactly what happens for the polarization encoding
with the states |H〉 , |V 〉 and |+〉 , |−〉, in fact here {0,π} and {π2 , 3π

2 } are a pair of Mutually Unbiased
Basis (MUB) and with the correspondence |H〉 → 0, |V 〉 → π, |+〉 → π

2 , |−〉 → 3π
2 , everything al-

ready said for the BB84 protocol is valid.
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The same thing holds for our SDI QKD protocol described in Sec.4.1.8, where everything is equiv-
alent if the set of corrspondence above listed is used. Moreover, the states presented if Fig 4.4 are
already represented with the right phase correspondence.
Unfortunately the implementation presented in Fig. 4.5 is not practical and is not really used
in any QKD experiment. It requires a careful balancing of the arms of an interferometer several
kilometres long, which is not practical. The first scheme used was the one in [87], where two
unbalanced Mach–Zehnder interferometers where used. By disregarding the photons travelling
by the shortest and longest routes through the two unbalanced interferometers, it is possible to
obtain the phase relationship described above. This approach still relies on the stringent condi-
tion of a constant phase relationship between the interferometer arms during the key exchange,
but the conditions are significantly relaxed, compared to those for a single interferometer.
The double Mach–Zehnder scheme however, is not stable enough for a quantum communication
without an active phase control, since it is susceptible to small path length changes in the arms
of the interferometer (mainly due to thermal and mechanical perturbations).
For this reason, a total auto-compensating setup, named "Plug’n’Play", has been proposed in 1997
by Muller et al in [89], and rapidly gained a lot of popularity in the field, leading to commercial
system based on this scheme.

4.3.2 Plug’n’Play setup

The Plug’n’Play setup, presented in Fig 4.6 is an auto-compensating interferometric setup com-
posed by only one interferometer.

Source

Laser
Circ

Detector 1

Detector 2

50:50 coupler 

Delay 1

PBS 

FMDelay 2φ
PM 1

PM2
φ

VOA

Bob Alice

Figure 4.6: Plug’n’play fiber interferometer

It has been designed to automatically balance all the critical points needed for achieving a
stable interferometry: timing, polarization, phase are all automatically compensated, making re-
ally long QKD experiments stable for hours and days without an active tracking [90]. Surprisingly
the Plug’n’Play setup is quite simple but still extremely effective. The light source, commonly
a short pulse from a laser, is placed not on Alice’s side but on Bob’s side and is emitting with a
definite polarization, let’s say horizontal. Then it enters in a fiber circulator that forwards the
pulse incoming from port 1 to the second port, attached to a 50:50 2x2 fiber coupler. In this case,
the coupler acts as a beamsplitter, where half of the signal goes in the short arm and half goes
in the long one. Then, the polarization in the long arm is rotated by 90 degrees and both arms
are connected to a PBS. After the PBS we have two pulses, orthogonally polarized, separated
by a certain amount of time τ because of the path difference. At this time, the PM at Bob’s side
is not activated. Then, the pulses reach first Alice’s PM, that is again left inactivated, and then
the Faraday mirror (FM). Here they’re reflected back and the polarization of the pulses is now
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changed to their respective orthogonal. Now, on the way back, the Variable Optical Attenuator
(VOA) is activated and attenuates the signals to the single photon level; we need to work at the
single photon level in order to assure the security of the QKD protocol. After that the pulses exited
the VOA, Alice activates her PM only after that the first pulse has left the PM, modulating only the
second and so changing the relative phase between the two pulses. In this way she can encode
all the states needed for the protocol; in our case the one in Fig. 4.4. At the PBS the horizontally
polarized pulse is transmitted in the short arm, while the vertically polarized is transmitted in
the long one. Because of the polarization exchange, done by the FM, the two pulses make exactly
the same path before interfering at Bob’s coupler. Here the photon exiting from the coupler is
revealed using single photon detectors. The arm of the coupler that was connected to the laser
at the beginning uses a circulator to deviate the light coming from the coupler to the detector.
Since the environmentally induced optical changes occur on a much longer time-scale than the
transit time, any birefringence in the first transit is exactly compensated during the reflected path,
making the setup auto-compensated.
The visibility and the stability of this kind of setup is generally extremely high.
Unfortunately, this setup for QKD suffers of some disadvantages typical of two-way systems. The
most critical security flag is given by the possibility to perform a Trojan Horse attack. Eve can
send a bright probe pulse and recover it through the strong reflection by the mirror at the end of
Alice’s system. In this way Eve can recover the phase of Alice’s modulation [91]. This problem can
be partially solved using very narrow modulation times, attenuators and detectors at Alice’s side.
Anyhow this is a serious flag and must be considered in the design process.
Moreover the in these two-way systems the repetition rate is limited by the round trip time of
light inside the fiber that linearly scales with the length of the link.

4.3.3 Setup of the experiment

In this SDI QKD experiment we wanted to test, not only the feasibility of this protocol but also the
possibility of removing the fair sampling assumption with currently available detectors whose
efficiency is below the critical value ηcr i t . This will is motivated by the recent research involv-
ing the fair sampling assumption in the parallel execution of QRAC aimed to provide tests for
non-classicality (see Sec 4.1.6). For this purpose we need to implement a SDI protocol involving
four virtual users Alice, Alice’, Bob and Bob’ whose quantum communication channel are cou-
pled by an optical switch. This switch, independently from the settings chosen by the 4 users,
can choose between two possible routings: Alice←→Bob and Alice’←→Bob’ or Alice←→Bob’ and
Alice’←→Bob.
This would be nearly impossible to do with a single-way phase encoding scheme, because it
requires the construction and stabilization of four identical unbalanced Mach–Zehnder inter-
ferometers, which an extremely hard task. The plug’n’play instead can be done also if the two
interferometers have a different unbalance length. Our final setup is presented in Fig. 4.7. This is
clearly a parallel plug’n’play configuration where the two setup are coupled at Alice’s side by an
electronic 2x2 optical fiber switch that can connect two fiber input port to the two output port in
the straight or crossed configuration depenending on the voltage applied.
The switch, when activated, starts the switching before the first photon enters the switch in the
way forward, and ends when the photon exits the switch on the way back. Another alternative
could have been that the switch is tuned on only after the photon exited the switch in the way
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Figure 4.7: Scheme of the apparatus

forward, but this requires a phase stabilization between the two interferometers. Anyhow, the
two interferometers used two fibers stretcher to match the path difference of the arms.
Respect the traditional configuration a variable optical attenuator is placed after the laser, in or-
der to attenuate the pulse coming from the laser to the desired level. The attenuation is done here
because of the finite attenuation between the port 1 and 3 of the circulator (40 dB) that would
lead an extreme high number of leak detection in the Detector 1 and 3.
Let’s look at the electronics now. The electric scheme is presented in Fig 4.8. Here an extremely

PC

FPGA

internalTClock
TTTT80TMHz

Laser

P400

DAC

Switch

DetectorT
GatemasterTclock

TTTT60-80TkHz

TTL

TTL

PhaseT
modulator

0-18V

Detector
output

TTL

Figure 4.8: Synchronization and electric connections

careful synchronization must be obtained for all the active components: from the laser to the
phase modulators and the detector: the precision needed for the synchronization is, in some
parts, below the nanosecond level. The entire coordination is handled by a single PC with an
programmable FPGA (NI-7831R). The main program is directly implemented in the FPGA and
the PC is used as an host for the data retrieval.
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The internal clock of the FPGA is 80 MHz. Since the FPGA is developed to process data in a mas-
sive parallel way the main drawback of working with this low clock is the temporal precision,
that can be at most of 12.5ns. This is surely a good value, enough for triggering the laser and the
switch, but some critical components require a better resolution. One of these components are
the detectors. They are provided with a gating circuit used to lower the dark counts. In order to
reveal the single photon, an TTL signal is needed to "open" the detection window that is 1 ns long.
Since the FPGA doesn’t have enough resolution, the FPGA is used to trigger a P400 digital delay
generator with a resolution of 1 ps, that is used to trigger the four detectors.
The other critical components are the phase modulator. The phase modulators have a Vπ, the
voltage needed for having a π phase shift, of nearly 7V on a 50Ω impedance, a value too high to
be handled by the FPGA. Moreover, Alice must modulate only one of the two "peaks" and must
modulate it only after the reflection, as in the case represented in Fig 4.9 The time resolution

Before reflection After reflection

     PM
Modulation Faraday mirror

Figure 4.9: Scheme of the timing required for Alice’s phase modulator

and the rising time(≈ 100ns) of the FPGA is not enough to drive the PM. For this reason, we
have built a custom 8-bit Digital-to-Analog Converter (DAC), triggered by the FPGA or any other
TTL/CMOS input, that can deliver 0−18V on a 50Ω impedance with rise/fall time in the order
of 5ns. The timing is adjusted using also the 50Ω cables as delay line. Moreover, since the DACs
have an higher precision on the voltage setting, the calibration of the PM is done first, using the
one obtained in the previous section, and then finely tuned on the DAC using the attenuator and
looking at the count rate on the detectors.
For what regards the master clock rate, this has been set to 60−80kHz because of afterpulsing
effects in the detectors for repetition rates higher that 100kHz. (This and other technical consid-
erations will be deeply discussed in Sec4.4 where a closer look is given to the components used.)
In order to better clarify the ideas,lets see how an run of the experiment works:

• The program on the FPGA is started. The FPGA sends a TTL signal to trigger the laser
source. The laser source (id300) emits a pulse of 1mW at 1550nm with 300ps FWHM. The
polarization of the pulse is horizontal.

• The pulse is attenuated by the variable optical attenuator so that the light is at the single
photon level (µ = 0.1÷ 0.5) after the Faraday mirror. The attenuation is fixed for all the
duration of the experiment.

• The pulse enters the first port of an optical circulator and is are forwarded to the second
port, connected to a 50:50 fiber coupler.
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• Here the light can be transmitted to one or the other arms with 50% of probability. The
upper arm is provided with a fiber stretcher that can modify the length of the fiber while
the lower one has a delay line and a Phase Modulator. At this moment the phase modulator
is turned off.

• The two arms are connected to the "exit" ports of a fiber polarization beamsplitter (PBS).
The port connected to the longer arm rotates the polarization from horizontal to vertical,
the other port doesn’t change the incoming polarization. At the output of the PBS there are
two pulses (like the ones in Fig 4.9), the first horizontally polarized and a second, after τ
nanoseconds, vertically polarized. Here τ is the time equivalent to the length difference of
the two arms. The same representation can be kept also with single photons, where now the
amplitude of the two peaks represents the probability to find the photon. So, after the PBS
we ac think to have two pulses, shifted by τ and with orthogonal polarizations, travelling in
the fiber.

• The PBS is connected to a fiber delay line that, in real application, is the fiber link between
Alice and Bob. Everything described so far is identically applied for the second apparatus
that starts from Bob’.

• Now, in Alice’s lab the two delay lines are connected to a 2x2 fiber switch. The switch
connects the 2 input port and the 2 output ports in a straight or crossed configuration. The
switch works in a non-latched mode and is activated with a TTL signal. In our case the
timing and the TTL signal is directly provided by the FPGA. The FPGA’s program contains a
binary RNG (32-bit LSFR) directly implemented in the FPGA. The activation of the switch
depends on the value of this random bit, extracted at each run. The value is then stored on
the PC.

• The two signals enter in their respective path and they pass through Alice and Alice’ PM,
that are kept off. Alice and Alice’ PM must be polarization independent.

• After the PM they are reflected by the Faraday Mirror, that changes the polarizations to their
corresponding orthogonal. From now the modulation starts.

• On the way back, the FPGA, generates two random numbers from (0 to 7). These numbers
correspond to the settings needed for the state preparation at Alice and Alice’ sites. The
number generated is sent to a custom built DAC that generates a sharp square wave with
an amplitude that ranges from 0 to 18V, depending on the transmitted number. This wave
is sent with a 50Ω cable to the PM that modulate the second, "peak", preparing the qubit.
In this way Alice and Alice’ states are encoded and the settings are stored in the PC.

• The two qubits enter again in the switch that is still active, in this way they come back on
the same path they used in the way forward. The activation signal is long just enough to
let the last peak to leave the switch. After the switch returns to its original configuration
(straight). Then they go trough the delay line up to the PBS.

• Here, since the two "peaks" have opposite polarization respect the way forward, the first
peak, having a vertical polarization enters goes is transmitted to the long path, while the
second, having an horizontal polarization, goes trough the short. Like in Alice and Alice’
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case, other two random number are generated (from 0 to 4), sent to the DAC that controls
the PM which is responsible to modulate the qubit. Also in this case the values of the
settings are sent to the PC.

• After the modulation, since one peak did the Long-Short path and the other the Short-Long,
the peaks interfere at the coupler and the single photon is emitted in one of the two arms.

• At this point the synchronization program on the FPGA generates a TTL pulse that is sent
to the P400 pulse generator. This pulse is used as a trigger for the four independent channel
of the P400. Each channel is connected to the gating electronics of one Single Photon
detectors. After receiving the trigger the P400 waits a different and programmed amount of
time before sending a TTL pulse to the gating circuitry. In this way is possible to achieve a
time resolution better than the one imposed by the FPGA’s clock.

• The output of the detection from the detectors is encoded by the detector’s circuitry into
a TTL pulse that is sent directly to the FPGA. The FPGA reads the value and sends it to the
PC.

• This ends one round. All the process is repeated for all the duration of the quantum ex-
change.

A photo of the final setup is presented in Fig. 4.10

Figure 4.10: A photo of the complete setup
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4.4 Electronic and Instrumentation

In this section will be briefly discussed the components used for the protocol.

Fiber Stretchers

The fiber stretchers used are the FST-001 by General Photonics. The stretching effect is obtained
using four piezoelectric actuators near the fiber. Each of the four piezos can be controlled inde-
pendently, allowing high resolution. Piezos can be controlled with an analog signal or a 12-bit
TTL signal. In our case the control has been done with a digital signal, using directly the FPGA.
Thanks to these fiber stretchers is possible to finely tune the path difference in the unbalanced
Mach-Zehnder interferometers. In particular the two interferometers were connected together,
by connecting the output of one to the input of the other, then the fiber stretchers were activated
until an interference pattern was observed and then optimized by searching for the best visibility.

Circulator

The fiber circulator is a 3 port optical device with really nice transmissions features. The device
transmits light from port 1 to port 2 and from port 2 to port 3 while blocking all the other possible
configurations. This device is fundamental for the plug’n’play configuration where the first arm
of the first coupler is used to "inject" the light pulse coming from the laser but is also used for
retrieving the output from the interference. The circulators used in the setup are THORLABS
CIR1550PM with insertion loss equal to 0.9 dB of insertion loss and 40 dB of isolation.

Faraday Mirror

A Faraday mirror is an optical device that can reflect light, changing the incoming state of polar-
ization to its orthogonal. The Faraday mirror is obtained combining a simple mirror with a 45◦

Faraday rotator. The Faraday rotator (FR) is a magneto-optic device that can change the polariza-
tion of the incoming light thanks to the magnetic field. In this device the lines of the magnetic
field are aligned with the propagation direction of the light. The material through which the
lights propagates can change the angle of polarization of an incoming linearly polarized light
proportionally to the magnitude of the magnetic field and to the length of the material. Since the
angle of rotation does not depends on the direction of the light, unlike waveplates, if a mirror is
placed after the FR the effect is doubled. In this way if we combine a Faraday rotator with a 45◦

of rotation angle and a mirror we obtain a Faraday Mirror. The model we used are MFI-1550-FC
from Thorlabs.

Couplers

The fiber coupler is the fiber equivalent of beamsplitters. In our setup we used 2 2x2 50:50 SM
fiber coupler from Thorlabs (model TW1550R5F2).

PBS

The polarization beamsplitters are three port devices and the one we used are made with polar-
ization maintaining fibers. The model we used are 50:50, the PBC1550PM-FC from Thorlabs.
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FPGA

The central component that controls all the setup is a Field Programmable Gate Array (FPGA). In
our case the board is a NI-7831R by National Instruments, powered by a Xinlix Virtex II FPGA with
1 million of logic gates . The board is equipped with 8 analog inputs and 8 analog outputs rated
to work in the ±10V range. The raise/fall time is 1µs. The board has also 96 digital input/output
that can handle voltages up to 3.3V and with 100ns rise/fall time. The internal clock of the board
is 40MHz but it can be raised to multiples of this clock. The board is connected to an host PC
trough the PCI interface and the data on the board are kept in a small buffer an then transferred
to the PC using a FIFO (First-In-First-Out) communication protocol.

Digital Delay Generator P400

The P400 from Highland Technology is an amazing square wave generator. It has 4 independent
channels at 50Ω impedance that can go from −5 to +11.8V. The maximum repetition rate is 10
MHz and the time resolution for the delay is 1 ps with a programmable delay up to 1000s. The
slew rate is rated to be 4Vns−1 but on our sample we measured a risetime of 1ns with 11.8V of
amplitude. Our model was provided also with 4 high voltage channels 0 to 50V at low impedance.
The model has also an Ethernet port for remote controlling through telnet, but are needed ap-
proximately half a second between one command and the other. The high temporal resolution
of the P400 made it perfect for the synchronization of the gating electronics.

Single Photon Detectors

One of the hardest technological challenge nowadays is the efficient detection of single photons.
In our experiment we used photons at 1550nm; the energy of these photon is lower than the Si
bandgap so solid state detectors are made with InGaAs Single Photon Avalanche Diode. These
devices works as an avalanche diode, with a biasing stage that puts the diode above the break-
down voltage for a window long 1ns. If during this window a photon interacts with the detector
the breakdown occurs, triggering an avalanche effect that forms a signal. This signal is then com-
pared to a threshold value with a discriminator in order to output a nice TTL pulse. In particular
our model is a PGA-600 by Princeton Lightwave. The quantum efficiency is rated to be above 20%,
which is an excellent value for these kind of detector at in this wavelength band. The two main
problems of these detectors are: dark counts and afterpulsing. Dark counts are registered counts
without any incident light, mostly of thermal origin and can therefore be strongly suppressed by
using a cooled type of detector. This is the case of the PGA-600 which operates at temperatures
in the 217−230[K] range. In this way the dark count rate is limited to 10−5 per trigger. This is a
small value but, due to the high attenuation of the setup, is the limiting factor to the visibility of
the interferometer.
The afterpulsing is an effect caused by carriers that become trapped during an avalanche and are
subsequently released in the next gate-on period. This can be included in the dark count rate
but, unlike the thermal events, depends on the repetition rate used. The PGA-600 after 100kHz
has serious afterpulsing effects and this is the main bottleneck for the repetition rate of the entire
protocol.
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Photon source

Ideally for QKD experiments, single photon sources should be used. Unfortunately, we still lack
of real on-demand single photon sources that can reliably produce photon at good repetition
rates. For this reason WCP are commonly used and are made attenuating a pulsed laser source to
the single photon level, or below, with an optical attenuator. Since the photon statistics of a laser
follows a Poisson distribution, multiphoton events cannot be deleted, they can only be reduced.
In fact the probability of obtaining a n photon pulse giving a mean photon number µ is given by:

P (n) = e−µ
(
µn

n!

)
(4.27)

For µ = 1 the proability of having multiphoton events P (n > 1) = 0.264 is extremely high: more
than one events over four is a multiphoton event. Multiphoton events are extremely insidious for
two reasons: fist they expose the QKD system to the Photon number splitting attack (Sec. 2.2.2),
second they clearly violate the qubit assumption for SDI QKD, since the n photon state lives in
H tot = H1 ⊗H2 ⊗·· ·⊗Hn . For these reasons a common choice for QKD experiment is to use
µ= 0.1 where the P (1) = 0.09 and P (n > 1) = 0.005. This improves a lot the situation but it doesn’t
solve it completely: the realization of single photon source is still required.

Laser

The laser source used is an IdQuantique id300: a 1 mW of peak power at 1550nm Fabry-Pérot laser,
with 300 ps FWHM. The laser is externally triggered and can reach up to 500MHz of repetition
rate. The light at the output is horizontally polarized. The high stability and the short FWHM
makes it perfect for our purpose.

Attenuator

In our setup we used a variable optical attenuator with fiber connections: the DA-100-SC-1550-
9/125-P-50 from OZ Optics. The variable attenuator has −1.6dB of insertion loss and can attenu-
ate from 0 to 60dB with steps of 0.01dB.

Phase Modulator

The Phase Modulators used exploits the electo-optical properties of LiNBo3. In particular, in
these devices the refraction index is a a function of the strength of the local electric field. By
changing the field is thus possible to change the speed of light in the material and so, the phase.
To obtain a linear modulation the geometry of the electrodes inside the modulator is like the
one of a planar capacitor. Two parallel plates are inserted on the surfaces of the material and
the electric field generated depends linearly on the potential, generating a linear modulation.
However this linearity is valid only for small values of the potential, usually below the 20V, while
for higher potentials the linearity is not preserved. Unfortunately the modulation also depends
on the temperature, causing a random phase shift. This effect however is not influent in our
case because of the plug’n’play configuration. Moreover, usually they are also polarization de-
pendent. In our case the PM used are made the APE PM-150-005 by JDSU. They are rated to
have a 500 MHz bandwidth and have 3.5dB of insertion loss. The Vπ is 6.73V. Because of the
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polarization dependence they all include a horizontal polarizer. In this way they cannot be used
ad Alice and Alice’ stations because of the polarizer. Here the polarizers would block one pulse
on the way forward an the other (because of the FM) on the way back. For this reason a special
polarization independent configuration, requiring two PM, has been used.

Polarization Indepenendent PM

The polarization independent PM is based on the configuration proposed in [92] and can be seen
in Fig. 4.11 The first PBS splits the two pulses, depending on their polarization, then each one

Delay DelayPBS PBSPM

PM

Figure 4.11: Polarization Independent Phase Modulator

is modulated by an independent phase modulator, both synchronized with the same reference
signal, and then the signal are recombined as they were before using another PBS. Given the
symmetry, on the way back the description is the same. Thanks to this little trick we can use the
phase modulators with the polarizers also for Alice and Alice’ stations.

Optical switch

The optical switch is a 2x2 switch manufactured by Agiltron of the NanoSpeed class (model NSSW-
22-5-1-1-1-3-1-2). This is as solid state switch with no moving part that can switch optical signals
with a maximum response time of 300ns (typical 100ns ) with 100kHz of repetition rate (external
board needed). The insertion loss at 1550nm is 0.8dB and the maximum crosstalk is 30dB. The
switch is controlled with a 3.3 or 5 V signal.

Custom built DAC

One of the main problem in the realization of a phase-encoded QKD system is the precision
needed for the modulation. As described in 4.4 the PM we had access to are characterized by a
Vπ of the order of 7V , and the maximum modulation needed is 7π

4 close to the 12−13V range.
Moreover , in order to successfully modulate only one peak, the modulation signal should have
really fast rise and fall times, in the order of few nanoseconds. These two requirements, high
output voltage and fast rise time are critical for a successful implementation but at the same time
is challenging to have both. A device that have the right performance is the P400, with rise/fall
times of less than a nanosecond and amplitude up to 50V. However the P400 doesn’t have any
way to change the settings from run to run (the built in Ethernet communication is too slow for
our purpose ) making it useless for a real QKD test. On the other hand the FPGA gives us the
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ability to change the output at each run but the analog outputs, limited to 10V, have rise times
on the order of 1µs. The digital I/O on the other hand have rise-times of 100ns but are limited to
3.3V.
One option could be to use op-amps and comparators to amplify and sharpen the signal coming
from the FPGA. Unfortunately, there are no commercial devices that match our requirements.
For this reason we decided to build a custom DAC that could fit our needs. In this case the DAC
has 8 digital inputs (like the maximum number of settings of Alice’s device) and 1 50Ω RF output
that will be used for the connection with the PM. The core of the circuit works in this way: Each of
the 8 3.3V TTL input triggers an UCC27517DBVT MOSFET Gate Driver. This device is controlled
with a TTL/CMOS input and can deliver up to 18 V with max rise/fall times of 12ns. The output
of the IC is then attenuated using a resistive attenuator, where one of the resistence is a 25-turn
500Ω trimmer. Adjusting this value is possible set the amplitude of the resulting wave. Finally
the signal goes trough a sckotty diode and then is connected to the 50Ω SMA connector for the
RF output. In this way is possible to obtain 8 different modulations, one for each state that Alice
needs to prepare. The performance of the entire circuits are way better respect the maximum
(and also typical) values in the datasheet and are shown in Fig. 4.12

Figure 4.12: Performance of the DAC

As we can see the rise time is 4.2ns and the fall time is 2.75ns, good enough for our purpose.

4.5 Software for instrument control and data analysis

The software used for this experiment has been divided in two parts: one, written in Labview,
controls the experiment and saves the raw data while the other, written in C++, is used for the
data analysis only. In this way is possible to exploit the points of strength of both languages: the
easiness of controlling hardware given by Labview and the uncomparable speed offered by C++.
Moreover, once the raw data are saved, multiple different analysis can be performed to the same
data off-line.
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4.5.1 FPGA program

The FPGA program is divided in two sections: the host, executed on the PC and the fpga, executed
on the FPGA. The host is used only for the initialization of the setup and the data recovery: it
keeps "listening" the communication channel open with the FPGA program for new data and
as soon as he can it grabs the new data freeing the FPGA buffer. The data are kept in memory
and then saved into the hard drive. Since the memory←→disk management with Labview is far
from optimal, the program divides the entire execution in subsections or "loops", saving data
from memory to disk after each loop. In this way there is no risk to fill up all the memory of
the host and the number of loops is chosen to minimize the time lost for this operation. The
data exchange is done with a DMA FIFO (First-In-First-Out ) trough the PCI connection; this
is the fastest method offered by Labview and has turned out to be sufficient for all our needs.
Another important point is the random number generation. Ideally for a QKD protocol Alice and
Bob should have access to true random number generators, however the work of this thesis is
focused on exploring the possibilities of SDI and not to provide a commercial QKD system. For
this reason the RNG requirement is relaxed (this is quite common for QKD lab experiments) and
a pseudo-random-number-generator (PRNG) is used. The PRNG is implemented directly in the
on the FPGA using the Linear Feedback Shift-Register (LFSR) written in Labview. The LFSR can
be efficiently implemented in FPGAs that can produce 32-bit random numbers at rates of up to
500MHz (in our case we are limited by the 80MHz internal clock of our Virtex II). The method
used is like the one proposed in the Application note 052 by Xilinx [93] , where all the optimal
taps for LFSR from 2 to 168 bits are reported. A future upgrade is in plan to use real random
number generators, for example based on Generalized Ring Oscillators on FPGA [94] or optical
QM setups.

4.5.2 Analysis program

The analysis program, instead, works offline and takes the raw data in output from the FPGA
program. The file contains the settings used by Alice,Alice’, Bob and Bob’, the bit regarding the
switch and the outcomes of the measures. The program using the information is able to calcu-
lated the data table P (b|a, x, y) and the value of the dimension witness. Then two binaries files
containing Alice and Bob raw keys are generated and processed with the AIT QKD framework
(more details in) for the error estimation and the privacy amplification. At the end two identical
key are generated. Other to the violation of the dimension witness the QBER, the raw data bitrate
and the efficiency of the post-processing is computed.
Again for a fully working QKD setup the fist part, the evaluation of the dimension witness, should
be done on two different computers (or threads) in order to have a realistic user simulation. How-
ever at this stage our attention is focused on the development and analysis of the protocol and
this details can be taken into account in a later stage.

4.5.3 The AIT QKD framework

The AIT QKD framework is an open source project that aims to provide a fully functional suite
for the data processing of a QKD protocol. The project is developed in C++ (11) and is extremely
modular. There is a core interface over the DBUS where all the modules are attached. Every
module uses the DBUS for the interpocess communication and they’re all linked and executed in
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chain. The package already provides all the needs for a successful BB84 implementation. From
the interface to the hardware, to sifting, error estimation, error correction privacy amplification
and integrity check. All developed over a TCP/IP network stack fully compatible for the execution
of the protocol over the Internet. In our experiment we explored the functionalities offered by
this amazing software and we used the framework for the classical post-processing part: error
correction, privacy amplification and integrity check. The raw keys for Alice and Bob were pre-
pared with the C++ analysis program into suitable binary files. Then two process on the same
local machine were set up for the execution of the classical processing. In this way the network
communication in simulated on one local machine. However the generalization to two different
users over the internet is trivial. The error correction is based on the CASCADE algorithm [95]
while the privacy amplification is based on Toeplitz matrices [96] The software runs all the clas-
sical part and at the end an identical binary file is produced for each user: the key file. In the
metadata of the file are written the statistics of the post-processing.

4.6 Results

4.6.1 Calibration of the phase-modulators

The first test needed for the execution of the experiment is a calibration: the calibration of the
phase modulators. The phase modulators can change their refraction index, and so the phase of
the light travelling into it, by applying a voltage difference across their electric contacts. However
they are not calibrated and we don’t know the relation between the phase shift and the voltage
applied so we have measured this relation. The setup for the test is presented in Fig. 4.13 and is
a simplified version of the plug’n’play QKD setup described in Section 4.3.2 Since no attenuator

Source

Laser
Circ

Detector 1

Detector 2

50:50 coupler PBS 

φ

PM

FM

Figure 4.13: Setup for the calibration of the PM

is used, is possible to detect light pulses with normal photodiodes. In this case two Thorlabs
SIR5−FC, 5GHz InGaAs FC/PC-Coupled Photodetectors are used. The signal coming from the
detectors is acquired with a digital oscilloscope: a MSO6054A from Agilent with 500MHz of band-
width. The modulation of the PM is performed with the P400. The entire acquisition is fully
automatized using a Labview script: the script controls the P400, which modulates the PM from
−5 to 10.1V with steps of 0.01V. For each step the Labview program acquires the pulse generated
by the detectors from the oscilloscope, calculates the amplitude and the errors on the amplitude
and then saves the data in a file. The errors are calculated using the specifications in the manual
of the oscilloscope. The formula describing the interference in a Mach-Zehnder interferometer
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can be expressed as:

D1 = I0

2
(1+cos(ω∆φ+φ0)) D2 = I0

2
(1+ I0 sin(ω∆φ+φ0)) (4.28)

where D1,D2 are the intensities at the two detectors, I0 the intensity of the incoming light, ∆φ
is the phase differece created by the PM and φ0 another constant phase shift given by other
elements in the interferometer. During the measurements an interference was present and the
signals resulted shifted down by a constant value, for this reason the calibration was don with a
function in the form:

I (x) = I0

2
(1+cos(ωx +φ0))+ c (4.29)

The results for a representative is shown in Fig 4.14 while all the results are presented in Table
4.3 As we can see there are only slight differences in the parameter ω meaning that the phase
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Figure 4.14: Results of the modulation for the two detectors.

I0(mV) ω (radV−1) φ (rad) c(mV)

PM 1 5.47±0.01 0.4504±0.0005 0.042±0.002 −0.364±0.007
PM 2 6.69±0.01 0.4702±0.0004 0.005±0.002 −0.395±0.008
PM 3 8.65±0.02 0.465,0.001 0.011±0.009 −1.047±0.009
PM 4 2.688±0.006 0.4451±0.0005 −0.065±0.002 −0.371±0.007
PM 5 1.313±0.006 0.4592±0.0009 −0.013±0.005 −0.334±0.007
PM 6 1.135±0.005 0.461±0.0009 −0.0244±0.004 −0.328±0.006

Table 4.3: Results of the calibration

modulators have more or less the same modulation. The variance in the parameter I0 instead is
caused by the different insertion losses, not only due to the PM. The calibration confirms that a
relative high voltage is needed for a π phase shift: Vπ ≈ 6.67V. These calibrations will be used for
all the experiments involving the Phase Modulators.

4.6.2 A first test of the apparatus: testing the dimension of a quantum system

In order to see what our setup was capable of, after the construction, we decided to test it in order
to see what could be the maximum violation of the dimension witness we could get. The tests
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that can be found in literature are mainly free-space based [68][78], while the fiber based used
heralded single photon source and polarization encoding[41]. Is thus fundamental to have an
idea of how this setup can be compared to the ones already proposed, before actually going on
with the experiment; if the performance are not sufficient the entire design must be changed.
The setup under test was the plug’n’play in Fig 4.6. The setup is "half" part of the final setup and
can give us good indications on the final performances simplifying a lot the control mechanism
respect the complete version.
Unlike the final version the settings of the two PM modulators are not set randomly. Alice always
sends the BB84 states while Bob "scans" the space of parameters by applying different voltages
on his modulator, scanning the range from −5 to 10.2V with steps of 0.1V. The control and
acquisition is automatized by a Labview program on the FPGA that controls the P400, used for
driving the modulators, and counts the detections from the detectors. For each step the number
of count for each detector is obtained, then these values are divided for the total counts giving
the data table P (b|a, x, y). Another program written in C++ computes the value of the dimension
witness and its (statistical), error in function of the two possible measures performed by Bob
D(M1, M2). The form of the witness is the one given by Eq: 4.11 The results are presented in
Figure. 4.15
The maximum value for the violation obtained is 5.616±0.015. This high value, the highest known
to the author at the moment of writing, for the dimension witness has been made possible thanks
to the incredible stability and visibility offered by the plug’n’play configuration. In this case the
visibility, was really high: V = 99.67%. This great result confirms that the setup works really well
and is good for our QKD purpose.

4.6.3 Complete protocol

In this section the results of the complete protocol, described in Section 4.1.8, and performed with
the setup described in Sec. 4.3.3 are presented. The entire protocol was performed at different
values of the mean photon number µ= 0.1,0.2,0.5 in order to understand the effects of the dark
counts on the visibility and on the violation of the dimension witness. Moreover these different
values can be used for the study of the performance of the with Decoy states. For each value of µ
is computed the dimension witness, the visibility, the raw key rate and the QBER. The QBER in
this protocol has not the same role as in the BB84, since here the security is checked trough the
value of the dimension witness, however is a good indicator of the quality of the communication
task. The errors on the DM and on the visibility are calculated trough propagation, considering

µ Dimension witness Visibility QBER Raw key rate (bps)

0.1 5.472±0.013 0.972±0.002 1.72% 60.5
0.2 5.526±0.009 0.981±0.001 1.09% 112.91
0.5 5.577±0.006 0.9863±0.0008 0.74% 240.61

Table 4.4: Results of the complete SDI QKD protocol

a Poisson distribution for the counts revealed by the detectors. The values of the dimension
witness obtained were always well above the threshold for security (Ds = 5.28), but slightly below
the value obtained in the dimension witness test of Sec 4.6.2. This is probably caused by the
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Figure 4.15: Results of the modulation for the two detectors.
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increased complexity of the setup and the limited precision in the alignment of the states and
basis. Moreover at low µ the effect of dark counts is relevant, lowering the visibility, and thus
limiting the value of the witness.

4.6.4 Classical post-processing

After the classical post-processing the key obtained for the two users are identical in all the three
cases. This can be checked by the users using a one way hash function and checking the hash
over the public channel. In Table 4.5 are reported the final statistics:

µ Percentage of used bits QBER Final key rate (bps)

0.1 34.44% 1.72% 39.66
0.2 29.59% 1.09% 79.50
0.5 15.12% 0.74% 204.24

Table 4.5: Results of the complete SDI QKD protocol

4.6.5 Discussion

The results obtained are really exciting in the optic of a SDI QKD, especially the violations of the
dimension witness. For what regards the key generation rate, this is quite low if compared to
modern QKD systems, expecially others MDI. In [38] for exaple a key rate of 102 bps is obtained
for a 50 km link. Clearly our setup is limited by the afterpulsing effect of the detectors and with an
upgrade of these the repetition rate could be increased by one or two order of magnitude However,
is important to remind that the experiment performed is a preliminary study,a proof of principle,
and that there are still some critical points that need to be addressed. Fist of all, this implemen-
tation is vulnerable to the PNS attack and so decoy states must be employed. Employing decoy
states can increase not only security but also the key rate, giving the possibility of generating the
key at an higher µ (for our QBER the optimal µwould be 0.5 [97].) That’s why data has been taken
for different value of µ, in order to estimate the performance of a possible decoy. Then another
problem in the Trojan horse attack, this has been limited carefully checking the modulation times
at Alice station but is not completely closed. Then here Pseudo-random number generator have
been used while a proper implementation would require fully true random number generators.
Finally, the fair sampling assumption is still required and the analysis of the extension of the
procedure described in Sec 4.1.6 is still under development. However, recent advances in the
detector’s field has led to the commercialization Superconducting Nanowires Single Photon De-
tectors (SNSPD) with detection efficiencies of over 40% and they’re expected to increase it up to
95%, without afterpulsing [98]. This could open new ways for the implementation of SDI and
other QKD protocols.



CHAPTER5

Random number generation and certification

Random numbers play a central role in many areas of modern society: computer simulations,
gambling, standard cryptography and quantum cryptography.
In the previous chapters we saw how the role of random numbers is fundamental in cryptogra-
phy: in both, classical and quantum, it’s essential for the security of the entire protocol. Is not
a coincidence that the NSA has chosen to put a backdoor in the random number generator to
break RSA.
Today, most of the random number generators (RNG) are based on the laws of classical physics.
Classical physics, however, is fundamentally deterministic and these RNG cannot be really ran-
dom. For this reason, this kind or RNG are called Pseudo Random Number Generators, because
their output is generated using deterministic algorithms, that sooner or later are going to manifest
some sort of patters. Quantum mechanics, instead, relies on the concept of randomness, making
it a good place to start looking when the objective is to build True Random Number Generators
(TRNG).
In the last years, an intense research has been performed on the development of Quantum Ran-
dom Number Generators (QRNG), that are able to exploit quantum systems in order to extract
true randomness. These devices are now also commercially available.
However, even for QRNG two issues have been highlighted recently. The first is: how is possible
to certify the amount of randomness present in the output of our QRNG? The second is: can we
find some protocols that can generate randomness without having to worry, and so trust, about
the internal working of the devices? In this chapter we are going to see how a SDI approach to
quantum random generation and certification, can answer to these questions. At the end we
present the results we could obtain with the apparatus described in the previous chapters.

5.1 Quantum solutions to a classical problem

The problem of generating true random numbers is really old but, in the last years, has gained
more and more importance. The need of true random numbers is not limited to cryptography,
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but is also required for scientific simulations and fair gambling. Albeit an intuitive definition of
randomness is commonly shared by anyone, is really hard to precisely define and test what is
random and what is not.
We can say that a random number is a number generated by a process that cannot be predicted
and reproduced. But with this definition a big problem arises. If we are given a number, how can
we say if this is random or not?
For an infinite number this could be done by looking if the Shannon’s entropy is also infinite. But
how is it possible for finite numbers? For a finite string of random bits is not possible to verify if it
is random or not. We can only check that it shares some statistical properties of randomness:

1. Unpredictability: is not possible to predict the following bit of a random string having the
knowledge of all the preceding.

2. Uniformness: there should be an equal number of 0’s and 1’s in the string in order to be
unbiased

3. Lacks of patterns: Patterns are the manifestation of a structure in the generation of the
numbers, meaning that the observed is only apparent randomness

with these requirements is clear that no randomness can be obtained in the world of classical
physics. Classical physics is completely deterministic and any classical process admits a perfect
description. Randomness observed in this context is only apparent and is mainly due to the
chaotic behaviour of some complex systems. These events are extremely susceptible to initial
conditions and perturbation, making hard to predict the outcome in a long run. However, despite
their complexity, the evolution is still completely deterministic.
On the contrary, quantum mechanics is based on randomness and many simple experiments
performed with QM systems can be intrinsically random in their output.
One of the simplest case, is a single photon sent to a beamsplitter. In this case, if the the BS is
50:50, the output will be a completely random string of unbiased bits[99]. Along this simple exper-
iment, many others setups have been proposed and now, quantum random number generators
are commercially available.
Also in this case, some of the problems previously discussed for QKD arise. In the case above
depicted, the user cannot certify the randomness of the measurements unless he can obtain a
perfect description about the functioning of his device. But, since the device is manufactured
by a third person (who could conspire against him) he cannot establish the presence of private
randomness, without trusting the device. This opens a serious security flag, since one can never
exclude that the numbers were generated in advance by the adversary and copied into a memory
located inside the device or that the device contains, in general, a backdoor. Moreover, in any real
experiment the randomness of measurement is unavoidably mixed up with an apparent random-
ness which results from noise or lack of control of the quantum devices. This opens the problem
on how to extract the real from the apparent randomness.
For the above mentioned reasons, the world of QRNG started to look at new and better ways
for randomness generation. Taking inspiration from DI protocols for QKD, first Coleback, using
the GHZ test [100], and then Pironio [101], using the CHSH inequality , in 2010 conceived and
explored the idea of a DI protocol for QRNG. The main idea is to use, like the DI QKD, uncharac-
terized boxes in order to check the violation of a Bell inequality. If the violation is obtained, the
system used is certified to be quantum and the outcomes are truly random. Since these DI-QRNG
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requires some random numbers as input (for the choice of the settings used in the Bell test), it is
more properly a device-independent random number expansion protocol (we are not going to
distinct RNG and RNE in the following discussion). Moreover, the amount of randomness in the
output string can be linked to the numerical violation of the Bell inequality.
If we consider P (a,b|x, y) the probability of having a,b as outcome of the measurement given the
settings x, y , we can quantify the randomness of the output pairs, conditioned on the input pairs
by the average min-entropy Hmi n(A,B |X ,Y ) [101], defined as:

Hmi n(A,B |X ,Y ) =− log2(max
{a,b}

{
P (a,b|x, y)

}
) (5.1)

In the same paper the authors show how is possible to give a lower bound to the Hmi n in function
of the observed value of the CHSH inequality S:

Hmi n(A,B |X ,Y ) ≥ 1− log2

1+
√

2− S2

2

 (5.2)

This is possible because the violation of the CHSH Bell inequality is compatible only with a
restricted number of different

{
P (a,b|x, y)

}
, and the maximum value of such group can be ana-

lytically bounded for each value of S.
In this way a bound is given also on the randomness produced by the quantum devices, inde-
pendent of any apparent randomness that could arise from noise or limited control over the
experiment.
Unfortunately, this approach requires entanglement and a loophole free violation of a Bell in-
equality, making the DI setup complex and with the same problems already encountered and
discussed for DI-QKD.

5.2 A Semi-Device-Independent approach

The need of entanglement is a big drawback for the implementation of DI-RNG since adds a lot of
complexity to the setups and prevents to obtain high rates. Moreover, the need of a loophole free
violation of a Bell inequality requires very high detection efficiencies, that cannot be achieved yet.
We have seen in Sec 2 that the same thing happened for DI-QKD and in order to overcome this
limitations, new slightly weaker but more practical protocols were proposed. This is the case also
for SDI-QRNG, that was first proposed by Li et al in 2011 [102], just after the SDI-QKD proposal.
The protocol is nearly the same as the QKD case and is based on a 2 → 1 QRAC for qubit. In this
way, adding the assumption that the dimension of the system exchanged is known, is possible to
expand randomness in a prepare’n’measure way, without the need of a Bell test, and so, without
entanglement. It’s possible to treat the dimension witness in a similar way as Bell inequalities are
treated in the DI case. Moreover, is possible to find a relation between the min-entropy Hmi n and
the dimension witness, that can be used as a parameter for the certification of the randomness
extracted by the protocol. Finally, since the value of the dimension witness can be computed only
from the data and it can be done in real-time, the SDI-RNG can be considered also a real-time
self testing RNG, as pointed out in [41].
In this thesis we have adapted our system, already built for the QKD, in order to test the perfor-
mance that it can achieve in the context of SDI-RNG. Moreover, since our configuration is built
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upon a parallel QRAC structure, the data obtained can be further studied in the optic of SDI-RNG
without the fair sampling assumption.
But let’s start looking more deeply the functioning of this protocol.
From the point of view of the quantum communication, the task performed is a QRAC: there
are two black boxes, a preparation and a measurement device, that can exchange a system ρd

a

of dimension d . The system can be prepared using different settings on the preparation device
a = {a0, a1.., a2n−1}. The measurement box has m settings, b = {b0,b1, ..bn−1}, used to measure the
incoming system ρd

a with the operators Mb obtaining an outcome x = {0,1, ..d −1}. The process
is repeated many times and the P (x|a,b) are computed from the data and used to compute the
value of a dimension witness.
In our case the task is a 2 → 1 QRAC for qubit performed in parallel, (see Sec 4.3.3). As we said
before in these contexts the min-entropy Hmi n is used to measure the minimum randomness of
the output x, and for this protocol it can be written as:

Hmi n(A,B |X ,Y ) =− log2( max
{a,b,x}

{P (x|a,b)}) (5.3)

where the maximization is taken on all the setting and outcomes possible. We have to remember
that the certification of the randomness must be done without any knowledge on ρa or Mb , for
being SDI. This means that the evaluation of max{a,b,x} {P (x|a,b)} can be done only by optimizing
over all parameter settings that could reproduce the observed data, and then choose the least
random result. With the assumption on the dimension d of the system exchanged, this is possible
thanks to the dimension witness, which is a function of only the {P (x|a,b)}. Given the dimension,
it exists a threshold value for the witness obtainable using classical system of that dimension, so
if a violation is measured, that cannot be produced by a classical mix of deterministic strategies,
and so randomness can be certified.
The problem can be expressed more formally in terms of an optimization problem:

maximize maxa,b,x {P (x|a,b)} (5.4)

subject to P (x|a,b) = Tr(ρA M x
b )

W (ρa , M x
b ) = W̄

where the optimization in performed over arbitrary ρa and M x
b . The solution of this optimization

provides the min-entropy bound of the measurement outcome, for the given two-dimensional
quantum witness W̄ .
The maximum value of the min-entropy is obtained for the maximum violation obtainable by
QM and is Hmi n ≈ 0.2284.[102].
Is important to note that this value, expressed by Hmi n , quantifies the intrinsic minimum quan-
tum randomness that can be generated by the experiment, and it’s not influenced by the noise of
lack of control of the devices.
However, like in the SDI-QKD, the violation of the classical bound is not enough for being able

to extract randomness in the SDI-RNG protocol. The critical value of the witness Wcr i t depends
on the particular form of the witness used.
In Figure 5.1 are presented the Hmi n in function of the witness value, for two different witnessed:
the first one is the CHSH-inspired (the one given by eq 4.10 and with the QM bound at 2

p
2 )[103],

the second one is the determinant witness (given by Eq: 4.15).[104].
For the CHSH-like witness the bound is the same that assures security in the QKD case and is
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Figure 5.1: Results of the optimization fo the 1) CHSH-like DW 2) Determinant DW

≈ 2.64. This value is really close to the QM bound and so requires a careful experimental imple-
mentation.
In the case of the determinant witness, the critical value actually coincides with the classical
bound, Wcr i t =Wcl assi c . This makes this witness more robust and more practical for real world
application. This is the reason why the only experimental SDI-RNG realized so far used this wit-
ness.[41]. However there’s a price to pay for this robustness. In fact, this witness is derived under
the assumption that the devices are independent, which is a fairly strong assumption.

Since we don’t want to rely on such a strong assumption, we are going to use only the CHSH-
like.

5.3 Analytical evaluation of the min-entropy

We have seen that, in order to be able to certify the amount of randomness present in our final
outcome, we need to find a relation between the maxa,b,x {P (x|a,b)} and the violation of the di-
mension witness.
In the previous chapter we stated that this is possible solving an optimization problem, reported
in 5.4. Such problem has been solved, for the CHSH case, with the Levenberg-Marquadrt al-
ghoritm first [102] and then with semidefinite-programming (which is guaranteed to find the
global minimum) in [69] [105].
For the determinant witness, instead, it was possible to obtain an analytical relation using the
assumption of independence and already in [76] that relation is presented. Having an analytical
relation extremely simplifies the entropy estimation since is not necessary to perform every time
the optimization in order to get the exact value of the entropy that corresponds to the measured
witness. Luckily, in an extremely recent article, Li et al [40], discovered such relation also for the
CHSH case.
They found that for the 2 → 1 QRAC the maximal p = maxa,b,x {P (x|a,b)} and the corresponding
maximal violation of the witness W max

p are related by:

W max
p = max

r

{
(2p −1)r 2 +2

√
(1−p)p

√
1− r 2r +2

√
1− r 2 + r

}
(5.5)
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where the maximization is done over r which are the real roots of the equation:

4
(
2p +4

√
(1−p)p −1

)
x3 −4

(
2p +2

√
(1−p)p −1

)
x − (2p −1)2 +4x4 +x2 = 0 (5.6)

Using the definition of min-entropy we have:

p =−2log2

(
g (W max )

)
(5.7)

with g (W max ) given by the inverse of function 5.5.
This relation has been used for the min-entropy estimation in this thesis.

5.4 Randomness Extraction

In the previous section we have seen how is possible to certify, in a SDI scenario, the minimum
randomness produced using only the information retrieved from the data obtained.
However the "true" randomness is mixed with classical noise and inevitable imperfections afflict-
ing the setup, requiring an extra processing of the data before being able to obtain the final true
random number.
This operation is called randomness extraction and has been widely used also for non-DI QRNG.
In fact, these generators, because of imperfection or because of the way they are implemented,
cannot provide an uniform distribution of the output bit, that are characterized by a bias. The
random extraction permits to obtain almost-uniformly distributed bits from the input biased
random numbers, paying the price of reduction of the total bits. Randomness extractor are used
also in the privacy amplification step of QKD, since they can also remove partially correlated side
informations from a random source·
So randomness extractor are the right tools to extract the randomness certified by the min-
entropy just evaluated, but how do they work?
The most used method for randomness extraction is based on seeded extractor, and in particular
on the 2-universal hashing extractors.
A seeded extractors is function that takes a weak binary random source of n bit, X , with min-
entropy,Hmi n(X ) = k and a short uniform seed S, composed of d bits and produces an output
string of l bits which is nearly uniform. The extractor is said to be strong, if the output is approx-
imately independent of the seed[106]. More formally the strong extractor can be defined as a
function:

Ext : {0,1}n × {0,1}d → {0,1}l (5.8)

such that Y = Ext(X ,S) is ε-close to an uniform distribution:

δ(PExt(X ,S),S ,Ul ×Ud ) = |PExt(X ,S),S −Ul ×Ud | ≤ ε (5.9)

where Ui is the uniform distribution.

The practical realization of seeded extractors can be done in many ways but the most used is
surely the one that involves the universal2 hashing functions. An hashing function is a function
that maps a n-bit block N into an m-bit block M . The family H of hashing function from N to M
is called universal if two input elements are mapped into the same output for no more than 1

|M |
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times. The hashing function have been widely used in many other context before randomness ex-
traction: databases, authentication and crypthography are just few of these fields. The usefulness
of the universal hashing function in the context of randomness extraction has been first pointed
out by Impagliazzo et al. in 1989 [107] who proved a fundamental result called: Leftover hash
lemma. The theorem says that given a n-binary source X and a randomly chosen hash function
f coming from a family H of universal hash function, the resulting l -bit string given by f (X ) is at
most ε far from the uniform distribution with ε:

ε= 1

2

√
2l−nHmi n (X ) (5.10)

This means that for every ε≥ 0 a function f exists, such that:

l =
(
nHmi n(X )−2log

(
1

ε

))
(5.11)

and so the f function acts exactly like a random extractor [108].
Since any linear function from {0,1}n to {0,1}l belongs to an universal hashing family [109], these
function can be represented with n × l matrices with binaries entries. Moreover, also binary n × l
Toeplitz matrices form a class of universal hash functions. For these special matrices the number
of independent entries is l +n −1, reducing the size of the seed needed. For this reason, Toeplitz
matrices are the most used randomness extractor used nowadays. Summing up, the random
extraction with these matrices works like this:

• The initial n bit string X is obtained and the min-entropy is calculated Hmi n(X ) = l

• An n × l Toeplitz matrix MS is created using a random seed S of n + l −1 bits

• The extraction is performed performing the vector-matrix multiplication y = MS X

• The output is the l bit extracted random bit string.

Is worth to note that more efficient extractors have been proposed, like the Trevisan extractor
[110], but the simplicity and the speed of the Toeplitz matrices makes them still the most common
approach.

5.5 Checking randomness

The generated random numbers are also tested, in order to check the quality of the extracted
randomness. The check is done by performing a series of test on the random numbers, looking
for biasing, correlation and patterns. We decide to use the suite provided by NIST, which is a fairly
common solution for the cryptography field. Another, more complete, possibility is given by the
DIEHARDER suite, but since it requires at least 10 MB of data, couldn’t be used in our case. We
must note that this test provides only an indication of the goodness of the random generation but
it cannot be considered as a real randomness check. In other words, since the possible patterns
and form of correlation in the random sequence are infinite, and since the test executed are
finite, if the test are not passed this is clearly an indication that the random source is not good
but if the tests are all passed this doesn’t mean that the bit sequence is truly random. The NIST
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suite performs a series of tests and for every test an hypothesis testing is performed too. Here
two hypothesis are considered: H0, the null hypothesis which is the one under test, and H1, the
alternate hypothesis, mutually exclusive respect H0. As we saw in Sec 3.2.3, once H0 and H1 are
selected, a scalar function of the observations, called test statistic t , is chosen and is performed
on the data, yielding a value tm . Then, assuming that H0 is true, the probability density function
(PDF) of t is calculated. The integral on the right (left) side from the mesured point tm over the
PDF for a right (left) one-tailed test is called p-value. The p-value p can be seen as the probability,
under the assumption that H0 is true, to obtain data as extreme as the one observed. The p-value
is then compared to the pre-established significance α of the test, the probability of type I errors,
so the probability of rejecting H0 when this is true, and if the p-value is such tat p < α, the H0

is rejected, since there are strong evidences against H0. The significance α must be chosen in
advance, and common values are 0.1,0.05,0.001. In our case the NIST suite uses α= 0.01.
However, we must remember that the p-value is a frequentist tool and so it doesn’t express a
probability statement on the hypothesis, but it’s only a tool used in the rejection or the hypothesis.
In the case of the NIST suite, the null hypotesis H0 states that the observed numbers are random,
while the alternative H1 states that they are not random. The suite performs a total of 15 different
categories of tests. For each of these tests, this is performed on m subsamples of the initial
random sequence, leading to a p-value. For each one if p <α the test is considered failed, while

for p > α is passed. If the proportion of the passed test lies in the region (1−α)±3
√

α(1−α)
m the

test is considered passed.
The second test,instead, relies on the p-values of the p-values (PoP). In fact the p-values are
expected to be uniform and so they can be used as a test.
The m p-values are divided in classes of 10, from 0 to 1, and an histogram is built. The PoP is
obtained performing a Goodness of Fit (GoF) test using the χ2:

χ2 =
10∑

i=1

(Si − m
10 )2

m
10

(5.12)

where Si is the number of p-values in the ith bin.
Given the χ2 the PoP is computed using:

Pop = Γ̃(K ,c) (5.13)

where Γ̃(a,b) is the incomplete complementary gamma function, K = 9
2 is half the degrees of

freedom, and c = χ2

2 (the relation is equivalent to the right side integration above defined but is
more compact).
The PoP test is conidered passed if it is PoP > 0.0001.

5.6 Results

For the random generation the setup is identical to the one described in Section 4.3.3 in the
context of SDI-QKD, while the protocol is also similar but with only four preparation states{
0,π, π2 , 3π

2

}
and two measurements

{
π
4 ,−π

4

}
. As previously described, a 2 → 1 QRAC with qubits

is performed and the preparation and measurements states are selected in order to get the maxi-
mum violation of the CHSH-like dimension witness, considered in this chapter in the form 4.10.
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The results are here presented for the data of the SDI-QKD in Table 5.1. Only the data obtained at
µ= 0.5 are used for the NIST’s test, since after the extraction, they were the only set with enough
bytes.

µ Dimension witness Hmi n (per bit) Raw rate (bps) Extracted rate (bps)

0.1 5.472±0.013 0.0388379 121 4.326
0.2 5.526±0.009 0.07327371 225.82 16.11
0.5 5.577±0.006 0.127316 481.22 57.74

Table 5.1: Results of the SDI randomness expansion

The raw rate and the extracted rate are in this case double respect the SDI-QKD since the state
used are the combination of the preparations

{
0,π, π2 , 3π

2

}
with the two measurements

{
π
4 ,−π

4

}
and

{5π
4 , 3π

4 , 5π
4 , 7π

4

}
with the measurements

{
0, π2

}
. In the SDI-QKD the key-generation was done

instead using, the combinations with the same basis for the preparation and the measurement,
which are half of the above. Moreover, the rate can be doubled again of a factor two if the quan-
tum communication part is performed with only the states

{
0,π, π2 , 3π

2

}
and two measurements{

π
4 ,−π

4

}
, instead of the 8 preparations and 4 measurments used for the QKD.

The NIST battery of test is performed first on the raw data and then on the extracted data.
The results are presented in Table. 5.2.

Raw Data Extracted Data
Test PoP conclusion PoP conclusion

Monobit 1.863E-61 Failed 0.428 Passed
Blockfrequency 2.288E-03 Passed 0.466 Passed

Runstest 6.766E-01 Passed 0.606 Passed
Longest run ones 8.062E-03 Passed 0.825 Passed

Binary matrix rank 8.300E-02 Passed 0.740 Passed
Spectraltest 4.360E-01 Passed 0.681 Passed

Non overlapping template matching 1.011E-04 Passed 0.233 Passed
Overlapping template matching 1.849E-02 Passed 0.689 Passed

Maurers universal 4.817E-01 Passed 0.326 Passed
Linear complexity 7.317E-01 Passed 0.378 Passed

Aproximate entropy 7.662E-12 Failed 0.764 Passed
Cumultative sums 4.557E-62 Failed 0.454 Passed

Random excursions 7.984E-01 Passed 0.413 Passed
Random excursions variant 7.933E-01 Passed 0.651 Passed

Cumultative sum reverse 3.846E-62 Failed 0.535 Passed

Table 5.2: Results of the NIST’s battery of tests

As we could expect, the raw data do not pass all the test provided by the suite, indication that
bias and/or correlation are present in the output of the generator. The extracted data instead are
able to pass all the test proposed. Again, this result must not be interpreted as a clear statement
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about the randomness of the source, it only gives us an indication that patterns and correlations
tested are not present in the output data.

5.7 Discussion

The results presented, show the feasibility of the random extraction task in a SDI scenario. Ex-
tending the results of [41], this implementation shows how, thanks to the great visibilities offered
by the plug’n’play setup, is possible to use the CHSH-like dimension witness to certify random-
ness. Unlike their result, with this witness the assumption of independence of the devices can be
abandoned.
However, this implementation still relies on the fair sampling assumption, due to the finite detec-
tion efficiency η.
The big problem of this SDI approach is, however, the generation rate. We have seen that the max-
imum number of bits, is certified by Hmi n that exponentially decreases with the distance from
the maximum violation of the DM. This number in our test was in the [0.03 : 0.127]. With these
low efficiencies the repetition rate must be increased a lot in order to get a reasonable generation
rate. In our case the round trip time is 644ns and so the maximum repetition rate is in the order of
1.5MHz. Thus, even upgrading with better detectors against afterpulsing, the rate would increase
of one order of magnitude. One solution could be the integration of the system on waveguides,
enabling the miniaturization of the system, with benefits on both the rate attainable and on the
total stability of the entire system.
Moreover a deeper study on finite size effects and the role of the multiphoton components are
needed. Anyhow, this test was intended as a study of feasability, a proof of principle, and the
results obtained clearly confirm that SDI-RNG can be a valid alternative for secure random ex-
pansion.



CHAPTER6

Conclusions

6.1 Achievements

In this work we have explored the framework of Semi-Device-Independent quantum protocols
for both Quantum Key Distribution and Random Number Expansion. We have carried out a
proof-of-principle experiment aimed to test the possibility of the realization of a SDI-QKD system
in fiber. To the author’s knowledge this is the first real implementation proposed and realized.
The experiment has been implemented using a plug’n’play phase encoding configuration in
fiber at 1550nm, in order to be compatible with the modern telecommunication standard and
technologies. As a part of the preliminary tests, the CHSH-like dimension witness has been
tested: the reported violation value is the highest known to the author and the first obtained
in fiber for this particular witness. The results showed that, thanks to extreme stability of the
plug’n’play configuration, the QKD protocol can effectively realized and the obtained rate are
already suitable for a secure communication, even if it’s still far from the rates achieved with
faster, but less secure, "standard" QKD [111]. The setup was also designed in order to take the
data required for the evaluation of a new scheme for SDI-QKD, based on parallel QRACs. This
scheme has been proposed in the context of non-classicality test and can be used to abandon
the fair sampling assumption from the list of assumption needed from the protocol. Thanks to
these data the extension of this idea to the SDI-QKD is under development. The realization of the
experiment required working in multiple different context: from quantum optic to fiber optics,
from software and FPGA coding to electronics. Especially in the last field, it motivated us to build
new ancillary components, like the DAC, that have proven to deliver great performances and will
be used in future for other experiments as well.Moreover, we have shown how the same apparatus
can be used also for another SDI protocol: randomness expansion. Using the data gathered from
the QKD experiment we were able to certify the randomness of the obtained data using only the
information extracted from the data. The randomness extraction provided encouraging results,
similar to the ones presented in [41], but without the assumption on the Independence of the
devices. However, a deeper study on the finite size and multi-photon effects are required. Also in
this case this is the first SDI-RNE protocol realized with the CHSH-like dimension witness.



6.2
C O N C L U S I O N S

F U T U R E U P G R A D E S A N D N E W P E R S P E C T I V E S
95

Finally, as a side project, a complete polarization stabilization system has been designed and
tested. The stabilization system required the building of an accurate and fast complete Stokes
polarimeter, designed with only standard free-space and fiber optic components. Because of
the difficulties required for the calibration, a self-testing "reference-free" calibration procedure
has been implemented, both on software and in the hardware of the polarimeter, making it
able to match the required accuracy. The polarimeter has been interfaced with a commercial
polarization controller through an homemade C++ program that controls the stabilization. The
results showed an impressive stabilization over a long period of control. Both the software for
the control of the polarimeter and for the polarization stabilization have been released as open
source.

6.2 Future Upgrades and new perspectives

The setup realized in this thesis is just a proof-of-principle and needs few things to be addressed
out for the realization of a complete system. First, the protocol still relies on the fair sampling
assumption since the efficiency η of our detectors is below the critical value. This problem can
be addressed in two ways: the first requires new detectors with higher perform aces in the 1550
nm band. Recently such detectors have been proposed by various groups and they’re believed to
achieve η up to 95% with a bandwidth in the GHz range [98]. The other possibility is to develop
new methods, like the parallel QRAC for non classicality tests (Sec 4.1.6), that permits to obtain
security without the fair sampling assumption. The second stringent requirement is randomness.
In our protocol we used pseudo random number generators to select the preparation and the
measurement settings. However, true randomness should be used and for this reason an up-
graded version should use some TRNG, that are now commercially available. Moreover the setup
under test is only few meters long. In order to evaluate the real-world performances, and the
degradation due to losses, a link of several kilometres between the users should be used. Then,
the synchronization and the configuration of the entire system is done using only one FPGA to
control everything, in a real implementation, two separate electronics, one for Alice and one for
Bob, should be used along with an efficient synchronization system. Finally, two serious attacks
must be taken into account: the first the PNS attack, can be neutralized using Decoy states, that
are already in plan for the next upgrade, and then the Trojan Horse, that can be solved using
specific attenuators and detectors on Alice’s side or switching to a one-way configuration. This
one-way configuration could also improve the maximum repetition rate currently limited by the
round trip time of the system.
For what concerns the SDI-RNE, what already said for the fair sampling assumption remains
valid also in this case. A more profound study on the finite size effects and on the effects of a
multi-photon components should be carried out. Moreover the total performances can be drasti-
cally increased switching to a system-on-a-chip configuration on waveguides, maybe at different
wavelengths.
We want to stress that this is a preliminary study on the possibilities offered by SDI protocols. The
major part of the few papers written on SDI have been published in this year, meaning that this
approach is quite new but at the same time the interest on this argument is growing rapidly. More-
over dimension witness and QRACs are turning out to be excellent tool to exploit the properties of
single qudits, that can be used to enhance performances in communicational or computational
tasks.
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Jones Matrix Tables

Below are listed the trasformation between the principal states of polarization attainable with
Half wave plates and Quarter wave plates

Input State Output States

HWP angle → 0 π
8

π
4

3π
8

π
2

|H〉 |H〉 |+〉 |V 〉 |−〉 |H〉
|V 〉 |V 〉 |−〉 |H〉 |+〉 |V 〉
|+〉 |−〉 |H〉 |+〉 |V 〉 |−〉
|−〉 |+〉 |V 〉 |−〉 |H〉 |+〉
|L〉 |R〉 |R〉 |R〉 |R〉 |R〉
|R〉 |L〉 |L〉 |L〉 |L〉 |L〉

Input State Output States

QWP angle → 0 π
4

π
2

3π
4 π

|H〉 |H〉 |L〉 |H〉 |R〉 |H〉
|V 〉 |V 〉 |R〉 |V 〉 |L〉 |V 〉
|+〉 |R〉 |+〉 |L〉 |+〉 |R〉
|−〉 |L〉 |−〉 |R〉 |−〉 |L〉
|L〉 |+〉 |V 〉 |−〉 |H〉 |+〉
|R〉 |−〉 |H〉 |+〉 |V 〉 |−〉
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Polarimeter calibration

SOP Reference SOP Polarimeter Distance SOP Reference SOP Polarimeter Distance0.002
0.001
0.992

 −0.003
−0.003
1.001

 0.010

 0.598
−0.496
−0.624

  0.655
−0.494
−0.647

 0.061

0.861
0.145
0.490

 0.870
0.131
0.481

 0.019

 0.695
−0.718
−0.001

  0.769
−0.671
−0.031

 0.092

0.959
0.269
0.012

  0.954
0.213
−0.002

 0.058

−1.000
0.000
0.001

 −1.001
−0.001
0.000

 0.002

1.000
0.000
0.000

  0.998
−0.007
−0.001

 0.008

0.000
1.000
0.000

 0.000
1.000
0.000

 0.001

 0.000
−1.000
0.000

  0.005
−0.993
0.000

 0.008

0.810
0.550
0.198

 0.797
0.502
0.200

 0.049

−0.658
0.547
0.501

 −0.697
0.502
0.524

 0.064

0.008
0.350
0.933

 0.018
0.342
0.947

 0.020

 0.826
0.384
−0.395

  0.830
0.347
−0.404

 0.038

−0.619
−0.786
−0.042

 −0.583
−0.782
−0.043

 0.036

 0.322
0.896
−0.293

  0.304
0.846
−0.302

 0.054

 0.963
−0.210
−0.138

  0.967
−0.218
−0.142

 0.010
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 0.997
0.026
−0.008

  0.998
0.009
−0.011

 0.017

 0.138
0.841
−0.520

  0.146
0.834
−0.549

 0.030

 0.364
−0.777
−0.507

  0.385
−0.776
−0.505

 0.021

−0.463
0.236
−0.865

 −0.479
0.231
−0.878

 0.021

−0.875
0.384
−0.311

 −0.899
0.373
−0.318

 0.027

 0.522
0.042
−0.842

  0.527
0.047
−0.825

 0.018

 0.456
0.856
−0.233

  0.449
0.868
−0.214

 0.024

−0.898
0.149
0.397

 −0.879
0.097
0.371

 0.061

 0.071
−0.116
0.991

  0.124
−0.172
0.929

 0.099

−0.519
−0.421
0.733

 −0.530
−0.386
0.764

 0.048

−0.944
−0.210
0.238

 −0.967
−0.188
0.276

 0.050

−0.301
0.080
0.944

 −0.287
0.069
0.956

 0.021

Table B.1: "Measurment of the fidelity of the calibration for the polarimeter
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