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Abstract

Millimeter-wave (MMW) is a probable technology for the future cellular systems. Its
main challenge is achieving sufficient operating link margin, and directional beam-
forming with large antenna arrays may be a viable approach. With bandwidths on
the order of gigahertz, high-resolution analog-to-digital converters are a power con-
sumption bottleneck. One solution is to employ an hybrid implementation, digital
at baseband and analog at radio frequencies.
In this thesis we develop three iterative hybrid beamforming design algorithms for
the MMW channel, one using the channel structure, in particular the ray phase
vector response and two using vector quantization of the analog beamformers. The
proposed algorithms account for the RF precoding constraints and assumes the
channel matrix is known. We compare the proposed algorithms with the state-of-
art hybrid schemes and the simulation results show that performance of the proposed
algorithms can approximate that of the maximum-ratio-beamforming upper bound
even if computational complexity may be higher for low number of antennas.
Within this framework, channel estimation plays a fundamental role for the system
design. By exploiting the limited scattering structure of the MMW channel across
the numerous antennas, and by using a suitable training sequence of symbols at
the transmitter, we develop two algorithms that estimate the channel parameters at
the receiver directly, rather than the multiantenna channel matrix. Moreover, the
algorithms account for the analog precoder/beamformer constraint. Furthermore
our approach does not require a feedback from the transmitter. By extensive sim-
ulations it is seen that the algorithms are quite simple, very robust, and yield very
good performance, close to the case of perfect channel knowledge.
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Introduction

Millimeter-wave (MMW) communication is a promising technology for future out-
door cellular systems [1],[2],[3]. This technology provide gigabit-per-second data
rates in a bandwidth between 30 and 300 GHz. Overall it has the potential to
unleash very high data rates even if with low spectral efficiencies. However MMW
systems must counter the strong attenuation introduced by the radio link. On
the other hand, the millimeter wavelength allows the use of arrays with a large
number of antennas in transmission and in reception, hence we can combat the
transmission path loss with highly directional beamforming. Conventional multiple-
input multiple-output (MIMO) systems require all the antenna paths to be inde-
pendently acquired and jointly processed at the baseband. This increases the cost
of the transceiver, which is approximately proportional to the number of analog-to-
digital converters (ADCs) [4],[5]. For this reason, the implementation of conventional
MIMO transceivers becomes a major problem in low-cost wireless terminals, where
the hardware complexity is strictly limited. To increase the performance of such
systems without excessively increasing the size and hardware cost, several proposed
schemes shift part of the spatial signal processing from the baseband to the radio-
frequency (RF) front-end [6],[7],[8]. In this thesis, we focus on the transmit and
receive beamforming and in particular on solutions that can be derived from jointly
considering the three factors: RF beamforming constraints, large antenna arrays,
and limited digital processing capability due to its high power consumption. We
adopt a realistic finite ray channel model which captures both the limited scattering
at high frequency and the antenna correlation of large arrays. Within this frame-
work, in [8] a hybrid analog-digital, denoted analog-digital beamforming (ADB),
solution is proposed, where the antenna array is driven by a limited number of RF
chains and multiantenna processing is implemented via a combined RF analog and
baseband digital solution.
Unfortunately the design of ADB has a high computational complexity. To reduce
this cost we have proposed iterative-ADB (I-ADB) which make use of the channel
structure, in particular the ray phase vector response, to design the analog beam-
former and a iterative algorithm to design the digital-beamformer. It is seen that
this algorithm has a much lower computational complexity and achieves a perfor-
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x INTRODUCTION

mance close to the ADB.
ADB and I-ADB design methods require to acquire each ray phase vector response.
To reduce further of the computational complexity we have vector quantized the val-
ues of analog beamformers. Corresponding by for the beamformer design we have
implemented two algorithms: the first, denoted quantized analog digital beamform-
ing (Q-ADB), readjusts the analog-digital beamforming (ADB) algorithm [8] in the
presence of vector quantized analog beamformers, the second, denoted quantized
iterative analog digital beamforming (QI-ADB), is a suboptimal algorithm which
iteratively design the transmit and receive digital beamformers once we explore the
analog beamformers by a precomputed codebook. It is seen that QI-ADB has a
much lower computational complexity than Q-ADB. Based on the channel knowl-
edge, as for [9], we evaluate performance, in terms of signal to noise ratio (SNR)
at detection point, of the two algorithms through simulations. Moreover we also
report the computational complexity of both algorithms and compare it with that
of ADB. The results show that two algorithms performs close to the maximum-
ratio-beamforming upper bound, using a lower computational complexity than that
of ADB.
The last problem we considered was the channel estimate within the ADB frame-
work, we recall the procedure [9], where the channel estimate, given by a prestored
hierarchical codebook, is obtained by iterative design of the precoder/beamformer
done, respectively, at transmitter and receiver. The main problem of this method
is that it requires a feedback channel for the iterative exchange of information be-
tween transmitter and receiver. A more classical approach of MIMO channel esti-
mate is proposed in [11] where the channel matrix is directly estimated by a suit-
able training sequence. However this method cannot be extended to the hybrid
precoder/beamformer structure. Moreover its complexity would be very high con-
sidering that we may have up to hundreds of transmit/receive antennas. In fact,
a contribution of our approach is to realize that the channel matrix depends upon
very few parameters, hence it is simpler to estimate these parameters rather than
the channel matrix. Moreover, the relationship between these parameters and the
channel matrix is very simple in the frequency domain, i.e. by taking the discrete
Fourier transform of the signal across the receiver antennas.
Differently from previous approaches we develop a specific training sequence of pre-
coders and beamformers in order to estimate the channel parameters. Once these
parameters are estimated, we can i) reconstruct the elements of the channel matrix
and ii) design the transmit precoder and receive beamformer using the I-ADB algo-
rithm [8]. For this scope we have proposed two different method, the first based on
a Discrete Fourier Transform (DFT) and the second using a Two-Dimensional DFT
(2D-DFT).
The results show that our algorithms achieves good performance, very close to the
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case of perfect channel knowledge especially by using the 2D-DFT channel estima-
tion.
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Chapter 1

Channel model

Compared to lower bands, radio waves in millimeter band have high atmospheric
attenuation and are blocked by building walls and attenuated by foliage, which can
be a limiting impairment for propagation in some cases. On the other hand for
the same antenna aperture areas, shorter wavelengths should not have any inherent
disadvantage compared to longer wavelengths in terms of free space loss. More
antennas can be packed into the same area if the wave length is small, allowing
beamforming with high gains. In this chapter we analize the multiple input multiple
output (MIMO) channel model.

1.1 Channel impulse response
The equivalent complex base band impulse response of a MMW MIMO channel
with narrow-band impulses is a matrix CN×M , where M is the number of antennas
at transmitter (Tx) and N is the number of antennas at receiver (Rx).

H =
√
G

h1,1 · · · h1,M
... . . . ...

hN,1 · · · hN,M

 (1.1)

whereG is the mean gain of channel. The element of H are complex random variables
and the matrix should satisfies the average constraint on its squared Frobenius norm

E
[
||H||2

]
= MN. (1.2)

1.2 MIMO channel model
The reference model for the MIMO channel is used where we have a limited spatial
diversity and for a high number of antennas in the same area, as in the case of MMW.

1



2 CHAPTER 1. CHANNEL MODEL

This model is taken from [8, pp. 3783] and describes a channel matrix for an uniform
linear array (ULA) for beamforming in azimuth plane and for a uniform planar array
uniform planar array (UPA) which enables beamforming also in elevation.

Uniform linear array

Let us consider antenna elements to form an ULA on the azimuth plane with an
inter-element spacing equal to D. For a uniform linear array with N elements, let a
be a column vector of phasors

a (φ) =
[
1 ejζD sinφ ... ej(N−1)ζD sinφ

]T
(1.3)

where ζ = 2π/λ and φ represents the angle of arrival for the receiver, or the angle
of starting for the transmitter in the azimuth plane. With the assumption that L
rays are received with the same delay, the channel vector is given by

H =
1√
L

L∑
`=1

g`ar
(
φ

(r)
`

)
aHt
(
φ

(t)
`

)
(1.4)

where L is the total number of rays and g` ∼ CN (0, 1) represents the complex
random gain of the `-th ray. Note that the elements of a (φ) represent phase offsets
due to distances between antenna elements. The relative phase difference for a ULA
is a function only of the azimuth variable φ. Moreover, in (1.4) the average gain
factor

√
G is dropped for simplicity.

Matrix formulation

The expressions of MIMO channel impulse response given in (1.4) can be rewritten
[12, p. 27] into a useful matrix form:

H =
1√
L

ArHqAH
t (1.5)

where

At =
[
at
(
φ

(t)
1

)
at
(
φ

(t)
2

)
. . . at

(
φ

(t)
L

)]
Ar =

[
ar
(
φ

(r)
1

)
ar
(
φ

(r)
2

)
. . . ar

(
φ

(r)
L

)]
Hg = diag(g1, g2, ..., gL)

(1.6)
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The correlation of ULA channel

In this section we reported, from [21], an expression for the entries of the ULA Tx
and Rx channel correlation matrices,

RTX = E
[
HHH

]
and RRX = E

[
HHH

]
(1.7)

Applying the expectation, we are able to provide a closed form expression for the
generic entry on row p and column q of the Tx correlation matrix

[RTX ]p,q =
N

φmax − φmin

∫ φmax

φmin

ejζ(p−q) sin ada (1.8)

and of the Rx correlation matrix

[RTX ]p,q =
M

φmax − φmin

∫ φmax

φmin

ejζ(p−q) sin ada (1.9)

We note that the amplitude of the correlation matrix entries are independent of the
number of rays L of the ULA channel model.

Numerical examples of ULA correlation matrix

A couple of numerical examples for the amplitude of (1.8) with φmin = −60◦, φmax =
60◦, wavelength λ = 0.005m, M = 6 are given with an antenna separation D = λ/2:

abs

(
RTX

N

)
=


1 0.03 0.13 0.15 0.14 0.11

0.03 1 0.03 0.13 0.15 0.14
0.13 0.03 1 0.03 0.13 0.15
0.15 0.13 0.03 1 0.03 0.14
0.14 0.15 0.13 0.03 1 0.03
0.11 0.14 0.15 0.13 0.03 1

 (1.10)

and D = λ/5:

abs

(
RTX

N

)
=


1 0.78 0.28 0.16 0.30 0.13

0.78 1 0.78 0.28 0.16 0.30
0.28 0.78 1 0.78 0.28 0.16
0.16 0.28 0.78 1 0.78 0.28
0.30 0.16 0.28 0.78 1 0.78
0.13 0.30 0.16 0.28 0.78 1

 (1.11)

We observe that by increasing D leads to a decreasing correlation between elements.
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1.3 Simulation of the ULA channel
For the simulation results we use a typical 60GHz channel with L = 3 rays and
carrier with a wave length of λ = 0.005m. The Rx and Tx ULA arrays are made
of antenna elements separated by D = λ/2. The angle of arrival and departure are
random uniformly distributed in the interval between φmin = −60◦ and φmax = 60◦.



Chapter 2

Optimal and sub-optimal
beamforming

At the beginning of this chapter we introduce the general framework for the perfor-
mance analysis, in terms of signal to noise ratio (SNR), of a MMW MIMO system.
Next we discuss, from a theoretical point of view, the state of art and various sub-
optimal array gain techniques for conventional MIMO systems.

2.1 SNR definitions

We introduce various definitions of SNR that are used later to evaluate and compare
the performance of the systems considered. We start by defining the average SNR,
with respect to noise and channel gain, of a simple single input single output (SISO)
system denoted here additive white Gaussian noise (AWGN) channel. Next, we
extend the definition of SNR for a MIMO system.

2.1.1 AWGN channel

Figure 2.1 shows the base-band equivalent of a flat-fading AWGN channel system,
where x denotes the information symbol and y the received symbol at decision point
equal to

y = hx+ n (2.1)

where the noise, n, is Gaussian distributed with zero mean and variance σ2
n,

n ∼ CN
(
0, σ2

n

)
(2.2)

We denote with
Mh = E[|h|2], Mx = E[|x|2] (2.3)

5



6 CHAPTER 2. OPTIMAL AND SUB-OPTIMAL BEAMFORMING

h +
x y

n

Figure 2.1: AWGN system: base band equivalent scheme.

the statistical power of the channel gain h and the information symbol x respectively.
The expression of the average SNR at receiver, called ΓAWGN , is given by

ΓAWGN =
Eh,x[|hx|2]

En[|n|2]
=

Eh[|h|2]Ex[|x|2]

σ2
n

=
MhMx

σ2
n

(2.4)

Setting the statistical power of the input sample and of the channel to one

Mh = Mx = 1 (2.5)

yields

ΓAWGN =
1

σ2
n

(2.6)

2.1.2 MIMO channel

We consider now a generic MIMO configuration withM antennas at the transmitter
and N antennas at the receiver. We provide a SNR definition associated to a specific
channel realization and averaged with respect to the noise contribution. Moreover,
we define a functional that measures the improvement, in terms of SNR, of the
MIMO system with respect to the AWGN case.

System model

Figure 2.2 shows the system considered and the precoder and combiner elements.
where x denotes the information symbol, y the received symbol, s the transmitted
signal vector and r the received signal vector. The received vector noise n is modelled
as a complex circular independent identically distributed (i.i.d.) Gaussian noise
vector,

n ∼ CN
(
0, σ2

nIN
)

(2.7)

where σ2
n is the variance of the generic entry of n, which is distributed as (2.2), and

IN the N ×N identity matrix.
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Precoder H + Combiner
x s r y

n
M N N

Figure 2.2: MIMO system: base band equivalent scheme.

SNR expression

At the decision point, for a given channel realization H, after the combining opera-
tion of received signals, we consider the SNR, expressed by Γ, as the ratio between
the statistical power of useful part of the signal and the statistical power of the noise
component. Next we normalize Γ to the channel noise and define the metric

γ =
Γ

ΓAWGN

(2.8)

Moreover we will characterize the system performance on average with respect to
the channel and define

Γ̄ = EH[Γ], γ̄ = EH[γ] =
Γ̄

ΓAWGN

(2.9)

where EH[·] denotes that the expectation is taken with the respect to the channel
H.

2.2 Optimal beamforming
We seek now to design the optimal precoder and combiner of Figure 2.2 in order to
maximize γ in (2.8). We will see that the optimal solution is represented, both at
Tx and Rx side, by the maximum ratio beamforming (MRB).
The precoder and combiner in Figure 2.2 are substituted by two vectors of weights
called beamformers. Let

f = [f1, ..., fM ]T and u = [u1, ..., uN ]T (2.10)

be the transmit and receive beamformers. The input stream modulates the Tx
antennas array by the weights of f , while the vector signal at the receiver antenna
array is recombined to an output single stream by weight vector u . Figure 2.3
represents the described system. The transmitted vector signal s is represented by
the entries
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f1 + u∗
1

fM + u∗
N

Hx

r1

rN

s1

sM

n1

nN

+
y

Figure 2.3: MRB system: base band equivalent scheme.

s = [s1, ..., sM ]T (2.11)

and its expression is
s = f x (2.12)

We note that if the transmitted signal s is subject to an average power constraint
P it implies that also the power of the beamformer f is constrained and it must be,

Ex[||s||2] = ||f ||2Mx ≤ P =⇒ ||f ||2 ≤ P

Mx
(2.13)

The received signal r is denoted by the vector

r = [r1, ..., rN ]T (2.14)

and it is equal to
r = Hf x+ n (2.15)

2.2.1 SNR expression

The reconstructed signal y is equal to

y = uHHf x+ uHn (2.16)

where n is defined in (2.7).
Without loss of generality, let us consider x with unitary average power (Mx = 1)
and a transmission power constraint P = 1. Hence from (2.13) it must be ||f ||2 = 1.
Moreover we assume a unit statistical power for each entry of the channel matrix
H, as from (2.5). If also the power of the combiner is equal to one (||u ||2 = 1) from
(2.16) we can provide the expression of

Γ =
Ex[|uHHf |2]

|uHn|2
=
|uHHf |2

σ2
n

(2.17)
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and (2.8) becomes
γ = |uHHf |2. (2.18)

2.2.2 The optimization problem

We focuse now on finding weight vectors f and u that maximize the functional
(2.18). The optimization problem can be outlined as

max
f ,u
|uHHf |2

with ||f ||2 = 1, ||u ||2 = 1.
(2.19)

The constraints on the squared norm of the beamformers suggest that γ should be
maximized by choosing the optimal f and u with no increase of the needed power.

2.3 Maximum ratio beamforming (MRB)

The solution of problem (2.19) is well known in the literature [15, pp. 44] and implies
the singular value decomposition (SVD) of channel matrix H. In the next section
we briefly summarize the procedure and outline the maximum value reached by γ
for a given channel, next, some numerical values of γ̄ will be given.

2.3.1 The SVD solution

The complex N ×M channel matrix H with rank ρ has the following SVD decom-
position [15]

H = UΞF =
[
u1 . . . uN

]


ξ1 . . . 0
... . . . ...
0 . . . ξρ
0 . . . 0
... . . . ...
0 . . . 0


f H1. . .
f HM

 (2.20)

where

• the non-zero diagonal real values of Ξ ∈ RN×M are called singular values of H
and they satisfy

ξ1 ≥ ξ2 ≥ ... ≥ ξρ ≥ 0, (2.21)

• the column vectors of U ∈ CN×N , denoted by u1, ...,uN are the left singular
vectors of H,
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• the column vectors of F ∈ CM×M , denoted by f 1, ..., f M are the right singular
vectors of H,

The complex matrices U and F are said to be unitary, which entails

UHU = UUH = IN , FHF = FFH = IM . (2.22)

It can be shown that the optimal beamformers for the problem (2.19), denoted by
f MRB and uMRB are equal to the right singular vector associated to the largest
singular value and to the left singular vector associated to the largest singular value,
respectively. In symbols

f MRB = f 1, uMRB = u1 (2.23)

We note that the constraints on the squared norms of beamformers are satisfied as
from (2.22)

||f 1||2 = tr(f H1 f 1) = 1, ||u1||2 = tr(uH
1 u1) = 1 (2.24)

2.3.2 Performance results

Performance, in terms of γ̄, are evaluated by averaging (2.18) for 5000 realizations
of the channel. Fig. 2.4 shows the average SNR improvement γ̄ versus the number
of antennas (number of Rx and Tx antennas is equal, i.e. M = N) for the MRB
approach. We can see that γ̄ saturates for high number of antennas, this is due to
the fact that we use a finite ray channel model.

2.4 Iterative maximum ratio beamforming (I-MRB)
Applying the SVD of the channel matrix, the MRB provides a solution, in closed
form, to the problem in (2.19) We investigate now an iterative approach to get the
same solution [13]. For multiple input single output (MISO) (N = 1) or single
input multiple output (SIMO) (M = 1) systems, the optimal solution to (2.19) is
provided by simple expressions known in literature as maximum ratio transmission
and maximum ratio reception. Part of the work in [13] exploits the simple MISO
and SIMO solutions cyclically, in a procedure that converges in few iterations (3÷7)
to the MRB performance.

2.4.1 Splitting and reformulation of the problem

Assuming that optimal f or, alternatively, u is known, problem (2.19) can be splitted
into an iterative SIMO and MISO optimization problem. Let us set

hSIMO = Hf ∈ CN×1 and hMISO = uHH ∈ C1×M (2.25)
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Figure 2.4: γ̄ vs. M (and M = N) for the MRB approach.

The SIMO and MISO optimization problems are, respectively, expressed by

SIMO : arg max
u

|uHhSIMO|2

with ||u ||2 = 1.

MISO : arg max
f

|hMISOf |2

with ||f ||2 = 1.
(2.26)

The optimal solutions f I−MRB and u I−MRB can be shown ([13, p. 5396], [14, p.
1459]) to be equal to

f I−MRB =
hHMISO

||hMISO||
and u I−MRB =

hSIMO

||hSIMO||
(2.27)

2.4.2 Cyclic optimization procedure

The original SNR maximization problem in (2.19) is based on the fundamental
assumptions made in (2.25) that imply the knowledge, a priori, of the optimum
at transmitter and receiver for the SIMO or MISO problem, respectively. In order
to bypass this issue, [13, p. 5398] proposes a simple cyclic procedure that can be
described in few steps.

step 0 Set u to an initial value, for example a vector where entries are all equals to
1/
√
N ;
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Figure 2.5: γ̄ vs. M (and M = N) for the I-MRB approach.

step 1 obtain the transmitter beamformer f by solving the MISO problem in (2.27),
setting hMISO = uH

I−MRBH, where u is fixed at its most recent value;

step 2 update the receiver beamformer u by solving the SIMO problem in (2.27),
setting hSIMO = Hf I−MRB, where f was obtained in step 1 ;

step 3 iterate step 1 and step 2 until a given stop criterion is satisfied.

2.4.3 Performance results

Performance, in terms of γ̄, are evaluated by averaging (2.18) for 5000 realizations
of the channel. This algorithm is simple and numerical simulations show that it
converges in NI = 3 ÷ 7 iterations. For a comparison we also report the MRB
bound. Fig. 2.5 shows the average SNR improvement γ̄ versus the number of
antennas (number of Rx and Tx antennas is equal, i.e. M = N) for three values of
NI using the I-MRB approach.

2.5 Analog-digital beamforming (ADB)
Until now, only weight vector beamformers have been considered. Looking for al-
ternative hardware configuration, which require loss power, in a MMW scenario,
working in the RF domain could be more convenient, but, often, we lose the digital
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base-band flexibility. Hence we investigate a analog-digital beamforming (ADB) lay-
ered architecture that is simpler to implement in the analog domain because it has a
reduced number, with respect to the antenna elements, of RF chains. However, this
configurations includes a base-band (BB) precoder and combiner in order to achieve
MRB performance.

2.5.1 Framing of the problem

The analog-digital beamforming configuration is illustrated in Fig. 2.6, as from [8].
It models a single user MMW system, in which a single transmitter (Tx) with M
antennas communicates symbol x to a single receiver (Rx) with N antennas and
it consists of a transmitter equipped with MRF radio frequency (RF) chains, with
MRF < M , and a receiver with NRF RF chains, with NRF < N . The transmitter
is assumed to apply an MRF × 1 complex valued base-band digital precoder,

fBB = [fBB,1, ..., fBB,MRF
] ∈ CMRF×1, (2.28)

followed by a RF analog precoder

FRF =

 f1,1 . . . f1,MRF

... . . . ...
fM,1 . . . fM,MRF

 ∈ CM×MRF . (2.29)

Similarly, the receiver is constituted by a RF analog combiner

URF =

u1,1 . . . u1,NRF
... . . . ...

uN,1 . . . uN,NRF

 ∈ CN×NRF . (2.30)

and a base-band digital combiner

uBB = [uBB,1, ..., uBB,NRF ] ∈ CNRF×1. (2.31)

To simplify the hardware implementation, each element of URF and FRF has unitary
magnitude, whoever it may have an arbitrary phase. If H denotes theN×M channel
matrix, let

xBB = fBBx (2.32)

and defining
yBB = UH

RF (HFRFxBB + n) (2.33)

the received signal can be written as

y = uHBByBB (2.34)
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Figure 2.6: ADB system: base band equivalent scheme.

where n ∼ CN (0, σ2
nIN) with σ2

n the channel noise variance and IN the N × N
identity matrix. For later we also define the transmit and receive antenna signals,
xRF = FRFxBB and yRF = HxRF + n. We stress that in the ADB structure we
only have access to signals xBB and yBB, besides, obviously, to x and y, however
we can switch on and off any antenna at transmitter/receiver.

2.5.2 SNR at detection point

From (2.34), for a given channel matrix and by assuming ||URFuBB|| = 1, we can
define the SNR at detection point as

Γ =
Ex
[∣∣uHBBUH

RFHFRF fBBx
∣∣2]

En

[∣∣uHBBUH
RFn

∣∣2] =
∣∣uHBBUH

RFHFRF fBB
∣∣2 σ2

x

σ2
n

. (2.35)

The improvement of Γ with respect to ΓAWGN , defined in (2.4), is given by

γ = Γ/ΓAWGN =
∣∣uHBBUH

RFHFRF fBB
∣∣2 (2.36)
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Optimization problem

From (2.36) on designing the precoder/beamformer the maximization problem is

arg max
FRF ,fBB ,URF ,uBB

∣∣uHBBUH
RFHFRF fBB

∣∣2
with

∣∣∣[FRF ]i,j

∣∣∣ = 1, i = 1, ...,M, j = 1, ...,MRF∣∣∣[URF ]i,j

∣∣∣ = 1, i = 1, ..., N, j = 1, ..., NRF

||FRF fBB||2 = 1

||URFuBB||2 = 1

(2.37)

where the constraints underline that the RF part of beamformer must apply changes
only on signal phases, and, as usual, beamformers do not amplify power.

2.5.3 Precoder and combiner design

In [8] beamformers FRF and fBB are evaluated by the knowledge of vectors at in
(1.4) as a solution to the following problem

min
FRF ,fBB

||f MRB − FRF fBB||2 (2.38a)

s.t. colj (FRF ) ∈
{
at
(
φ

(t)
`

)
, 1 ≤ ` ≤ L

}
, j = 1, ...,MRF (2.38b)

with ||FRF fBB||2 = 1 (2.38c)

Similar procedure is used to evaluate URF and uBB based on uMRB. In (2.38b)
colj (FRF ) denotes column j of matrix FRF . In other words, columns of FRF are
chosen among the L ray phase vector responses.
The problem in (2.38) consists of determining FRF by selecting suitable columns of
the following matrix

At =
[
at
(
φ

(t)
1

)
... at

(
φ

(t)
L

)]
(2.39)

and corresponding evaluating fBB by the least square (LS) method to solve (2.38a)
under constraint (2.38c). This algorithm is reported in Tab. 2.1. The same algo-
rithm can be used for determining URF and uBB starting from uMRB and Ar =[
ar
(
φ

(r)
1

)
... ar

(
φ

(r)
L

)]
. If NRF is different fromMRF better results are obtained by

using an iterative procedure where transmit and receive beamformers are updated
starting from uMRB = HFRF fBB when MRF < NRF and f MRB = HHURFuBB
when MRF > NRF . We just recall that functional (2.38a) requires as target the
optimum composite beamformer f MRB.
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Input: f MRB,At

1. FRF = 0
2. fBB = 0
3. f res = f MRB

4. for i = 1 to MRF

5. Ψ = AH
t f res

6. o = arg maxl∈1,...,L

[
ΨΨH

]
l,l

7. FRF = [FRF |colo (At)] (Add one column)

8. fBB =
(
FH
RFFRF

)−1 FH
RF f MRB

9. f res = fMRB−FRF fBB
||fMRB−FRF fBB ||

10. end for
11. fBB = fBB

||FRF fBB ||

Table 2.1: ADB algorithm for the design of FRF and fBB.

2.5.4 Performance results

Performance are, in terms of γ̄, evaluated by averaging (2.36) for 5000 realizations
of the channel. For a comparison we also report the MRB bound. Fig. 2.7 shows
the average SNR improvement γ̄ versus the number of antennas (number of Rx and
Tx antennas is equal, i.e. M = N) for the ADB algorithm with MRF = NRF . We
can see that performance of this algorithm are close to the bound.

2.6 Iterative Analog-digital beamforming (I-ADB)

The ADB algorithm, to design the analog and digital parts of precoder/beamformer,
is quite complex since it requires as target design the singular value decomposition
(SVD) of the channel matrix H which can be quite large. Also it makes use of
an iterative procedure for the design of analog parts. Here we propose a much
simpler iterative-ADB (I-ADB) algorithm, which is an example of application of
the method presented in [13]. Firstly, by extending the approach in [8], the analog
precoder/beamformer is obtained by stacking At (Ar), i.e.

FRF = [At,At, ...,At]0:MRF−1 and URF = [Ar,Ar, ...,Ar]0:NRF−1 (2.40)

Next, referring to the scheme in Fig. 2.6 we would design the digital precoder fBB
and beamformer uBB by the I-MRB algorithm [13] applied to the “digital ” channel
matrix whose dimension is only MRF ×NRF

G = UH
RFHFRF (2.41)
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Figure 2.7: γ̄ vs. M (and M = N) for the ADB algorithm with MRF = NRF .

In this case the optimization problem is

max
fBB ,uBB

|uHBBGfBB|2 (2.42a)

with ||FRF fBB||2 = 1, ||URFuBB||2 = 1 (2.42b)

and the iterative solution, exposed in Table 2.2, requires NI iterations.

2.6.1 Performance results

Performance are, in terms of γ̄, evaluated by averaging (2.36) for 5000 realizations of
the channel. For a comparison we also report the MRB bound. Fig. 2.8 shows the
average SNR improvement γ̄ versus the number of antennas (number of Rx and Tx
antennas is equal, i.e. M = N) for the I-ADB algorithm with MRF = NRF . We can
see that performance using the I-ADB algorithm are close to the bound, especially
for MRF = NRF > 4.
For completeness in the Appendix A we report the computational complexity of
ADB and I-ADB algorithms. In Fig. 2.9, for MRF = NRF = 8, 16 and NI = 7, we
report the computational complexity of the two algorithms vs. M = N . We can see
that the I-ADB complexity is lower than that of ADB.
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Input: H,FRF ,URF

1. G = UH
RFHFRF

2. uBB = 1√
NRF

[1, 1, ..., 1]T

3. for i = 1 to NI

4. hMISO = uHBBG
5. fBB =

hHMISO

||hMISO||
6. hSIMO = GfBB
7. uBB = hSIMO

||hSIMO||
8. end for
9. fBB = fBB

||FRF fBB ||
10. uBB = uBB

||URFuBB ||

Table 2.2: I-ADB algorithm for the design of fBB and uBB.
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Figure 2.8: γ̄ vs. M (and M = N) for the I-ADB algorithm with MRF = NRF .
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M = N) with MRF = NRF .
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Chapter 3

Vector quantized analog
beamformers

In the previous section we described optimal and sub-optimal architectures. We
have seen that in order to to design fBB, uBB, FRF and URF ADB and I-ADB need
to have knowledge of matrices At and Ar, that are factors of the channel H. To
overcome this problem, we propose to choose matrices FRF and URF in a dictionary
and then calculate fBB and uBB.

3.1 Vector quantization
Vector quantization (VQ) is introduced as a natural extension of the scalar quan-
tization (SQ) concept. However, using multidimensional signals opens the way to
many techniques and applications that are not found in the scalar case [16], [17].
The basic concept is that of associating with an input vector s = [1, ..., sN ]T , generic
sample of a vector random process s(k), a reproduction vector s = Qs] chosen from
a finite set of L elements (code vectors), A = {Q1, ...,QL}, called codebook, so that
a given distortion measure d(s,Q[s]) is minimized.

3.1.1 Characterization of VQ

Considering the general case of complex-valued signals, a vector quantizer is char-
acterized by

• Input vector or matrix s =

s1,1 . . . s1,M
... . . . ...

sN,1 . . . sN,M

 ∈ CN×M

• Codebook A = {Qi}, i = 1, ..., L where Qi ∈ CN×M is a code vector.

21
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• Distortion measure d(s,Qi).

• Quantization rule (minimum distortion)

Q : CN×M → A with Qi = Q[s] if i = arg min
`

d(s,Q`) (3.1)

• Voronoi regions

R` =
{
s ∈ CN×M : Q[s] = Q`

}
` = 1, ..., L (3.2)

3.1.2 LBG algorithm

To generate the codebook the LBG (Linde, Buzo, and Gray) algorithm [18] make
use of very long realizations. The sequence used to design the VQ is called training
sequence (TS) and is composed of K matrices/vectors.

s(k), k = 1, ..., K (3.3)

The average distortion is now given by

D =
1

K

K∑
k=1

d(s(k),Q[s(k)]) (3.4)

and the two rules to minimize D become:
Rule A

Ri = {s(k) : d(s(k),Qi)} = min
Q`∈A

d(s(k),Q`) i = 1, ..., L (3.5)

that is Ri is given by all the elements {s(k)} of the TS nearest to Qi.
Rule B

Qi = arg min
Qj∈CN×M

1

mi

∑
s(k)∈Ri

d(s(k),Qj) (3.6)

where mi is the number of elements of the TS that are inside Ri.

3.1.3 Description of the LBG algorithm with splitting proce-
dure

The iterative algorithm start with a codebook with a number of elements L = 1. By
slightly changing the components of this code vector (splitting procedure), we derive
two code vectors and an initial alphabet with L = 2; at this point, using the LBG
algorithm, we determine the optimum VQ for L = 2. At convergence, each optimum
code vector is changed to obtain two new code vectors and the LBG algorithm is used
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Figure 3.1: LBG algorithm with splitting procedure..

for L = 4. Iteratively the splitting procedure and optimization is repeated until the
desired number of elements for the codebook is obtained. Let Aj = {Q1, ...,QL} be
the codebook at iteration j-th. The splitting procedure generates 2L N -dimensional
vectors yielding the new codebook

Aj+1 = {A−j } ∪ {A+
j } (3.7)

where

A−j = {Qi − ε−} i = 1, ..., L (3.8)
A+
j = {Qi − ε+} i = 1, ..., L (3.9)

(3.10)

Typically ε− is the zero vector,
ε− = 0 (3.11)

and

ε+ =
1

10

√
Ms

N
· 1 (3.12)
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Choosing ε > 0 (typically ε = 10−3) and an initial alphabet given by the splitting
procedure applied to the average of the TS, we obtain the LBG algorithm, whose
block diagram is shown in Figure 3.1.

3.2 Codebook design
To overcome the knowledge of At (Ar) (2.39), which may be quite hard to obtain
(see [9]), we choose FRF (URF ) between the elements of a dictionary and then
calculate fBB (uBB) by the LS method.
The problem is finding, through the LBG algorithm [23], a codebook for FRF (URF ).
Offline, for each of 5000 channel matrix realizations (training sequence), we evaluate
FRF (URF ) by the ADB algorithm. Next we run the LBG algorithm to obtain the
codebook DTX (DRX) of size LTX (LRX) using as metric the phase-invariant distance
between any two matrices F and Q defined as

d (F,Q) =
√

2 (1− |vHF vQ|) (3.13)

where vF = vec (F), vQ = vec (Q), ||F|| = ||Q|| = 1, if vec(F) is the vectorization
of matrix F. If F denotes a matrix of the training sequence and Q a quantized
codeword, to ensure the unitary magnitude of each element of Q, in every step of
the LBG algorithm we normalize the elements of the matrices obtained. From the
codebooks

DTX =
{
QTX,1, ...,QTX,LTX

}
, DRX =

{
QRX,1, ...,QRX,LRX

}
, (3.14)

we calculate for every codeword the pseudoinverse matrix

QPI
TX,i =

(
QH
TX,iQTX,i

)−1 QH
TX,i, QPI

RX,i =
(
QH
RX,iQRX,i

)−1 QH
RX,i. (3.15)

3.3 Quantized analog digital beamforming (Q-ADB)
We simply replace FRF in the ADB algorithm with a codeword of the codebook.
Hence in (2.38a) we range across all codewords to find the best one. In other words
we define the new functionals:

min
FRF∈DTX ,fBB

||f MRB − FRF fBB||2

with ||FRF fBB||2 = 1
(3.16)

and

min
URF∈DRX ,uBB

||uMRB −URFuBB||2

with ||URFuBB||2 = 1
(3.17)
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Input: f MRB,DTX
1. JTX = +∞
2. for i = 1 to LTX
3. ftemp = QPI

TX,if MRB

4. Jtemp = ||f MRB −QTX,iftemp||2
5. if Jtemp < JTX
6. FRF = QTX,i

7. fBB = ftemp
8. JTX = Jtemp
9. end if
10. end for
11. fBB = fBB

||FRF fBB ||

Table 3.1: Q-ADB algorithm for the design of FRF and fBB.

To solve (3.16) we propose the exhaustive algorithm shown in Tab. 3.1. We can
use the same algorithm to solve (3.17). As for the ADB algorithm, an iterative
procedure can be used for determining iterativly URF and uBB given FRF and fBB
and vice versa. We just note that also the Q-ADB algorithm requires f MRB.

3.3.1 Performance results

Performance, in terms of γ̄, are evaluated by averaging (2.36) for the same 5000
realizations of the channel. Obviously these realizations are different from the ones
used in the vector quantization.
Fig. 3.2 shows the average SNR improvement γ̄ versus the number of antennas
(number of Rx and Tx antennas is equal, i.e. M = N) for the Q-ADB algorithm
for four values of the codebook size and two values of the number of RF chains. For
a comparison we also report the MRB bound. We recall that the ADB algorithm
yields the same performance of the bound. We note that although the Q-ADB
yields lower performance than ADB, they improve if we use more RF chains and
an higher codebook size. For 16 RF chains and a codebook size of 64 for M =
N = 16 performance are very close to the bound. However if M = N is increased
performance saturate due to the vector quantization limited representation.
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Figure 3.2: γ̄ vsM (andM = N) for the Q-ADB algorithm using different codebook
sizes (LTX = LRX) and two values of MRF = NRF .

3.4 Quantized iterative analog digital beamforming
(QI-ADB)

This method does not make use of f MRB. In fact, referring to the scheme in Fig. 2.6
we would design the base band beamformers fBB and uBB by the I-MRB algorithm
[13] applied to the “digital ” channel matrix whose dimension is only MRF ×NRF

G = UH
RFHFRF

with FRF ∈ DTX , URF ∈ DRX
(3.18)

We recall that the I-MRB algorithm consists in a simple approach which alternatively
makes use of a multi input single output (MISO) and single input multiple output
(SIMO) configuration and converges in a small number of iteration NI to the MRB
solution, in the case of full digital beamformers. In our case, the functional is now
(2.36), hence in formula the problem is

max
FRF∈DTX ,f,URF∈DRX ,u

|uHGf|2 (3.19a)

with ||FRF fBB||2 = 1, ||URFuBB||2 = 1 (3.19b)

To solve the problem (3.19), we propose the exhaustive algorithm shown in Tab.
3.2.
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Input: DTX ,DRX ,G
1. γ = 0
2. for i = 1 to LTx
3. for j = 1 to LRx
4. G = QH

Tx,iHQRx,j

5. (ftemp,utemp) = IMRB (G, NI)

6. ftemp = ftemp
||QTx,iftemp||

7. utemp = utemp
||QRx,iutemp||

8. γtemp = |uHtempGftemp|2
9. if γtemp > γ
10. γ = γtemp
11. FRF = QTx,i; fBB = ftemp
12. URF = QRx,j; uBB = utemp
13. end if
14. end for
15. end for

Table 3.2: QI-ADB algorithm for the design of FRF , fBB, URF and uBB.

We should to note that the QI-ADB algorithm may yield a sub-optimal solution,
as the iterative design procedure may not converge to the optimal solution, mainly
because it does not make use of a target for the beamformers, unlike the Q-ADB
that makes use of f MRB and uMRB.

3.4.1 Performance results

As for ADB algorithm performance are, in terms of γ̄, evaluated by averaging (2.36)
for the same 5000 realizations of the channel. Obviously these realizations are dif-
ferent from the ones used in the vector quantization.
In Fig. 3.3 we report γ̄ for the QI-ADB algorithm, with a number of iteration
NI = 7. We can see that for a small number of RF chains, for example MRF = 4,
γ̄ is equal or even better than for systems with a greater number of RF chains. In
fact we expected performance to increase for higher values of MRF , as the digital
beamformers become more effective. However, this happens only if vector quantiza-
tion adequately represents the analog beamformer, i.e. if LTX (LRX) is sufficiently
high. Moreover if the codebook size is small and alsoMRF is small (i.e. large analog
beamformers), vector quantization may not represent the analog beamformers ad-
equately and performance are erratic. Also in this algorithm, for a given LTX and
MRF , after a certain value of M = N , γ̄ saturates.
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Figure 3.3: γ̄ vsM (andM = N) for the QI-ADB algorithm using different codebook
sizes (LTX = LRX) and three values of MRF = NRF .

Now we compare the two proposed algorithms. We set a target of γ̄ equal to 31dB
for a system with M = N = 64 antennas. It is seen that Q-ADB and QI-ADB
algorithms yield similar performance for the following parameter values: for the Q-
ADB we need MRF = NRF = 16 and LTX = LRX = 32, while for the QI-ADB it
is MRF = NRF = 4 and LTX = LRX = 64. In general, for the same performance,
QI-ADB suffers a penalty of a greater codebook size with respect to Q-ADB.
For completeness in the Appendix we report the computational complexity of these
algorithms. In Fig. 3.4, for the parameter values that yield similar performance
of Q-ADB and QI-ADB, we report the computational complexity of the four algo-
rithms vs. M = N . We can see that the computation complexity of the quantized
algorithms and ADB is similar if M (and N = M) is greater than 120. In general
for the parameter values of interest complexity of Q-ADB is similar to that of ADB,
which however needs to know the channel structure, in particular the ray phase
vector responses (1.3).
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Figure 3.4: Computational complexity of four algorithms (ADB, I-ADB, Q-ADB,
QI-ADB) vs M (and M = N) with MRF = NRF and LTX = LRX .
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Chapter 4

Channel estimation

In this chapter, based on a realistic finite ray channel model which captures both
the limited scattering at high frequency and the antenna correlation of large arrays
[19], we focus on channel estimation, which plays a key role for the hybrid pre-
coder/beamformer design. We develop a specific training sequence of precoders and
beamformers in order to estimate the channel parameters. Once these parameters
are estimated, we can i) reconstruct the elements of the channel matrix and ii) de-
sign the transmit precoder and receive beamformer using the I-ADB algorithm. We
propose two different approaches to estimate channel, the first based on Discrete
Fourier Transform (DFT), while the second based on two-dimensional DFT.

4.1 Channel estimation using DFT

4.1.1 Estimate of angles of arrival and channel gains

From (1.4), (2.33) can be rewritten as

yBB = UH
RFyRF (4.1)

with

yRF =
1√
L

ArHgAH
t xRF + n (4.2)

To estimate the angles of arrival φ(r)
` and the channel gains g` we turn on only the

first transmit antenna and turn off the others M − 1. The same results is obtained
by switching on all transmit antennas, and setting

xBB =
1

MRF

[
1 1 . . . 1

]T (4.3)

31
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and

FRF =


1 1 1 . . . 1
1 −1 1 . . . −1
1 −1 1 . . . −1
...

...
... . . . ...

1 −1 1 . . . −1

 (4.4)

under the assumption MRF is even, where the first row is of all 1’s while the other
rows contain the sequence (1,-1) repeated. In any case we get

xRF =
[
1 0 . . . 0

]T (4.5)

For this input to the system, the RF signal at the receiver (4.2) becomes

yRF =
1√
L

Ar


g1

g2
...
gL

+ n

=
1√
L


g1 + ...+ gL

g1e
jζD sin

(
φ
(r)
1

)
+ ...+ gLe

jζD sin
(
φ
(r)
L

)
...

g1e
jζD(N−1) sin

(
φ
(r)
1

)
+ ...+ gLe

jζD(N−1) sin
(
φ
(r)
L

)

+ n

(4.6)

Unfortunately we only have access to yBB as in (4.1). Let ND be an integer, with
ND ≤ N , a suitable parameter to be chosen. In order to derive yRF as given by (4.6)
we apply the following procedure at the receiver which makes use of NS =

⌈
ND
NRF

⌉
URF matrices of the form

U(s)
RF =



0
...
0

ŪRF

0
...
0



 sNRF

N − (s+ 1)NRF

s = 0, 1, ..., NS − 1 (4.7)

where ŪRF is a NRF × NRF square matrix, whose elements are chosen at random
with unitary magnitude and such that ŪRF has full rank (see also Appendix B).
Note that U(s)

RF in (4.7) corresponds to switching on at the receiver only antennas
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sNRF , ..., (s + 1)NRF − 1. Each U(s)
RF will yield a corresponding y(s)

BB. Moreover if
ŪRF has full rank, from (4.1) we get

[yRF ]sNRF :(s+1)NRF−1 = (ŪH
RF )−1y(s)

BB, s = 0, 1, ..., NS − 1 (4.8)

Stacking all column vectors (4.8) in a single vector, we have

[yRF ]0:ND−1 =
1√
L


g1 + ...+ gL

g1e
jζD sin

(
φ
(r)
1

)
+ ...gLe

jζD sin
(
φ
(r)
L

)
...

g1e
jζD(ND−1) sin

(
φ
(r)
1

)
+ ...+ gLe

jζD(ND−1) sin
(
φ
(r)
L

)

+ [n]0:ND−1

(4.9)
which is similar to (4.6) with N replaced by ND. Let

θ
(r)
` = ζD sin

(
φ

(r)
`

)
(4.10)

the n-th element of yRF in (4.9) can be written as

yn = [yRF ]n =
1√
L

(
g1e

jnθ
(r)
1 + . . .+ gLe

jnθ
(r)
L

)
+ [n]n, n = 0, 1, ..., ND − 1 (4.11)

i.e. yn is equal to the sum of L complex modes each of phase θ(r)
` and amplitude

g`. To find the 2L parameters of complex modes we can compute the DFT of yn on
NDFT samples with NDFT ≥ ND, setting yn = 0 for n > ND − 1. In fact the DFT
of yn, scaled by ND, becomes

Y (k) =
1

ND

NDFT−1∑
n=0

yne
−j2π kn

NDFT =
1

ND

ND−1∑
n=0

yne
−j2π kn

NDFT (4.12)

Let us define

d(n) =

{
1/ND, n = 0, 1, ..., ND − 1

0, otherwise
(4.13)

with
D(k) = DFT{d(n)} = e

−j 2πk
NDFT

ND−1

2 sincND

(
k
ND

NDFT

)
(4.14)

and sincND(x) = sin(πx)
ND sin(πx/ND)

.
Assuming NDFT is large enough that it always exists an integer k` that

θ
(r)
` = 2π

k`
NDFT

(4.15)
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Input: Y (k)
1. Y1(k) = Y (k)
2. for i = 1 to L

3. k̂i = arg maxk |Yi(k)|
4. ĝi = Yi(k̂i)

√
L

5. Yi+1(k) = Yi(k)− 1√
L
ĝiD(k − k̂i)

6. end for

Table 4.1: Cancellation method to estimate the channel parameters.

from (4.11) we can write

Y (k) =
1√
L

[g1D(k − k1) + . . .+ gLD(k − kL))] +N(k), k = 0, 1, ..., NDFT − 1

(4.16)
with N(k) ∼ CN

(
0, σ

2
n

ND

)
. From (4.16) we can apply the method outlined in Table

4.1 to estimate the parameters of different modes. In practice also the number of
modes L should be estimated by stopping the cancellation method when |ĝi| turns
out much smaller than |ĝ1|. Here we simply assume that L is known. Next, from
estimate of k̂` , and using (4.10) and (4.15), we obtain

φ̂
(r)
` = sin−1

(
2πk̂`

ζDNDFT

)
. (4.17)

By this method we can estimate the angles of arrival φ(r)
` and the channel gains g`.

We should note that higher values of ND yield an estimate with lower noise level.
Moreover, increasing NDFT in (4.15) allows a better accuracy in the estimate of φ(r)

` .
Note that this approach which determines (4.9) by (4.8) needs a training sequence
of

N
(r)
TS =

⌈
ND

NRF

⌉
(4.18)

transmit symbols or time slots and at each transmit symbol a specific known ana-
log precoder/beamformer is set. However no iterative exchange of information is
required between receiver and transmitter.
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4.1.2 Estimate of angles of departure and channel gains

To estimate the angles of departure φ(t)
` and the coefficients g` we switch on only

the first receive antenna hence it is like selecting

URF =


1 1 1 . . . 1
0 0 0 . . . 0
0 0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 0

 (4.19)

Defined θ(t)
` = ζD sin

(
φ

(t)
`

)
(4.1) becomes

yBB =
1√
L


g1 . . . gL
g1 . . . gL
... . . . ...
g1 . . . gL




1 e−jθ
(t)
1 . . . e−j(M−1)θ

(t)
1

1 e−jθ
(t)
2 . . . e−j(M−1)θ

(t)
2

...
... . . . ...

1 e−jθ
(t)
L . . . e−j(M−1)θ

(t)
L

xRF + [n]0


1
1
...
1

 (4.20)

where the matrix with coefficients g` isNRF×L while the matrix with complex modes
is L×M . At the transmission side we switch on only the firstMD transmit antennas
and send a training sequence of symbols x of length MD denoted by (x)m, m =

0, ...,MD − 1, which generates a sequence of x(m)
RF signals of the form

x(m)
RF = [x

(m)
RF,0, x

(m)
RF,1, ..., x

(m)
RF,MD−1, 0, ..., 0]T (4.21)

and corresponding y(m)
BB whose first component is

[y(m)
BB ]0 =

1√
L

[g1...gL]


1 e−jθ

(t)
1 . . . e−j(MD−1)θ

(t)
1

1 e−jθ
(t)
2 . . . e−j(MD−1)θ

(t)
2

...
... . . . ...

1 e−jθ
(t)
L . . . e−j(MD−1)θ

(t)
L

 x̄(m)
RF + [n(m)]0 (4.22)

where x̄(m)
RF denotes just the first MD (MD ≤M) components of x(m)

RF . Let

X̄ =
[
x̄(0)
RF x̄(1)

RF . . . x̄(MD−1)
RF

]
(4.23)

and n̄ =
[
[n(0)]0 [n(1)]0 . . . [n(MD−1)]0

]
from (4.22) it is

[y(0)
BB]0

[y(1)
BB]0
...

[y(MD−1)
BB ]0


T

=
1√
L

[g1...gL]


1 e−jθ

(t)
1 . . . e−j(MD−1)θ

(t)
1

1 e−jθ
(t)
2 . . . e−j(MD−1)θ

(t)
2

...
... . . . ...

1 e−jθ
(t)
L . . . e−j(MD−1)θ

(t)
L

 X̄ + n̄ (4.24)
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If X̄ has full rank we can right multiply (4.24) by X̄
−1 and obtain

y0

y1
...

yMD−1

 =


[y(0)
BB]0

[y(1)
BB]0
...

[y(MD−1)
BB ]0


T

X̄
−1

=
1√
L


g1 + ...+ gL

g1e
−jθ(t)1 + ...+ gLe

−jθ(t)L
...

g1e
−j(MD−1)θ

(t)
1 + ...+ gLe

−j(MD−1)θ
(t)
L

+ ñ

(4.25)
with ñ = n̄X̄−1.

If X̄ is chosen as an Hadamard matrix [23] (see Appendix B) divided by
√
MD,

this guarantees the full rank of X̄, the unitary norm of x(m)
RF and that ñ in (4.25)

is still white. In fact as X̄T X̄ = IMD
it is X̄−1

= X̄T and the noise autocorrelation
matrix becomes

Rñ =
(
X̄−1

)T
Rn̄X̄

−1
=
(
X̄T
)T

σ2
nIMD

X̄T
= σ2

nX̄X̄T
= σ2

nIMD
(4.26)

In any case as the m-th element of (4.25) is of the form

ym =
1√
L

(
g1e
−jmθ(t)1 + ...+ gLe

−jmθ(t)L
)

+ [ñ]m (4.27)

we can estimate parameters φ(t)
` and g` of the L complex modes using the method

of Table 4.1. Moreover we can average the new estimate of g` with that obtained in
the previous section to obtain a more reliable estimate. Note that from (4.21) this
procedure needs a training sequence of

N
(t)
TS = MD (4.28)

time slots. The total length of training sequence is

NTS = N
(r)
TS +N

(t)
TS =

⌈
ND

NRF

⌉
+MD (4.29)

time slots.

4.1.3 Performance results

In this section, we present numerical results demonstrating the performance of the
proposed channel estimate. Performance, in terms of γ̄, are evaluated by averaging
(2.36) for the same 5000 realizations of the channel. After estimate of the channel
parameters, and reconstruction (1.4) of the channel from the parameters, we apply
the I-ADB algorithm to design the analog and digital precoders/beamformers with
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Figure 4.1: γ̄ vs. M (and M = N) for the I-ADB algorithm in the presence of
channel estimate with MD = ND = 2b log2(M)c.

NI = 7.
We show the average SNR improvement γ̄ versus the number of antennas, using the
I-ADB algorithm, with MRF = NRF = 8 and NDFT = 2048, in the presence of the
above channel estimate. Figures 4.1 and 4.2 show the average SNR improvement γ̄
versus the number of antennas M = N for two values of ND = MD which dictate
the length of the training sequence NTS as from (4.18) and (4.28).
In Fig. 4.1 ND = MD = 2b log2(M)c and in Fig. 4.2 ND = MD = 2b log2(M)c

2
. For

a comparison we also report the performance bound by assuming perfect channel
knowledge. When it is seen that γ̄ is independent of the channel noise. We can see
that performance using the channel estimate aren’t perfectly close to the bound,
especially when the noise level is high. This is due to the fact that this method
doesn’t estimate very well two angles when they are close together. However, overall
this method yields very good performance and has a low computational complexity
and most importantly doesn’t need a feedback channel, which corresponds to a fast
estimate.
In Fig. 4.3 we investigated the effect of NDFT on the channel estimate. For this
we report γ̄ versus the number of antennas for four value of NDFT , ΓAWGN = 5dB
and MD = ND = 2b log2(M)c. We can see that for an higher number of antennas
also NDFT must increase, corresponding to a better accuracy in the angle estimate,
otherwise performance deteriorate.
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Figure 4.2: γ̄ vs. M (and M = N) for the I-ADB algorithm in the presence of
channel estimate with MD = ND = 2b log2(M)c

2
.

4.2 Channel estimation using 2D-DFT

4.2.1 Estimate of channel parameters

From (1.4), set

θ
(t)
` = ζD sin

(
φ

(t)
`

)
, θ

(r)
` = ζD sin

(
φ

(r)
`

)
(4.30)

element (n,m) of the channel matrix H can be written as

[H]n,m =
1√
L

(
g1e

jnθ
(r)
1 e−jmθ

(t)
1 + ...+ g`e

jnθ
(r)
` e−jmθ

(t)
` + ...+ gLe

jnθ
(r)
L e−jmθ

(t)
L

)
(4.31)

with n = 0, 1, ..., N − 1, m = 0, 1, ...,M − 1. We can note that (4.31) is the sum
of L two-dimensional complex modes each of phase θ(t)

` and θ(r)
` and amplitude g`,

hence by using the two-dimensional DFT of the channel matrix we can estimate
the mode parameters. Actually we perform estimate of parameters by using the
NB ×MB submatrix:

H̃ = [H]0:NB−1,0:MB−1 (4.32)
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Figure 4.3: γ̄ vs. M (and M = N) for the I-ADB algorithm in the presence of
channel estimate with MD = ND = 2b log2(M)c for four values of NDFT and ΓAWGN =
5dB.

where NB (NB ≤ N) and MB (MB ≤M) are two suitable integer parameters to be
chosen. We can obtain H̃ by stacking the following NRF ×MRF submatrices

H̃
(p,q)

= [H̃]pNRF :(p+1)NRF−1,qMRF :(q+1)MRF−1

p = 0, 1, ...,

⌈
NB

NRF

⌉
− 1 and q = 0, 1, ...,

⌈
MB

MRF

⌉
− 1

(4.33)

In turn we obtain H̃
(p,q)

by switching on only transmit antennas qMRF , ..., (q +
1)MRF − 1, i.e. by setting

F(q)
RF =



0
...
0

F̄RF

0
...
0



 qMRF

M − (q + 1)MRF

q = 0, 1, ...,

⌈
MB

MRF

⌉
− 1 (4.34)

where F̄RF is a MRF ×MRF square matrix, whose elements are chosen with unitary
magnitude and such that F̄RF has full rank. At the same time we switch on only
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receive antennas pNRF , ..., (p+ 1)NRF − 1, i.e. by setting

U(p)
RF =



0
...
0

ŪRF

0
...
0



 pNRF

N − (p+ 1)NRF

p = 0, 1, ...,

⌈
NB

NRF

⌉
− 1 (4.35)

where ŪRF is a NRF ×NRF square matrix, whose elements are chosen with unitary
magnitude and such that ŪRF has full rank. With these settings, we send a training
sequence of vectors x(m)

BB , m = 0, 1, ...,MRF − 1, where x(m)
BB has 1√

MRF
in position

m and zero otherwise. From (2.33) the base-band signal at the receiver becomes

y(p,q,m)
BB =

(
U(p)
RF

)H (
HF(q)

RFx(m)
BB + n(m)

)
= ŪH

RF

(
H̃

(p,q)
F̄RFx(m)

BB + n̄(m)
)
, m = 0, 1, ...,MRF − 1

(4.36)

where n̄(m) = [n(m)]qNRF :(q+1)NRF−1. From (4.36) we can estimate H̃
(p,q)

by

ˆ̃H(p,q) =
√
MRF

(
ŪH
RF

)−1

[y(p,q,0)
BB ,y(p,q,1)

BB , ...,y(p,q,MRF−1)
BB ](F̄RF )−1 (4.37)

= H̃
(p,q)

+ ñ (4.38)

where ñ =
√
MRF

[
n̄(0), n̄(1), ..., n̄(MRF−1)

] (
F̄RF

)−1. To guarantee the full rank of
matrices F̄RF and ŪRF we use Hadamard matrices [23] (see Appendix B). This
guarantees also that the noise in (4.38) is still white with variance σ2

n. If we probe
all values of p and q in (4.37) we obtain an estimate ˆ̃H of H̃.
To estimate the parameters of complex modes we compute the 2D DFT of ˆ̃H on
NDFT ×NDFT samples (set [ ˆ̃H]n,m = 0, for n > NB − 1 and m > MB − 1). If NDFT

is larger enough such that we can write

θ
(t)
` = −2π

i`
NDFT

, θ
(r)
` = 2π

k`
NDFT

(4.39)

the DFT of ˆ̃H is

W (k, i) = DFT ([ ˆ̃H]n,m) =
1

MBNB

NDFT−1∑
m=0

NDFT−1∑
n=0

[ ˆ̃H]n,me
−j2π

(
im

NDFT
+ kn
NDFT

)

=
1

MBNB

MB−1∑
m=0

NB−1∑
n=0

[ ˆ̃H]n,me
−j2π

(
im

NDFT
+ kn
NDFT

) (4.40)
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Input: W (k, i), k, i = 0, 1, ..., NDFT − 1
1. W1(k, i) = W (k, i)
2. for ` = 1 to L

3. (k̂`, î`) = arg maxk,i |W`(k, i)|
4. ĝ` = W`(k̂`, î`)

√
L

5. W`+1(k, i) = W`(k, i)− 1√
L
ĝ`D(k − k̂`, i− î`)

6. end for

Table 4.2: Cancellation method to estimate the channel parameters.

for k, i = 0, 1, ..., NDFT − 1. Defined

d(n,m) =

{
1

MBNB
, 0 ≤ m < MB, 0 ≤ n < NB

0, otherwise
(4.41)

and

D(k, i) = DFT{d(n,m)}

= e
−j 2πk

NDFT

NB−1

2 sincNB

(
k
NB

NDFT

)
e
−j 2πi

NDFT

MB−1

2 sincMB

(
i
MB

NDFT

)
(4.42)

with sincN(x) = sin(πx)
N sin(πx/N)

. From (4.31) and (4.38) it is

W (k, i) =
1√
L

[g1D(k − k1, i− i1) + . . .+ gLD(k − kL, i− iL)] +N(k, i) (4.43)

where N(k, i) ∼ CN
(

0, σ2
n

NBMB

)
. We can estimate the parameters of different modes

from W (k, i) using the method outlined in Table 4.2. In practice also the number of
modes L should be estimated by stopping the cancellation method when |ĝi| turns
out much smaller than |ĝ1|. Here we simply assume that L is known. From î` and
k̂` we can obtain φ̂(t)

` and φ̂(r)
` by (see (4.30) and (4.39))

φ̂
(t)
` = sin−1

(
− 2πî`
ζDNDFT

)
, φ̂

(r)
` = sin−1

(
2πk̂`

ζDNDFT

)
. (4.44)

We note that this method needs a training sequence of

NTS =

⌈
NB

NRF

⌉⌈
MB

MRF

⌉
MRF (4.45)

time slots.
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Figure 4.4: γ̄ vs. M (and M = N) for the I-ADB algorithm in the presence of 2D
channel estimate with MB = MRF = NB = NRF = 16 (NTS = MRF = 16).

4.2.2 Performance results

In this section, we present numerical results demonstrating the performance of the
proposed channel estimate. Performance, in terms of γ̄, are evaluated by averaging
(2.36) for the same 5000 realizations of the channel. We apply the I-ADB algorithm
to design the analog and digital precoders/beamformers with NI = 7.
Figures 4.4 and 4.5 show the average SNR improvement γ̄ versus the number of
antennas M = N for two values of MB = MRF = NB = NRF and NDFT = 2048.
For a comparison we also report the performance bound by assuming the channel
is known, when it is seen that γ̄ is independent of the channel noise. We can see
that performance using the channel estimate are close to the bound, especially for
MB = MRF = NB = NRF = 16 (Fig. 4.4).
Moreover, performance are almost independent of MRF (NRF ) if MRF > L, and
improve with MD as from (4.43). Indeed higher value of M (N) require an higher
MB (NB) to lower the noise level in the channel estimate.
In Fig. 4.6 we investigated the effect of NDFT on the 2D estimate approach. For this
we report γ̄ versus the number of antennas for four value of NDFT , ΓAWGN = 5dB
and MB = MRF = NB = NRF = 16. We can see that for an higher number of
antennas also NDFT must increase, corresponding to a better accuracy in the angle
estimate, otherwise performance deteriorate. In Fig. 4.7 we would compare the
two estimate methods, for this we report γ̄ versus the number of antennas M = N
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Figure 4.5: γ̄ vs. M (and M = N) for the I-ADB algorithm in the presence of 2D
channel estimate with MB = MRF = NB = NRF = 8 (NTS = MRF = 8).
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Figure 4.6: γ̄ vs. M (and M = N) for the I-ADB algorithm in the presence of 2D
channel estimate with MB = NB = 16 for four values of NDFT and ΓAWGN = 5dB.
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Figure 4.7: γ̄ vs. M (and M = N) for the I-ADB algorithm in the presence of DFT
and 2D-DFT channel estimate with MRF = NRF = MD = ND = MB = NB = 16,
NDFT = 2048 and ΓAWGN = 5dB.

using MRF = NRF = 16, NDFT = 2048 and ΓAWGN = 5dB. In the both case we
set MD = ND = MB = NB = 16, that correspond to have a length of training
sequence equal to 17 time slots for the DFT estimate method and 16 time slots for
the 2D-DFT method. We can see that the 2D-DFT method, using a shorter training
sequence, achieves higher performance than the DFT estimate method at a cost of
a greater computational complexity.



Chapter 5

Conclusion

We considered the problem of designing practical beamformers for MMW systems.
Driven by the goal of reducing energy consumption, hardware costs and computa-
tional complexity we developed three iterative hybrid analog/digital beamforming
algorithms (I-ADB, Q-ADB QI-ADB) for the MMW channel, one using the channel
structure, in particular the ray phase vector response and two using vector quanti-
zation of the analog beamformers. We compared the proposed algorithms with the
state-of-art fully analog and hybrid analog/digital ADB schemes. The simulation
results showed that performance of the proposed algorithms can approximate the
upper bound given the maximum-ratio-beamforming. In particular the QI-ADB
algorithm with a high codebook size yields very good performance and has a com-
putational complexity similar to that of ADB if M (and N = M) is sufficiently
large. The I-ADB algorithm has the best performance, close to that ADB which, on
the other hand, requires to know the channel structure, in particular the ray phase
vector responses.
For the channel estimate, we developed two algorithms based on a training sequence
of analog precoders/beamformers. In particular the algorithms estimate the param-
eters of the MMW channel rather than the channel matrix and account for the RF
precoding/beamforming constraint. We evaluated the system performance in the
presence of estimate channel and it is seen that our methods are a viable alternative
to much more complex estimation methods which are based on an iterative feedback
between receiver and transmitter.
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Appendix A

Computational complexity of
algorithms

We have evaluated expressions of the computational complexity in terms of number
of complex multiplications for three algorithms.
We just observe that is our computational complexity, multiplication of a signal by
a phasor (element with unitary amplitude) is evalueated by one complex multipli-
cation. Indeed if special hardware is used complexity is much reduced.

A.1 ADB

As from the algorithm of Tab. 2.1 we report complexity of various steps for the
design of transmit beamformer. Steps 5 and 6: C5 = C6 = O(L · M). Step 8:
C8 = O(i3 + 2 ·M · i2 + i ·M). Step 9: C9 = O(2 · i ·M + M). Step 11: C11 =
O(MRF ·M +MRF ). The total design complexity is

CADB,TX =O

(
MRF∑
i=1

[C5 + C6 + C8 + C9] + C11

)

=O

(
2 · L · [M ·MRF +N ·NRF ] +

+
M4

RF

4
+M3

RF ·
[

2

3
M +

1

2

]
+

+M2
RF ·

[
5

2
·M +

1

4

]
+

+MRF ·
[

23

6
·M + 1

])
(A.1)
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Similarly, we can evaluate the complexity, CADB,RX , for the design of receive beam-
former using NRF and N instead of MRF and M , respectively.
Complexity of the iterative procedure where transmit and receive beamformers are
updated

CIT = O(N ·MRF (M2 +MRF )) (A.2)

Complexity to evaluate f MRB from H using SVD [20]

CSV D = O(2 ·N ·M2 + 11 ·M3) (A.3)

The total complexity of the ADB algorithm is

CADB =CADB,TX + CADB,RX + CIT + CSV D

=O(2 · L · [M ·MRF +N ·NRF ] +

+
M4

RF

4
+M3

RF ·
[

2

3
M +

1

2

]
+

+M2
RF ·

[
5

2
·M +

1

4

]
+

(A.4)

+MRF ·
[

23

6
·M + 1

]
+
N4
RF

4
+

+N3
RF ·

[
2

3
·N +

1

2

]
+

+N2
RF ·

[
5

2
·N +

1

4

]
+

+NRF ·
[

23

6
·N + 1

]
+

+N +MRF ·
[
M2 +MRF

]
+

+ 2 ·N ·M2 + 11 ·M3)

A.2 I-ADB
As from the algorithm of Tab. 2.2 we report complexity of various steps for the
design beamformers. Step 1: C1 = O(N ·M ·NRF + M ·NRF ·MRF ). Steps 4 and
6 : C4 = C6 = O(MRF ·NRF ). Step 5: C5 = O(MRF ). Step 7: C7 = O(NRF ). The
total complexity of the I-ADB algorithm is

CI−ADB =C1 +NI(C4 + C5 + C6 + C7)

=O(N ·M ·NRF +M ·NRF ·MRF +NI · (2 ·MRF ·NRF +MRF +NRF ))

(A.5)
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A.3 Q-ADB
Complexity to design FRF and fBB

CQ−ADB,TX = O(LTX [MRF (2 ·M + 1)]) (A.6)

Complexity to design URF and uBB

CQ−ADB,RX = O(LRX [NRF (2 ·N + 1)]) (A.7)

The total complexity of the Q-ADB algorithm is

CQ−ADB =CQ−ADB,TX + CQ−ADB,RX+

+ CIT + CSV D

=O(LTX · [MRF · (2 ·M + 1)] +

+ LRX · [NRF · (2 ·N + 1)] +

+N ·MRF ·
(
M2 +MRF

)
+

+ 2 ·N ·M2 + 11 ·M3)

(A.8)

A.4 QI-ADB
As from the algorithm of Tab. 3.2 we report complexity of various steps for the
design beamformers. Steps 4 : C4 = O(M ·N +N ·NRF ). Step 5: C5 = O(NI · [2 ·
MRF ·NRF +MRF +NRF ]). Complexity to normalize fBB and uBB

CNORM = O(MRF +NRF ) (A.9)

The total complexity of the QI-ADB algorithm is

CQI−ADB =LTX · LRX [C4 + C5 + CNORM ]

=O(LTX · LRX · [M ·N +N ·NRF+

+NI · (2 ·MRF ·NRF +MRF +NRF )+

+MRF +NRF ])

(A.10)
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Appendix B

Hadamard matrices

Hadamard matrix [23] is a square matrix of length 2m whose entries are either +1
or −1 and whose rows are mutually orthogonal. Let Am be a Hadamard matrix of
order m. The transpose of Am is closely related to its inverse as

AT
mAm = mIm (B.1)

We consider 2m × 2m Hadamard matrices Am, for the first orders, we have

A0 = [1] A1 =

[
1 1
1 −1

]
(B.2)

In general the construction is recursive

Am =

[
Am−1 Am−1

Am−1 −Am−1

]
(B.3)
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