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Abstract

Optical motion capture systems, which measure the movement performed by a subject
from multi-view synchronized recordings, have been employed in biomedical research
for the tasks of gait analysis and rehabilitation assessment. Although they achieve
remarkable accuracy, they usually require controlled experimental conditions and a
high number of cameras in order to function reliably.

On the other hand, recent keypoint detection approaches employing convolutional
neural networks (CNNs) have proven capable of producing meaningful pose estimates
from even a single monocular image, taken under general conditions. However, be-
cause the majority of these models target non-medical applications, their precision is
generally not sufficient for use in a clinical setting.

In this work, we propose a CNN-based methodology for the clinically accurate
tracking of a human subject. Making use of a state-of-the-art convolutional pose
estimator, joint center locations were independently evaluated within the 2D views
produced by synchronized calibrated cameras, and lifted to 3D space by means of tri-
angulation. The precision of the resulting pose estimates was then increased through
an original refinement routine, leveraging subject-specific kinematic information.

The performance of the developed pipeline was evaluated on a dataset made avail-
able by the University of Padova’s BioMovLab, containing recordings of walking sub-
jects taken by six synchronized cameras in both a controlled laboratory environment
and a shallow swimming pool. Accurate joint angles trajectories were obtained for
the hip and knee joints, highlighting the viability of the proposed approach.
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1
Introduction

Optical motion capture (MoCap) approaches measure the movement performed by
a subject from the data collected by a set of synchronized cameras. In addition
to their several applications in the fields of security and entertainment, they have
been employed in biomedical research for the tasks of gait analysis and rehabilitation
assessment.

Most commercially available MoCap systems employ a set of reflective markers,
which are attached to the subject’s skin and tracked by feature extraction algorithms
throughout the considered video sequences. However, this procedure requires expen-
sive, dedicated instrumentation (meaning it cannot be employed in the wild), and is
reliant on the markers’ visibility, causing it to fail in the presence of occlusions.

Due to these limitations, increasing attention has recently been devoted to the
development of motion capture methodologies which do not rely on markers. These
approaches, referred to as markerless, generally make use of subject-specific anatom-
ical models, providing both morphological (3D shape) and kinematic information.
Tracking is carried out by iteratively matching these descriptors to the data ex-
tracted from the considered recordings, via either background subtraction or visual
hull reconstruction. Although these methods have achieved remarkable precision,
they generally require controlled experimental conditions and a high number of cam-
eras (≥ 6) in order to function reliably.

In a parallel line of work, impressive progress has recently been made in the field
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of pose estimation (PE): a branch of computer vision concerned with predicting,
within images of human subjects, the location of anatomical keypoints such as the
shoulders and knees. While early PE techniques employed handcrafted part-based
descriptors, significantly improved performance has now been attained by models
relying on convolutional neural networks (CNNs). However, because the majority of
these approaches target non-clinical tasks (such as activity recognition and pedestrian
detection), their accuracy is generally not sufficient for use in biomedical applications.

In this thesis, we explore the viability of a CNN-based gait analysis methodology,
aimed at retrieving clinically meaningful movement information. Employing a state-
of-the-art convolutional pose estimator, joint center locations were evaluated within
each set of synchronized 2D views, and lifted into 3D space by means of triangula-
tion. The accuracy of the resulting pose predictions was then increased through an
original refinement routine, leveraging previously acquired anatomical data. Unlike
most markerless motion capture approaches, we relied solely on kinematic informa-
tion regarding the length of bone segments in the subjects of interest, and did not
take morphological shape descriptors into consideration.

The performance of proposed approach was evaluated on a dataset made available
by the University of Padova’s BioMovLab, containing recordings of walking subjects
taken by six synchronized cameras, in both a controlled laboratory environment and
a shallow swimming pool.

The remainder of this thesis is structured as follows. In Chapter 2, we provide an
overview of a state-of-the-art markerless motion capture approach, while contempo-
rary CNN-based pose estimation techniques are illustrated in Chapter 3. Chapter 4
is dedicated to a description of the stages comprising the proposed methodology. The
results obtained by our system are presented in Chapter 5 and reviewed, along with
possible future developments, in Chapter 6.
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2
Markerless Motion Capture

The term “motion capture”, or MoCap, refers to a wide range of computer vision tech-
niques, concerned with the description and measurement of the movement performed
by a subject. Originally developed as a photogrammetric tool in biomechanics re-
search, motion capture has been studied extensively in recent years, due to the many
applications exploiting it in the fields of medicine, entertainment and security.

In this work, we are particularly interested in the use of MoCap for clinical tasks,
such as the analysis of human gait for rehabilitation assessment. Depending on their
operating principle, systems developed for such purposes may be divided into two
main categories: optical and non-optical. Within non-optical systems, movement-
related parameters are directly measured by sensors (either electromagnetic or iner-
tial) placed on the subject’s skin. Because of the encumbrance and weight of the
wearable instrumentation, which significantly limits the practicable range of motion,
this technology is rarely utilized in medical applications.

Optical methods on the other hand make use of the data collected by a set of
synchronized calibrated cameras. In the most common approach of this kind, retrore-
flective or light-emitting markers are attached to the subject’s body, and tracked
throughout the recorded sequences by means of feature-extraction algorithms [1].
The 3D trajectory of each marker is then triangulated from its 2D position in each
frame, providing quantitative insight into the performed movement.

Due to their smaller size and weight, placing fewer limitations on the subjects’
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movement compared to wearable sensors, the use of markers has seen widespread
adoption in clinical tasks. Despite this, marker-based approaches remain affected by
meaningful issues: firstly, in order for the triangulation process to be successful, each
marker must be visible at all times to at least two cameras, leading to tracking failures
in the presence of self-occlusions; furthermore, marker-placement is a time-consuming
and partially non-repeatable process, requiring the presence of specialized personnel.
Lastly, the presence of deformable soft tissue between markers and bones may result
in non-negligible measurement errors.

In light of these limitations, growing attention has recently been devoted to the
development of MoCap methodologies which do not rely on markers. Although the
accuracy of such approaches is not yet on par with that of marker-based ones, promis-
ing results for the tracking of lower-body limbs have been shown in studies such as [2]
and [3]. A description of the markerless motion capture (MMC) pipeline employed
in these works is provided in the following sections.

2.1 Visual Hull Generation

As previously discussed, optical motion capture approaches make use of the data
collected by a set of synchronized calibrated cameras, recording a subject’s move-
ment from multiple viewpoints. While in marker-based systems the resulting videos
may be processed directly, markerless methodologies generally require a background-
subtraction preprocessing step, highlighting the area occupied by the subject of in-
terest throughout the considered movement sequence.

Due to its widespread use in computer vision applications, background subtraction
has been researched extensively in recent years, leading to the development of several
dedicated techniques. Previous studies testing the efficacy of the MMC pipeline [2, 3]
rely on the approach presented in [4], in which the colour of each background pixel
is modelled by an iteratively updated Gaussian mixture. More recently, superior
performance was achieved by means of deep learning based models, a review of which
may be found in [5]. Regardless of the chosen implementation, only the information
pertaining to the subject’s position in the scene is retained for further processing.

The binarized images obtained from each set of synchronized views (referred to
as silhouettes) are used to derive a 3D representation of the subject, according to

4



Figure 2.1: Visual hull reconstruction from silhouettes (image from [7]).

the procedure displayed in Figure 2.1. Since the position and orientation of each
camera are known, each silhouette can be back-projected into the observed space, in
a generalized cone whose cross-section depends on silhouettes. The intersection of
these cones denotes a locally convex over-approximation of the volume occupied by
the subject, known as a visual hull (VH) [6]. The subject’s movement throughout a
video may then be represented using a sequence of visual hulls, one for each frame.

Due to the difficulty of representing complex 3D shapes, an approximate VH con-
struction procedure, referred to as volume carving [8], is often employed in practice.
The calibrated space is partitioned into cubic volumes known as voxels, each of which
is considered part of the visual hull if and only if its projection on the image plane of
each camera belongs to the corresponding silhouette. The resolution of the computed
VH decreases with the size of the voxels.

It should be noted that the visual hull construction procedure may sometimes
yield rather inaccurate results; in particular, concavities and self-occlusions may lead
to the creation of phantom volumes: artefacts occurring when an area of the surface
of interest is simultaneously blocked from the view of all cameras. The number of
employed viewpoints and their placement around the scene have been shown to be
instrumental in the alleviation of this problem [9].
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Figure 2.2: Example of a segmented anatomical model, in which each color represents a different body part and joint

centers are denoted by black circles (image from [2]).

2.2 Model Definition

A sequence of visual hulls alone is not sufficient for the accurate tracking of a hu-
man subject. Because the procedure described above is carried out independently
for each set of synchronized frames, no correspondence is established between VH
points generated in consecutive time instants. Moreover, the computed meshes are
not segmented, meaning they contain no information about which vertices belong to
which body part. For these reasons, visual hulls are employed in the MMC pipeline
as a noisy guide, to which an accurate anatomical model is matched. Such a model
encodes subject-specific morphological (3D shape) and kinematic (joint centers loca-
tion) information, and is comprised of two main components:

• a triangular mesh, obtained through visual hull construction or laser scan;

• an articulated model of the human body, consisting of a set of rigid segments
connected in a tree-like structure by spherical joints with six degrees of freedom.

Depending on the target application, different articulated models may be defined;
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Figure 2.3: Body shapes obtained bymodifying the SHS’s first four principal components (image from [11]).

the one employed in [2], shown in Figure 2.2, uses of 15 segments1 and 14 joints.
Model generation is carried out according to the procedure presented by Corazza

et al. in [10], which automatically performs mesh segmentation and joint centers
localization. The proposed processing pipeline makes use of two algorithms:

• a pose registration algorithm (described in detail in Section 2.3), which for each
segment of an articulated model computes the rigid transformation necessary
to match the pose of a target mesh;

• a shape registration algorithm, which given two meshes (assumed to be in a
similar reference pose) determines the deformation required to morph the former
into the latter.

The latter is based on the previous work carried out in [11]. From a dataset of
laser scans of human subjects in a similar reference pose, the authors developed a
space of human shapes (SHS), the dimensionality of which was reduced by means of
principal component analysis (PCA, [12]). As shown in Figure 2.3, this provides a low-
dimensional representation of highly complex body shapes, allowing the arguments

1Pelvis, torso, head, forearms, arms, hands, thighs, shanks and feet.
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Figure 2.4: Automatic model generation pipeline (image from [10]).

of the shape registration algorithm to be expressed by a linear combination of few2

SHS principal components.
The two algorithms discussed above are combined into a pose-shape registration

procedure (whose steps are summarized in Figure 2.4), which from a manually seg-
mented reference mesh R (the center of the space of human shapes) performs seg-
mentation of a subject data mesh S by iterating the following steps:

1. Using the pose registration algorithm, determine the configuration of the refer-
ence mesh which best matches the subject mesh.

2. Segment the subject mesh by associating to each point p ∈ S the same rigid
body segment as the closest (in terms of Euclidean distance) point q ∈ R.

3. Register the subject mesh in reference pose, applying to it the inverse of the
transformation found in step 1.

2In [10], the first 10 principal components of the space are used.
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4. Replace R with the SHS model, determined using the shape registration algo-
rithm, which most closely resembles the transformed subject mesh.

The process is iterated until convergence, which occurs when there is no difference
between the subject and reference meshes (the authors of [10] mention that four to six
iterations are usually sufficient). Note that the transformation applied to S in step 3
is necessary for the application of the shape registration algorithm, as all models in
space of human shapes are in reference pose.

Once the segmented subject mesh has been computed, the position of each joint
center is derived as a linear combination of seven vertices in its vicinity. For all
joints but the hips, the error associated with this procedure was shown in [10] to be
comparable to that caused by marker misplacement in marker-based methods.

Linking kinematic information to reliable morphological features allows the gener-
ation of a subject-specific anatomical model to be carried out in a fully automatic
manner, removing one of the potentially most time consuming steps of the MMC
pipeline. Furthermore, the proposed methodology can work (albeit with slightly
lower accuracy) with 3D shape data acquired from visual hull construction rather
than laser scans, the required instrumentation for which may not be available.

2.3 ModelMatching with Articulated ICP

Articulated ICP [13] is a generalization to articulated models of the standard ICP
algorithm [14, 15], commonly employed for the registration of 3D surfaces. Consider a
visual hull V , consisting of a point cloud Z = {z1, . . . , zK}, and a model Y defined by:

• a set X = {x1, . . . , xM} of surface points;

• a set P = {p1, . . . , pN} of rigid segments;

• a set Q of joints connecting the segments.

The algorithm’s goal is to match the model to the VH, aligning the surfaces X and
Z via a set of rigid transformations T = {T1, . . . , TN} (one per segment), while
respecting the anatomical constraints placed on Y by the segments’ rigidity and
joints’ position. This is done by iteratively performing the following two steps:
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Figure 2.5: Left, pairs of corresponding points on themodel and VHmeshes, whose distance is penalized byH(T). Right,
alignment of joints induced byG(T) (images from [13]).

1. For each xi ∈ X, determine the corresponding zc[i] ∈ Z, where c : X → Z is an
injective function associating to each point on the model surface the closest (in
terms of Euclidean distance) point on the VH mesh.

2. Given a set of corresponding points {(xi, zc[i])}Mi=1, find and apply the set of
transformations which minimizes the non-linear energy function (see below for
the definition of the constituting terms):

F (T ) = G(T ) +H(T ). (2.1)

This task is carried out using the Levenberg-Marquardt curve-fitting algorithm
[16], which provides a good tradeoff between accuracy and speed.

The first term in (2.1) enforces the correct alignment of the model and visual hull
meshes. Specifying each roto-translation Tj ∈ T by means of two vectors rj, tj ∈ R3

(twist and translation parameters, respectively), and letting R(rj) denote the rotation
matrix induced by rj:

H(T ) =
M∑
i=1

∥∥R(rl[i])xi + tl[i] − zc[i]
∥∥2 , (2.2)

where l : {1, . . . ,M} → {1, . . . , N} maps the index of a point on the model surface to
that of the segment it belongs to.

The second component of the energy function introduces soft constraints on the
position of the joints, which prevent the model from reaching anatomically incorrect
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configurations. For each pair (pi, pj) of adjacent segments, the transformations Ti and
Tj are forced to predict approximately the same location for the joint that connects
them:

G(T ) = wG

∑
(i,j)∈Q

∥∥R(rl[i])qi,j + tl[i] −R(rl[j])qi,j − tl[j]
∥∥2 . (2.3)

The term wG regulates the relative importance of the two loss contributions. By
increasing it, a greater joint consistency is enforced, at the cost of a generally less
accurate matching between the two point clouds.
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3
Pose Estimation

Human pose estimation (PE) is the problem of determining the body configuration of
human subjects appearing in images and videos [18]. Commonly, this is achieved by
evaluating the position of a set of anatomical keypoints (such as elbows, shoulders and
knees), defining a skeleton-like model for the body via pairwise connections (referred
to as limbs or bones) of these joints. The task of pose estimation (of which an example
is shown in Figure 3.1), is pivotal to several computer vision applications, including:

• Autonomous driving: pedestrian detection and accident avoidance;

• Automated surveillance: tracking of a subject, person counting, detection
of suspicious activities;

• Activity recognition: sign language understanding, fall detection and pre-
vention, human-computer interaction;

• Entertainment: animation, CGI, augmented reality;

• Markerless motion capture for clinical assessment and rehabilitation.

Because of its wide range of uses, pose estimation has been extensively researched
over the last two decades, leading to the development of remarkably accurate mod-
els [19–23]. Despite this, several aspects of the problem remain challenging to this
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Figure 3.1: An example of pose estimation (image from the COCOdataset [17] website).

day. The main difficulty faced by PE approaches is the huge variability of human
appearance in images. On top of the sheer number of possible body configurations,
differences in orientation, physique, clothing and lighting conditions have to be taken
into account. Furthermore, not all joints may be visible at the same time, due to
occlusions by other body parts or external objects. The combination of these factors
results in an extremely large search space.

In the following, we provide an overview of the PE approaches proposed in the last
years, while a detailed description of the model employed in this work is given in
Section 4.2.

3.1 Pictorial Structures

As previously mentioned, pose estimation has been a widely studied topic in computer
vision for over 15 years. Prior to the advent of deep learning, most models relied on
the Pictorial Structures (PSs) framework, originally introduced in [24] for the task
of object detection (particularly human faces) and later popularized for PE by the
authors of [25]. In this approach, the object of interest is described by a set of local
descriptors (referred to as parts), arranged in a deformable configuration by means
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Figure 3.2: Example of a pictorial structures model for face detection (image from [24]).

of pairwise connections, often visualized as springs (see Figure 3.2 for an example
relative to face detection). In the context of pose estimation, parts represent body
elements such as arms and legs, with the links between them modelling articulations.

Mathematically, an n-part pictorial structure may be described by means of an
undirected graph G = (V , E), in which each node in V = {v1, . . . , vn} corresponds
to a part, and the edge (vi, vj) exists in E if and only if vi and vj are connected.
If G is fixed, the PS’s configuration may be characterized by specifying the location
(combination of position, orientation and foreshortening) of each of its parts. Using
the same notation as [25], let:

• mi(li) quantify the mismatch between the image and part vi in location li;

• dij(li, lj) measure the deformation resulting from parts vi and vj, such that
(vi, vj) ∈ E , being in locations li and lj respectively.

Then, the problem of pose estimation may be reformulated in terms of the minimiza-
tion of an energy function, i.e. finding the configuration L∗ such that:

L∗ = argmin
P = {l1,..., ln}

(
n∑

i=1

mi(li) +
∑

(vi, vj)∈E

dij(li, lj)

)
. (3.1)

Although part-based models offer an intuitive way to represent articulated bod-
ies, approaches relying on the pictorial structures framework have often struggled to

15



Figure 3.3: Example of problematic poses for pictorial structures (images from [26]).

correctly predict complex poses (such as the ones shown in Figure 3.3), in which mul-
tiple joints are occluded. The cause of this limitation is the inability of PS methods
to capture global context in images: predictions are based on local part descriptors,
with only few of the interactions between parts being taken into account (usually only
first-degree connections between directly linked parts). Furthermore, rather than be-
ing inferred from images, these interactions have to be manually selected before the
model is run, severely limiting its expressiveness. Several works attempted to address
these issues, either by employing more effective part detectors [27, 28] or by modelling
more complex dependencies among parts [29, 30]. Although these models did achieve
notable results, their performance has since been surpassed by approaches employ-
ing deep learning techniques. As discussed in Section 3.2, all recent pose estimation
systems are based on convolutional neural networks.

3.2 Convolutional Neural Networks

3.2.1 DeepPose

The first work to apply deep learning techniques to the task of pose estimation was
presented by Toshev and and Szegedy [26] in 2014. They employed a convolutional
neural network (CNN or ConvNet), referred to as DeepPose, to predict the position
of a set of anatomical keypoints, performing regression over single-person views.

Compared to the models described in Section 3.1, this approach has the advantage
of being able to produce significantly more general representations. While PS-based
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Figure 3.4: Top: the architecture ofDeepPose’smainCNNmodule. Bottom: refinement of the predictions produced by

stages−1, carriedout in stages. Blue rectangles denote convolutional layers,while greenonesdenote fully connected
ones. Images from [26].

approaches formulate predictions by matching a local part template to areas of an
image, CNNs take the whole image as input, computing features at multiple different
resolutions. This allows them to reason about pose in a holistic manner, capturing the
global context of joints to an extent that pictorial structures cannot. Furthermore,
the use of a CNN removes the need to explicitly design part descriptors and the
interactions between them, which are instead implicitly learned by the network.

The architecture of the proposed network’s main module is shown in Figure 3.4
(top). The input image, having a resolution of 220× 220, is downsampled to 55× 55

using a convolutional filter with a stride of 4, and passed to a ConvNet consisting of
5 convolutional layers (shown in blue), and 2 fully connected ones (shown in green).
The size of the filter banks is 11× 11 and 5× 5 for the first two convolutional layers,
and 3× 3 for the remaining three. The representations’ resolution is decreased using
max-pooling, and ReLU [31] activation is employed after all layers (both convolutional
and fully connected).

The output of the network is a set of 2D coordinates, estimating the position of k
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joints (14 for full-body views, 10 if only the upper body is shown). Due to the low
input resolution (necessary to maintain a manageable computational complexity) a
single iteration of this procedure is unable to generate sufficiently accurate predictions.
The authors address this by running the input images through a cascade of three
convolutional pose regressors (referred to as modules in [26]), each employing the
same, previously described architecture. As shown in Figure 3.4 (bottom), modules
following the first one take as input k bounding boxes centered on the previous stage’s
outputs, and are trained to estimate the offset between these predictions and the true
joint locations.

The CNN-based system presented in [26] was able to achieve state of the art results
on the FLIC and Leeds Sports datasets [32, 33]. Moreover, it did so using a relatively
simple model, very similar in structure to the one used for image classification in [34].
The potential of deep learning showcased by this work caused the focus of pose esti-
mation research to shift entirely from pictorial structures to ConvNets, with several
architectures proposed in the span of just a few years. An overview of contemporary
pose estimation approaches is given in the next sections.

3.2.2 Heatmap Regression

The proliferation of CNN-based PE models brought about by DeepPose resulted in
several modifications being made to Toshev and Szegedy’s original design. The first,
and perhaps more significant, concerns the nature of the network’s output. In [26],
this consists of the (x, y) coordinates of the k joints, which are regressed to directly
using fully connected layers. Tompson et al. however argued [35] that this may lead
to imprecise predictions when the position of a joint is affected by uncertainty.

This problem is made worse by the use of pooling. All PE systems relying on Con-
vNets use strided pooling layers to (1) reduce the model’s computational complexity
and (2) introduce invariance to local input transformations. However, by reducing
the resolution of feature maps, these operations also decrease localization accuracy.

The authors of [35] employ an alternative network structure which, rather than
image coordinates, produces a set of k heatmaps {H1, . . . ,Hk}. As shown (for a
subset of the joints) in Figure 3.5, for each i ∈ {1, . . . , k} Hi describes the per-pixel
likelihood of finding the ith joint in each output position.
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Figure 3.5: Example heatmaps produced by a CNN-based pose estimator for a subset of joints (image from [36]).

The proposed architecture is displayed in Figure 3.6. A 3-level1 Gaussian pyramid
[37] obtained from the input image is passed to a “Coarse Model” (CM) to obtain a set
of low resolution heatmaps. The highest-valued coordinates of each heatmap yield a
rough estimate for the joints’ position, which are used to crop regions of interest from
the first two feature maps of the CM. These are in turn run through a “Fine Model”
(FM), which refines predictions and returns higher resolution heatmaps. For both
the CM and FM, the training loss is defined as the SSE (across all joints) between
the predicted and ground-truth heatmaps, the latter being 2D Gaussians of small
variance centered at the annotated ground-truth positions. The cascade of the two
models is trained by minimizing a combination of the two losses.

The model proposed by Tompson et al. achieved state of the art results on the
FLIC and MPII [27] datasets. More than to their two-stage architecture, this success
can be attributed to their use of heatmaps, which enables the CNN to (1) express a
measure of confidence in its predictions and (2) deal with multi-modal outputs (where
multiple locations are considered possible for the same joint). This is made apparent

1Only two levels are shown in Figure 3.6.

Figure 3.6: Architecture of the CNN proposed by Tompson et al. (image from [35]).
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Figure 3.7: Architecture of an hourglass module (image from [36]).

by the fact that, while their coarse-to-fine pipeline was eventually surpassed, their
heatmap description is still widely in use.

3.2.3 StackedHourglass Networks

Perhaps the most influential work to employ the heatmap output representation is
“Stacked Hourglass Networks” [36], a paper presented by Newell et al. in 2016, which
laid the foundations for several contemporary systems. The authors argue that, in
order to accurately perform PE, a model must be able to leverage information from
different scales: while low-level features are required to detect highly recognizable
attributes, such as a human hand or face, a higher level understanding is necessary
to capture orientation and the relations between limbs. For this purpose, they pro-
pose a novel CNN architecture, which they dub “hourglass” due to the shape of its
representation, shown in Figure 3.7.

The resolution of the input image (initially 256 × 256) is progressively reduced,
using a sequence of convolutional and max-pooling layers, down to 4 × 4 (bottom-
up processing). Skip connections (similar to the ones employed in previous image
segmentation approaches [38, 39]), introduced before each pooling step, are used to
preserve spatial information across scales, and to apply further convolutions to the
computed feature banks. Once the minimum resolution is reached, the network re-
covers the original input size by means of consecutive nearest-neighbour upsampling
operations (top-down processing). The second half of the hourglass mirrors the first
one in structure (meaning the number and shape of the feature banks are the same),
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Figure 3.8: Structure of a residual module employed in StackedHourglass Networks (image from [36]).

and after each upsampling step element-wise addition is performed between the com-
puted representations and the ones carried by skip connections from the corresponding
bottom-up stage. Through the combination of these procedures, the network is able
to compute image features at different resolutions, and to then bring them together
in order to understand global pose context. The final prediction heatmaps (one per
joint) are obtained from the last stage by applying two additional 1×1 convolutional
filters2. Note that each box in Figure 3.7 represents a residual module such as the
one shown in Figure 3.8. Such modules have seen widespread adoption in recent deep
learning applications, as they were shown [40] to greatly facilitate the training of deep
networks.

With an approach similar to [26], the authors concatenate eight of the hourglass
modules described above (hence the name “Stacked Hourglass Networks”), resulting in
the architecture displayed in Figure 3.9. The input of each module is the element-wise
sum of the previous one’s final feature representations and prediction heatmaps (to
which 1× 1 convolutions are applied to match the number of channels). Importantly,
intermediate supervision is employed, meaning a loss (the same MSE loss employed in
[35]) is applied to the heatmaps produced by all stages rather than just the final one.

2Not shown in Figure 3.7

Figure 3.9: Architecture of a StackedHourglass network (image from [36]).
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Figure 3.10: Architecture of the Simple Baselines network (image from [20]). The orange rectangles represent decon-

volutional modules.

This forces the network to acquire a comprehensive understanding of the input image
before a forward pass is complete, allowing subsequent modules to either refine or
reassess intermediate predictions through repeated bottom-up, top-down inference.

The CNN proposed by Newell et al. was able to outperform all previous approaches
on the FLIC and MPII datasets, and is still competitive today3. Note that, while
in [42] and [35] a part-based model is employed on top of ConvNets to enforce pose
consistency, this result was achieved without any explicit representation of the human
body. Moreover, the practice of purposely designing the CNN pipeline to capture
image features at different scales was widely adopted by later models, including the
one [19] employed in this thesis (see Section 4.2 for details).

3.2.4 Simple Baselines

It is worth mentioning an elegant work [20] by Xiao et al., striking in both its effec-
tiveness and simplicity.

The proposed architecture, shown in Figure 3.10, is referred to as Simple Baselines.
It largely consists of a ResNet backbone (commonly employed for the extraction of im-
age features, [40]), with the only addition being three transposed convolution modules,
represented above by orange rectangles. Originally introduced in [43], these layers
(also known as deconvolutional) allow for upsampling operations whose parameters,
rather than being pre-determined, are learned at training time (see [44, Chapter 4]
for a detailed description).

This network structure is reminiscent of Stacked Hourglass: the input images un-
dergo repeated downsampling operations, after which the original resolution is recov-
ered to compute the final (heatmap-based) predictions. However in [36], because the

3A Torch7 [41] implementation of the network is available at http://www-personal.umich.
edu/~alnewell/pose
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upsampling process is carried out with a simple nearest-neighbour approach, convo-
lutional skip connections had to be introduced to preserve spatial information across
stages. By combining upsampling and convolutions in deconvolutional modules, the
need for this expedient is lifted in [20], resulting in a comparatively much simpler ar-
chitecture. Despite this, Simple Baselines was able to achieve state-of-the-art results
on both the COCO and MPII datasets, significantly improving on the performance
of Stacked Hourglass. A following approach by the same authors, known as High-
Resolution Net [19], is employed for pose estimation in this thesis, and described in
detail in Section 4.2.

3.2.5 Considerations

In this section, we provide a few closing remarks regarding pose estimation strategies
alternative to the one employed in this thesis, as well as insight into why we chose
not to pursue them.

Contemporary 2D PE systems can be divided into two main groups: top-down and
bottom-up. In top-down approaches, the network input is assumed to be a view of
a single person (or at least an image in which one individual is prominent compared
to the others). All the architectures described in the previous sections fall into this
category; in order for them to work in a multi-person environment, a person detector
has to be employed beforehand, to draw around each subject in the scene a bounding
box on which PE can be carried out. This means that if person detection fails, pose
estimation will fail as well. Moreover, because the model has to be run once for each
detected bounding box, the overall runtime will be proportional to the number of
people in the image.

Bottom-up approaches on the other hand operate by detecting body parts first, as-
sociating them into coherent poses at a later stage. Notable examples of this paradigm
are DeepCut [45], DeeperCut [46], OpenPose [23] and PifPaf [47]. Bottom-up ap-
proaches have two main advantages over top-down ones:

1. their performance is not tied to that of a person detector;

2. their runtime is independent of the number of people in the scene, as body parts
are detected in parallel and can be aggregated efficiently.
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These however are not relevant for the purposes of this thesis. Because our target
application is clinical in nature, it is reasonable to assume a controlled environment,
in which (1) a person detector is unlikely to fail and (2) only one person will be in
view at a given time. As the perks of bottom-up methods come at the cost of a lower
average precision [48], we decided against their use in this work, and to instead focus
on more accurate top-down approaches.

To conclude this section, we briefly discuss current 3D pose estimation strategies,
and the way in which they differ from the one employed in this work. Driven by
applications such as animation and action recognition, several works addressing this
task were presented in recent years; however rather than from multiple views, the
majority of them recover 3D pose information form a single monocular image [49–52].
The reason for this lies mostly in the lack of comprehensive annotated 3D pose data:
existing datasets [53, 54] were built using marker-based motion capture strategies,
which require dedicated instrumentation and thus cannot be performed “in the wild”.
To compensate for this deficiency, many authors attempted to leverage the extensive
datasets available to single-person 2D pose estimators, with models that first for-
mulate a 2D prediction, and then “lift” it to 3D. Because a multi-camera setup was
available to us, we did not need to resort to these strategies.

CNN-based 3D PE approaches which employ multiple calibrated cameras are fairly
rare in the literature, again primarily due to the absence of adequate datasets. In
[55], differently oriented views of a subject are used in the training of an autoencoder
to capture a latent 3D human body representation, however the pose estimator which
makes use of this information only takes one image as input. The system developed
by Carraro et al. [56] uses asynchronous Kinect cameras, and produces a 3D pose
estimate by combining 2D predictions with the sensor depth information.

The approach most similar to ours is perhaps the one presented in [57]. The au-
thors independently carry out 2D pose estimation on multiple camera views, and
then recover the 3D position of joints by means of triangulation. In order to enforce a
human body structural prior, a 3D pictorial structures (3DPS [58]) model is addition-
ally employed. In trying to reduce the noise resulting from triangulation, this step
serves a similar purpose to our prediction-refinement procedure, described in Section
4.4. We do not however rely on the PS framework; instead, we leverage previously
acquired anatomical information to enforce subject-specific constraints on the joints.
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4
Methodology

The main goal of this work is to investigate the viability of a CNN-based approach
for the clinically accurate tracking of a human subject, providing a research direction
alternative to the established MMC pipeline. For this purpose, we developed an
original motion capture methodology (a summary of which is provided in Figure 4.1),
structured into five main steps:

1. Acquisition (Section 4.1): an array of n synchronized calibrated cameras1 is
employed to record a walking human subject from multiple viewpoints.

2. 2D pose estimation (Section 4.2): the recordings acquired in step 1 are passed
as input to a convolutional pose estimator, referred to as High-Resolution Net
[19]. For each frame of each considered sequence, the model returns 17 sets
of 2D coordinates (estimating the position of key joints such as the elbows
and knees), each of which is associated with a confidence score, expressing the
likelihood of the prediction being correct.

3. Triangulation (Section 4.3): the 2D predictions made for a joint’s location
across the n synchronized views are used to triangulate its 3D position in the
calibrated space. In order to prevent spurious detections from compromising
the triangulation process, the confidence scores associated with each estimate
are also taken into account in this phase.

1Our application supports any n ≥ 2, though a greater number of cameras is recommended for
increased accuracy.
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Synchronized 
acquisitions

2D pose estimation
Triangulation / 3D
pose estimation

Model matching /
prediction refinement

Joint angles
calculation

Figure 4.1: Flowchart summarizing the proposedmotion capture pipeline.

4. Model matching (Section 4.4): in order to preserve kinematic information
collected in [2], concerning the length of rigid bone segments in the subjects
of interest, the output of step 3 is refined by means of an original two-step
optimization procedure, matching to each 3D pose estimate a subject-specific
articulated model.

5. Joint angles calculation (Section 4.5): an original procedure for the definition
of joint reference systems is applied to the pose predictions obtained in step 4.
Its output is then employed to compute the joint angles associated with the hips
and knees, characterizing the motion of the subject’s lower limbs throughout
the synchronized video sequences.

Although tracking approaches exploiting multiple synchronized cameras have been
proposed in the literature (see Section 3.2.5), they were generally designed for non-
clinical applications such as pedestrian detection and activity recognition, which only
require approximate joint locations and a high-level understanding of the subject’s
pose. In this work, a greater emphasis was placed on the retrieval of clinically ac-
curate joint angles, through the incorporation of previously acquired subject-specific
information.

Unlike most model-based MMC approaches, relying on both morphological and
kinematic subject descriptors, we did not employ any volumetric data. Rather than
being placed on a 3D mesh, each joint’s position was independently evaluated within
each set of synchronized 2D views, and lifted to 3D space by means of triangulation.
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A detailed description of the stages comprising the developed pipeline is provided
in the following sections. Note however that the proposed methodology is highly mod-
ular, meaning changes could be made to the implementation of any of its components
with minimal modifications to the others.

4.1 Experimental Setup

In order to meaningfully compare the results produced by our methodology and by
the MMC pipeline, we evaluate our system’s performance on recordings which in
previous studies [2, 3] were processed using markerless motion capture techniques.

Three healthy male subjects were asked to perform six walking trials at self-selected
speed in two different settings: a shallow swimming pool, with water up to their
shoulders, and a controlled laboratory environment. Acquisitions were carried out
using six synchronized underwater cameras (TS-6021PSC, Tracer Technology Co.
Ltd), whose position around the volume of interest (shown for both experiments in
Figure 4.2) was chosen in such a way as to minimize the number of simultaneous
self-occlusions.

Camera calibration was carried out by means of the algorithm2 presented by Bouget
in [59]. The technique makes use of the widely adopted pinhole camera model; in its
ideal formulation (not including lens distortion), this description expresses the relation
between a 3D point P = (x, y, z) in the camera’s reference frame and its projection
p = (u, v) onto the image plane as:

p =
1

z

[
fx 0 cx

0 fy cy

]
P, (4.1)

where:

• fx and fy denote the vertical and horizontal focal lengths (the distances between
the center of projection and the image plane) in pixel units;

• c = (cx, cy), referred to as principal point, denotes the projection onto the image
plane of the focal point;

2We refer the reader to [2, Section 3.2.3] for a detailed description of the equipment employed to
perform calibration in an both an underwater and laboratory environment.
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Figure 4.2: Camera configurations (as resulting from extrinsic calibration) employed to record the out-of-water (top)

and underwater (bottom) walking trials.

The focal length and principal point are known as intrinsic parameters, and do not
depend on the camera orientation or scene viewed.

Letting r2 = (x2 + y2)/z2, lens distortion may be accounted for by introducing an
additive and a multiplicative term in equation (4.1), obtaining:

p =
1 + k1r

2 + k2r
4 + k3r

6

z

[
fx 0 cx

0 fy cy

]
P +

1

z

[
2p1xy + p2(r

2 + 2x2)

p1(r
2 + 2y2) + 2p2xy

]
, (4.2)

where the parameter vectors (k1, k2, k3) and (p1, p2) characterize radial and tangential
distortion, respectively. Through an iterative approach, Bouget’s algorithm estimates
the intrinsic parameters and distortion coefficients of each camera. Once these are
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Figure 4.3: Left, a frame fromavideo recorded in anunderwater environment. Right, the same frameafter undistortion.

known, the rigid transformation relating the camera’s and global coordinate systems,
which generally do not coincide, may also be computed. A 3D point PG = (X,Y, Z)

in the world reference frame will have the following coordinates in the camera’s:xy
z

 =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3


XY
Z

 , (4.3)

or more compactly:
P = [R | t]PG, (4.4)

where the joint rotation-translation matrix [R | t] ∈ R3×4 encodes the camera’s extrin-
sic parameters. Furthermore, computational tools3 may be employed to correct the
distortion artefact in all frames of the captured video sequences, as exemplified in Fig-
ure 4.3. After performing undistortion, equations (4.1) and (4.3) may be combined,
and expressed in a linear fashion as:

uv
1

 ≃

fx 0 cx

0 fy cy

0 0 1


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



X

Y

Z

1

 , (4.5)

or equivalently:
m ≃ K[R | t]M , (4.6)

3We employed the undistort function of the OpenCV Python library [60] for this task.

29



Figure 4.4: Architecture of High-Resolution Net (image from [19]).

where the symbol ≃ means “equal up to a scale factor” and the vectors m = (u, v, 1)⊤

and M = (X,Y, Z, 1)⊤ are referred to as the homogeneous coordinates of p and PG.
Finally, by multiplying the matrices of intrinsic and extrinsic parameters, we obtain
for each camera a projection matrix P ∈ R3×4 such that m = PM.

4.2 High-Resolution Net

The synchronized videos acquired during the first step of our pipeline are passed as
input to a convolutional pose estimator, employed to predict within each frame the
position of anatomical keypoints such as the shoulders and knees. For this purpose,
we made use of a top-down model known as High-Resolution Net (HRNet), presented
by Sun et al. in [19], whose architecture is shown in Figure 4.4. Among the several
PE approaches found in the literature (an overview of which was given in Chapter 3),
this CNN was chosen due to its state-of-the-art performance on both the COCO [17]
and MPII [27] datasets, as well as the excellent PyTorch implementation provided by
the authors at https://github.com/leoxiaobin/deep-high-resolution-net.
pytorch.

Detailed descriptions of High-Resolution Net (particularly the ways in which it
differs from other existing PE models) and its use within our pipeline are provided in
the following sections.
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4.2.1 Comparison betweenHRNet and PreviousModels

The most distinguishing architectural characteristic of High-Resolution Net concerns
the way in which features are extracted from the input images, and combined during
a forward pass to generate prediction heatmaps.

In other contemporary pose estimation approaches, this operation is commonly car-
ried out by means of a two-step procedure. Firstly, input images are run through a
series of subnetworks, each of which uses banks of convolutional filters to capture im-
age features at a specific scale. Adjacent subnetworks are linked by a down-sampling
layer, which halves the input’s resolution before the next stage. The purpose of this
“high-to-low resolution” process is to compute progressively higher-level features, en-
abling the network, through the decrease in resolution, to capture large-scale char-
acteristics of the image, such as colors and shapes. Using the same notation as [19],
let Nsr denote the subnetwork of the sth stage, whose resolution is 1

2r−1 with respect
to that of the input. A high-to-low resolution network consisting of four stages may
then be represented as:

N11 −→ N22 −→ N33 −→ N44 (4.7)

After the last high-to-low stage, a high-resolution representation is recovered from
the low-resolution ones through a “low-to-high resolution” process. This procedure
is aimed at computing local, low-level features such as corners and lines, and its
computational complexity may vary greatly depending on the model. For example,
while in [36] the low-to-high process mirrors the high-to-low one in the number and
shape of the convolutional filters used, in [21] it consists only of a few upsampling
operations. Furthermore, a number of high-to-low, low-to-high network modules may
be concatenated in order to increase the precision of final predictions.

HRNet differs from the approaches described above in that high-resolution rep-
resentations are maintained throughout the entire network, rather than undergoing
a downsampling process and being retrieved at a later stage. The network initially
consists of a single high-resolution module; with each stage, one high-to-low branch
is connected in parallel (rather than in series) to the main body. A 4-stage example
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of the resulting network structure, provided by the authors of [19], is shown below:

N11 −→ N21 −→ N31 −→ N41

↘ N22 −→ N32 −→ N42

↘ N33 −→ N43

↘ N44

(4.8)

As can be seen from (4.8), an additional, lower resolution is introduced within each
stage. This approach means that different resolutions are handled by separate (albeit
connected, see Section 4.2.2) parallel branches, rather than one being transformed into
the other through scaling operations. This removes the need for a separate high-to-
low process (as high resolution representations are preserved during a forward pass),
leading to more precise spatial localization.

4.2.2 Multi-Scale Fusion

The use of multiple separate branches, each dedicated to a specific resolution, pre-
vents possible imprecisions caused by rescaling operations. However, in order for the
network’s predictions to be as accurate as possible, both low and high-level represen-
tations should be considered, meaning features from across all scales should be taken
into account. In HRNet, this is addressed by repeatedly sharing information across
parallel high-to-low resolution subnetworks. This process, referred to as multi-scale
fusion, is carried out in dedicated layers called exchange units.

Below is an example provided by the authors of [19]. The third network stage
(which contains three parallel branches) was divided into three blocks, with an ex-
change unit placed after each block. In the following, let Cb

sr denote the convolutional
filter of the rth resolution, found in the bth block of sth stage, and Eb

s denote the cor-
responding exchange unit. The resulting architecture is given in the diagram below,
while the structure of an exchange unit is shown in Figure 4.5.

C1
31 ↘ ↗ C2

31 ↘ ↗ C3
31 ↘

C1
32 −→ E1

3 −→ C2
32 −→ E2

3 −→ C3
32 −→ E3

3

C1
33 ↗ ↘ C2

33 ↗ ↘ C3
33 ↗

(4.9)
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Figure 4.5: Structure of an HRNet exchange unit (image from [19]).

Each exchange unit takes as input a set of n (where n is the number of parallel
branches in the stage) feature maps {X1, . . . ,Xn} and returns another set {Y1, . . . ,Yn},
such that for each k ∈ {1, . . . , n} Yk has the same resolution and shape as Xk. The
output representations are computed by combining information from all the inputs,
according to the formula Yk =

∑n
i=1 a(Xi, k). Depending on the values of i and

k, function a performs either upsampling or downsampling operations on the input
representations, so that their resolution matches the output’s:

• If i > k, Xi’s resolution is reduced using (i− k) 3×3 convolutional filters with
a stride of 2 (each of which halves the input’s resolution).

• If i < k, Xi is first passed through a 1×1 convolutional filter in order to match
the output number of channels. Its resolution is then increased via nearest
neighbour upsampling.

• If i = k, a is the identity mapping.

The combined use of parallel branches and multi-scale fusion enables HRNet to
preserve high-resolution feature maps, while still taking both high and low level in-
formation into account, leading to a more accurate estimation of joint locations.

4.2.3 Implementation Details

In testing their CNN, the authors of [19] developed several implementations of High-
Resolution Net, all sharing a common baseline structure (shown in Figure 4.4) con-
sisting of four stages with four parallel branches. Although versions of the network
were trained on both the COCO and MPII datasets, only the former was considered
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in this work, as we found models based on the latter would often fail to produce
accurate pose estimates in the presence of motion blur (a common artefact in the
videos we analyze). The two available COCO-trained architectures, referred to as
HRNet-W32 and HRNet-W48, differ solely in their size, with the second employing
branches of significantly higher width (48, 96, 192 and 384 against 32, 64, 128 and
256) in last three stages4. As the use of the larger model provided no noticeable
performance gain, we chose to make use of the computationally lighter W32 variant
in our tests.

The network takes as input images of size 384 × 288 (4:3 aspect ratio), obtained
by cropping the views of interest (in our case, the frames of the recorded walking
trials) around a single person. During training, these bounding boxes are provided
as annotation to the images in the COCO dataset, while at testing time they are
generated by a person detector, as detailed in Section 4.2.4. For a given input, the
CNN returns a set of 17 heatmaps (one for each keypoint in the COCO model) of size
96× 72, whose intensity values, ranging from 0 to 1, express the per-pixel likelihood
of the corresponding joint being found in each location of the output space. In
order to improve prediction stability, we additionally evaluate a horizontally flipped
version of each image, averaging the resulting heatmaps with the ones obtained for
the original. This technique, referred to as flip test, is widely employed in recent pose
estimation literature [21, 22, 36], and is credited in [36] with a 1% localization accuracy
improvement on the MPII dataset. In accordance with specifications provided in [19],
the final predictions for the 2D position of each joint were obtained by applying a
shift of one quarter of a pixel to the coordinates of the associated heatmap’s highest
intensity response, in the direction of the second highest, and then multiplying them
by 4 to recover the original input dimensions.

4.2.4 PersonDetection

As mentioned previously, pose estimation in High-Resolution Net is carried out ac-
cording to the top-down paradigm, meaning model inputs are assumed to be views
of a single person. This makes it necessary, in order for the CNN to work correctly
with generic images, to employ a person detection (PD) preprocessing step, drawing
around each individual in the scene a bounding box on which the network can be run.

4The residual modules of the first stage have a width of 64 in both models.
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Even on sequences such as the considered walking trials, in which only one subject
is present in the foreground at any given time, this operation is required to obtain
network inputs of the correct position and size.

Human detection is carried out in this work by means of a dedicated convolutional
neural network, to which HRNet was connected in series. Specifically, we make use
of a multi-class object detector (OD), capable of identifying and localizing instances
of several common object categories (including people) in images and videos. A
variety of pre-trained architectures of this kind are provided by the TensorFlow Object
Detection API [61], an open-source framework built on top of the TensorFlow deep
learning library [62]. Among these, we chose to employ a network5 relying on a Faster
R-CNN [63] backbone, providing, partially due to the use of efficiency-enhancing
Inception v2 modules [64], an excellent compromise between accuracy and speed.
Object detection is performed in the selected model according to the following two-
step pipeline:

1. through the use of a Region Proposal Network (RPN), extrapolate from the
input image a number of saliency areas in which an object is believed to reside;

2. identify the objects present in the scene by independently applying an image
classifier to each formulated region proposal.

For a given input, the OD network returns a set of rectangular bounding boxes
(identified by the coordinates of their upper-left and bottom-right corners), each of
which is associated with a class label and a confidence score c ∈ [0, 1], expressing the
likelihood of the classification being correct. Only the person class is considered in this
work; furthermore, in order to avoid spurious detections, we disregard all predictions
for which c is lower than 0.5. Among the remaining boxes, the one associated with the
highest score is assumed to contain the individual of interest. Example outcomes of
this procedure are showcased, for both a laboratory and an underwater environment,
in Figure 4.6.

As the evaluated region proposals do not in general have the required 384 × 288

shape, an additional processing step is required before pose estimation can be per-
formed on the outputs of the PD network. In [19], this operation takes the form of an

5Referred to as faster_rcnn_inception_v2_coco in the TensorFlow Object DetectionZoo.
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Figure 4.6: Example of bounding boxes generated by the person detector from views of a walking subject, in both a

laboratory (top) and underwater (bottom) environment.
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Figure 4.7: Properly sized HRNet inputs, obtained from the bounding boxes shown in Figure 4.6 by means of an affine

transform. The black bar in the UW image (right) was added to achieve the desired 4:3 aspect ratio despite the frame’s

upper border being reached.

affine transform which, taking as input the center and shape of the considered bound-
ing box (where the latter is defined as the box’s height normalized by 200 pixels),
returns a correctly sized view of the scene in which the subject occupies a prominent
position, as shown in Figure 4.7.

A simple linear interpolation technique was employed to obtain valid HRNet inputs
for frames on which the OD network was unable to produce person bounding boxes
with a sufficiently high confidence. Consider a video sequence V = {1, . . . , n}, and its
subset S on whose elements detection was successful. Given a frame i /∈ S on which
PD failed, let:

p = max{j ∈ S | j < i}, s = min{j ∈ S | j > i}, (4.10)

represent the closest successful predecessor and successor of i, having center and scale
(cp, sp) and (cs, ss). The parameters (ci, si) characterizing the missing bounding box
were estimated as: ci = wpcp + wscs

si = wpsp + wsss ,
(4.11)
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where: 
wp =

s− i

s− p

ws =
i− p

s− p
.

(4.12)

In other words, the bounding box of frame i was computed as the weighted average (in
both center and scale) of the boxes associated to p and s, where the weight assigned
to each successful frame was set to be inversely proportional to its distance from i.

Frames lacking a successful predecessor were dealt with by setting wp = 0 and
ws = 1. Analogously, in the absence of a valid successor we selected wp = 1 and
ws = 0. These events, usually caused by a subject having yet to enter or already left
the camera’s field of view, were assumed to never occur concurrently, as the opposite
would require the person detector to fail on all frames of the considered sequence.

Out-of-Water PersonDetection

When applied to recordings of trials performed in an out-of-water (OW) environment,
the person detector was in most cases able to correctly locate the walking subject.
Although failed detections did occasionally occur (mainly due to the the substan-
tial amounts of noise and motion blur affecting the considered OW sequences), in
these instances the employed interpolation technique proved capable of generating
serviceable bounding boxes.

It is worth noting that, on videos taken from certain viewpoints, the PD network
registered a successful detection even for frames where the subject was not visible,
due to the presence of a human operator in the background (see Figure 4.6 (top)
for reference). While this behaviour had no influence on the pose estimator’s per-
formance, it did prevent us from employing the detector’s output to automatically
pinpoint the frames in which, for a given trial, the subject entered and exited the
scene (an operation which had to be carried out manually instead).

Underwater PersonDetection

Due to the way in which underwater (UW) gait trials were carried out, person detec-
tion proved significantly more difficult in this setting than in a controlled laboratory
environment. As can be seen from Figure 4.11, subjects were only submerged up their
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chest, meaning their head, shoulders and arms were out of view of the cameras in
most cases. Furthermore, the reflective properties of the water surface often caused
their legs to be vertically mirrored in the frame’s upper half, introducing a foreign
element in the scene that the network (developed for use in OW conditions) was not
trained to recognize.

Despite these difficulties, we found that a subject’s lower body being visible was
generally sufficient for the person detector to correctly locate them, allowing us, as
discussed in the following, to successfully apply our pipeline to underwater scenes.
While the occlusion of the upper limbs resulted in a lower average classification score,
and consequently a greater rate of failed predictions in comparison to an OW set-
ting, suitable HRNet inputs could still be obtained by means of box interpolation.
Exceptions to this were rare instances in which undesired scene elements, such as a
fully submerged swimmer in the background, caused the network to entirely miss the
subject of interest, while still indicating a successful detection.

Lastly, it should be noted that even on frames in which the subject was correctly
located, the aforementioned reflection artefact was frequently (when present) recog-
nized as part of the detected individual, resulting, as exemplified in Figure 4.6, in
unnaturally tall bounding boxes. This behaviour, owed to the PD network being un-
able to generalize to a UW environment, was however found to have little influence on
our system’s performance. As showcased in Section 4.2.5, pose estimation quality was
only significantly degraded for upper-body limbs, which due to their limited visibility
were not taken into consideration in this work. This conclusion is particularly con-
venient when considering that, because of the task’s high specificity, PD approaches
developed especially for underwater use are currently missing in the literature, as it
allows more common OW techniques to be effectively repurposed for this goal.

4.2.5 NetworkOutput

As discussed in Chapter 3, the heatmap output representation employed by HRNet
allows the CNN to convey a measure of confidence on each predicted keypoint position.
This feature is particularly useful when dealing with self-occlusions, the phenomenon
by which a keypoint is blocked from the view of a camera by another body part.

To better understand this, consider first the ideal situation of Figure 4.8, in which
the network input (shown on the left-hand side) consists of a frontal view of a subject
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Figure 4.8: Left, a subject in reference pose in an out of water environment. Right, result of performing 2D pose esti-

mation on the left image.

in reference pose. Since all the body joints defined in the COCO model (shoulders,
elbows, wrists, hips, knees and ankles) are clearly visible, the corresponding heatmaps
(which for visualization convenience have been superimposed on the right-hand side)
have a well-defined shape, as well as an intensity peak approaching the maximum
value of 1.

Figure 4.9 (left) displays a more realistic input configuration where, due to the
camera placement and the subject’s walking movement, the right elbow and wrist
are occluded from view. As can be seen from the right-hand image6, non-visible
keypoints are associated with irregularly shaped heatmaps, covering a wider area with
significantly lower intensity values. This may be interpreted as the network expressing
uncertainty over the joints’ location, assigning a similar likelihood to several output
locations.

The examples discussed above showcase how, thanks to the use of heatmaps, CNN-
based pose estimators may implicitly distinguish between visible and occluded key-
points, automatically assigning high confidence scores to the former and low ones to
the latter. As described in Section 4.3, this fact is exploited by our system when tri-
angulating the 3D position of each joint, in order to take high-quality 2D predictions
into greater consideration.

6For clarity, only the heatmaps corresponding to the right elbow and wrist are shown.
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Figure 4.9: Left, a view of awalking subject in anOWenvironment, in which the left elbow andwrist are occluded from

view. Right, the irregularly shaped heatmaps generated byHRNet for the aforementioned non-visible keypoints.

Out-of-Water Pose Estimation

Figure 4.10 shows two 2D pose estimates generated by HRNet from views of walking
subjects in an out-of-water (OW) environment. Keypoints were numbered according
to the COCO specification (see Figure 4.13 for reference), with joints 0 through
4 (referring to facial features) omitted for clarity. Each prediction was assigned a
confidence score c, defined as the peak intensity value of the corresponding heatmap,
and represented by a round marker displayed as:

• red if c < 0.25;

• orange if c ∈ [0.25, 0.5);

• yellow if c ∈ [0.5, 0.75);

• green if c ≥ 0.75.

Despite the substantial amounts of noise and motion blur affecting the frames’
quality, visible keypoints were consistently placed in anatomically correct positions
(as well as associated to high heatmap responses) by HRNet. Furthermore, it can
be seen that even in the presence of occluded joints (such as the left knee in the
left-hand image, or the right ankle in the right-hand one) the network was often
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Figure 4.10: 2D pose estimates generated byHRNet from two views of walking subjects in anOWenvironment.

able to formulate relatively accurate predictions, albeit with lower confidence. This
is made possible by the intrinsic ability of CNNs to understand images on a global
level, inferring the location of non-visible keypoints from contextual cues such as the
subject’s stance and the configuration of other body parts.

Underwater Pose Estimation

The task of full-body pose estimation becomes considerably more challenging when
performed in an underwater (UW) environment. In order to highlight the difficulties
faced by our system in this setting, we provide in Figure 4.11 a set of 2D pose
estimates, derived by HRNet from six differently oriented views of a walking subject7.

The most striking difference from the OW results shown in Figure 4.10 is the much
poorer performance of the CNN on joints belonging to the upper body. Because in
the considered gait trials subjects were submerged up to chest level, their arms are
often non-visible throughout the recorded sequences. This issue, exacerbated by the
constant movement of the water, resulted in the imprecise placement of the elbow

7The same numbering and colouring conventions as Figure 4.10 were employed.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: 2Dpose estimates generated byHRNet from six views of awalking subject in an underwater environment.

and wrist joints across all cameras, with somewhat accurate predictions only being
made, with fairly low confidence, in (b) and (e).

Another critical, UW-specific complication is the occurrence of total internal re-
flection, a phenomenon causing the water surface to exhibit reflective properties from
certain viewpoints, resulting in the appearance of a vertically mirrored image of the
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subject’s lower body. The consequences of this are especially noticeable in (a) and
(f), where keypoints associated with the (non-visible) upper limbs were erroneously
positioned within the reflection artefact (in particular, note how in (f) the elbow and
wrist joints were placed in correspondence of the reflected hips and knees).

Due to the issues discussed above, we decided in this work to discard upper-body
predictions made in a UW setting. Fortunately, we found that even in the presence
of water HRNet was able to consistently produce high-quality estimates for the hips,
knees and ankles, allowing for the accurate triangulation of lower body keypoints.

4.3 Triangulation

In order to meaningfully quantify the subjects’ movement throughout the recorded
sequences, it is necessary to extrapolate their 3D configuration from the 2D pose
estimates formulated by High-Resolution Net. In this work, this operation is carried
out by means of a triangulation routine which, taking as input the predictions made
for a keypoint’s location across n synchronized views (where n is the number of
cameras employed in the acquisition step) returns an estimate of its 3D position in
the calibrated space.

The efficient linear-eigen method [65], outlined in Section 4.3.1, was chosen as
the basis of the triangulation process. Leveraging positional data gathered during
the cameras’ calibration, this approach provides a closed-form solution for the 3D
location of each joint, allowing the subject’s pose to be recovered with minimal com-
putational complexity. In its original formulation however, this algorithm assigns
equal importance to each considered 2D point. As discussed at the beginning of this
chapter, we instead wish to take higher-quality predictions into greater consideration,
exploiting the confidence information provided by HRNet with each evaluation. For
this purpose, we make use of a simple weighted variant of linear-eigen, a description
of which is given in Section 4.3.2.

4.3.1 Linear-Eigen Triangulation

Consider the example (only displaying two cameras) provided in Figure 4.12. Given
n sets of pixel coordinates mi = [ui, vi], i ∈ {1, . . . , n}, as well as the camera matrices
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Figure 4.12: Example of 3D triangulation from two camera views (image from [66]).

{Pi}ni=1, we are interested in determining a 3D point M = [x, y, z], of which all the
mis are assumed to be the projection. For each (m,P) pair we have from (4.6):

m ≃ PM , (4.13)

where m = [u, v, 1] and M = [x, y, z, 1] are referred to as the homogeneous coordi-
nates8 of m and M respectively. Letting p⊤

j denote the jth row of P, (4.13) can be
reformulated as:

m =

uv
1

 ≃

p⊤
1

p⊤
2

p⊤
3

M =

p⊤
1 M

p⊤
2 M

p⊤
3 M

. (4.14)

In Cartesian coordinates, this is equivalent to:
u =

p⊤
1 M

p⊤
3 M

v =
p⊤
2 M

p⊤
3 M

,

(4.15)

8As detailed in [66], the use of homogeneous coordinates allows projective transformations to be
expressed by a single matrix multiplication.
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which yields, after a few algebraic steps:(p1 − up3)
⊤M = 0

(p2 − vp3)
⊤M = 0.

(4.16)

From each 2D point it is therefore possible to derive two homogenous equations in the
coordinates of M. Repeating the procedure described above for each mi, we obtain
the following system of 2n equations in four unknowns:

(p1
1 − u1p

1
3)

⊤M = 0

(p1
2 − v1p

1
3)

⊤M = 0
...

(pn
1 − unp

n
3 )

⊤M = 0

(pn
2 − vnp

n
3 )

⊤M = 0,

(4.17)

or alternatively in matrix form:

AM = 02n×1, A =


(p1

1 − u1p
1
3)

⊤

(p1
2 − v1p

1
3)

⊤

...
(pn

1 − unp
n
3 )

⊤

(pn
2 − vnp

n
3 )

⊤

 ∈ R2n×4 . (4.18)

System (4.17) is overdetermined9 for any n > 2 and, due to the presence of noise,
cannot in general be solved exactly. Instead, a solution is determined in a least-squares
sense, finding a vector M such that:

M ∈ argmin
x∈R4×1

∥Ax∥2 , subject to ∥x∥ = 1. (4.19)

The additional constraint on ∥x∥ was placed in order to avoid the the trivial result
M = 0. The solution to this problem can be shown to be the last column of matrix
V, where A = UDV⊤ is the Singular Value Decomposition (SVD, [67]) of A, or
equivalently the eigenvector of A⊤A associated to its smallest eigenvalue (hence the

9Has more equations than unknowns.
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algorithm’s name). A detailed proof can be found in [68, Appendix 5].

4.3.2 Weighted Triangulation

As discussed in Section 4.2.3, each joint prediction made by High-Resolution Net is
associated with a 2D heatmap, measuring the per-pixel likelihood of the joint being
found in each output location. In triangulating the 3D position of a keypoint, we wish
to take this information into account, giving a lower importance to low-confidence
predictions, such as the ones obtained in the presence of occlusions.

For a given joint and time instant, let wi denote the maximum value of the heatmap
produced by HRNet for the ith synchronized view10. We weight each camera’s con-
tribution in (4.17) according to the wis, obtaining the system:

w1(p
1
1 − u1p

1
3)

⊤M = 0

w1(p
1
2 − v1p

1
3)

⊤M = 0
...

wn(p
n
1 − unp

n
3 )

⊤M = 0

wn(p
n
2 − vnp

n
3 )

⊤M = 0.

(4.20)

Note that for each i ∈ {1, . . . , n}, equations 2i and 2i+ 1 are derived from the same
camera, and are thus assigned the same weight. A least-squares solution to (4.20)
can be found by determining the vector M such that:

M ∈ argmin
x∈R4×1

n∑
i=1

wi(A
⊤
i x)

2, subject to ∥x∥ = 1, (4.21)

or equivalently:

M ∈ argmin
x∈R4×1

∥∥∥W 1
2Ax

∥∥∥2 , subject to ∥x∥ = 1, (4.22)

10Although in this work the weight associated with each camera was defined as the maximum in-
tensity response of the corresponding heatmap, other choices are possible. For instance, a logarithmic
scaling of the wis could be employed to more aggressively penalize low-confidence predictions.
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Figure 4.13: Exampleofa3Dposeestimate, basedontheCOCOmodel, obtainedbyweighted linear-eigen triangulation

from six synchronized views of a subject walking in anOWenvironment.

where W is the diagonal weight matrix:

W = diag(w1, w1, w2, w2, . . . , wn, wn). (4.23)

Thus, weighted linear-eigen triangulation can be carried out using the same pipeline
described in Section 4.3.1, performing SVD on B = W

1
2A rather than A. Futher-

more, because (4.22) has a closed-form solution, a suitable M can be determined very
efficiently using analytical solvers [69].

Out ofWater Environment

Figure 4.13 shows an example 3D pose estimate, obtained by means of weighted
triangulation from six synchronized views of a subject walking in an out-of-water
environment. The relations between keypoints and their numbering are based on the
COCO model, which uses 17 joints arranged in a skeleton-like structure by means
of pairwise connections11. Note that, while for clarity joint 0 (denoting the nose)

11Joints 1 through 4, referring to the eyes and ears, are not shown.
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Figure 4.14: Example of a an unnatural 3D pose estimate, obtained by weighted linear-eigen triangulation from six

synchronized views of a subject walking in a UWenvironment.

was linked to the midway point of the segment connecting the shoulders, the COCO
model does not employ a neck keypoint (hence the absence of a numbered marker).

Underwater Environment

As discussed in Section 4.2.5, it is generally difficult in a UW environment to obtain
meaningful 2D predictions for joints belonging to the shoulders and arms, due to
reflections in the water surface as well as ripples induced by the subject’s movement.
Furthermore, because these body parts are often simultaneously hidden from the view
of all cameras, no high-confidence estimate can be made to compensate for low-quality
ones, resulting, as exemplified in Figure 4.14, in anatomically unnatural 3D upper
body configurations. Importantly for the purposes of this work however, predictions
made on lower-body keypoints are not affected by these problems, allowing for the
accurate tracking of the abdomen and legs.
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4.3.3 Considerations

The main disadvantage of the triangulation approach described in Section 4.3.2 is its
potential inaccuracy, caused by the minimization of a purely algebraic objective. In
the literature, it is common to employ a geometric loss function instead; for instance,
Zhang’s camera calibration procedure [70] iteratively optimizes the reprojection error:

ε(M) =
N∑
i=1

∥∥∥∥∥∥∥
[
ui

vi

]
−

pi⊤
1 M

pi⊤
3 M

pi⊤
2 M

pi⊤
3 M


∥∥∥∥∥∥∥
2

, (4.24)

using the linear-eigen solution only as a starting point. Due to the reasons discussed
next however, we decided against the adoption of this techinque in this thesis.

In [70], camera parameters are recovered by detecting a pattern of known dimen-
sions in several positions and orientations. Pattern elements are designed to be easily
recognizable (e.g. the corners of a chessboard) and are all simultaneously visible in
each frame. By contrast, especially when dealing with multiple synchronized views,
joints occlusions are a common occurrence in pose estimation, leading to low confi-
dence predictions in which the location of a keypoint is known only approximately.
The minimization of ε(M) may therefore lead to the overfitting of imprecise predic-
tions. Moreover, because our pipeline includes a separate precision-enhancing routine
(see Section 4.4), the non-linear refinement employed in [70] would be redundant.

4.4 Prediction Refinement

Given a set of 2D joint predictions, obtained by High-Resolution Net from a number
of synchronized camera views, the procedure described in the previous section yields
17 sets of 3D coordinates, providing an estimate of the subject’s pose in each frame.
It must be pointed out however that the COCO and MPII datasets, on which most
contemporary pose estimators are trained, were not built for clinical applications, but
rather for tasks such as activity recognition and pedestrian detection, which only re-
quire approximate joint positions. As a result, the triangulated HRNet predictions are
generally not accurate enough for the clinically-oriented tracking of a human subject.

To alleviate this issue, we introduce an original prediction-refinement routine, which

50



Figure 4.15: Example of a subject-specific articulated model. Each coloured segment denotes a rigid body part, whose

length is not modified during the optimization process.

uses the computed 3D pose estimates to modify the configuration of a subject-specific
articulated (SSA) model. This approach is qualitatively very similar to the matching
procedure described in Section 2.3: the SSA representation (of which an example is
provided in Figure 4.15) closely resembles the anatomical model employed in mark-
erless motion capture and was, in fact, directly derived from it. Crucially however,
while in the MMC pipeline a subject is described by both morphological and kinematic
data, we discard the former in this work, retaining only information on the location
of joint centers. This step, made necessary by the lack of volumetric information in
the COCO model, also results in a substantially lower computational complexity.

As can be seen by comparing Figures 4.13 and 4.15, the COCO and SSA models
exhibit significant differences. Most notably, the latter employs two additional key-
points, with the pelvis and neck joints (0 and 11, respectively) not being found in the
former12. As a result, the hips, which in SSA are connected to the pelvis, are linked
directly to the shoulders in COCO. In order to match differently structured models,

12Joints 0 through 4 in the COCO model, referring to the nose, eyes and ears, are disregarded in
this thesis.
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we define the bijection:

f : D → C

D = {1, 2, . . . , 13} \ {11}, C = {5, 6, . . . , 16},
(4.25)

assigning to each SSA keypoint the index of its COCO counterpart; for example, we
have for the left knee f(7) = 13. Lacking an equivalent in the COCO model, joints 0
and 11 are not included in the function domain.

The proposed matching algorithm was implemented in Python, making use of the
SLSQP (Sequential Least SQuares Programming, [71]) solver. Taking as input:

• a subset {ai}i∈J of joints from an articulated model A = {a0, . . . , a13}, such that
J ⊆ D;

• a 3D pose estimate P = {p0, . . . , p16};

• a set of SSA segments S = {(ri, si)}ni=1, defined by the indexes of their end-
points, such that for all i:

− ri, si ∈ {0, 1, . . . , 13};

− joints ri, si are connected in Figure 4.15.

the routine returns an articulated model A′ = {a′0, . . . , a′13} such that:

A′ ∈ argmin
B={b0,...,b13}

∑
i∈J

∥bi − pf(i)∥2

subject to: ∥bri − bsi∥ = ∥ari − asi∥ ∀ (ri, si) ∈ S.

(4.26)

In other words, the algorithm determines the configuration of A that minimizes the
sum of squared distances between the selected SSA joints and the corresponding
COCO keypoints, while at the same time satisfying the articulated model’s rigidity
constraints by preserving the length of the chosen segments.

4.4.1 Full-BodyModelMatching

In its first implementation, our prediction-refinement routine performed model opti-
mization on a full-body scale, meaning the matching algorithm was applied to the
entire subject-specific articulated model (J = D) and all SSA segments were included
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Figure 4.16: Example of an anatomically unnatural pose, obtained by matching the articulated model shown in Figure

4.15 to the pose estimate displayed in Figure 4.13 in a full-bodymanner.

in the hard constraint set S. However, we found that even in an out-of-water envi-
ronment, in which the position of upper-body joints could be triangulated correctly,
this approach often yielded anatomically incorrect configurations. This behaviour
may be explained by considering that the 3D pose estimates generated from views
of a subject are generally shorter in height and narrower at the shoulders than the
corresponding articulated model13. Due to the constraints placed on segments of the
abdomen and torso, it is therefore impossible for the algorithm to move the shoulder
and hip SSA joints closer to their COCO equivalents without altering the proportions
of the upper body. As a result, the pelvis and neck SSA keypoints, which as previ-
ously discussed do not contribute to the loss function (4.26), are pushed outwards,
leading to unnaturally bent poses such as the one shown in Figure 4.16.

13We speculate this may be caused by a different definition of the shoulder joints in the two models.
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4.4.2 Two-StepModelMatching

To address the shortcomings of full-body matching, we develop a modified prediction
refinement procedure which, given an articulated model A = {a0, . . . , a13} and a 3D
pose estimate P = {p0, . . . , p16}, matches the former to the latter in two steps:

1. Apply the matching algorithm to the the lower body joints (pelvis, hips, knees
and ankles), setting:

• J = {0, 5, 6, 7, 8, 9, 10}

• S = {(0, 5), (0, 6), (5, 6), (5, 7), (6, 8), (7, 9), (8, 10)}

2. Without modifying the position of lower-body joints, apply the matching algo-
rithm to the upper-body keypoints (neck, shoulders, elbows and knees) of the
articulated model returned by step 1, setting:

• J = {1, 2, 3, 4, 11, 12, 13}

• S = {(0, 1), (0, 2), (0, 11), (1, 11), (2, 11), (1, 3), (2, 4), (3, 13), (4, 12)}

In order to provide the procedure with a starting point as similar as possible to the
desired configuration, the input SSA and COCO models are superimposed before each
run, by performing the following operations:

1. rotate the SSA model about its longitudinal axis, causing its orientation to
match that of the COCO pose estimate;

2. rigidly translate the SSA model, in such a way that the midway point of the
segments connecting its hip joints overlaps the corresponding point in the 3D
pose estimate.

The main goal of this approach is to alleviate the issues described in the previous
section by inducing a more realistic placement of the 0th and 11th SSA joints. As
can be seen from Figure 4.15, the articulated model’s pelvis and hips are linked in
a rigid triangle by segments (0, 5), (0, 6) and (5, 6), meaning the position of the first
keypoint is heavily constrained by that of the other two. In practice, we found that
when only taking the abdomen and legs into account (step 1 of the modified refinement
procedure) an anatomically reasonable positioning of the pelvis could be obtained as a
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Figure 4.17: Example of an anatomically consistent pose, obtained by matching the articulated model shown in Figure

4.15 to the pose estimate displayed in Figure 4.13 in a two-stepmanner.

byproduct of matching the hip joints to their COCO counterpart. In the second stage,
the determined lower-body keypoint locations are kept fixed, preventing constraints
related to the torso from pushing the pelvis into incorrect positions. This in turn
affects the optimization of the upper body, leading to a more realistic placement of
the neck and shoulders.

Figure 4.17 displays the SSA configuration obtained by matching in a two-step
manner the articulated model of Figure 4.15 to the 3D pose estimate shown in Figure
4.13. From a comparison with Figure 4.16, depicting the outcome of full-body match-
ing on the same inputs, the two-stage approach can be seen to generate a significantly
more natural pose. Furthermore, the modified procedure has the added benefit that
in an underwater environment, in which the position of upper-body joints cannot be
accurately triangulated, only the first step may be performed, substantially lowering
the routine’s runtime while still obtaining precise matches for the lower body.
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4.4.3 IterativeModelMatching

In order to gather clinically meaningful information about the movement of a subject
throughout a video sequence, the refinement procedure described in the previous
section has to be applied repeatedly, matching the appropriate articulated model to
a series of pose estimates (one per frame), each of which differs only slightly from
its predecessor. When performing this type of iterative adjustments, it is common
practice in the numerical optimization literature to employ the output of one iteration
as the input of the next; for example, this approach is utilized in the MMC pipeline
to facilitate the convergence of the model-to-VH registration algorithm [2]. Although
we did experiment with this technique, we ultimately decided against its use in this
work; instead, an articulated model in reference pose (such as the one shown shown
in Figure 4.15) is independently matched at each iteration to the corresponding 3D
pose estimate.

Much like the two-stage structure of the matching process, this choice was moti-
vated by the need to obtain anatomically feasible placements of the SSA pelvis joint.
In carrying out repeated OW matches, each taking as a starting point the config-
uration produced by the previous one, we found the 0th keypoint would often take
an incorrectly recessed position. Initially negligible, this effect would be amplified at
each iteration to eventually become very significant (see Figure 4.18 for reference),
at times also causing an unnatural displacement of the neck joint.

4.4.4 Considerations

Given that the main goal of this thesis was to develop a gait tracking methodology
alternative to the one described in Chapter 2, it may seem counterintuitive for our
matching approach to include elements (specifically the SSA model description) of
the markerless motion capture pipeline. While some form of prediction refinement
was necessary (due to the inaccuracy of the triangulated pose estimates), the deci-
sion to make use articulated models was motivated by convenience and availability
considerations. Firstly, by employing in our procedure the same kinematic subject
representation as MMC, we were able to draw more meaningful comparisons between
the results produced by the two methods. Secondly, because the walking trials ana-
lyzed in this work had already been processed using markerless techniques in [2] and
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Figure 4.18: Unnatural articulated model configuration, obtained as the 38th element in a sequence of OWmatches,

each taking as input the output the previous one.

[3], suitable SSA models were readily accessible to us.
To conclude this section, we point out that although in this work we opted to employ

the articulated model configuration shown in Figure 4.15, our proposed matching
procedure is fairly flexible, and could be applied to different body representations
with minimal modifications. In particular, it seems likely that an alternative model
generation methodology, which does not rely on low-resolution visual hulls, could
be developed using deep learning techniques, especially considering that CNN-based
approaches collecting 3D shape information from multiple views of a human subject
already exist in the literature [55, 72].

4.5 Joint Angles Calculation

The SSA models generated by the two-step matching procedure were employed for the
calculation of anatomical joint angles. In the motion capture literature, this operation
is usually carried out by embedding, in each considered body segment, an orthogonal
frame of reference (X, Y, Z). A subject’s motion throughout a video sequence may
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then be characterized by describing how the relative orientation of adjacent reference
systems (RSs) changes over time.

Due to its reliance on morphological 3D shape information,14 missing from the em-
ployed SSA representation, the RS definition technique utilized in [2] and [3] could
not be replicated in this work. It was therefore necessary to devise an alternative
approach, requiring only the kinematic information carried by a subject-specific ar-
ticulated model, while still allowing meaningful comparisons to be drawn between our
results and the ones produced by the MMC pipeline. A description of the technique
developed for this purpose is given in the following paragraphs.

Orthonormal frames of reference were computed for six of the rigid segments con-
sidered in the SSA model, namely the abdomen (the triangle defined by keypoints 0,
5 and 6, with respect to the numbering convention adopted in Figure 4.15), the torso,
the thighs and the shanks. Similarly to [2], upper-body limbs were not considered
in our analysis; furthermore, due to the absence of feet in the SSA model, no joint
angles could be computed for the ankles.

In the following, let:

• Vij denote the vector going from the ith SSA keypoint to the jth (with respect to
the numbering convention adopted in Figure 4.15), normalized to unit length;

• Mij denote the midway point of the segment connecting the ith and jth joints;

• T1 and T2 denote the vectors going from the 0th SSA keypoint (referred to as
the pelvis) to, respectively, M56 and M12.

The axes of the reference system (Xa, Ya, Za), associated with the abdomen, were
determined by performing the following assignments:

Xa =
V56

∥V56∥2
, Za =

Xa × T1

∥Xa × T1∥2
, Ya = Za ×Xa . (4.27)

Analogously, the torso’s reference system (Xt, Yt, Zt) was defined by setting:

Xt =
V12

∥V12∥2
, Yt =

Zt × T2

∥Zt × T2∥2
, Zt = Xt × Zt . (4.28)

14Provided in the MMC pipeline by the triangular mesh described in Section 2.2.
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Figure 4.19: Representationof the reference systemsassociatedwith the consideredSSAsegments, inwhich the colors

red, green and blue were used, respectively, to represent the X, Y and Z axes of each RF.

In all four remaining reference systems, embedded in the SSA model’s femurs and
tibias, the orientation of the Z axis was chosen to match that of corresponding limb,
while Y and X were computed as:

Y =
Z × V56

∥Z × V56∥2
, X = Y × Z . (4.29)

Figure 4.19 showcases the six frames of reference obtained from a static SSA model
by the procedure described above. Note that, while for clarity the origin of each RS
was placed in the center of the corresponding segment, this parameter is not consid-
ered in the calculation of joint angles, which only takes the orientation of adjacent
reference systems into account.

Joint angles were computed for the hips and knees according to the approach
proposed by Grood and Suntay in [73]. Given a pair of reference systems R1 and R2,
embedded in the segments adjacent to the considered joint,15 this procedure describes
the orientation of the former with respect to the latter by means of three Cardan

15Abdomen and torso for the pelvis, abdomen and thigh for the hip, thigh and shank for the knee.
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angles, referred to in the literature as:

• flexion/extension;

• abduction/adduction;

• internal/external rotation.

We refer the reader to [3, Section 2.3.1] for a detailed description of these angles’
anatomical interpretation.
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5
Results

5.1 Underwater Environment

The developed pipeline was applied to recordings of four male subjects, each of whom
carried out six walking trials in an underwater environment. From each set of syn-
chronized videos (recorded at 50 frames per second through the setup shown in Figure
4.2 (bottom)) we extracted a number of gait cycles (GCs) for both the left and right
leg, which we then processed to obtain the flexion/extension angles associated with
the hips and knees. Other reference systems, as well as rotation and adduction angles
(shown not to be clinically meaningful when extracted through MMC techniques [74])
were not taken into consideration in this work.

Following an established practice in motion capture literature, the joint profiles
obtained for each gait cycle were resampled to 100 data points, normalizing them to
a common length and allowing a more meaningful comparison of their evolution: an
FFT-based interpolation technique was employed for this purpose. A moving-average
smoothing filter (having a window size of 5) was also applied to each trajectory, in
order to reduce noise and remove possible outliers.

In agreement with previous publications [75], the trajectories computed for a given
subject and joint across all GCs were employed to compute normative bands (mean
± standard deviation). The resulting profiles are showcased in Figures 5.1 to 5.16.
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Figure 5.1: Subject 1: average joint profile of the left hip (± SD), computed over 13 gait cycles.

Figure 5.2: Subject 1: average joint profile of the left knee (± SD), computed over 13 gait cycles.
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Figure 5.3: Subject 1: average joint profile of the right hip (± SD), computed over 12 gait cycles.

Figure 5.4: Subject 1: average joint profile of the right knee (± SD), computed over 12 gait cycles.
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Figure 5.5: Subject 2: average joint profile of the left hip (± SD), computed over 12 gait cycles.

Figure 5.6: Subject 2: average joint profile of the left knee (± SD), computed over 12 gait cycles.
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Figure 5.7: Subject 2: average joint profile of the right hip (± SD), computed over 12 gait cycles.

Figure 5.8: Subject 2: average joint profile of the right knee (± SD), computed over 12 gait cycles.
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Figure 5.9: Subject 3: average joint profile of the left hip (± SD), computed over 15 gait cycles.

Figure 5.10: Subject 3: average joint profile of the left knee (± SD), computed over 15 gait cycles.
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Figure 5.11: Subject 3: average joint profile of the right hip (± SD), computed over 16 gait cycles.

Figure 5.12: Subject 3: average joint profile of the right knee (± SD), computed over 16 gait cycles.
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Figure 5.13: Subject 4: average joint profile of the left hip (± SD), computed over 10 gait cycles.

Figure 5.14: Subject 4: average joint profile of the left knee (± SD), computed over 10 gait cycles.
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Figure 5.15: Subject 4: average joint profile of the right hip (± SD), computed over 10 gait cycles.

Figure 5.16: Subject 4: average joint profile of the right knee (± SD), computed over 10 gait cycles.
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5.2 Out ofWater Environment

Due to a lack of annotations concerning the beginning and end of GCs, only two
sets of synchronized videos, containing views of a single subject1, were available for
elaboration in an OW environment. From each of these, we extracted two gait cycles
(one for each leg), which we then processed to obtain the flexion/extension angles
associated with the hips and knees.

Because OW trials were recorded at only 25 frames per second (as opposed to 50 in
underwater conditions), as well as the fact that subjects tended to move faster when
out of water, joint profiles computed in this environment were comprised of very few
samples (25 to 28). In order to accommodate for this, slight modifications had to be
made to the post-processing methodology described in Section 5.1.

Firstly, when upsampling to 100 data points, the previously employed FFT inter-
polation method was found to produce noticeable ringing artefacts, and was therefore
replaced by an alternative approach based on linear splines.

Secondly, in order to prevent the interpolated samples from “amplifying” spurious
predictions, a moving-average smoothing filter was applied both before and after the
resampling operation.

Lastly, due to the small size of the test sample, we opted not to compute normative
bands in an OW environment. Instead, the profiles obtained for each joint across all
available GCs were shown, together with their mean, in Figures 5.17 to 5.20.

1Referred to as subject 2 in the previous section.
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Figure 5.17: Subject 2: joint profiles obtained for the left hip.

Figure 5.18: Subject 2: joint profiles obtained for the left knee.
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Figure 5.19: Subject 2: joint profiles obtained for the right hip.

Figure 5.20: Subject 2: joint profiles obtained for the right knee.
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6
Conclusions and Future Work

The main objective of the present thesis has been the development of a CNN-based
markerless motion capture pipeline, aimed in particular at the analysis of a hu-
man subject’s gait. Leveraging recent advancements in the field of pose estimation,
our approach provides a research direction alternative to commonly employed MMC
methodologies, which primarily rely on background subtraction [76] and visual hull
reconstruction [74, 77]. Compared to other tracking techniques making use of neural
networks [56, 57], a greater emphasis was placed on the retrieval of anatomically ac-
curate movement information, via the implementation of a subject-specific prediction
refinement routine.

The developed pipeline was applied to a dataset [75, 78] made available by the
University of Padova’s BioMovLab, containing recordings of walking subjects taken
by six synchronized cameras, in both out-of-water and underwater conditions. Trials
were selected for elaboration depending on the availability of a reference analysis,
executed by means of a state-of-the-art markerless approach [2, 3]. This requirement
was met by 24 UW walks (carried out by four subjects) and 2 OW ones (performed
by a single individual), for each of which the joint profiles of the hips and knees were
computed. Since the adduction and rotation angles produced by MMC techniques
were shown not to be clinically meaningful [74], only angles lying on the sagittal plane
were taken into consideration in this work.

The results produced by our system were found to be largely in agreement with
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(a) (b)

(c) (d)

Figure 6.1: Articulatedmodels associated with subjects 1 (a), 2 (b), 3 (c) and 4 (d).

previous publications [75], both in terms of the estimated joint profiles and ranges
of motion, highlighting the viability of the proposed approach for the tracking of a
human subject. Due to time constraints, we were however unable to provide a quan-
titative comparison between our approach and established gait analysis techniques,
and thus could not assess whether the desired level of precision was achieved. In an
underwater environment, we furthermore report the presence of significant inaccu-
racies in the reconstruction of the left hip’s trajectory, particularly for subjects 2, 3
and 4. This behaviour is most likely owed to flaws in the employed subject-specific
articulated models, which, as showcased in Figure 6.1, exhibit imperfections in the
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abdomen area (especially evident in (c)). These artefacts, caused by the garments
worn by subjects during the models’ definition, are believed to have negatively influ-
enced the performance of our prediction refinement routine, resulting in the increased
sample variance (and consequently wider normative bands) observed in Figures 5.5,
5.9 and 5.13.

Differently from other gait analysis studies [78], the flexion/extension angles com-
puted for the pelvis were not reported in this work. This decision was motivated by a
limitation discovered in the proposed model-matching algorithm, which, as discussed
in Section 4.4.3, does not take the output of previous iterations into account when
applied to a series of frames. This design choice, deemed necessary to prevent the
method from reaching unnatural poses, had the undesired side effect of “locking” the
orientation of the abdomen segment (the rigid triangle defined in Figure 4.15 by joints
0, 5 and 6), causing it to hardly vary throughout the elaborated sequences. As a re-
sult, the pelvis joint was found to rigidly shift along the subject’s walking direction,
rather than performing, as expected, an oscillatory movement concurrent to that of
the hips.

The inability to accurately predict the position of the pelvis joint also prevented
us from obtaining meaningful estimates for the configuration of the subject’s torsos,
whose trajectories were therefore not considered in this work. This difficulty was
exacerbated in UW conditions by the presence of reflections in the water surface,
which often occluded the subjects’ shoulders and arms from view. Additionally, due
to the absence in both the COCO and SSA models of keypoints denoting the feet,
the angles associated with the subjects’ ankles could not be evaluated.

In future work, we plan to provide a quantitative assessment of our system’s per-
formance, carrying out an exhaustive comparison between the results presented in
Chapter 5 and the ones obtained, on the same dataset, by other gait analysis tech-
niques, both markerless [74] and marker-based [75]. Among possible measures, the
sample-wise Root Mean Square Distance (RMSD), employed in a several previous
publications, is likely the most adequate. Furthermore, we intend to evaluate the
proposed methodology on a wider test sample, applying it to a greater number of
subjects and walking trials, particularly in out-of-water conditions.

In order to broaden the applicability of our approach, we will research ways in
which to modify the model-matching algorithm to return anatomically feasible con-
figurations of the abdomen segment, allowing the estimation of meaningful angles
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for the pelvis and (in an OW environment) the torso. Methods to recover the joint
profiles associated with the subjects’ ankles will also be investigated.

Lastly, we believe it worthwhile to explore whether subject-specific information
could be embedded directly in the pose estimation step of our pipeline, by means of
a fine tuning of the employed CNN. This operation would require a more extensive
modification of our pipeline, possibly removing the need for a prediction-refinement
step altogether.
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