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Abstract 

After the recent international environmental agreements (UNFCC and Kyoto Protocol, 

among others), the European Union has decided to adopt the EU ETS (European 

Emission Trading Scheme), in order to cap the total amount of emissions of greenhouse 

gases. The aim of this work is to give a quantitative view on the evolution of the EU 

ETS  carbon market, analyzing the emission reduction problem from the point of view 

of an electricity producer running an oil-fired power plant. First, an analysis of the 

emission allowances price distribution is performed, using both a Variance-Gamma 

model and a Brennan-Schwartz process to fit the data, and assessing their mutual 

advantages and shortcomings. Subsequently, using real option approach, the 

effectiveness of the EU ETS is evaluated, analyzing the time of grid parity, in which it 

is profitable to invest in a renewable energy project (a photovoltaic plant), as opposed to 

continuing production using fossil fuels. The results show how the combined dynamics 

of the prices of oil, photovoltaic technology and emission allowances influence the 

optimal timing of the investment. 

 

Abstract 

In seguito ai recenti trattati internazionali a salvaguardia dell‟ambiente (UNFCC, 

protocollo di Kyoto ed altri), l‟Unione Europea ha deciso di istituire l‟EU ETS 

(European Emission Trading Scheme), in modo da regolamentare le emissioni di gas 

serra. Lo scopo di questa tesi è di fornire una prospettiva quantitativa sull‟evoluzione 

del mercato del carbonio EU ETS, analizzando il problema della riduzione di emissioni 

dal punto di vista di un produttore di elettricità che gestisce una centrale alimentata a 

petrolio. Inizialmente, viene svolta un‟analisi della distribuzione dei prezzi dei permessi 

di emissione, utilizzando sia un modello Variance-Gamma che un processo di Brennan-

Schwartz, e valutando i vantaggi e svantaggi reciproci. Successivamente, utilizzando la 

teoria delle opzioni reali, viene valutato se il sistema EU ETS sia in grado di incentivare 

l‟investimento in un impianto ad energia rinnovabile (una centrale fotovoltaica), in 

sostituzione di un tipo di produzione elettrica basata sull‟uso di combustibili fossili.  

I risultati mostrano come le dinamiche combinate dei prezzi di petrolio, costi della 

tecnologia fotovoltaica e valore dei permessi di emissione influenzino il tempo ottimale 

dell‟investimento. 
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Introduction 

 

Fossil fuels have long been the cornerstone of electricity production and of the 

exponential socio-economic growth of the human society. Nevertheless, in the past 

decades, it has become increasingly clear that a development model based on such 

energy sources is hardly sustainable in the long term and presents two main 

shortcomings:  the first one is the depletion of fossil fuel reserves themselves, and the 

second one is that, when burnt, such fuels release into atmosphere a huge amount of 

GHG (greenhouse gases), with negative effects on the environment, health and society.  

The recent international environmental agreements (UNFCCC, Kyoto Protocol) have 

stressed the need for intervention and urged countries to adopt emission reduction 

measures and to invest in alternative energy projects as a mean to decrease human-

related emissions. 

One of the tools which have been implemented, aimed at internalizing the negative 

externalities generated through the production processes, is the adoption of emission-

trading programs, establishing markets in which emission allowances are traded. The 

carbon market is a fast changing environment: over 40 countries and 20 sub-national 

jurisdictions are putting a price on carbon, with about 12% of global annual GHG 

emissions covered (World Bank, 2014).  

In this work, we focus on the EU ETS, the European Emission Trading Scheme, which 

is the world‟s biggest emissions trading market, established in 2005 and accounting for 

more than 75% of international carbon trading. The aim of this thesis is to give a 

quantitative view on the evolution of the EU ETS carbon market, analyzing the 

emission reduction problem from the point of view of an electricity producer running an 
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oil-fired power plant, who is confronted with the choice of either submitting to the ETS 

jurisdiction, as opposed to changing the production model, by switching production to 

alternative sources of energy, such as the solar one. 

In order to do this, first, we perform a statistical analysis of EUA (European Union 

Allowances) prices. The particular distribution of returns, characterized by leptokurtosis 

and lack of shoulders, motivates the search for a model able to adequately describe the 

data, while keeping tractability from an analytical standpoint. We analyze two specific 

stochastic models, the Variance Gamma (VG) and the Brennan-Schwartz (BS), defining 

their advantages and shortcomings with respect to each other, in terms of capacity to 

adequately fit the carbon data and in terms of computational tractability. On the basis of 

such results, we proceed to evaluate the problem the electric utility has. Considering the 

uncertainty involving future EUA prices and the irreversible costs connected to a new 

PV plant investment, the opportunity of switching production method can be viewed as 

a real option.  

Real option theory, whose theoretical foundations rely on the seminal work of Dixit and 

Pindyck (1994), enables us to value such an investment opportunity in a very similar 

way to the one in which financial options are usually priced. The goal of this valuation 

is to find the EUA trigger price which makes it convenient to switch to alternative 

sources of energy, as opposed to continuing production by means of fossil fuels. Such 

threshold is linked to a certain point in time, thus ultimately leading to the break-even 

cost of an alternative energy source. 

The work is organized as follows: Chapter 1 provides a summarizing overview of the 

history of environmental awareness and of the different economic tools which have 

been used over the years to address the GHG emissions issue. Furthermore, it describes 

the mechanisms regulating the EU ETS and the historical performance of the EU carbon 

market. Chapter 2 describes the main problems and features arising from financial time 

series analysis, while delineating the statistical properties of carbon prices. Given the 

presence of fat tails in the distribution, we choose a stochastic process able to address 

this feature. There are different processes which could serve this purpose, such as the 

GBM with log-normal jumps, the GARCH model or the VG process. The latter is the 

one we selected and its detailed description and calibration are provided in Chapter 3. 

The VG model is obtained by time changing a Brownian motion with an independent 
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subordinator and it belongs to the class of generalized hyperbolic distributions (GH), 

which are useful to capture high kurtosis features in the data. In Chapter 4, we fit the 

data using a different class of stochastic processes, the mean-reverting one. The BS 

belongs to this category, since the asset is assumed to drift towards a mean level in the 

long-run, with a certain speed of mean-reversion. After calibrating the BS model, we 

compare the results with the ones obtained in the previous chapter, performing a 

simulation via Monte Carlo in order to define the predictive capacity of both models, 

and assessing which of the two stochastic processes helps better grasping the essential 

features of the data under analysis. Basing our dynamics choice on the previous findings, 

in Chapter 5 we get to the core of the real options valuation approach, showing the 

results of its application to our motivating example and defining the relationship linking 

EUA prices to the convenience of an alternative energy investment project. 

The quantitative analysis of carbon price data and the numerical resolution of the real 

option pricing problem have been performed using the technical computing software 

Matlab
® 

. 
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Chapter 1 

The Emission Trading System 

 

1.1. Environmental Awareness Retrospective 

 

The roots of the relationship between business and the natural environment can be 

traced back to the late „60s and early „70s, when both in Europe and in the USA the 

modern environmental movement was rising. 

In Europe, the idea of making the polluter pay for the damage done to the environment 

came up during the 1972 Stockholm Conference on the Human Environment and, in 

October 1972, the EU environmental policy was formally founded through the 

European Council declaration
1
. During that same year, environmental awareness had 

become a hot topic, and growing public and scientific concerns were generated also by 

the publication of  Limits to Growth, an eye-opening book stressing the importance of 

the environment and the long term unsustainability of economic growth, written by the 

Club of Rome, which at the time was a small group of people from the fields of 

academia and industry. Subsequently, in November 1973, the EU adopted its first 

ambitious Environment Action Programme, where the Polluter Pays Principle (PPP), 

which states that whoever is responsible for damage to the environment should bear the 

costs associated with it, was taken on as a guideline, along with the idea that being 

proactive is better than reactive. During the „80s, the main body of EU environmental 

legislation enlarged, embodying some key pieces such as the Environmental Impact 

Assessment Directive (1985) and the environmental policy approach started being more 

                                                           
1
 European Environment Agency website (http://www.eea.europa.eu/environmental-time-line/1970s). 

http://www.eea.europa.eu/environmental-time-line/1970s
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and more emission-oriented. In 1987, environmental protection was given its own 

chapter in the European Community Treaty, and the year was designated as the 

European Year of the Environment. At the end of the „80s, there was a mounting wave 

of environmentalism and, in several EU countries, a lot of green political parties were 

on the rise, achieving good results. In 1994, the European Environmental Agency was 

born. 

In the US, the modern environmental movement  was forged in the social and political 

turbulence of the „60s and „70s
2
, with the tipping point coming with the publication of 

Rachel Carson‟s Silent Spring (1962), a book that “helped bring about a growing 

awareness that chemicals were damaging the environment and ultimately ourselves”
3
. 

The creation of the US Environmental Protection Agency (1970), partly triggered by the 

massive public demonstration that was called “Earth Day” on April 1970, provided a 

governmental agency to oversee policy-making and regulation in respect of 

environmental problems
4
. Later, the Superfund legislation debate (1980) proved to be a 

milestone in the long march toward corporate environmental accountability
5
 and, in 

1987, the Brundtland Declaration, sponsored by the United Nations, traced the roots to 

the contemporary environmental movement
6
, and led to the increasing internalization of 

environmental sustainability carried on by corporations.  

On an international level, a number of agreements have tried to address the climate 

change issue. Among the most relevant environmental treaties, we mention the United 

Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. 

The former was negotiated at the United Nations Conference on Environment and 

Development, known as the Earth Summit, held in Rio de Janeiro in June 1992. Such 

treaty was non-binding, in the sense that it contained no enforcement mechanisms, 

while providing a framework for negotiating other international treaties to address the 

                                                           
2
 Post. Chapter 29, The Oxford Handbook of Business and the Natural Environment, Oxford University 

Press, 2012. 
3
 Hoffman, Bansal. Chapter 1, The Oxford Handbook of Business and the Natural Environment, Oxford 

University Press, 2012 
4

 Lounsbury, Fairclough & Lee. Chapter 12, The Oxford Handbook of Business and the Natural 

Environment, Oxford University Press, 2012. 
5

 Carrol, Lipartito, Post, Werhane. Corporate Responsibility – The American Experience, p. 288, 

Cambridge University Press, 2012. 
6
 Carrol, Lipartito, Post, Werhane. Corporate Responsibility – The American Experience, p. 397-398, 

Cambridge University Press, 2012. 
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GHG issue. In 1997, according to the UNFCCC framework, the Kyoto protocol 

established legally binding obligation for developed countries to reduce emissions.   

 

 

1.2. Taxes and Tradable Permits 

 

Over the years, environmental regulation has tried to integrate the social costs entailed 

by environmental pollution into the price of the products, and this was done essentially 

in two ways: through Command-and-Control instruments or using economic 

instruments.  

The first group of instruments dominated the past decades and the rationale behind 

those tools was to diminish the overall emission level by imposing a quantitative 

restriction on each player, for example by setting emission standards for individual 

sources. This plain quantitative restriction was definitely not efficient, since it didn‟t 

take into account the different marginal abatement costs of each company.  

The latter group, namely the market-based instrument one, instead comprehends taxes 

and tradable permits and has emerged as a more cost-effective alternative
7
. Pollution 

fees and marketable permits in the US were introduced in the 1990 Clean Air Act 

Amendments (even though environmental taxation has never been popular nor really 

used in the US), while in Europe only environmental taxes have been used since 1990, 

when Finland and Sweden acted as pioneers in launching CO2 abatement taxes, with 

other European countries following the policy trend a few years later
8
.  

 

 

 

                                                           
7
 Tietenberg, (1990). Economic Instruments for Environmental Regulation. Oxford Review of Economic 

Policy, 6, 1, 17-33. 
8
 Andersen & Ekins, (2009). Carbon-Energy Taxation. Lessons from Europe. New York: Oxford 

University Press. 
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After the agreement of the Kyoto Protocol, tradable permits in Europe were introduced 

on a large scale, as a mean to tackle environmental pollution, with the set up of an 

emission trading scheme, established by the European Directive 2003/87/EC, namely 

the EU ETS, the largest carbon emissions trading scheme in the world, covering about 

45% of EU carbon emissions. 

The common feature of both taxes and tradable permits is that the process of 

internalization of negative externalities occurs in such a way that the marginal 

abatement costs are equalized between different companies. In fact, the firms which 

incur higher emission reduction costs will find it more convenient to pay the tax/buy 

more permits rather than reducing emissions, and vice versa, in this way increasing the 

overall efficiency of the system. 

What differentiates these two tools, instead, is the object of the political decision: when 

the government imposes a tax on the emitters, it indirectly fixes the price of a ton of 

CO2, while it lets the quantity float; in a trading scheme, the price of a ton of CO2 is 

determined by the market, while the overall quantity is fixed (there‟s a cap determined 

by the legislator). 

Fig. 1.1  Total EU environmental tax revenue as percentage of total taxes and of GDP, 2012. Source: Eurostat 

(online data code: env_ac_tax). 
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Before deepening the topic, we should better explain what exactly tradable permits are. 

As of 2014 there are currently 11 emission trading schemes in place
9
, along with many 

others under implementation/consideration (see Fig.1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
9
 States and Trends of Carbon Pricing, (2014). World Bank Group, Washington DC. (http://www-

wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2014/05/27/000456286_20140527095

323/Rendered/PDF/882840AR0Carbo040Box385232B00OUO090.pdf)  

Fig. 1.2  Map of existing, emerging and potential emissions trading schemes. Source: World Bank (2014). States and 

Trends of Carbon Pricing 2014. Washington, DC: World Bank.  

http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2014/05/27/000456286_20140527095323/Rendered/PDF/882840AR0Carbo040Box385232B00OUO090.pdf
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2014/05/27/000456286_20140527095323/Rendered/PDF/882840AR0Carbo040Box385232B00OUO090.pdf
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2014/05/27/000456286_20140527095323/Rendered/PDF/882840AR0Carbo040Box385232B00OUO090.pdf
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These instruments were initially proposed by Dales (1968) and Coase (1960) in their 

influencing papers and first examples of tradable permits systems can be traced back to 

the 1980s in the US, when the Environmental Protection Agency offered states such 

tools in order to control localized air pollutants. One of the first cases of successful 

implementation of an emission trading system on a large scale was in the US indeed, 

when Title IV of Clean Air Act amendments established a sulfur dioxide allowance 

trading program in 1990, in order to control the acid rain issue. Such a program turned 

out to outperform the expectations, with the achievement and the overcoming of the 

targets and with the total abatement costs having been significantly less than what they 

would have been without the program
10

. 

Emission trading can be credit-based or allowance-based. The allowance-based system 

is a “cap-and-trade” one, meaning that the legislator sets a cap, a total maximum amount 

of CO2 or other GHG (greenhouse gases), and then injects in the market a proportional 

number of allowances, the price of whom is determined by supply and demand. Credits, 

instead, do not enter the market consequently to an allocation process, but are granted to 

over-complying emitters, who are then free to trade them in the secondary market. 

In other words, credit-based systems are schemes in which firms voluntarily decide to 

participate and they do so by reducing their emissions below a defined baseline, through 

the implementation of a project. In this way a proportional credit is generated and the 

developer of the reduction project can sell its credit, gaining a profit. The difficulty 

policymakers encounter, when designing a credit-based system, is defining which 

projects are worthy credits. In fact, it‟s not always easy to measure the effective 

emission reduction obtained through the implementation of the project, because it‟s not 

easy to tell what the emissions would have been, had the project not taken place. 

In allowance-based systems, instead, participation is mandatory. There‟s a cap on 

overall emissions defined by the policymaker and, according to that cap, a certain 

number of allowances is distributed among regulated sources through an allocation 

process. Each allowance corresponds to a certain amount of CO2 or other GHG. For 

example, in the EU ETS, which is a cap-and-trade system, every allowance gives the 

right to emit 1 ton of CO2, or the equivalent amount of N2O or PFCs. Each firm has to 

                                                           
10

 Stavins, (1998). What Can We Learn from the Grand Policy Experiment? Lessons from SO2 Allowance 

Trading. Journal of  Economic Perspectives, 12, 3, 69-88. 
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surrender allowances for every ton of GHG that they emitted in the previous year. The 

opportunity to trade the allowances ensures that only firms which incur higher 

abatement costs will surrender the permits instead of undertaking an emission reduction 

project, thus leading to the implementation of such projects where it is the most cost-

effective. 

As Anger (2008), Jaffe & Stavins (2008) and many other authors pointed out, linkage 

between different emission trading schemes would be desirable, since it would induce 

marginal economic benefits. In a linked trading environment, emitters would be able to 

meet their compliance obligations not only by acquiring emission permits in their 

domestic market, but also using allowances or credits from another system. In a joint 

trading system, the access to emission reduction options of developing countries would 

increase cost savings, and other potential benefits would be given by boosted market 

liquidity and, consequently, by a more stable carbon price. This proposal is currently 

under development, and the EU ETS is seen as an important building block for the 

construction of an international carbon market. In fact, the European Commission and 

Australia have agreed that their respective trading schemes, the EU ETS and the 

Australian Carbon Market, will be fully linked by mid-2018, and similar negotiations 

are under way on a possible linkage between the EU ETS and the Swiss ETS
11

. 

EUAs (European Union Allowances) can be traded in an organized exchange or in an 

OTC (over the counter) market. Generally speaking, in an ETS, carbon is traded as an 

energy commodity, even if there are some distinctive features that differentiate the 

carbon market from a commodity one. Just to name a few, there is only one underlying 

asset, the corresponding derivative market is not equally active nor liquid, and, most 

importantly, demand can vary, but the same cannot be said for supply, which is by 

definition fixed by the policymakers. 

 

 

 

                                                           
11

 European Commission (2013). The EU Emissions Trading System (EU ETS). European Union 

Publications Office. 
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1.3. The EU ETS 

 

The EU ETS is the largest carbon market in the world, accounting for over three-

quarters of international carbon trading and covering more than 11,000 power stations 

and manufacturing plants in the EU territory, as well as airline companies operating 

flights in the EU. The GHG covered are CO2 emitted from energy-intensive industry 

sectors and civil aviation, N2O (nitrous oxide) from the production of acids and PFCs 

(perfluorocarbons) from aluminum production. The cap is set in order to achieve, by 

2020, a 20% emission reduction with respect to 1990 levels. In this way, by that date, 

the maximum amount regulated firms will be allowed to emit will be 1,777 million 

MtCO2e. 

There is a number of ways in which allowances can be allocated among regulated 

emitters, and each of these ways has been object of studies (Harrison and Radov (2002), 

Cramton and Kerr (2002)). During the first years of functioning of the EU ETS, the 

preferred mode was the so-called “grandfathering”. This is essentially a free allocation, 

in which allowances are distributed free of charge, in proportion of each source‟s past 

emission. In this way, a firm will only buy allowances if, in a given year, it emits more 

than what it did during the previous year.  

Updating is another way of allocating permits, similar to grandfathering: allowances are 

distributed for free, the only difference with respect to the previous method is that the 

amount each firm will receive in the following period is updated on the basis of its 

production output: if its output in a given year is higher than the one of other firms in 

the industry, its allotted number of allowances will increase. 

The third mode in which permits can be allocated is auctioning. In this way businesses 

have to buy their necessary amount of allowances at a competitive auction. Starting 

from 2013, there has been an increasing share of allowances given away in this way in 

the EU ETS, even if free allocation is still implemented in some sectors. The EU goal is 

to phase it out completely by 2027, keeping auctioning as the only method of 

distribution.  
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Contrarily to updating, which is perceived as a less efficient allocation method
12

, 

grandfathering and auctioning have coexisted in EU ETS, and the reason the latter 

method has not been favored since the beginning, having actually been the former the 

preferred one in early years indeed,  is that free allocation does not harm firms in terms 

of the so-called “stranded costs”, and it‟s obviously preferred by regulated actors, since 

allowances are for free. However, as Cramton and Kerr (2002) point out, auctioning is 

more desirable since it provides greater incentive for innovation and reduced tax 

distortions. Furthermore, the ongoing shift toward auctioning is also beneficial in terms 

of transparency and coherence to the polluter pays principle we mentioned above. 

The development of EU ETS has been marked by three different phases:  

 1
st
 trading period: 2005-2007. This was the launching phase of the emission 

trading system. It didn‟t exactly start off with a bang, since the set cap was too 

high and, consequently, the price of the permits fell to zero in 2007 (in fact, 

banking was not allowed during this phase). 

 2
nd

 trading period: 2008-2012. In this phase, aviation was included among the 

regulated emitters, the non-compliance penalty was increased to € 100 per ton of 

CO2e (during the first phase it was € 40), the proportion of permits given away 

for free decreased to 90% and the cap was reduced by 6.5% for the period. 

Nevertheless, the global recession deeply hit the economy and, consequently, 

emissions, causing overcapacity and negatively affecting the carbon price.   

 3
rd

 trading period: 2013-2020. The system underwent some important reforms 

and the cap was set to be reduced by 1.74% per year. A progressive shift toward 

auctioning takes place. Carbon price remains low, with a surplus of over 2.1 

billion allowances at the end of 2013
13

, mainly due to the lingering economic 

crisis and high imports of international credits. 

 4
th

 trading period: 2021-2028. Starting from the beginning of this phase, the EC 

proposal is to increase the annual reduction of the cap from 1.74% to 2.2% 

                                                           
12

 Harrison, Radov (2002). Evaluation of Alternative Initial Allocation Mechanisms in a European Union 

Greenhouse Gas Emissions Allowance Trading Scheme. Report by National Economic Research 

Associates prepared for DG Environment, European Commission. 
13

 Source: European Commission, Structural Reform of the European Carbon Market, accessed January 8, 

2015, http://ec.europa.eu/clima/policies/ets/reform/ . 

http://ec.europa.eu/clima/policies/ets/reform/
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(World Bank, 2013). Another measure to be implemented in 2021 is the creation 

of a market stability reserve, in order to address the allowance surplus problem. 

 

Figure 1.3 illustrates the evolution of the EUA spot price during 2005-2014; this data, 

provided by Bloomberg
®
, will constitute the historical sample object of study in the 

following chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see in Figures 1.3 - 1.4, the huge spike marks the transition from the first to 

the second phase. In fact, as we said above, during the first trading period, the price 

declined sharply, due to the fact that the allowances could not be banked for use in 

phase two and the cap was set too high. This miscalculation of the effective number of 

permits needed was caused by the lack of reliable emissions data, forcing the 

policymakers to make the decision on the basis of best guesses. After the pilot phase, 

verified annual emissions data were produced, which helped setting the cap in a more 

accurate way.  

Fig. 1.3 EUA prices 2005-2014 (€/tCO2e) 



Chapter 1. The Emission Trading System 19 
 

During the second phase, thanks to the Linking Directive (2004/101/EC), the use of 

Joint Implementation and Clean Development Mechanism credits, respectively named 

ERUs and CERs, was allowed in order to meet compliance obligations, thus enlarging 

the set of options available to businesses. Banking of allowances was permitted, 

reducing the exposure by extending the time span in which permits could be used. 

However, the economic downturn deeply affected the price development in this phase, 

leading to declining and unstable prices. 

During the beginning of the third trading period, from January 2013 until February 2014, 

the EUA price was characterized by a fluctuating trend. This was caused by the debate 

surrounding the so-called “back-loading” proposal. In fact, phase three started carrying 

over a 2 billion allowance surplus, which grew further to 2.1 billion allowances by the 

end of 2013 (see Appendix B for comprehensive data on allocated allowances and 

effective emissions). This structural surplus had led to weak carbon prices and, in order 

to fix the situation at least in the short-term, the European Commission proposed a 

price-stabilization mechanism called “back-loading”. The back-loading consisted in 

postponing the auctioning of 900 million allowances from the beginning until the end of 

the third trading phase, in 2020, in order to allow demand to rise again. However, the 

proposal went through several votes and delays, causing market uncertainty and 

numerous ups and downs in the price development. For example, in April 2013, the 

Parliament rejection of the back-loading draft amendment caused the price to drop by 

40%
14

. Finally, the proposal was approved and put into legislation in February 2014, 

causing a positive response of the market and soaring prices.  

As a more long-term oriented solution, besides back-loading, the EU has also proposed 

another measure, namely a market stability reserve. This structural change would enable 

a realignment between demand and supply and would be implemented through an 

automatic and predictable mechanism, which wouldn‟t leave any need for political 

decisions, both addressing the surplus problem and increasing resilience to future 

shocks. Such a reserve is planned to be implemented by 2021 and the way it works is 

that it would be triggered when the surplus of allowances reached a certain level, 

                                                           
14

 Source: Reuters, EU Parliament Rejects Carbon Market Rescue Fix, April 16, 2013,  

http://www.reuters.com/article/2013/04/16/us-eu-ets-vote-idUSBRE93F0NT20130416 .  

http://www.reuters.com/article/2013/04/16/us-eu-ets-vote-idUSBRE93F0NT20130416
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withholding the excess allowances from the auction volumes and adding them to the 

reserve. 

 

 

 

 

  

Fig. 1.4 EUA log-returns 2005-2014 
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Chapter 2 

The Carbon Price Path 

 

Since the Black-Scholes model in 1973, the natural assumption for asset price behavior 

has usually been the Geometric Brownian Motion (GBM), which has provided the 

financial world with numerous insights into the functioning of markets and has been one 

of the fundamental building blocks for the modeling of asset prices. Assuming a GBM 

for an asset price is equivalent to considering that the logarithm of the underlying 

variable follows a generalized Wiener process.  

Proposition 2.1 The GBM equation is given by 

𝑑𝑆𝑡 = 𝛼𝑆𝑡𝑑𝑡 + 𝜍𝑆𝑡𝑑𝑊𝑡  

𝑆0 = 𝑠0 

whose solution is  

𝑆 𝑡 = 𝑠0𝑒
 𝛼−

1
2
𝜍2 𝑡+𝜍𝑊(𝑡)

 

where 𝑆𝑡  is the asset price, 𝑊𝑡  is a Wiener process, 𝛼 ∈ ℝ and 𝜍 > 0. 

As we can see, the GBM can be viewed as a linear ordinary differential equation, with a 

stochastic coefficient driven by white noise. 

If we further define 𝑋𝑡 ≔ log
𝑆𝑡

𝑆𝑡−1
  as the logarithmic return process, we can write the 

equation above as 

𝑋𝑡 = log 𝑆𝑡 − log 𝑆𝑡−1 =  𝛼 −
1

2
𝜍2 + 𝜍𝑊𝑡  
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which implies that the log-returns are independent and identically distributed normal 

random variables. 

To check whether our data on carbon emission certificates match such a model, we 

begin with a basic statistical analysis.  

First, we test whether a unit root is present in our time series. To do this, we implement 

the Augmented Dickey-Fuller test, which is a more sophisticated version of the original 

test proposed by Dickey and Fuller in 1979, using the Matlab
®
 built-in function 

adftest. This function assesses the null hypothesis of a unit root in a time series and 

returns the p-value of the test statistic. 

In particular, the model proposed is  

 

∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝛿1∆𝑦𝑡−1 + 𝛿2∆𝑦𝑡−2 + ⋯+ 𝛿𝑘∆𝑦𝑡−𝑘 + 𝑢𝑡  

 

where 𝑢𝑡  is the innovations process and 𝑦𝑡 , in our case, is the logarithmic price at time t. 

The null hypothesis is  𝛾 = 0, tested against the default alternative one, which is 𝛾 < 0 , 

that is, the process would be stationary (the other alternative hypothesis could be 𝛾 > 0, 

which would imply an explosive process, but this is not usually of interest, given that it 

would mean that the price may grow indefinitely).  

The result we obtain is 

 

 

 

 

meaning we cannot reject the unit-root null hypothesis, with a default 95% confidence 

level.  

After having tested that the price process is not stationary, we must check if the log-

returns are normally distributed, a natural consequence given by the prices following a 

GBM. To do this, we implement the Jarque-Bera test, through the Matlab
® 

function 

jbtest, which performs a Jarque-Bera test of the null hypothesis that the sample comes 
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from a normal distribution with unknown mean and variance. Specifically, the test 

statistic, which for large sample sizes has a chi-squared distribution with two degrees of 

freedom, is: 

𝐽𝐵 =
𝑛

6
 𝑠2 +

 𝑘 − 3 2

4
  

where n is the sample size, s represents the sample skewness, defined as 𝑠 = 𝐸  
 𝑋−𝜇 3

𝜍3
  

and k the sample kurtosis, defined as 𝑘 = 𝐸  
 𝑋−𝜇 4

𝜍4
 . The result we obtain is: 

 

 

 

 

meaning the hypothesis of normality is rejected. In fact, if we check the values of 

kurtosis and skewness of our time series, we can see that the former is definitely high 

compared to the value of the Gaussian distribution, which is 3, and the latter is far from 

zero, meaning the distribution is not symmetric. 

 

 

 

 

This higher peakedness about the mean and lack of shoulders, consequences of such a 

high kurtosis, can also be seen graphically (Fig.2.1). In Figure 2.1 we can also notice 

there‟s a value out of range, definitely farther from the rest of the observations, which is 

the main cause to such a high skewness. This is mainly due to the big jump in prices 

that occurred in September 2007, in concomitance with the beginning of the second 

trading period, after the drastic drop of the price of first-period allowances during phase 

1, which was mentioned in the previous chapter. 
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In fact, if we split the time series into two separate partitions, before and after the 

aforementioned jump, we obtain results which are still far from the ones we would 

obtain if the distribution was normal, but at least much more similar to what we‟re used 

to see in the scope of financial analysis (see also Fig. 2.2 and 2.3): 

 

 

 

 

The distribution is still really leptokurtic, but it‟s definitely more symmetric. This is a 

frequent phenomenon in financial time series; in fact, the presence of both volatility 

clustering (observed dependence of time-varying pattern of the volatility) and 

conditional non-normality can induce leptokurtosis
15

. 
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 Bai, Russel, Tiao, (2001). Kurtosis of GARCH and Stochastic Volatility Models with Non-normal 

Innovation. University of Chicago. 

Fig. 2.1 Histogram of EUA log-returns with fitted normal model. 
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Fig. 2.2 Histogram of EUA log-returns with fitted normal model, first partition (1
st
 phase) 

Fig. 2.3 Histogram of EUA log-returns with fitted normal model, second partition (2
nd

 and 3
rd

 phase) 
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In fact, such high values of kurtosis are no surprise at all in the scope of financial data 

analysis: typical values for T=5 minutes are 𝑘 ≃ 74  for USD/DEM exchange rate 

futures, 𝑘 ≃ 60  for USD/CHF exchange rate futures, 𝑘 ≃ 16  for the S&P500 index 

futures
16

, while, if considering daily data, the kurtosis value of the S&P500 index (SPX) 

has been found equal to 42.23, during the period 1980-2005
17

. 

If we try to reduce the frequency of returns, namely using monthly returns rather than 

daily ones, the empirical distribution exhibits both lower kurtosis and skewness, but still 

the Jarque-Bera test rejects the hypothesis of normality:  

 

which may represent an improvement compared to the previous values of 1741.40 and 

39.05, respectively. This result is consistent with the so called “aggregational 

Gaussianity”, by which, at the increasing of the time scale over which returns are 

computed, their distribution looks more and more normal. However, even on a monthly 

level, these values are still too far from the ones we would obtain if the distribution was 

Gaussian, suggesting that a GBM may not be the best assumption for our price data. 

A lot of studies on financial modeling show that the typical asset price behavior is far 

from being similar to a GBM. Instead, as Heyde and Liu point out
18

, log return data 

usually show: 

 a pronounced leptokurtic distribution; 

 occasionally skewed distributions; 

                                                           
16

 Cont, Potters, Bouchaud, (1997). Scaling in stock market data: stable laws and beyond - Scale 

Invariance and Beyond.  (Proc. CNRS Workshop on Scale Invariance, Les Houches, 1997)  ed. Dubrulle, 

Graner and Sornette (Berlin: Springer). 
17

 Kou, (2008). Jump-Diffusion Models for Asset Pricing in Financial Engineering. Handbooks in OR & 

MS, Vol 15, 73-116. 
18

 Heyde & Liu (2001). Empirical Realities for a Minimal Description Risky Asset Model. The Need for 

Fractal Features. Journal of the Korean Mathematical Society (5), 38, 1047-1059. 
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 a high volatility and heteroskedastic time series, quite unlike Gaussian white 

noise; 

 evidence of long range dependence structure in absolute and squared returns, 

even if log-returns are not serially correlated. 

These and other properties have been found to be common across a wide range of 

financial instruments and have been referred to as “stylized facts”. To name a few more, 

the aforementioned aggregational Gaussianity, the volatility clustering, the Taylor effect 

(see below) and the intermittency (presence of irregular bursts in time series of a wide 

variety of volatility estimators)
19

 all fall into the “stylized facts” category. As we will 

later see, these stylized facts, which are usually formulated in terms of qualitative 

properties, are quite constraining and make it really difficult to find even an ad hoc 

stochastic process which possesses the same set of features. 

The fact that, for various financial series, the sample autocorrelations of the absolute 

log-returns  𝑟𝑡 decline slowly as a function of lags was first discovered by Taylor in 

1986
20

. He also noticed that this slowly decaying autocorrelation behavior is more 

significant for absolute returns rather than for squared returns. This phenomenon was 

further investigated by Granger et al., who studied the behavior of the ACF of  𝑟𝑡 
𝜃 , 

finding that the sample ACF tends to assume higher values for θ=1. This “stylized fact” 

was later referred to as “Taylor effect” in a paper by Granger and Ding (1995)
21

, and 

states the following: 

𝑐𝑜𝑟𝑟  𝑟𝑛  ,  𝑟𝑛+𝑘   > 𝑐𝑜𝑟𝑟  𝑟𝑛  
𝜃 ,  𝑟𝑛+𝑘  

𝜃 ,        𝑓𝑜𝑟 𝑎𝑛𝑦 𝜃 ≠ 1 

In our case, while performing an analysis of autocorrelations on emission allowances 

data, we found that the log-returns are not significantly serially correlated (as we should 

expect indeed), but neither the absolute log-returns are (Fig. 2.4). 
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 Cont, (2001). Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues. Quantitative 

Finance, 1, 223-236. 
20

 Taylor, (1986). Modelling Financial Time Series. John Wiley & Sons, New York. 
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 Granger, Ding, (1995). Some Properties of Absolute Returns: an Alternative Measure of Risk. Annales 
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However, if we further investigate the presence of a so called Taylor effect on our data, 

we find that, even if a significantly high autocorrelation is not reached for θ=1, for 

lower values of θ the ACF values become quite high (Fig. 2.5). Specifically, we noticed 

that the maximum autocorrelation values are reached when θ ∈  0.4,0.5 . In Fig. 2.6 we 

reported the ACF for θ=0.5 and we can see that the values are definitely out of the 95% 

significance levels. This means that our sample follows a slightly different pattern from 

that of other financial data: a significant autocorrelation is present in the square root of 

the absolute log-returns, rather than in the absolute log-return. However, this is not too 

worrying since even Granger, in a later study
22

, found that also values of θ < 1 may lead 

to the absolute returns having this “long memory” property for some kind of financial 

assets (the exchange rates in his case) and Muller and Dacorogna (1998) confirmed this 

finding, assessing that  𝑟𝑡 
𝜃  is maximized with θ=0.5 for certain types of financial 

products
23

. The interesting fact however, which may differ from other authors‟ findings, 

is that the autocorrelations, instead of slowly decaying, in our case seem to follow a 

cyclical pattern. 

                                                           
22

 Granger, Ding, Spear, (1997). Stylized Facts on the Temporal and Distributional Properties of Daily 

Data from Speculative Markets. Department of Economics, UC San Diego. 
23 Müller, Dacorogna, Pictet, (1998). Heavy tails in high-frequency financial data. A Practical Guide to 

Heavy Tails: Statistical Techniques and Applications. Boston: Birkhaüser, 55-77. 

Fig. 2.4 Autocorrelations of absolute log-returns 



Chapter 2. The Carbon Price Path 29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Autocorrelation function of  𝐫𝐭 
𝛉 for θ=0.1, 0.2, …, 2.0 

Fig. 2.6 Autocorrelations of the square root of absolute log-returns 
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To explain the numerous empirical properties described above, various models have 

been proposed to substitute the framework assumed by Black and Scholes. To name a 

few, these include: generalized hyperbolic models, stochastic volatility and GARCH 

models, fractal Brownian motions, constant elasticity of variance (CEV) models, jump-

diffusion models, time-changed Lévy processes. Each one of them has its strengths and 

its shortcomings, and one must decide whether to gain in analytical tractability or 

consistency to reality. In the next chapter, we‟ll choose to focus on an alternative 

version of the Variance Gamma (VG) model as proposed by Madan, Carr and Chang 

(1998), created modifying a Lévy process in order to take into account the long range 

dependence of the asset return structure.  

Let‟s start by relaxing the assumptions of the Black and Scholes model: of course we 

first need to remove the Gaussian character of the log-returns and replace it with an 

unspecified distribution 𝐹 , depending only on the time span h. Then, we assume that 

the price path 𝑆𝑡  exhibits only jump discontinuities (the process is càdlàg, right 

continuous and with a left limit) and finally we still suppose (as in the GBM) that log-

returns on disjoint time periods are stationary and mutually independent. These are the 

conditions necessary to define a general Lévy process. For every infinitely divisible 

distribution we can define a Lévy process and such a process will be useful in finance if 

it‟s able to represent skewness and kurtosis adequately
24

. One of the first responses to 

generate non-normality using a Lévy process different from the GBM was the one by 

Merton (1976), who incorporated a Poisson process into the standard underlying 

process, creating the so called jump-diffusion process. Being the jump component 

modeled with a compound Poisson process, only rare event are captured by the model.  

There are other jump models which exhibit higher jump frequencies, such as the log 

stable model (LS) of Carr and Wu (2003) and the aforementioned VG model, and both 

of them allow an infinite number of jumps within any finite interval.  

The problem with Lévy processes, however, as with any other model for asset returns 

with independent increments, is that they cannot incorporate the volatility clustering 

effect. In fact, the particular property we acknowledged before, that the absolute log-

                                                           
24 Schoutens, W. (2003). Lévy Processes in Finance. Pricing Financial Derivatives. John Wiley & Sons, 

England. 
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returns are serially correlated, is not consistent with assuming independent increments, 

since the volatility of returns is correlated. This is why jump processes are usually 

combined with stochastic volatility processes. However, adding a stochastic volatility 

component makes it more difficult to obtain an analytical solution and results in a more 

complicated calibration process. 
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Chapter 3 

The VG Model 

 

The VG model, as it was first conceived, had finite moments and was a pure jump 

process with infinite activity and with no diffusion component. Most importantly, it was 

a Lévy process. Early forms of the VG model appear as far back as 1929, when Pearson, 

Jeffery & Elderton defined a density function which was a particular case of the VG 

density function, while in 1957 Teichroew obtained the VG pdf. However, the most 

important contribution to describing the VG process came from Madan & Seneta in 

1990. In their work, they presented a symmetric variance gamma process, with 

stationary and independent increments, which was in all respects a Lévy process. They 

also pointed out that the process could also be represented as the difference between two 

i.i.d. gamma variates, namely between the gains process and the losses process, both 

with the same mean and variance rates.  

The two parameter stochastic process studied in Madan & Seneta (1990) only controlled 

for volatility and kurtosis, while Madan, Carr & Chang (1998) generalized it, adding a 

third parameter to address skewness as well. 

Even if the independent increment VG models by Madan & Seneta (1990) and by 

Madan, Carr & Chang (1998) don‟t solve the problem of long range dependence, there‟s 

still a way to modify the models in order to incorporate dependence in increments: the 

solution is to time-change the Lévy process by a positive increasing process, 

independent of the original process, with dependent increments. In this way, the 

observed term structure of implied volatility can be accommodated and the model can 

explain the autocorrelation structure of the increments. This happens stochastically 

altering the clock on which the Lévy process is run, and one can see the original clock 
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as calendar time and the new random clock as activity time
25

. This difference arises 

from the volume traded and the flow of new price-sensitive information: at heavy 

trading hours, one hour on a clock, for example, may generate two hours worth of 

business activity. In this sense, if we randomize time 𝑡 → 𝑇𝑡  and we apply the random 

time change to 𝑋𝑡 → 𝑋𝑇𝑡  , with 𝑇𝑡 =  𝑣𝑠𝑑𝑠
𝑡

0
 , following our example, we have that 

𝑣𝑡 = 2. If we wisely choose the subordinator model, that is, the “time deformation” 

applied to the Lévy process, we can determine both the distribution of the log price 

increments and their correlation structure in a favorable way. 

This is what Carr, Geman, Madan & Yor (2003) did, time-changing the Brownian 

motion by a mean-reverting process, but even other authors tried to follow such a path 

in previous works. For example in 1982, McLeish studied the VG distribution and 

model, describing it as a normal multiplied by the square root of a gamma random 

variable, but also suggested a way for incorporating a long range dependence structure. 

In particular, he presented two alternatives for the Xt process. First, he considered a 

simple stationary first order autoregressive model: 

𝑋𝑡+1 =  𝐵𝑡𝑋𝑡 + 𝑒𝑡  

However, the correlation structure implied by this process displays short range 

dependence both for 𝑋𝑡  and for 𝑋𝑡
2 , and makes it impossible to obtain a situation in 

which the log-returns show no autocorrelation, while the squared log-returns do.  

The second alternative he considered is closer to the one we‟ll adopt in this thesis: 

𝑋𝑡 =  𝜏𝑡𝑍𝑡  

where Zt is the standard normal and τt is gamma distributed, they are both stationary and 

independent of each other. Here τt is what we previously defined “activity time” and it‟s 

a possibly internally dependent process, which we‟ll return to later on. This time, if Zt 

consists of normal Gaussian i.i.d. variables, the process has no apparent correlation of 

the first order, while the autocorrelation of squared or absolute log-returns can be 

statistically significant. 
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In the next section, in order to find the parameters useful to describe our emission 

allowance prices, we will rely on Finlay (2009) findings, following the procedure 

described there to fit the VG model to the financial data.   

 

 

3.1. Description of the model 

 

In his work, Finlay extended the Madan, Carr & Chang (1998) model in order to obtain 

a long range dependence structure through a subordinator model that is fairly similar to 

the one presented by McLeish (1982). 

A subordinator is an almost surely increasing process used to “time-change” other Lévy 

processes, which are independent of the subordinator
26

. In Finlay (2009), the price of 

the risky asset St follows a subordinated geometric Brownian motion: 

𝑆𝑡 = 𝑆0𝑒
𝜇𝑡+𝜃𝑇𝑡+𝜍𝐵 𝑇𝑡  

where μ, θ,σ ∈ ℝ , σ > 0 , B(t) is a standard Brownian motion independent of Tt , 

which is a positive non-decreasing random process with stationary but not necessarily 

independent increments and which is denoted by 𝜏𝑡 = 𝑇𝑡 − 𝑇𝑡−1over a time unit
27

. This 

means that the price log increments, as we defined them in chapter 2, are given by: 

𝑋𝑡 = log 𝑆𝑡 − log 𝑆𝑡−1 

= 𝜇 + 𝜃𝜏𝑡 + 𝜍 𝐵 𝑇𝑡 − 𝐵 𝑇𝑡−1   

𝒟
→𝜇 + 𝜃𝜏𝑡 + 𝜍  𝜏𝑡𝐵(0,1)                                              (3.1) 

 

The idea of having a subordinator is that of controlling the most important properties of 

                                                           
26

 Cont, Tankov, (2004). Financial Modelling with Jump Processes. Chapman and Hall/CRC Press, 

London. 
27

 Finlay, (2009). The Variance Gamma (VG) Model with Long Range Dependence. Doctoral Thesis, 

School of Mathematics and Statistics, University of Sidney. 
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Xt through the 𝜏𝑡  process. In fact, defining the 𝜏𝑡  dynamics in the proper way can lead 

to the particular degree of autocorrelation which provides the best fit to our data. 

As we can see, the activity time process 𝜏𝑡  shapes the covariances of the Xt process: 

𝐶𝑜𝑣 𝑋𝑡 ,𝑋𝑡+𝑘 = 𝐶𝑜𝑣 𝜃𝜏𝑡 + 𝜍  𝜏𝑡𝐵1 0,1 , 𝜃𝜏𝑡+𝑘 + 𝜍  𝜏𝑡+𝑘𝐵2(0,1)  

 

If 𝐵1 and 𝐵2 are Brownian motions and independent of each other, then 

= 𝐸 𝜃2𝜏𝑡𝜏𝑡+𝑘 + 𝜍𝜃 𝜏𝑡 𝜏𝑡+𝑘𝐵2 0,1 + 𝜍𝜃𝜏𝑡+𝑘 𝜏𝑡𝐵1 0,1 + 𝜍2 𝜏𝑡 𝜏𝑡+𝑘𝐵1 0,1 𝐵2 0,1  

− 𝐸 𝜃𝜏𝑡 + 𝜍 𝜏𝑡𝐵1 0,1  𝐸  𝜃𝜏𝑡+𝑘 + 𝜍 𝜏𝑡+𝑘𝐵2(0,1)  

= 𝐸 𝜃2𝜏𝑡𝜏𝑡+𝑘 − 𝐸 𝜃𝜏𝑡 𝐸 𝜃𝜏𝑡+𝑘  

= 𝜃2 𝐸 𝜏𝑡𝜏𝑡+𝑘 − 𝐸 𝜏𝑡 𝐸 𝜏𝑡+𝑘   

= 𝜃2𝐶𝑜𝑣 𝜏𝑡 , 𝜏𝑡+𝑘  

which means that the autocorrelation depends on the 𝜏𝑡  dynamics and in the symmetric 

case, that is θ=0, we have 

𝐶𝑜𝑣 𝑋𝑡 ,𝑋𝑡+𝑘 = 0. 

In regards to  𝑋𝑡 , always assuming the symmetric case and for 𝜇 = 0, we have: 

𝐶𝑜𝑣  𝑋𝑡 ,  𝑋𝑡+𝑘   = 𝐶𝑜𝑣  𝜍  𝜏𝑡𝐵1 0,1  ,  𝜍  𝜏𝑡+𝑘𝐵2(0,1)   

Since 

𝐶𝑜𝑣 𝑥𝑦, 𝑧𝑤 = 𝐶𝑜𝑣 𝑥, 𝑧 𝐶𝑜𝑣 𝑦,𝑤 + 𝐶𝑜𝑣 𝑥,𝑤 𝐶𝑜𝑣 𝑦, 𝑧 + 𝐸 𝑥 𝐸 𝑧 𝐶𝑜𝑣 𝑦,𝑤 +

𝐸 𝑥 𝐸 𝑤 𝐶𝑜𝑣 𝑦, 𝑧 + 𝐸 𝑦 𝐸 𝑧 𝐶𝑜𝑣 𝑥,𝑤 + 𝐸 𝑦 𝐸 𝑤 𝐶𝑜𝑣(𝑥, 𝑧) , 

⇒ 𝐶𝑜𝑣  𝑋𝑡 ,  𝑋𝑡+𝑘   = 𝜍2𝐸  𝐵1 0,1   𝐸  𝐵2 0,1   𝐶𝑜𝑣  𝜏𝑡 , 𝜏𝑡+𝑘  

=
2

𝜋
𝜍2𝐶𝑜𝑣  𝜏𝑡 , 𝜏𝑡+𝑘  

where the last passage derives from the following: 
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𝐸  𝑥  =   𝑥 
𝑒− 

𝑥2

2

 2𝜋
𝑑𝑥

+∞

−∞

= 

= 2 𝑥
𝑒− 

𝑥2

2

 2𝜋

+∞

0

𝑑𝑥 

= −
2

 2𝜋
 𝑒− 

𝑥2

2  
0

∞

=
2

 2𝜋
 

for 𝑥~𝑁 0,1 . 

Assuming that 𝐶𝑜𝑣  𝜏𝑡 , 𝜏𝑡+𝑘 ≠ 0 , we have thus obtained a null log-return 

autocorrelation and a significant autocorrelation for the absolute log-returns. The 

autocovariance of squared log-returns displays a non-zero value as well: 

𝐶𝑜𝑣 𝑋𝑡
2,𝑋𝑡+𝑘

2  = 𝐶𝑜𝑣   𝜇 +𝜃𝜏𝑡 + 𝜍  𝜏𝑡𝐵1 0,1  
2

,  𝜇 +𝜃𝜏𝑡+𝑘 + 𝜍  𝜏𝑡+𝑘𝐵2 0,1  
2

  

= 𝐶𝑜𝑣   𝜇2 + 𝜃2𝜏𝑡
2 + 𝜍2𝜏𝑡𝐵1

2 0,1 + 2𝜇𝜃𝜏𝑡 + 2𝜇𝜍 𝜏𝑡𝐵1 0,1 + 2𝜃𝜏𝑡

3

2𝐵1 0,1  ,

 𝜇2 + 𝜃2𝜏𝑡+𝑘
2 + 𝜍2𝜏𝑡+𝑘𝐵2

2 0,1 + 2𝜇𝜃𝜏𝑡+𝑘 + 2𝜇𝜍 𝜏𝑡+𝑘𝐵2 0,1 + 2𝜃𝜏𝑡+𝑘

3

2 𝐵2 0,1     

= 𝐸  𝜃4𝜏𝑡
2𝜏𝑡+𝑘

2 + 𝜃2𝜏𝑡
2𝜍2𝜏𝑡+𝑘𝐵2

2 0,1 + 2𝜃3𝜇𝜏𝑡
2𝜏𝑡+𝑘 + 2𝜃2𝜏𝑡

2𝜇𝜍 𝜏𝑡+𝑘𝐵2 0,1 +

2𝜃3𝜏𝑡
2𝜏𝑡+𝑘

3

2 𝐵2 0,1 + 𝜃2𝜍2𝜏𝑡𝜏𝑡+𝑘
2 𝐵1

2 0,1 + 𝜍4𝜏𝑡𝜏𝑡+𝑘𝐵1
2 0,1 𝐵2

2 0,1 +

2𝜍2𝜇𝜃𝜏𝑡+𝑘𝜏𝑡𝐵1
2 0,1 + 2𝜍3𝜇𝜏𝑡 𝜏𝑡+𝑘𝐵1

2 0,1 𝐵2 0,1 +

2𝜃𝜍2𝜏𝑡𝜏𝑡+𝑘

3

2 𝐵1
2 0,1 𝐵2 0,1 + 2𝜃3𝜇𝜏𝑡𝜏𝑡+𝑘

2 + 2𝜍2𝜇𝜃𝜏𝑡𝜏𝑡+𝑘𝐵2
2 0,1 + 4𝜇2𝜃2𝜏𝑡𝜏𝑡+𝑘 +

4𝜇2𝜍𝜃𝜏𝑡 𝜏𝑡+𝑘𝐵2 0,1 + 4𝜇𝜃2𝜏𝑡𝜏𝑡+𝑘

3

2 𝐵2 0,1  + 0 −  𝜃4𝐸 𝜏𝑡
2 𝐸 𝜏𝑡+𝑘

2  +

𝜃2𝜍2𝐸 𝜏𝑡
2 𝐸 𝜏𝑡+𝑘 + 2𝜇𝜃3𝐸 𝜏𝑡

2 𝐸 𝜏𝑡+𝑘 + 𝜃2𝜍2𝐸 𝜏𝑡 𝐸 𝜏𝑡+𝑘
2  + 𝜍4𝐸 𝜏𝑡 𝐸 𝜏𝑡+𝑘 +

2𝜃𝜇𝜍2𝐸 𝜏𝑡 𝐸 𝜏𝑡+𝑘 + 2𝜇𝜃3𝐸 𝜏𝑡 𝐸 𝜏𝑡+𝑘
2  + 2𝜇𝜃𝜍2𝐸 𝜏𝑡 𝐸 𝜏𝑡+𝑘 +

4𝜇2𝜃2𝐸 𝜏𝑡 𝐸 𝜏𝑡+𝑘    
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= 𝜃4𝐶𝑜𝑣 𝜏𝑡
2, 𝜏𝑡+𝑘

2  +  𝜍4 + 4𝜍2𝜇𝜃 + 4𝜇2𝜃2 𝐶𝑜𝑣 𝜏𝑡 , 𝜏𝑡+𝑘 

+  𝜃2𝜍2 + 2𝜃3𝜇  𝐶𝑜𝑣 𝜏𝑡
2, 𝜏𝑡+𝑘 + 𝐶𝑜𝑣 𝜏𝑡 , 𝜏𝑡+𝑘

2    

In the symmetric case, this reduces to: 

𝐶𝑜𝑣 𝑋𝑡
2,𝑋𝑡+𝑘

2  = 𝜍4𝐶𝑜𝑣 𝜏𝑡 , 𝜏𝑡+𝑘  

thus confirming that, if τt has a dependence structure, so does 𝑋𝑡
2 . 

In this thesis, we choose 𝜏𝑡  to follow a gamma (Γ) distribution, which results in the 𝑋𝑡  

increments having the VG distribution.  

Proposition 3.1 The probability density function of the gamma distribution is given by: 

𝑓Γ 𝑥;𝛼, 𝜆 =
𝜆𝛼

Γ 𝛼 
𝑥𝛼−1𝑒−𝜆𝑥 , 𝑥 > 0 

where α is the shape parameter, λ is the rate parameter and Γ(α) is the gamma function 

evaluated at α. 

The gamma function at the denominator is an extension of the factorial function to real 

numbers: 

Γ 𝛼 =  𝛼 − 1 !              𝑖𝑓 𝛼 ∈ ℤ+ 

Γ 𝛼 =  𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0

         𝑖𝑓 𝛼 ∈ ℝ≠0 − ℤ− 

In this case we choose the shape parameter to be equal to the rate parameter, namely 

𝛼 = 𝜆 , so that 𝐸 𝜏𝑡 = 1  and  𝑉𝑎𝑟 𝜏𝑡 =
1

𝛼
 . In fact, the mean and variance for a 

gamma distributed variable are equal, respectively, to the following formulas: 

𝐸 𝑥 =  𝑥
𝜆𝛼

Γ 𝛼 

∞

0

𝑥𝛼−1𝑒−𝜆𝑥𝑑𝑥 

=
𝜆𝛼

Γ 𝛼 
 𝑥𝛼𝑒−𝜆𝑥𝑑𝑥

∞

0

 

Now, letting 𝑦 = 𝜆𝑥 so that 𝑑𝑦 = 𝜆𝑑𝑥, we have: 
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=
𝜆𝛼

Γ 𝛼 
 

𝑦𝛼

𝜆𝛼
𝑒−𝑦

𝑑𝑦

𝜆

∞

0

 

=
1

𝜆Γ 𝛼 
 𝑦𝛼𝑒−𝑦𝑑𝑦

∞

0

 

=
Γ 𝛼 + 1 

𝜆Γ 𝛼 
=

𝛼

𝜆
 

And 

𝑉𝑎𝑟 𝑥 = 𝐸 𝑥2 − 𝐸 𝑥 2 =  𝑥2
𝜆𝛼

Γ 𝛼 
𝑥𝛼−1𝑒−𝜆𝑥𝑑𝑥

∞

0

−
𝛼2

𝜆2
 

=
𝜆𝛼

Γ 𝛼 
 𝑥𝛼+1𝑒−𝜆𝑥𝑑𝑥

∞

0

−
𝛼2

𝜆2
 

=
𝜆𝛼

Γ 𝛼 
 

𝑦𝛼+1

𝜆𝛼+1
𝑒−𝑦

𝑑𝑦

𝜆

∞

0

−
𝛼2

𝜆2
 

=
Γ 𝛼 + 2 

𝜆2Γ 𝛼 
−
𝛼2

𝜆2
=

𝛼 𝛼 − 1 − 𝛼2

𝜆2
=

𝛼

𝜆2
 

If 𝜏𝑡  follows the gamma distribution and Xt  is defined according to equation (3.1), then 

Xt has the following Variance Gamma pdf (see Madan, Carr, Chang (1998) and 

Finlay(2009)): 

𝑓𝑉𝐺 𝑥 =  
2

𝜋

𝜆𝛼𝑒
 𝑥−𝜇 𝜃

𝜍2

𝜍Γ 𝛼 
 

 𝑥 − 𝜇 

 𝜃2 + 2𝜆𝜍2
 

𝛼−
1
2

𝐾
𝛼−

1
2
 
 𝑥 − 𝜇  𝜃2 + 2𝜆𝜍2

𝜍2
  

for 𝑥 ∈ ℝ and 

𝐾𝜂 𝜔 =
1

2
 𝑧𝜂−1𝑒

− 
𝜔
2
 𝑧+

1
𝑧
 
𝑑𝑧                𝜂 ∈ ℝ,𝜔 > 0

∞

0

 

which is a modified Bessel function of the second kind. 
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3.2. Model calibration 

 

We now proceed with the estimation of the parameters, choosing the maximum 

likelihood estimation (MLE) technique to fit the VG model to our EUA financial data, 

that is, we maximize  log 𝑓𝑉𝐺  𝑋𝑡 
𝑛
𝑡=1  as a function of the parameters. 

The results of the parameter estimation are shown in Table 3.1. 

 

  

Parameter Estimated value 

𝜍  0.0479 

𝜇  - 4.61 
.
 10 

-11
 

𝜃  8.96 
.
 10 

-4
 

𝛼  0.188 

 

Table 3.1. Estimated parameters for data fitted via MLE using a VG model. 

 

One could note that there is something quite questionable about this result: every 

parameter shows a reasonable value but one: the α value is quite low. In fact, we should 

recall that 𝐸 𝜏𝑡 = 1 and 𝑉𝑎𝑟 𝜏𝑡 =
1

𝛼
 , and such a low value for α would imply a 

variance of about 5.3 for our activity time process, which is extremely high. In spite of 

that, if we consider that the variance of our activity time process 𝜏𝑡  is sort of a variance 

of the variance of the process Xt, since 𝑋𝑡

𝒟
→𝜇 + 𝜃𝜏𝑡 + 𝜍  𝜏𝑡𝐵(0,1) , then even if 

𝑉𝑎𝑟 𝜏𝑡  equals about 5.3, this should not be too worrying. As regards the drift, 𝜏𝑡  is 

present as well and affects the overall mean of the process 𝑋𝑡 , but since it is multiplied 

by a very low number, 𝜃 , the effect of a very high variance of 𝜏𝑡  is not so overwhelming. 

If we now compare graphically our data to the VG distribution, using the estimated 

parameters, we can see the VG pdf provides a much better fit than the Gaussian 

distribution we analyzed before (Figures 3.1 - 3.2). 
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Nevertheless, performing a 𝜒2 goodness of fit test, the  𝜒2 statistic returns an extremely 

high value of 1.1247e+30, which would of course make us reject the null hypothesis at 

any given significance level. This is because of the one outlier we evidenced before, due 

to the jump that occurred at the end of the first trading phase. In fact, the Pearson‟s chi 

squared test statistic works comparing the observed frequencies (Oi) to the theoretical 

ones (Ti) , according to the following formula: 

𝜒2 =  
 𝑂𝑖 − 𝑇𝑖 

2

𝑇𝑖

𝑛

𝑖=1

 

The resulting value is then compared to the critical value from a 𝜒2 distribution, since 

the statistic asymptotically approaches a 𝜒2  with as many degrees of freedom as the 

number of bins (n) minus the number of parameters of the fitted distribution. Since the 

outlier has observed frequency 1, but lies very far from the rest of the data, its 

corresponding theoretical value tends to zero, consequently causing the explosion of the 

test statistic. We can choose to exclude this value from the computation of the Pearson‟s 

test, in order to see if the VG distribution fitted to our data is an acceptable model. The 

result we obtain is the following: 

 

Since the critical value at a 95% confidence level is above the test statistic value, we 

cannot reject the null hypothesis and a VG distribution with such parameter values as 

the ones we estimated before is a good approximation for our data, thus confirming our 

graphical perception. 
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Fig. 3.1 Empirical data compared to the fitted VG pdf obtained with the estimated parameters 

Fig. 3.2 Empirical data vs. fitted VG density, zoom-in on central data 
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Since the sample size is quite large (N=2260), we can use a normal approximation on 

the errors distribution in order to compute the confidence intervals on the parameters. 

 

95% Confidence Interval 

𝜍  [0.0478; 0.0480] 

𝜇  [-1.2624 
.
 10

-7
; 1.2614 

.
 10

-7
] 

𝜃  [0.000837; 0.000955] 

𝛼  [0.1877; 0.1882] 

 

Table 3.2. Confidence intervals for the fitted VG parameters. 
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Chapter 4 

The Brennan-Schwartz model 

 

As we saw in the previous chapter, the VG model is very suitable for fitting the 

distribution of EUA prices. However, it is quite complex when it comes to analytical 

tractability. In this chapter, we will then analyze the same sample of EUA prices using 

another process, the Brennan-Schwartz (BS) one, simpler and more tractable, and then 

compare the convenience of using one model rather than the other. 

  

4.1. Description of the model 

The Brennan-Schwartz process belongs to the mean-reverting family. Such processes 

are named after the fact that they tend to drift towards its long-term mean value, and 

they do this with a certain speed of reversion. Mean reverting processes can take various 

forms, the one of the model in consideration is: 

𝑑𝑃𝑡 = 𝑘 𝜃 − 𝑃𝑡 𝑑𝑡 + 𝜍𝑃𝑡𝑑𝑧 

where 𝑃𝑡  is the price in EUR of one ton of CO2 (price of one EUA), 𝑘 is the speed of 

reversion toward the mean, 𝜃 is the long run mean price level, 𝜍 is the volatility of the 

process and 𝑑𝑧 is the increment of a Wiener process. 
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This process is the so called Brennan-Schwartz process, from the names of the two 

authors who first used it to describe the interest rate path (Brennan, Schwartz (1980)
28

), 

and it is the mean reversion process also chosen by Tsekrekos (2009) and Sarkar (2003).   

Other choices belonging to the mean-reverting family could have been the famous 

Ornstein-Uhlenbeck (OU) process (or Vasicek model), 𝑑𝑃𝑡 = 𝑘 𝜃 − 𝑃𝑡 𝑑𝑡 + 𝜍 𝑑𝑧, or 

its geometric version,  𝑑𝑃𝑡 = 𝑘 𝜃 − 𝑃𝑡 𝑃𝑡𝑑𝑡 + 𝜍𝑃𝑡𝑑𝑧, for example. However, the latter 

seems a less plausible process than the chosen one, since its drift is not a homogeneous 

function of degree one of the pair (𝑃𝑡 , 𝜃), as we would expect from a price process. In 

fact, if 𝑃𝑡  is the price of one EUA, we expect that a number n of allowances reverts to a 

mean level n𝜃. As for the former, the drift is indeed a homogeneous function of degree 

one of  the pair (𝑃𝑡 , 𝜃), but the diffusion term is not. Instead, we want the variance to 

grow with 𝑃𝑡 . Our selected process satisfies such properties. 

 

4.2. Model calibration 

As before, we must evaluate the parameters characterizing the price dynamics, using the 

maximum likelihood estimation method. In this case, the drawback of the selected 

process is that, unlike the OU process or the VG process, its transition density does not 

have a closed-form analytic expression. As a result, the exact ML method cannot be 

applied. To address this problem, we can first use an Euler scheme to approximate the 

general diffusion process by a discrete time model, and then apply the approximate ML 

method in order to find the parameter estimates.  

According to the Euler scheme, the corresponding discrete model of our selected 

process is: 

𝑃𝑖 = 𝑃𝑖−1 + 𝑘 𝜃 − 𝑃𝑖−1 ∆𝑡 + 𝜍𝑃𝑖−1 ∆𝑡 𝜂𝑖  

where 𝜂𝑖~𝑁(0,1) . This implies that the transition probability density of 𝑃𝑖  has the 

following expression: 

                                                           
28

 Brennan, Schwartz (1980). Analyzing Convertible Bonds. The Journal of Financial and Quantitative 

Analysis, 15, 4, Proceedings of  15
th

 Annual Conference of the Western Finance Association, June 19-21, 

1980, San Diego, California, 907-929. 



Chapter 4. The Brennan-Schwartz Model 47 
 

𝑝 𝑃𝑖 𝑃𝑖−1 ≈
1

 2𝜋𝜍𝑖
2

exp 
− 𝑃𝑖 − 𝜇𝑖 

2

2𝜍𝑖
2   

where 𝜇𝑖 = 𝑃𝑖−1 + 𝑘 𝜃 − 𝑃𝑖−1 ∆𝑡  and  𝜍𝑖 = 𝜍𝑃𝑖−1 ∆𝑡 . 

Now, according to the approximated ML method, and defining the vector of parameters 

by 𝚲 , the optimal vector of parameter estimators 𝚲* is found by maximizing over 𝚲 the 

joint density 𝓵 𝚲 , equal to 

𝓵 𝚲 = 𝑝 𝑃0 𝚲  𝑝 𝑃𝑖 𝑃𝑖−1;𝚲 

𝑁

𝑖=1

 

or, equivalently, by minimizing the function 𝑙𝑜𝑔𝓵 𝚲 = − ln 𝓵 𝚲 , given by 

𝑙𝑜𝑔𝓵 𝚲 = − ln 𝑝 𝑃0 𝚲 − ln 𝑝 𝑃𝑖  𝑃𝑖−1;𝚲 

N

i=1

 

Substituting, 

𝑙𝑜𝑔𝓵 k, θ,σ; P0,… , PN =  ln 2πσi
2

N

i=0

+  
 Pi − μi 

2

2σi
2

N

i=0

= 

=
1

2
 ln(2πσ2Pi−1

2 ∆𝑡)

N

i=0

+  
 Pi − Pi−1 − k 𝜃 − 𝑃𝑖−1 ∆𝑡 

2

2σ2Pi−1
2 ∆𝑡

N

i=0

= 

=
N

2
lnσ2 +

1

2
 ln(2πPi−1

2 ∆𝑡)

N

i=0

+
1

2σ2
 

 Pi − Pi−1 − k 𝜃 − 𝑃𝑖−1 ∆𝑡 
2

Pi−1
2 ∆𝑡

N

i=0

 

Now, to minimize this function, we must solve the following system of equations: 

 
 
 

 
 
𝛿𝑙𝑜𝑔𝓵

𝛿𝑘
= 0

𝛿𝑙𝑜𝑔𝓵

𝛿𝜃
= 0

𝛿𝑙𝑜𝑔𝓵

𝛿𝜍
= 0

  

Which leads to the following parameter estimators: 
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𝜍 =  
1

𝑁
 

 Pi − Pi−1 − 𝑘  𝜃 − 𝑃𝑖−1 ∆𝑡 
2

Pi−1
2 ∆𝑡

𝑁

𝑖=0

 

𝑘 =

 
 Pi − Pi−1  𝜃 − 𝑃𝑖−1 

Pi−1
2

N
i=0

 
 𝜃 − 𝑃𝑖−1 

2
∆𝑡

Pi−1
2

N
i=0

 

𝜃 =

 
 Pi − Pi−1 𝑘 

Pi−1
2 +  

Pi−1𝑘 
2∆𝑡

Pi−1
2

N
i=0

N
i=0

 
𝑘 2∆𝑡
Pi−1

2
N
i=0

 

However, this method has a drawback: the Euler discretization offers a good 

approximation only when the frequency of data recording is at least daily or higher. In 

fact, the transition density obtained through the Euler approximation and the real 

transition density are equal for ∆𝑡 → 0  only, and thus it would be desirable to 

implement a bias reduction technique, such as the Indirect Inference (II) method
29

.  

Nevertheless, in our case, the error due to the application of the Euler scheme (the so 

called discretization bias) should be quite low, given the daily frequency and the large 

sample size, thus we didn‟t perform a bias reduction procedure, considering the 

estimates we found through the approximate ML method to be enough for the purposes 

of this chapter.  

The estimators obtained through the distribution fitting procedure are reported in Table 

4.1.
30

 

 

 

                                                           
29

 The II method is a simulation-based procedure, first introduced by Gouriéroux, Monfort and Renault 

(1993), which makes it possible to overcome the inconsistency problem of the approximate ML method, 

while keeping the good asymptotic properties typical of ML estimators (see Phillips, Yu (2006) as a 

reference). 

30
 While performing the distribution fitting, we didn‟t take into consideration the whole sample of data, 

we just considered the second and third trading periods, thus avoiding the jump in prices which occurred 

between the first and second trading periods.  
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𝒌  𝜽  𝝈  

   

0.3640 8.38 0.5195 

 

Table 4.1 Carbon BS parameter estimators 

 

 

Fig. 4.1 EUA spot prices, theoretical PDF plotted against histogram of empirical data. 

 

Fig. 4.2 EUA spot prices, theoretical CDF plotted against empirical one. 
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4.3. VG vs. BS comparison 

 

In order to compare the models, let us first calibrate them on the same sample data. 

Since the BS model is not able to adequately explain the jump in prices occurring 

between the first and second ETS trading periods (the estimator of σ would return the 

incredibly high value of 87.62), we calibrate both models on the price data following 

the jump. The BS estimators are the ones reported in Table 4.1, while the VG estimated 

parameters are the following: 

 

    

𝝈  𝝁  𝜽  𝜶  

    

0.0318 4.60e-16 -7.55e-04 0.830 

 
Table 4.2 Carbon VG parameter estimators 

 

 

In order to compare different models, there are a number of model selection criteria, 

which consider goodness-of-fit and parsimony in order to declare which model is the 

best. Goodness-of-fit is generally determined using the likelihood approach, or an 

approximation of this, leading to a chi-squared test; parsimony is defined by the number 

of parameters in the model. In fact, additional parameters may lead to adapt the model 

shape to better fit the data, but sometimes too many parameters could lead to overfitting, 

causing poor predictive performance, since the model failed in generalizing the data 

trend.  

A widely used model selection technique is the Bayesian Information Criteria (BIC), 

defined as: 

𝐵𝐼𝐶 = −2 𝑙𝑜𝑔𝐿 + 𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚 ∙ log(𝑛) 

where 𝑙𝑜𝑔𝐿  is the maximized log-likelihood function, 𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚  is the number of 

parameters in the model and 𝑛 is the sample size. The “best” model has the lowest BIC. 
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In fact, having the lowest BIC means having the maximum likelihood and the least 

penalty for the number of parameters in the model.  

The problem, though, is that, as obviously most criteria demand, the numerical values of 

the dependent variable must be identical for all models being compared. Instead, in our 

case, the VG model applies to log-returns, while the BS model explains prices. This 

means that, when evaluating the likelihood function, we will get values on different 

scales, which lead to BICs that cannot be compared. In fact, starting from the log-

returns VG pdf, we are not able to derive the analytic expression of the prices pdf, and 

vice-versa as for the BS. Instead, what we can do is trying to compare the two models to 

another one, for which we know the distribution of both prices and log-returns. Such a 

model is, for example, the GBM. In the GBM, prices distribute log-normally, while log-

returns have a Gaussian distribution. The results of the comparison are reported in Table 

4.3. 

 

    

 K logL BIC 
    

VG 4 3687.40 -7345 

GBM 2 3438.40 -6862 

    

BS 3 -585.35 1193 

GBM* 2 -606.39 1228 

 

Table 4.3 Number of parameters (K), log-likelihood (logL) and Bayesian Information Criteria (BIC) for 

the EUAs. Note: in GBM, the logL function is evaluated on the log-returns distribution, while in GBM* 

the logL function is evaluated on the price distribution. 

 

 

As we can see,  when the likelihood function for GBM is evaluated on log-returns, the 

BIC value is comparable to the one we obtain when log-returns are modeled using a VG, 

and the same is valid when looking at BIC values found using BS and a normal 

distribution for prices. Looking at BIC values, both VG and BS perform better than the 

GBM, since their values are lower. However, even if we can tell they are both better 

than the GBM, we cannot rank them using BIC.  
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A possible idea in order to get a feeling of the models‟ performances is to try to forecast 

prices using both models through a Monte Carlo simulation. This can be done by 

creating a matrix whose rows represent different simulated price paths, and then taking 

the mean of each column in order to get a single path as a result of all the possible 

trajectories. Then, we analyze the root mean square error (RMSE), a measure of the 

difference between observed values and predicted ones, which should be as small as 

possible. 

The results of the forecast are reported in Fig. 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 EUA empirical prices vs. forecasted ones, simulated with a VG, BS, GBM process, 

respectively. 
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 RMSE 

  

VG 2.84 

BS 1.36 

GBM 4.75 

 
Table 4.4 Root mean square error (RMSE) for VG, BS, GBM processes 

 

As we can see from Fig. 4.3, both VG and BS seem to predict the future trend of prices 

much better than the GBM. However, the RMSE for BS is slightly lower than the one 

for VG, suggesting a mild preference towards the BS model, when it comes to the 

ability of effectively forecasting data. 

In conclusion, both models have their strengths and drawbacks. The VG model is able 

to accurately explain the distribution of log-returns, even when the process is fitted on 

the whole data sample, despite the shift in prices occurring between the first and second 

trading phase. However it is a quite complex model, and its analytical tractability is 

limited when it comes to solving option pricing problems. On the other hand, the BS 

model is not able to explain particular events such as large jumps occurring in prices, 

but it is simpler and more tractable. It also seems to be able to predict prices slightly 

more accurately.  
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Chapter 5 

A real option valuation for a power 

plant switch 

 

5.1. The investment project 

 

In what follows, we will now focus on a real option problem, as a concrete application 

of the choice a firm faces when entering an ETS.  

Our basic setting considers an oil-fired power plant with 10,000 kW capacity, located in 

Italy, which, under the current legislation, is obliged to surrender a certain amount of 

allowances, proportional to the tons of CO2 it emits. Such a firm can thus choose 

whether to submit to the ETS framework or to completely switch the production process 

in order not to be subject to the aforementioned regulation anymore. Were it to choose 

this second option, a possible alternative to a fossil fuel facility could be to invest in a 

photovoltaic (PV) plant producing the same amount of electricity as the initial oil-fired 

plant. In this way, the electricity output would be the same, but the firm wouldn‟t have 

to face the cost of buying the required EUAs every year. This investment option the 

firm has is called a “real option” and its value can be computed in a very similar fashion 

to the way in which financial options‟ values are determined. 

In order to support the relevance of the choice of the industry sector we‟ve made, 

namely the sector of electricity production by means of fuel combustion, we refer the 

reader to the table reported in Appendix B.2, which shows the percentage of verified 

emissions produced by this sector with respect to the total emissions generated by all 

industry sectors. As we can see from the table, in each country the emission quota 
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imputable to this sector is fairly large with respect to the other ones (including, among 

others, production of coke, ferrous metals, aluminum, pulp, paper, pig iron and steel, 

nitric acid, ammonia and other chemicals, manufacture of glass, ceramics and mineral 

wool) , with Italy being no exception.  

 

5.1.1. The oil-fired plant 

These are the hypothesis we considered for our basic setting: 

Hp 1. The capacity of the oil-fired power station is 10 MW
31

; 

Hp 2. The plant is located in Italy; 

Hp 3. There‟s no initial investment (the oil-fired plant is already in function); 

Hp 4. The electricity price is denoted by 𝐸(𝑡), which is the price in EUR for each  

      kWh of electricity; 

Hp 5. The residual lifetime of the plant is 25 years; 

Hp 6. The capacity factor
32

 is assumed equal to 80%
33

; 

Hp 7. The efficiency of the plant is equal to 40%
34

. 

                                                           
31

 This capacity can appear  rather low for an oil plant. The choice of such a value is for practicality 

reasons, so that it can be comparable to a big PV plant. On the other hand, the capacity choice does not 

really make the difference in our model, since the cost of kWh for PV plants above 1 MW is only slightly 

dependent on the plant dimensions. 
32

 The capacity factor is the ratio of a power station‟s actual generation to its maximum potential 

generation. Thus, it depends on the percentage of time a fleet of generators is run. 
33

 This value represents the theoretical capacity factor of an oil-fired power station in good condition. The 

actual capacity factor of generators using petroleum is usually much lower, in a range of 10-20% over the 

2014-2015 period (see http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_6_07_a as 

a reference for US utilities). This is due to the fact that, over the world, oil-fired generators are usually 

kept as peaking generators, while other types of generators, like nuclear ones, are used as baseload units, 

because of their very low variable costs. In our hypothetical scenario, oil-fired plants are for baseload 

production and thus the capacity factor is the theoretical one. In Italy there are some examples of fuel oil 

plants which have been running in full swing over the recent years: the Livorno Marzocco powerplant, 

Tuscany, operating since 1965, in 2007 had a capacity factor of 79% (see 

http://enipedia.tudelft.nl/wiki/Livorno_Powerplant) . 
34

 The efficiency of a power station is a percentage measure given by the ratio between the electricity 

produced and the heat energy needed in order to produce it. According to IEA (2008), the average 

efficiency of oil-fired electricity production in Italy, over the 2001-2005 period, was 41%. Such a value 

depends on the technology used and on the type of plant, where more advanced plants, such as the 

http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_6_07_a
http://enipedia.tudelft.nl/wiki/Livorno_Powerplant
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Given such hypothesis, we can compute the total electricity produced each year by the 

plant, which is: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 10,000 𝑘𝑊 ∙ 0.8 ∙ 365 ∙ 24 = 7.01 ∙ 107𝑘𝑊/𝑦𝑒𝑎𝑟 

Using this data and the efficiency factor we stated above, we can then find the total 

energy needed every year in order to produce the aforementioned amount of electricity: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑛𝑒𝑒𝑑 =
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
=

7.01 ∙ 107𝑘𝑊/𝑦𝑒𝑎𝑟

0.4
= 1.75 ∙ 108 𝑘𝑊/𝑦𝑒𝑎𝑟 

To gain insight on how much fuel is actually consumed each year, we should consider 

that each different material has a peculiar calorific value, that is the specific amount of 

energy produced by the complete combustion of one unit mass of such material. Crude 

oil, which is what we‟re combusting in our oil plant in order to obtain electricity, has a 

calorific value of  about 42.5 MJ/kg, namely 11,800 kWh/ton. Using this data, we can 

compute the number of tons of crude oil which is employed each year: 

𝐵 = 𝑡𝑜𝑛𝑠 𝑜𝑓 𝑜𝑖𝑙 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑐𝑎𝑙𝑜𝑟𝑖𝑓𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑖𝑙
=

1.75 ∙ 108

11,800
= 1.48 ∙ 104𝑡𝑜𝑛𝑠/𝑦𝑒𝑎𝑟 

Now that we know the total consumption of oil per year, we must find the 

corresponding quantity of CO2 which is emitted in response to such a consumption.  

The default CO2 emission factor for crude oil, as stated by IPCC (Intergovernmental 

Panel on Climate Change)
35

, is 73,300 kg/TJ. Since 1 kWh equals 3.6 MJ, we have: 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 73.3 𝑡𝑜𝑛𝑠 𝑇𝐽 = 73.3 ∙ 10−6 𝑡𝑜𝑛𝑠 𝑀𝐽 = 

= 73.3 ∙ 10−6 ∙ 3.6 𝑡𝑜𝑛𝑠 𝑘𝑊 = 2.64 ∙ 10−4 𝑡𝑜𝑛𝑠/𝑘𝑊  

Multiplying this factor by the energy consumption we found above, we obtain the total 

CO2 emissions per year produced by our plant: 

𝑋 = 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 = 46,200 𝑡𝑜𝑛𝑠 

                                                                                                                                                                          
combined cycle ones, experience higher efficiency rates compared to more traditional technologies, such 

as the steam generator. For ease of calculation, we took 40% as a proxy. 
35

IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National 

Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K. 

(eds). Published: IGES, Japan.  
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To complete the overview of our oil-fired plant, we must point out that, in order to 

properly function, it will require a certain amount of operating costs, 𝑂𝑝, which we 

assumed equal to 0.5 million € per year
36

. Finally, if we decide to shut down the facility, 

we will incur some decommissioning expenses
37

 equal to c1 = 1 million €. 

 

5.1.2. The PV plant 

Our environmentally friendly alternative to fossil fuel combustion, in order to produce 

electricity, is to invest in a PV plant. In order to obtain the same yearly output
38

 we had 

before, we want the annual amount of electricity produced to be equal to 7.01 
.
 10

7
 kWh. 

The average PV plant lifetime, based on current technical level, is Tpv = 25 years
39

, thus 

the total electricity produced is equal to: 

𝑄 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = 7.01 ∙ 107𝑘𝑊 ∙ 25 = 1.75 ∙ 109𝑘𝑊 

In order to properly define the cost necessary to build the plant, we must now introduce 

what is called Levelised Cost Of Electricity (LCOE).  

 

 

 

 

                                                           
36

 According to the EIA website (http://www.eia.gov/electricity/annual/html/epa_08_04.html), the 

operation and maintenance expenses for oil plants over the 2003-2013 period varied in a range of 0.53-

0.89 $cent/kWh. Using the average value expressed in euro-cents/kWh and considering the total 

electricity output of our plant, we obtained a value of about 450,000 € per year. We took EUR 0.5 million 

as a proxy.  
37

 As for decommissioning costs, since there is not much disclosure about the actual expenses, we rely on 

a decommissioning plan of a biomass cogeneration plant in Foggia, Italy (available at 

http://www.ambiente.provincia.foggia.it/attachments/article/201/10-625-SAG-S-

002_01_%20Relazione%20Dismissione.pdf). Even if it is a type of plant different from the one we are 

analyzing, the cost items in case of divestment are very similar. The scope of the expense depends very 

much on the size of the plant, related to the capacity. The biomass plant has a 25 MW capacity, while our 

plant has less than half the capacity. Since the estimated decommissioning cost of the Foggia plant is 

2,300,000 €, we estimated a 1 million € expense for our plant.  
38

 In order to get the same output we produced before in terms of electricity, we must install a capacity far 

superior to the one we had previously (10 MW). In fact, the theoretical capacity factor for PV plants is 

significantly lower than the one of oil-fired plants, on the order of 10-20% as for Italy, depending on the 

location, solar insolation and weather. 
39

 IEA (2014). Technology Roadmap: Solar Photovoltaic Energy. OECD/IEA, Paris.  

http://www.eia.gov/electricity/annual/html/epa_08_04.html
http://www.ambiente.provincia.foggia.it/attachments/article/201/10-625-SAG-S-002_01_%20Relazione%20Dismissione.pdf
http://www.ambiente.provincia.foggia.it/attachments/article/201/10-625-SAG-S-002_01_%20Relazione%20Dismissione.pdf
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5.1.3. The Levelised Cost Of Electricity 

The LCOE is an indicator summarizing the various costs of building and operating a 

generating plant over an assumed financial life.  

Its value is usually time-dependent, since the cost of electric and other components, fuel, 

financing and maintenance varies with time. This is especially true in our PV plant case, 

since PV technology benefits from the so called learning curves. Such curves, in 

economics, were first theorized by Wright (1936) and explain the behavior of one 

economic variable with respect to another according to a power law, namely varying the 

dependent variable (proficiency) as a power of the independent one (experience). If we 

use the unitary cost as a proxy for cumulated experience and consider cumulated 

production as dependent variable, inverting the relation we have: 

𝐶𝑛 = 𝐶0𝑁
𝑎  

where 𝐶𝑛  is the n
th 

unit cost, 𝐶0 is the cost necessary to produce the first unit, 𝑁 is the 

cumulated production and 𝑎 is the learning curve coefficient (typically 𝑎 < 0).  

If we consider our LCOE as the unit cost 𝐶𝑛 , the pattern according to which it decreases 

with time can be seen as a decreasing exponential, as shown in Biondi and Moretto 

(2013)
40

. We thus obtain: 

𝑑𝐿𝐶𝑂𝐸𝑡

𝐿𝐶𝑂𝐸𝑡
= 𝛼𝐶𝑑𝑡 

or, equivalently: 

𝐿𝐶𝑂𝐸𝑡 = 𝐿𝐶𝑂𝐸0𝑒
𝛼𝐶𝑡  

where 𝛼𝐶 = 𝑎 ∙ 𝑔𝑟𝑜𝑤𝑡, that is the product between the learning curve coefficient and 

the average growth rate of the PV industry (𝛼𝐶 < 0, since 𝑎 < 0).  

In order to define some possible values for these parameters and for the initial value 

𝐿𝐶𝑂𝐸0 in the equation, we need to better understand the components of the LCOE and 

the current state of affairs of the PV industry.  

                                                           
40

 Biondi, Moretto, 2014. Solar Grid Parity Dynamics in Italy: a Real Option Approach. Energy (2014), 

http://dx.doi.org/10.1016/j.energy.2014.11.072 
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As outlined before, the LCOE is a synthetic indicator which depends on a number of 

factors, including the price of PV modules,  the price of other electrical components, the 

capacity factor of the plant, assembly and installation costs, ongoing maintenance, 

insurance costs and decommissioning costs, while (in our case) it does not include 

volatile and variable components, such as subsidies or government incentives. It is a 

tool used to compare the unit costs of different power generation technologies, 

considering the lifetime generated electricity and costs, to estimate a price per unit of 

electricity produced
41

.  

As we said, this unitary cost decreases with time, mainly thanks to technological 

improvement (causing decreasing pricing of system components (= decreased costs) and 

increased efficiency of solar modules (= increased production) ). In order to come 

across a possible value for 𝐿𝐶𝑂𝐸0, taking as a reference year t0 = 2014, we must have an 

idea of the magnitude of each cost we‟ll incur and of the full load hours (FLH) 

characterizing the location in which our ground-mounted plant will be built on.  

Since the plant will be built in North/Central Italy, we assume an average FLH value of 

1250 kWh/kW, which corresponds to a 14.3% capacity factor (see Fig. 5.1). As for the 

costs estimates, we rely on a 2015 Fraunhofer ISE study
42

, which estimated each 

component impacting on the total investment cost for the year 2014. The study 

considers a 1 MW PV utility plant in Germany, and we decided to take its results as a 

proxy, even if they probably slightly overestimate our costs, since our larger plant 

would benefit more from the economies of scale.  

 

 

                                                           
41

 It is found according to this formula: 

 
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑡 ∙ 𝐿𝐶𝑂𝐸

 1 + 𝑟 𝑡

𝑁

𝑡=1

=  
𝐶𝑎𝑝𝑒𝑥𝑡 + 𝑂𝑝𝑒𝑥𝑡 + 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑡

 1 + 𝑟 𝑡

𝑁

𝑡=1

 

where  𝐶𝑎𝑝𝑒𝑥𝑡  represents the annualized capital expenditures, 𝑂𝑝𝑒𝑥𝑡  the yearly operating and 

maintenance costs, 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑡  the annual insurance cost, 𝑁 the economic lifetime of the plant, 𝑟 is the 

discount factor, assumed constant at 5%, and 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑡 is the amount of electricity produced each year 

by the plant.  

42
 Fraunhofer ISE, 2015. Current and Future Cost of Photovoltaics. Long-term Scenarios for Market 

Development, System Prices and LCOE of Utility-Scale PV Systems. Study on behalf of Agora 

Energiewende. 
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Fig. 5.1 Global irradiation and solar electricity potential, optimally-inclined photovoltaic modules. 

Source: PVGIS © European Union, 2001-2012. 

Fig. 5.2 2014 capital expenditures for a ground-mounted PV system. Source: Fraunhofer ISE, 2015. 

Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System 

Prices and LCOE of Utility-Scale PV Systems. Study on behalf of Agora Energiewende. 
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As we can see in Fig. 5.2, the modules have the larger share of the capital expenditures, 

which also include the inverter, transformer and mounting system costs, installation, 

cabling, grid connection, planning and infrastructure costs.  

The study then considers a 20 EUR/kW operating expenditure (to which we added a 10 

EUR/kW insurance expenditure), a WACC ranging from 5% to 10% (given the large 

scale of our plant we‟ve decided to use a 5% discount rate), a reduction in production of 

0.2% per year, due to the degradation of solar modules, and a system lifetime of 25 

years. However, the inverter will need to be replaced in 15 years, since its economic 

lifetime is supposed to be shorter, and this leads to an additional cost, which has been 

included as well.  

As we can see in Table 5.1, the 𝐿𝐶𝑂𝐸2014  resulting from all these assumptions is equal 

to 0.087 EUR/kWh (if we used a 10% WACC we could see the results are quite in line 

with the 2014 estimates for PV plants reported in the Bloomberg New Energy Finance 

2015 factbook
43

, where a 10% discount factor was considered). The calculation have 

been made using the Excel
®

 spreadsheet provided by the author of the aforementioned 

study
44

. 

 

Discount 

rate 

Plant 

lifetime 

Capacity 

factor 

Capex  

€/kW 

Opex  

€/kW year 

Insurance 

€/kW year 

LCOE2014 

€/kWh 

5% 25 14.3% 1,055 20 10 0.087 

10% 25 14.3% 1,055 20 10 0.120 

 

 

As regards the parameter 𝛼𝐶 , in order to compute it, we need to find some possible 

values for the average growth rate of the PV industry and for 𝑎, the learning coefficient. 

To better define such learning coefficient, we label PR (progress ratio) as the cost 

improvement at each doubling of cumulated capacity, that is, 𝑃𝑅 = 2𝑎  (in fact, recall 

                                                           
43

 Bloomberg New Energy Finance, 2015. Sustainable Energy in America: 2015 Factbook . London, UK: 

Bloomberg New Energy Finance; Washington, DC: The Business Council for Sustainable Energy.  
44

 Agora Energiewende (2015): Calculator of Levelized Cost of Electricity for Photovoltaics; www.agora-

energiewende.org/pv-cost. 

Table 5.1 Assumptions and results for LCOE2014 
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that 
𝐶𝑛

𝐶0
= 𝑁𝑎 ). Equivalently, 𝑎 =

𝑙𝑛𝑃𝑅

𝑙𝑛2
. The learning coefficient 𝑎  can be found 

analyzing the historical data on the PV module prices plotted against cumulated 

production on a logarithmic scale and computing the angular coefficient of the 

regression line. 

 

 

 

 

In fact, as we can see in Fig. 5.3, power law functions have the property that, when 

plotting the logarithm of proficiency (cumulated production) against the logarithm of 

experience (the unitary cost 𝐶𝑛 ), the result is a straight line. The slope of such straight 

line is 𝑎, which expresses the percentage decrease in the logarithm of the unitary cost at 

the increasing of the log-cumulated production. In order to know the relationship which 

directly links the variation of the unit cost at each doubling of cumulated capacity, let‟s 

now introduce the learning rate (LR). According to the 2015 Fraunhofer ISE study 

estimates, the learning rate ranges between 0.19 and 0.23. We take the average 0.21 as a 

proxy. This means that, each time the cumulated capacity doubles, the unitary cost 𝐶𝑛  

will decrease by 21%. In such a way: 

Fig. 5.3 Price of solar modules and experience curve. Source: Fraunhofer ISE, 2015. Current and Future Cost of 

Photovoltaics. Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems. 

Study on behalf of Agora Energiewende. 
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𝑃𝑅 =
𝐶𝑛
𝐶0

=
𝐶0 1 − 0.21 

𝐶0
= 1 − 𝐿𝑅 = 0.79 

This leads to 𝑎 =
𝑙𝑛0.79

𝑙𝑛2
= −0.34. 

As for the growth rate of the PV industry, there are different forecasts, based on the 

degree of optimism of future scenarios. According to the aforementioned 2015 

Fraunhofer ISE study on the PV market, in a pessimistic scenario the 2015-2050 CAGR 

will be 5%, in the intermediate scenario it will be 7.5%, while, in the optimistic one, the 

growth rate will be 10%. Such low growth rates, compared to the historical 44% growth 

of 2000-2013, are justified by the fact that the market, in the future period considered, 

will not be as relatively young as it has been until now, and will not be able to sustain 

such high growth rates anymore. However, since this is a global estimate, let‟s have a 

look at more local forecasts, relative to the market in which we‟re operating (the Italian 

one). According to an European Commission publication
45

, the solar market in Italy will 

grow by 7.3% in the period 2015-2030. Even this estimate is in line with the more 

moderate growth trend projected for the future, so we take as a proxy for 𝑔𝑟𝑜𝑤𝑡 7.5%. 

We thus obtain that 

𝛼𝐶 = 𝑎 ∙ 𝑔𝑟𝑜𝑤𝑡 = −0.025 

Finally, the LCOE(t) function, expressed in €/kWh, is given by the following equation:  

𝐿𝐶𝑂𝐸𝑡 = 0.087 𝑒−0.025 𝑡  

where t is the time expressed in years starting from 2014. 

This is the equation according to which our cost of electricity production will evolve 

during time.  

Updating last equation for t0 = 2015 as a starting time, we obtain: 

𝐿𝐶𝑂𝐸𝑡 = 0.085 𝑒−0.025 𝑡  

 

                                                           
45

 European Commission, 2010. EU Energy Trends to 2030. Luxembourg: Publications Office of the 

European Union. 



Chapter 5. A Real Option Valuation for a Power Plant Switch 65 
 

Then we can compute the total cost of building the plant now, just multiplying the 

𝐿𝐶𝑂𝐸2015  by the total electricity output we‟re expecting to produce over the lifetime of 

the PV plant: 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑡𝑒 𝑝𝑙𝑎𝑛𝑡 𝑛𝑜𝑤 = 𝑄 ∙ 𝐿𝐶𝑂𝐸2015 = 1.48 ∙ 108 EUR 

 

 

5.2. The variables involved  

 

5.2.1. The carbon price 

As we saw in the past chapters, the carbon price has a peculiar distribution, which we 

modeled first through a VG process and then using a BS model. Both models 

demonstrated to have their advantages and limitations, when compared. 

In this chapter, our aim is to price the real option in an analytical way. Because of this, 

we now choose to perform the valuation using the BS model rather than the VG one.  

In fact, it is not possible (to the best of our knowledge) to find a closed-form expression 

of the option value if one of the underlying components follows a dynamics such as the 

VG one. Instead, with a relatively simpler model such as the BS, we will be able to 

analytically solve the real option valuation problem.  

 

5.2.2. The LCOE 

As we saw in section 5.1.3, the LCOE is time-dependent, thus it is one of the variables 

involved in our real option problem. Since LCOE represents the unit cost for each kWh, 

the total investment cost of our plant over the years is found multiplying the LCOE by 

the total electricity our plant will produce during its economic life, taking as base year t 

= 2015: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑃𝑉 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 = 𝑄 ∙ 𝐿𝐶𝑂𝐸𝑡 = 1.48 ∙ 108 ∙ 𝑒−0.025 𝑡   
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There is another variable playing a relevant role in the decision to invest, namely the oil 

price. 

 

5.2.3. The oil price 

Oil is a commodity traded on financial markets, whose price varies stochastically over 

time. For the purposes of this chapter, since we‟re more interested in investigating the 

effects of a stochastically varying carbon price rather than the ones given by the oil 

price variations, we‟ll assume a far simpler dynamics for our fuel. Specifically, we 

model the oil price by a deterministic process, as follows: 

𝑑𝐷𝑡 = 𝛼𝐷𝐷𝑡𝑑𝑡 

Or, equivalently, 

𝐷𝑡 =  𝐷0𝑒
𝛼𝐷  𝑡  

where 𝐷𝑡  represents the price (in EUR) for each ton of oil at time t, 𝐷0 is the current oil 

price (t0 = 2015) and 𝛼𝐷  is a parameter to be fitted on historical data.  

Analyzing the West Texas Intermediate (WTI) crude oil historical spot prices and using 

the maximum likelihood (ML) estimation method, we can find a value for 𝛼𝐷 . Our 

curve fitting procedure returns the following value for the estimator: 

𝛼𝐷 = 0.0777 

 

The red line in Fig. 5.4 represents the curve fitted to oil prices. As we can see, the 

exponential curve seems to be a good fit to our data and to capture, to some extent, the 

overall trend of oil prices. Nevertheless, the high volatility of oil prices during the last 

ten years leads to uncertainty over future scenarios. For instance, estimating 𝛼𝐷 using 

different time samples, we obtain different results. Even though the most likely estimate is the 

previous one, in the final part of this thesis we will also take into consideration the other 

estimates reported in Table 5.2. 
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Time range 𝛼 𝐷 

1986-2015 0.0777 

2008-2015 0.0271 

2009 (Oct.)-2015 0.0005 

 

Table 5.2 Oil parameter estimator for different time ranges 

  

         Fig. 5.4 Oil spot prices 1986-2015 in USD/barrel, real and fitted curve. 

 

 

5.2.4. Benefits and costs deriving from switching 

When we decide to switch to the clean energy plant, we face some annual benefits and 

costs and some sunk costs, that are costs which, once incurred, are not recoverable, thus 

making the investment irreversible.   

For the sake of clarity, we report the three dynamics of the variables influencing our 

costs and benefits: 
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𝑑𝐶𝑡 = 𝛼𝐶𝐶𝑡𝑑𝑡                                                           (5.1) 

𝑑𝐷𝑡 = 𝛼𝐷𝐷𝑡𝑑𝑡                                                           (5.2) 

𝑑𝑃𝑡 = 𝑘 𝜃 − 𝑃𝑡 𝑑𝑡 + 𝜍𝑃𝑡𝑑𝑧                                               (5.3) 

 

where in (5.1) we wrote 𝐶 in lieu of 𝐿𝐶𝑂𝐸, while (5.2) and (5.3) represent the process 

for the oil and carbon price, respectively. 

The sunk or irreversible costs we incur when we decide to switch type of plant are: the 

decommissioning costs c1 ( = 1 million €) and the total cost of the PV project, 𝑄 ∙ 𝐶𝑡  , 

which depends on time.  We call such sunk costs K: 

𝐾(𝑡) = 𝑐1 + 𝑄 ∙ 𝐶𝑡 = 

= 𝑐1 + Q ∙ 𝐶0 ∙ 𝑒
𝛼𝐶 𝑡 

= 106 + 1.48 ∙ 108 ∙ 𝑒−0.025 𝑡 

The annual benefits we get by switching include: 

- savings deriving from not having to buy oil anymore =  𝐵𝐷𝑡𝑒
−𝜇𝐷  𝑠−𝑡 𝑑𝑠

𝑇𝑝𝑣 +𝑡

𝑡
 

- savings deriving from not having to buy the allowances = 𝑋𝑃𝑡𝑒
−𝜇𝑃  𝑠−𝑡 𝑑𝑠

𝑇𝑝𝑣 +𝑡

𝑡
  

- savings from not having to manage the oil plant =  𝑂𝑝 ∙ 𝑒−𝑟 𝑠−𝑡 𝑑𝑠
𝑇𝑝𝑣 +𝑡

𝑡
 

 In fact, as we recall, the oil-fired plant has annual operating costs 𝑂𝑝 = 0.5 ∙ 106 €, the 

number of tons of oil per year used in order to power the plant is 𝐵 = 1.48 ∙

104  𝑡𝑜𝑛𝑠/𝑦𝑒𝑎𝑟 , the number of tons of CO2 emitted every year by the oil plant is 

𝑋 = 46,200 𝑡𝑜𝑛𝑠, while the lifetime of the PV plant is 𝑇𝑝𝑣 = 25 𝑦𝑒𝑎𝑟𝑠. The risk-free 

rate, r, is assumed to be equal to 5%. The two other discount rates, 𝜇𝐷 and 𝜇𝑃, are the 

risk-adjusted discount rates required by an investor in the oil and in the EUA markets, 

respectively. For the sake of simplicity, in what follows we will assume them both equal 

to the risk free rate, r.  

The annual electricity output remains the same before and after the switch, therefore it 

has no effects on benefits nor costs. Thus, the benefits are equal to: 
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Φ  𝐷𝑡 ,𝑃𝑡 , 𝑡 =  𝐵𝐷𝑡𝑒
−𝑟 𝑠−𝑡 𝑑𝑠

𝑇𝑝𝑣 +𝑡

𝑡

+  𝑋𝑃𝑡𝑒
−𝑟 𝑠−𝑡 𝑑𝑠

𝑇𝑝𝑣 +𝑡

𝑡

+  𝑂𝑝 ∙ 𝑒−𝑟 𝑠−𝑡 𝑑𝑠
𝑇𝑝𝑣 +𝑡

𝑡

= 

=  1 − 𝑒−𝑟 𝑇𝑝𝑣     
𝐵

𝑟
 𝐷𝑡 +

𝑋

𝑟
𝑃𝑡 +

𝑂𝑝

𝑟
 = 

=  1 − 𝑒−0.05 25    
1.48 ∙ 104

0.05
 𝐷𝑡 +

46,200

0.05
𝑃𝑡 +

0.5 ∙ 106

0.05
  

 

In the expression above, recall that 𝐷𝑡 = 𝐷0𝑒
𝛼𝐷 𝑡  , so that Φ  𝐷𝑡 ,𝑃𝑡 , 𝑡 = Φ 𝑃𝑡 , 𝑡 , where 

𝛼𝐷  assumes the value we fitted in paragraph 4.2.2., 0.0777. As of the time of writing, 

the crude oil price is 58.88 $/barrel, so, in the calibration of the model, we will use this 

value as 𝐷0 (expressed in €/ton). Instead, we will keep the estimated exponential factor 

𝛼𝐷  in order to define the speed at which the oil price will increase in the future. 

As we said, as of the time of writing, the crude oil price is 58.88 $/barrel, while the 

EUA price is 7.25 €/ton (as of 05/22/2015). Converting the oil price into €/ton as well, 

and filling the formulas above with these values, we find the corresponding values for Φ 

and K: 

Φ = 0.93 ∙ 108 𝐸𝑈𝑅 

𝐾 = 1.49 ∙ 108  𝐸𝑈𝑅 

At this point one could think that it would be convenient switching to PV technology as 

soon as Φ  𝐷𝑡 ,𝑃𝑡 , 𝑡 > 𝐾𝑡 . This conclusion would in fact miss an important point, as we 

will see in what follows. 

 

 

5.3. The option value 

 

As we saw, there are : 1) uncertainty over the future profits; 2) irreversibility (presence 

of some sunk costs) and 3) the possibility to postpone our investment decision. These 
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three conditions together suggest that a simple DCF analysis would not be adequate 

enough to assess the value of our investment, as it would miss considering the value of 

flexibility. In fact, the opportunity we have to switch the production process and to 

invest in a clean energy plant is a real option and it can be given a value, as shown in 

the seminal text by Dixit and Pindyck (1994)
46

 on real option theory. Like financial 

options, real options give their owner the right, but not the obligation, to do something, 

specifically to undertake certain business activities. In the same way as a financial call 

option gives the owner the right to buy the underlying asset, the real call option gives 

the owner the right to invest in the underlying project. This right has a price, and must 

be considered when deciding when it is optimal to make the investment. 

The option value is given by: 

𝐹 𝑃𝑡,  𝐷𝑡, 𝑡 = max
𝜏

 𝐸  𝑒−𝜇(𝜏−𝑡) Φ  𝐷𝑡,𝑃𝑡, 𝑡 − Kt   

where 𝜇 is the risk-adjusted discount rate of this type of investment and the maximum is taken 

over all stopping times 𝜏 with 𝑡 < 𝜏 < 𝑇, where T is the residual lifetime of the oil plant, 25 

years. As we can see from this formulation, this is an American-style real call option, in that it 

can be exercised at any time 𝜏 prior to maturity.  

In the remaining part of this chapter, we will show how to find such a value in an 

analytical way. 

 

5.3.1. Analytical solution of the real option problem 

As Dixit and Pindyck (1994) explain, to find the value of a real option, we could either 

use dynamic programming or the contingent claims analysis. Here, the first step we take 

in order to find the option value is using the contingent claims analysis. Contingent 

claims are assets whose value depends upon the price of at least another asset, like our 

real option value does. Merton (1977) showed that any contingent claim could be 

described by a peculiar PDE, subject to specific boundary conditions. He computed the 

PDE using arbitrage arguments, nevertheless, he also showed that such PDE remained 

valid even if arbitrage was not allowed. This enables us to find a value even for assets 
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 Dixit, Pindyck, 1994. Investment Under Uncertainty. Princeton, N.J.: Princeton University Press.  
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which are not traded, like assets and options incorporated in real investment projects. 

Contingent claims analysis consists in constructing a riskless replicating portfolio of 

existing traded assets able to indeed replicate the return of the claim we‟re trying to give 

a value. Being riskless, such a portfolio must earn a risk-free rate of return.  

Since the hedging portfolio must consist of the underlying assets, the contingent claim 

and riskless bonds, in the case of real options it is usually difficult to make such 

portfolio riskless, since the assets of which it is made of are not usually traded. The 

solution to this problem consists in looking for actively traded assets which are perfectly 

correlated to the ones included in the portfolio. However, even this task could be 

challenging. Yet, since we‟re interested only in the assets‟ market equilibrium rates of 

return, a way to overcome the problem is to use an asset pricing model such as the 

CAPM in order to find such returns.  

Let‟s put into practice what we said above. Since in this chapter we‟re considering oil 

price as deterministic and not stochastic, 𝐹 𝑃𝑡,  𝐷𝑡, 𝑡 = 𝐹 𝑃𝑡, 𝑡 . By Itō‟s lemma, we 

have
47

: 

𝑑𝐹 𝑃𝑡 , 𝑡 = 𝐹𝑃𝑑𝑃𝑡 +
1

2
𝐹𝑃𝑃 𝑑𝑃𝑡 

2 + 𝐹𝑡𝑑𝑡 = 

=  
1

2
𝜍2𝑃𝑡

2𝐹𝑃𝑃 + 𝑘 𝜃 − 𝑃𝑡 𝐹𝑃 + 𝐹𝑡 𝑑𝑡 + 𝜍𝑃𝑡𝐹𝑃𝑑𝑧 

From this equation, and knowing that the expected capital gain is 𝐸 𝑑𝐹 𝑃𝑡 , 𝑡  /𝑑𝑡, we 

can find the expected rate of return, equal to: 

𝐸 𝑅 =

1
2𝜍2𝑃𝑡

2𝐹𝑃𝑃 + 𝑘 𝜃 − 𝑃𝑡 𝐹𝑃 + 𝐹𝑡

𝐹
 

and its standard deviation: 

𝜍 𝑅 =
𝜍𝑃𝑡𝐹𝑃
𝐹

 

According to the CAPM, 
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 In the expression and it what follows, 𝐹𝑃 =
𝛿𝐹

𝛿𝑃
 , 𝐹𝑃𝑃 =

𝛿𝐹2

𝛿2𝑃
  , 𝐹𝑡 =

𝛿𝐹

𝛿𝑡
 and Φ𝑃 =

𝛿Φ

𝛿𝑃
 . 
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𝐸 𝑅 = 𝑟 + 𝜆𝜌𝜍(𝑅)                                               (5.4) 

where 𝜆 is the market price of risk and is equal to 
𝐸 𝑅𝑚  −𝑟

𝜍𝑚
, 𝑟 is the risk-free rate, 𝜌 is the 

correlation between the market and the asset we‟re considering, 𝐸 𝑅𝑚   is the expected 

return given by the market and 𝜍𝑚  is its standard deviation. 

Substituting the expected return of our asset and its standard deviation into (5.4), we 

get: 

1

2
𝜍2𝑃𝑡

2𝐹𝑃𝑃 + 𝑘 𝜃 − 𝑃𝑡 𝐹𝑃 + 𝐹𝑡 = 𝑟𝐹 + 𝜆𝜌𝜍𝑃𝑡𝐹𝑃 

Rearranging, 

1

2
𝜍2𝑃𝑡

2𝐹𝑃𝑃 +  𝑘 𝜃 − 𝑃𝑡 − 𝜆𝜌𝜍𝑃𝑡 𝐹𝑃 + 𝐹𝑡 = 𝑟𝐹                        (5.5) 

subject to: 

lim𝑃→+∞ 𝐹 𝑃𝑡 , 𝑡 = +∞                                                                                              (5.6) 

lim𝑡→+∞ 𝐹 𝑃𝑡 , 𝑡 = +∞                                                                                               (5.7) 

lim𝑃→0+ 𝐹 𝑃𝑡 , 𝑡 = 0                                                                                                   (5.8) 

The first two boundary conditions are given by the fact that, when the price of the 

allowances goes to infinity, the option value becomes infinite too and the same happens  

when time goes to infinity. In fact, recall that 𝐶𝑡 = 𝐶0𝑒
𝛼𝐶𝑡  and 𝐷𝑡 = 𝐷0𝑒

𝛼𝐷 𝑡  and that 

𝛼𝐶 < 0, while 𝛼𝐷 > 0. Thus, as time approaches infinity, according to the dynamics we 

defined, the price of oil goes to infinity too, while the LCOE tends to zero. The 

boundary condition (5.8) is instead given by the fact that, being the price of the EUAs 

the only source of uncertainty, the option value tends to zero as the price of the 

allowances approaches zero as well. 

 

The base case: Dt = D2015 and LCOEt = LCOE2015 

Before analytically solving the problem as we presented it, let‟s reduce it at its simplest 

form, namely allowing for one variable only, the price of the allowances, and 
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considering everything else as a constant. This means that we consider the oil price to 

always remain at the current value,  𝐷𝑡 =  𝐷2015 , as well as the LCOE,  𝐶𝑡 = 𝐶2015 . In 

this base case, in order to find the analytical solution, we will follow the procedure 

described by Tsekrekos (2009)
48

. 

With 𝐷𝑡  and 𝐶𝑡  constant, the PDE in (5.5) reduces to: 

1

2
𝜍2𝑃𝑡

2𝐹𝑃𝑃 +  𝑘 𝜃 − 𝑃𝑡 − 𝜆𝜌𝜍𝑃𝑡 𝐹𝑃 = 𝑟𝐹                            (5.9) 

subject to (5.6) and (5.8). 

We can rewrite the PDE as follows: 

𝑃𝑡𝐹𝑃𝑃 +
2

𝜍2𝑃𝑡
 𝑘 𝜃 − 𝑃𝑡 − 𝜆𝜌𝜍𝑃𝑡 𝐹𝑃 −

2𝑟

𝜍2𝑃𝑡
𝐹 = 0 

𝑃𝑡𝐹𝑃𝑃 +  
2𝑘𝜃

𝜍2𝑃𝑡
−

2 𝑘+𝜆𝜌𝜍  

𝜍2  𝐹𝑃 −
2𝑟

𝜍2𝑃𝑡
𝐹 = 0                              (5.10) 

In order to solve it, let‟s now introduce a particular function, called confluent 

hypergeometric function. In mathematics, this function is known to be solution to the 

general confluent hypergeometric differential equation, as we can see in Abramowitz 

and Stegun (1972)
49

. Such equation is given by: 

 

𝑤 ′′  𝑧 +  
2𝐴

𝑧
+ 2𝑓 ′ 𝑧 +

𝑏′ 𝑧 

 𝑧 
− ′ 𝑧 −

′′  𝑧 

′ 𝑧 
 𝑤 ′ 𝑧 +   

𝑏′(𝑧)

(𝑧)
− ′ 𝑧 −

′′  𝑧 

′ 𝑧 
   

 
𝐴

𝑧
+ 𝑓 ′(𝑧)  +

𝐴 𝐴 − 1 

𝑧2
+

2𝐴𝑓 ′ 𝑧 

𝑧
+ 𝑓 ′′  𝑧 +  𝑓 ′ 𝑧  2 −

𝑎 ′ 𝑧  2

 𝑧 
 𝑤 𝑧 = 0 

and its general solution is: 

𝑤 𝑧 = 𝐶𝑧−𝐴𝑒−𝑓 𝑧 𝑀 𝑎, 𝑏, 𝑧  + 𝐷𝑧−𝐴𝑒−𝑓 𝑧 𝑈(𝑎, 𝑏,  𝑧 ) 

                                                           
48

 Tsekrekos, 2009. The Effect of Mean Reversion on Entry and Exit Decisions Under Uncertainty. 

Journal of Economic Dynamics and Control, doi:10.1016/j.jedc.2009.10.015 

49
 Abramowitz, Stegun (1972). Handbook of Mathematical Functions with Formulas, Graphs and 

Mathematical Tables. National Bureau of Standards Applied Mathematics Series. Dover Publications, 

New York. 
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where 𝑀 𝑎, 𝑏, 𝑧   is the Kummer‟s confluent hypergeometric function and  

𝑈(𝑎, 𝑏, 𝑧 ) is the Tricomi‟s confluent hypergeometric function, respectively equal to: 

𝑀 𝑎, 𝑏, 𝑧 = 1 +
𝑎𝑧

𝑏
+
𝑎(𝑎 + 1)𝑧2

𝑏 𝑏 + 1 2!
+
𝑎 𝑎 + 1 (𝑎 + 2)𝑧3

𝑏 𝑏 + 1 (𝑏 + 2)3!
+ ⋯

+
𝑎 𝑎 + 1  𝑎 + 2 …  𝑎 + 𝑛 − 1 𝑧𝑛

𝑏 𝑏 + 1  𝑏 + 2 … (𝑏 + 𝑛 − 1)𝑛!
+ ⋯ 

𝑈 𝑎, 𝑏, 𝑧  =
𝜋

sin 𝑏𝜋
 

𝑀(𝑎, 𝑏, 𝑧 )

Γ 1 + 𝑎 − 𝑏 Γ(𝑏)
−  (𝑧) 1−𝑏

𝑀(1 + 𝑎 − 𝑏, 2 − 𝑏, 𝑧 )

Γ 𝑎 Γ(2 − 𝑏)
  

In order to solve (5.10), we can note that our PDE can be viewed as a particular case of 

the general confluent differential equation. In fact, as Tsekrekos (2009) shows, if we set 

𝐴 = −𝛾, 𝑓 𝑧 = 0 and  𝑧 =
2𝑘𝜃

𝜍2𝑧
 , we get: 

𝑤 ′′  𝑧 +  −
2𝛾

𝑧
−
𝑏

𝑧
+

2𝑘𝜃

𝜍2𝑧2
+

2

𝑧
 𝑤 ′ 𝑧 +   −

𝑏

𝑧
+

2𝑘𝜃

𝜍2𝑧2
+

2

𝑧
   −

𝛾

𝑧
 +

𝛾 𝛾 + 1 

𝑧2

−  𝑎

𝑧

2𝑘𝜃

𝜍2𝑧2
 𝑤 𝑧 = 0 

𝑧𝑤 ′′  𝑧 +  −2𝛾 − 𝑏 +
2𝑘𝜃

𝜍2𝑧
+ 2 𝑤 ′ 𝑧 +  

𝑏𝛾 − 2𝛾 + 𝛾(𝛾 + 1)

𝑧
 −  2𝑘𝜃

 𝛾 + 𝑎 

𝜍2𝑧2
 𝑤 𝑧 = 0 

whose solution is: 

𝑤 𝑧 = 𝐶𝑧𝛾𝑀 𝑎, 𝑏,
2𝑘𝜃

𝜍2𝑧
 + 𝐷𝑧𝛾𝑈  𝑎, 𝑏,

2𝑘𝜃

𝜍2𝑧
  

If we compare the differential equation we just found with (4.10), letting 𝑧 = 𝑃𝑡  and 

𝑤 𝑧 = 𝐹 𝑃𝑡 , we can see the two equations coincide if and only if 

 
 
 

 
 2 − 2𝛾 − 𝑏 = −

2 𝑘 + 𝜆𝜌𝜍 

𝜍2

𝑏𝛾 − 2𝛾 + 𝛾 𝛾 + 1 = −
2𝑟

𝜍2

2𝑘𝜃 𝛾 + 𝑎 = 0

  

Solving the system, we get:  

𝛾1,2 =
2 𝑘 + 𝜆𝜌𝜍 + 𝜍2 ±  8𝑟𝜍2 +  −2𝑘 − 2𝜆𝜌𝜍 − 𝜍2 2

2𝜍2
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𝑏1,2 = 2 − 2𝛾
1,2

+
2 𝑘 + 𝜆𝜌𝜍 

𝜍2
 

𝑎 = −𝛾1,2 

According to (5.6) and (5.8), we rule out the set that depends on the negative root 𝛾2, which 

leads us to the following solution: 

𝐹(𝑃𝑡) =  𝐶𝑀  −𝛾1,𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
 + 𝐷𝑈  −𝛾1,𝑏1,

2𝑘𝜃

𝜍2𝑃𝑡
  𝑃𝑡

𝛾1                (5.11) 

Now, substituting the formulation for Tricomi‟s confluent hypergeometric function into 

(5.11), we obtain: 

𝐹(𝑃𝑡) =  𝐶𝑀  −𝛾1, 𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
 + 𝐷

𝜋

sin 𝑏1𝜋
 
𝑀  −𝛾1, 𝑏1,

2𝑘𝜃
𝜍2𝑃𝑡

 

Γ 1 − 𝛾1 − 𝑏1 Γ(𝑏1)
−   

− 
2𝑘𝜃

𝜍2𝑃𝑡
 

1−𝑏1

  
𝑀  1 − 𝛾1 − 𝑏1, 2 − 𝑏1,

2𝑘𝜃
𝜍2𝑃𝑡

 

Γ −𝛾1 Γ(2 − 𝑏1)
 

 
 
 
 
 

𝑃𝑡
𝛾1 = 

=  𝑀  −𝛾1, 𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
  𝐶 +

𝐷𝜋

sin 𝑏1𝜋 ∙ Γ 1 − 𝛾1 − 𝑏1 Γ(𝑏1)
 +   

 +  
2𝑘𝜃

𝜍2𝑃𝑡
 

1−𝑏1

𝑀 1 − 𝛾1 − 𝑏1, 2 − 𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
  

−
𝐷𝜋

sin 𝑏1𝜋

Γ −𝛾1 Γ(2 − 𝑏1)
 

 
 
 
 
 

𝑃𝑡
𝛾1  

Since the two factors in square brackets are constants, we can write: 

𝐹(𝑃𝑡) =  𝑀  −𝛾1,𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
 𝑞1 +  

2𝑘𝜃

𝜍2𝑃𝑡
 

1−𝑏1

𝑀 1 − 𝛾1 − 𝑏1, 2 − 𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
 𝑞2 𝑃𝑡

𝛾1  

Now, from (5.8), and knowing that the Kummer function has an asymptotic behavior of 

this kind: lim𝑥→+∞ 𝑀 𝑎, 𝑏, 𝑥 =
Γ(b)

Γ(a)
exxa−b , we have: 

lim
𝑃→0+

𝑞1

Γ(𝑏1)

Γ −𝛾1 
𝑒𝑥𝑥−𝛾1−𝑏1 + 𝑞2𝑥

1−𝑏1
Γ(2 − 𝑏1)

Γ 1 − 𝛾1 − 𝑏1 
𝑒𝑥𝑥−1−𝛾1 = 𝑐𝑜𝑛𝑠𝑡 
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In fact, the presence of the factor 𝑃𝑡
𝛾1  guarantees that 𝐹(𝑃𝑡) goes to zero, provided that 

the term in brackets does not go to infinity, namely that it is equal to a constant. 

This leads to: 

𝑞2 = −𝑞1

Γ(𝑏1)Γ 1 − 𝛾1 − 𝑏1 

Γ −𝛾1 Γ(2 − 𝑏1)
= 𝜔𝑞1 

In fact, the factor which multiplies 𝑐𝑜𝑛𝑠𝑡 is  
Γ 1−𝛾1−𝑏1 

Γ(2−𝑏1)
𝑥𝛾1+𝑏1𝑒−𝑥 , which goes to zero 

when 𝑥 → +∞.  

If we substitute this equation in the solution we found above, we get: 

𝐹(𝑃𝑡) = 𝑞1  𝑀  −𝛾1,𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
 + 𝜔  

2𝑘𝜃

𝜍2𝑃𝑡
 

1−𝑏1

𝑀 1 − 𝛾1 − 𝑏1, 2 − 𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡
  𝑃𝑡

𝛾1    (5.12) 

where 𝑞1 is a constant to be determined along with the optimal trigger value 𝑃𝑡
∗ , using 

the so-called value-matching and smooth-pasting conditions, respectively equal to: 

𝐹 𝑃𝑡
∗ = Φ 𝑃𝑡

∗ − K 

𝐹𝑃 𝑃𝑡
∗ = ΦP 𝑃𝑡

∗  

which ensure not only that in the trigger point the option value function has the same 

value as the costs-benefits function, but also that their slopes are equal. 

 

The deterministic LCOE and oil price case 

Returning to the initial formulation of the problem, let‟s now consider what happens 

when both the oil price and LCOE are deterministic. At the beginning of this chapter, 

we were left with the task of solving the PDE in (5.5) subject to (5.6), (5.7) and (5.8). 

For convenience, we report them here: 

1

2
𝜍2𝑃𝑡

2𝐹𝑃𝑃 +  𝑘 𝜃 − 𝑃𝑡 − 𝜆𝜌𝜍𝑃𝑡 𝐹𝑃 + 𝐹𝑡 = 𝑟𝐹                        (5.5) 

subject to: 
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lim

𝑃→+∞
𝐹 𝑃𝑡 , 𝑡 = +∞                                 (4.6)

lim
𝑡→+∞

𝐹 𝑃𝑡 , 𝑡 = +∞                                   4.7 

lim
𝑃→0+

𝐹 𝑃𝑡 , 𝑡 = 0                                       (4.8)

  

As we can see, the only difference arising from the comparison between (5.9) and (5.5) 

is the presence of the time derivative 𝐹𝑡 . Our guess for the solution is thus: 

𝐹 𝑃𝑡 , 𝑡 = 𝐹 (𝑃𝑡)𝑒𝑔𝑡                                              (5.13) 

where 𝐹 (𝑃𝑡) represents the solution (5.12) of the base case we found above, while 𝑔 is a 

constant to be found, as we will see in what follows. 

In fact, substituting the guessed solution in (5.5) we obtain: 

1

2
𝜍2𝑃𝑡

2𝐹 𝑃𝑃𝑒
𝑔𝑡 +  𝑘 𝜃 − 𝑃𝑡 − 𝜆𝜌𝜍𝑃𝑡 𝐹 𝑃𝑒

𝑔𝑡 + 𝑔𝐹 𝑒𝑔𝑡 = 𝑟𝐹 𝑒𝑔𝑡  

which leads to: 

1

2
𝜍2𝑃𝑡

2𝐹 𝑃𝑃 +  𝑘 𝜃 − 𝑃𝑡 − 𝜆𝜌𝜍𝑃𝑡 𝐹 𝑃 =  𝑟 − 𝑔 𝐹                      (5.14) 

As we can see, (5.14) is equivalent to (5.9), with the only difference of having  𝑟 − 𝑔  

instead of just 𝑟 multiplying 𝐹 . This means that 𝐹 (𝑃𝑡) is equal to (5.12) (even in this 

case we rule out the negative root 𝛾2 because of (5.6) and (5.8) and even in this case we 

can use (5.8) and the asymptotic property of the Kummer function to reduce the two 

constants C and D in (5.11) to just one). The only difference concerns the definition of the 

parameters 𝛾 and 𝑏, in which we must take into account the presence of the different 

factor multiplying 𝐹  in the PDE, leading to: 

𝛾1 =
2 𝑘 + 𝜆𝜌𝜍 + 𝜍2 +  8 𝑟 − 𝑔 𝜍2 +  −2𝑘 − 2𝜆𝜌𝜍 − 𝜍2 2

2𝜍2
 

𝑏1 = 2 − 2𝛾
1

+
2 𝑘 + 𝜆𝜌𝜍 

𝜍2
 

Thus, the solution to (5.5) is 

𝐹(𝑃𝑡 , 𝑡) = 𝑞1𝑃𝑡
𝛾1𝑒𝑔𝑡  𝑀  −𝛾1 ,𝑏1 ,

2𝑘𝜃

𝜍2𝑃𝑡
 + 𝜔  

2𝑘𝜃

𝜍2𝑃𝑡
 

1−𝑏1

𝑀 1 − 𝛾1 − 𝑏1 , 2 − 𝑏1 ,
2𝑘𝜃

𝜍2𝑃𝑡
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with 𝜔 = −
Γ(𝑏1)Γ 1−𝛾1−𝑏1 

Γ −𝛾1 Γ(2−𝑏1)
 . 

As before, the trigger value 𝑃𝑡
∗  and the unknown constant 𝑞1 can be found by solving 

the following system of equations: 

𝐹 𝑃𝑡
∗, 𝑡 = Φ 𝑃𝑡

∗, 𝑡 − K(t)                                          (4.15) 

𝐹𝑃 𝑃𝑡
∗, 𝑡 = ΦP 𝑃𝑡

∗, 𝑡                                             (4.16) 

In addition to these usual value-matching (5.15) and smooth-pasting (5.16) conditions, 

now we need a third equation in order to determine the value of the third unknown, 𝑔, 

and we can use (5.14) to this purpose (see Appendix C for the expressions of 𝐹 𝑃𝑃  and 𝐹 𝑃  

and for the explicit expression of ΦP 𝑃𝑡 , 𝑡  as well): 

𝑔 = 𝑟 −

1
2𝜍2𝑃𝑡

2𝐹 𝑃𝑃 −  𝑘 𝜃 − 𝑃𝑡 − 𝜆𝜌𝜍𝑃𝑡 𝐹 𝑃

𝐹 
 

 

Thus, the system of equations to be solved is: 

 

 
 
 
 

 
 
 

𝐹 𝑃𝑡
∗, 𝑡 = Φ 𝑃𝑡

∗, 𝑡 − 𝑐1 + Q ∙ 𝐶0 ∙ 𝑒
𝛼𝐶 𝑡

𝐹𝑃 𝑃𝑡
∗, 𝑡 = ΦP 𝑃𝑡

∗, 𝑡 

𝑔 = 𝑟 −

1
2𝜍2𝑃∗

𝑡
2
𝐹 𝑃𝑃 −  𝑘 𝜃 − 𝑃∗

𝑡 − 𝜆𝜌𝜍𝑃∗
𝑡 𝐹 𝑃

𝐹 
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5.3.2. Results 

The results of the resolution of (5.14) along with (5.15) and (5.16) are reported in Table 

5.4.  

t 𝑷𝒕
∗ 𝒈 𝒒𝟏 error 

0 155.10 0.3091 4.490 5.69e-14 

0.2 150.15 0.3072 4.535 3.61e-15 

0.4 146.10 0.3104 4.690 1.42e-14 

0.5 144.97 0.3167 5.040 8.00e-15 

0.6 142.04 0.3137 4.847 3.60e-15 

0.8 137.51 0.3148 4.881 5.20e-17 

1.0 132.09 0.3113 4.680 3.00e-12 

1.2 128.03 0.3153 4.888 8.01e-15 

1.4 121.38 0.3052 4.409 2.22e-14 

1.6 115.23 0.2970 4.102 9.22e-16 

1.8 110.21 0.2963 4.139 9.56e-17 

2.0 100.04 0.2490 2.785 2.87e-13 

2.2 95.28 0.2511 2.957 3.12e-17 

2.4 90.39 0.2526 3.136 9.15e-16 

2.6 82.57 0.2152 2.534 9.06e-16 

2.8 75.70 0.1846 2.253 8.91e-16 

3.0 68.58 0.1452 2.010 6.16e-10 

3.2 63.56 0.1499 2.339 5.43e-18 

3.4 58.31 0.1523 2.723 8.91e-16 

3.6 55.55 0.2053 3.908 4.98e-15 

3.8 51.52 0.2342 5.001 8.97e-16 

4.0 45.46 0.2339 5.766 8.94e-16 

4.2 41.11 0.2661 7.321 3.52e-19 

4.4 35.89 0.2933 8.972 8.91e-16 

4.6 27.97 0.3086 10.954 6.32e-18 

4.8 19.37 0.3799 8.839 4.16e-15 

5.8 0.16 0.4195 1.264 8.93e-16 

 

Table 5.3 Trigger value P
*
, g, and q1 for each fixed time t. The error is computed as the square of the 

norm of the residuals. 
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Each one of the triads in Table 5.3 represents the point in which all three curves in the 

4-D space go to zero: the PDE, the value-matching condition and the smooth-pasting 

one. If we take one of the arrays in Table 5.3, say the one for t = 4, we can graphically 

see that P
*
 = 45.46 is the trigger value in which all three curves equal zero (see Fig. 5.5). 

As it is natural to expect, unlike the value-matching and smooth-pasting conditions, 

whose values are equal to zero only when they‟re evaluated at the trigger point P
*
, the 

PDE, when evaluated at the values of 𝑔 and 𝑞1 corresponding to t=4, always equals zero 

for any value of P. 

As we can see from Table 5.3 and from Fig. 5.6, the threshold P
*
 is a decreasing 

function of time. This is an intuitive result: as time goes by, it becomes more and more 

convenient to consider switching to a PV plant, since the oil price keeps increasing with 

time, while the LCOE of PV technology keeps on getting lower, shifting the costs-

benefits balance. This will require a progressively lower trigger price for the allowances. 

According  to the graph, the grid parity
50

 will likely be reached in less than six years 

from now, that is in 2021, even with very low emission allowances prices (in fact the 

trigger price tends to zero as t approaches 6 years). Instead, at the moment, we would 

have the grid parity only if the price of allowances were around 155 €. This is not the 

case, since, at the time we‟re writing this thesis, the EUA trades at 7.25 € (as of 

05/22/2015). 

 

                                                           
50

 Usually the term “grid parity” is intended as the point in time in which the cost of producing electricity 

by means of an alternative energy source is equal to the price of purchasing power from the electricity 

grid, so it‟s a term usually meant for ratepayers. We use it in this context as the point in time in which the 

electricity producer is indifferent between using a PV energy source rather than fossil fuels.  



Chapter 5. A Real Option Valuation for a Power Plant Switch 81 
 

 

 Fig. 5.5 Trigger point P
*
 for t = 4 

  

 

 

        Fig. 5.6 Trigger prices P
*
 for each fixed time (first scenario) 
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However, we must underline that this result is highly dependent on the trend we 

estimated for the future LCOE, oil and carbon prices.  

While the estimate for the exponential factor defining the trend of LCOE is quite robust, 

since technological improvement will almost certainly drive down the costs of 

producing electricity with PV technology, the same cannot be said for the oil dynamics 

parameter, 𝛼𝐷 . In fact, the price is likely to increase in the long-term, due to oil scarcity 

which will eventually lead to the depletion of all oil fields, but we don‟t know for sure 

at which pace prices will be increasing in the future. Thus, in order to define the impact 

of oil prices on our real option problem, we defined three alternative scenarios, each one 

with a different growth rate for the oil price.  

The first scenario is the one we outlined above, where the oil price is expected to 

increase according to an exponential curve fitted to the whole sample available for WTI 

prices: from 1986 to nowadays. As we saw in Fig. 5.4, there is a huge gap between what 

prices used to be back in the „80s and „90s and what they are now: it is natural for the 

exponential factor to reflect this discrepancy, with a fitted value of 0.0777.  

Instead, if we choose to focus on recent years only and we base our estimate on a 

smaller sample, say from the last seven years, the trend is less defined and the value in 

the exponential parameter will reflect this. In fact, the estimator 𝛼 𝐷  on the sample 

ranging between [Jul. 2008-Jul. 2015] is equal to 0.0271. This lower but still positive 

value suggests that prices will be rising in the future, even if at a slower pace than the 

one estimated before. In the second scenario simulation we use this lower value instead 

of the one found fitting the exponential on the whole historical data sample. 

The third scenario is the one in which the oil price does not change at all: 𝛼 𝐷  is 

supposed to be equal to 0, so that the oil price is fixed and equal to today‟s price. In this 

scenario we can analyze how the threshold changes and how much more time it will 

take in order to get to the grid parity. 
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 Fig. 5.8 Trigger prices P
*
 for each fixed time (third scenario) 

Fig. 5.7 Trigger prices P
*
 for each fixed time (second scenario) 
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As we can see from Fig. 5.6, 5.7 and 5.8, the oil price plays a relevant role in the 

definition of the trigger price P*. At the current EUA price, as the exponential factor 𝛼 𝐷  

fitted for the oil price curve gets progressively lower, the time of grid parity goes farther 

and farther, shifting from less than 6 years in the first scenario, to slightly more than 12 

years in the second one, reaching 31 years in the third one. 

In this last scenario simulation, the oil price no longer influences the trigger price P*, 

which is the result of the LCOE and carbon price dynamics only. Without the “help” of 

increasing oil prices, at the current EUA price, grid parity would be reached in a 

considerable amount of time. This result differs a lot from the one we found in the first 

scenario. With a fixed oil price, it takes about six times the time it took before in order 

to make it convenient to switch to alternative energy sources.  

This underpins the role of oil prices in determining the optimal timing of the renewable 

energy investment, stressing their relevance. However, as we can see from the three 

scenario graphs, also the EUA price can substantially influence the result. In fact, if 

EUA prices were a little higher, let‟s say around 30 €/ton, in the case of the third 

scenario, grid parity would only take half the time in order to be reached, about 15 years, 

thus leading to a 50% reduction in optimal timing with respect to the current level of 

prices. This can be seen even in the first and second scenario, where a 30 €/ton EUA 

price would lead to a 20% and 35% reduction in grid parity, respectively. 

It is worth noticing that, among the three scenarios proposed, the most likely to happen 

is the first one, as confirmed by the latest World Bank report on commodity markets 

outlook (World Bank, 2015). In fact, the exponential factor estimated in the mentioned 

report is equal to 0.0665, a value much more similar to the one we estimated in our first 

scenario (0.0777), than it is to the one of our second scenario (0.0271). 
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Conclusions 

 

In our work, we presented a comprehensive analysis of carbon prices in the EU ETS 

framework, with the purpose of valuating a renewable energy investment project by 

means of a real option approach.  

After a contextualizing introduction on the past and current state of political 

environmental intervention in the economy, the statistical features of carbon prices have 

been analyzed in detail. Unlike other financial products, which all fall into a precise 

asset category (equity, fixed income, FX, commodities, derivatives), carbon is a special 

asset which may resemble energy commodities in some aspects but differentiates itself 

in others, in the sense that its price somewhat depends on an exogenous political 

decision, which caps the total supply of the product. This aspect reflects in the price 

distribution, featuring extreme events such as the jump occurring between the first and 

second trading phase, as well as heavy tails and leptokurtic behavior.  

 Two different assumptions have been made to explain the particular distribution 

characterizing asset prices. First, log-returns have been fitted to a VG model, which 

performed very well in matching the empirical distribution, even when calibrated to the 

entire sample, demonstrating the capacity of adequately explaining even extreme events 

and jump in prices. Then, the calibration process has been implemented using a 

different stochastic process, the BS, which demonstrated its ability in better predicting 

future prices. For this reason, and most of all for its higher analytical tractability, this 

second model has been chosen to perform the real option valuation which motivates our 

work.  

In order to accomplish this task, first we have defined the investment project setup, 

along with the analysis of the time dependent dynamics characterizing the levelized cost 

of electricity of photovoltaic technology and the oil price. After having identified the 
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variables determining the costs and benefits deriving from the project, we have 

proceeded to price the real option by analytically solving the partial differential equation 

(PDE) obtained by means of stochastic calculus tools. The closed-form solution to the 

PDE, representing the value of the investment opportunity, paired with real options 

theory‟s value-matching and smooth-pasting conditions, enabled us to come across the 

value of EUA prices triggering the convenience of the renewable energy investment, at 

each fixed point in time.  

The results highlight not only EUA‟s role in determining the optimal timing for 

switching from fossil fuels to green sources of energy, but also its connection to the 

future oil price dynamics. In fact, the solution to the real options valuation problem 

depends in a significant way on the dynamics of the energy source about to be 

abandoned, namely on oil price, in addition to the price of allowances. In order to assess 

the dependency of the result on the definition of the process describing oil prices, we 

have performed three simulation scenarios, each with a different speed of growth of oil 

prices.  

Initially, we calibrated the oil price process on a wide sample of available historical data 

coming from crude oil spot prices (ranging from 1986 to 2015). The trend is fairly 

defined and the estimation suggests oil prices will be increasing at a moderate pace in 

the future. In this first scenario, if EUA prices stay at current levels, grid parity, defined 

as the time in which the cost of production of electricity by means of renewable sources 

equals that of producing it through fossil fuels, will be reached in less than six years. If 

instead we calibrate the oil price process on a smaller sample, considering the past 

seven years only, the trend is less pronounced and oil is expected to grow at a lower rate. 

In this case, grid parity shifts at about twelve years. Finally, in the third scenario we 

have supposed the oil price will not change at all in the future, remaining fixed at the 

current price. In this case, grid parity is expected to be reached in about thirty years 

from now.  

According to these findings, the price of fossil fuels plays a relevant role in the 

definition of the time of grid parity. Nevertheless, we must underline that, among the 

three scenarios proposed, the most likely to happen is the first one, as confirmed by the 

latest World Bank report on commodity markets outlook (World Bank, 2015). Thus, 
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according to our results, this bodes a likely rise in renewables in the years to come, 

influencing in a positive way the time of grid parity. 

However, with regard to the effectiveness of the ETS, it should be noted the still not 

enough exploited potential of emission allowances, as they would allow grid parity to 

come earlier in time, whichever scenario will actually take place. This is particularly 

true for low growth rates of the oil price: were the third scenario to take place, an EUA 

price around 30 €/ton would bring grid parity forward of about sixteen years, from 2046 

to 2030, with respect to what it would be with the current EUA price. Even in the first 

and second scenario, such a higher price of allowances would allow for grid parity to be 

achieved earlier in time.  

In conclusion, it is likely that renewable energy, in the near future, will become an 

interesting and economically convenient alternative to fossil fuels for electric utilities. 

Nevertheless, the price of allowances should be higher in order for the ETS to actually 

have the desired impact on the economy, and to readily boost low carbon investments. 

Thus, a political intervention would be advisable, in order to keep the allowance prices 

above a floor value. Such a price management mechanism has already been 

implemented in three other emission trading programs, the northeastern US Regional 

Greenhouse Gas Initiative (RGGI), the California emission trading program and the 

Quebec one. The floor is implemented as a minimum bid in auctions and in all three 

programs it has been successful in enhancing environmental outcomes. Hence, it would 

be interesting to assess the impact of such a price floor on the EU ETS carbon market as 

well. 

On a final note, a possible extension of this work could be analyzing how the result 

changes by changing the underlying process of EUA prices. This can be done for 

example by assuming  a VG process and finding the trigger price through a numerical 

procedure, by means of a Monte Carlo simulation. The comparison of such results with 

the ones obtained in this study can help shed further light and improve accuracy on the 

optimal timing of grid parity. 
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Appendix 

A.  Codes (created for the Matlab
®
 environment) 

 

A.1. Statistical analysis of the data sample 

% DAILY RETURNS 

  
% Unit root test (Dickey-Fuller), normality test (Jarque-Bera) 
% autocorrelation check 

  
[num,txt]=xlsread('maria_selezionati');   

logdata=log(num); 
[h,pvalue_dickey]=adftest(logdata) 
rend=logdata(2:length(logdata))-logdata(1:(length(logdata)-1)); 

  
[d,pvalue_jarque]=jbtest(rend) 
Kurtosis=kurtosis(rend) 
Skewness=skewness(rend) 

  
media=mean(rend) 
varianza=var(rend) 
c=length(rend); 
figure 
hist(rend,200) 
hold on 
maxmin=(max(rend)-min(rend))/200; 
x=min(rend):maxmin:max(rend); 
sigma=sqrt(varianza); 
y=normpdf(x,media,sigma)*(c*maxmin); 
plot(x,y,'r') 
title('Normality Check') 
legend ('Actual data','Normal PDF') 

  
vector=mle(rend,'distribution','normal'); 
mu=vector(1); 
sigma=vector(2); 

  
vettoredate1=txt; 
v2=datenum(vettoredate1,'dd/mm/yyyy'); 

  
figure 
plot(v2,logdata); 
datetick('x','dd-mm-yyyy','keepticks') 
title('Log(relative stock value)') 

  
figure 
plot(v2(2:length(v2)),rend); 
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ax=gca; 
ax.XTick=rend; 
datetick('x','dd-mm-yyyy','keepticks') 
title('Log-returns') 

  
% test whether the logdata series matches a random walk 
[h_walk,pValue_walk] = vratiotest(logdata) 
 

% test whether an i.i.d. random walk is a reasonable model for the 

stock series 
[h2,pValue2] = vratiotest(logdata,'IID',true) 

 
figure 
autocorr(rend) 
title('Return autocorrelation') 
figure 
rsquare=(rend.^2)*10000; 
autocorr(rsquare) 
title('Square return autocorrelation') 

  
figure  
autocorr(abs(rend)) 
title('Absolute log-returns autocorrelation') 

  
theta=[0.1:0.1:2]'; 
ACF=zeros(21,20); 
for i=1:20 
    auto=autocorr((abs(rend)).^theta(i)); 
    ACF(:,i)=auto; 
end 
ACF1=ACF(2:end,:); 
[~,lags]=autocorr(abs(rend)); 
lags1=lags(2:end); 
figure 
surface(theta,lags1,ACF1) 
title('ACF of Powers of Log-Returns') 
xlabel('theta') 
ylabel('lag number') 
zlabel('autocorrelation') 

  
figure 
autocorr((abs(rend)).^0.5) 
title('ACF of Square Root of Absolute Log-Returns') 

 

%%%%%%%%%%%%%%%%%%%%%% 

 
 

% MONTHLY RETURNS 

 
vettoredate=datevec(txt,'dd/mm/yyyy'); 
matrice=[vettoredate((2:size(vettoredate,1)),:),rend]; 
datain= '08-Sep-2005'; 
datafin='07-Oct-2014'; 
if vettoredate(1,3)>vettoredate((length(vettoredate)),3) 
    mesi=months(datain,datafin)+2; 
else 
    mesi=months(datain,datafin)+1; 
end 
rmensili=zeros(mesi,1); 
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n=size(matrice,1); 
jprec=1; 
k=matrice(1,2); 
m=0; 
for i=1:n 
    anno=matrice(i,1); 
    mese=matrice(i,2); 
    rendx=matrice(i,7); 
    j=mese+12*(anno-2005)-(k-1); 
    rmensili(j)=rmensili(j)+rendx; 
    if j==jprec 
        m=m+1; 
    else rmensili(jprec)=rmensili(jprec)/m; 
        m=1; 
    end 
    jprec=j; 
end 
rmensili(j)=rmensili(j)/m;    

     
[d,pvalue_jarque]=jbtest(rmensili) 
Kurtosis=kurtosis(rmensili) 
Skewness=skewness(rmensili) 

  
media=mean(rmensili) 
varianza=var(rmensili) 
c=length(rmensili); 
figure 
hist(rmensili,60) 
hold on 
maxmin=(max(rmensili)-min(rmensili))/60; 
x=min(rmensili):maxmin:max(rmensili); 
sigma=sqrt(varianza); 
y=normpdf(x,media,sigma)*(c*maxmin); 
plot(x,y,'r') 
title('Normality Check') 

  
vettoredate1=txt; 
v2=datenum(vettoredate1,'dd/mm/yyyy'); 
figure 
plot(v2,logdata); 
set(gca,'XTick',v2) 
datetick('x','dd-mm-yyyy') 
title('Log(relative stock value)') 

 
figure 
autocorr(rmensili) 
title('Return autocorrelation') 
figure 
autocorr(rmensili.^2) 
title('Square return autocorrelation') 

 

%%%%%%%%%%%%%%%%%%%%%% 
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A.2. VG model calibration 

%% 

% Compute the VG parameters (main body) 

 

% The estimates for alpha, mu, sigma and theta respectively are  

% reported in the x vector  

 
[num,~]=xlsread('maria_selezionati');  % load carbon prices  

  
VGpdf_function = @(p) MLE_ESTIMATE(p, num); 
start = [2.5,1,1,1]'; 
lbounds = [1e-7; -1e7; 1e-7; -1e7]; 
ubounds = [1e7; 1e7; 1e7; 1e7]; 
 

% first solve with the interior-point algorithm  
options = optimset('Algorithm', 'interior-point', 'TolFun', 1e-8); 
[x0,~,~,output0]=fmincon(VGpdf_function, start, [],[],[],[], lbounds, 

ubounds, [],options) 

% improve the estimate with the sqp algorithm 
options = optimset('Algorithm', 'sqp', 'TolFun', 1e-8); 
[x,fval,exitflag,output]=fmincon(VGpdf_function, x0, [],[],[],[], 

lbounds, ubounds, [],options); 

  
%% 
% Compute CIs using a normal approximation for params 

params = x; 
data = num; 
N = length(data)-1; 
pdf = @(d,al,mu,si,th) (-MLE_ESTIMATE3(d,al,mu,si,th)); 

  
acov = mlecov(params, data, 'pdf', pdf); 
std_params = sqrt(diag(acov)); 
%std_params(1) = alpha standard deviation  
%std_params(2) = mu standard deviation  
%std_params(3) = sigma standard deviation  
%std_params(4) = theta standard deviation  

  
sign = 0.05; 
l = norminv(1-sign/2,0,1); 
lb = x - l*std_params/sqrt(N); 
ub = x + l*std_params/sqrt(N); 

  
disp(['Confidence Interval Lower Bound at ' num2str(sign) '%']); 
disp(num2str(lb)) 
disp(['Confidence Interval Upper Bound at ' num2str(sign) '%']); 
disp(num2str(ub)) 

  

 
 

% Compute the VG parameters (function) 

 

% Maximum Likelihood Estimation of parameters with VG density function 

  
function val=MLE_ESTIMATE(parametri, num) 

  
alpha = parametri(1); 
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mu = parametri(2); 
sigma = parametri(3); 
theta = parametri(4); 
logdata=log(num); 
rend=logdata(2:length(logdata))-logdata(1:(length(logdata)-1)); 

  
sigma2 = sigma^2; 
n=alpha-0.5; 
temp = sqrt(theta^2+2*alpha*sigma2); 
w=(abs(rend-mu)*temp)/(sigma2); 

  
VGpdf = sqrt(2/pi)*(((alpha^alpha)*exp((rend-

mu)*theta/sigma2))/(sigma*gamma(alpha))).* ...  
    ((abs(rend-mu)/temp).^n).*besselk(n,w); 

  
val=-sum(log(VGpdf)); 

 
end 

 

%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

A.3. Goodness of fit of the estimated VG model - graphical test 
 

 

% Graph (to be run after MLE_main)  
% actual data compared to the VG pdf obtained with the estimated 

parameters  

  
logdata=log(num); 
rend=logdata(2:length(logdata))-logdata(1:(length(logdata)-1)); 
c=length(rend); 
maxmin=(max(rend)-min(rend))/900; 
figure 
hist(rend,900) 
hold on 
observed=hist(rend,900); 
observedCut=observed(1:end-1); 
bin=min(rend):maxmin:max(rend); 

  
alpha = x(1); 
mu = x(2); 
sigma = x(3); 
theta = x(4); 

  
sigma2 = sigma^2; 
n=alpha-0.5; 
temp = sqrt(theta^2+2*alpha*sigma2); 
w=(abs(bin-mu)*temp)/(sigma2); 

  
y = sqrt(2/pi)*(((alpha^alpha)*exp((bin-

mu)*theta/sigma2))/(sigma*gamma(alpha))).* ...  
    ((abs(bin-mu)/temp).^n).*besselk(n,w).*(c*maxmin); 
plot(bin,y,'r') 
title('Goodness of Fit Check') 
legend ('Actual data','VG PDF') 
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A.4. Goodness of fit of the estimated VG model – Pearson’s chi 

squared test 

 

  
% Chi squared goodness of fit test 

% (to be run after MLE_GRAPH) 

  
theoretical=y(1:end-2); 
h=(observedCut-theoretical).^2./theoretical; 
chi2_test_statistic=sum(h) 
degrees=length(theoretical)-4; 
critical_value=chi2inv(0.95,degrees) 
 

  

 

A.5. Oil parameters estimation 
 

 
% Curve fitting of crude oil spot prices via mle 

  
% Load WTI spot historical data 
[num,dates]=xlsread('WTI_all'); 
v=datenum(dates,'dd/mm/yyyy'); 
% Delete entries in which WTI was not traded 
i=1; 
for j=1:length(num) 
    if isnan(num(j))==0 
        Oilmatrix(i,1)=v(j); 
        Oilmatrix(i,2)=num(j); 
        i=i+1; 
    end 
end 

  
% Exponential curve fitting  
modelFun =  @(p,x) p(1) .* exp(p(2).* x); 
startingVals = [30 0.08];    % guesses for D_0 and alpha_D 
years=Oilmatrix(:,1)./365.24-2014; 
coefEsts = nlinfit(years, Oilmatrix(:,2), modelFun, startingVals) 

  
% Plot prices  
figure 
plot(Oilmatrix(:,1),Oilmatrix(:,2)) 
datetick('x','dd-mm-yyyy','keepticks') 
hold on 
line(Oilmatrix(:,1), modelFun(coefEsts, years), 'Color','r'); 
title('WTI Crude Oil Spot Prices') 
 

 

 

A.6. BS model calibration 

% Parameters estimation of carbon spot prices following a Brennan-

Schwartz 
% process - main body 
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[num,~]=xlsread('maria_selezionati');  % load carbon prices 

  
BS_fun = @(p) PARAMETERS_BS_fun(p, num); 
start = [0.5,0.1,0.2]'; 
lbounds = [1e-7; -1e7; 1e-7]; 
ubounds = [1e7; 1e7; 1e7]; 

  
% x=[k,theta,sigma] 
 

% first solve with the interior-point algorithm   
options = optimset('Algorithm', 'interior-point', 'TolFun', 1e-8); 
[x0,~,~,output0]=fmincon(BS_fun, start, [],[],[],[], lbounds, ubounds, 

[],options) 

% improve the estimate with the sqp algorithm  
options = optimset('Algorithm', 'sqp', 'TolFun', 1e-8); 
[x,fval,exitflag,output]=fmincon(BS_fun, x0, [],[],[],[], lbounds, 

ubounds, [],options); 
 

% display results  
k = x(1) 
theta =x(2) 
sigma =x(3) 

 

 

% Parameters estimation of carbon spot prices following a Brennan-  

% Schwartz process - function 

  
function sumlog=PARAMETERS_BS_fun(parameters, num) 
 

% define the parameter vector  
k = parameters(1); 
theta = parameters(2); 
sigma = parameters(3); 

  
xi=num(2:end);  % x(t) 
ximinus1=num(1:end-1); % x(t-1) 
dt=1/250; 

% define the BS log-likelihood function 
mui=ximinus1+k.*(theta-ximinus1).*dt; 
sigmai=sigma.*ximinus1.*sqrt(dt); 
hlp1=log(sqrt(2*pi*sigmai.^2)); 
hlp2=(xi-mui).^2./(2.*sigmai.^2)+hlp1; 
sumlog=sum(hlp2); 

  
end 

 

 

 

A.7. Goodness of fit of the estimated BS model – graphical test 

 
% Compute theoretical probabilities given the estimated parameters 

 
k=0.364; 
theta=8.3789; 
sigma=0.5195; 
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xi=num2(2:end); 
ximinus1=num2(1:end-1); 
dt=1/250; 
% define the approximated BS pdf 

mui=ximinus1+k.*(theta-ximinus1).*dt; 
sigmai=sigma.*ximinus1.*sqrt(dt); 
 

y = 1./(sqrt(2*pi.*sigmai.^2)).*exp((-(xi-mui).^2)./(2.*sigmai.^2)); 

  
% Divide prices in bins and compute the theoretical probability  

% relatively to each bin  
yth=zeros(300,1); 
bin=(max(xi)-min(xi))./300; 
xth=min(xi):bin:max(xi); 
xthCut=xth(2:end); 
for i=1:length(xi) 
    for j=1:299 
        if xthCut(j)<xi(i) && xi(i)<xthCut(j+1) 
            yth(j)=yth(j)+y(i);             
        end 
    end 
end 

  
% CDF graphs  

  
% Empirical CDF: 
figure 
cdfplot(xi) 
hold on 
% Theoretical CDF: 
yplot=cumsum(yth); 
yplotnorm=yplot./max(yplot); 

  
plot(xthCut,yplotnorm,'r') 
title('CDF') 
legend('Empirical CDF','Theoretical CDF') 

  
% PDF graphs  

  
% Empirical PDF: 
figure 
hist(xi,300) 
hold on 
% Theoretical PDF: 
yplot=yth; 

  
plot(xthCut,yplot,'r') 
title('PDF') 
legend('Empirical PDF','Theoretical PDF') 
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A.8. Resolution of the system of equations  in order to find the trigger 

price 

 

%% Parameter values 
B= 1.48*10^4;   % number of tons of oil used per year 
X= 46200;       % number of tons of CO2 emitted per year 
Op= 0.5*10^6;   % operative costs 
r= 0.05;        % risk free rate 
alfac= -0.025;  % LCOE parameter 
alfad= 0.0777;  % oil parameter 
D00=60.18;      % oil spot price in $/barrel as of 05/21/15 
D0=D00*7.46/1.14;  % oil price in €/ton (exchange rate as of 05/21/15) 
k=0.364;        % carbon parameter 
theta= 8.3789;  % carbon parameter 
sigma=0.5199;   % carbon parameter 

 
lambda=0.5; 
ro=0; 
%lambda=(Rm-r)/sigmam;  % market price of risk 
 

% Set time (in years): 
t =1; 

 
%% 

% call function 
FThreshold = @(x)(FIND_threshold_fun2(x, ... 

B,X,Op,r,alfac,alfad,D0,k,theta,sigma,lambda,ro,t)); 
FThresholdNorm = @(x)(norm(FIND_threshold_fun2(x, ... 

B,X,Op,r,alfac,alfad,D0,k,theta,sigma,lambda,ro,t))^2); 

 
lbounds = [1e-7; 0; 0]; %lower bounds 
ubounds = [1e7; 0.4201; +Inf]; %upper bounds 
start = [33,0.06,11]';  % starting guess at the solution 

 
%% First solver : fsolve. Solve the system of equations 
algorithm = 'Levenberg-Marquardt'; 
options=optimset('Display','iter', 'Algorithm', algorithm,... 
'MaxFunEvals',1600000,'MaxIter',10000,'Diagnostics','on','TolX', ... 

1e-8,'TolFun',1e-8);   % Option to display output 

% Call solver 
[x0,fval0,exitflag0,output0] = fsolve(FThreshold,start,options)   

% error in the estimate 
error=norm(fval0).^2 

 
%% Second solver: fmincon. Minimizes the square norm of the vector of 

%  equations 
algorithm = 'sqp'; 
options = optimset('Algorithm',algorithm,'FinDiffType','central', ... 

'MaxFunEvals',10000,'TolX',1e-16,'TolFun', ... 

1e-10,'MaxIter',10000,'Display','iter','UseParallel', 'always'); 
[x,fval,exitflag,output] = ... 

fmincon(FThresholdNorm,start,[],[],[],[],lbounds,ubounds,[], options); 
disp(FThresholdNorm(x)) 
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%% Third solver: lsqnonlin. Minimizes the sum of the squares of the 

% vector of equations 
algorithm = 'trust-region-reflective'; 
options = optimset('Algorithm',algorithm,'FinDiffType','central', ... 

'MaxFunEvals',5000,'TolX',1e-16,'TolFun', ... 

1e-16,'MaxIter',40000,'Display','iter','UseParallel', 'always'); 
[x1,resnorm,residual,exitflag1,output1] = ... 

lsqnonlin(FThreshold,start,lbounds,ubounds, options) 
disp(FThresholdNorm(x1)) 
disp(FThreshold(x1)) 

 

% Function FIND_threshold_fun2 

% It  computes the values of the equations useful to run 
% "FIND_THRESHOLD.mat" 

  
function val=FIND_threshold_fun2(parameters, ... 

B,X,Op,r,alfac,alfad,D0,k,theta,sigma,lambda,ro,t) 
 

% define vector of unknowns  
P = parameters(1); 
g = parameters(2); 
q1 = parameters(3); 

  
gam=(2*(k+lambda*ro*sigma)+sigma^2+sqrt(8*(r-g)*sigma^2+(-2*k-

2*lambda*ro*sigma-sigma^2)^2))/(2*sigma^2);  
b=2-2*gam+(2*(k+lambda*ro*sigma))/sigma^2;  
omega= -(gamma(b)*gamma(1-gam-b)/(gamma(-gam)*gamma(2-b))); 

  
% Sunk costs 
K= 10^6+1.48*10^8*exp(alfac*t);    

  
% Annual benefits 
phi= (1-exp(-r*(25)))*(B/r*D0*exp(alfad*t)+X/r*P+Op/r);  
% phi derivative wrt P 
phiP=(1-exp(-r*(25)))*X/r; 

  
z=(2*k*theta)/(sigma^2*P); 
 

% Option value  
F = q1*P^gam*exp(g*t)*(kummer(-gam,b,z)+omega*z^(1-b)* ... 

kummer(1-gam-b,2-b,z)); 
 

% F derivative wrt P 
FP = P^(gam-1)*exp(g*t)*q1*(omega*z^(1-b)*(gam+b-1)* ... 

(kummer(1-gam-b,2-b,z)+1/(2-b)*z*kummer(2-gam-b,3-b,z)) ... 
    +gam*kummer(-gam,b,z)+gam/b*z*kummer(1-gam,1+b,z)); 
 

% FP derivative wrt P 
FPP = P^(gam-2)*exp(g*t)*q1*(omega*z^(1-b)*(gam+b-1)*(gam+b-2)* ... 
    kummer(1-gam-b,2-b,z)+omega*z^(1-b)*(gam+b-1)/(2-b)*z ... 
    *2*(gam+b-2)*kummer(2-gam-b,3-b,z)+gam*(gam-1)* ... 
    kummer(-gam,b,z)+ gam/b*z*2*(gam-1)*kummer(-gam+1,b+1,z) ... 
    -omega*z^(3-b)*(gam+b-1)*(2-gam-b)/((2-b)*(3-b))* ... 
    kummer(3-gam-b,4-b,z)-gam/b*z^(2)*(1-gam)/(1+b)*kummer ... 

    (2-gam,b+2,z)); 
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% F derivative wrt t 
Ft = P^gam*q1*g*exp(g*t)*(kummer(-gam,b,z)+omega*z^(1-b) ... 
    *kummer(1-gam-b,2-b,z)); 

 
% system of three equations 
% 3 unknowns: P,q1,g 

  
% pde 
e1=0.5*sigma^2*P^2*FPP+(k*(theta-P)-lambda*ro*sigma*P)*FP+Ft-r*F; 
% value-matching condition 
e2= F-phi+K; 
%smooth-pasting condition 
e3= FP-phiP; 

  
val=[e1;e2;e3]; 
 

end 
 

%%%%%%%%%%% 

 

A.9. Forecast of carbon prices using the VG, BS and GBM models 

 

%% load data 
loadData; % X is the vector containing EUA prices 
nsim = 1e4; % number of simulations 

 

%========================= 

%%%%%%%% VG model %%%%%%%% 

%========================= 

% as before, calibrate the VG model, this time on second phase prices 

% only 
VGpdf_function = @(p) MLE_ESTIMATE(X, p); 
start = ones(4,1); 
lbounds = [1e-7; -1e7; 1e-7; -1e7]; 
ubounds = [1e7; 1e7; 1e7; 1e7]; 

 
options = optimset('Algorithm', 'interior-point', 'TolFun', 1e-8); 
[x0,~,~,output0]=fmincon(VGpdf_function, start, [],[],[],[], lbounds, 

ubounds, [], options); 
options = optimset('Algorithm', 'sqp', 'TolFun', 1e-8); 
[x,fval,exitflag,output]=fmincon(VGpdf_function, x0, [],[],[],[], 

lbounds, ubounds, [], options); 
% x = [alpha, mu, sigma, theta] 
BICVG = 2*fval+length(x)*log(length(X)); % Bayesian Information  

%Criterion  
 

% second period estimates  
alpha = x(1); 
mu = x(2); 
sigma = x(3); 
theta = x(4); 
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% ========== find a simulated path of prices coming from a VG  

% distribution (run VG_AMERICAN first) 
Xsim=S1; 
 

% graph plotting empirical vs. forecasted prices 
figure 
subplot(2,2,1) 
plot(date,X) 
hold on 
%plot(mean(Xsim,2),'r') 
plot(date,mean(Xsim,1)','r') 
title('VG') 
xlabel('time') 
set(gca,'XTick',[733310:650:735879 735965]) 
ylabel('P') 
legend('Empirical prices','Forecasted prices') 
datetick('x','dd-mm-yyyy','keepticks') 
%xlim(date([1 end])) 
xlim([733310 735965]) 
hold on 

  
RMSE = sqrt(mean(X-mean(Xsim,1)')^2); % root mean square error 
disp(RMSE) 

 

%========================= 

%%%%%%%% BS model %%%%%%%% 

%========================= 

% parameters found calibrating the BS model on second period prices 

Estlambda=0.364; 
Estmu=8.3789; 
Estsigma=0.5195; 

  
% ========== find a simulated path of prices coming from a BS 

% distribution 

Xsim = BS_sim(parametri, X(1), 1e4, length(X)); 

 

% graph plotting empirical vs. forecasted prices 
subplot(2,2,2) 
plot(date,X) 
hold on 
plot(date,mean(Xsim,2),'r') 
title('BS') 
xlabel('time') 
set(gca,'XTick',[733310:650:735879 735965]) 
ylabel('P') 
legend('Empirical prices','Forecasted prices') 
datetick('x','dd-mm-yyyy','keepticks') 
%xlim(date([1 end])) 
xlim([733310 735965]) 
hold on 

  
RMSE = sqrt(mean(X-mean(Xsim,2))^2); 
disp(RMSE) 

 

%========================== 
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%%%%%%%% GBM model %%%%%%%% 

%========================== 

rend = diff(log(X)); 

 
% GBM parameters estimation 

  
GBM_function = @(p) GBM(p, rend); 
start = [0.2,0.2]'; 
lbounds = [-1e7; 1e-7]; 
ubounds = [1e7; 1e7]; 

  
% x=[mu,sigma] 

  
options = optimset('Algorithm', 'interior-point', 'TolFun', 1e-8); 
[x0,~,~,output0]=fmincon(GBM_function, start, [],[],[],[], lbounds, 

ubounds, [],options) 
options = optimset('Algorithm', 'sqp', 'TolFun', 1e-8); 
[x,fval,exitflag,output]=fmincon(GBM_function, x0, [],[],[],[], 

lbounds, ubounds, [],options); 

   
mu=-0.05; 
sigma=0.5267; 

 
% ========== find a simulated path of prices coming from a GBM 

% distribution 

parametri = [mu,sigma]; 
Xsim = GBM_simula(parametri, X(1), 1e4, Itempo); 

 
% graph plotting empirical vs. forecasted prices 
subplot(2,2,4) 
plot(date,X) 
hold on 
%plot(mean(Xsim,1)','r') 
plot(date,mean(Xsim,2),'r') 
title('GBM') 
xlabel('time') 
set(gca,'XTick',[733310:650:735879 735965]) 
ylabel('P') 
legend('Empirical prices','Forecasted prices') 
datetick('x','dd-mm-yyyy','keepticks') 
%xlim(date([1 end])) 
xlim([733310 735965]) 
hold on 

  
BICGBM = 2*GBM(mu,rend)+length(parametri)*log(length(X)); 

  
RMSE = sqrt(mean(X-mean(Xsim,2))^2); 
disp(RMSE) 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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VG_AMERICAN.m 

% ============================= 
% create random sample VG paths 
% ============================= 
% VG pdf 
sigma2 = sigma^2; 
n=alpha-0.5; 
temp = sqrt(theta^2+2*alpha*sigma2); 
w=(abs(X-mu)*temp)/(sigma2); 

  
VGpdf = sqrt(2/pi)*(((alpha^alpha)*exp((X- ... 

mu)*theta/sigma2))/(sigma*gamma(alpha))).* ...  
    ((abs(X-mu)/temp).^n).*besselk(n,w); 

  
% find maximum of VG pdf 
xi=[-0.002:0.000001:0.002]; 
wi=(abs(xi-mu)*temp)/(sigma2); 
yi= sqrt(2/pi)*(((alpha^alpha)*exp((xi- ... 

mu)*theta/sigma2))/(sigma*gamma(alpha))).* ...  
    ((abs(xi-mu)/temp).^n).*besselk(n,wi); 
VGmax=max(yi); 

  
% recall function which generates random numbers from a VG distributon 
NSteps=1734; 
NRepl=300; 
S=zeros(NRepl,NSteps+1); 
S(:,1)=X(1); 

  
for j=1:NRepl 
    for i=1:NSteps 
        Xi(i)=randVG(sigma,mu,theta,alpha,VGmax); 
        S(j,i+1)=S(j,i)*exp(Xi(i)); 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

randVG.m 

 

% function which generates random numbers from a VG distributon 

  
function x=randVG(sigma,mu,theta,alpha,VGmax) 
y=2; 
yg=1; 
while y>yg 
    x=rand(1)-0.5; 
    y=VGmax*rand(1); 
    sigma2 = sigma^2; 
    n=alpha-0.5; 
    temp = sqrt(theta^2+2*alpha*sigma2); 
    w=(abs(x-mu)*temp)/(sigma2); 
    yg = sqrt(2/pi)*(((alpha^alpha)*exp((x-

mu)*theta/sigma2))/(sigma*gamma(alpha))).* ...  
    ((abs(x-mu)/temp).^n).*besselk(n,w); 
end 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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BS_sim.m 

 

 

function [Xsim] = BS_sim(parametri, x0, Nsim, N) 

  
lambda = parametri(1); 
mu = parametri(2); 
sigma = parametri(3); 

  
% Eulero scheme simulation 
noise = randn(N,Nsim); 

  
Xsim = NaN(N,Nsim); 
Xsim(1,:) = x0; 
dt=1/250; 

  
for k = 2:N 
    Xsim(k,:) = Xsim(k-1,:)+lambda*(mu-Xsim(k-

1,:))*dt+sigma*sqrt(dt)*(Xsim(k-1,:).*noise(k-1,:)); 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

GBM_simula.m 

 

 

function [S, tempi] = GBM_simula(parametri, s0, nsim, tempi) 

 
mu = parametri(1); 
sigma = parametri(2); 
 

delta_t = diff(tempi); 
m = (mu-0.5*sigma^2)*delta_t; 

  
S = NaN(length(tempi), nsim); 
S(1,:) = s0; 
E = repmat(sigma*sqrt(delta_t), 1,nsim); 
stoc =normrnd(0,1,length(delta_t), nsim).* E; 
for k = 2:length(tempi) 
    S(k,:) = S(k-1,:).*exp(m(k-1)+stoc(k-1,:)); 
end 

 
 

 

 
 

 

 

 

 

   



104 Appendix. 
 

B. Emissions by year and country 

 

The following Tables illustrate our own elaboration of the dataset available on the 

European Environment agency website (http://www.eea.europa.eu/data-and-

maps/data/european-union-emissions-trading-scheme-eu-ets-data-from-citl-6). The 

dataset mainly comes from the EU Transaction Log (EUTL), which provides data on 

emissions and allowances, by country, sector and year. The values are expressed in 

million tons of CO2 equivalent. 

 

B.1. Allocated allowances vs. verified emissions by all industry sectors 

 

 

  2005 2006 2007 2008 2009 2010 2011 2012 2013 

Total 

2005-

2007 

Total 

2008-

2012 

Austria                       

1. Total allocated 
allowances 32.41 32.65 32.73 30.72 30.72 30.96 30.96 30.96 36.65 97.79 154.33 

2. Verified  

emissions 33.37 32.38 31.75 32.08 27.36 30.92 30.60 28.39 29.85 97.51 149.34 

Belgium                       

1. Total allocated 

allowances 58.31 59.95 60.43 55.38 56.80 56.03 56.56 68.12 66.08 178.69 292.88 

2. Verified 
emissions 55.36 54.78 52.80 55.46 46.21 50.10 46.20 43.01 45.23 162.93 240.98 

Bulgaria                       

1. Total allocated 

allowances 0.00 0.00 0.00 38.30 40.60 35.27 41.54 42.94 25.71 0.00 198.65 
2. Verified 

emissions     39.18 38.30 32.01 33.53 40.00 35.05 32.70 39.18 178.89 

Croatia                       

1. Total allocated 
allowances 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.29 0.00 0.00 

2. Verified 
emissions                 8.51     

Cyprus                       

1. Total allocated 

allowances 5.47 5.61 5.90 4.82 5.09 5.37 5.84 6.24 1.20 16.98 27.35 
2. Verified 

emissions 5.08 5.26 5.40 5.58 5.36 5.06 4.60 4.38 4.02 15.73 24.98 

Czech Republic                       

1. Total allocated 
allowances 96.92 96.92 96.92 85.56 85.91 86.08 86.43 88.98 49.42 290.76 432.96 

2. Verified 

emissions 82.45 83.62 87.83 80.40 73.78 75.58 74.19 69.32 67.71 253.91 373.27 

Denmark                       

1. Total allocated 

allowances 37.30 32.28 27.90 23.91 23.84 23.83 23.83 26.85 26.39 97.49 122.25 

2. Verified 
emissions 26.48 34.20 29.41 26.55 25.46 25.27 21.47 18.19 21.60 90.08 116.93 

http://www.eea.europa.eu/data-and-maps/data/european-union-emissions-trading-scheme-eu-ets-data-from-citl-6
http://www.eea.europa.eu/data-and-maps/data/european-union-emissions-trading-scheme-eu-ets-data-from-citl-6
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Estonia                       

1. Total allocated 
allowances 16.75 18.20 21.34 11.68 11.86 11.86 15.95 14.24 8.26 56.29 65.58 

2. Verified 

emissions 12.62 12.10 15.33 13.54 10.38 14.51 14.81 13.54 15.92 40.06 66.79 

Finland                       

1. Total allocated 

allowances 44.67 44.62 44.62 36.53 37.07 37.92 37.99 38.17 39.77 133.90 187.68 

2. Verified 
emissions 33.10 44.62 42.54 36.16 34.35 41.30 35.08 29.50 31.50 120.26 176.40 

France                       

1. Total allocated 

allowances 150.41 149.97 149.78 129.57 128.57 133.23 134.07 134.53 139.90 450.15 659.97 
2. Verified 

emissions 131.26 126.98 126.63 124.13 111.09 115.57 105.58 103.66 115.09 384.88 560.04 

Germany                       

1. Total allocated 
allowances 493.48 495.49 497.30 436.93 431.88 440.68 440.49 471.65 374.68 1486.27 2221.62 

2. Verified 

emissions 475.05 478.07 487.15 472.85 428.29 454.86 450.35 452.59 480.94 1440.27 2258.95 

Greece                       

1. Total allocated 

allowances 71.16 71.16 71.16 63.69 63.25 64.65 76.02 73.95 51.42 213.49 341.55 

2. Verified 
emissions 71.27 69.97 72.72 69.85 63.66 59.94 58.84 61.44 58.63 213.95 313.73 

Hungary                       

1. Total allocated 

allowances 30.24 31.43 31.41 25.12 23.60 25.70 24.96 32.76 21.23 93.08 132.14 
2. Verified 

emissions 26.16 25.85 26.84 27.24 22.40 22.99 22.47 21.27 19.13 78.84 116.37 

Iceland                       

1. Total allocated 
allowances 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2. Verified 

emissions                 1.78     

Ireland                       

1. Total allocated 

allowances 19.24 20.45 19.24 19.97 20.14 21.23 21.76 21.75 15.96 58.93 104.85 
2. Verified 

emissions 22.44 21.71 21.25 20.38 17.22 17.37 15.77 16.90 15.69 65.39 87.64 

Italy                       

1. Total allocated 
allowances 216.15 205.05 203.26 212.20 209.01 199.97 195.33 192.72 185.90 624.46 1009.22 

2. Verified 

emissions 225.99 227.44 226.41 220.68 184.88 191.49 189.96 179.08 164.40 679.83 966.08 

Latvia                       

1. Total allocated 

allowances 4.07 4.06 4.04 3.73 4.86 4.76 4.62 4.99 5.34 12.16 22.96 

2. Verified 
emissions 2.85 2.94 2.85 2.74 2.49 3.24 2.92 2.74 2.65 8.64 14.14 

Liechtenstein                       

1. Total allocated 

allowances 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.09 
2. Verified 

emissions       0.02 0.01 0.00 0.00 0.00 0.00   0.04 

Lithuania                       

1. Total allocated 
allowances 13.50 10.58 10.87 7.51 7.57 8.16 8.89 10.85 11.69 34.95 42.97 

2. Verified 

emissions 6.60 6.52 6.00 6.10 5.79 6.39 5.61 5.72 7.46 19.12 29.61 

Luxembourg                       

1. Total allocated 

allowances 3.23 3.23 3.23 2.49 2.49 2.49 2.49 2.49 2.62 9.69 12.44 

2. Verified 
emissions 2.60 2.71 2.57 2.10 2.18 2.25 2.05 1.99 1.85 7.88 10.57 

Malta                       

1. Total allocated 

allowances 2.09 2.17 2.29 2.11 2.12 2.16 2.17 2.16 1.13 6.54 10.72 
2. Verified 

emissions 1.97 1.99 2.03 2.02 1.90 1.88 1.93 2.05 1.70 5.98 9.78 
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Netherlands                       

1. Total allocated 
allowances 86.45 86.39 86.48 76.76 83.83 92.84 92.83 91.00 83.82 259.32 437.26 

2. Verified 

emissions 80.35 76.70 79.87 83.51 81.03 84.74 79.97 76.43 86.80 236.93 405.67 

Norway                       

1. Total allocated 

allowances 0.00 0.00 0.00 7.54 20.57 14.34 14.75 18.18 25.01 0.00 75.37 

2. Verified 
emissions       19.34 19.22 19.34 19.23 18.59 24.70   95.71 

Poland                       

1. Total allocated 

allowances 237.56 237.56 237.54 201.00 202.02 205.64 207.21 213.04 129.35 712.66 1028.90 
2. Verified 

emissions 203.15 209.62 209.62 204.11 191.17 199.73 203.03 196.64 205.73 622.38 994.67 

Portugal                       

1. Total allocated 
allowances 36.91 36.91 36.91 30.41 30.77 32.36 32.99 32.94 30.42 110.73 159.47 

2. Verified 

emissions 36.43 33.06 31.20 29.91 28.26 24.17 25.01 25.25 24.64 100.69 132.60 

Romania                       

1. Total allocated 

allowances 0.00 0.00 74.34 71.79 73.93 74.99 74.81 75.86 57.56 74.34 371.39 

2. Verified 
emissions     69.61 63.82 49.06 47.34 51.24 47.86 42.41 69.61 259.32 

Slovakia                       

1. Total allocated 

allowances 30.47 30.49 30.49 32.17 32.14 32.36 32.62 33.43 32.24 91.44 162.71 
2. Verified 

emissions 25.23 25.54 24.52 25.34 21.60 21.70 22.22 20.94 21.83 75.29 111.79 

Slovenia                       

1. Total allocated 
allowances 9.14 8.69 8.25 8.21 8.22 8.23 8.22 8.23 6.84 26.08 41.11 

2. Verified 

emissions 8.72 8.84 9.05 8.86 8.07 8.13 7.99 7.61 7.39 26.61 40.66 

Spain                       

1. Total allocated 

allowances 172.16 166.21 159.74 154.15 151.46 150.01 151.45 154.15 154.50 498.11 761.21 
2. Verified 

emissions 183.63 179.72 186.57 163.46 136.94 121.48 132.69 135.64 122.79 549.93 690.21 

Sweden                       

1. Total allocated 
allowances 22.29 22.48 22.85 20.77 21.09 23.55 22.72 22.75 37.84 67.62 110.88 

2. Verified 

emissions 19.38 20.00 19.04 20.08 17.49 22.66 19.85 18.17 20.11 58.42 98.26 

United 

Kingdom                       

1. Total allocated 

allowances 206.07 206.01 215.88 217.84 240.06 256.14 253.84 255.87 173.52 627.95 1223.75 

2. Verified 
emissions 242.51 251.16 256.58 265.06 231.94 237.34 220.87 231.26 225.52 750.26 1186.47 
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B.2. Verified emissions by all industry sectors and by the electricity 

generation sector 

 
2005 2006 2007 2008 2009 2010 2011 2012 

Austria                 

Public Electricity and Heat Production 12.79 11.71 10.51 10.41 9.38 10.88 10.56 9.10 

All Industry Sectors 33.37 32.38 31.75 32.08 27.36 30.92 30.60 28.39 

Belgium                 

Public Electricity and Heat Production 24.54 23.27 22.50 20.52 20.87 21.45 18.51 17.97 

All Industry Sectors 55.36 54.78 52.80 55.46 46.21 50.10 46.20 43.01 

Bulgaria                 

Public Electricity and Heat Production 

  

29.72 31.24 28.53 30.52 35.36 30.55 

All Industry Sectors 

  

39.18 38.30 32.01 33.53 40.00 35.05 

Cyprus                 

Public Electricity and Heat Production 3.48 3.66 3.81 3.98 4.01 3.88 3.72 3.56 

All Industry Sectors 5.08 5.26 5.40 5.58 5.36 5.06 4.60 4.38 

Czech Republic                 

Public Electricity and Heat Production 56.36 55.77 59.44 54.00 51.40 53.85 53.54 52.58 

All Industry Sectors 82.45 83.62 87.83 80.40 73.78 75.58 74.19 69.32 

Denmark                 

Public Electricity and Heat Production 20.53 28.35 23.66 21.66 21.64 21.62 17.68 14.33 

All Industry Sectors 26.48 34.20 29.41 26.55 25.46 25.27 21.47 18.19 

Estonia                 

Public Electricity and Heat Production 12.21 11.51 13.76 12.39 10.38 13.82 14.15 12.69 

All Industry Sectors 12.62 12.10 15.33 13.54 10.38 14.51 14.81 13.54 

Finland                 

Public Electricity and Heat Production 18.90 29.76 27.68 21.08 22.23 27.70 21.70 17.86 

All Industry Sectors 33.10 44.62 42.54 36.16 34.35 41.30 35.08 29.50 

France                 

Public Electricity and Heat Production 49.71 46.30 46.32 44.82 43.70 45.88 37.90 41.16 

All Industry Sectors 131.26 126.98 126.63 124.13 111.09 115.57 105.58 103.66 

Germany                 

Public Electricity and Heat Production 337.15 339.77 348.20 330.28 309.05 320.74 318.49 333.99 

All Industry Sectors 475.05 478.07 487.15 472.85 428.29 454.86 450.35 452.59 

Greece                 

Public Electricity and Heat Production 54.43 51.57 55.00 54.08 50.87 48.49 50.64 51.08 

All Industry Sectors 71.27 69.97 72.72 69.85 63.66 59.94 58.84 61.44 

Hungary                 

Public Electricity and Heat Production 18.38 18.70 19.74 18.73 15.69 16.18 15.42 14.92 

All Industry Sectors 26.16 25.85 26.84 27.24 22.40 22.99 22.47 21.27 

Ireland                 

Public Electricity and Heat Production 15.25 14.53 14.06 14.16 12.62 12.90 11.56 12.38 

All Industry Sectors 22.44 21.71 21.25 20.38 17.22 17.37 15.77 16.90 
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Italy                 

Public Electricity and Heat Production 119.66 120.78 120.30 113.49 97.27 93.14 91.80 91.08 

All Industry Sectors 225.99 227.44 226.41 220.68 184.88 191.49 189.96 179.08 

Latvia                 

Public Electricity and Heat Production 1.99 2.02 1.91 1.87 1.84 2.20 2.01 1.80 

All Industry Sectors 2.85 2.94 2.85 2.74 2.49 3.24 2.92 2.74 

Lithuania                 

Public Electricity and Heat Production 3.85 3.67 3.28 2.98 3.09 3.74 2.90 2.97 

All Industry Sectors 6.60 6.52 6.00 6.10 5.79 6.39 5.61 5.72 

Luxembourg                 

Public Electricity and Heat Production 1.24 1.31 1.18 1.00 1.20 1.21 1.00 1.04 

All Industry Sectors 2.60 2.71 2.57 2.10 2.18 2.25 2.05 1.99 

Malta                 

Public Electricity and Heat Production 2.00 2.01 2.05 2.01 1.92 1.89 1.94 2.06 

All Industry Sectors 1.97 1.99 2.03 2.02 1.90 1.88 1.93 2.05 

Netherlands                 

Public Electricity and Heat Production 54.24 50.12 52.97 52.68 52.89 54.90 50.84 48.44 

All Industry Sectors 80.35 76.70 79.87 83.51 81.03 84.74 79.97 76.43 

Norway                 

Public Electricity and Heat Production 

   

0.79 1.79 2.35 2.11 1.54 

All Industry Sectors 

   

19.34 19.22 19.34 19.23 18.59 

Poland                 

Public Electricity and Heat Production 169.76 174.97 169.99 164.15 158.03 163.74 165.97 161.08 

All Industry Sectors 203.15 209.62 209.62 204.11 191.17 199.73 203.03 196.64 

Portugal                 

Public Electricity and Heat Production 23.01 20.02 17.45 16.79 17.24 12.20 14.34 15.27 

All Industry Sectors 36.43 33.06 31.20 29.91 28.26 24.17 25.01 25.25 

Romania                 

Public Electricity and Heat Production 

  

38.54 36.52 31.39 27.97 31.94 29.14 

All Industry Sectors 

  

69.61 63.82 49.06 47.34 51.24 47.86 

Slovakia                 

Public Electricity and Heat Production 8.69 8.05 7.37 7.46 6.53 6.25 6.41 6.12 

All Industry Sectors 25.23 25.54 24.52 25.34 21.60 21.70 22.22 20.94 

Slovenia                 

Public Electricity and Heat Production 6.32 6.37 6.59 6.38 6.08 6.20 6.25 5.98 

All Industry Sectors 8.72 8.84 9.05 8.86 8.07 8.13 7.99 7.61 

Spain                 

Public Electricity and Heat Production 110.94 102.30 108.03 91.65 75.89 59.47 72.91 77.47 

All Industry Sectors 183.63 179.72 186.57 163.46 136.94 121.48 132.69 135.64 

Sweden                 

Public Electricity and Heat Production 8.23 8.33 8.00 7.62 8.17 10.62 8.26 7.68 

All Industry Sectors 19.38 20.00 19.04 20.08 17.49 22.66 19.85 18.17 

United Kingdom                 

Public Electricity and Heat Production 173.91 183.14 178.85 173.76 151.93 157.45 145.05 159.24 

All Industry Sectors 242.51 251.16 256.58 265.06 231.94 237.34 220.87 231.26 
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C. Option value and benefit function derivatives 

 

In order to compute the first and second derivative with respect to P of 

𝐹 (𝑃𝑡) = 𝑞
1
𝑃𝑡

𝛾1  𝑀  −𝛾
1

, 𝑏1,
2𝑘𝜃

𝜍2𝑃𝑡

 + 𝜔  
2𝑘𝜃

𝜍2𝑃𝑡

 
1−𝑏1

𝑀  1 − 𝛾
1
− 𝑏1, 2 − 𝑏1,

2𝑘𝜃

𝜍2𝑃𝑡

   

we must first recall the expression of the derivative of the Kummer function with 

respect to z: 

𝑀𝑧 𝑎, 𝑏, 𝑧 =
𝑎

𝑏
𝑀(𝑎 + 1, 𝑏 + 1, 𝑧) 

Thus we obtain: 

𝐹 𝑃(𝑃𝑡) = 𝑞
1
𝑃𝑡

𝛾1−1
 𝜔  

2𝑘𝜃

𝜍2𝑃𝑡

 
1−𝑏1

 𝛾
1

+ 𝑏1 − 1   𝑀  1 − 𝛾
1
− 𝑏1, 2 − 𝑏1,

2𝑘𝜃

𝜍2𝑃𝑡

 +     

 +
1

2 − 𝑏1

2𝑘𝜃

𝜍2𝑃𝑡
𝑀 2 − 𝛾1 − 𝑏1 , 3 − 𝑏1 ,

2𝑘𝜃

𝜍2𝑃𝑡
  + 𝛾1𝑀 −𝛾1 ,𝑏1,

2𝑘𝜃

𝜍2𝑃𝑡
 + 

 𝛾1

𝑏1

2𝑘𝜃

𝜍2𝑃𝑡
𝑀 1 − 𝛾1 , 1 + 𝑏1,

2𝑘𝜃

𝜍2𝑃𝑡
   

and 

𝐹 𝑃𝑃 𝑃𝑡 = 𝑞1𝑃𝑡
𝛾1−2

 𝜔  
2𝑘𝜃
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1−𝑏1
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𝜍2𝑃𝑡
   + 

+𝜔  
2𝑘𝜃

𝜍2𝑃𝑡
 

2−𝑏1 2 𝛾1
+ 𝑏1 − 1  𝛾1

+ 𝑏1 − 2 

2 − 𝑏1
𝑀 2 − 𝛾1 − 𝑏1, 3 − 𝑏1 ,

2𝑘𝜃

𝜍2𝑃𝑡
 + 

𝛾1 𝛾1 − 1 𝑀  −𝛾1 ,𝑏1 ,
2𝑘𝜃

𝜍2𝑃𝑡
 +

2𝛾1 𝛾1 − 1 

𝑏1

2𝑘𝜃

𝜍2𝑃𝑡
𝑀 1 − 𝛾1 , 1 + 𝑏1 ,

2𝑘𝜃

𝜍2𝑃𝑡
 + 

+𝜔 
2𝑘𝜃

𝜍2𝑃𝑡
 

3−𝑏1  𝛾1
+ 𝑏1 − 1  𝛾1

+ 𝑏1 − 2 
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2
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As for the benefit function, 

Φ 𝐷 𝑡 ,𝑃 𝑡 , 𝑡 =  1 − 𝑒−𝑟 𝑇𝑝𝑣     
𝐵

𝑟
𝐷(𝑡) +

𝑋

𝑟
𝑃(𝑡) +

𝑂𝑝

𝑟
  , 
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its derivative with respect to P is equal to  

ΦP 𝐷 𝑡 ,𝑃 𝑡 , 𝑡 =  1 − 𝑒−𝑟 𝑇𝑝𝑣    
𝑋

𝑟
 . 
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