
Department of Information Engineering

Master's Degree in Computer Engineering

AutoML for Advanced Monitoring in Digital
Manufacturing and Industry 4.0

Master Candidate Supervisor

Alessandro Peratoner Prof. Gian Antonio Susto
Student ID 2013381 University of Padova

Co-supervisor

Ph.D. Chiara Masiero
Statwolf Data Science Srl

Academic Year 2022/2023
Graduation Date 2023 February 27°

To my family,
and friends

Abstract

The emergence of Industry 4.0 and the associated rise of sensing technolo-
gies in industrial equipment has made the adoption of Machine Learning (ML)
solutions crucial in enhancing and making more efficient enterprise production
processes. However, the high demand for ML models often clashes with the
small number of professionals capable of handling such projects. For this rea-
son, Automatic Machine Learning (AutoML) tools are considered high-value
solutions, thanks to their capability to provide a suitable model for the provided
data without the need for the intervention by a ML expert. Indeed, AutoML
libraries are designed to be used in an easy way also for people with limited or
no experience with ML.

In this work, three important tasks involved in manufacturing, that are
Anomaly Detection, Visual Anomaly Detection, and Remaining Useful Life Esti-
mation, are considered. After analysing the most critical aspects of each task and
the state of the art, possible solutions are proposed for the development of spe-
cialised AutoML modules. Additionally, given the increasing emphasis on the
interpretability of ML models, part of the analysis performed aims at identifying
explainability tools, which are particularly important for an AutoML library. In
fact, they provide useful motivations for the model predictions, increasing also
the user confidence in AutoML tools.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xix

1 Introduction 1
1.1 Industry 4.0 . 1

1.1.1 The Fourth Industrial Revolution 1
1.1.2 Machine Learning for Industry 4.0 5

1.2 Automated Machine Learning . 6
1.2.1 What is AutoML? . 6
1.2.2 Examples of AutoML tools 9
1.2.3 AutoML challenges . 10

1.3 Introduction to Thesis Work . 11

2 Anomaly Detection on Tabular Data 13
2.1 Introduction . 13
2.2 MetaOD . 15

2.2.1 Meta-learning . 15
2.2.2 MetaOD Problem Statement 16
2.2.3 MetaOD Working Principle 18

2.3 Experiments with MetaOD . 22
2.3.1 Datasets . 22
2.3.2 Isolation Forest . 25
2.3.3 Results . 26
2.3.4 Experiment with a Synthetic Supervised Dataset 29
2.3.5 Conclusions about MetaOD 31

vii

CONTENTS

2.4 Interpretability . 31
2.4.1 Accelerated Model-agnostic Explanations 31
2.4.2 Interpretability with AcME 32

3 Visual Anomaly Detection 37
3.1 Introduction . 37
3.2 Datasets . 38

3.2.1 Wood Anomaly Detection Dataset 38
3.2.2 MVTec Anomaly Detection Dataset 39

3.3 State-of-the-art . 39
3.3.1 Student-Teacher Feature Pyramid Matching 41
3.3.2 Cflow and Fastflow . 42
3.3.3 DFM, DFKDE and GANomaly 44
3.3.4 Patch Distribution Modeling Framework 44
3.3.5 Patchcore . 45

3.4 Experiments . 47
3.4.1 Comparison on Wood Dataset 47
3.4.2 Padim vs Patchcore . 51
3.4.3 Robustness to data numerosity 53
3.4.4 Not aligned datasets . 57
3.4.5 Conclusions . 58

4 Predictive Maintenance 59
4.1 Introduction . 59

4.1.1 Predictive Maintenance and Remaining Useful Life Esti-
mation . 59

4.1.2 Remaining Useful Life Computation 60
4.1.3 Problem Formalisation . 61
4.1.4 RUL Estimation for AutoML 62

4.2 Dataset . 62
4.3 Experiments . 63

4.3.1 Random Forest vs Ridge . 63
4.3.2 Test with AutoML Library 67
4.3.3 Instance Weighting . 69
4.3.4 Asymmetric Loss Function 72
4.3.5 Experiment with a Multilayer Perceptron 75

viii

CONTENTS

4.3.6 Metrics for Remaining Useful Lifetime Estimation 76
4.3.7 Experiments with Deep Neural Networks 78
4.3.8 Interpretability with LIME 82
4.3.9 Conclusions . 86

5 Conclusions and Future Work 89

References 93

ix

List of Figures

1.1 Popularity of Industry 4.0 and other related concepts based on
the number of publications of each concept in the last seven years
(up to May 2022). Extracted from the Scopus database using exact
match in the title [15]. 2

1.2 Design principles and technology trends of Industry 4.0 [22]. . . . 4
1.3 Overview of the automated machine learning pipeline for the

CASH problem [5]. 8
1.4 Google trend for the "Automated Machine Learning" topic. 9

2.1 State-of-the-art approaches for AutoOD according to [5]. 14
2.2 Meta-learning technique schema from [5]. 16
2.3 Selected meta-features for characterizing an arbitrary dataset [64]. 17
2.4 Outlier Detection models adopted in MetaOD [64]. 18
2.5 MetaOD overview; components that transfer from offline to online

(model selection) phase are shown in blue [64]. 18
2.6 MetaOD overview with the computation of matrices P and M

circled in red[64]. 19
2.7 MetaOD overview with the DCG factorization of matrix P circled

in red[64]. 20
2.8 MetaOD overview with the initializations of matrix U and V cir-

cled in red[64]. 21
2.9 MetaOD overview with the random forest regressor circled in

red[64]. 21
2.10 Structure of data in .job files. 22
2.11 Structure of data in SACCT files. 23
2.12 Annotated incidents. 24

xi

LIST OF FIGURES

2.13 Example of isolation of a normal point, 𝑥𝑖 , and an abnormal point,
𝑥0 [38]. 26

2.14 Best models for the CINECA Dataset according to MetaOD. . . . 27
2.15 Comparison of detected anomalies by LODA (in purple) and by IF

(in green), with normalized anomaly scores. The vertical dotted
lines highlight incidents annotated by CINECA: red lines identify
the beginning and blue lines the ending of the event. 27

2.16 Comparison of detected anomalies by LODA (in purple) and by
IF (in green), with normalized anomaly scores, after the post-
processing. The vertical dotted lines highlight incidents anno-
tated by CINECA: red lines identify the beginning and blue lines
the ending of the event. 28

2.17 Best models for the PIADE Dataset according to MetaOD. 28
2.18 Comparison of detected anomalies by ABOD (in purple) and by

IF (in green), with normalized anomaly scores. 29
2.19 Comparison of detected anomalies by ABOD (in purple) and by

IF (in green), with normalized anomaly scores, after the post-
processing. 29

2.20 IF and LODA confusion matrices. 30
2.21 Local interpretability of sample 941 from CINECA Dataset. It is

abnormal according to IF. 33
2.22 Local interpretability of sample 2949 from CINECA Dataset. It is

slightly abnormal according to IF. 34
2.23 Local interpretability of sample 2913 from CINECA Dataset. It is

slightly abnormal according to LODA. 35
2.24 Local interpretability of sample 2963 from CINECA Dataset. It is

slightly abnormal according to LODA. 35

3.1 Example of images from the Wood AD dataset. 39
3.2 Example of images from the "bottle" category of the MVTec AD

dataset. 40
3.3 Example of images from the "screw" category of the MVTec AD

dataset. 40
3.4 Example of images from the "toothbrush" category of the MVTec

AD dataset. 40

xii

LIST OF FIGURES

3.5 Schematic overview of the STFPM method. The feature pyramid
of a student network is trained to match with the counterpart
of a pre-trained teacher network. A test image (or pixel) has
a high anomaly score if its features from the two models differ
significantly. The feature pyramid matching enables the method
to detect anomalies of various sizes with a single forward pass [60]. 41

3.6 (a) the whole pipeline for unsupervised anomaly detection and
localization of the method, which consists of a feature extractor
and the FastFlow model. An arbitrary network can be used as the
feature extractor such as CNN or vision transformer. FastFlow is
alternatly stacked by the “3 × 3” and “1 × 1” flow. (b) one flow
step for FastFlow, the “Conv 2d” can be 3× 3 or 1× 1 convolution
layer for 3 × 3 or 1 × 1 flow, respectively. [62]. 43

3.7 Overview of CFLOW-AD with a fully-convolutional translation-
equivariant architecture. Encoder ℎ(𝝀) is a CNN feature extractor
with multi-scale pyramid pooling. Pyramid pooling captures
both global and local semantic information with the growing
from top to bottom receptive fields. Pooled feature vectors 𝑧𝑘

𝑖

are processed by a set of decoders 𝑔𝑘(𝜽𝑘) independently for each
𝑘th scale. The decoder is a conditional normalizing flow network
with a feature input 𝑧𝑘

𝑖
and a conditional input 𝑐𝑘

𝑖
with spatial

information from a positional encoder (PE). The estimated multi-
scale likelihoods 𝑝𝑘

𝑖
are upsampled to the input size and added

up to produce anomaly map. [25]. 43

3.8 Pipeline of GANomaly [3]. 45

3.9 For each image patch corresponding to position (𝑖 , 𝑗) in the largest
CNN feature map, PaDiM learns the Gaussian parameters (�𝑖 𝑗 ,Σ𝑖 𝑗)
from the set of 𝑁 training embedding vectors 𝑋𝑖 𝑗 = {𝑥𝑘

𝑖𝑗
, 𝑘 ∈

[[1, 𝑁]]}, computed from 𝑁 different training images and three
different pretrained CNN layers [12]. 46

xiii

LIST OF FIGURES

3.10 Overview of PatchCore. Nominal samples are broken down into a
memory bank of neighbourhood-aware patch-level features. For
reduced redundancy and inference time, this memory bank is
downsampled via greedy coreset subsampling. At test time, im-
ages are classified as anomalies if at least one patch is anomalous,
and pixel-level anomaly segmentation is generated by scoring
each patch-feature [49]. 46

3.11 In 3.11a an example of image with wide anomalous region from
the Wood dataset and in 3.11b the corresponding mask. Heatmaps
of Cflow, STFPM, Fastflow, Padim, and Patchcore are shown in
Figures 3.11c, 3.11d, 3.11e, 3.11f and 3.11g, respectively. 49

3.12 In 3.12a an example of image with narrow anomalous region
from the Wood dataset and in 3.12b the corresponding mask.
The heatmaps of Cflow, STFPM, Fastflow, Padim and Patchcore
are in Figures 3.12c, 3.12d, 3.12e, 3.12f and 3.12g, respectively. . . 50

3.13 In 3.13a an example of image with a small break from the "bottle"
category of the MVTec dataset and in 3.13b the corresponding
mask. The heatmaps of Padim and Patchcore with R-18 are shown
in Figures 3.13c and 3.13d, respectively. 52

3.14 In 3.14a an example of image with a contamination from the "bot-
tle" category of the MVTec dataset and in 3.14b the corresponding
mask. Heatmaps of Padim and Patchcore with R-18 are in Figures
3.14c and 3.14d, respectively. 53

3.15 In 3.15a and 3.15e there are the two example from "Wood" dataset
with corresponding masks in 3.15b and 3.15f. Figures 3.15c and
3.15g are the heatmaps obtained training Padim with the full
training set, while for Figures 3.15d and 3.15h only 1/10 of the
training images are used. 55

3.16 In 3.16a and 3.16e there are the two example from the ’bottle’
category of the MVTec dataset with corresponding masks in 3.16b
and 3.16f. Figures 3.16c and 3.16g are the heatmaps obtained
training Padim with the full training set, while for Figures 3.16d
and 3.16h only 1/10 of the training images is used. 56

4.1 Nasa turbo engine datasets . 63
4.2 Predictions of RF on 15 time series. 65

xiv

LIST OF FIGURES

4.3 Comparison of RF and Ridge on 15 time series. 65
4.4 Train set engine life histogram. 66
4.5 Test set engine life histogram. 67
4.6 Predictions of the best estimator according to the AutoML module

on the test set. 67
4.7 Catboost error distribution. 68
4.8 Random Forest error distribution. 69
4.9 Predictions of the Gradient Boosting model with Weighted MSE

loss function on test set. 70
4.10 Predictions of the Gradient Boosting model with MSE loss func-

tion on test set. 70
4.11 Predictions of the Gradient Boosting model with MSE loss func-

tion after subsampling. 72
4.12 Custom Loss (in orange) compared to MSE (in blue) as a function

of the residual. 73
4.13 Predictions of the Gradient Boosting model with Custom Loss on

the test set. 74
4.14 Predictions of the Gradient Boosting model with MSE on the test

set. 74
4.15 Multilayer Perceptron architecture. 75
4.16 Predictions of the Multilayer Perceptron of Figure 4.15 with Cus-

tom Loss on the test set. 76
4.17 Convolutional Neural Network architecture. 79
4.18 Predictions of the CNN of Figure 4.17 with Custom Loss on the

test set. 80
4.19 Recurrent Neural Network architecture. 81
4.20 Predictions of the LSTM model with Custom Loss on the test set. 81
4.21 Predictions of the LSTM model with Custom Loss on the valida-

tion set. 82
4.22 Predictions of the LSTM model with Custom Loss on the test set,

with highlighted instance 770 (red vertical line). 83
4.23 Explanation with LIME of instance 770 of the test set. 84
4.24 Predictions of the LSTM model with Custom Loss on the vali-

dation set, with highlighted instances 540 and 680 (red vertical
lines). 85

4.25 Explanation with LIME of instance 540 of the validation set. . . . 85

xv

LIST OF FIGURES

4.26 Explanation with LIME of instance 680 of the validation set. . . . 86
4.27 Histogram of distribution of "SensorMeasure20" for series 3 (in

blue) and series 4 (in red). 86

xvi

List of Tables

2.1 IF and LODA performance comparison 30

3.1 Anomalib models comparison on Wood dataset (in bold the best
results for each metric) . 47

3.2 Padim vs Patchcore on Wood dataset with two different back-
bones: Resnet-18 (R-18) and Wide Resnet-50 (WR-50) . In bold
the best results for each metric. 51

3.3 Training and testing times comparison between Padim and Patch-
core on half Wood dataset. 51

3.4 Padim vs Patchcore on the "bootle" category of the MVTec dataset
with two different backbones: Resnet-18 (R-18) and Wide Resnet-
50 (WR-50) . In bold the best results for each metric. 52

3.5 Padim (R-18) performance on the category ’bottle’ of the MVTec
dataset with different traning set fractions. 54

3.6 Padim (R-18) performance on the Wood dataset with different
traning set fractions. 54

3.7 Padim (R-18) vs Patchcore (R-18) on the "screw" category of the
MVTec dataset. 57

3.8 Padim (R-18) vs Patchcore (R-18) on the "toothbrush" category of
the MVTec dataset before and after alteration. 57

4.1 Hyperparameters configurations for Random Forest (RF) 64
4.2 Comparison of Random Forest with max_depth=8 and n_estimators=50

and Ridge with 𝛼 = 15 in terms of MAE and MSE. 64
4.3 Performance of CatBoost compared with models of Table 4.2 . . . 68
4.4 Models comparison in terms of MAPE, MAE, %𝜖 and 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 . . 77
4.5 Comparison of different CNN architectures (l=number of convo-

lutional layers, n=number of neurons) 78

xiii

LIST OF TABLES

4.6 Performance of model of Figure 4.17 with different window sizes. 79
4.7 Models comparison in terms of MAPE, MAE, %𝜖 and 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 . . 82

xiv

List of Acronyms

ABOD Angle-Based Outlier Detector

AcME Accelerated Model-agnostic Explanations

AD Anomaly Detection

AE Auto-Encoder

ANN Artificial Neural Network

AUPR Area Under the Precision-Recall curve

AUROC Area Under the Receiver Operating Characteristic curve

AutoML Automated Machine Learning

CASH Combined Algorithm Selection and Hyper-parameter

CL Custom Loss

CNN Convolutional Neural Network

CPPS Cyber-Physical Production Systems

CPS Cyber-Physical Systems

CV Computer Vision

DL Deep Learning

DNN Deep Neural Network

GAN Generative Adversarial Network

GB Gradient Boosting

xix

LIST OF TABLES

HBOS Histogram-Based Outlier Score

HITL Human In The Loop

IF Isolation Forest

IIoT Industrial Internet of Things

IoT Internet of Things

LIME Local Interpretable Model-agnostic Explanations

LODA Lightweight On-line Detector of Anomalies

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

NF Normalizing Flow

NN Neural Network

OD Outlier Detection

PCA Principal Components Analysis

PdM Predictive Maintenance

PIADE Packaging Industry Anomaly Detection

PM Preventive Maintenance

R2F Run-To-Failure

ReLU Rectified Linear Unit

RF Random Forest

xx

LIST OF TABLES

RNN Recurrent Neural Network

RUL Remaining Useful Life

SME Small and Medium-sized Enterprise

WMSE Weighted Mean Squared Error

xxi

1
Introduction

1.1 Industry 4.0

1.1.1 The Fourth Industrial Revolution

In recent years, the debate regarding Industry 4.0 has become increasingly
important. The term Industry 4.0 dates back to November 2011 and was intro-
duced by the German government as "Industrie 4.0" at the Hanover Trade Fair.
In the following years, this concept attracted the attention of many other govern-
ments, especially in Europe, that began to develop local programs to implement
this new approach [15] [22].

Often this concept is associated with a real industrial revolution, that is the
fourth one. Looking back at the history of the previous three industrial revolu-
tions, which spanned almost 200 years, we can see that they always coincided
with revolutions in technology and approach to manufacturing. The First Indus-
trial Revolution occurred during the second half of the 18th century and it was
characterized by the introduction of the steam engine and the flying shuttle, as
well as the exploitation of water power and the passage from hand production
methods to mechanization. The assembly lines, pioneered by Henry Ford, are
the main protagonists of the Second Industrial Revolution, which came up dur-
ing the second half of the 19th century. The replacement of steam with chemical
and electrical energy, together with the first use of petroleum, contributed to the
development of mass production. During the second half of the previous cen-
tury, the invention of the Integrated Circuit (microchip) was the technological

1

1.1. INDUSTRY 4.0

driver of the so-called Third Industrial Revolution, characterized by the usage
of electronics and Information Technology to further increase automation in
production [42] [22] [15].

Similarly to the previous revolutions, also Industry 4.0 includes some tech-
nological innovations. Indeed, it can be seen as an umbrella term for several
technologies, some of which are sometimes considered synonyms of Industry
4.0: Internet of Things (IoT), Cyber-Physical Systems (CPS), Cloud Computing,
Big Data, Augmented Reality, Autonomous Robotics, Additive Manufacturing,
and many others [15] [42]. The increasing popularity of Industry 4.0 and some
related concepts in the literature is visible in Figure 1.1, taken from [15].

Figure 1.1: Popularity of Industry 4.0 and other related concepts based on the
number of publications of each concept in the last seven years (up to May 2022).
Extracted from the Scopus database using exact match in the title [15].

Despite its increasing importance in literature, there is no precise and gen-
erally accepted definition of Industry 4.0 among researchers [15]. However, the
most complete is provided by a recent systematic review [15], which defines
Industry 4.0 as a "manufacturing philosophy that includes the application of
digital technologies in internal and external manufacturing operations in a way
that enables real-time integration (vertical, horizontal, end-to-end) among all
participants of the value chain to enhance operations and improve competitive-
ness". Beyond this definition, there exist some design principles that characterise
Industry 4.0 and on which many researchers agree [15] [22] [42] [35]:

• Interoperability: the capability of systems to transact with other systems
[22]. In Industry 4.0 all factory components, i.e., machines, robots, people,

2

CHAPTER 1. INTRODUCTION

and objects are connected through IoT and can communicate and share
different kinds of data.

• Virtualisation: in Industry 4.0 the physical and virtual worlds are in-
terconnected and a virtual copy of everything is created (digital twin)[15].
This is achieved by means of the data collected through the huge amount of
sensors embedded in the factory’s elements. Virtualisation is particularly
useful for maintenance.

• Real-time capacity: it is the ability to collect data in real-time from differ-
ent sources, analyse them, and take actions on the basis of the extracted
information, which reflect the real-world conditions.

• Service orientation: this principle is also known with the expression
Product-as-a-Service (PaaS), and is related to the ability of all connected
elements of the system to react to changes in the market and customer de-
mands [15]. The paradigm shift involves treating the product increasingly
as a service in order to add value to the customer.

• Modularity: Industry 4.0 requires a major paradigm shift in industrial
manufacturing, with a transition from linear and rigid manufacturing
toward a flexible and modular organisation, particularly able to quickly
adapt to changes in customer needs and market requirements.

• Decentralisation: the factory’s components in Industry 4.0 must be as
autonomous as possible and be able to make decisions without interme-
diaries. At the same time, they must be aligned with the final goal of the
whole system.

• System integration: there are three types of integration. Vertical integra-
tion, also called intra-company, involves the units of a single organisation;
horizontal integration, instead, embraces various organisations over the
value chain of the product; the end-to-end integration involves the entire
product life cycle, creating customised products and services [15].

• Corporate social responsibility: this principle involves areas such as en-
vironmental and labour regulations. Indeed, companies that want to em-
brace this new business model have to consider its impact in terms of jobs
created or killed, and have to care about the environmental sustainability
of the new manufacturing approach [22] [21].

In Figure 1.2, taken from [22], are represented all the key principles of Indus-
try 4.0, together with the enabling technologies.

At the core of Industry 4.0 there is the concept of Smart factory, where
all production facilities and machines are connected and share information.
Industrial Internet of Things (IIoT), that is, the application of IoT technologies
in industrial production, is a technological enabler of this new type of factories
[15]. A second key enabler is represented by the Cyber-Physical Production
Systems (CPPS). In general, the Cyber-Physical Systems (CPS) are automated

3

1.1. INDUSTRY 4.0

Figure 1.2: Design principles and technology trends of Industry 4.0 [22].

systems characterised by a deep interconnection between the physical and the
virtual environments. This is achieved by means of a network of sensors that
allow monitoring and extracting data from the physical world and creating a
virtual copy of it. Through the use of several smart actuators, this allows to act
in the physical environment, according to the information obtained. Embedded
systems facilitate the coordination of the physical elements and the digital ones
[15]. When this technology is adopted for production, is know as CPPS. They
are basically similar to IIoT, but in the latter case CPPS are connected through
the Internet [29].

The goal of a Smart Factory is process efficiency, achieved through ma-

4

CHAPTER 1. INTRODUCTION

chine and equipment automation and self-optimisation. This factory model
also allows for the reduction of resource waste, product defects, and machine
downtimes [22].

Another important concept is the Smart product, a special kind of product
provided with many different kinds of sensors that are embedded in it. These
sensors are able to acquire data about the product, the environment, and the
customer and communicate them through the Internet. This can be useful both
when the product is on the production line, being able to provide information
about its status, but also at the consumption stage, where information extracted
from sensors data can be considered an added value for the customer [22] [23].

The concepts and principles outlined above are just a few aspects that char-
acterise this Fourth Industrial Revolution. Moreover, the Industry 4.0 topic is
not completely defined and subject to debate among experts, also because of
the underlying technology which is constantly evolving. From an implemen-
tation point of view, then, as noted by [22], to date there is no well-defined
roadmap that would suit all companies interested in transitioning to Industry
4.0. There are a lot of challenges that a company has to face, among which there
are the huge initial capital investment, the low availability of employees with
the needed skills, the risk related to data security and the environmental impact
of the transition. However, the benefits of Industry 4.0 could be remarkable,
for instance, in terms of revenue gains, cost reduction, improved efficiency and
productivity, competitivity, without excluding those in the environmental and
social fields [15] [22] [21].

1.1.2 Machine Learning for Industry 4.0

As observed in the previous subsection, the virtual world of digits plays
a vital role in Industry 4.0. Indeed, the factory’s components continuously
collect data about their status and the environment thanks to the large adoption
of smart sensors. In this scenario, Machine Learning techniques are essential
in leveraging the huge amount of gathered data to make intelligent decisions
in many manufacturing tasks. Other techniques adopted include the more
specific fields of Computer Vision and Deep Learning. With the adoption of
Machine Learning, "manufacturers can gain insight to optimise the productivity
of individual assets as well as the total manufacturing operation" [46].

There are several possible applications of ML to Industry 4.0. The main areas

5

1.2. AUTOMATED MACHINE LEARNING

are the following, according to [46]:

• Inspection and monitoring: these tasks are often performed with the
adoption of computer vision techniques applied to both images and videos.
RGB cameras are combined with ML-based algorithms to obtain high-
throughput part inspection. Inspection and monitoring mostly consist of
the detection of defects in a wide range of products. Images (or videos)
could be subjected to some data pre-processing. After that, if Deep Learn-
ing is exploited, images are directly passed to a Neural Network model,
that automatically performs the feature extraction stage and the following
classification/detection. With a more classical approach, features engi-
neering may be used, followed by a ML algorithm [46].

• Fault detection: for manufacturing companies, reducing machine down-
times is vital to stay competitive by reducing costs and time waste. Also in
this task, ML play an important role, allowing a timely and accurate diag-
nosis of manufacturing equipment process faults. Often, Deep Learning
techniques, such as RNN or LSTM that can exploit time series data, but
also classic ML techniques, are adopted [46].

• Cloud manufacturing: given the production of big data in Smart factories,
cloud storage within manufacturing is acquiring more and more impor-
tance. ML algorithms can be used in cloud manufacturing to improve
performance, reduce costs, and drive profitability [46].

• Process improvement and optimisation: manufacturing processes can be
improved and optimised through ML. Indeed, the analytic capabilities
of ML can be used to select the optimal set of parameters related to a
given manufacturing process. Researchers state that this new discipline,
linking ML with process improvement, will be subject to great growth in
the coming decades [46].

• Predictive maintenance (PdM): a new maintenance policy born with In-
dustry 4.0. Data extracted from industrial equipment can be exploited to
monitor its status and, thanks to the predictive capabilities of ML, increase
its operational life and minimise machine downtime. A popular PdM task
is the Remaining Useful Life estimation, that consists in predicting the
remaining amount of operational life (in terms of cycles, days, hours...) of
a given equipment.

1.2 Automated Machine Learning

1.2.1 What is AutoML?

In the last decade, Machine Learning acquired more and more importance
in many different areas, even beyond the manufacturing field, like healthcare

6

CHAPTER 1. INTRODUCTION

industry, autonomous driving, natural language processing, and so on. This
gain in popularity and the consequent growth in requests for ML solutions
from companies has made figures like Data Scientist and Machine Learning
engineer increasingly in demand. Indeed, the ML pipelines are characterized
by several sensitive phases, like data cleaning or model selection, that require
a lot of experience, domain knowledge and highly specialized data scientist.
However, the lack of such experts and the high costs can be an obstacle and
discourage the adoption of these technologies, especially for small and medium-
sized companies, which would not have resources to create teams in this specific
field. Moreover, there are several tasks, like hyper-parameter tuning, that are
tedious and repetitive both for expert and non-experts. Experts may prefer
to devote their time to more useful and motivating tasks, like interpreting the
models’ results or analyze the data [5] [59].

These are some reasons for which techniques for automating the ML pro-
cedures have begun to emerge in recent years, under the term of Automated
Machine Learning (AutoML). The AutoML topic is being discussed in the lit-
erature, in particular in terms of the degrees of automation of the ML tasks.
Researchers disagree on the role humans play in AutoML, and there exist two
opposite perspectives: the first considers humans as part of the entire process,
while the second aims at full automation. From this discussion, it is possible
to categorise AutoML solutions into different types. With Narrow AutoML,
experts remain part of the process and only some specific ML parts are handled
automatically (usually, model selection and hyper-parameter optimization). On
the opposite side, Generalised AutoML makes AutoML accessible to many peo-
ple thanks to full automation, which also ideally removes the need for experts.
The problem with this approach is that generally the obtained solutions are less
transparent and the system less customisable. A third approach, known with the
expression Human In The Loop (HITL), involves collaboration between humans
and artificial intelligence. AutoML systems are monitored by humans who can
support the difficulties of the system using intuition and domain knowledge.
In general, the participation of humans makes the use of ML methods more
socially acceptable [59].

Often, the AutoML tools focus on automating the model generation task.
In this case the automated ML pipeline is described in Figure 1.3 from [5].
As visible, the model generation includes the learning algorithms used and
the hyper-parameter optimization techniques. Note that Figure 1.3 does not

7

1.2. AUTOMATED MACHINE LEARNING

include preprocessing steps, e.g., data cleaning, or other tasks such as feature
engineering and dimensionality reduction, that may, however, be tackled by
AutoML tools [5].

Figure 1.3: Overview of the automated machine learning pipeline for the CASH
problem [5].

The model generation task is so important in Machine Learning that is also
known by the acronym CASH, which stands for Combined Algorithm Selec-
tion and Hyper-parameter problem. Following the formalism introduced in
[5], a mathematical formulation of the CASH problem can be provided. Let
𝒜 = {𝐴1, ..., 𝐴𝑎} be a set of algorithms. Each algorithm 𝐴𝑖 has a set of hyper-
parameters in a domain Λ𝑖 . So, with 𝑝 hyper-parameters, the hyper-parameter
space is defined as Λ𝑖 = Λ𝑖

1, ...,Λ
𝑖
𝑝 . Then, given a dataset 𝑋, the problem objec-

tive can be defined as the pair given by algorithm and hyper-parameter setting
that minimizes the following loss:

𝐴∗,�∗ ∈ arg min
𝐴𝑖∈𝒜 ,�∈Λ𝑖

1
𝐾

𝐾∑︂
𝑗=1

ℒ(𝐴𝑖� , 𝑋
𝑗

𝑡𝑟𝑎𝑖𝑛
, 𝑋

𝑗

𝑣𝑎𝑙𝑖𝑑
), (1.1)

where ℒ(𝐴𝑖� , 𝑋
𝑗

𝑡𝑟𝑎𝑖𝑛
, 𝑋

𝑗

𝑣𝑎𝑙𝑖𝑑
) measures the loss obtained by algorithm 𝐴𝑖 with

hyper-parameters configuration� on𝑋 𝑗

𝑣𝑎𝑙𝑖𝑑
when trained on𝑋 𝑗

𝑡𝑟𝑎𝑖𝑛
with𝐾 Cross-

Validation folds [5].
Clearly, the CASH problem can be addressed directly only when dealing

with a supervised task, where the dataset 𝑋 is provided together with ground
truth labels describing, for example, the class to which each instance belongs.
In this case, the model evaluation phase can be performed and models can be
compared in terms of some quantitative metric. However, there are some tasks
that need to be treated as unsupervised ones, especially in the industry field.

8

CHAPTER 1. INTRODUCTION

The problem in this last scenario cannot be tackled directly, and some solutions
have been proposed in the literature.

1.2.2 Examples of AutoML tools

The interest in the topic of Automated Machine Learning started to increase
about six years ago, as visible in Figure 1.4.

Figure 1.4: Google trend for the "Automated Machine Learning" topic.

During these years, several AutoML tools have been developed, with differ-
ent levels of automation. Some of them are briefly described here.

• TPOT [39]: the Tree-based Pipeline Optimization Tool is one of the first
AutoML tool and can be used for classification and regression tasks. It
combines genetic programming and the scikit-learn library to provide
the best models for a given dataset. Models are compared in terms of
quantitative performance, so only supervised tasks are managed. TPOT
provides support for Neural Networks, but data pre-processing is not
automated [7] [59].

• Auto-WEKA [32]: it solves the CASH problem by Bayesian optimisation,
but it does not support other steps, beyond working with supervised learn-
ing only [59] [5].

• AutoSklearn [19]: built around the sklearn library, it aims to solve the
CASH problem. Similarly to Auto-WEKA, it employs Bayesian optimisa-
tion, but also the meta-learning technique to initialise the algorithm and
hyper-parameter selection (warm-start problem) [59] [5].

• AutoKeras [30]: it was published in 2017, with the goal of finding au-
tonomously neural network configurations using Bayesian optimisation.
It is based on the well-known Deep Learning library Keras. Auto-Keras is
built for supervised tasks and can handle images and text data [7] [5].

• AutoGluon [17] [45]: developed by Amazon, it uses both Machine Learn-
ing and Deep Learning algorithms to manage different applications. It can
handle image, text, and tabular data and provides tools for object detec-
tion. AutoGluon Tabular combines multiple models to create ensambles
[7].

9

https://github.com/EpistasisLab/tpot
https://scikit-learn.org/stable/
https://www.cs.ubc.ca/labs/algorithms/Projects/autoweka/
https://automl.github.io/auto-sklearn/master/
https://autokeras.com/
https://auto.gluon.ai/stable/index.html

1.2. AUTOMATED MACHINE LEARNING

All these tools can manage some ML tasks, while there exist other that can
be considered in the framework of Generalised AutoML, such as Cloud AutoML
by Google, Microsoft Azure Automated ML and Amazon SageMaker Autopilot.
They are less transparent and customisable, but can be used also by non-experts
since they require little programming [59].

1.2.3 AutoML challenges

When building an AutoML tool, one has to take into account a whole series of
critical issues. Firstly, when dealing with the CASH problem, a search space for
the algorithm hyper-parameters must be defined, taking care of not missing well-
performing regions. In this context, the cold-start problem plays an important
role. It is a problem where the process starts with a bad hyper-parameter
configuration, or even with a bad model, consequently spending too much time
to get better results. The meta-learning technique, explained in Subsection 2.2.1,
can be used to deal with this problem. By looking at the similarities between
the considered dataset and some historical ones, it is possible to warm-start the
search problem beginning with better configurations and/or models.

AutoML tools could also be used by non-experts, or people with low ML
knowledge. Alternatively, experts may use them to speed up their works, au-
tomating some tedious tasks. In both cases, the running time of the automated
pipeline is a crucial aspect to take into account. An unexperienced user may
prefer a suboptimal solution rather than having to wait too long for a solution.
At the same time, for an expert, the advantage derived from automating ML
tasks may not be as effective if waiting times are too long.

In the Machine Learning field there exist datasets of widely varying dimen-
sionalites. If the AutoML tool has to deal with high-dimensional data that can
affect the performance of the algorithms, a dimensionality reduction process
should be integrated in the feature extraction/selection stage of the AutoML
pipeline. Moreover, there are datasets with different sizes. The system must be
able to scale on large datasets, but possibly also perform well with few data.

To evaluate the different models and/or hyper-parameter configurations, a
performance metric (or more than one) must be carefully selected. This is a
nontrivial problem, since the metric depends on several factors, among which
there are the learning task and the type of data. For supervised tasks, the choices
are numerous. The problem arises when dealing with an unsupervised task and

10

https://cloud.google.com/automl?hl=it
https://azure.microsoft.com/en-us/products/machine-learning/automatedml/
https://aws.amazon.com/it/sagemaker/autopilot/?sagemaker-data-wrangler-whats-new.sort-by=item.additionalFields.postDateTime&sagemaker-data-wrangler-whats-new.sort-order=desc

CHAPTER 1. INTRODUCTION

in the industrial scenario this is a common situation. For example, there exists
no unsupervised performance metric to evaluate the unsupervised case of the
well-known anomaly detection task [5].

The lack of transparency may be an obstacle to the adoption of AutoML
technologies. Indeed, these tools are often seen as black boxes, since it is difficult
to understand the reasons behind their decisions. This fact has a negative impact
on the trust of the inexperienced user towards AutoML. To address the problem,
explainability tools can be integrated in the system. In the "Human-in-the-loop"
framework, experts can, among others, help the final user to understand the
results of the AutoML system through explainability [59].

Since one of the goals of AutoML is to democratise Machine Learning by
making it accessible to as many people as possible, even non-experts, another
relevant thing to evaluate is the user experience quality. For example, in [7],
some AutoML tools are compared in terms of documentation, simplicity of first
use, and logs. Clearly, in this case only a qualitative evaluation can be done.
The documentation analysis include considerations regarding the tutorials, the
presence of examples of use-cases for beginners, and the level of detail of the
documentation itself. Users might quickly abandon a tool if it is hard to initially
configure. So, a good AutoML tool should be easy to setup requiring few lines of
code to start; also, the simplicity of model export and import must be considered.
The logs help developers to understand what is going on in the system. Good
logs are essential for increasing transparency of AutoML tools, making them
more accessible to different kind of users [7].

1.3 Introduction to Thesis Work

The work presented in this thesis is the result of an internship at Statwolf
Data Science s.r.l. The work consisted in the development of AutoML solutions
for some Machine Learning tasks related to Industry 4.0. In particular, two
manufacturing tasks are addressed that are the Anomaly Detection, both with
tabular and visual data, and the Remaining Useful Life (RUL) estimation. The
first consists in the binary classification of unsupervised data into two unbal-
anced classes, one for normal instances and one for anomalous instances. The
RUL estimation is a regression task in which the goal is to predict the remaining
operational life of an industrial equipment.

11

https://www.statwolf.com/it/
https://www.statwolf.com/it/

1.3. INTRODUCTION TO THESIS WORK

The internship is part of the activities related to the "Automated Machine
Learning for Advanced Monitoring in Digital Manufacturing and Industry 4.0"
(AutoML 4.0) project. The aim of this project is the development of an AutoML
tool to quickly enable data-driven Smart Monitoring for manufacturing com-
panies. The Industry 4.0 is gaining popularity during recent years, but many
companies, and in particular the SMEs, continue to face some difficulties in
exploiting the potential of data gathered from industrial processes and equip-
ment. The main problem remains the lack of qualified employees, e.g., Data
Scientists and Machine Learning engineers, and for this reason an automated
tool for developing ML solutions would be very valuable. This AutoML tool is
designed to also be used by people with little or no ML experience, and could
also motivate companies to invest more in data-driven solutions. Compared
to the categorisation presented in Subsection 1.2.1, AutoML 4.0 falls within the
Human-in-the-loop framework, since it is a decision support system in which
human experts act as supervisors.

AutoML 4.0 is one of the activities of a broader project, the EUHubs4Data
(EUH4D), founded by the European Union with the objective of building a
European federation of Data Innovation Hubs, where data sources and data-
driven services and solutions will be made accessible to European SMEs, start-
ups, and web entrepreneurs. The ultimate goal is to reduce the lag behind in
data-driven innovation that characterises most of Europe’s SMEs.

The StatwolfML library already provides an AutoML tool able to manage
both classification and regression tasks for tabular data. In particular, after
inferring the type of task, it automatically performs some pre-processing steps,
like handling the Nan values and the outliers. Then, it finds the best hyper-
parameter configuration for the provided dataset, returning the corrisponding
model. However, the manufacturing tasks considered during the internship are
somehow peculiar, such as the AD one, which is not supervised. So, handle
these tasks require specific modules being able to managing all related issues.

In the thesis, the work on Anomaly Detection on tabular data can be found
in Chapter 2, while Chapter 3 is dedicated to the Visual AD. After a brief
introduction to Predictive Maintenance, Chapter 4 focus on the RUL estimation
task, while the final Chapter 5 recaps the main results and the future work
directions.

12

https://euhubs4data.eu/experiments/automated-machine-learning-for-advanced-monitoring-in-digital-manufacturing-and-industry-4-0/
https://euhubs4data.eu/experiments/automated-machine-learning-for-advanced-monitoring-in-digital-manufacturing-and-industry-4-0/
https://euhubs4data.eu/experiments/automated-machine-learning-for-advanced-monitoring-in-digital-manufacturing-and-industry-4-0/
https://euhubs4data.eu/experiments/automated-machine-learning-for-advanced-monitoring-in-digital-manufacturing-and-industry-4-0/
https://euhubs4data.eu/
https://docs.statwolf.com/#/statwolfml
https://docs.statwolf.com/#/statwolfml?id=automl

2
Anomaly Detection on Tabular Data

2.1 Introduction

Anomaly Detection (AD) is a task that consists in the identification of rare
items, events or observations, that deviate significantly from the majority of
the points in a dataset. In other words, given a well-defined notion of normal
behavior, the anomalous instances do not conform to it. Since this kind of points
can be thought as outliers with respect to the distribution of the normal ones, the
task is also called Outlier Detection (OD). In this chapter, the data considered for
the AD task are in tabular format, where rows represent the single instances that
can be classified as normal or not, while columns refer to the features describing
the instances.

Anomaly Detection can be treated as a supervised or unsupervised task.
However, the lack of annotated data makes it often difficult to deal with super-
vised AD. Especially at the beginning of a digital transition, for many compa-
nies, annotating data is a costly activity, both in terms of time and for the need
of engaging domain experts. For this reason, the AD task is often addressed
in its unsupervised version, more attractive to companies because of its cost-
effectiveness and quicker results. Possibly, in the future, increased awareness
among companies of the potential of AD could prompt them to invest in order
to collect labelled data. However, in this chapter the focus is on unsupervised
AD.

The absence, in unsupervised AD, of hold-out data with labels combines

13

2.1. INTRODUCTION

with a second problem, that is, the lack of a universal objective function to
guide model selection. Indeed, the definition of anomaly may differ depending
on the considered domain and consequently also on the objective function to be
optimised. These two critical issues contribute to making the model selection for
the AD task a "black art" [64], since model evaluation/comparison is not feasible.
In general, there are no principled work on model selection for unsupervised
OD [64].

An AutoML module for the Outlier Detection task, that can be called Au-
toOD, should be able to automatically select a good outlier method and its hy-
perparameters, i.e., it should autonomously perform the model selection task.
Given all the issues previously highlighted, this goal is very challenging for un-
supervised OD. In the literature, some solutions have been proposed: the state-
of-the-art according to [5] is visible in the table of Figure 2.1, which includes the
most recent approaches. Notice that, according to the column "Evaluation" of
Figure 2.1, there are only two methods that satisfy the constraint of dealing with
an unsupervised task, that are MetaOD [64] and Meta-AAD [63], both leveraging
the meta-learning technique.

Figure 2.1: State-of-the-art approaches for AutoOD according to [5].

The other approaches, namely PyODDS [37], LSCP [65], TODS [34] and

14

https://github.com/yzhao062/MetaOD
https://github.com/daochenzha/Meta-AAD
https://github.com/datamllab/pyodds
https://github.com/yzhao062/LSCP
https://github.com/datamllab/tods

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

AutoOD [36], despite using unsupervised algorithms, compare different models
and hyper-parameter configurations by means of supervised metrics, often the
F1-score, which, however, require labelled data. Between MetaOD and Meta-
AAD, the most promising method seems to be the first, since considers a much
larger set of meta-features. Moreover, the second method adopts reinforcement
learning, so requiring more time in training the meta-learner.

The working principle of MetaOD is detailed described in Section 2.2, while
Section 2.3 includes some experiments with this method, that is compared with
the Isolation Forest algorithm. Finally, Section 2.4 deals with the intepretability
topic for the AD task.

2.2 MetaOD

2.2.1 Meta-learning

In principle, meta-learning is a Machine Learning field composed by a suite
of techniques that exploit past experience on a set of prior tasks to perform effi-
cient learning on a new task [64]. In particular, as described in Figure 2.2, several
models with various hyper-parameter configurations �𝑖 are trained and evalu-
ated on different datasets. This phase is known as the meta-learner training. The
results in a Performance matrix𝑃, whose elements𝑃𝑖 , 𝑗 are the performance of the
hyper-parameters configuration 𝑖 on the training data 𝑗. Then, from each train-
ing data 𝑗, several features𝑚 𝑗 , called meta-features, that describes characteristics
of the data, are collected. These meta-features are used to assess similarities be-
tween the new data and the ones used to train the meta-learner. So, given a new
dataset, it is possible to identify the most similar datasets and provide as output
the configurations that perform better on these, which, hopefully, are the best
ones also for the new data.

15

2.2. METAOD

Figure 2.2: Meta-learning technique schema from [5].

Clearly, meta-learning is based on the assumption that datasets are compa-
rable in terms of some characteristic features, whose choice is critical for the
proper functioning of the technique. Meta-features that can be extracted from a
dataset are of two types [64]:

1. Statistical features: features that capture statistical properties of the un-
derlying data distributions. E.g, min, max, mean, median, correlation,
covariance, etc. of features and features combinations.

2. Landmarker features: problem-specific features. In the case of MetaOD,
the OD models iForest, HBOS, LODA and PCA are applied on the datasets
and meta-features are extracted from the models’ structure and from the
outlier scores given in output by the models. E.g., average horizontal and
vertical tree imbalance from the iForest algorithm.

Although statistical features are commonly used in meta-learning, the opti-
mal set of meta-features has been shown to be application dependent [57]. In
Figure 2.3 there is a summary of the statistical and landmark features adopted
by MetaOD.

2.2.2 MetaOD Problem Statement

MetaOD is the first meta-learning approach to OD, that selects an effective
model (that is, detector and hyperparameter configuration) to be employed in
a new detection task [64]. Following the meta-learning paradigm, a new OD
dataset, without labels, is compared to some historical datasets, with labels,
coming from a meta-train database. To assess the performance of a given model
on this new dataset, MetaOD looks at its prior performance on similar datasets.
In this way, this approach is able to handle the unsupervised version of OD,

16

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

Figure 2.3: Selected meta-features for characterizing an arbitrary dataset [64].

provided that you have enough OD supervised datasets to properly train the
meta-learner.

MetaOD includes a phase of training of the so-called meta-learner. Following
the description in [64], this phase involves:

• A meta-train database, i.e., a collection of historical OD datasets, 𝐷𝑡𝑟𝑎𝑖𝑛 =
{𝐷1, ..., 𝐷𝑛}, provided with ground truth labels, where 𝐷𝑖 = (𝑋𝑖 , 𝑦𝑖), for
𝑖 = 1, .., 𝑛.

• Performances of the 𝑚 models, that defined the model space ℳ, on the
meta-train datasets.

So, given a new input dataset 𝑋𝑡𝑒𝑠𝑡 with no labels, the OD model selection
problem consists in select a model 𝑚 ∈ ℳ to employ in the new test task [64].

The historical datasets are 62 independent datasets coming from three sources:

1. 23 datasets from the ODDS library.

2. 19 DAMI datasets.

3. 20 benchmark datasets [16].

17

http://odds.cs.stonybrook.edu/
https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/

2.2. METAOD

A MetaOD model is defined as a pair (detector, configuration) for a specific
hyper-parameter configuration, where the hyper-parameter space is discretized.
In Figure 2.4 all the models considered are summarised. For instance, a model
can be the detector iForest combine with the configuration 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100
and 𝑚𝑎𝑥_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 0.1.

Figure 2.4: Outlier Detection models adopted in MetaOD [64].

2.2.3 MetaOD Working Principle

MetaOD work is characterised by two phases, described in the schema of
Figure 2.5:

1. Offline Meta-Learner Training: training of the meta-learner with the
meta-train database.

2. Online Model Selection: the best models are predicted for a new unsu-
pervised dataset.

Figure 2.5: MetaOD overview; components that transfer from offline to online
(model selection) phase are shown in blue [64].

18

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

In the first step of the Offline phase (circled in red in Figure 2.6), MetaOD
constructs the performance matrix P ∈ R𝑛×𝑚 by running and evaluating all 𝑚
models of the model space ℳ on all 𝑛 meta-train datasets. On the other hand,
to capture task similarity, 𝑑 = 200 meta-features are extracted from each meta-
train dataset, obtaining the matrix M = 𝜓({𝑋1, ..., 𝑋𝑛}) ∈ R𝑛×𝑑, where 𝜓 is the
meta-features extractor.

Figure 2.6: MetaOD overview with the computation of matrices P and M circled
in red[64].

The training of the meta-learner consists of a factorization of the matrix P into
matrices V ∈ R𝑚×𝑘 and U ∈ R𝑛×𝑘 . Since the goal is to rank the models for each
dataset row-wise [64], MetaOD uses a rank-based criterion called Discounted
Comulative Gain (DCG). Indeed, DCG allows ranking the models according to
their performance on the datasets, that is not possible when the factorization
is obtained, for instance, by minimizing . Indeed, with classical factorization
methods, like by minimizing the Frobenius norm of P − UV𝑇 , it is not possible
to sort the models on the base of their performance on the datasets.

The DCG for a dataset 𝑖 is defined as:

𝐷𝐶𝐺𝑖 =

𝑚∑︂
𝑗=1

𝑏P𝑖 𝑗 − 1

log2

(︂
1 +∑︁𝑚

𝑘=1 1
[︁
P̂𝑖 𝑗 ≤ P̂𝑖𝑘

]︁)︂ , (2.1)

where P̂𝑖 𝑗 = ⟨U𝑖 ,V𝑗⟩ is the predicted performance of model 𝑗 on dataset 𝑖,
while 𝑏 is a scalar.

19

2.2. METAOD

Since DCG is not differentiable, the indicator function is replaced by the
smooth sigmoid approximation:

𝐷𝐶𝐺𝑖 ≈ 𝑠𝐷𝐶𝐺𝑖 =

𝑚∑︂
𝑗=1

𝑏P𝑖 𝑗 − 1

log2

(︂
1 +∑︁𝑚

𝑘=1 𝜎
(︂
P̂𝑖 𝑗 ≤ P̂𝑖𝑘

)︂)︂ . (2.2)

So, the training step, highlighted in Figure 2.7, consists of optimising, through
Stochastic Gradient Descent (SGD), the following smoothed objective function:

ℒ = −
∑︂
𝑖

𝑠𝐷𝐶𝐺𝑖(P𝑖 ,U𝑖V𝑇). (2.3)

Optimisation through SGD is obtained by alternately solving U after fixing
V and vice versa.

Figure 2.7: MetaOD overview with the DCG factorization of matrix P circled in
red[64].

Initialisation plays an important role in non-convex problems [64]. For the
training of the meta-learner, it is in particular important to initialize properly
the matrices U and V (Figure 2.8):

• U(0) = 𝜙(M), where 𝜙 is a dimensionality reduction function (i.e., a PCA),
𝜙 : R𝑑 −→ R𝑘 , 𝑘 < 𝑑, applied to the meta-features matrix M.

• V(0) = 𝒩(0, 1)

20

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

Figure 2.8: MetaOD overview with the initializations of matrix U and V circled
in red[64].

The last ingredient of the offline meta-learner training is highlighted in Fig-
ure 2.9. MetaOD learns also a random forest regressor 𝑓 : R𝑘 −→ R𝑘 that maps
the initial version of matrix U, U(0), that includes the embedding features 𝜙(M),
onto the final optimized U, obtained at the end of the training phase. The utility
of such a regressor is more clear in the Model Selection phase.

Figure 2.9: MetaOD overview with the random forest regressor circled in red[64].

The second phase of the MetaOD working, that is, the Online Model Selec-
tion, is more linear. Given a new unsupervised dataset 𝑋𝑡𝑒𝑠𝑡 , it undergoes the

21

2.3. EXPERIMENTS WITH METAOD

following processes:

1. Computation of the meta-features M𝑡𝑒𝑠𝑡 = 𝜓(𝑥𝑡𝑒𝑠𝑡) ∈ R𝑑.

2. Embedding of meta-features through PCA, 𝜙(M𝑡𝑒𝑠𝑡) ∈ R𝑘 .

3. The embeddings are passed to the random forest regressor 𝑓 , to obtain
matrix U𝑡𝑒𝑠𝑡 = 𝑓 (𝜙(M𝑡𝑒𝑠𝑡)) ∈ R𝑘

4. Finally, the performance of each model is obtained as P𝑡𝑒𝑠𝑡 = U𝑡𝑒𝑠𝑡V𝑇 ∈ R𝑚 .

Basically, MetaOD returns a vector, P𝑡𝑒𝑠𝑡 , that contains the performance of
each model on the new data 𝑋𝑡𝑒𝑠𝑡 . The solution to the MetaOD Model Selection
problem consists of selecting the model with the best performance:

arg max
𝑗

⟨ 𝑓 (𝜙(𝜓(X𝑡𝑒𝑠𝑡)),V𝑗⟩. (2.4)

2.3 Experiments with MetaOD

2.3.1 Datasets

MetaOD is tested on two unsupervised OD datasets, taken form two different
industrial scenarios.

The first dataset is the DATACENTER MONITORING DATA provided by
CINECA, that is involved in the EUH4D project. It describes the jobs runned on
Marconi100 system in the period October 2020 - February 2021. The raw data
are stored in two kind of files, the .jobs and the SACCT ones, whose tabular
structure is described in the examples of Figures 2.10 and 2.11, respectively.

Figure 2.10: Structure of data in .job files.

22

https://euhubs4data.eu/datasets/cineca-datacenter-monitoring-data/
https://www.cineca.it/
https://euhubs4data.eu/
https://www.hpc.cineca.it/hardware/marconi100

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

Figure 2.11: Structure of data in SACCT files.

Each row describes a different job and most jobs are shared between the two
kind of files. Only data in SACCT files are considered for the MetaOD evaluation,
since the information provided for each job is more useful and detailed, in
particular for the provided timestamps (columns "submit", "eligible", "start",
and "end").

Data are aggregated by time slot of one hour: in this way, the anomaly
detection problem consists of predicting if the hours are abnormal or normal.
Secondarily, for each time slot, 27 features are computed:

• For each status of the job, the number of jobs ended up in the status in the
time slot (9 features).

• For each status of the job, the percentage of jobs that ended in the status in
the time slot (9 features).

• Mean and standard deviation of the execution times of the jobs terminated
in the time slot (2 features).

• Mean and standard deviation of the queue times of the jobs terminated in
the time slot (2 features).

• Ratio between the mean execution time and the mean queue time (1 fea-
ture).

• Mean difference between CPUs requested by the user and CPUs allocated
by the system (1 features).

• The day time slot of the hour, considering slots of 8 hours (3 features).

The final dataset consists of 2967 rows.
Pratically, the dataset is only weakly supervised, since, together with the

data, a list of incidents is provided, with some broad information on the data,
the duration, and the cause, as shown in Figure 2.12.

23

2.3. EXPERIMENTS WITH METAOD

Figure 2.12: Annotated incidents.

The second dataset comes from the Statwolf’s partner Galdi Srl and it is called
Packaging Industry Anomaly Detection (PIADE).

It includes data from five industrial packaging machines:

• Machine s_1: from 2020-01-01 14:00:00 to 2021-12-31 13:00:00.

• Machine s_2: from 2020-06-17 08:00:00 to 2021-12-31 07:00:00.

• Machine s_3: from 2020-10-07 12:00:00 to 2022-01-01 23:00:00.

• Machine s_4: from 2020-01-01 01:00:00 to 2022-01-01 23:00:00.

• Machine s_5: from 2020-01-20 08:00:00 to 2022-01-01 12:00:00

Also in this case, the raw data provided by the equipment are aggregated in
time slots of one hour (for each different machine). The features computed for
each slot are the following:

• Equipment_ID, that is the machine identifier.

• The number of changes in the machine state.

• The percentage of time spent in the downtime state.

• The percentage of time spent in the idle state.

• The percentage of time spent in the performance loss state.

• The percentage of time spent in the production state.

• The percentage of time spent in the scheduled downtime state.

24

https://www.statwolf.com/it/
https://www.galdi.it/
https://zenodo.org/record/7071747#.Y7xGruxKhGM

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

• The sum of all alarm occurrences.
• Counters of the occurrences of each of the 133 different types of alerts.

• The numbers of transitions from one state to another.

In the evalaution of MetaOD, only data relative to Machine s_1 are consid-
ered, for a total of 8973 rows.

2.3.2 Isolation Forest

Given the unsupervised nature of the task, a possible way to evaluate the
quality of the MetaOD’s results consists in comparing them with the predictions
of a well-established outlier detector, that is the Isolation Forest, or iForest (IF)
[38]. IF operates by isolating anomalous points in a dataset, given two important
assumptions about them:

1. They are very rare, so representing the minority.

2. The features’ values of abnormal instances deviate a lot from the distribu-
tion of the features’ values of the normal instances.

So, anomalies are few and they differ clearly from normal points, thus being
easier to isolate.

Similarly to Random Forest, IF is an ensemble method and its strength comes
from the combination of several weak detectors, called Isolation Trees, or iTrees.
Each iTree induces a partitioning in the instances’ space by iteratively selecting a
random feature from the feature set and a random split point from the range of
the feature’s values. This process continues until either each instance is isolated
in a leaf, or the tree reaches a pre-defined height limit. The intuition is that,
since anomalies can be easily isolated, they generally require less partitions, so
falling in leafs that are closer to the tree root. This can be better understood with
the example of Figure 2.13, taken from the original paper. Point 𝑥0 is considered
an anomaly, while 𝑥𝑖 is normal, as can be guessed from the distribution of
points. As visible, isolating 𝑥𝑖 is much harder than isolating 𝑥0, requiring more
partitions and therefore higher levels of the tree.

While the training consists in building such trees (whose number is an hyper-
parameter), in the test phase it is possible to derive an anomaly score for a
candidate point from the average path length of the point in a collection of
iTrees, the Isolation Forest. The path length of a point in a tree is defined as the
number of edges in the path from the tree’s root to the leaf in which the point

25

2.3. EXPERIMENTS WITH METAOD

Figure 2.13: Example of isolation of a normal point, 𝑥𝑖 , and an abnormal point,
𝑥0 [38].

is isolated. The score, as defined in the paper, is between 0 and 1: if the value
is close to 1 we have an anomaly, while close to 0 the instance is classified as
normal.

It is important to note that IF performs random subsampling of training data,
since it works better when the data sampling size is kept small [38].

Finally, the time complexity is linear with a low constant and a low memory
requirement [38].

2.3.3 Results

The implementation of MetaOD adopted is the official one, from the au-
thors of the paper. Note that all the included models come from the PyOD
library. MetaOD results are compared to the ones of the Random Forest imple-
mentation provided by the StatwolfML library, with 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100 and
𝑚𝑎𝑥_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1.0, where 𝑚𝑎𝑥_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 specifies the portion of features in-
volved in the training of each estimator. Another parameter to be specified is
the 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, that is the proportion of outliers in the dataset: it is set to
0.1 by default in all the MetaOD models.

Once the data are provided to MetaOD, it returns the best 𝑛 models, where 𝑛
can be specified by the user. For the CINECA Dataset, the first six best combina-
tions of detector and hyper-parameters configuration are shown in Figure 2.14.

The Lightweight Online Detector of Anomalies (LODA) algorithm [44] with
𝑛_𝑏𝑖𝑛𝑠 = 5 and 𝑛_𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑢𝑡𝑠 = 20, is the best model for MetaOD. In Fig-

26

https://github.com/yzhao062/MetaOD
https://github.com/yzhao062/MetaOD
https://github.com/yzhao062/pyod
https://docs.statwolf.com/#/statwolfml

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

Figure 2.14: Best models for the CINECA Dataset according to MetaOD.

ure 2.15 the anomalies detected by the IF (in green) are compared with the one of
LODA (in purple). The contamination is set to 0.1 for the IF as well. The anomaly
scores provided in the output of the two models are normalised between 0 and 1
and visualised with respect to the date. Since the dataset is weakly supervised,
it is possible to compare results with the incidents annotated by CINECA. The
beginning of an incident is reported by a vertical dotted red line, whereas its
end is reported by a vertical dotted blue line.

Figure 2.15: Comparison of detected anomalies by LODA (in purple) and by IF
(in green), with normalized anomaly scores. The vertical dotted lines highlight
incidents annotated by CINECA: red lines identify the beginning and blue lines
the ending of the event.

Sometimes, there are matches between predictions and annotations, for in-
stance in October 13𝑡ℎ and 14𝑡ℎ , December 1𝑠𝑡 , 2𝑛𝑑 and 23𝑟𝑑, while in other
cases the anomalies seem anticipate the incident (October 21𝑠𝑡 , January 10𝑡ℎ).
However, there are also some mismatches, and, moreover, a lot of apparent
false positives, i.e., detected anomalies with no correlated incidents. Unfortu-
nately, the absence of more precise and complete annotations makes it difficult
to evaluate performance.

27

2.3. EXPERIMENTS WITH METAOD

Given the high number of detected anomalies, a post-processing is applied
to the results, in order to allowing a better comparison between LODA and IF.
In particular, an anomaly is kept only if at least three anomalies are observed
before it in a window of 5 time slots. Figure 2.16 shows the result.

Figure 2.16: Comparison of detected anomalies by LODA (in purple) and by
IF (in green), with normalized anomaly scores, after the post-processing. The
vertical dotted lines highlight incidents annotated by CINECA: red lines identify
the beginning and blue lines the ending of the event.

As can be seen, most of the anomalies captured by IF are also identified by
LODA, so the two models show comparable results. The most evident differences
are around October 11𝑡ℎ , where for LODA there is a cluster of anomalies, not
identified by IF, and around October 13𝑡ℎ , when the opposite situation occurs.

The best models for MetaOD on the PIADE Dataset, instead, are summarized
in Figure 2.17.

Figure 2.17: Best models for the PIADE Dataset according to MetaOD.

The Angle-Based Outlier Detector (ABOD) [33] with 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 15 is
the model with the best performance. Its predicted anomalies (in purple) are

28

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

compared to the one of IF (in green) in Figure 2.18. Given the larger dataset size,
the contamination is set to 0.05 for both models. In this case, no annotations
about incidents are provided, so the only possible considerations regard the
comparison between the two models’ predictions. Also in this case, the high
number of detected anomalies can be reduced with a proper post-processing.
With the same procedure used for the CINECA Dataset, it is possible to obtain
the result of Figure 2.19. The predictions of IF and ABOD mostly match, in
particular in correspondence of clustered anomalies, like in April/May 2020,
March 2021, April 2021, and so on.

Figure 2.18: Comparison of detected anomalies by ABOD (in purple) and by IF
(in green), with normalized anomaly scores.

Figure 2.19: Comparison of detected anomalies by ABOD (in purple) and by IF
(in green), with normalized anomaly scores, after the post-processing.

2.3.4 Experiment with a Synthetic Supervised Dataset

The last MetaOD evaluation is performed on a supervised dataset, created
from scratch to make possible a quantitative evaluation of the approach.

29

2.3. EXPERIMENTS WITH METAOD

The supervised dataset is obtained by sampling from two multivariate nor-
mal distribution, defined with the Numpy library. For the first distribution, the
mean vector is a 30-dimensional vector of zeros, while the covariance matrix is
the 30x30 identity. It is used to sample the 2700 normal points. The outliers
(300) are instead drowned from a distribution with a mean vector that differs
from the previous in the last 5 components, that have values 10, 12, 14, 16, 18.
The 30x30 identity matrix is used as covariance matrix also in this case.

A total of 3000 instances are then spit into train and test sets with percentages
of 80% and 20%, respectively.

The train set is given in input to MetaOD, that provides as top model LODA
with 𝑛_𝑏𝑖𝑛𝑠 = 15 and 𝑛_𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑢𝑡𝑠 = 150. Also in this case, it is compared
with the IF and the contamination is set to 0.1 for both models.

The metrics adopted are precision, recall, and F1 score and are visible in
Table 2.1. Even if the performance are substantially equal in term of F1-score,
LODA shows a better Precision, while a worst Recall, than IF. For complete-
ness, Figure 2.20 shows the confusion matrices of IF (Figure 2.20a) and LODA
(Figure 2.20b).

Model Precision Recall F1-score
Isolation Forest 0.975 0.851 0.909
LODA 1.0 0.829 0.906

Table 2.1: IF and LODA performance comparison

(a) (b)

Figure 2.20: IF and LODA confusion matrices.

30

https://numpy.org/

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

2.3.5 Conclusions about MetaOD

Basically, MetaOD exploits meta-learning to circumvent the problem of the
model selection for an unsupervised OD dataset. By looking at the historical
supervised datasets with which the meta-learner is trained and comparing them
to a new dataset in terms of meta-features, it is able to find the most suitable
model for the task at hand. However, the cleverness of this solution collides with
the problem of the assumption on which MetaOD is based, i.e., that the simi-
larity in terms of meta-features is enough to find a good model. The Anomaly
detection task can be found in many different domains, each one characterised
by a peculiar conception of what is abnormal and what is not. For this reason,
OD datasets may differ greatly and even in the same domain. In particular,
the 62 historical datasets that are used for training the meta-learner come from
fields that are rather different from the industry, such as the medical one. For
this reason, assessing the similarity between the new dataset and the historical
ones may be a too weak criterion to find a suitable model. A possible solution
consists in computing the distribution of the meta-features vectors distances of
the historical datasets and compare it with the distances of the new dataset and
the historical ones. If the new dataset results to be close enough (a threshold
should be defined) to the historical ones (with respect to the distribution), then
the MetaOD assumption can be considered reliable. Otherwise, the Isolation
Forest can be used as a valid alternative.

2.4 Interpretability

2.4.1 Accelerated Model-agnostic Explanations

Providing interpretability for Machine Learning models is an important fea-
ture in particular for Anomaly Detection tasks. Indeed, it can be used as a
root-cause analysis tool because of its ability to provide insight into which fea-
tures have the greatest impact in determining a point to be classified as abnormal.
Different anomalies may have different causes, so, from a granularity perspec-
tive, the local interpretability is preferred, since able to provide explanations
that are instance-specific. Moreover, local intepretability can be exploited by
companies to take the best corrective actions to avoid the occurrence of similar
anomalies in the future.

31

2.4. INTERPRETABILITY

Since MetaOD can provide as output a model among several different ones,
it is not possible to consider an interpretability tool specifically designed for a
given detector, but only a model-agnostic one.

Accelerated Model-agnostic explanations [10] is a model-agnostic interpretabil-
ity approach that works both at the global and local level. It operates on tabular
data and can be applied to both regression and classification models. In addition
to providing feature importance scores, it also allows a what-if analysis useful
for assessing how changes in features values would affect model predictions
[10]. In addition, it is a computationally efficient method.

2.4.2 Interpretability with AcME

AcME is adopted to interpret the results of some abnormal instances of
the CINECA Dataset. In Figure 2.21, a first example is shown. It is the local
interpretability of an instance classified as abnormal by the Isolation Forest
model. On the 𝑥 axis there is the prediction, i.e., the anomaly score, that is
0.166 for the instance 941. As visible, a positive score identifies an outlier,
while a negative score is assigned to a normal point. The 𝑦 axis shows instead
the features, ordered by global importance. This plot allows to assess how
changes in features values impact on the predicted score. In particular, for
each feature, AcME computes the quantiles of the empirical distribution of the
feature. The coloured bar on the right of Figure 2.21 describes the different
quantile levels, starting from low in blue and ending with high in red. Then, the
what-if analysis is performed by changing the value of a feature, while keeping
the others fixed, and seeing how the model prediction evolves. In the plot,
the larger circles refer to the quantiles in which the features’ values fall, while
the smaller circles describe the other quantiles, allowing us to assess how the
anomaly score changes. For instance, observation 941 has a very low value of
percentage of jobs ended in the COMPLETED state (quantile 0.04, visible as the
big blue circle on the second row), which is consistent with what one would
expect from an anomalous instance. When increasing the value of any amount,
we can see a reduction in the anomaly score. At the same time, by looking at
the row relative to features mean_queuetime, it is possible to observe that the
instance falls in the maximum quantile and by reducing the feature value, we
reduce the abnormality of the observation. The high quantiles of features like
the percentage of jobs CANCELLED by USER, PREEMPTED, CANCELLED, or

32

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

failed due to NODE FAIL, are as expected by an instance classified as abnormal.

Figure 2.21: Local interpretability of sample 941 from CINECA Dataset. It is
abnormal according to IF.

Another example is shown in Figure 2.22. In this case, it is shown an ob-
servation that is slightly abnormal (with a score of 0.03), according to the IF.
Considerations similar to the previous example can be made, for instance about
the low percentage of COMPLETED jobs and the high mean_queuetime. In this
case, however, it is possible to see on which features to take action in order to
make the observation normal. Indeed, given that zero is the threshold under
which an instance is no longer considered abnormal, by reducing mean_exectime
and/or the percentage of TIMEOUT jobs, that belong to very high quantiles (1
and 0.979, respectively), it is possible to change the instance’s class.

The two examples of Figures 2.23 and 2.24 are relative to observations 2913
and 2963, respectively, which are classified as abnormals by LODA. The thresh-
old is identified by the left vertical dashed line in both examples. In this case
the interpretation is less clear, since it seems that the prediction is not altered for
most quantiles of the majority of the features. However, for Figure 2.23, reducing
the mean_queuetime (and the std_queuetime), makes the instance normal, similar
to the example of observation 941 (Figure 2.21). Also reducing the res_mismatch
has a similar effect. Instead, for Figure 2.24, a similar role is played by the

33

2.4. INTERPRETABILITY

Figure 2.22: Local interpretability of sample 2949 from CINECA Dataset. It is
slightly abnormal according to IF.

mean_exectime (and the std_exectime), while reducing the resources mismatch is
not enough.

34

CHAPTER 2. ANOMALY DETECTION ON TABULAR DATA

Figure 2.23: Local interpretability of sample 2913 from CINECA Dataset. It is
slightly abnormal according to LODA.

Figure 2.24: Local interpretability of sample 2963 from CINECA Dataset. It is
slightly abnormal according to LODA.

35

3
Visual Anomaly Detection

3.1 Introduction

Visual anomaly detection is an important task involving machine learning
and computer vision that consists in detecting abnormal patterns in images,
i.e., those differing significantly from the normal ones. In many application
scenarios, such as the industrial ones, this task is treated as an unsupervised
one, mainly due to the lack of supervised data because abnormal images/pat-
terns are usually variable in shape, color and size and they do not have stable
statistical laws [61]. Moreover, annotating images, especially pixel-wise, is a
time-consuming task, so it is rarely done in industry, especially in the early
stages of the transition to digitisation.

As noted in [61], visual anomaly detection can be divided into image-level
and pixel-level according to the visual detection granularity considered. They
can be seen as binary classification tasks, where in image-level the focus is on
classify images into normal or abnormal, while in pixel-level the classification
regards the single pixels, that can belong or not to abnormal regions of the image
(the result is an image segmentation). After the great success of deep convo-
lutional networks, the researchers started to focus on deep learning techniques
to deal with this challenging tasks. In particular, very different approaches
are being considered, grouped in different categories according to common
taxonomies, as in [61] and [55]. However, a broader categorisation is done in
[62] and [12], where the authors distinguish between reconstruction-based and

37

3.2. DATASETS

representation-based methods. Reconstruction-based methods usually consider
models such as autoencoders, generative adversarial networks, like GANomaly
[3], or normalising flows, like Fastflow [62]. These models are used to encode
and reconstruct the normal data, relying on the intuition that anomalies cannot
be reconstructed since they are not included in the training data: they lead to
a larger reconstruction error. Representation-based methods, such as Padim
[12] or Patchcore [49], employ deep pre-trained convolutional neural networks
to extract discriminative features from normal images/patches and then model
the distribution of these features. The anomaly score for a test image is obtained
calculating the distance between the test features and the modeled distribution.
It is important to note that, during training, almost all these neural-based meth-
ods involve only normal, i.e., not anomalous, images or patches, so the visual
anomaly detection task is usually formulated as a one-class learning problem
for the unexpectedness of anomalies [60].

The following work on Visual Anomaly Detection focuses on identifying a
suitable model for an AutoML library. Indeed, given the unsupervised nature of
this task, there is no way to perform model selection and hyperparameters tuning
for a given dataset. Up to now, the only way to implement an AutoML Visual
AD module consists of selecting a model sufficiently flexible and strong to work
well with most datasets. For this reason, several state-of-the-art neural network-
based models are compared according to certain criteria in Section 3.4. These
criteria were defined taking into account the needs of an AutoML library, for
instance, in terms of performance, results’ interpretability, and training speed.

The datasets considered for the experiments are described in Section 3.2,
while the models and the adopted library are described in Section 3.3.

3.2 Datasets

3.2.1 Wood Anomaly Detection Dataset

In the Wood Anomaly Detection dataset [43], images consist of several views
from wooden textured objects from the same class. There are four possible types
of anomalies for the objects: crack, stain, porosity, and knot. The anomalous
regions were manually labelled at pixel level by two different teams. The dataset
is provided by the EUHubs4Data catalogue and consists of 619 normal train
images, 183 normal validation images, 151 normal test images, and 327 abnormal

38

https://euhubs4data.eu/datasets/iti-wood-anomaly-detection-one-class-classification/
https://euhubs4data.eu/

CHAPTER 3. VISUAL ANOMALY DETECTION

test images (the latter supplied with their respective binary masks). Therefore,
the anomaly detection task is seen as a one-class classification task, where the
model learns exclusively from non-abnormal wood textures. Some examples
are visible in Figure 3.1.

(a) (b) (c)

Figure 3.1: Example of images from the Wood AD dataset.

3.2.2 MVTec Anomaly Detection Dataset

The MVTec Anomaly Detection dataset [6] is a widely used dataset to bench-
mark anomaly detection methods in an industrial scenario. It includes several
categories of objects and textures. The ones considered in the experiments are
“bottle”, “screw” and “toothbrush”, organised as follows:

• “bottle”: 209 normal train images, 20 normal test images, and 63 abnormal
test images. Examples are given in Figure 3.2.

• "screw": 320 normal train images, 41 normal test images, and 119 abnormal
test images. Examples are given in Figure 3.3.

• “toothbrush”: 60 normal train images, 12 normal test images, and 30
abnormal test images. Examples are given in Figure 3.4.

The abnormal images are organised into different typologies and are all
provided with the corresponding binary masks.

3.3 State-of-the-art

Experiments carried out involve all state-of-the-art models implemented in
the Anomalib [4] library: CFlow [25], DFM [2], DFKDE, Fastflow [62], Patchcore
[49], Padim [12], STFPM [60] and GANomaly [3]. Anomalib is a deep learning
library that includes implementations of state-of-the-art Visual AD algorithms
and provides tools for benchmarking them on both public and private datasets.

39

https://www.mvtec.com/company/research/datasets/mvtec-ad
https://github.com/openvinotoolkit/anomalib

3.3. STATE-OF-THE-ART

(a) (b) (c)

Figure 3.2: Example of images from the "bottle" category of the MVTec AD
dataset.

(a) (b) (c)

Figure 3.3: Example of images from the "screw" category of the MVTec AD
dataset.

(a) (b) (c)

Figure 3.4: Example of images from the "toothbrush" category of the MVTec AD
dataset.

Models DFM, DFKDE, and GANomaly perform only image-level anomaly
detection, providing for each test image an anomaly score, while the others are
more fine-grained, being able to segment the anomaly region. These last ones
provide as output an image anomaly score, a heatmap highlighting the anomaly
region, and a binary mask.

All models, excepting GANomaly, require defining a backbone, i.e., a convo-
lutional neural network, usually pre-trained on ImageNet dataset. This neural
network is used for extracting discriminative features from the normal images
during training and from normal and abnormal images during testing. Very of-
ten, these backbones are of the Resnet family, like Resnet-18 or wide Resnet-50,
or even EfficientNet.

40

CHAPTER 3. VISUAL ANOMALY DETECTION

In the following subsections, the models are briefly described.

3.3.1 Student-Teacher Feature Pyramid Matching

The Student-Teacher Feature Pyramid Matching (STFPM) [60] is a method
that adopts the Student-Teacher learning framework to deal with the Visual AD
task. As visible in Figure 3.5, there are two neural networks, called Teacher
and Student, that have exactly the same architecture, usually a ResNet-18. The
Teacher is pre-trained on ImageNet and its weights are frozen, while the Student
is trained to imitate the behaviour of the Teacher. Since deep neural networks
generate a pyramid of features from the input image [60], the idea of this method
is to perform a training with the goal to match the features extracted by a few
successive bottom layers groups of the Student with the corresponding ones of
the Teacher [60]. These layers group are usually the residual blocks of a ResNet.
The 𝑙2 distance is adopted to measure the mismatch between the features of the
two NN.

Figure 3.5: Schematic overview of the STFPM method. The feature pyramid
of a student network is trained to match with the counterpart of a pre-trained
teacher network. A test image (or pixel) has a high anomaly score if its features
from the two models differ significantly. The feature pyramid matching enables
the method to detect anomalies of various sizes with a single forward pass [60].

Since during training only normal images are involved, the capability of the
Student to emulate the Teacher is good only in the cases without anomalies.

41

3.3. STATE-OF-THE-ART

However, in the testing phase, the presence of also abnormal images leads to
larger errors between the layers groups feature maps of the two models, since
the Student deals with never seen instances. This error is exploited to compute
an anomaly map. Then, an image is classified as abnormal if any pixel in the
image is anomalous.

3.3.2 Cflow and Fastflow

Cflow [25] and Fastflow [62] both exploit the so-called normalising flows to
estimate the distribution of the normal features, i.e., the ones extracted from the
normal images. As defined in [47], a normalising flow (NF) describes the trans-
formation of a probability density through a sequence of invertible mappings.
In this case, it is a neural network used to learn how to transform the raw feature
distribution of the normal images into a simpler distribution, i.e., the normal
one. However, this transformation has an important property since the process
is bĳective. So the NF can be traversed in both directions. In Figure 3.6, it’s
visible the pipeline of the Fastflow method, with an highlight of the layers that
compose the model. Notice that the features are extracted with a pre-trained
CNN, like a ResNet. This methodology allows one to compute a heatmap by
computing the likelihoods of the test image features according to the normal
distribution: abnormal images should have lower probabilities.

42

CHAPTER 3. VISUAL ANOMALY DETECTION

Figure 3.6: (a) the whole pipeline for unsupervised anomaly detection and
localization of the method, which consists of a feature extractor and the FastFlow
model. An arbitrary network can be used as the feature extractor such as CNN or
vision transformer. FastFlow is alternatly stacked by the “3×3” and “1×1” flow.
(b) one flow step for FastFlow, the “Conv 2d” can be 3 × 3 or 1 × 1 convolution
layer for 3 × 3 or 1 × 1 flow, respectively. [62].

Cflow is a similar out-of-distribution (OOD) detector but with the important
difference that as inputs for the flow there are not only the features, but also
conditional inputs that encode information about the positions of the features.
These new inputs are the 2D form of the conventional positional encodings (PE)
[47]. The overview of this method is in Figure 3.7.

Figure 3.7: Overview of CFLOW-AD with a fully-convolutional translation-
equivariant architecture. Encoder ℎ(𝝀) is a CNN feature extractor with multi-
scale pyramid pooling. Pyramid pooling captures both global and local semantic
information with the growing from top to bottom receptive fields. Pooled feature
vectors 𝑧𝑘

𝑖
are processed by a set of decoders 𝑔𝑘(𝜽𝑘) independently for each 𝑘th

scale. The decoder is a conditional normalizing flow network with a feature
input 𝑧𝑘

𝑖
and a conditional input 𝑐𝑘

𝑖
with spatial information from a positional

encoder (PE). The estimated multi-scale likelihoods 𝑝𝑘
𝑖

are upsampled to the
input size and added up to produce anomaly map. [25].

43

3.3. STATE-OF-THE-ART

3.3.3 DFM, DFKDE and GANomaly

The three models described in this Subsection perform an image-level clas-
sification, so they are not able to provide an anomaly map.

Deep Features Modeling (DFM) [2] and Deep Features Kernel Density Esti-
mation (DFKDE) works similarly. They are characterized by a feature extraction
stage, where, as usual, a deep pre-trained neural network is adopted as back-
bone and receives as input only normal images. Then, in the classification stage,
the distribution of the normal features is learnt. The anomaly scores for the test
instances are given by the negative log-likelihood under the learnt density mod-
els. For DFM, the second stage consists of a PCA for dimensionality reduction
followed by a Gaussian Density Estimation, while in DFKDE a Gaussian Kernel
Density Estimation is adopted.

The approach of GANomaly is rather different and combines Generative
Adversarial Networks (GAN) [24] with Auto-Enconders (AEs). The pipeline is
visible in Figure 3.8. It is possible to identify three sub-networks in the model.
The generator G consists of an autoencoder that receives as input the image 𝑥
and learns to reconstruct it: the image is compressed into a vector 𝑧, which is
then expanded in �̂�. A second sub-network, called E, is composed of a single
encoder, with the same architecture as the endoder of G. It learns to compress
the reconstructed image �̂� into a vector �̂� by minimizing the 𝑙2 distance from
the vector 𝑧. Finally, the last sub-network is the discriminator network D, that is
trained to classify the input 𝑥 as real and the output �̂� as false [3].

The training consists in minimizing a weighted sum of the three losses shown
in Figure 3.8, and involves only normal images. The anomaly score for a test
image 𝑥 is given by the 𝑙2 distance between 𝑧 and �̂�.

3.3.4 Patch Distribution Modeling Framework

Patch Distribution Modeling Framework (PaDiM) [12] is a representation-
based method that adopts a pre-trained (on ImageNet) CNN to extract features
from the images patches and then learns a matrix of Gaussian parameters for
represent them distribution.

As visible in Figure 3.9, the normal images are divided into patches and
fed into the CNN. In particular, only the first three layers are considered when
adopting ResNet as backbone: indeed, these layers have enough high resolution

44

CHAPTER 3. VISUAL ANOMALY DETECTION

Figure 3.8: Pipeline of GANomaly [3].

and are not too biased towards ImageNet dataset. During training, for each
patch of each normal image, three embedding vectors are computed, located in
the activation maps of the three involved layers in the places corresponding to
the patches’ locations. These three vectors are concatenated and the resulting
one is subjected to random subsampling to reduce the dimensionality. Padim
works on the assumption that the features of each patch can be modeled by a
multivariate Gaussian distribution. In fact, for each patch location (𝑖 , 𝑗) it learns
the Gaussian parameters (�𝑖 𝑗 ,Σ𝑖 𝑗) from the training embedding vectors of the
corresponding patches. Then, the parameters of all these Gaussian distributions
are used to fill a parameter matrix.

When a test image is provided to Padim, for each test patch, the model
compute the Mahalanobis distance between its features and the Gaussian pa-
rameters of the corresponding location. The value obtained is an anomaly score.
The score for an image is defined as the maximum score for the anomaly map.

3.3.5 Patchcore

Patchcore [49] is a representation-based method with some similarities to
Padim. Indeed, also for this model, a pre-trained CNN (typically a ResNet) is
used as feature extractor for the image patches, as shown in Figure 3.10. In the
training phase, for each patch of each normal image, the corresponding features
of two consecutive intermediate layers are considered and aggregated to obtain

45

3.3. STATE-OF-THE-ART

Figure 3.9: For each image patch corresponding to position (𝑖 , 𝑗) in the largest
CNN feature map, PaDiM learns the Gaussian parameters (�𝑖 𝑗 ,Σ𝑖 𝑗) from the set
of 𝑁 training embedding vectors 𝑋𝑖 𝑗 = {𝑥𝑘

𝑖𝑗
, 𝑘 ∈ [[1, 𝑁]]}, computed from 𝑁

different training images and three different pretrained CNN layers [12].

a single vector. In order to increase the receptive field size, the feature vectors
of the neighbors patches are aggregated to the vector of the considered patch,
obtaining locally-aware patch features.

The vectors extracted during training populate a memory bank ℳ, that,
however, results extremely large. For this reason, a minmax facility locations
coreset subsampling is performed to reduce the memory bank size.

In the test phase, the images are divided into patches, and the corresponding
neighbourhood-aware features are computed. The anomaly score of a single
patch is given by the maximum distance between its feature and the element in
ℳ, while the anomaly score for the whole image is the maximum of the single
patches scores.

Figure 3.10: Overview of PatchCore. Nominal samples are broken down into
a memory bank of neighbourhood-aware patch-level features. For reduced
redundancy and inference time, this memory bank is downsampled via greedy
coreset subsampling. At test time, images are classified as anomalies if at least
one patch is anomalous, and pixel-level anomaly segmentation is generated by
scoring each patch-feature [49].

46

CHAPTER 3. VISUAL ANOMALY DETECTION

3.4 Experiments

3.4.1 Comparison on Wood Dataset

The first models’ comparison is done on the Wood dataset, with a Resnet-
18 as backbone. All Wood images, resized to 256x256 pixels, are considered,
excepting for Patchcore, where for computational reason the number of images
is halved. The models’ hyper-parameters are kept as defined in the Anomalib
configuration files.

Four image-level metrics are used, that are: Precision, recall, F1 score, and
the area under the Precision-Recall curve (AUPR); the latter is considered in
place of AUROC as it is better suited for unbalanced classification tasks [11],
[50]. The only pixel-level metric adopted is the AUPR, with a similar reasoning
as for the image-level one: the anomaly region is usually minority compared
to the rest of the image, so the pixel-level classification is strongly unbalanced.
The results are shown in Table 3.1, which also includes the sizes of the neural
networks and the weights of the models in MB.

Model Image
Precision

Image
Recall

Image
F1-score

Image
AUPR

Pixel
AUPR

N. parameters

Fastflow 0.701 0.991 0.821 0.696 0.187 9.7M(38MB)
DFM 0.733 0.964 0.832 0.795 - 2.8M(11MB)
DFKDE 0.686 1.0 0.814 0.771 - 11.2M(44.7MB)
Padim 0.689 0.99 0.813 0.65 0.143 2.8M(11MB)
STFPM 0.715 0.972 0.824 0.735 0.322 5.6M(22MB)
GANomaly 0.703 0.982 0.82 0.771 - 188M(755MB)
Cflow 0.684 1.0 0.812 0.614 0.155 25.3M(101MB)
Patchcore 0.707 0.994 0.827 0.771 0.274 2.8M(11MB)

Table 3.1: Anomalib models comparison on Wood dataset (in bold the best
results for each metric) .

The best performance in terms of Image AUPR is of DFM, that is, however,
only able to perform image classification, and does not provide any heatmap.
For an AutoML library, the capability to provide to the user a detailed heatmap
highlighting the anomalous region of an image is a very important feature.
This focus on the interpretability of the results leads to exclude this model
from further comparisons, and similarly, DFKDE and GANomaly are no longer

47

3.4. EXPERIMENTS

considered. GANomaly has also another strong drawback, that is, the huge
Neural Network size (188M parameters).

The quality of the heatmap is another important way to compare visual
anomaly detection models. In Figures 3.11a and 3.12a there are comparisons
of the heatmaps from Fastflow, Padim, STFPM, CFlow and Patchcore for two
anomalous test images of Wood dataset. In Figure 3.11, the anomalous region is
wide, covering almost half of the object, as confirmed by the mask in Figure 3.11b.
Instead, the wood defect of Figure 3.12a is concentrated in a small area (see mask
in Figure 3.12b).

The most promising results are of STFPM, Padim and Patchcore, that seem
to localize quite well the anomalous region. Fastflow can detect the defect of
Figure 3.12a, but the heatmap provided in Figure 3.11e is almost completely
wrong. At the same time, CFlow is not very accurate and, moreover, the output
is not so interpretable due to the low contrast between the anomalous region
and the normal one. As can be seen in Figure 3.12d, STFPM return the most
precise results and, in general, more readable heatmaps. This is consistent with
the best result of 0.322 in the Pixel AUPR metric.

Another important feature that is required in an AutoML library is to have
fast training and testing phase. For this reason, CFlow is excluded due to the
relatively slow training time (about 1 hour). Among the remaining models, it is
important to observe that Padim and Patchcore do not require a proper training
phase. Indeed, they leverage on the pre-trained backbones to extract features
from the normal images. Then, in Padim, features are used to model patch-wise
multivariate Gaussian distributions, useful for assess if the patches of a test
image are anomalous or not; in Patchcore, instead, normal features populate a
memory bank, that is used to score each test patch. This implies that there is
no proper update of the parameters, and the two models require only a single
epoch to train. However, a bottleneck for Patchcore is represented by the coreset
subsampling of the feature set, done before populating the memory bank.

Differently from these two models, Fastflow and STFPM require a more
classical training phase. Fastflow adjusts the parameter of the 2D normalising
flow used as probability distribution estimator, while in STFPM the Student
must learn to reproduce the output of different residual blocks of the pre-trained
Teacher.

48

CHAPTER 3. VISUAL ANOMALY DETECTION

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.11: In 3.11a an example of image with wide anomalous region from
the Wood dataset and in 3.11b the corresponding mask. Heatmaps of Cflow,
STFPM, Fastflow, Padim, and Patchcore are shown in Figures 3.11c, 3.11d, 3.11e,
3.11f and 3.11g, respectively.

49

3.4. EXPERIMENTS

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.12: In 3.12a an example of image with narrow anomalous region from
the Wood dataset and in 3.12b the corresponding mask. The heatmaps of Cflow,
STFPM, Fastflow, Padim and Patchcore are in Figures 3.12c, 3.12d, 3.12e, 3.12f
and 3.12g, respectively.

50

CHAPTER 3. VISUAL ANOMALY DETECTION

3.4.2 Padim vs Patchcore

Taking into account both heatmap results and time requirements for training
and testing, the selected models for further comparisons are Patchcore and
Padim. In Table 3.2 are visible the results of Patchcore and Padim on the Wood
dataset, considering only half of the data, and with two different backbones,
Resnet-18 and Wide Resnet-50. Notice that now also Precision and Recall at the
pixel level are included, for a more detailed analysis.

Model Image
Precision

Image
Recall

Image
F1-score

Image
AUPR

Pixel
Precision

Pixel
Recall

Pixel
AUPR

Padim R-18 0.684 1.0 0.813 0.661 0.192 0.624 0.18
Padim WR-50 0.688 1.0 0.815 0.662 0.168 0.701 0.157
Patchcore R-18 0.696 0.982 0.814 0.762 0.261 0.568 0.25
Patchcore WR-50 0.692 0.994 0.816 0.783 0.276 0.543 0.275

Table 3.2: Padim vs Patchcore on Wood dataset with two different backbones:
Resnet-18 (R-18) and Wide Resnet-50 (WR-50) . In bold the best results for each
metric.

According to the overall metrics Image AUPR and Pixel AUPR, Patchcore
outperforms Padim with both Resnet-18 and wide Resnet-50. However, Padim
shows a better Recall at pixel and image levels. Moreover, the training and
testing times of this latter model are much better (see Table 3.3), since Padim is
not slowed down by a coreset subsampling, like in Patchcore, but performs only
a random feature selection. The train and test times of Table 3.3 are obtained
with half of the Wood dataset. Note that with wide Resnet-50 both models have
24.9 M parameters (about 100 MB).

Model Training time Testing time
Padim R-18 20s 1m
Padim WR-50 1m 10s 1m
Patchcore R-18 7m 1m 15s
Patchcore WR-50 7m 20s 1m 25s

Table 3.3: Training and testing times comparison between Padim and Patchcore
on half Wood dataset.

In Table 3.4, the two models are compared on the “bottle” category of the
MVTec dataset, both showing remarkable results in the image-level metrics. The
pixel-level ones are much better with respect to previous dataset, but still not

51

3.4. EXPERIMENTS

outstanding, proving that obtaining a precise anomaly segmentation is a difficult
task even with state-of-the-art models and a relatively easy dataset. Figures 3.13a
and 3.14a show two images of the MVTec dataset with the corresponding
masks, together with the heatmaps generated by Padim and Patchcore, when
considering Resnet-18 as the backbone.

Model Image
Precision

Image
Recall

Image
F1-score

Image
AUPR

Pixel
Precision

Pixel
Recall

Pixel
AUPR

Padim R-18 0.984 1.0 0.992 0.999 0.651 0.804 0.709
Padim WR-50 0.984 1.0 0.992 0.999 0.616 0.827 0.711
Patchcore R-18 1.0 1.0 1.0 1.0 0.647 0.759 0.722
Patchcore WR-50 1.0 1.0 1.0 1.0 0.652 0.761 0.757

Table 3.4: Padim vs Patchcore on the "bootle" category of the MVTec dataset
with two different backbones: Resnet-18 (R-18) and Wide Resnet-50 (WR-50) .
In bold the best results for each metric.

(a) (b)

(c) (d)

Figure 3.13: In 3.13a an example of image with a small break from the "bot-
tle" category of the MVTec dataset and in 3.13b the corresponding mask. The
heatmaps of Padim and Patchcore with R-18 are shown in Figures 3.13c and
3.13d, respectively.

52

CHAPTER 3. VISUAL ANOMALY DETECTION

(a) (b)

(c) (d)

Figure 3.14: In 3.14a an example of image with a contamination from the "bottle"
category of the MVTec dataset and in 3.14b the corresponding mask. Heatmaps
of Padim and Patchcore with R-18 are in Figures 3.14c and 3.14d, respectively.

3.4.3 Robustness to data numerosity

Given the best compromise between results’ quality and computational ef-
ficiency, Padim turns out to be the model that is most suitable for an AutoML
library. Other experiments, involving only this model, are designed to test how
many train images are needed to maintain good performance. In Tables 3.4
and 3.2 there are the results of Padim on MVtec and Wood datasets, respec-
tively, when considering only a portion of the original training set (e.g., 3/4, ½,
¼, . . . of the original data). The considered backbone is Resnet-18.

Padim seems to work well even with large reductions of the training set
(in particular, 1/20 in Table 3.4 and 1/80 in Table 3.2 include only 10 training
images for MVTec and Wood datasets, respectively), showing great robustness
to data numerosity. In Table 3.4, the most noticeable performance drops are in
Image Recall and Image F1-score when considering at most 1/10 of the training
data and in Image Precision with 1/20 of the training data. On Wood dataset,
instead, the metrics more affected by data reduction are the pixel-level ones, in

53

3.4. EXPERIMENTS

Training data fraction Image
Precision

Image
Recall

Image
F1-score

Image
AUPR

Pixel
Precision

Pixel
Recall

Pixel
AUPR

3/4 0.984 1.0 0.992 0.999 0.658 0.793 0.702
1/2 0.984 1.0 0.992 0.998 0.659 0.802 0.729
1/4 0.984 1.0 0.992 0.999 0.648 0.813 0.722
1/10 0.983 0.937 0.959 0.989 0.659 0.75 0.706
1/20 (10 images) 0.954 0.984 0.969 0.996 0.66 0.726 0.711

Table 3.5: Padim (R-18) performance on the category ’bottle’ of the MVTec
dataset with different traning set fractions.

Training data fraction Image
Precision

Image
Recall

Image
F1-score

Image
AUPR

Pixel
Precision

Pixel
Recall

Pixel
AUPR

3/4 0.685 1.0 0.813 0.647 0.159 0.747 0.153
1/2 0.688 0.996 0.814 0.66 0.171 0.663 0.167
1/4 0.684 1.0 0.812 0.672 0.155 0.72 0.147
1/10 0.684 1.0 0.812 0.637 0.156 0.728 0.145
1/20 (10 images) 0.687 0.994 0.812 0.645 0.13 0.85 0.112

Table 3.6: Padim (R-18) performance on the Wood dataset with different traning
set fractions.

particular Pixel Precision and Pixel AUPR.
In Figures 3.15 and 3.16 it is possible to see some heatmap comparisons. The

images involved are the same as for the previous experiments, two from the
Wood dataset and two from the “bottle” category of the MVTec dataset. The
heatmaps returned by Padim after a training with 1/10 of the training images
(Figures 3.15d 3.15h 3.16d 3.16h), are generally less precise than the original ones
(Figures 3.15c 3.15g 3.16c 3.16g), often highlighting as abnormal regions that are
not. However, the localization of the anomalous regions is broadly correct in
all images, confirming the ability of Padim to provide good results even with
relatively few training instances.

54

CHAPTER 3. VISUAL ANOMALY DETECTION

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.15: In 3.15a and 3.15e there are the two example from "Wood" dataset
with corresponding masks in 3.15b and 3.15f. Figures 3.15c and 3.15g are the
heatmaps obtained training Padim with the full training set, while for Figures
3.15d and 3.15h only 1/10 of the training images are used.

55

3.4. EXPERIMENTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.16: In 3.16a and 3.16e there are the two example from the ’bottle’
category of the MVTec dataset with corresponding masks in 3.16b and 3.16f.
Figures 3.16c and 3.16g are the heatmaps obtained training Padim with the full
training set, while for Figures 3.16d and 3.16h only 1/10 of the training images
is used.

56

CHAPTER 3. VISUAL ANOMALY DETECTION

3.4.4 Not aligned datasets

The last experiments are done to assess Padim behaviour with not aligned
datasets, such as the "screw" folder of MVTec (see Figure 39). As observed in
[55], the performance of this model degrades when images are not aligned, e.g.,
when the visualised objects are not at the same position or scale across different
images. Indeed, during the training phases, Padim learns a multivariate Gaus-
sian distribution for each different fixed patch location. Then, when a test patch
is evaluated by the model, it is compared only with the distribution related to
the corresponding location. The assumption that the patch features can be mod-
elled by a Gaussian distribution may be too strong when dealing with unaligned
or rotated data.

Table 3.7 confirms this theoretical consideration, since Padim does not per-
form very well if compared to Patchcore on the “screw” category of the MVTec
dataset, both at image and pixel levels.

Model Image
Precision

Image
Recall

Image
F1-score

Image
AUPR

Pixel
Precision

Pixel
Recall

Pixel
AUPR

Padim (R-18) 0.818 0.941 0.875 0.87 0.165 0.309 0.137
Patchcore (R-18) 0.88 1.0 0.937 0.977 0.353 0.449 0.345

Table 3.7: Padim (R-18) vs Patchcore (R-18) on the "screw" category of the MVTec
dataset.

To further verify this, a last experiment considers the "toothbrush" category.
In this case, train and test images are aligned and metrics for Padim and Patch-
core on this data are available in the first two rows of Table 3.8.

Model Image
Precision

Image
Recall

Image
F1-score

Image
AUPR

Pixel
Precision

Pixel
Recall

Pixel
AUPR

Padim (R-18) 0.882 1.0 0.938 0.936 0.458 0.8 0.49
Patchcore (R-18) 0.909 1.0 0.952 0.976 0.563 0.668 0.586
Padim (R-18) alt 0.75 1.0 0.857 0.866 0.323 0.556 0.314
Patchcore (R-18) alt 0.935 0.967 0.951 0.977 0.566 0.676 0.59

Table 3.8: Padim (R-18) vs Patchcore (R-18) on the "toothbrush" category of the
MVTec dataset before and after alteration.

To test the capability of the models in managing unaligned objects, the train
images are altered by means of random translations and rotations. The Albu-
mentations [8] library is adopted to horizontally shift images by a percentage

57

https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations

3.4. EXPERIMENTS

of the width randomly sampled in the range [-0.2, 0.2], while small rotations
are performed similarly with degrees in [-20, 20]. Vertical translations are not
considered to prevent the anomalous region from falling out of the image. After
training Padim and Patchcore on these altered images, the evaluation is per-
formed with the original test set, leading to the results visible in the last two
rows of Table 3.8. Patchcore is not too affected by the alteration, showing Image
and Pixel AUPR values almost equal to before. The only substantial changes
are on Image Precision and Recall, the first of which even improves. Differently,
Padim’s performance significantly degrade in almost all metrics, confirming that
dealing with misaligned images challenges the model.

3.4.5 Conclusions

In this final subsection the main results of the previous experiments are
summarised. After an initial comparison on Wood dataset, DFM, DFKDE and
GANonamly are easily excluded since unable to provide an explanation for
their results, in terms of heatmaps highlighting the anomalous regions. The
remaining five models, that are STFPM, Cflow, Fastflow, Padim and Patchcore,
are instead further compared in terms of heatmaps’ quality: Cflow and Fastflow
provide the worst results, while the best are the STFPM ones. However, the
absence of a proper training phase in Padim and Patchcore leads the analysis to
select these two models as the most suited. Indeed, their training is faster and,
as observed, in particular, for Padim, seems not to require too much data. The
comparison on the "bottle", "screw" and "toothbrush" categories of the MVTec
dataset shows that Patchcore tends to perform better than Padim, but, unfortu-
nately, it is slowed down by the coreset subsampling. The main drawback of
Padim is its difficulty with not aligned dataset.

In conclusion, the presented results show that Patchcore is a more reliable
model, robust against translation and rotation of the objects in the acquired
images. However, Padim is recommended for its fast training in the contexts
where the image acquisition system is consistent in terms of image location and
rotation.

58

4
Predictive Maintenance

4.1 Introduction

4.1.1 Predictive Maintenance and Remaining Useful Life Esti-
mation

With the birth of the so-called Fourth Industrial Revolution, or Industry 4.0,
several new concepts have emerged, such as Predictive Maintenance (PdM).
Maintenance 4.0 is a recent preventive maintenance approach that leverages the
large amount of data extracted from industrial equipment to increase its oper-
ational life and minimise costs due to machine downtime. Indeed, a growing
number of companies nowadays invest in sensing technologies to monitor the
status of their equipment, paving the way for data-driven maintenance solutions.

In the literature, maintenance policies are broadly categorised into Run-To-
Failure (R2F), Preventive Maintenance (PM), and Predictive Maintenance (PdM).
R2F is the simplest and costliest policy, but exposes you to unexpected break-
downs (with the associated costs in terms of lost production), since it consists
of intervening only after the failure occurs. PM is also called scheduled mainte-
nance because it is performed periodically; however, it is not as efficient as may
seem, as some interventions may not be necessary. Pdm aims to optimise main-
tenance, performing interventions only when needed by estimating equipment
health status in a data-driven way [1] [31] [54].

ML-based PdM can be divided into supervised and unsupervised PdM as

59

4.1. INTRODUCTION

usual for all Machine Learning tasks [54]:

• Supervised PdM: the failures are provided within the dataset.

• Unsupervised PdM: dataset includes logistic and/or process information,
but not failures related data.

Remaining useful life (RUL) estimation is an important PdM task that consists
of predicting the remaining amount of time in which an equipment is operative,
that is, it works as expected. The time can be measured in cycles, days, or other
quantities. There are three main approaches to RUL prediction [31] [13]:

• Physics-based methods attempt to create a physical model of the equip-
ment, but are computationally expensive and may not generalise well.

• Data-driven methods try to find a relationship between the monitored
sensor data and the RUL, often exploiting Machine Learning.

• Hybrid methods try to combine the two previous approaches.

Moreover, the RUL estimation task can be treated as a classification or re-
gression task. In the classification case, the single instances of the involved
time series can be classified as faulty or non-faulty. For example, instances up
to 𝑥 days before the fault may be considered faulty, where 𝑥 is a time horizon
defined according to the predefined logistic and economic needs of the com-
pany. Instead, for regression, the goal is to predict the remaining lifetime value
as accurately as possible, for each time instance. In this work, the supervised
regression task is considered, and sensor data are used to train a regressor to
retrieve the correct RUL value.

4.1.2 Remaining Useful Life Computation

Data sets for RUL estimation are usually provided as tabular data, where
rows refer to single time instances, so they can contain information about cycles,
days, hours, or any time unit considered. The columns store instead logistic
and/or process information for each time instance. Usually, sensor measures
are indicated, but other values regarding, for instance, the operational settings,
may also be present. One of the columns should contain the target value, that
is, the remaining useful life of the equipment at each time instance. Often, this
column is not provided by the manufacturer together with the raw dataset. For
this reason, the first issue to be solved when developing a PdM module for an
AutoML library consists in defining utilities able to infer the RUL column.

60

CHAPTER 4. PREDICTIVE MAINTENANCE

There are different scenarios that can be considered. In the simplest case,
each row is provided with the specification of the time instance to which it
refers. For instance, in the NASA dataset described in Section 4.2, each row
contains information about the cycle. Therefore, a simple utility function can be
defined that checks for the maximum cycle value for the time series and then
computes the RUL column for each instance by subtracting the cycle value to
the maximum. The Ceruleo library provides a function of this type and uses it
to infer the RUL columns for the NASA dataset.

However, the raw data provided by a manufacturing company may not con-
tain the "high-level" information of the time instance, but instead only a times-
tamp, with indications about data, hour, and so on, regarding the acquisition.
Clearly, given the supervised nature of the RUL estimation task, the manufac-
turer must provide a list of break events for the industrial equipment, together
with the date of the event. In this scenario, the RUL can be computed from the
difference between the breakage timestamp/date and the acquisition timestamp
of the corresponding equipment. Nevertheless, there are two issues to consider.
Firstly, the acquisition timestamp format may differ from the one of the break-
age, so a proper conversion is needed, for example, reducing both timestamps
to the same unit (seconds, hours, etc.). Second, the time granularity for the RUL
must be defined, depending on the needs of the task being considered, which
may require a level of accuracy in estimation of days, hours, or even seconds.
Therefore, the RUL column obtained depends both on the quality of data and
annotations (level of detail of the timestamps) and on the requirement of the
specific domain in which the RUL estimation task is applied.

4.1.3 Problem Formalisation

A common approach to RUL estimation is to consider it as a classical re-
gression problem where instances are single operational cycles, and the target
to predict is the corresponding RUL value. This supervised ML regression task
requires a dataset D of n observations/instances

𝐷 = {𝑥𝑖 , 𝑦𝑖}𝑛𝑖=1, (4.1)

where 𝑥𝑖 ∈ 𝑅1×𝑝 is a vector of 𝑝 variables with process and/or logistic
information of an operational cycle, while 𝑦𝑖 is the scalar with the RUL value
for the corresponding instance [54]. For example, in the case of NASA datasets,

61

https://github.com/lucianolorenti/ceruleo

4.2. DATASET

the 𝑝 variables are the cycle, the three operational settings variables, and the 21
sensor measures. The 𝑛 observations include the cycles of all time series in the
dataset.

4.1.4 RUL Estimation for AutoML

In this chapter, the results of several experiments, performed on the NASA
dataset, are exposed in detail in Section 4.3. Indeed, when dealing with RUL
estimation, there are several issues that must be addressed. It is a regression
task with the goal of predicting the target values as accurately as possible, but
it differs from the classical problems of its family, since it requires some specific
precautions. For instance, in many industrial scenarios, overestimating the RUL
is worse than underestimating it, since a manufacturing company may prefer to
waste a few operational cycles of its industrial equipment rather than having an
unexpected machine breakdown. Therefore, when choosing the loss function
to train the regressor, one has to take care of this peculiarity. Secondarily, it is
clearly preferable to be precise in predicting the RUL towards the end of the
equipment life rather than at the beginning, so more emphasis must be placed
on the instances at the end of the time series of the given equipment. This
can be done by weighting the instances differently, either with a custom loss or
acting directly on the data. Moreover, the classical performance metrics adopted
in regression, such as the Mean Absolute Error (MAE) and the Mean Squared
Error (MSE), are not enough to evaluate the predictions of the RUL regressor,
given the two issues outlined above. Better metrics, such as the Mean Absolute
Percentage Error (MAPE), or even custom ones, should be adopted.

These are only some issues that characterise the Remaining Useful Life es-
timation. A Machine Learning expert must take all this into account when
solving such a problem, and this applies equally or even more when developing
an AutoML module. Therefore, the experiments performed try to tackle all
these problems, while at the same time, try to identify a suitable algorithm, in
particular in terms of low training time, for the AutoML library.

4.2 Dataset

NASA turbo engine datasets [52] are commonly used for RUL estimation
and consist of multivariate time series, each one from a different engine. There

62

CHAPTER 4. PREDICTIVE MAINTENANCE

are four datasets with different characteristics, as visible in Figure 4.1, each
divided into training and test sets. FD001, for instance, includes 100 training
and 100 test time series of engines that operate in a single condition and with a
single Fault Mode (HPC Degradation). The other folders involve more operative
conditions and/or Fault Modes, but the experiments of this report are performed
only on FD001 for simplicity. As described in the datasets, the engine operates
normally at the beginning of its time series, and at some point, a fault occurs.
The difference between training and test sets is that in the first the time series
reach the engine failure, while in the latter they end at some point before the
failure. The time units are operational cycles, and for each instance of the series
26 features are provided: the unit number, the cycle, 3 values that represent the
operational settings, and 21 sensor measures.

Figure 4.1: Nasa turbo engine datasets

The series of these datasets are simulated with C-MAPSS (Commercial Mod-
ular Aero-Propulsion System Simulation), a tool to simulate a turbofan engine
[52].

The experiments are mostly performed with Ceruleo, StatwolfML, Sklearn
and Tensorflow libraries. Dataset is loaded using Ceruleo, that exploits a simple
utility function to compute a new column with the Remaining Useful Life for
each instance, using the cycle column.

4.3 Experiments

4.3.1 Random Forest vs Ridge

According to [67] [9] Random Forest (RF) is quite often adopted as a regressor
for this task, so it is compared to the classical linear regressor Ridge. The K-Fold
cross-validation grid search is performed to compare different hyperparameter
configurations for the two models, with 𝑘 = 5. For Ridge, three values of 𝛼,

63

https://github.com/lucianolorenti/ceruleo
https://docs.statwolf.com/#/statwolfml
https://scikit-learn.org/
https://www.tensorflow.org/

4.3. EXPERIMENTS

i.e., the constant that multiplies the L2 regularisation term, are tested: 5, 10 and
15. For RF, five configurations of n_estimators and max_depth are tested, visible
in Table 4.1. The metric adopted is the Mean Absolute Error (MAE) and the
resulting best model is Random Forest with max_depth=8 and n_estimators=50.

Random Forest n_estimators max_depth
Model 1 20 5
Model 2 20 8
Model 3 50 5
Model 4 50 8
Model 4 100 5

Table 4.1: Hyperparameters configurations for Random Forest (RF) .

The Mean Absolute Error (MAE) and Mean Squared Error (MSE) are widely
used in the literature to evaluate the performance of the model for regression
tasks and are defined in Equations 4.2 and 4.3, respectively:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︂
𝑖=1

∥𝑦𝑖 − 𝑦𝑖ˆ ∥ , (4.2)

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︂
𝑖=1

(𝑦𝑖 − 𝑦𝑖ˆ)2 , (4.3)

where 𝑦𝑖ˆ is the prediction of the regression model for the i-th instance 𝑥𝑖 .
In Table 4.2, the best model according to the grid search is compared with the

Ridge regressor with 𝛼 = 15 in terms of these metrics. The models are evaluated
on 15 randomly selected time series from the FD001 test set.

Model MAE MSE
Random Forest (50, 8) 31.33 1840.74
Ridge (15) 32.91 1903.48

Table 4.2: Comparison of Random Forest with max_depth=8 and n_estimators=50
and Ridge with 𝛼 = 15 in terms of MAE and MSE.

More informative results are in the plots of Figures 4.2 and 4.3. In Figure 4.2,
the predictions of the best estimator are compared with the true RULs of 15
engines, while Figure 4.3 also includes the Ridge predictions. Note that since
these series are from the test set, most of them end much before the end of life
of the engine.

64

CHAPTER 4. PREDICTIVE MAINTENANCE

Figure 4.2: Predictions of RF on 15 time series.

Figure 4.3: Comparison of RF and Ridge on 15 time series.

Consistent with the metric results of Table 4.2, RF seems to better fit the true
RUL trends in most time series. This is more evident for series 4, 5 and 6, for
which Ridge tends to overestimate the mid-life RULs.

However, both models show several critical issues. First, they mostly over-
estimate the target value. Since PdM aims to predict the failure of an industrial
equipment allowing a company to intervene in time for maintenance, it is prefer-
able to train a model with more pessimistic behaviour. As pointed out in much
of the PdM literature [14][40][56][53], penalising overestimations of the target
value more than underestimation is a safer approach for many maintenance
scenarios. In particular for the NASA dataset, it is considerably worse to over-
estimate the RUL and run the risk of probable engine failures than to plan the
repair too early, wasting engine life [14]. Nevertheless, there are also fewer
life-threatening scenarios in which optimistic predictions are preferable [14]. A
possible way to solve this issue is to train the regressor with an asymmetric loss
function, as the one proposed in [14].

In view of the above, the Ridge regressor performs better for some engines,
particularly the 3 and 13, for which RF at some point starts to overestimate the

65

4.3. EXPERIMENTS

RUL (see Figure 4.3).
The second point to consider is that not all instances of a time series have the

same importance in PdM. Since the goal is to predict the RUL of an equipment
to react in time, as far as we approach the end of life of the equipment, we may
want to have more precise predictions to know exactly when to intervene. For
instance, in engine 5 of Figure 4.2 RF overestimates the target toward the end of
the series, while at the beginning the prediction was more precise. In engine 4,
instead, there is the opposite trend, with a quite accurate regression for about
the last 70 operational cycles.

Instance weighting can be used to force the model to focus more on the end
of the series rather than the beginning.

The noisiness of predictions can be problematic, particularly near the end of
life. Even if this issue may be easily solved with an appropriate post-processing,
a correct hyperparameter tuning may alleviate it, as we will see for the learning
rate of the gradient boosting machine.

Finally, engines 3, 8, and 13 show that both models tend to underestimate a lot
the initial RUL of engines that have significantly longer than average life spans.
This is probably due to the under-representation of these long-life engines in
the training set, as proved by Figure 4.4: run-to-failure cycles (cycle in the sense
of the entire engine life) with cycle durations between 250 and 350 are in the
minority. In figure 4.5, similar considerations can be made for the test set.

Figure 4.4: Train set engine life histogram.

Given the above considerations, it is possible to observe that the two metrics
involved, MAE and MSE, are not enough to evaluate and compare models,
as they do not consider all the issues of this task. For instance, they cannot

66

CHAPTER 4. PREDICTIVE MAINTENANCE

Figure 4.5: Test set engine life histogram.

penalise more overestimation than underestimation. Moreover, they give the
same importance at all the instances of the time series, while we may prefer to
penalise the errors in the end-of-life more. The MSE is also very sensitive to
noisy predictions and to rare but large errors because of the quadratic term. For
all of these reasons, other metrics will be considered in subsequent experiments.

4.3.2 Test with AutoML Library

Since the goal of these experiments is to find a good solution to the RUL
estimation task for an AutoML library, an obvious approach may be to di-
rectly test the regression tools of the StatwolfML AutoML module on the NASA
dataset. The best model provided as output is a CatBoost regressor with
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 1628 and 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 8. The predictions are shown against
the true values in Figure 4.6, considering the usual 15 engines from the test set.

Figure 4.6: Predictions of the best estimator according to the AutoML module
on the test set.

67

4.3. EXPERIMENTS

In Table 4.3, the performance of the best AutoML estimator is compared to
that of the previous two estimators.

Model MAE MSE
Random Forest (50, 8) 31.33 1840.74
Ridge (15) 32.91 1903.48
CatBoost (1628, 8) 34.1 2446.5

Table 4.3: Performance of CatBoost compared with models of Table 4.2 .

Looking only at the MAE and the MSE, this model seems to perform worse
than Random Forest and Ridge. However, this is not completely true, since Cat-
Boost overestimates the RUL much less. For instance, RF mostly overestimates
the targets of engine 6 (Figure 4.2), while CatBoost almost always underestimates
them. The same holds true for engine 5, while for engines 2, 7, and 9 the error
is reduced compared to RF. Figures 7 and 8 show the error distribution of the
CatBoost and RF models on the test set, respectively, where the error is defined
as the difference between the true value and the predicted value. Note how for
CatBoost most of the error is positive, confirming the above considerations.

Figure 4.7: Catboost error distribution.

The major shortcomings of these results are the noise, in particular for series
11 and 13, if compared with the ones of RF, and, moreover, the fact that CatBoost
tends to underestimate too much, often in the end-of-life of the engines, wasting
life cycles (see engine 6).

68

CHAPTER 4. PREDICTIVE MAINTENANCE

Figure 4.8: Random Forest error distribution.

4.3.3 Instance Weighting

To obtain better results, a possible way is to train regression models with
custom loss functions, either modifying existing ones or creating them from
scratch. However, there are few models that can be easily adapted to deal with
such new losses. Among them, gradient boosting is the most intuitive. As
described in the original work by J. H. Friedman [20], the gradient boosting
machine can be used with any user-specified loss function, so it is well suited
for those experiments.

The first attempted approach consists of modifying the MSE and involves
instance weighting. By weighting the residual in the loss function, the weights
can be included in the training process in a way that is independent of the model:
𝑥 = 𝜔 (𝑦, �̂�) [14]. A common choice for 𝜔 consists of dividing the residual by
the true value, providing the so-called relative residual of Equation 4.4:

𝜔 (𝑦, �̂�) =
𝑦 − �̂�
�̃�

, (4.4)

where �̃� is 𝑦 if 𝑦 ≠ 0 and some constant 0 < 𝑐 < 1 otherwise. By normalising
residuals for the true RUL value, we give more importance to errors near the
end of life rather than at the beginning. The MSE modified with these weights
will be called the WMSE and is defined as follows.

𝑊𝑀𝑆𝐸 =
1
𝑛

𝑛∑︂
𝑖=1

(︃
𝑦𝑖 − 𝑦𝑖ˆ
𝑦𝑖˜

)︃2
, (4.5)

where 𝑦𝑖˜ is defined as �̃� above.

69

4.3. EXPERIMENTS

Gradient Boosting with 100 trees (i.e., iterations), maximum depth of 8 and a
learning rate of 0.08 is trained to minimise WMSE (about 22 seconds of training
time). The value of the 𝑐 constant for managing the zero denominator is set to
0.5. The predictions on the test set are in Figure 4.9.

Figure 4.9: Predictions of the Gradient Boosting model with Weighted MSE loss
function on test set.

To highlight the effect of weights in WMSE, the results of Figure 4.9 should
be compared with those of Gradient Boosting trained with MSE, presented in
Figure 4.14. In the last case, 150 iterations are performed, with a learning rate of
0.03 (the maximum depth is as before).

Figure 4.10: Predictions of the Gradient Boosting model with MSE loss function
on test set.

The most noticeable difference is in terms of the noise of the predictions.
Except for engines 2, 10, and 11, training the model with the weighted variant of
MSE seems to greatly reduce the noise, providing more stable values. Adopting
the relative residuals has a normalising effect on the model. Mathematically, this
can be motivated by the working principle of Gradient Boosting that operates a
kind of Gradient Descent. The model is updated at each iteration by training a

70

CHAPTER 4. PREDICTIVE MAINTENANCE

decision tree that corrects the errors of the previous iteration. These errors are
computed from the negative gradient of the loss function with respect to each
prediction. While the MSE gradient with respect to the residual is proportional
to it, the WMSE gradient has a cubic term in the denominator that keeps it low:

𝛿

𝛿 (𝑦𝑖 − 𝑦𝑖ˆ)
𝑊𝑀𝑆𝐸 = 2 ×

𝑦2
𝑖
− 𝑦𝑖ˆ 2

𝑦3
𝑖

. (4.6)

Therefore, this term normalises the gradient, reducing consequently the error
variance.

Reducing the learning rate has a similar normalisation effect. However,
trying to reduce the learning rate with MSE loss does not work very well,
providing less noisy but also much less precise predictions, especially in terms
of RUL overestimation. Adopting a higher number of trees slightly compensates
for this, at the cost of increased training time.

Another benefit of the weighted MSE is to provide a model that in many
cases underestimates the RUL, especially at the end of the engine life.

An alternative way for weighting instances that do not involve the modifi-
cation of the loss function consists of a subsampling of the training data that
preserves more samples at the end of the useful life of the engines rather than in
the beginning. In this way, we force the model to concentrate most on the end
of the time series when a correct RUL prediction is critical.

A way to do this consists first of defining weights for the instances 𝑥𝑖 :

𝑊(𝑥𝑖) =
1

log (max (𝑦𝑖 , 1)) + 1
. (4.7)

These weights are then converted into probability for the sampling stage.

For each time series, only 60% of the instances are sampled without replace-
ment, and are used to train Gradient Boosting with 150 trees, a learning rate of
0.03 and a maximum depth of 8. The predictions obtained optimising MSE loss
are shown in Figure 4.11: as one might expect, the predictions are noisier and
less precise at high values of the target, while they gain accuracy as we get closer
to zero (engine 4, 5, 6).

71

4.3. EXPERIMENTS

Figure 4.11: Predictions of the Gradient Boosting model with MSE loss function
after subsampling.

4.3.4 Asymmetric Loss Function

Asymmetric loss functions are losses that penalise more overestimation of
the target value than underestimation, or vice versa. In the literature several
different regression asymmetric loss functions have been proposed [53], often
developed for econometric modelling and forecasting [14]. A famous one is
the so-called Linear Exponential (LINEX) loss [58], which is exponential on one
side and approximately linear on the other side. Its main drawback is that it
is controlled by only one parameter, so it is not possible to control the slope
of the two portions independently. The Huber loss [27] is quadratic for small
errors and linear otherwise, leading to a continuously differentiable function,
quite similar to MAE but characterised by faster convergence. There also exist
asymmetric variants of the MSE and MAE.

For these experiments, the customisable loss function presented in [14] is
considered, due to its adaptability to various contexts. It is designed to ensure
convexity and to be continuously differentiable. An implementation is also
provided in the Ceruleo library.

Let us define the residual 𝑥 as the difference between the target value 𝑦 and
the predicted value �̂�: 𝑥 = 𝑦 − �̂�. Then, the loss ℒ(𝑥) given the residual 𝑥 is
defined in a piecewise way:

ℒ(𝑥) =
⎧⎪⎪⎨⎪⎪⎩
𝓁𝑙(𝑥), 𝑥 < 0

𝓁𝑟(𝑥), 𝑥 ≥ 0
, (4.8)

where

72

CHAPTER 4. PREDICTIVE MAINTENANCE

𝓁𝑟(𝑥;�𝑟 , 𝛼𝑟 ,𝜓𝑟) =
⎧⎪⎪⎨⎪⎪⎩
𝛼𝑟�𝑟

(︂
�𝑟 + 2𝜓𝑟

(︂
𝑒
𝑥−�𝑟
𝜓𝑟 − 1

)︂)︂
, 𝑥 ≥ �𝑟

𝛼𝑟𝑥2, 𝑥 < �𝑟
, (4.9)

𝓁𝑙(𝑥;�𝑙 , 𝛼𝑙 ,𝜓𝑙) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛼𝑙 (−�𝑙)

(︃
−�𝑙 + 2𝜓𝑙

(︃
𝑒
𝑥−�𝑙
𝜓𝑙 − 1

)︃)︃
, 𝑥 ≤ �𝑙

𝛼𝑙𝑥2, 𝑥 > �𝑙

. (4.10)

Once the thresholds �𝑟 and �𝑙 are defined, the loss is quadratic in the range
(�𝑙 , �𝑟), while the behaviour is exponential otherwise. Another version of the
loss adopts a linear function in place of the exponential, allowing us to derive
the Huber loss [14].

As can be seen, 6 parameters control the loss shape, 3 for the left side
(�𝑙 , 𝛼𝑙 ,𝜓𝑙) and 3 for the right side (�𝑟 , 𝛼𝑟 ,𝜓𝑟): by properly tuning them, it is
possible to decide how much penalise one kind of error rather than another. For
instance, 𝜓𝑟 and 𝜓𝑙 can be tuned to control the exponential growth. For these
experiments, the adopted values are: �𝑟 = 5, �𝑙 = −5, 𝛼𝑟 = 0.5, 𝛼𝑙 = 5, 𝜓𝑟 = 20
and𝜓𝑙 = 20. The plot of the loss as a value of the residual is shown in Figure 4.12
(in orange), and it is compared to MSE (in blue). Notice how, even for low errors,
the overestimations (negative residuals) are much more penalised than under-
estimation (positive residuals). The presence of an exponential guarantees that
large errors are strongly penalised in both cases.

Figure 4.12: Custom Loss (in orange) compared to MSE (in blue) as a function
of the residual.

Gradient Boosting Machine is the most suited algorithm for testing this

73

4.3. EXPERIMENTS

Custom Loss (CL). The hyperparameters are the following: 𝑛_𝑡𝑟𝑒𝑒𝑠 = 50,
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 5; note that the number of trees and the
maximum depth are kept lower than in the previous cases since with this loss
the training time is much longer (about 16 minutes against < 1 minute). Predic-
tions are shown in Figure 4.13. In Figure 4.14, the results of GB with MSE loss
are reproposed for comparison.

Figure 4.13: Predictions of the Gradient Boosting model with Custom Loss on
the test set.

Figure 4.14: Predictions of the Gradient Boosting model with MSE on the test
set.

In many cases, like in series 3, 6 and 13, the model trained with the CL
tends to underestimate much more than the one trained with MSE. In others,
the overestimation is strongly reduced (series 4, 5, 11 and 12). In general,
predictions are less noisy. If we look at series 7 and 9 in Figure 4.14, we can
see that several artefacts disappear in Figure 4.13. On the other hand, some
noisy erroneous predictions appear in series 2, 10 and 11, but at least they are
underestimations.

The CL-trained model is competitive with the WMSE-trained model, whose

74

CHAPTER 4. PREDICTIVE MAINTENANCE

results are shown in Figure 4.9. This latter is often effectively better in underes-
timate the RUL but at the price of a higher noisiness in predictions. However,
they are both superior to the Random Forest of Figure 4.2 and to GB with MSE
of Figure 4.14.

4.3.5 Experiment with a Multilayer Perceptron

The major drawback of adopting CL is the slow training time, a common
problem when using Gradient Boosting. An alternative to this approach may be
to train an Artificial Neural Network, like a Multilayer Perceptron, whose train
directly involves a Gradient Descent.

The adopted model is characterised by one input layer of 25 nodes, two
hidden layers of 20 and 5 nodes, respectively, and a final layer with a single
node containing the predicted RUL. The activation functions are “ReLU” for the
hidden layers and a linear function for the last one. The network summary with
all parameters is shown in Figure 4.15.

Figure 4.15: Multilayer Perceptron architecture.

The Multilayer Perceptron (MLP) is trained with Adam optimizers and a
learning rate of 0.01. The maximum number of epochs is set to 25 and an
early stopping procedure is adopted: the training is interrupted if there is no
improvement of the validation loss for 3 consecutive epochs. In Figure 4.16 the
predictions are shown along with the true values.

75

4.3. EXPERIMENTS

Figure 4.16: Predictions of the Multilayer Perceptron of Figure 4.15 with Custom
Loss on the test set.

4.3.6 Metrics for Remaining Useful Lifetime Estimation

Up to now, most of the results analysis has been done by directly looking at
the predictions of the models on the test set. Indeed, MAE and MSE show a
series of limitations in measuring performance for this task, as seen previously.
However, to make a more objective model comparison, it is necessary to define
some metrics that capture and quantify the different critical aspects of RUL
estimation that emerged during previous experiments.

A metric sometimes adopted in the PdM literature is the Mean Absolute
Percentage Error (MAPE):

𝑀𝐴𝑃𝐸 =
100%
𝑛

𝑛∑︂
𝑖=1

| 𝑦𝑖 − 𝑦𝑖
ˆ

𝑦𝑖
|. (4.11)

It is similar to the MAE, with the difference that the residuals are normalised
by the true values. The main advantage of this metric is that usually returns
a percentage value that is more easily interpretable than the mean of the abso-
lute residuals. For this reason, this metric is also more suitable for comparing
different models. Moreover, the presence of the target value at the denomina-
tor allows us to weight the errors differently, giving more importance to the
residuals at the end of the series.

Another metric to evaluate the models must take into account the tendency
of the models to underestimate rather than overestimate the RUL. To achieve
this goal, define a confidence parameter 𝜖. A first value that can be computed
is the percentage of residuals that fall within the interval (−𝜖, 𝜖), intended as an
acceptable range of errors, i.e., such that the errors within it do not differ too

76

CHAPTER 4. PREDICTIVE MAINTENANCE

much from the target both in terms of underestimation and overestimation. The
value of 𝜖 is problem-specific, so it must be selected properly depending on the
type of data at hand. Let us call this percentage %𝜖.

Secondarily, define the area of underestimation𝒜𝑢 as the sum of the residuals
of the cases of underestimations that fall outside the previous interval and
similarly for the area of overestimation 𝒜𝑜 .

Then, a possible score is the following:

𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 =
𝒜𝑢 −𝒜𝑜

𝒜𝑢 +𝒜𝑜
. (4.12)

This score quantifies how much the model underestimates rather than over-
estimates and ranges from -1 to 1. The score is 1 if the model only underestimates
(outside the range (−𝜖, 𝜖)), and -1 otherwise. Values greater than 0 are clearly
preferred if the task requires a more caution approach.

A drawback of this score is that it is not able to compare two models that
both mostly underestimate. For instance, if we have a naïve model that always
predicts zero RUL and a quite perfect model that always predicts the true value
minus one, it is easy to see that both have 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 = 1, since 𝒜𝑜 = 0. However,
only the second model is good and for this reason it is preferable to use this
score together with %𝜖.

In Table 4, the three most interesting models seen up to now are compared
with the baseline, that is, the model trained with MSE and Gradient Boosting, in
terms of the previously described metrics, plus the MAE. The selected models
are GB with WMSE, GB with CL and MLP with CL, whose predictions are in
Figures 9, 13 and 15 respectively. The value of 𝜖 is set to 15 operational cycles.

Model MAPE MAE %𝜖 Scoreu−o

GB with WMSE 0.19 32.17 0.48 0.76
GB with CL 0.19 30.25 0.5 0.52
MLP with CL 0.24 39.83 0.38 0.89
GB with MSE 0.21 30.98 0.38 0.17

Table 4.4: Models comparison in terms of MAPE, MAE, %𝜖 and 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 .

The model that shows the best compromise in metric terms is probably the
GB with WMSE. Indeed, it has the best combination of %𝜖 and 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 . MLP
with CL is the approach that leads to the strongest underestimation, but at the
price of having a relatively low number of residuals inside the range (−𝜖, 𝜖).

77

4.3. EXPERIMENTS

Consistently, its MAPE and MAE are the highest. Hopefully, by performing a
proper hyperparameter tuning of the MLP, it is possible to achieve better results.
The MAPE may be adopted as a metric to select the best architecture.

4.3.7 Experiments with Deep Neural Networks

Deep neural networks show remarkable results not only in computer vision,
but also in time series forecasting tasks, like RUL prediction [66][51][26][28]:
their capability to extract useful features at different levels of abstraction can be
indeed exploited also in this field. However, providing as input to a DNN only
a single instance may be too little informative content. For this reason, the time
series are often divided into fixed-length windows, which are processed in their
entirety by the network, which provides as output the predicted RUL for the last
instance of the window.

For these experiments, both Convolutional and Recurrent NNs are tested.
The architecture of the adopted CNN is visible in Figure 4.17, and is characterised
at the feature extraction stage by three one-dimensional Convolutional layers,
each with 64 neurons, followed by a Global max Pooling layer. The activation
function is the ReLu for the first three layers. After the pooling, two final Fully
Connected layers are responsible for preforming the regression and have 64 and
1 neurons, respectively. The last two activation functions are ReLU and the
linear one. The total number of parameters is 33,793.

Other architectures, obtained by slightly modifying the number of layer-
s/neurons of the Convolutional layers, have been tested and evaluated in terms
of MAPE, as visible in Table 4.5. However, the most promising architecture
remains the one with 3 layers of 64 neurons in Figure 4.17.

Model MAPE
2l, 64n 0.23
2l, 32n 0.25
3l, 64n 0.21
3l, 32n 0.22
4l, 64n 0.22

Table 4.5: Comparison of different CNN architectures (l=number of convolu-
tional layers, n=number of neurons) .

The size of the time series window is selected similarly: the window of length

78

CHAPTER 4. PREDICTIVE MAINTENANCE

Figure 4.17: Convolutional Neural Network architecture.

8 shows the best MAPE in Table 4.6. So, all the series are divided into windows
of size 8 with a step of 1, in such a way as to obtain a prediction to almost all
instances.

Window size MAPE
32 0.26
16 0.24
8 0.21

Table 4.6: Performance of model of Figure 4.17 with different window sizes.

CNN predictions with the Custom Loss in the test set are shown in Fig-
ure 4.18. The behaviour is quite similar to the one with the MLP of Figure 4.16,
with a large underestimation at the beginning of the series (see engines 4, 5, 6),
while the model gains precision towards the end (engines 5 and 10). Predictions
are less noisy, probably due to the window-based adopted approach that helps
to stabilise predictions. This is particularly evident for series 10 and 11, for
which all previous tested models show some difficulties. However, the models
also show some problems. For instance, it seems to treat series 1 and 2 as one,
while in series 13 the predictions do not converge to the real ones, unlike the
MLP. In general, towards the end it is less precise than previously seen models.

Among the different kind of Deep NNs, the Recurrent ones seem to be the

79

4.3. EXPERIMENTS

Figure 4.18: Predictions of the CNN of Figure 4.17 with Custom Loss on the test
set.

most suited for dealing with time series, where instances are characterised by
temporal relations. Indeed, RNNs operate as they had an internal memory that
keeps information about previously seen instances [26]; this information is then
used together with the features of the next instance to make the prediction. The
main RNN drawback is the gradient vanishing. For this reason, the long short-
term memory (LSTM) is often adopted as a valid alternative: it uses three gates
(input, output and forget gates) to add or remove information from a memory
cell, mitigating the gradient vanishing issue[26].

In the literature, LSTMs are widely used for RUL prediction, so a simple
LSTM-based network is also proposed in these experiments. It is characterised
by a single LSTM layer with 64 units, followed by a Global max Pooling, and
two Fully Connected layers, with 64 and 1 nodes, respectively. The activation
functions for the last layers are ReLU and linear, respectively. The parameters
are 27,265, as visible in Figure 4.19.

Figure 4.20, instead, shows the model predictions on the test set. The trend
that seems shared by all Neural Networks models involves an initial large un-
derestimation, which, however, is not a big deal since it is not strictly necessary
to be precise at the beginning of the series. The LSTM predictions are, however,
more accurate than the CNN ones, in particular close to the end of engine life
(see engines 4, 5, and 6). It is capable of capturing the trends of series 1 and 2
and converge to the true values on series 13. For engines 10 and 11, the results
remain much better than the one of the MLP of Figure 4.16. Series 9 and 15 are
still overestimated.

For this last model, it is interesting to see the predictions also on the validation
set (Figure 4.21). In this case, all series reach zero and it is possible to better

80

CHAPTER 4. PREDICTIVE MAINTENANCE

Figure 4.19: Recurrent Neural Network architecture.

Figure 4.20: Predictions of the LSTM model with Custom Loss on the test set.

observe the precision of the model toward the end of the engine life: in almost
all cases the predictions are accurate and, in general, there are no cases of severe
overestimation close to zero. Except for the long-life engines 1, 5, and 10 and the
strange behaviour of engine 4, the predictions match quite well with the true
values.

The performance of the two Deep Learning models of this subsection in terms
of the metrics presented are compared in Table 4.7 with previous methods. Note
that GB with MSE is again the baseline.

As can be guessed from Figures 4.18 and 4.20, the CNN and RNN models
have a high value of 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 and a comparable percentage of predictions within
the range defined by 𝜖. The most promising approach is probably the one with
the LSTM model. Indeed, it has one of the best combinations of 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 and
%𝜖, similar to that with MLP, but with lower MAPE and MAE.

81

4.3. EXPERIMENTS

Figure 4.21: Predictions of the LSTM model with Custom Loss on the validation
set.

Model MAPE MAE %𝜖 Scoreu−o

GB with WMSE 0.19 32.17 0.48 0.76
GB with CL 0.19 30.25 0.5 0.52
MLP with CL 0.24 39.83 0.38 0.89
CNN with CL 0.21 33.94 0.41 0.79
LSTM with CL 0.22 36.46 0.39 0.87
GB with MSE 0.21 30.98 0.38 0.17

Table 4.7: Models comparison in terms of MAPE, MAE, %𝜖 and 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 .

4.3.8 Interpretability with LIME

The focus on results’ interpretability is critical not only for Anomaly Detec-
tion, but also for the RUL estimation task. Being able to justify the predictions
and provide evidence about which features are more crucial in determining the
model output is an important information to provide to the final user.

Local Interpretable Model-Agnostic Explanations (LIME) [48] is a software
package that can identify an interpretable model, locally faithful to the classi-
fier/regressor whose predictions we aim to explain [48]. The interpretations are
local since they are provided for single predictions.

As described in the original paper, the working principle of LIME is based
on the trade-off between the (local) fidelity of the interpretable model to the
original model and its interpretability. Let 𝐺 be the class of interpretable mod-
els, i.e., that can be easily understood by the user by means of textual/graphical
representations (for instance, random forests or linear models are of this kind).
We can define Ω(𝑔) as a measure of the complexity (in the sense of less inter-
pretability) of a 𝑔 ∈ 𝐺. In LIME, Ω is the class of sparse linear models and Ω(𝑔)

82

CHAPTER 4. PREDICTIVE MAINTENANCE

is the number of nonzero weights.
The model we want to explain can be called 𝑓 : R𝑑 −→ R. Given an instance

𝑥, define 𝜋𝑥(𝑧) as a proximity measure of 𝑥 to 𝑧. 𝜋𝑥(𝑧) is used to define a
locality around 𝑥. Then, ℒ(𝑓 , 𝑔,𝜋𝑥(𝑧)) is used to quantify how unfaithful is the
approximation 𝑔 with respect to 𝑓 in the locality defined by 𝜋𝑥(𝑧).

Therefore, LIME provides an explanation for the instance 𝑥, called �(𝑥),
facing the trade-off between fidelity and interpretability:

�(𝑥) = arg min
𝑔∈𝐺

ℒ(𝑓 , 𝑔,𝜋𝑥(𝑧)) +Ω(𝑔) (4.13)

If 𝑥 ∈ R𝑑 is the original representation of the instance, its interpretable
representation can be defined as 𝑥′ ∈ {0, 1}𝑑′ where 0 and 1 represent the absence
or the presence of the so-called interpretable components. To learn the local
behaviour of 𝑓 in a way that is model-agnostic, LIME sample instances around
𝑥′ by randomly drawing the non-zero components of 𝑥′. Given a new instance
𝑧′ ∈ {0, 1}𝑑′, it is possible to return to its original representation 𝑧 to obtain the
prediction 𝑓 (𝑧). Finally, the dataset of perturbed samples 𝒵 (including labels),
with the instances weighted with 𝜋𝑥(𝑧), is used to derive the explanation �(𝑥)
[48].

The model considered for interpretability analysis in this section is the LSTM
one. In Figure 4.23, there is an example of an explanation for instance 770 of the
test set (Figure 4.22). It is a window from series 6, with a true RUL of 111 and
predicted one of 107.

Figure 4.22: Predictions of the LSTM model with Custom Loss on the test set,
with highlighted instance 770 (red vertical line).

On the left of Figure 4.23 is specified the value predicted by the model
(107.20) together with the minimum and maximum values for the instance. On

83

4.3. EXPERIMENTS

Figure 4.23: Explanation with LIME of instance 770 of the test set.

the right, instead, there is the list of values (normalised between -1 and 1) of the
10 most important features of the window. Concatenated with the feature name
is indicated the instance to which they are related, so, for instance, "Cycle_t-
7" is the value of the "Cycle" feature for the last window instance. The most
interesting information is in the middle of the figure, where the 10 most relevant
features are sorted by their weights, which quantify how much they contribute
to the prediction. In particular, a range for the features is displayed. Each feature
can impact positively, i.e., increasing the RUL value, or negatively, decreasing it.

In this example, the most prominent feature is the cycle of the last instance,
with a weight of 3.9. "Cycle_t-7", whose value is -0.53 and falls in the range
(-0.73, -0.45), impacts the prediction positively. Only two features decrease the
value, which are "SensorMeasure14_t-7" and "SensorMeasure0_t-0".

A more interesting usage of LIME is described in the following. Let us con-
sider the results of the model on the validation set (Figure 4.21). As already
observed, series 4 has a strange behaviour if compared, for instance, with the
previous series 3. Indeed, for most engine lifetime, the model highly overesti-
mates the RUL, correcting the predictions only for the last 20/30 instances. By
comparing the explanations of two instances with the same true value but from
these two different series, may be possible to investigate the reasons behind the
erroneous predictions of series 4. A comparison of this kind should, however, be
done only with series with similar length, otherwise the feature related to cycles
may mislead the explanations (in general, it impacts a lot on the prediction, like
the previous example).

The two selected windows are 540 and 680, from series 3 and 4, respectively
(see Figure 4.24). The true RUL is 58 for both, while the predicted is 59 for series

84

CHAPTER 4. PREDICTIVE MAINTENANCE

3 (low overestimation) and 87 for series 4 (severe overestimation).

Figure 4.24: Predictions of the LSTM model with Custom Loss on the validation
set, with highlighted instances 540 and 680 (red vertical lines).

The explanations are in Figures 4.25 for window 540 and 4.26 for window
680. As expected, in the case of low overestimation, there are more important
features impacting in a negative way with respect to the instance of series 4 (6
against 3). Moreover, the four instances that impact positively on window 540
coincide with the first four of window 680. The most obvious difference is the
absence of "SensorMeasure20_t-7" and "SensorMeasure21_t-7" in the features of
window 680. These contribute a lot to reducing the predicted RUL for window
540, so their absence may explain the issue of series 4.

Figure 4.25: Explanation with LIME of instance 540 of the validation set.

Figure 4.27 shows the distributions of the feature "SensorMeasure20" for
series 3 and series 4, which seem to show some differences. The meaning of this
sensor measure can be obtained in [41], where it is described as "High-pressure
turbines Cool air flow".

However, this information is not enough to infer if the explanation provided
by LIME refers to some real physical phenomena or if it shows only a spurious

85

4.3. EXPERIMENTS

Figure 4.26: Explanation with LIME of instance 680 of the validation set.

Figure 4.27: Histogram of distribution of "SensorMeasure20" for series 3 (in blue)
and series 4 (in red).

correlation captured by the LSTM model. So, this kind of analysis may be used
as a basis for leading the discussion with domain experts.

4.3.9 Conclusions

Other more sophisticated models have been tested. For instance, the ap-
proach proposed in "Temporal Convolutional Memory Networks for Remain-
ing Useful Life Estimation of Industrial Machinery" [28], combines three one-
dimensional Convolutional layers, each one followed by a max Pooling layer,
with two LSTMs, combining the advantages of the CNNs with the ones of the
RNNs. However, the results on the FD001 dataset are not as good and have not
been proposed here. The adopted implementation can be found in the Ceruleo
library. In "XCM: An Explainable Convolutional Neural Network for Multi-
variate Time Series Classification" [18], a CNN with two branches is exploited

86

CHAPTER 4. PREDICTIVE MAINTENANCE

to extract both temporal features and features related to input variables. The
branches outputs are then concatenated and provided to a Global Average Pool-
ing. Originally developed for time series classification, in Ceruleo the model has
been adapted to regression tasks. An interesting feature is the model exaplain-
ability by means of Grad-CAM. Also in this case, the results are not comparable
with the best models seen previously.

In general, the experiments performed in this Section seem to show that
more "classical" approaches often work better. Indeed, in Table 4.7, we can see
that the two models trained with Gradient Boosting have the lowest MAPE and
MAE (if we exclude GB with MSE). The best value for %𝜖 is always of GB with
CL, which however has the lowest value 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 , after the one of GB with MSE.
Among the best combinations of %𝜖 and 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜 there is probably GB with
WMSE, even if NN-based approaches also show good results (the best 𝑆𝑐𝑜𝑟𝑒𝑢−𝑜
is of MLP with CL). Taking into account also the training times, the GB models
are surprisingly faster than Neural Network ones, and in particular, the training
time for GB with WMSE is below one minute.

More attempts can be done toward the results’ interpretability. Indeed, the
analysis performed in the previous Subsection may be difficult to understand
by a user with low or no experience in Machine Learning. The development
of interpretability solutions specifically designed for Predictive Maintenance is
definitely a very valuable research direction.

87

5
Conclusions and Future Work

In this last chapter, the main results are summarised and some directions for
future work are outlined, with a view to improving the proposed solutions.

For the Anomaly Detection task on tabular data, MetaOD presents the most
methodological solution to the CASH problem, finding, among several different
combinations of algorithm and hyper-parameter configurations, the most suited
for the dataset at hand. This is achieved through meta-learning, a technique that
exploits prior knowledge on similar datasets to find the best solution for a new
dataset. This allows us to solve in a smart way the CASH problem that otherwise
would be unsolvable for the unsupervised version of the AD task. This tool was
tested on two real datasets and a synthetic one, showing results comparable to
those of a well-established algorithm for Outlier Detection, that is, the Isolation
Forest. The main drawback of MetaOD lies in the assumption that similarity
between datasets is enough to determine the most suitable model. However,
the multifaceted nature of the anomalies and the different domains from which
they came from makes the MetaOD assumption vulnerable. A possible way to
strengthen this AutoML solution consists in comparing the distances of the new
dataset and the historical ones with the distribution of distances of the historical
datasets, to see if the new data are close enough to them. These distances can be
computed by considering the meta-feature vectors associated with the datasets.
Then, given a threshold, if the data are too far from the distribution, the Isolation
Forest can be used.

To sum up, MetaOD is a valid solution to the CASH problem for unsuper-
vised Anomaly Detection and can be used in an AutoML tool. However, further

89

work must be done to improve this approach by mitigating the negative effects
behind MetaOD’s assumptions. Moreover, the integration of the AcME inter-
pretability with MetaOD is essential for providing user and Data Scientist insight
about the impact of individual features in the instance abnormality, making the
AutoML tool more transparent and reliable.

The work done for the Visual Anomaly Detection task has been set up dif-
ferently. Its unsupervised nature and the absence, in literature, of solutions
similar to MetaOD, make it impossible to solve the CASH problem for the task
and forced the research in identifying a good state-of-the-art model that satis-
fies several AutoML-related constraints. Interpretability of the results, training
time, performance, robustness to training data numerosity are the main criteria
adopted in the comparison of eight well-established approaches to Visual AD.
Padim and Patchcore are the best. Padim is the fastest in training, but it shows
vulnerabilities when dealing with non-aligned dataset, with noticeable drops in
performance. Patchcore has the best performance at the price of a slowdown in
the training phase. These two models can be used alternatively, depending on
the characteristics of the dataset and the time requirements. However, a possible
future work could focus on adopting Computer Vision technique to realign not
aligned dataset as a pre-processing step. Once this is achieved, Padim would
be a sufficiently powerful model for a wider range of datasets, providing the
results also quickly.

Experiments on the Remaining Useful Life estimation task were characterised
by the testing of numerous algorithms and models, the adoption of custom loss
functions, and the introduction of new metrics for the evaluation of predictions.
Indeed, as outlined in the previous chapter, there are many critical aspects that
must be considered in this task before developing an AutoML solution. The
results show that classical approaches, such as using Gradient Boosting to train
a model with the WMSE, often yield better results, in terms of the combination
of the adopted metrics, than more advanced ones. The approaches that can be
found in the literature, despite often being sophisticated, usually work well only
on specific datasets. Therefore, they are not suitable as AutoML tools, which
have to interface with even very different datasets.

The adoption of custom loss functions, in addition to being instrumental
in obtaining a good model, can also be useful in providing the user of the
AutoML tool with a customisation option. The asymmetric CL adopted in
most experiments is characterised by several parameters that allow us to define

90

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the shape of the quadratics and exponentials components, in such a way as to
penalise less or more RUL overestimation and underestimation. The AutoML
tool may allow the user to decide whether to penalise RUL overestimates by a
lot or a little, and this choice can be reflected in the loss function because of its
versatility.

The experiments were performed in the FD001 folder of the NASA datasets,
which includes only one operative condition and a single fault mode. However,
in most scenarios, this is not the case. Therefore, future work will include the
development of AutoML solutions that take into account the possibility that the
equipment may operate in different conditions and that there may be different
types of failure.

Finally, the LIME interpretability can be used as a diagnostic tool to help
domain experts in assessing which features of the industrial equipment are
responsible for the breakdown, and to assess if the model really reflects some
characteristic of the machine, or if it captures only spurious correlations. The
use of this tool can be further explored in future work.

In general, AutoML is a promising tool in democratising Machine Learning,
making this amazing field accessible to more and more people and companies,
reducing the costs and knowledge required to approach it. This work shows
how AutoML can be a viable solution also for some manufacturing tasks, falling
within the Industry 4.0 paradigm, such as Anomaly Detection, Visual Anomaly
Detection, and Remaining Useful Life estimation. However, research in AutoML
for these tasks is still in its infancy, and we can expect great progress in the
future, for instance in solving in a more methodological way the CASH problem
for the Visual AD task, as done for the AD task. In any case, when developing
AutoML solutions, it is important to remember that the objective is to make the
ML accessible to non-experts, so the focus must always be on aspects such as
the interpretability of models and the user-friendliness of the tool. Today, the
manufacturing industry is increasingly discovering the importance of extracting
valuable information from data, and machine learning plays a vital role in this.
Therefore, it can be expected that AutoML-based solutions will acquire great
value as the Industry 4.0 paradigm spreads among manufacturing companies.

91

References

[1] Mounia Achouch et al. “On predictive maintenance in industry 4.0: Overview,
models, and challenges”. In: Applied Sciences 12.16 (2022), p. 8081.

[2] Nilesh A Ahuja et al. “Probabilistic modeling of deep features for out-of-
distribution and adversarial detection”. In: arXiv preprint arXiv:1909.11786
(2019).

[3] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. “Ganomaly:
Semi-supervised anomaly detection via adversarial training”. In: Asian
conference on computer vision. Springer. 2018, pp. 622–637.

[4] Samet Akcay et al. “Anomalib: A Deep Learning Library for Anomaly
Detection”. In: arXiv preprint arXiv:2202.08341 (2022).

[5] Maroua Bahri et al. “AutoML: state of the art with a focus on anomaly
detection, challenges, and research directions”. In: International Journal of
Data Science and Analytics (2022), pp. 1–14.

[6] Paul Bergmann et al. “MVTec AD–A comprehensive real-world dataset
for unsupervised anomaly detection”. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. 2019, pp. 9592–9600.

[7] Oleg Bezrukavnikov and Rhema Linder. “A neophyte with automl: Evalu-
ating the promises of automatic machine learning tools”. In: arXiv preprint
arXiv:2101.05840 (2021).

[8] Alexander Buslaev et al. “Albumentations: fast and flexible image aug-
mentations”. In: Information 11.2 (2020), p. 125.

[9] Thyago P Carvalho et al. “A systematic literature review of machine learn-
ing methods applied to predictive maintenance”. In: Computers & Industrial
Engineering 137 (2019), p. 106024.

93

REFERENCES

[10] David Dandolo et al. “AcME—Accelerated model-agnostic explanations:
Fast whitening of the machine-learning black box”. In: Expert Systems with
Applications 214 (2023), p. 119115.

[11] Jesse Davis and Mark Goadrich. “The relationship between Precision-
Recall and ROC curves”. In: Proceedings of the 23rd international conference
on Machine learning. 2006, pp. 233–240.

[12] Thomas Defard et al. “Padim: a patch distribution modeling framework for
anomaly detection and localization”. In: International Conference on Pattern
Recognition. Springer. 2021, pp. 475–489.

[13] Kunyuan Deng et al. “A remaining useful life prediction method with
long-short term feature processing for aircraft engines”. In: Applied Soft
Computing 93 (2020), p. 106344.

[14] Lukas Ehrig et al. “Customizable Asymmetric Loss Functions for Machine
Learning-based Predictive Maintenance”. In: 2020 8th International Con-
ference on Condition Monitoring and Diagnosis (CMD). IEEE. 2020, pp. 250–
253.

[15] Moustafa Elnadi and Yasser Omar Abdallah. “Industry 4.0: critical inves-
tigations and synthesis of key findings”. In: Management Review Quarterly
(2023), pp. 1–34.

[16] Andrew Emmott et al. “Anomaly detection meta-analysis benchmarks”.
In: arXiv preprint ArXiv:1503.01158 (2016).

[17] Nick Erickson et al. “Autogluon-tabular: Robust and accurate automl for
structured data”. In: arXiv preprint arXiv:2003.06505 (2020).

[18] Kevin Fauvel et al. “Xcm: An explainable convolutional neural network for
multivariate time series classification”. In: Mathematics 9.23 (2021), p. 3137.

[19] Matthias Feurer et al. “Efficient and robust automated machine learning”.
In: Advances in neural information processing systems 28 (2015).

[20] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics (2001), pp. 1189–1232.

[21] Morteza Ghobakhloo. “Industry 4.0, digitization, and opportunities for
sustainability”. In: Journal of cleaner production 252 (2020), p. 119869.

94

REFERENCES

[22] Morteza Ghobakhloo. “The future of manufacturing industry: a strate-
gic roadmap toward Industry 4.0”. In: Journal of manufacturing technology
management (2018).

[23] Alasdair Gilchrist. Industry 4.0: the industrial internet of things. Springer,
2016.

[24] Ian Goodfellow et al. “Generative adversarial networks”. In: Communica-
tions of the ACM 63.11 (2020), pp. 139–144.

[25] Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka. “Cflow-ad: Real-
time unsupervised anomaly detection with localization via conditional
normalizing flows”. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. 2022, pp. 98–107.

[26] Che-Sheng Hsu and Jehn-Ruey Jiang. “Remaining useful life estimation
using long short-term memory deep learning”. In: 2018 ieee international
conference on applied system invention (icasi). IEEE. 2018, pp. 58–61.

[27] Peter J Huber. “Robust estimation of a location parameter”. In: Break-
throughs in statistics. Springer, 1992, pp. 492–518.

[28] Lahiru Jayasinghe et al. “Temporal convolutional memory networks for
remaining useful life estimation of industrial machinery”. In: 2019 IEEE
International Conference on Industrial Technology (ICIT). IEEE. 2019, pp. 915–
920.

[29] Nasser Jazdi. “Cyber physical systems in the context of Industry 4.0”. In:
2014 IEEE international conference on automation, quality and testing, robotics.
IEEE. 2014, pp. 1–4.

[30] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-keras: An efficient neural
architecture search system”. In: Proceedings of the 25th ACM SIGKDD in-
ternational conference on knowledge discovery & data mining. 2019, pp. 1946–
1956.

[31] Ziqiu Kang, Cagatay Catal, and Bedir Tekinerdogan. “Remaining useful
life (RUL) prediction of equipment in production lines using artificial
neural networks”. In: Sensors 21.3 (2021), p. 932.

[32] Lars Kotthoff et al. “Auto-WEKA: Automatic model selection and hyperpa-
rameter optimization in WEKA”. In: Automated machine learning. Springer,
Cham, 2019, pp. 81–95.

95

REFERENCES

[33] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. “Angle-based
outlier detection in high-dimensional data”. In: Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining.
2008, pp. 444–452.

[34] Kwei-Herng Lai et al. “Tods: An automated time series outlier detection
system”. In: Proceedings of the aaai conference on artificial intelligence. Vol. 35.
18. 2021, pp. 16060–16062.

[35] Heiner Lasi et al. “Industry 4.0”. In: Business & information systems engi-
neering 6.4 (2014), pp. 239–242.

[36] Yuening Li et al. “Automated Anomaly Detection via Curiosity-Guided
Search and Self-Imitation Learning”. In: IEEE Transactions on Neural Net-
works and Learning Systems (2021).

[37] Yuening Li et al. “Pyodds: An end-to-end outlier detection system with au-
tomated machine learning”. In: Companion Proceedings of the Web Conference
2020. 2020, pp. 153–157.

[38] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In:
2008 eighth ieee international conference on data mining. IEEE. 2008, pp. 413–
422.

[39] Randal S Olson and Jason H Moore. “TPOT: A tree-based pipeline opti-
mization tool for automating machine learning”. In: Workshop on automatic
machine learning. PMLR. 2016, pp. 66–74.

[40] Ingeborg de Pater and Mihaela Mitici. “Novel metrics to evaluate prob-
abilistic remaining useful life prognostics with applications to turbofan
engines”. In: PHM Society European Conference. Vol. 7. 1. 2022, pp. 96–109.

[41] Cheng Peng et al. “A Remaining Useful Life prognosis of turbofan engine
using temporal and spatial feature fusion”. In: Sensors 21.2 (2021), p. 418.

[42] Ana C Pereira and Fernando Romero. “A review of the meanings and the
implications of the Industry 4.0 concept”. In: Procedia Manufacturing 13
(2017), pp. 1206–1214.

[43] Juan-Carlos Perez-Cortes et al. “A System for In-Line 3D Inspection with-
out Hidden Surfaces”. In: Sensors 18.9 (2018), p. 2993.

[44] Tomáš Pevnỳ. “Loda: Lightweight on-line detector of anomalies”. In: Ma-
chine Learning 102.2 (2016), pp. 275–304.

96

REFERENCES

[45] Wenwen Qi, Chong Xu, and Xiwei Xu. “AutoGluon: A revolutionary
framework for landslide hazard analysis”. In: Natural Hazards Research
1.3 (2021), pp. 103–108.

[46] Rahul Rai et al. “Machine learning in manufacturing and industry 4.0
applications”. In: International Journal of Production Research 59.16 (2021),
pp. 4773–4778.

[47] Danilo Rezende and Shakir Mohamed. “Variational inference with nor-
malizing flows”. In: International conference on machine learning. PMLR.
2015, pp. 1530–1538.

[48] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should
i trust you?" Explaining the predictions of any classifier”. In: Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining. 2016, pp. 1135–1144.

[49] Karsten Roth et al. “Towards total recall in industrial anomaly detection”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 14318–14328.

[50] Takaya Saito and Marc Rehmsmeier. “The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers on im-
balanced datasets”. In: PloS one 10.3 (2015), e0118432.

[51] Giduthuri Sateesh Babu, Peilin Zhao, and Xiao-Li Li. “Deep convolutional
neural network based regression approach for estimation of remaining
useful life”. In: International conference on database systems for advanced ap-
plications. Springer. 2016, pp. 214–228.

[52] Abhinav Saxena et al. “Damage propagation modeling for aircraft engine
run-to-failure simulation”. In: 2008 international conference on prognostics
and health management. IEEE. 2008, pp. 1–9.

[53] Anıbal Silva, Rita P Ribeiro, and Nuno Moniz. “Model Optimization in
Imbalanced Regression”. In: International Conference on Discovery Science.
Springer. 2022, pp. 3–21.

[54] Gian Antonio Susto et al. “Machine learning for predictive maintenance: A
multiple classifier approach”. In: IEEE transactions on industrial informatics
11.3 (2014), pp. 812–820.

97

REFERENCES

[55] Xian Tao et al. “Deep learning for unsupervised anomaly localization in
industrial images: A survey”. In: IEEE Transactions on Instrumentation and
Measurement (2022).

[56] Andrei Tolstikov, Frederik Janssen, and Johannes Fürnkranz. “Evaluation
of different heuristics for accommodating asymmetric loss functions in
regression”. In: International Conference on Discovery Science. Springer. 2017,
pp. 67–81.

[57] Joaquin Vanschoren. “Meta-learning: A survey”. In: arXiv preprint arXiv:1810.03548
(2018).

[58] Hal R Varian. “A Bayesian approach to real estate assessment”. In: Studies
in Bayesian econometric and statistics in Honor of Leonard J. Savage (1975),
pp. 195–208.

[59] Luisa Voller. “Literature Review on Automated Machine Learning (Au-
toML)”. In: ().

[60] Guodong Wang et al. “Student-teacher feature pyramid matching for un-
supervised anomaly detection”. In: arXiv preprint arXiv:2103.04257 (2021).

[61] Jie Yang et al. “Visual Anomaly Detection for Images: A Systematic Sur-
vey”. In: Procedia Computer Science 199 (2022). Publisher: Elsevier, pp. 471–
478.

[62] Jiawei Yu et al. “Fastflow: Unsupervised anomaly detection and localiza-
tion via 2d normalizing flows”. In: arXiv preprint arXiv:2111.07677 (2021).

[63] Daochen Zha et al. “Meta-AAD: Active anomaly detection with deep rein-
forcement learning”. In: 2020 IEEE International Conference on Data Mining
(ICDM). IEEE. 2020, pp. 771–780.

[64] Yue Zhao, Ryan A Rossi, and Leman Akoglu. “Automating outlier detec-
tion via meta-learning”. In: arXiv preprint arXiv:2009.10606 (2020).

[65] Yue Zhao et al. “LSCP: Locally selective combination in parallel outlier
ensembles”. In: Proceedings of the 2019 SIAM International Conference on
Data Mining. SIAM. 2019, pp. 585–593.

[66] Jun Zhu, Nan Chen, and Weiwen Peng. “Estimation of bearing remaining
useful life based on multiscale convolutional neural network”. In: IEEE
Transactions on Industrial Electronics 66.4 (2018), pp. 3208–3216.

98

REFERENCES

[67] Tiago Zonta et al. “Predictive maintenance in the Industry 4.0: A system-
atic literature review”. In: Computers & Industrial Engineering 150 (2020),
p. 106889.

99

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Industry 4.0
	The Fourth Industrial Revolution
	Machine Learning for Industry 4.0

	Automated Machine Learning
	What is AutoML?
	Examples of AutoML tools
	AutoML challenges

	Introduction to Thesis Work

	Anomaly Detection on Tabular Data
	Introduction
	MetaOD
	Meta-learning
	MetaOD Problem Statement
	MetaOD Working Principle

	Experiments with MetaOD
	Datasets
	Isolation Forest
	Results
	Experiment with a Synthetic Supervised Dataset
	Conclusions about MetaOD

	Interpretability
	Accelerated Model-agnostic Explanations
	Interpretability with AcME

	Visual Anomaly Detection
	Introduction
	Datasets
	Wood Anomaly Detection Dataset
	MVTec Anomaly Detection Dataset

	State-of-the-art
	Student-Teacher Feature Pyramid Matching
	Cflow and Fastflow
	DFM, DFKDE and GANomaly
	Patch Distribution Modeling Framework
	Patchcore

	Experiments
	Comparison on Wood Dataset
	Padim vs Patchcore
	Robustness to data numerosity
	Not aligned datasets
	Conclusions

	Predictive Maintenance
	Introduction
	Predictive Maintenance and Remaining Useful Life Estimation
	Remaining Useful Life Computation
	Problem Formalisation
	RUL Estimation for AutoML

	Dataset
	Experiments
	Random Forest vs Ridge
	Test with AutoML Library
	Instance Weighting
	Asymmetric Loss Function
	Experiment with a Multilayer Perceptron
	Metrics for Remaining Useful Lifetime Estimation
	Experiments with Deep Neural Networks
	Interpretability with LIME
	Conclusions

	Conclusions and Future Work
	References

