
Università degli studi di Padova

Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Informatica

PariMulo: Kad

Supervisor: Chiar.mo Prof. Enoch Peserico Stecchini Negri De

Salvi

Student: Francesco Mattia

Academic Year 2010-2011

To myself,
Because I deserve it.

Summary

With the advent of broadband connections and computing power available
in every kind of digital equipment there is a need to share resources, such as
information, among people. To fulfill this need in these years we have seen
an amazing growth of distributed systems: cloud computing services, web
applications, peer-to-peer systems, etc.
In this context is born PariPari, a project which aims to build a modern
peer-to-peer network of computers that runs various services, among which
there is an eMule-compatible client, called PariMulo.
As it is well known even to less computer-savvy people, there have been some
problems with the centralized server-based structure of the original eDonkey
network, and it has helped the development of a new network, Kad, based
upon the Kademlia protocol.
This work focuses on the implementation of Kad in PariMulo, starting by
first describing the protocol and how the network works, and then providing
an in-depth vision of the implementation considering security and perfor-
mance issues. Finally we make some observations about future possibilities
of development.
This thesis was written both for people curious about the inner workings
of a modern distributed peer-to-peer network and for developers of software
compatible with such networks.

I

Contents

1 Introduction 1

1.1 The PariPari Project . 1
1.2 PariMulo Plug-in for PariPari 3

1.2.1 Peer-to-peer networks 3
1.2.2 eDonkey and eMule . 5
1.2.3 eDonkey network . 6

1.3 Implementing Kad . 12

2 Kademlia 14

2.1 Distributed hash tables . 14
2.1.1 Key space and Key space partitioning 16
2.1.2 Overlay network . 18

2.2 Kademlia . 19

3 Kad network 26

3.1 Network basics . 26
3.2 Joining the network . 30

3.2.1 Routing table . 31
3.2.2 Bootstrap . 33
3.2.3 Firewall check . 34
3.2.4 FindBuddy (Callback) 35

3.3 Content management . 36
3.3.1 Lookup . 38
3.3.2 Search . 39

II

CONTENTS

3.3.3 Publishing . 42
3.4 Advanced features . 44

3.4.1 Protocol obfuscation 44
3.4.2 64-bit extension support 45

4 Kad Implementation 46

4.1 Communications . 48
4.1.1 UDPListener . 49
4.1.2 Packets . 50

4.2 Building the network . 54
4.2.1 Kad ID (Int128) . 55
4.2.2 KadContact . 56
4.2.3 Routing table . 56

4.3 Lookup . 61
4.4 Search . 64
4.5 Publishing . 68
4.6 Firewall check and FindBuddy 69

5 Considerations and future works 72

5.1 Working on PariMulo . 72
5.2 Testing . 75
5.3 Future works . 79

5.3.1 PariMulo as a framework 80
5.3.2 Kad for embedded systems 81
5.3.3 Developing a new network 84

Bibliography 87

III

Chapter 1

Introduction

In recent years there has been a lot of hype around distributed systems and
peer-to-peer networks: ubiquitous computing and faster connections to the
Internet provide new ways of exchanging information that require developing
scalable, performant and reliable networks.
PariPari, developed at Università degli Studi di Padova mainly by students,
is an example of such networks providing different services as plug-ins. Pari-
Mulo, is a plug-in that acts as an eMule-compatible client. As eMule connects
to the Kad network, PariMulo plug-in offers such functionality and tries to
offer a better user experience. We now describe all these projects, so if you
are more interested in technical-related details, you may skip this chapter.

1.1 The PariPari Project

PariPari is a multifunctional, extensible platform for peer-to-peer applica-
tions written in Java, it is made of a kernel called PariCore and a number of
plug-ins, which offer different services locally and over the Internet. PariPari
clients can communicate between them using the homonymous peer-to-peer
network, which is completely distributed, as it doesn’t rely on any server.
Among the services offered there are VoIP, IRC, DNS and other modules,
so called “plug-ins”; furthermore there are two plug-ins compatible with Bit-

1

1.1 The PariPari Project

Torrent and eMule1 networks, respectively called Torrent and Mulo (italian
word for donkey).
All those plug-ins rely on so called internal plug-ins that offer basic services,
such as connectivity with other machines and storage of data, to external
plug-ins like the ones named above. These internal plug-ins are fundamental
to coordinate and control access to resources of the machine where PariPari
is running: they provide resources to external plug-ins by wrapping Java ob-
jects and adding methods that may limit access to those resources in order
to avoid conflicts and exploit synergies between different applications.
PariPari is meant to be launched as a Java Web Start application that any-
body can run just by clicking on a web page, requiring no installation. This
structure easily allows to keep the software constantly updated thus sim-
plifying maintenance operations and avoiding problems with clients running
obsolete versions.

Figure 1.1: Structure of a PariPari client.

1More precisely eMule is just a client that connects to the eDonkey and Kad networks.

2

1.2 PariMulo Plug-in for PariPari

1.2 PariMulo Plug-in for PariPari

PariMulo is a module for PariPari, a plug-in that uses only services provided
by the Connectivity, Local Storage and Logger internal plug-ins in order to
have access to the Internet and to local data on disks, so at the moment
there is no co-operation2 among PariPari clients running PariMulo.
PariMulo was first developed as a client for eDonkey2000 peer-to-peer net-
work, allowing for download and upload of files. Later, it has been added
support to eMule extensions and the object of this work is the implementa-
tion of Kad network support, as in the latest versions of eMule. The structure
of the plug-in is modular and independent from the user interface, and that
allows to modify PariMulo for different uses, as it will be seen later.

1.2.1 Peer-to-peer networks

Kad network can be described as an overlay network with a peer-to-peer
decentralized architecture. An overlay network is a computer network built
on top of another network: in the case of Kad, an Application Layer Protocol3

is defined to allow intercommunication between clients over TCP and UDP
which rely on the IP network.
Peer-to-peer networks is a common architecture for modern networks, as the
growth of computing power, data storage and bandwidth capacity of personal
computer allows them to act both as client and servers to other computers
that join the network, thus we prefer to refer to them as peers4. As stated
by Wikipedia:

Peer-to-peer (P2P) computing or networking is a distributed ap-
plication architecture that partitions tasks or workloads between
peers. Peers are equally privileged, equipotent participants in the

2By co-operation we mean a peer helping another peer to download a content in ex-
change of some credit. PariMulo clients work perfectly fine with each other.

3As described in the ISO/OSI model. http://en.wikipedia.org/wikiOSI_model
4Throughout the thesis we use the terms peer and node interchangeably.

3

1.2 PariMulo Plug-in for PariPari

application. They are said to form a peer-to-peer network of
nodes.

Many of the most popular file sharing networks rely on peer-to-peer archi-
tecture implementing an abstract overlay network: by distributing resources
among the nodes generally make the network more resistant to attacks and
legal issues. The term however does not define clearly the distribution of
resources, thus we can discriminate different generations of peer-to-peer net-
works.
First generation networks were hybrid peer-to-peer systems, in the sense that
a server was required to join the network and index the resources to be
shared among peers, then peers would connect to each other in order to re-
trieve desired content. Famous examples of such networks are eDonkey2000
and Napster but both suffered from legal issues that resulted in teardown of
original networks.
Second generation networks were unstructured peer-to-peer systems such as
Gnutella and Freenet. Gnutella, perhaps the most widely deployed of these
networks, made use of no server, thus being completely peer-to-peer. The
unstructured nature of the network, however, implied that nodes would need
to flood neighborhood in order to search for content. As a result, search was
often unreliable and the overhead was unbearable, often saturating connec-
tions and rendering slower nodes useless. So this architecture has proven to
be very unscalable and unreliable, even if modifications to the network, by
implementing a tiered system of ultrapeers and leaves, tried to address these
problems.
A new generation of networks are structured peer-to-peer systems, and being
widely addressed in literature, the most common design is based on dis-
tributed hash table (DHT), with many projects like CAN, Chord, Pastry,
Tapestry and Kademlia itself exploiting this design.
Key features of DHTs are decentralization: nodes do not need any central
coordination to form the system; fault tolerance: the system should be re-
liable even with nodes’ churn (nodes constantly joining, leaving or falling);

4

1.2 PariMulo Plug-in for PariPari

scalability: the system should be efficient even with millions of nodes.
Advantages of structured peer-to-peer systems are evident: the lack of a
centralized server eliminates the single point of failure for the network, as
tearing down the server would render the network unusable. However the
central server provides faster and more accurate query results to peers than
unstructured systems, as the flooding query model proved to be unreliable
and significantly less efficient, with the undeniable advantage of being com-
pletely decentralized. DHTs should get the best of both worlds by providing
a reliable and efficient over a decentralized network, anyway we’ll be back on
the subject to verify these claims.

1.2.2 eDonkey and eMule

eDonkey2000 (as known as ed2k) is a software application and an hybrid
peer-to-peer network named in the same way. It featured some key advan-
tages over Napster, such as downloading of files from multiple sources at once
and indexing of files shared by file hashes instead of filenames, and acquired
great popularity after the demise of Napster. eDonkey2000 was developed
by a company, MetaMachine, which had possession of the servers managing
the network and kept the source code private, thus implementing security-
by-obscurity, which usually isn’t a clever security policy. In fact a number
of eDonkey-compatible clients and servers appeared, the most famous exam-
ple is the eMule client. eMule is an open-source software released under the
GNU General Public License. thus enabling willing developers to join the
cause and enhance the application.
As eDonkey was closed-source, eMule developers had to reverse-engineer the
protocol, which is way more difficult and error-prone than following docu-
mentation guidelines. While eMule client was open-source, the main server
softwares developed by reverse-engineering, Lugdunum eserver and satan-
edonkey-server are free (as in gratis) but closed-source, thus choosing again
the questionable policy of security-by-obscurity, as it was declared by Lug-
dunum developers on their website. With the growth of popularity of eMule,

5

1.2 PariMulo Plug-in for PariPari

the original protocol has been modified first by eMule developers, who added
the so called eMule extensions, and then, as the software is open-source,
many third-party developers started their own fork projects of eMule adding
features and protocol extensions incompatible with other clients thus leading
to a jungle of protocol dialects.
In 2005, eDonkey was discontinued due to legal issues with RIAA5, but the
eDonkey network survived as servers were brought up all around the world:
interconnections between servers and features added to eMule prevented the
network from splitting in a multitude of smaller networks. As eMule re-
mained the only de-facto standard client to connect to eDonkey servers, it
was possible to develop a new completely decentralized peer-to-peer network,
Kad, which implements the Kademlia overlay protocol, as described in [1].
This network has gained a lot of popularity due to the constant tear down
of the several eDonkey servers, proving so far to be a valid alternative to the
hybrid system, being both robust and scalable.
Currently, the main threats to the Kad network are attacks, which will be
discussed later, and protocol filtering to peers trying to join and participate
to the network.

1.2.3 eDonkey network

We give a brief description of the eDonkey2000 network and protocol to
confront it later with Kad.

Communications

The eDonkey2000 network, as an hybrid peer-to-peer system, is an overlay
network built on top of the IP network using both TCP connections and
UDP datagrams exchange. So called ed2k packets are sent through the TCP
streams or using UDP datagrams as wrappers. TCP connections are used
mainly for reliable and durable connections to servers, and between peers

5RIAA - Recording Industry Association of America

6

1.2 PariMulo Plug-in for PariPari

to download/upload files. UDP datagrams, due to their smaller header and
unreliable nature, are preferred for fast information exchange, both with
peers and servers.

Figure 1.2: Structure of eDonkey packets sent through TCP or UDP.
First byte is eDonkey packet identifier (0xe3), while OP Code determines
the packet type. Packet size in TCP must be specified, and the size field is
the length of the packet after the size field itself. UDP datagrams instead
define the length of the packet, therefore no packet size field is needed.

Network topology

The network relies on number of servers, which have the duty to mantain an
index of connected nodes and the files shared. In such a sense the content of
resources shared is not sent to the servers but just a reference to the resources,
and then the peers retrieve the content from other peers, so the indexing of
contents is centralized while distribution is completely peer-to-peer.
A peer joining the network, it connects to a single server through a TCP

7

1.2 PariMulo Plug-in for PariPari

connection that is mantained for the whole session, and it publishes its shared
files.

Peers Identification

Upon connection to the server a peer acquires a ed2k ID given by the server:
if the peer is accessible through a specified TCP port (communicated at the
connection to the server) it will be given a 4-bytes High-Id calculated from
its IP address in the form a.b.c.d, where each letter stands for a byte, with
the following formula:

ed2k id = a+ b · 28 + c · 216 + d · 224 (1.1)

Else, it will be given a random, 4-bytes ed2k id < 224 Low-Id6 by the server.
The main difference is that each server mantains its own list of connected
peers, so in two different servers may exist peers with the same Low-Id, while,
for obvious reasons, there can be just a peer with an High-Id.
A 16-bytes user ID, persistent across sessions, is self-assigned to each peer and
used for identification in order to implement a simple credit system between
peers.

Resources Identification

The resources shared in the network are files. One of the main problem
of Napster was that identical files with different file names were treated as
different resources. The ed2k network uses a clever system: every file is
uniquely identified by its file hash calculated with the cryptographic hash
function MD47, which generates a 128-bit identifier, and its file size (4 byte
integer). As the file name does not contribute to the calculation of MD4
and file size, files with different name but exactly identical have the same
identifier and to the network will appear as the same resource.

6This way it is possible to discriminate High-Id from Low-Id clients just by looking at
the ed2k id.

7http://en.wikipedia.org/wiki/MD4

8

1.2 PariMulo Plug-in for PariPari

Search

Searching the network for published contents is possible in two ways: through
a query to the server the peer is connected to (called local search), or sending
queries to servers the peer has knowledge of (global search). Local search is
performed with an exchange of ed2k packets with the server using the TCP
connection, while for global search ed2k packets are exchanged through UDP
datagrams.
Search of a content technically is divided in two steps: first a querying client
sends a keyword search to get a list of files published related to the keyword
(more correctly a string, it can contain multiple words); then when a file is
chosen by its hash and size, a source request is sent, and a list of sources
which has the file is given, so the client can start the download straight off.
Advanced keyword search features (such as specifying file type) are all dealt

Figure 1.3: Looking for content, a peer performs a keyword search, in this
case “Pink Floyd”, which returns contents related to the string. Choosen a
file to be downloaded “TheWall.avi”, a source search to locate serving peers
for such resource is performed.

9

1.2 PariMulo Plug-in for PariPari

putting options in the ed2k packets sent to servers. Servers are responsible
just for contents published by peers connected to them.

Publication of shared files

The publication to the server of files shared by the peer happens sending a
series of ed2k packets containing metadata referring to the files, such as file
name, file type, size and possibly other information content-related. All the
references are stored in the server for a period, after which they are deleted
unless the peer republishes them. In order to avoid overloading the server
at the beginning of publication, published files are split in packets sent with
a time delay and, if the peers has many files, only a portion is published.
However the limits and delays aren’t strictly defined by the protocol, so
different client and servers may deal the question otherwise.

File exchange

When a file to download is chosen and sources are available, the downloading
peer contacts each of the source peers by mean of a TCP connection and
requests parts of the file. If there are too many peers downloading, a new
request will be enqueued and served later. A enqueued client does close the
TCP connection, which will be established again when the uploading peer
can serve the client.
The file exchange will be dealt more in-depth later, as this part of the protocol
is in common with the Kad network.

Callback

The Callback is a mechanism that allows High-Id peers (nodes that can
accept incoming TCP connections) to instantiate a TCP connection with
Low-Id peers (nodes that can’t accept incoming TCP connections). This
works only between peers connected to the same server, as the requesting

10

1.2 PariMulo Plug-in for PariPari

High-Id client must send an ed2k packet indicating a Callback request to the
server, which will forward the request to the Low-Id peer through the active
TCP connection. Now the Low-Id client will actually call back the requesting
peer initiating a TCP connection. At the moment, according to ed2k clients
and servers, there is no way for two Low-Id clients to communicate. For more
details on the Callback mechanism please refer to [7].

Figure 1.4: Callback mechanism: an High-Id peer cannot connect directly
through TCP to a Low-Id Peer, therefore it sends a Callback Request to the
eDonkey server which forwards the request to the Low-Id Peer (green arrows)
through the estabilished TCP connections (to the same server). Then Low-Id
Peer calls back directly the High-Id Peer with a TCP connection (red arrow).

Credits

Ed2k clients implement a credit system, necessary to prevent “leechers” from
draining all upload capacity of peers without allowing other clients to down-
load from them. The credit system implemented in eMule is quite simple: a
downloading client rewards an uploading peer by modifying its queue rank-

11

1.3 Implementing Kad

ing proportionally to the amount of data uploaded. Credits between peers
are calculated as follows:

Credit = min

(
bytes received× 2

bytes sent
,
√
MBytes received + 2

)

Credit is in the range of 1 and 10, and it should be noted that is not the
only queue ranking modifier considered, other parameters such as waiting
time in queue and file priority can be considered. The credit system works
just between pairs of peers and, being credits stored and managed on the
peers, so there is no authority managing the peers and a serving peer doesn’t
get any credits with the whole network, but just with (honest) peers served.
This, as it concerns file exchange, is another feature in common with the Kad
network and will be reviewed later.

Protocol obfuscation

In 2006 was implemented in eMule clients a new feature to prevent ed2k
(and Kad) communications from being filtered or eavesdropped, protocol
obfuscation, which tries to obfuscate both TCP and UDP traffic by mean
of RC4 stream cipher8, using Diffie-Hellman key exchange protocol. Even if
RC4 is robust, the whole system as it was implemented is not very efficient
and even obfuscated communications can be filtered quite easily.

1.3 Implementing Kad

When we started working on PariMulo, in late 2007, massive attacks and
tear down of ed2k servers that lead us to think that eDonkey2000 network
would demise quickly. As of this writing, in the beginning of 2011, not only
eDonkey2000 network still works, but the Kad network proves to be reliable

8http://en.wikipedia.org/wiki/RC4

12

1.3 Implementing Kad

so far and working, even if many attacks are possible and ISPs still try to
filter peer-to-peer traffic.
As the Kad network gained popularity, counting millions of nodes connected
at the same time, implementing it in PariMulo was mandatory choice. eMule
(and its derivatives) implements it since 2006, while the other most famous
client, aMule uses mostly the same code for the Kad network support. When
we first developed PariMulo with support for eDonkey network, as stated in
[2], we relied mainly on the protocol description given in [4] and reverse engi-
neering of the protocol. Even if we achieved good results developing a client
that is compatible the other clients, it has proven not to be the best choice,
as perhaps directly studying and porting the eMule source code would have
been a more efficent working methodology.
In fact, the real problem with this approach is that eMule and aMule are
written in C++, an object-oriented programming language, like Java which
is the language chosen for PariPari. Despite being both languages object-
oriented, there are quite some differences in memory management (Java pro-
vides Garbage Collecting capabilities), networking and concurrency frame-
works.
We’ll be back on the subject later, for now, it suffices to say that for Kad
implementation we chose to analyze eMule and study its sourcecode: Kad
inner workings are much more complex and subtle than eDonkey, and rely-
ing just on documentation and reverse engineering would have been really
difficult and unfeasible.

13

Chapter 2

Kademlia

Before starting the description of the network, we must define some key con-
cepts that otherwise may confuse the reader. Kademlia, as described in the
original document [1], is a distributed hash table (DHT) upon which is built
the Kad network, which is most accurately described by the eMule source
code, where the specifications of Kad protocol are also completely defined.
This chapter give a detailed overview of DHT technology and reviews Kadem-
lia original document, pointing out differences with other DHTs and the Kad
network as it was implemented.

2.1 Distributed hash tables

As stated in Wikipedia1:

A distributed hash table (DHT) is a class of a decentralized dis-
tributed system that provides a lookup service similar to a hash
table; (key, value) pairs are stored in a DHT, and any partici-
pating node can efficiently retrieve the value associated with a
given key. Responsibility for maintaining the mapping from keys
to values is distributed among the nodes, in such a way that a

1http://en.wikipedia.org/wiki/Distributed_hash_table

14

2.1 Distributed hash tables

change in the set of participants causes a minimal amount of dis-
ruption. This allows a DHT to scale to extremely large numbers
of nodes and to handle continual node arrivals, departures, and
failures.

A DHT can serve many purposes, being fundamentally a tool to store and
retrieve information from a distributed network of computers. However, to
make the system that uses a DHT to work correctly and efficiently, many
issues like distribution of information, nodes churn2, security, scalability, re-
dundancy, etc. should be considered thoroughly.
Research on DHT, and more generally on structured peer-to-peer systems,
was boosted by the problems of unstructured peer-to-peer systems which led
researches to find more efficient network designs to share information over
the IP network. As a result CAN3, Chord4, Pastry5, Tapestry6 and Kademlia
[1] were proposed, and the latter counts on the most widely deployed imple-
mentation: Kad.
The DHT is built, in its main incarnations, as a group of equal peers that
cooperate to form an overlay network without coordination from a central
entity. All the “intelligence” in the network resides on the peers7: they man-
age the network taking care of nodes churn and distribution of the content.
The big step forward from unstructured peer-to-peer systems is that a node
on average has knowledge of just O(log n) nodes in a network of n peers.
This is really helpful to improve scalability and fault tolerance, as a minimal
number of messages must be exchanged between peers.

2The rate at which nodes join or leave the network.
3CAN: http://berkeley.intel-research.net/sylvia/cans.pdf
4Chord: http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
5Pastry: http://research.microsoft.com/ antr/PAST/pastry.pdf
6Tapestry: http://pdos.csail.mit.edu/ strib/docs/tapestry/tapestry_jsac03.pdf
7We use the terms “peer” and “node” interchangeably.

15

2.1 Distributed hash tables

Figure 2.1: An example of DHT network: resources are stored on the network
on peers responsible for keys. A key for a resource is obtained through an
hash function.

2.1.1 Key space and Key space partitioning

As it was said, the network acts as an hash table, thus a key space must be
defined, so that nodes can store content by associating a value to a key. The
key space is commonly a set of bits, for instance 128-bit in Kad network8;
this choice serves well to define the concept of distance between keys.
Information needs to be distributed and stored across nodes, so we must
define a key space partitioning so that nodes can efficiently and reliably dis-
tribute and retrieve data from other nodes, knowing which nodes take care
of the content they are looking for. DHTs usually use consistent hashing
techniques over traditional hashing, so that even with the number of nodes
changing, a minimal redistribution of content should be done.
To make things more clear, we make an example of traditional caching. Think
about storing object o in n machines: a common way would be to store o
in the machine numbered hash(o) mod n. While the number of n machines

8Kademlia original paper describes the system with a key space of 160-bit, actually
Kad network has a 128-bit key-space.

16

2.1 Distributed hash tables

is fixed this solution works well, but when n changes over time this proves
to be catastrophic as the machine where all the previously stored o objects
reside changes.
Consistent hashing basically solves the problem by associating each of the

(a) (b)

Figure 2.2: Traditional Hashing: Files in (a) are stored by their file hash
in node hash(f) mod n. When a new node joins the network (b), resources
stored need to be moved to the new node.

n machines to a key in the key space, in order to map each machine to an
interval in the key space. In this way, all the objects are consistently mapped
to the same machine as long as it is possible, thus in a network with K keys
stored and n machines, an average of K/n items need to be redistributed
when the number of machines change.
For example, we can assign each node an identifier i in the key space, and we
can define a distance function δ(k1, k2) between each pair of keys k1 and k2,
unrelated to network latency or geographical position. In this way we can
assign all the keys kx to the node with id i1 for which δ(kx, i1) is minimal.
When a new node with id i2 where δ(i2, ky) < δ(i1, ky) joins the network,
responsibility of key ky is shifted from node with i1 to node with id i2. Con-
versely, when node i2 will leave the network, responsibility of ky will be moved

17

2.1 Distributed hash tables

back to node i1. This mechanism allows the network to work efficiently even
with high rates of nodes churn.

(a) (b)

Figure 2.3: Consistent Hashing: The circle represents the key space, on
which are displayed both peers and resources taken care of. Each node has
the responsibility for all the resources on the network represented clockwise
on the circle until the next peer. When a peer joins the network (the one
with green arrow), as depicted in (b), it takes control of resources handled
by the peer with blue arrow. Other peers are not involved in the process (red
arrow). Therefore in a network with K resources and n peers, upon joining
or leaving of a node, an average of K/n resources need to be relocated.

2.1.2 Overlay network

Another key aspect of distributed hash tables is the overlay network, that is
to say how the nodes connect to each other and have knowledge of network
topology at application level over the lower level network (typically the IP

18

2.2 Kademlia

network). To correctly track a node that is responsible for key k, a node i1
must either be itself the node responsible for k or have a link to a node i2
closer (by definition of the function δ) to the key k. So, using a technique
called key-based routing, it is possible to correctly reach the node responsible
for k by forwarding, in a greedy9 manner (which does not always provide an
optimal solution but surely a correct one), the message to the closest node
to the key k.
Other than ensuring the correctness of routing through the network, a

trade-off between nodes degree and route length is to be considered. An high
nodes degree means that each node know a lot of neighbors, thus requiring
a lot of maintenance overhead (closely related to nodes churn). The other
side of the medal is that knowing a lot of neighbors requires less hops to get
to the node responsible for a key, viceversa if a small number of neighbors
is known, a large number of hops will be required on average. The most
common implementations let the nodes store reference to O(log n) nodes
in a n nodes network, thus requiring an average of O(log n) hops, even if
this choice proved not to be optimal considering the two aforementioned
parameters but allow for more flexibility in terms of neighborhood choice.

2.2 Kademlia

Now it will be presented Kademlia distributed hash table protocol, as de-
scribed in [1], on which the Kad network relies, depicting the key features
that make Kademlia more suitable for the deployment of a file sharing net-
work, related to other DHT designs. Citing the original document:

Kademlia takes the basic approach of many DHTs. Keys are
opaque, 160-bit quantities (e.g. the SHA-1 hash of some larger
data). Participating computer each have a node ID in the 160-bit
key space. <key,value> pairs are stored on nodes with IDs “close”

9Algorithms that follow the greedy paradigm at each stage make the locally optimal
choice, but this does not guarantee that the global solution will be optimal.

19

2.2 Kademlia

Figure 2.4: Routing in a DHT: Approaching a target key. A searching peer
recursively looks for closer nodes to the target that, thanks to routing table
structure, will have a better knowledge of nodes close to them. Not all the
closer peers will join the procedure, it depends upon routing tables of the
peers contacted.

to the key for some notion of closeness. Finally, a node-ID-based
routing algorithm lets anyone efficiently locate servers near any
given target key.

Distance function

Kademlia best intuition is to use a XOR metric to compute the distance
function δ between two identifiers in the key space. The distance between
two identifiers x and y, δ(x, y) is defined as δ(x, y) = x ⊕ y. We note that
this operations shows three interesting properties:

20

2.2 Kademlia

• δ(x, x) = 0

• Symmetry: δ(x, y) = δ(y, x)

• Triangular property: δ(x, y) + δ(y, z) ≥ δ(x, z)

Differently from Chord10, Kademlia exploits the symmetry of the distance
function to let the nodes learn useful routing information from queries they
receive. Symmteric routing tables also allow to send a query to any node
within an interval, not requiring to contact a precise node that stores the
needed value. Moreover, Kademlia uses a single routing algorithm, called
lookup to locate nodes near any ID. XOR metric exhibits another useful
property: it is unidirectional.

• ∀ keys k1, ∆ ≥ 0, there is exactly one key k2 such that δ(k1, k2) = ∆

Because of this feature all lookups towards a key converge along the same
path, regardless of the originating node.

Identifiers and Routing tables

Each node is assigned a 160-bit opaque ID. Nodes are seen as leaves in a
binary tree, and the tree is divided in 160 successively lower subtrees not
containing the node, with a progressively longer prefix in common with the
node.

Ex. If our key space was 4-bit long, a node 0011 will have its
tree divided in 4 subtrees: the first one, with prefix 1 representing
the other half of the network not containing 0011 ; a second one,
with prefix 01, sharing the first bit with 0011 thus being closer
and containing half of the nodes of the first subtree (1/4); the
third one has prefix 000, containing 1/8 of the nodes; and the

10Chord is another popular protocol for distributed hash table, which models a ring
network topology, with nodes referencing successor nodes, thus being asymmetric.

21

2.2 Kademlia

last one 0010 containing just one node. Of course nodes with
some prefixes may not be connected to the network, so any of the
subtrees could be empty, with a major probability of lower trees.

Figure 2.5: Routing table for a node with ID 00..00. Blue squares (leaves)
are buckets containing nodes (k-buckets), while grey squares form subtrees
that can split (up to the 160th level). Therefore a node with time has a
deeper knowledge of its neighborhood.

Kademlia ensures that each of the subtrees contains at least one node, allow-
ing the lookup process to locate nodes by IDs to work correctly. Each of the
subtrees in a node’s tree, according to the distance function defined above,
keeps nodes of distance between 2i and 2i+1, where i is subtree’s level, from
the node itself.
The tree is called routing table and the subtrees, each containing not just a
node but a maximum of k nodes, are called k-buckets. Each k-bucket is saved
as a list of nodes ordered chronologically, while each of the nodes’ reference
contains the IP address, UDP port and of course the node ID.
k is a parameter chose such that any given k nodes are unlikely to fail within
an hour. Kademlia uses a mechanism to update the k-buckets whenever a
node receives any message from another node. If a new contact is received
and the k-bucket it belongs is not full the contact is inserted. Else, if the

22

2.2 Kademlia

k-bucket is full, the node will ping the least-recently seen contact in the k-
bucket, in order to decide whether to discard the new contact or the old one,
if it does not reply.
This mechanism that favors older contacts is used on the assumption, based
on studies found on the Gnutella network (more details in [1]), that older
nodes are more likely to stay connected longer. Moreover, it provides a re-
sistance to DoS attacks, as malicious entities cannot flush a node’s k-bucket
so easily with bogus nodes.

Protocol

Kademlia original document defines four RPCs11 to enable communication
between peers: PING, STORE, FIND_NODE and FIND_VALUE.
PING is used to probe if a node is connected, sent directly to the node en-
quired, which is required to respond. STORE is used to store on a node
key-value pair for later retrieval. FIND_NODE is used to locate nodes near
a specific 160-bit ID, as the receiving node will respond sending a list of
the k closest nodes to the requested ID, with references containing the IP
address, UDP port and node ID, so that the requesting node can use them
in its routing table. FIND_VALUE behaves similarly, but if the receiving
node has previously received a STORE RPC for the keyword requested, it
will respond with the stored value.
A simple challenge-response mechanism to prevent address forgery is also im-
plemented in all the RPCs, in fact, RPCs must contain a random ID which
will be echoed by the replying node.
The lookup procedure, used to locate nodes close to an ID in the network,
relies on the aforementioned RPCs. The algorithm exploits concurrency by
defining an α parameter that is the number of nodes initially chosen to send
multiple FIND_NODE requests at-once, instead of sending just one and
waiting for the response. The concurrency provides some robustness to the

11Remote Procedure Call: activation of a subroutine or procedure by a program, where
the activating computer is different from the one running the procedure.

23

2.2 Kademlia

algorithm in case of stale nodes and faster lookups. Once an answer is re-
ceived, a new request is sent to the α closest node to the target ID, which
hopefully should be nodes received from previous RPC, as, according to rout-
ing table maintenance policies, nodes should have a good knowledge of their
neighborhood. The lookup terminates as soon as the querying node receives
responses from the k closest contacts it has seen. Lookup is used to imple-

(a)

(b)

Figure 2.6: Simplified Lookup procedure: the requesting peer asks to contacts
close to the target for closer nodes. They reply with the nodes and requesting
peer will recursively approach the target.

ment most operations such as store and retrieval of a value: the algorithm
converges recursively towards the target ID, where nodes with minimal dis-
tance from the target are responsible for holding the value of a certain key.
When the k closest nodes to a target are known, STORE or FIND_VALUE
RPCs are used.
In the case of storing a value, in order to limit the stale index information,
a publication of a key-vaue pair expires after 24 hours, and a republishing is

24

2.2 Kademlia

needed.
When performing a value lookup, a caching mechanism was implemented
to help managing more popular keys: whenever sending FIND_VALUE re-
quests, the requester would be responsible of storing the value found in the
closest node to the target that didn’t provide back the value. By the way, to
prevent “over-caching”, expiration time is set exponentially inversely propor-
tional to the number of nodes between the current node and the node whose
ID is closest to the key ID. Even if messages exchanged with other nodes re-
fresh the routing table, there is a risk of stale nodes in the k-buckets, which
can lead to lookup failures, so a node is expected to do some routing table
maintenance by performing lookups towards buckets not recently refreshed.
A node u joining the network must have at least a contact w to start a lookup
procedure towards itself (its own node ID). Then, it should refresh all the
k-buckets further away than its closest neighbor. This way, node u populates
its own routing table but also inserts itself in other nodes routing tables.

25

Chapter 3

Kad network

Kad network was built upon the Kademlia protocol [1], but it shows many
differences from the original document. Furthermore Kad clients provide a
complete protocol, while the document doesn’t explain many of the mecha-
nisms implemented.
In literature there are many documents describing more or less in detail the
inner workings of the Kad network, the most notable is probably René Brun-
ner master thesis [3]. However, we advise the reader to rely for accuracy on
the eMule source code, as it may change over time rendering any documen-
tation obsolete.

3.1 Network basics

Kad network is mostly run by clients connected also to the eDonkey2000
network, so Kad protocol retains some features of ed2k protocol.

Topology

As seen in the previous chapter, the network does not rely on any other
entity other than the peers. Anyway, a connecting peer needs to know at
least another peer to join the network, therefore lists of peers for a first-time

26

3.1 Network basics

bootstrap are available on the web1.
A node has knowledge and exchanges messages with only a really small por-
tion of the network, typically O(log n) in a network of n nodes, and the
contacted nodes vary depending on where the resources requested are lo-
cated (in the keyspace, not physically). In figure 3.2 is shown a peer that
accesses a resource in another part of the network, connecting directly with
nodes from that part using previously known nodes to approach them.

(a) (b)

(c)

Figure 3.1: Lookup iterations: Searching peer sends requests to known
nodes that will reply with closer nodes to the target. Once enough peers in
tolerance zone are known, the process can terminate.

1This poses some security problems, as we should be concerned of who manages those
lists. If we downloaded a list of malicious nodes we could join a Kad fake network without
noticing!

27

3.1 Network basics

Communications

Nodes need to communicate quickly to other nodes, sending short messages
that even if lost once in a while don’t really jeopardize the network function-
ality, therefore UDP datagrams are used to carry those messages: they offer
shorter header, no handshake, congestion or flow control that would cause a
useless overhead. As we have seen concurrency in lookups, as described in
[1], offers some robustness to packet loss.
TCP connections are used only in communications between peers that ex-
change files, as file exchange requires reliable data transfer, congestion and
flow control that TCP provides. These communications work exactly as in
eDonkey, in fact there is no distinction during file exchange with peers known
from Kad or eDonkey network.
Messages over UDP datagrams are sent as Kad packets, with the same

Figure 3.2: Structure of KAD2_REQUEST packet. All UDP sent packets have
a 2-byte header and a payload as big as the rest of the datagram itself.

structure of ed2k/eMule ones. As no connections are established, usually
there is an exchange of UDP datagrams: all response timeouts, packet loss
and stale nodes must be managed at application level, that is to say by the
client.

28

3.1 Network basics

Peers Identification

Peers and resources are both identified by means of a 128-bit ID2 called kad
ID. As mentioned in subsection ??, it is useful to associate peers in the same
key space of resources (exploiting consistent hashing advantages), in order
to exploit consistent hashing advantages. A 128-bit key space lets allocate
up to 2128 different objects, a very large number compared to the number of
peers in the network. So the second reason is that, even choosing a random
ID, the probability of ID collision is negligible. To demonstrate that, we first
calculate the probability that in a group of n users, all the n IDs are different:

p̄(n) = 1×
(

1− 1

2128

)
×
(

1− 2

2128

)
× ...×

(
1− n− 1

2128

)
(3.1)

=
2128 × (2128 − 1)× ...× (2128 − n+ 1)

(2128)n
(3.2)

=
2128!

(2128)n (2128 − n)!
=

n! ·

(
2128

n

)
(2128)n

(3.3)

The event of at least two of the n users having the same ID is complementary
to all n IDs being different:

p(n) = 1− p̄(n) = 1−

n! ·

(
2128

n

)
(2128)n

(3.4)

We find an approximation that is easier to calculate, using 1 − x < e−x

inequality:

p̄(n) =
n−1∏
k=1

(
1− k

2128

)
<

n−1∏
k=1

(
e−k/2128

)
= e−(n(n−1))/(2×2128) (3.5)

We now can calculate an upper bound for p(n), and find a value for a network
with 108 users (which is a relax bound).

p(n) = 1− e−(n(n−1))/(2×2128) (3.6)

(3.7)

2In the original Kademlia document, a 160-bit identifier is proposed.

29

3.2 Joining the network

p(108) < 10−18 (3.8)

Rare, not arranged collisions, do not cause the network to fail much more
than stale nodes do, so, small but greater than zero probabilities are accept-
able. Peers at first launch of the client application randomly choose a kad ID,
that in theory should not be changed across sessions. Studies found that is
not true: some peers change kad ID and most importantly some peers do not
choose randomly the ID, a way to exploit some vulnerabilities of the network.

Resources Identification

As said above, it is useful to have both peers and resources mapped on the
same key space. Even if Kademlia original document proposed a 160-bit
key space, for backward compatibility with eDonkey, a 128-bit identifier was
chosen.
In fact, the most important resource in the Kad network, files, are indexed by
their file hash. Contrary to eDonkey network, no file size is required, but the
file identification on the network relies just on the MD4 hash as described in
subsection 1.2.3, that associates a 128-bit identifier to the file.

3.2 Joining the network

For a peer to join to the network, it needs at least to exchange UDP data-
grams with other peers connected to the Internet. It has to retrieve in some
way at least a peer connected to the Kad network, thus a bootstrap mecha-
nism is implemented.
Nodes known during the session are saved in a particular structure similar
to the one described in the Kademlia original document, called routing table,
which requires maintenance to prevent stale nodes thus ensuring efficiency.
Differently from eDonkey network, there is no discrimination of firewalled
clients looking at the Kad ID and there is no server to check if a TCP port

30

3.2 Joining the network

can receive incoming connections: therefore a Kad client must start firewall
checks on its own and set its state accordingly. However a client should be
able to tell even if incoming UDP messages are blocked, a matter that will
be discussed in-depth later.
As there is no server, firewalled clients that cannot accept incoming TCP
connections need a callback mechanism similar to the eDonkey one. In this
case a peer, called buddy, acts as a server to forward callback requests.

3.2.1 Routing table

The routing table, contained in every node, can be considered the core of
the Kad network, as it manages links between peers across the network, thus
defining the topology. It can be seen as set of contacts that the node has
knowledge of, maintaining it by adding nodes, deleting the stale ones and
keeping a structure that makes it efficient when used to access resources all
over the network.
Contacts are stored by their kad ID, with a type variable (see table 3.1 for
types, as defined in eMule) that evaluates their reliability based on how long
they are known. eMule manages the routing table through three classes:

Table 3.1: Kad contact types

Type Description

0 Contact active more than 2 hours

1 Contact active more than 1 hour, less than 2

2 Contact active less than 1 hour

3 Contact was just created

4 Contact is to be deleted

RoutingZone, RoutingBin and Contact. The routing table is made of dif-
ferent RoutingZones, which correspond to nodes in the tree and the trees
leaves are also RoutingZones containing a RoutingBin each.
RoutingBin corresponds to k-buckets as described in section 2.2, where k =

31

3.2 Joining the network

10, where contacts are stored in m_listEntries which keeps contacts sorted
by time they were last seen: older contacts are on the top, while newer ones
or recently contacted are on the bottom. Contacts on the top are periodically
contacted to determine if they are still active or they should be removed from
the list. The routing table is a full binary tree: all nodes that are not leaves
have two children; but it isn’t a perfect binary tree with all leaves at the
same depth. RoutingZone class represents a node in the routing table and
it provides procedures3 to maintain the routing table.
Contacts are inserted in the routing table according to their XOR distance
from the node own Kad ID, contrary to Kademlia document that stores nodes
by their Kad ID, thus simplyfing the implementation of source code and the
illustration of the routing table. Nodes are inserted in the routing table
starting from a routing table with only one routing zone (k-bucket) that is
splitted respecting some constraints, in fact not all routing zones can split.

Listing 3.1: eMule CanSplit() method in RoutingZone

bool CRoutingZone::CanSplit() const

{

// Max levels allowed.

if (m_uLevel >= 127)

return false;

// Check if this zone is allowed to split.

if ((m_uZoneIndex < KK || m_uLevel < KBASE) && m_pBin−>GetSize

() == K)

return true;

return false;

}

As it is shown in listing 3.1 a routing zone can’t split if we reached the last
possible level (number 127, the 128th); also current routing zone must be a

3We should call them more appropriately methods, as eMule is written in C++.

32

3.2 Joining the network

leaf containing already k contacts, thus really requiring splitting. Last re-
quirements are more interesting: all levels less or equal than 4 (so, till the
5th level) can split to form a perfect binary tree. The other requirement is
more subtle: a zone on levels 5− 127 can split only if their position from the
right hand of the tree on the level is less than 5 (only the first 5, from 0 to
4 allowed). To make things more clear we give an illustrated version of the
routing table as it should be when it is completely filled with contacts. It is
straightforward to see that a node with its routing table completely filled has
a better view of his neighborhood than other parts of the network. Besides,
we can calculate that the maximum number of contacts stored in the routing
table is theoretically 6360, thus not requiring large amounts of memory and
providing an efficient solution for the network needs.
However routing table requires maintenance to refresh stale nodes, eMule
presents two different methods: OnSmallTimer(), that is run frequently and
concurrently on more routing zones, while OnBigTimer() is run less fre-
quently on just a routing zone at the time.
OnSmallTimer() is run, more often on k-buckets near own node’s kad ID
and it checks if contacts in the bucket are still active sending HELLO pack-
ets. OnBigTimer() is run every 10 seconds and its objective is to populate
the routing table with new contacts, and it can run only on almost empty
k-buckets or routing zones with k-buckets that can split (respecting the con-
straints defined above).

3.2.2 Bootstrap

To join the network properly, a node must populate its routing table by in-
serting peers and veryfing they are not stale, so that by contacting them,
other peers can also insert the node in their routing tables.
Bootstrapping implies getting a list of nodes from somewhere outside the
Kad network (most preferable from some trusted website) and use the list
to populate the routing table. eMule reads from nodes.dat files, contain-
ing contacts, which comes in two flavors. Normal nodes.dat files have just

33

3.2 Joining the network

around 50 contacts which are directly inserted in the routing table, so if it
was a file distributed to many clients for bootstrapping, it would lead quickly
to DDoS because many nodes would rely on those 50 nodes for all the initial
lookup procedures. A Bootstrap nodes.dat file instead contains a list of ap-
proximately 500-1000 contacts, that are not directly inserted in the routing
table, but in a bootstrapList used to populate the routing table. Not all
the nodes are chosen for the bootstrap, but just the 50 closest to the node’s
ID, therefore providing some randomness between different users, useful if
many clients use the same file.
Nodes are saved at the end of a session for later use in a nodes.dat file
where are stored maximum 200 contacts chosen from the routing zone using
GetBoostrapContacts() method from RoutingZone class. The methods re-
covers contacts starting from the top routing zone and going down max 5
levels down the tree.

3.2.3 Firewall check

Joining the network, a node needs to find out if it is able to accept in-
coming TCP connection, and if it can exchange UDP datagrams with other
peers. The initial checkup is started upon connection to the network and
then repeated periodically every hour. A node requesting a firewall check
sends a KADEMLIA_FIREWALLED2_REQ packets to known nodes, waiting for
four KADEMLIA_FIREWALLED_RES packets, containing the IP address of the
requesting client: a first check based on matching the received IP address
and the one known, determines if the client is behind NAT4. Contacted nodes
will try to estabilish a test TCP connection with the requesting node. If the
connection is successful, a KADEMLIA_FIREWALLED_ACK packet is sent, and
after receiving two of these packets, the requesting node sets its state not
firewalled.

4Network Address Translation: a technique that modifies IP addresses and ports in IP
packets transiting through a router.

34

3.2 Joining the network

(a) (b)

(c)

Figure 3.3: Firewall check mechanism: UDP datagrams are exchanged be-
tween firewall-checked peer (Peer A) and the peer checking for firewall (Peer
B), then checking peer tries to estabilish a TCP Connection. If it fails, as
in (a), Peer A knows it is firewalled. If it succeeds as in (b) and (c), an
acknowledge packet is sent through UDP datagram or the estabilished TCP
connection, it depends upon clients’ versions.

3.2.4 FindBuddy (Callback)

A node that did a firewall check and resulted in a firewalled status, thus not
being able to accept incoming TCP connections, needs a way to be contacted
by other nodes that want to establish a connection. As there is no server as in
eDonkey network, the Callback mechanism relies on buddies: each firewalled
or non-firewalled node is allowed one buddy, acting as a client (firewalled
nodes) or a server (non-firewalled nodes).
Finding a buddy consists in sending 3 KADEMLIA_FINDBUDDY_REQ packets

35

3.3 Content management

to the nearest peers, which will respond with a KADEMLIA_FINDBUDDY_RES

packet if they are not firewalled. Once the buddy is found, when a node wants
to establish a TCP connection with the firewalled client, it will send a callback
request to the peer, which will in turn forward it to the firewalled client. The
firewalled client will then establish the connection with the requesting client,
with no further interaction with the buddy.

Figure 3.4: Callback Mechanism in Kad: Firewalled Peer can’t receive incom-
ing TCP connections, therefore relies on already estabilished TCP connection
with its buddy to receive forwarded callback request (in red) and then calls
back the requesting peer (Peer C).

3.3 Content management

Being Kad a file sharing peer-to-peer network, the main resource exchanged
across peers are files. But, in order to be able to look for a file, clients should
be able to find first which file they are looking for, and then they need to
locate it in order to retrieve it. As files in the Kad network (as in eDonkey)
can be downloaded from multiple sources at once, they are indexed by their
content, to be sure that data we are downloading from different peers belongs
to the same file.
A node searching for some content first starts a keyword search (e.g. “ubuntu

36

3.3 Content management

Figure 3.5: A requesting peer (red node) performs a keyword search on a
target in the key space (an hash of a search string). Then, chosen a file to
download, it performs a source search on another target (blue node, hash
of the file) and finally it contacts sources to download the content (yellow
node). Notice that sources, even if they are connected to the Kad network,
are not required to, as file exchange is not a Kad related activity.

iso”), which will return a list of files related to keywords5 searched. A list of
files is then returned from peers responsible for the keywords, with different
128-bit kad ID that identify them. Chosen a file to download, a source search
is performed and nodes responsible for the indexing of the file will return a
list of peers that serve the file. At last, the node can contact directly those
peers to download content.
A file has a 128-bit kad ID and is also referenced by a ed2k ID that is the
same, so files are referenced by the same identifier in both networks: this
allows to search for some keyword on the Kad network and then find sources

5For now we can consider the keyword a string of alphanumerical characters.

37

3.3 Content management

on both networks, as long as the file was published in both networks. Vicev-
ersa, it is possible to do a keyword search against an ed2k server and lately
search for sources on Kad network.
So the resources shared on the Kad network are: file references found with
keyword searches, and sources found with source searches. As in eDonkey,
peers are allowed to “comment” files, so in Kad too a third resource is rep-
resented by notes, found with note searches. In order to retrieve all those
resources someone must have indexed them on the nodes before: nodes shar-
ing those resources publish them onto responsible peers, so there are keyword,
file and note publications.

3.3.1 Lookup

Search, publication and even routing zone population tasks all share a com-
mon procedure that locates in the network nodes responsible for resources:
the lookup.
Lookup is a procedure that iteratively locates closer nodes to a target kad
ID: closer nodes have a better chance of being responsible for resources in-
dexed by the target ID, thus through the lookup we should get a list of nodes
close to the resource we want to ask, so that we may then perform search ac-
tions or publishing actions on those nodes. We may also just want to locate
some nodes somewhere in the network, as done in routing table maintenance
tasks: in that case only the lookup phase is performed, and nodes added to
the routing table.
Lookup works similarly to the protocol for FIND_NODE and FIND_VALUE
RPCs described in section 2.2, it is an iterative process in the sense that our
node iteratively approaches the target asking for closer nodes to the target
and contacting the closest at each step. A recursive way, where nodes would
be in charge of forwarding the request through closer nodes (in their routing
tables), would be more efficient in terms of message overhead and time, but
less reliable as the node originating the request has no mean to control the

38

3.3 Content management

process, and the reliability of the process should be managed by all nodes
taking part. Lookup terminates when closest nodes do not return any closer

(a) Recursive lookup forwards packets
through nodes towards the target. It is
not reliable as responsibility for lookup
process relies on all the nodes, if one node
doesn’t forward the message, the process
fails.

(b) Iterative lookup is handled by the
requesting peer, responsible for the whole
process. It requests information to closer
nodes but mantains control of the system.
It is robust to node failures.

node to the target. Kademlia original document [1] proposed an α parameter
to exploit concurrency in the lookup process: sending requests to more nodes
at once can protect from stale nodes and reduce considerably lookup time.
The document proposed to manage the lookup as α independent threads,
but eMule uses a smarter approach, defined loose concurrent node lookup in
[3]: using a single thread, lookup starts choosing 50 possible contacts with
minimum distance from the target and sending the request to α closest con-
tacts, and once received the first reply, sends a new request to the new closest
contacts, thus maintaing α active requests at all time.

3.3.2 Search

As we said, it is possible to locate different resources on the network using
keyword search, source search and note search.

39

3.3 Content management

Keyword search

A keyword search is more exactly a search for files published on the network
that are referred to some string that is object of the search. As all the
resources we look for in the network must be mapped on the 128-bit key
space, keywords follow this rule too: the target of the lookup is the MD4
hash of the longest word in the search string.

Ex. If we search string “sigur ros hoppipolla”, eMule starts a
lookup with target D9902A5F0B69C73E2BA3E767BE20C95F, that
is MD4 hash of “hoppipolla” word.

Once the lookup terminates, we have a number of nodes close to the target
ID, those nodes are probably responsible for the keyword and a KADEMLIA2-

_SEARCH_KEY_REQ packet is sent to them. This packet not only contains the
keyword, but all the search string and eventually parameters to filter search.
The receiving peer, if it is responsible for some content published by a third
party, will look for the keyword in its indexed contents, and then reply with a
KADEMLIA2_SEARCH_RES packet, which is generic for all kinds of searches, the
differences reside in the TagList contained in the packet, a list of tags de-
scribing each file result, complete with information like the kad ID, filename,
file type, size and other more format specific tags (such as artist or album
for music). The list of tags is processed by the instance of CSearch that
manages the search, through ProcessResultKeyword() method. Moreover,
as the request and response packets contain kad ID referring to the search,
it is possible to launch more concurrent searches, while in eDonkey network
only a search is allowed at once towards a server.

Source search

Searching for sources for a file is more straightforward, as the target of the
search is the file hash of the file. Hypotetically speaking, we could calculate

40

3.3 Content management

the MD4 hash of a file and try to look for the same file on the Kad network
just by running a source search targeting the 128-bit hash, this is a stand-
alone process, independent from keyword search.
Source search will start with a lookup and, exactly as keyword search, when
a list of nodes that should be responsible for the file sources is known, the
requesting client will send KADEMLIA2_SEARCH_SOURCE_REQ containing the
file size (which is returned during keyword search in the tag list). As ex-
pected, the receiving nodes will respond, if responsible for the file asked,
with KADEMLIA2_SEARCH_RES containing a tag list that will be processed by
the method ProcessResultFile of the relative CSearch instance, and re-
sults added to the download queue for the file (as source search typically is
performed during file download).

Note search

As for source search, note search is targeted to a specific file identified by its
MD4 hash in the same way. Once the lookup is done KADEMLIA2_SEARCH-

_NOTES_REQ packet (containing the file size as KADEMLIA2_SEARCH_SOURCE-
_REQ) is sent to close nodes, which will respond with KADEMLIA2_SEARCH_RES

packet, where the CSearch instance that takes care of the search will process
the results through the method ProcessResultNotes. The tag list in this
case is a list of comments and ratings for the file.

A search terminates when enough results are retrieved or it goes on for
too long, according to constants defined for each kind of search: keyword
search stops after 300 results (SEARCHKEYWORD_TOTAL), source search stops
after 300 results too (SEARCHFILE_TOTAL) and notes search stops after just 50
results (SEARCHNOTES_TOTAL) while all kinds of search have a maximum du-
ration of 45 seconds (SEARCHKEYWORD_LIFETIME and other constants named
accordingly).

41

3.3 Content management

3.3.3 Publishing

In order to index resources in the nodes for later retrieval, nodes that want to
share files and related resources must publish them. In the eDonkey network,
a client joining the network sends an OfferFiles packet to the server6, with
all the information needed to retrieve the file. The server itself will index
both the keywords for the files shared and the source for the referenced file,
it can also be aware of when the source will disappear in case the connection
with the offering client drops.
In Kad, as there is no server, the publishing scheme is a bit more sophisti-
cated. A Kad client joining the network must publish the keywords for its
own files and publish itself as a source in two different processes. As if it was
not enough, it should take care of grouping references to the same keyword
as to avoid sending many messages to the same nodes for the same keyword.

Ex. If a client wants to share three different files “kernel_linux.tgz”,
“slackware-linux.iso” and “linux_for_dummies.pdf” it must first
find out all the keywords that it will publish. In this case it will
publish references for keywords: “kernel”, “slackware”, “dummies”,
etc. as keywords with a single file entry, and then the “linux” key-
word will be published with references to the three different files.
Notice that a single file may be referenced in many different key-
word publishing.

As it is possible to search for notes, it is also possible, as an owner of a
file, to publish comments. Publishing of resources does not last forever:
as written in the original Kademlia document contents need to be repub-
lished because publishing expires. eMule source code accordingly to the
document set expiration for keywords and notes after 24 hours (see constants
KADEMLIAREPUBLISHTIMEK and KADEMLIAREPUBLISHTIMES), while source pub-
lishing expires just after 5 hours (see constant KADEMLIAREPUBLISHTIMEN).

6To be more precise, if the client shares more than 150 files, a number of different
OfferFiles packets is sent, delayed to avoid overloading the server.

42

3.3 Content management

eMule also defines how many resources can be published before rejecting pub-

Figure 3.6: Publishing: when a file is to be published by a Kad user, he first
hashes both keywords and the file itself, and then proceeds to separately
publish those resources (all the hashed keywords related to the file) and the
hashed file on the network, storing references on a set of peers that will then
be responsible for the resources.

lishing requests: a client can index up to 50000 keyword (KADEMLIAMAXINDEX)
and for each file published a maximum of 1000 sources (KADEMLIAMAXSOUCE-
PERFILE) and 150 notes (KADEMLIAMAXNOTESPERFILE). Publishing can be
seen as a kind of search, where the final action is a store request, different in
case we are publishing a keyword (KADEMLIA2_PUBLISH_KEY_REQ), a source
(KADEMLIA2_PUBLISH_SOURCE_REQ) or a note (KADEMLIA2_PUBLISH_NOTES-
_REQ). In each case a lookup is performed and then, once a list of nodes close
to the target are known, requests will be sent. Nodes receiving the requests
will first check if they are entitled to be responsible for such resources, as only
contacts in the tolerance zone can control a resource. If so, they check other
contraints and will eventually index the requested content, replying with a
KADEMLIA2_PUBLISH_RES packet containing the load of the node for the kind
of resource that needs to be indexed. Load is a value between 0 (empty)
and 100 (full, request rejected) calculated as shown in table 3.2 The pub-
lishing process terminates when enough nodes have successfully stored our
resources, that is to say replying with a load < 100. The number of nodes
is 10 for keywords, notes and files (as defined by constants SEARCHSTORE-

43

3.4 Advanced features

Table 3.2: Load calculation

Resource type Equation Max stored

Keyword uIndexTotal
KADEMLIAMAXINDEX ∗ 100 50000

Source uSize
KADEMLIAMAXSOUCEPERFILE ∗ 100 1000

Note uSize
KADEMLIAMAXNOTESPERFILE ∗ 100 150

KEYWORD_TOTAL, SEARCHSTORENOTES_TOTAL and SEARCHSTOREFILE_TOTAL).
Furthermore, if the publishing process takes to long, it is terminated after 140
seconds for keyword and source publishing (SEARCHSTOREKEYWORD_LIFETIME
and SEARCHSTOREFILE_LIFETIME), while notes terminate after 100 seconds
(SEARCHSTORENOTES_LIFETIME).

3.4 Advanced features

This section briefly describes protocol obfuscation for Kad traffic and 64-bit
support.

3.4.1 Protocol obfuscation

Kad network supports encryption of packets exchanged between clients in
order to obfuscate messages to prevent filtering by routers and protect privacy
of users. Obfuscation works in different ways in TCP connections and UDP
datagrams exchange. Peers have a 32-bit KadUDPKey that they do exchange
following Diffie-Hellman7 key exchange protocol and they use to communicate
between them through UDP datagrams.

7http://www.lsi.upc.edu/ diaz/diffie.hellman.pdf

44

3.4 Advanced features

3.4.2 64-bit extension support

Original eDonkey network supported files sized up to 4 GB (232 bytes).
In eMule was later added 64-bit file-size support, and obviously Kad net-
work supports 64-bit file-size too. Only KADEMLIA2_SEARCH_SOURCE_REQ and
KADEMLIA2_SEARCH_RES packets contain file size: in the first case as a packet
field 64-bit long, and in the second case as a tag.

45

Chapter 4

Kad Implementation

In the previous chapter we presented the Kad network, going deeper ana-
lyzing eMule implementation1. As eMule was developed in C++, tightly
integrated with the user interface, it required us practically to write a client
from scratch, in fact our software needs to be written in Java to be compatible
with PariPari structure. Another implementation of a eDonkey/Kad client
written in Java exists, it is called jMule but due to license incompatibilities
with our software, the possibility of a merge or collaboration has been so far
considered.
Even if our client is far from being complete, it is quite reliable and performs
good especially on the eDonkey network. Kad support has been developed
first as a stand-alone client, that has been later integrated in PariMulo merg-
ing some classes, while eMule maintains a separate folder with Kademlia
source code. A number of classes are used both to support compatibility
with eDonkey and Kad networks, while only a few are network-specific, and
some classes are used to interface with PariPari. In table 4.1 there is a list
of Java classes fundamental for supporting connectivity to the Kad network,
while table 4.2 lists and describes briefly other classes used for Kad, but not
strictly Kad-related as they are used for eDonkey network support too.
In this chapter we describe the inner workings of PariMulo plug-in for what

1Which, to a certain extent, coincides with aMule implementation.

46

Table 4.1: Kad-only PariMulo classes

Class Description

Bootstrap Manages bootstrapping process when joining the net-
work.

ClientList Manages a list of peers, used for FindBuddy mechanism.

Int128 Takes care of all address related stuff, calculate distances,
does conversions.

Kad Starts the Kad network support in PariMulo.

KadContact Represents a single node in the Kad network.

KadIndexed Stores contents published by other peers.

KadPrefs Contains static functions to set Kad firewall state.

KadSearch Manages all kinds of search in Kad network.

KadUDPKey Represents key used for UDP datagrams obfuscation.

Lookup Used for KadSearch, handles lookup mechanism.

RoutingBin Represents a leave in routing table, contains a list of Kad-
Contacts.

RoutingZone Represents a node in routing table, keeps static reference
to tree’s root.

it concerns Kad network support. As it was described in the previous chapter
there are many features to implement, and we tried our best to achieve a ra-
tional design exploiting object-oriented nature of Java and its advanced func-
tionalities (e.g concurrency, data structures, networking framework, etc.).
Looking at table 4.1 and 4.2 we may divide classes into groups. First, classes
that manage connectivity to the network and defines the message proto-
col on top of UDP (Packets, PacketsUDP, Tags, etc.). Then, there are
classes that build, manage and maintain the overlay network over the IP
network (RoutingZone, RoutingBin), these classes are crucial and even lit-
tle bugs could spread and modify the behavior of all the network. A third
group is represented by classes used for lookup procedure and classes that use

47

4.1 Communications

lookup, that is to say classes that implement search and publishing (Lookup,
KadSearch, etc.). Lastly, there are classes that support indexing of files pub-
lished by other nodes (KadIndexed), FindBuddy mechanism and protocol
obfuscation for UDP communications.

Table 4.2: PariMulo classes used for Kad-related activities.

Class Description

Config PariMulo configuration, contains some Kad parameters.

Connection Handles TCP connections to nodes and peers.

Download Manages the download of a file.

DownloadManager Manages all the downloads.

DownloadSession Manages the download of a file from a single peer.

Hashes Represents various hash functions (MD4, MD5, SHA-1).

Packets Handles packets decoding both for TCP and UDP.

PacketsUDP Contains all classes representing UDP packets.

Peer Represents a peer that can serve us a file.

RC4Engine Used for protocol obfuscation, handles encryption / de-
cryption.

Tags Encodes and decodes tags in search results and other
packets.

TaskManager Manages tasks that are performed periodically.

UDPListener Listens to incoming UDP traffic and provides methods
to send packets.

Utils Contains a set of methods used by various classes (e.g.
conversion methods).

4.1 Communications

Communications between peers in Kad are sent as kad packets over UDP
datagrams. UDPListener class is in charge of sending and receiving UDP

48

4.1 Communications

datagrams, thus hiding the management of the socket, buffers and the thread,
with upper level classes working directly on kad packets.
Packets is a fundamental class to decode kad packets from UDP datagrams,
building objects that can be easily manipulated. It also decodes compressed
packets and obfuscated packets (when protocol compression and obfuscation
are used). PacketsUDP actually contains the definition of all the packets,
including eDonkey and eMule packets, with methods to encode and decode
them from raw bytes.

4.1.1 UDPListener

The class starts a thread (more correctly a PariPari class that wraps a
Thread, called PariPariThread), that handles a socket bound to an UDP
port (Config.udpPort). This class manages generic UDP datagrams, divid-
ing eDonkey/eMule/Kad packets if more packets are contained in a single
datagram (by matching the same 2 byte header multiple times, as only same
kind packets are sent in the same datagram), and providing static send meth-
ods that are called directly while for reception a more subtle mechanism is
used.
The most important part of the class resides in the parseDatagram method
that illustrates, as shown in listing 4.1, how received datagrams are man-
aged, first decoded through PacketUDP.decodePacket and then if packet
was decoded successfully, its onReceive method is called and according to
the return boolean, the decoded packet is added to receivedPackets list
for later use. Returning true should be used carefully, if a large number of
packets is received and never discarded flushing the list, could lead to a great
waste of memory.

Listing 4.1: Portion of parseDatagram() in UDPListener

packet = PacketUDP.decodePacket(Utils.arrayCopy(buffer, previous, length −
previous), ip, port, false);

if (packet != null) { // otherwise it is seriously malformed

49

4.1 Communications

PPLog.printIncoming("Received " + packet.getClass().getSimpleName() +

" (0x" + Utils.byteToHex(buffer[previous + 1]) + ")", packet, buffer, ip

.getHostAddress() + ":" + port);

Mulo.udpBytesIn += packet.size + PacketUDP.HEADER_SIZE;

Mulo.udpPacketsIn++;

if (!packet.onReceive()) { // if it’s not elaborated on the fly...

receivedPackets.add(packet); // it is put on the list of unprocessed

packets

}

}

4.1.2 Packets

Packet decoding and encoding, for what it concerns UDP communications, is
managed by Packets.java and PacketsUDP.java, while PacketsTCP.java
is used to define packets exchanged over TCP streams, therefore it doesn’t
concern Kad.

Packets.java

Packets.java contains the abstract class Packet which is extended in the
same file by classes PacketUDP and PacketTCP where decodePacket()method
takes the array of bytes and is asked to call the right constructor choosing
from all the classes that extend PacketUDP in PacketsUDP.java.

Listing 4.2: Portion of decodePacket() from PacketUDP in Packets.java

final static PacketUDP decodePacket(byte[] originalPacket, InetAddress ip, int port,

boolean calledByObfuscation) {

if (originalPacket == null || originalPacket.length == 0) {

return null;

}

PacketUDP decodedPacket;

50

4.1 Communications

boolean compressed = false;

if (originalPacket.length >= HEADER_SIZE) { // long enough to get

protocol and type

// get the right subclass constructor for this protocol & type

Constructor<?> constructor; // = null;

byte[] packet = unobfuscatePacket(originalPacket, ip);

if (packet[0] == Protocol.COMPRESSED.id || packet[0] ==

Protocol.KAD_COMPRESSED.id) {

packet = unpackPacket(packet);

compressed = true;

}

if (packet[0] == Protocol.ED2K.id) {

constructor = ed2kTypeConstructors[packet[1] & 0xFF];

} else if (packet[0] == Protocol.EMULE.id) {

constructor = eMuleTypeConstructors[packet[1] & 0xFF];

} else if (packet[0] == Protocol.KAD.id) {

KadContact.setLastContact();

constructor = kadTypeConstructors[packet[1] & 0xFF];

} else {

// No constructor found <− unreachable point...

theoretically

As it is shown in listing 4.2, an array of bytes representing an eDonkey /
eMule / Kad packet received as an UDP datagram first checks if it can be a
valid packet (being non-null and sufficient length), then unobfuscatePacket()
method tries to decode the packet if it is obfuscated (encrypted), returning in
both cases an array of bytes containing the plaintext message. Now, as we are
dealing with the array of bytes packet containing the plaintext message, we
can examine the header’s first byte (packet[0]) to determine if the packet is
compressed, if so unpackPacket() is called, which returns the uncompressed
array of bytes and examining again the first byte it is chosen whether the
packet concerns eDonkey, eMule or Kad communications.
Finally, the right constructor to build the object representing the packet type

51

4.1 Communications

that extends PacketUDP can be chosen examining the header’s second (and
last) byte (packet[1]) and if a constructor is found, it will be called using
Java reflection package.

PacketsUDP.java

PacketsUDP.java contains the definition of all the UDP packets, including
eDonkey / eMule ones, with methods for decoding, encoding, printing and
creating them. As an example we show a single packet type PacketUDPKad-
BootstrapRequest in listing 4.3. There are a list of instance variables that
define the contect of this type of packet: it contains an IP address, a Kad
ID, two ports, etc.
There are two constructors: the one accepting as parameters variables that
will be set as instance variables (PacketUDPKadBootstrapRequest(Int128
id, ..., byte version) for instance) is used to create an outgoing packet.
A packet created with this method can be sent using UDPListener send()
method, which will in turn call the class toBytes() method that has the duty
of creating an array of bytes with the content of the packet in the order de-
scribed by the protocol.
The second constructor (PacketUDPKadBootstrapRequest(byte[] packet,

..., int port)) is used to decode incoming packets as it reads directly from
the array of bytes the instance variables in the order described by the proto-
col, using superclass Packet read methods.
The onReceive() method is useful to execute some code upon receiving a
specific packet type: it is called just after the creation of the packet from
UDPListener and if the method returns false, the packet is stored for later
use. The common toString() method offers instead a nice way of printing the
packet contents: it should be used for logging and debugging purposes.

Listing 4.3: Class PacketUDPKadBootstrapRequest in PacketsUDP.java

class PacketUDPKadBootstrapRequest extends PacketUDP {

InetAddress ip;

Int128 clientID;

52

4.1 Communications

int UDPPort;

int TCPPort;

byte kadVersion;

PacketUDPKadBootstrapRequest(byte[] packet, InetAddress ip, int port) {

super(KadType.KAD_BOOTSTRAP_REQUEST);

this.clientID = this.readInt128(packet);

this.ip = this.readIPAddress(packet);

this.UDPPort = this.readPort(packet);

this.TCPPort = this.readPort(packet);

this.kadVersion = this.readByte(packet);

}

PacketUDPKadBootstrapRequest(Int128 id, InetAddress address, int

udpPort, int tcpPort, byte version) {

super(KadType.KAD_BOOTSTRAP_REQUEST);

this.clientID = id;

this.kadVersion = version;

this.ip = address;

this.UDPPort = udpPort;

this.TCPPort = tcpPort;

}

@Override

boolean onReceive() {

return false;

}

@Override

ByteBuffer toBytes() {

ByteBuffer buffer = super.toBytes();

buffer.put(this.clientID.toBytes());

buffer.put(Utils.arrayReverse(this.ip.getAddress()));

53

4.2 Building the network

buffer.putShort((short) this.UDPPort);

buffer.putShort((short) this.TCPPort);

buffer.put(this.kadVersion);

return buffer;

}

@Override

public String toString() {

return super.toString() + " | Client ID: " + this.clientID + " | IP:

" + this.ip.getHostAddress() + " | UDP/TCP Port: " + this.

UDPPort + "/" + this.TCPPort + " | Kad Version: " + Utils.

byteToHex(this.kadVersion);

}

}

4.2 Building the network

Kad is an overlay network over the IP network, where each peer knows a
set of other peers selected accurately and put in a convenient structure so
that even with millions of peers connected to the network it works well.
Kad IDs are used to identify peers and resources in the network and the
network itself is based on XOR metric, Int128 is useful to represent IDs
and do necessary calculations. All the peer inserted in the routing table are
stored as KadContact objects (while peers used for file exchange are Peer

objects). Routing table doesn’t exist as a class itself, it is instead made of
many RoutingZone objects (with a static reference to the root of the tree),
representing “nodes” in the Routing table tree, while RoutingBin objects
represent leaves.

54

4.2 Building the network

4.2.1 Kad ID (Int128)

Int128, as the name suggests, can be seen simply as a 128-bit integer, but
Java does not support directly this as a primitive type. The class has a single
instance variable, a BitSet set final, and constructor and methods to handle
easily these objects. Probably the most interesting part of the class is the
constructor, as shown in listing 4.4. Int128 are sent in Kad packets as four
32-bit integer in Little Endian2 format, these movements to store the BitSet
are done just for conveniency so that other operations can be easily written
in Java.

Listing 4.4: Int128 constructor

Int128(byte[] bytes, boolean isInLittleEndianByteOrder) {

if (bytes.length > SIZE) {

throw new IllegalArgumentException("array di max 16 bytes = 128

bits");

}

this.bitSet = new BitSet(SIZE ∗ 8);
if (isInLittleEndianByteOrder) {

byte[] reversedArray = new byte[16];

for (int i = 0 ; i < SIZE ; i += 4) {

reversedArray[i + 3] = bytes[i + 0];

reversedArray[i + 2] = bytes[i + 1];

reversedArray[i + 1] = bytes[i + 2];

reversedArray[i + 0] = bytes[i + 3];

}

bytesToBitSet(reversedArray, this.bitSet);

}

else {

bytesToBitSet(bytes, this.bitSet);

}

}

2TODO spiega endianness

55

4.2 Building the network

4.2.2 KadContact

KadContact objects represent peers known through the Kad network. Among
the main instance variables there are two Int128: id and distance, that are
respectively the kad ID and the XOR distance from our own node. Then
obviously there is a triple made of IP address (ip), UDP port (UDPPort) and
TCP port (TCPport) to contact the node. A byte represents type as described
in table 3.1 of the previous chapter and kadVersion byte discriminates only
two versions of Kad protocol support. Lastly, there is a KadUDPKey used for
obfuscation of UDP datagram exchanges with the contact.

4.2.3 Routing table

Routing table is a very delicate part of a Kad client, and eMule developers
went as far as writing comments in eMule source code to point out that no
modification should be made unless absolutely necessary. The problem is
that even if a single client modifies how routing table stores nodes it does
not affect the network, and in the worst case our client would not work and
be treated as a malicious peers, if many clients behave badly, the network is
affected.
However, as of this writing the number of nodes running our client is very
limited thus even buggy classes would not harm the network, anyway our
implementation is very similar to eMule one for full compatibility.

RoutingZone

As it was said, routing table tree is made of routing zones that represent
nodes, and the only way to traverse the tree is to get the root node using
private static variable root. As it is shown in figure 4.1, each RoutingZone has
a parent m_pSuperZone and either zero or two children (m_pSubZones[0] and
m_pSubZones[1]). The class contains a static reference to own node Int128
uMe and all the contacts are sorted in the tree by their XOR distance from
uMe.

56

4.2 Building the network

Each routing zone has also two instance variables that define its position
in the routing table: m_uLevel that indicates the level from the top of the
tree, and m_uZoneIndex that contains the distance from the zone at this
level that contains the center of the system. RoutingZone provides methods

Figure 4.1: RoutingZone relationships: it is highlighted that only leaves
may have RoutingBin objects, while a reference to the root RoutingZone is
provided to traverse the tree.

to insert new contacts and get contacts, with the ability of automatically
splitting and join (consolidate) routing zones when needed. In fact, each leaf
can contain a maximum number of ten contacts, then it should be splitted
when trying to add an eleventh contact (calling addToZone()). Routing
zones are instead checked for and eventually consolidated periodically (every
45 minutes, m_tConsolidate_millis). We show in listing 4.5 the split()
method, that together with consolidate() define the structure of the routing

57

4.2 Building the network

table, as only some routing zones are allowed to split.

Listing 4.5: split() method in RoutingZone.java

private void split()

{

this.stopTimer();

this.m_pSubZones[0] = this.genSubZone(0);

this.m_pSubZones[1] = this.genSubZone(1);

List<KadContact> listEntries = this.m_pBin.getEntries();

this.m_pBin = null;

for(KadContact pContact : listEntries) {

assert(pContact!=null);

int iSuperZone = pContact.distance.getBit(this.m_uLevel);

if (!this.m_pSubZones[iSuperZone].m_pBin.addContact(pContact)

) {

this.m_pBin.removeContact(pContact);

PPLog.printError("Error in RoutingZone split() method!");

}

}

}

The method does not include canSplit() method that is run before, but just
generates children routing zones and moves contacts to the new leaves.

RoutingBin

Each RoutingZone has a RoutingBin m_pBin instance variable that is used
only when the routing zone represents a leaf in the tree, and in case of
splitting, contacts in its routing bin are added to children’s routing bins and
parent’s bin is nulled. On the contrary when consolidating leaves, routing
bin’s contacts are merged in a single bin on the parent, children routing zones
(and thus their bins) are nulled.
Each routing bin is just a holder for a LinkedList of KadContacts, that
contains up to ten contacts sorted chronologically.

58

4.2 Building the network

Maintenance tasks

Maintaining the routing table is an important duty that is done when adding
and refreshing contacts obtained from normal lookup and search procedures,
but also with specificmaintenance tasks run periodically. Just like eMule, our
client provides two different methods, onSmallTimer() and onBigTimer(),
that remove stale contacts, check old contacts and add new ones.

Listing 4.6: onSmallTimer() method in RoutingZone.java

public void onSmallTimer() {

if (!this.isLeaf()) {

return;

}

long tNow_millis = System.currentTimeMillis();

List<KadContact> listEntries=this.m_pBin.getEntries();

if(listEntries==null || listEntries.size()==0) {

return;

}

// Remove dead entries

for(KadContact aContact: listEntries) {

if (aContact.type ==4) {

if (((aContact.expirationTime_millis > 0) && (aContact.

expirationTime_millis <= tNow_millis))) {

this.m_pBin.removeContact(aContact);

KadContact.removeContactGeoLocation(aContact);

KadContact.totalNumOfContacts−−;
continue;

}

}

if(aContact.expirationTime_millis == 0) {

aContact.expirationTime_millis=tNow_millis;

}

}

// Check if the oldest contact of the list is still alive

59

4.2 Building the network

KadContact oldContact = this.m_pBin.getOldest();

if(oldContact != null) {

if (oldContact.expirationTime_millis >= tNow_millis || oldContact.type

== 4) {

this.m_pBin.pushToBottom(oldContact);

oldContact = null;

}

}

if(oldContact != null) {

oldContact.checkingType();

PacketUDP pck_KAD2=new PacketUDPKad2HelloRequest();

UDPListener.send(oldContact.ip, oldContact.UDPPort, pck_KAD2);

}

onSmallTimer() as it shown in listing 4.6 is called for a single RoutingZone,
and assuming it should be called just on leaves (routing zones containing a
bin), it remove old contacts (type 4) and contacts the oldest one in the bin,
which will eventually respond and refresh itself.

Listing 4.7: onBigTimer() method in RoutingZone.java

public boolean onBigTimer() {

if (this.isLeaf() &&

(this.m_uZoneIndex.isAllowedToSplit(K_POSIZIONE) ||

this.m_uLevel < K_LIVELLO || this.m_pBin.getRemaining() >=

8)) {

this.randomLookup();

return true;

}

return false;

}

60

4.3 Lookup

onBigTimer() tries to populate routing zones that have few nodes and can
split by launching a lookup towards a random node in the current zone. This
process is called every ten seconds on one routing zone at once, and every
one hour on each of the routing zones. That is to say that if we have just
one routing zone (a leave), the process won’t run every ten seconds, but just
once in an hour.

4.3 Lookup

Lookup is an important procedure to locate a number of nodes close to a kad
ID, and its correctness, robustness and efficiency greatly affects all the Kad
network experience. For instance, if routing table fails, a node can use other
nodes’ routing tables and work correctly, however, if a lookup fails, a node
can’t obtain resources from the network, thus rendering the network useless.
That is to say that for a Kad client it is crucial to implement correctly lookup
procedure.
Differently from eMule, our implementation defines a class Lookup that is
tightly bound to KadSearch, used for search and publishing, while eMule
handles lookup in the same classes of search (Search.cpp and SearchMan-
ager.cpp). Our choice was to give a more elegant and clean structure to code,
and avoid repeating the same code in different methods. Even if lookup pro-
cedure vary slightly for different kind of searches, all the differences can be
dealt including a lookupType instance variable.
It is somehow surprising for novices that lookup works even if the start()
method, that manages all the procedure, just sends packets and never re-
ceives them or wait for them. In fact, packets are received by UDPListener

and processed by the corresponding packet class in PacketsUDP.java. The
onReceive() method that is executed upon packet arrival, will call back the
Lookup class through addContacts() method, which will find the correspond-
ing lookup, add the contacts and wake up the probably sleeping lookup
thread. This mechanism looks exactly like the one implemented in eMule,

61

4.3 Lookup

and it’s a great way to simplify the code, to the point that we could even
think of running just one thread for all the lookups.

Listing 4.8: addContacts() method in Lookup.java

public static void addContacts(Int128 target, InetAddress sender, LinkedList<

KadContact> contacts) {

Lookup l = findLookup(target);

Request r = null;

if (l != null) {

r = findRequest(l, sender);

}

if (r != null && l != null) {

if (l.lookupType == KadSearch.KadType.FILE ||

l.lookupType == KadSearch.KadType.KEYWORD ||

l.lookupType == KadSearch.KadType.NOTES ||

l.lookupType == KadSearch.KadType.STOREKEYWORD ||

l.lookupType == KadSearch.KadType.STOREFILE ||

l.lookupType == KadSearch.KadType.STORENOTES) {

for (KadContact c: contacts) {

long distance = Utils.distance(c.id, target);

RoutingZone.add(c, true);

if (distance < Config.toleranceZone) {

l.toleranceContacts.add(c);

l.possibleContacts.add(c);

} else {

l.possibleContacts.add(c);

}

}

}

else if (l.lookupType == KadSearch.KadType.NODE) {

for (KadContact c: contacts) {

RoutingZone.add(c, true);

}

62

4.3 Lookup

}

MuloThread.notify(l.target);

}

}

In listing 4.8 is shown how new contacts are dealt by the Lookup class: first
it is checked if a lookup was active towards the target or the packet received
is related to an old lookup and thus useless, or more probably a malicious
node wants us to store bogus nodes. For the same reason a check, to match
the sender of the received packets with a previously sent request, is done and
only if both checks pass, some steps are taken based on the type of lookup:
contacts received from a node lookup (KadSearch.KadType.NODE), called to
populate some routing zone, are directly stored in the routing table. Other
kind of lookups, the ones used to locate some resources on the network, need
to go closer to the node: given an Int128 target a tolerance zone is defined
as a range where peers probably know resources located at target.

Listing 4.9: distance() method in Utils.java

static long distance(Int128 target, Int128 source) {

Int128 xorValue = Int128.XOR(target, source);

return xorValue.get32BitChunk(0);

}

Config.toleranceZone is defined as 224, and distance between Int128 ob-
jects, as shown in listing 4.9, concerns only the first 4 bytes, thus an x

textttInt128 is in the tolerance zone of target Int128 if and only if the first
byte coincides (XOR sets the first 8 bit to zero).
Contacts received for resource locating lookups like KadSearch.KadType.-

KEYWORD are added to the routing zone for later use and also added to possi-
bleContacts list, which contains nodes that can be asked for closer nodes to
the target. The lookup terminates depending on the type, with resource lo-

63

4.4 Search

cating lookups ending when we received at least ten contacts in the tolerance
zone or a time-limit has been hit (50 seconds).

4.4 Search

As it was described in the previous chapter, there are various kinds of search:
keyword search, source search and note search. These are search in a strict
sense, in fact node search and publishing differ slightly from traditional
search. We present in table 4.3 a full list of all types of search possible.
All these search types are implemented in KadSearch class, that stands for
both Search and SearchManager classes in eMule. As it is shown in listing
4.10, a search is actually a lookup where tolerance contacts (contacts in tol-
erance zone distance from the target) are sent a request, called action, and
should reply with the desired resources, as being in tolerance zone they are
probably responsible for those resources.

Listing 4.10: Portion of start() method in KadSearch.java

Lookup lUp = new Lookup(this.targetID, this.type);

LinkedList<KadContact> toleranceContacts = lUp.start();

if (toleranceContacts != null) {

for (KadContact c : toleranceContacts) {

PacketUDP pck;

switch (this.type) {

case FILE:

pck = new PacketUDPKad2SearchSourceRequest(this.targetID, ((

KadFileSearch)this).fileSize); break;

case KEYWORD:

pck = new PacketUDPKad2SearchKeyRequest(this.targetID, ((

KadKeywordSearch)this).tags); break;

case NOTES:

pck = new PacketUDPKad2SearchNotesRequest(this.targetID, ((

KadNotesSearch)this).fileSize); break;

case STOREKEYWORD:

64

4.4 Search

Table 4.3: Kinds of search

Type Description

File Search for sources that can serve the file.

Keyword Finds files shared on the network related to the string
searched for, targets the longest word in the string.

FindBuddy Search for a buddy, using our own client ID as target.

FindSource Finds the buddy in the network.

Node Search for nodes, performed targeting a random ID.

NodeComplete Search for nodes, performed targeting our own client ID.

NodeSpecial Search for an exact node, given its ID, if we don’t have
its contact information.

Notes Search for comments (notes) about a specific file shared
on the network.

NodeFwCheckUDP Targets a random ID to search a node to perform UDP
firewall check.

StoreFile Used to store a file reference in the network, that is to
publish a file.

StoreKeyword Used to store a keyword referencing a file shared on the
network.

StoreNotes Used to store a comment referencing a file shared on the
network.

pck = new PacketUDPKad2PublishKeyRequest(this.targetID, ((

KadStoreKeywordSearch)this).filesInfo); break;

case STOREFILE:

pck = new PacketUDPKad2PublishSourceRequest(this.targetID,

Config.kadID, ((KadStoreFileSearch)this).tags); break;

case STORENOTES:

pck = new PacketUDPKad2PublishNotesRequest(this.targetID,

Config.kadID, ((KadStoreNotesSearch)this).tags); break;

default:

65

4.4 Search

pck = null;

}

UDPListener.send(c.ip, c.UDPPort, pck);

}

}

As for lookup, responses are not dealt in start() method that just sends
requests, but they are managed through onReceive() methods in the various
classes corresponding to different packets. Each kind of search in this case
has its own packet for requests (if you recall lookup packets were all the
same), while responses are sent as PacketUDPKad2SearchResponse for all
search types3, so it is necessary to discriminate first the search type upon
reception of a response packet, then do the normal checks (as for lookup)
and add the results to the corresponding search through specific methods
(addFileResults, addKeywordResults, etc.), as seen in listing 4.11.

Listing 4.11: addResults() method in KadSearch.java

static int addResults(Int128 target, LinkedList<SearchResult> resultsList) {

for (KadSearch search : kadSearches) {

if (search.running) {

if (target.equals(search.targetID)) {

search.responses++; // Update responses count

switch (search.type) {

case KEYWORD:

return KadSearch.addKeywordResults((KadKeywordSearch

)search, resultsList);

case FILE:

return KadSearch.addFileResults(target, resultsList);

case NOTES:

return KadSearch.addNotesResults(target, resultsList);

default:

3In reality this is true only for Kad2 packets, Kad1 packets used in older clients use
different packets for all kinds of search.

66

4.4 Search

PPLog.printError("Unknown or wrong Kad search type.");

}

}

}

PPLog.printWarning("Search for target " + target.toString() + " not found

", kadSearchesTargets());

return 0;

}

Even if the response packet is the same for all the searches, they contain
different information written as tags that are handled by Tags.java, and as
we know already which tags are contained in a packet, it is easy to parse the
results. Search terminates when at least one response is found or time limit
is exceeded, but later results can be added even if no more search requests
are sent. This way is possible to present the results to the user (useful in
case of keyword search) while the response packets arrive, thus providing a
better user experience.

As we said, even publishing is a kind of search: a lookup procedure is
performed and final action is sent to tolerance contacts, but it terminates on
different conditions. A publishing node that wants to store a keyword, a file
or a note on a contact in the tolerance zone sends the corresponding publsh
packet request and waits for PacketUDPKad2PublishResponse that contains
the node load (as described in the previous chapter). Response count is
incremented if node load is less that 100, that is to say that the resource was
successfully stored on the node. Once at least 10 responses are obtained, the
search terminates. Publish response packets are processed using onReceive()
method in the response packet class and then processPublishResponse() does
the usual checks.

67

4.5 Publishing

4.5 Publishing

Peers store our resources, and in the same way our client is expected to accept
incoming publish requests. This situation is handled by KadIndexed class
that stores keywords, sources for files and notes. In the case of keywords, on-
Receive() method calls addIncomingKeyword() when receiving PacketUDP-

Kad2PublishKeyRequest, other cases work the same way.
Constraints are defined on new keyword, sources and notes that can be stored
on our node, in order to provide overload protection as for eMule. In list-
ing 4.12 it is shown how the load, included in reply to contacts requesting
to publish some content, is calculated and how keywords are stored in the
keywords data structure.

Listing 4.12: Portion of addIncomingKeyword() method in KadIndexed.java

if (key == null) { //...if not, we create a new keyword entry

key = new KeyEntry(keyword);

keywords.add(key);

}

if (totalIndexedKeywords <= MAX_INDEXED_KEYWORDS) { //total indexed

keywords <= 60000

if (key.getSourceNum() != 0) { //Keyword has already sources

if (key.getSourceRNum() > INDIVIDUAL_KEYWORD_LIMIT)

return 100; //Keyword has already more than 50000

sources

//else

if (key.getSourceNum() <= POPULAR_KEYWORD_LIMIT) {

key.addSource();

return ((key.getSourceNum() ∗ 100) /

INDIVIDUAL_KEYWORD_LIMIT);

}

//else

return 100;

}

68

4.6 Firewall check and FindBuddy

//else

key.addSource();

return 1;

}

//else

return 100;

The current implementation of KadIndexed lacks many features and should
be tested thorougly. It presents efficiency issues and also it doesn’t work
correctly. For instance, take a look at listing 4.13, where keywords is a
LinkedList<KeyEntry>, it is obviously a poor choice and an HashSet would
have suited the purpose better. For this reason the source code is still not
merged in PariMulo SVN trunk code4.

Listing 4.13: Efficiency issues in addIncomingKeyword() in KadIndexed.java

for (KeyEntry k : keywords) { //find out if the keyword already exists in our list...

if (k.KEYWORD_ID.equals(keyword)) {

key = k;

break;

}

}

4.6 Firewall check and FindBuddy

Firewall check and FindBuddy features are still experimental and yet to be
tested for merge in PariMulo SVN trunk code.

4SVN (Subversion) is a repository where we store the code, mulo-trunk contains the
most recent code with all stable features integrated.

69

4.6 Firewall check and FindBuddy

FirewallCheck

As of this writing, only TCP firewall check is implemented. FirewallCheck
is triggered when receiving PacketUDPKad2HelloRequest, PacketUDPKad2-
HelloResponse, PacketUDPKadRequest and PacketUDPKadResponse pack-
ets through the onReceive() method.

Listing 4.14: onReceive() method that starts a firewall check

// Check if firewalled

if(KadPrefs.getRecheckIP()) {

PacketUDP pck_FW2 = new PacketUDPKadFirewalled2Request();

UDPListener.send(this.senderIp, this.senderUDPPort, pck_FW2);

}

In listing 4.14 is shown that firewall check requests are sent only if the
client received less than 4 (KAD_FIREWALL_CHECKS) PacketUDPKad-
FirewalledResponse packets from clients it sent a firewall request to. The
packet contains an IP address that let us check if it corresponds known IP
address.
A peer receiving a firewall check request will try to connect to us through
TCP. If it succeeds on older client versions it will send a PacketUDPKad-

FirewalledAckResponse packet, while more recent clients will send Packet-

TCPKadFirewallCheckAck through the successfully estabilished TCP con-
nection, both methods will call KadPrefs.incFirewalled() that when it’s
called twice sets our status as non-firewalled.

FindBuddy

FindBuddy mechanism, which was described in section 3.2.4, is implemented:
firewalled peers can request our client to act as buddy and if we are behind
firewall we can ask some peer to act as buddy. In the case our client is
TCP firewalled and can’t receive incoming TCP connections it needs to find
a buddy to forward callback requests. A PacketUDPFindBuddyRequest is

70

4.6 Firewall check and FindBuddy

sent to peers that can possibly act as buddy, and a PacketUDPFindBuddy-

Response packet in expected. When a peer responds with such packet, a
TCP connection can be established and the peer is set as buddy. Periodically
PacketTCPBuddyPing are sent and answered by PacketTCPBuddyPong over
the TCP connection in order to maintain it active. Whenever a third node
needs to connect to our client, it sends a PacketUDPKadCallbackRequest

packet to our buddy, that will forward us the request so that we can call
back the requesting peer.

71

Chapter 5

Considerations and future works

This last chapter wants to make some considerations about working in a
group of developers, point out some interesting aspects that should be con-
sidered in such context and give some advice to possible new PariMulo de-
velopers. Various tools to work efficiently in a team projects as PariPari are
presented. Lastly, we give some hints about possible uses of PariMulo.

5.1 Working on PariMulo

Writing a file-sharing peer-to-peer client compatible with eMule1 is a chal-
lenging task: translating C++ to Java isn’t as easy as it sounds and it
is ultimately the best choice. Java provides powerful features and libraries
that the developer should take advantage of, and of course object-oriented
programming paradigm should be exploited, with concepts like objects and
inheritance.
Working on PariMulo for PariPari project means also cooperating in a team
of up to eight people that works with other teams forming a group larger
than fifty people. This people works on the project for time-span that ranges
from a few months to two or three years (some people spent more time in
PariPari). This means that as the project becomes more complicated, both

1In the sense that is should behave like eMule as much as possible.

72

5.1 Working on PariMulo

PariPari as a whole and PariMulo as a single plug-in, the time required for
newly coming developers to be productive increases. To make an example,
while when started working on PariMulo we knew all of the inner workings
of the plug-in and know exactly where to put hands whenever needed, right
now the details of some classes are obscure and need in-depth studying.

Work methodology

As it was said, documentation on the eDonkey / Kad protocols is incomplete
and often obsolete, therefore is preferable to study directly the eMule source
code instead of trying to reverse engineer the protocol analyzing network
traffic. Anyway, if analyzing the traffic was the only option, there are some
tricks that make it easier.

A great tool to analyze network traffic isWireshark, available on all major
platforms, that listens to a network interface and gathers data at different
levels, including OSI network and transport layers which interest us mostly.
If the eMule client is run on default ports (TCP: 4662 and UDP: 4672), it also
detects most common eDonkey/eMule packets as eDonkey packets. Apart
from detecting all the incoming and outgoing traffic on TCP and UDP ports,
that let us check for erroneously discarded or incorrectly decoded packets, it
also has a nice feature of following a TCP stream by selecting a single packet
in a TCP connection, right-click and choosing “Follow TCP Stream” option.

Although many packets are correctly decoded by Wireshark, some may
appear as large arrays of bytes that make no sense. An easy way to get a
hint of their content is to guess what is the purpose of the packets and then
try to get eMule to send (or receive) them with the desired content. To make
things more clear we see an example:

Ex. We send an ed2k PacketSearchRequest packet by making a
search of the word “prova”. The packet sent should contain such
word as a sequence of bytes. As expect, the outgoing packet cap-

73

5.1 Working on PariMulo

tured byWireshark: 0xe3 0x14 0x0 0x0 0x0 0x16 0x0 0x0 0x1

0x5 0x0 0x70 0x72 0x6f 0x76 0x61 0x2 0x3 0x0 0x44 0x6f

0x63 0x1 0x0 0x3 contains “prova” word, in the sequence 0x70

0x72 0x6f 0x76 0x61. By making a lot of tries, capturing as
many forged packets as possible, one can understand accurately
how a packet is built.

In the case of eMule a great help comes from eMule code. Even if the code
is quite messy, it is possible to compile and run eMule in debug mode, with
lot of log messages that help us understand what the program is doing.
eMule prints out all packets exchanged both via UDP and TCP, and it is also
possible to modify some methods in order to print out the content of a packet.
This is a great way to test our classes that encode and decode packets, as it
is possible to forge ad-hoc packets or know exactly the content of a packet
received from eMule client and confront it with information decoded from
PariMulo. The test in listing 5.1 shows a packet received and printed by
eMule (it was modified to print both the packet in a Java byte array format
and the content as you can read in the comments). It is checked whether
the infomration collected from eMule corresponds to data extracted from the
packet using assertEquals() method.

Listing 5.1: Decoding test in PackingDecodingTest.java

@Test

// 12:29:41 KADEMLIA2_HELLO_RES from 77.194.173.139:64309

// 12:29:41 ClientId: 67E2610143DDE28E97208F8761DA8E87 TCP: 5820 Version: 8

public void Kad2HelloResponseTest3() throws UnknownHostException {

byte[] packet = {

(byte) 0xE4, (byte) 0x19, (byte) 0x01, (byte) 0x61, (byte) 0xE2,

(byte) 0x67, (byte) 0x8E, (byte) 0xE2, (byte) 0xDD, (byte) 0x43,

(byte) 0x87, (byte) 0x8F, (byte) 0x20, (byte) 0x97, (byte) 0x87,

(byte) 0x8E, (byte) 0xDA, (byte) 0x61, (byte) 0xBC, (byte) 0x16,

(byte) 0x08, (byte) 0x01, (byte) 0x08, (byte) 0x01, (byte) 0x00,

(byte) 0xFC, (byte) 0x35, (byte) 0xFB};

74

5.2 Testing

PacketUDP pck = PacketUDP.decodePacket(packet, InetAddress.

getByName("85.85.47.85"), 44125, false);

if (pck.getClass() == PacketUDPKad2HelloResponse.class) {

PacketUDPKad2HelloResponse pack = (

PacketUDPKad2HelloResponse) pck;

System.out.print("Id: "+pack.clientID.toString());

assertEquals(pack.clientID, new Int128("67

E2610143DDE28E97208F8761DA8E87"));

System.out.print("TCP: "+pack.TCPPort);

System.out.print("Version:0x"+Utils.byteToHex(pack.kadVersion));

}

}

It is easy to collect a lot of packets in this way and test them easily, it is even
possible to write a tool that automatically saves the packets and tests them
in PariMulo.

5.2 Testing

Writing complex programs written by many developers results in a lot of
bugs, and the most recurring errors are due to poor thinking of how code
will be used by others. Think about method doubleInt in listing 5.2. It
works perfectly when called with input 1 or 2, but it fails in other cases.
Now, when we write both the method and the callers we can be sure that
none will call such method in an unexpected way, but it would be better to
make the method error-proof just in case.

Listing 5.2: Bad doubleInt() method

public int doubleInt(int a) {

int toReturn = 0;

switch(a) {

case 1: toReturn = 2; break;

case 2: toReturn = 4; break;

75

5.2 Testing

default: break;

}

return toReturn;

}

In the previous example the method could have been written better easily,
but we should at least report an error when the program doesn’t behave
correctly and we know already, in this case we could have modified default
case with throw new IllegalArgumentException() statement so that the
caller would know that something went wrong.
In PariPari, Extreme Programming software development methodology is
pushed, among the practices it advocates there is Test-driven Development :
this process demands short development cycles where first tests are written
and then code complying with the tests is developed. Even if this devel-

Figure 5.1: Test-driven Development

opment methodology proved to be quite difficult to achieve, probably due

76

5.2 Testing

to the fact that PariMulo is just a complete rewrite of a complex software
written in another language, testing code is a good practice that should be
seen as a useful tool for developers.
JUnit is a powerful test framework for unit testing : that is to say testing
small parts of source code, verifying that it works correctly and individuat-
ing bugs early. From a Java perspective writing a unit test means writing a
method with some special statements that verifies the functionality of a part
of code. As an example, listing 5.3 shows a JUnit test that checks, throught
assertEquals() 2 statement, the correctness of doubleInt().

Listing 5.3: Sample test method for doubleInt()

@Test

public void provaTest() {

assertEquals(doubleInt(1),2);

}

In this case, even if the test succeeds, the test proves that the method works
correctly for input 1, but it does not prove anything about other parameter’s
values. In fact, if we write a second improved version of the test, as shown
in 5.4, an IllegalArgumentException is thrown, and test fails.

Listing 5.4: Improved test method for doubleInt()

public void provaTest() {

for(int i = Integer.MIN_VALUE; i < Integer.MAX_VALUE; i++)

assertEquals(doubleInt(i),2∗i);
}

Testing has also been defined as a challenge between the tester and the
programmer, where the tester should find ways to let the unit tested to
fail. In reality it’s up to the sensibility of the programmer to find a trade-off
between neat and robust source code.

2assertEquals(expected, actual) takes as parameters expected value and actual value,
if they do coincide, test succeeds.

77

5.2 Testing

Testing packets

In the case of PariMulo, where compatibility must be assured with the net-
work, it is important to check whether the packets are encoded and decoded
correctly from and to byte arrays that are sent through the network: even a
wrong byte could result in a disconnection from the server we are connected
to or a ban from a peer we are exchanging files with. With the help of eMule
and traffic analysis depicted in section 5.1, it is possible to collect packets to
be tested against, and verify if PariMulo correctly encodes a packet with the
same content or decodes the packet collected by eMule in the same way.

Listing 5.5: A test method in PacketEncodingTest.java

@Test

public void requestKeyTest2() {

byte[] originalPck = {(byte) 0xE4, (byte) 0x33, (byte) 0x52, (byte) 0x6B, (byte) 0

x30, (byte) 0x39, (byte) 0xD4, (byte) 0x44, (byte) 0xD7, (byte) 0x32, (byte)

0x04, (byte) 0x9B, (byte) 0x9F, (byte) 0x34, (byte) 0x7E, (byte) 0xCC, (byte

) 0xA8, (byte) 0x01, (byte) 0x00, (byte) 0x00};

Search src = new Search(Type.KAD, "enya");

KadSearch ksrc = new KadKeywordSearch(src);

PacketUDPKad2SearchKeyRequest builtPck = new

PacketUDPKad2SearchKeyRequest(ksrc.targetID);

System.out.println("eMule original:\t"+Utils.bytesToHexString(originalPck));

System.out.println("PariMulo built:\t"+Utils.bytesToHexString(builtPck.toBytes().

array()));

assertArrayEquals(originalPck, builtPck.toBytes().array());

}

PacketEncodingTest class contains a number of methods that test if packets,
created as objects and then put in ByteBuffer structures to be sent, coincide
with packets retrieved with eMule that contain the same information. In
listing 5.5 it is shown a test for PacketUDPKad2SearchKeyRequest packet,

78

5.3 Future works

and test succeeds only if the array of bytes are identical. Of course one test is
not enough for this kind of packets, as it can contain many more options and
informations. It doesn’t either verify decoding correctness, that is handled
by PackingDecodingTest class.

Listing 5.6: A test method in PackingDecodingTest.java

@Test

public void KadFirewalledRequestTest() throws UnknownHostException {

byte[] packet = {(byte) 0xE4, (byte) 0x50, (byte) 0x8F, (byte) 0x1B};

PacketUDP pck = PacketUDP.decodePacket(packet, InetAddress.getByName("

120.32.40.9"), 23528, false);

if (pck.getClass() == PacketUDPKadFirewalledRequest.class) {

PacketUDPKadFirewalledRequest pack = (PacketUDPKadFirewalledRequest

) pck;

System.out.println("Port: "+pack.TCPPort);

System.out.println("Size: "+pack.size);

assertEquals(pack.TCPPort, 7055);

}

In listing 5.6 the test method passes an array of bytes represting the packet
to PacketUDP.decodePacket() decoding method, which is usually called by
UDPListener, with a fake sender IP address and port (as it does not matter
in this test). The decoded object has its instance variables tested against
information we know the packet contains (in this case a TCPPort short),
the test succeeds only if the field is equal to the expected value.

5.3 Future works

In this section are presented a few unconventional ways of using PariMulo
code, that is to say running its code without all the PariPari infrastructure.
PariMulo relies on PariPari classes3 for storage, connectivity, logging, threads

3Those classes act as wrappers of normal java.net, java.lang and java.io classes.

79

5.3 Future works

and other stuff, but if PariPari system is missing it falls back on Java classes
provided by java.net, java.lang and java.io. It is therefore possible
to use PariMulo stand-alone and run it even on devices that cannot run
PariPari. As no Graphical User Interface was integrated (differently from
eMule where GUI is tightly integrated with the rest of the code) it makes
PariMulo perfect for use as a framework or platforms with different user
interfaces.

5.3.1 PariMulo as a framework

Thanks to the architecture of PariMulo, with independent objects handling
different aspects of the client, it is possible to use only parts of the program.
PariMulo therefore can be used as a framework for various tasks, from anal-
ysis of traffic to network-wide distributed attacks.
Kad / eDonkey networks support are independent, therefore it is possible
to discard eDonkey support classes, like Server, if not needed. To demon-
strate modular architecture, by starting just an UDPListener instance (as
it is done for unit tests on packet encoding/decoding), packets described in
PacketsUDP can be received or sent, calling actions upon packets arrival.
Packets are objects, so they can be directly created and forged as needed,
and by inserting some specific values it’s possible to behave like many dif-
ferent clients connected to the Kad network. To prepare attacks to the Kad
network that require our client to pretend to be many nodes at once, only one
instance of UDPListener needs to be running, but some minor modifications
should be done for handling responses for requests sent by the client acting
as many different nodes.
Launching many instances of UDPListener or Routing table makes little
sense as, for Kad network, they can be shared by many nodes on the same
machine and therefore running many nodes does not take a lot of system
resources.

80

5.3 Future works

5.3.2 Kad for embedded systems

Nowadays a number of embedded system provide Software Development Kits
(SDK) to develop applications for these platforms. Most notably, Android
platform runs software compiled to execute on Dalvik Virtual Machine, with
programs written in Java language.
Android operating system runs on many smartphones and tablet computers,
with a variety of hardware specifications: processor frequencies are in the
500 MHz - 1.4 GHz range, RAM memory from less than 256 MB to over 1
GB, and devices sport all kinds of storage capacities. The point of writing a
Kad client for such systems is that these devices are powerful enough to run
the client and most of the time they are not just connected to the Internet
through 3G networks, but also through more reliable 802.11 networks. Even
if running a peer-to-peer file-sharing client may drain the battery quickly,
running such clients can be effective to download small files.

Limiting tasks and traffic

With this goal in mind we want to modify PariMulo to run on a low-resources
devices as a leecher client for Kad network. A client is called a “leecher” when
it downloads contents from the network but does not return the favor to other
peers, exploiting poor credit system. We therefore start by choosing which
classes are needed and which can be discarded.
There is no need to store and maintain a routing table, it requires mainte-
nance tasks to be run regularly and it is mainly used by peers to keep the
network topology working, for this reason even if some peers behave badly
(having no routing table means that the peer can’t answer to node requests),
the network still works fine. With no routing table our client just relies on
other peers’ routing tables, and that means that lookup requires O(log n)+1,
thus still O(log n) steps. When the average number of hops to get to toler-
ance zone is around 3, it has no impact on client performance.
Our leecher client does not need to respond to other peers’ requests: such as

81

5.3 Future works

Figure 5.2: Screenshot of a first experimental version of Kad client running
on Android 2.2 platform, while performing a search request.

route requests, publish requests, search requests; eventually some peers will
ban our client, but our tests have shown that even with our client misbehav-
ing, our requests are fulfilled flawlessly. This makes our client less involved
in the network, economizing on network traffic.
All the classes that manage uploads can be discarded, while incoming TCP
connections should be handled as they are useful for callback connections
from firewalled clients that will serve us files.

82

5.3 Future works

Limiting threads

While computer nowadays run on multi-core systems that take advantage
of running many threads concurrently, embedded systems are mostly single-
core systems, and due to some operating system’s constraints, the number of
threads running should be dealt carefully. It is therefore important to limit
the number of threads that our client launches when performing various
tasks: one thread is launched for each lookup and search, while downloads
start many threads, as each one handles a single serving peer. As concurrent
lookups are rare and generally they are run once in a while (especially if no
periodic maintenance task is run), it makes no sense to overcomplicate the
Lookup and KadSearch classes to perform all lookups in one thread. Instead,
speaking of downloads, it is common to have several hundreds of serving
peers at once, thus it’s mandatory to limit the number of running threads.
One solution could be using a single thread managing all downloads through
DownloadManager class and a limited number of threads handling all incom-
ing packets and triggering immediate responses upon packet arrival. Java
provides in java.util.concurrent thread pools, which consist of worker
threads (they commonly handle background tasks such as incoming requests),
that minimize overhead due to thread creation. java.util.concurrent-

.Executors offers different options when dealing with thread pools: it is
possible to choose a different number of threads depending on the system
that runs the application. While on an embedded system we could limit the
number of threads to only one, on a more powerful machine this system is
still more convenient than unlimited threads creation: if we could create an
unlimited number of threads, threads would grow in number until the system
becomes unresponsive to all requests when the overhead of the threads ex-
ceeds capacity of the system. On the other hand, a fixed thread pools let the
system degrade gracefully: requests exceeding the number that the system
can sustain are not handled until a threads becomes available.

83

5.3 Future works

5.3.3 Developing a new network

While implementing Kad for PariMulo the aim was full compatibility with
eMule clients connecting to Kad network, our implementation is a good start-
ing point to develop a new peer-to-peer network based on Kad. The key
aspects one should take care of modifying PariMulo to build a network are
bootstrap nodes, resources shared and network limits imposed by Kad im-
plementation.

Bootstrapping

Choosing how to retrieve nodes for bootstrapping is fundamental: if nodes
retrieved are stale or insufficient to populate the routing table and perform
successful lookups our client can’t join the network and access any resource.
Bootstrapping nodes could be chosen by a trusted peer and published on
a nodes.dat file on the web for retrieval, and updated regularly to prevent
staleness of the nodes. Better yet, to prevent DoS of such nodes, a larger list
could be published to the web by many trusted peers that joined the network,
and a dinamically generated list may be presented upon request of clients that
want the bootstrap nodes.dat file. Thus, only minor modifications are needed
on Bootstrap.java file, hardcoding the right locations of new nodes.dat files.
Hypotetically speaking, a parallel Kad network could be created by setting
up a group of nodes and putting them in a nodes.dat. As these nodes have
no knowledge of existing Kad peers in the original network, a new network
would be created with new peers joining if they bootstrap from new nodes.dat
file: this explains how important is choosing the right bootstrap nodes.dat
when accessing the Kad network.

Resources

Kad network is a file sharing peer-to-peer network where files aren’t stored
directly on the network, just indexing of the resources is stored. Nothing
prevents from storing resources or information on peers, but referencing in

84

5.3 Future works

this case works best for backward-compatibility with eDonkey network. Re-
source expiration and indexing limits on nodes can be modified, allowing less
republishing overhead.
Resources should be mapped with hash functions on a 128-bit kad id (rep-
resented by Int128) to take advantage of consistent hashing. Of course
all communications related to resources need to be modified, in particular
KadSearch and PacketsUDP classes need heavy modification.

Implementation limits

Kad network was designed to support a number of peers similar to eDonkey
network, that is to say a few millions users connected at once. Routing table
and lookup processes are designed to perform well in such conditions, but in
the case of a new network with different purposes other than file-sharing and
relevantly different number of users, some parameters defined as constants
should be reviewed. For instance, while 128-bit key space for resources and
peers works well because there is a low probability of collision and collision
would not be critical for the network, tolerance zone distance as defined in
Kad, allows only 256 (28) tolerance zones, which presents scalability issues.
In the case of a too small network, some zones may be empty with no nodes
responsible for resources. In a network expanding with several millions of
peers it may be difficult to locate nodes responsible for a resource even in
the tolerance zone, it depends on resource popularity and replication of pub-
lishing (currently a content is published on 10 nodes in the tolerance zone).
The best choice for a scalable network would be to define variable parameters
instead of constants, but this clearly increments the complexity of the soft-
ware, and in some cases it mandates for peers agreements that are difficult to
achieve in a distributed context. Some constants, as α parameter for lookup
concurrency or limit of references stored in a node, act only on local tasks
and therefore can be changed during network development as they have no
effect on the whole network when a few nodes are affected. It should be
considered however, that even changing α parameter can affect the network

85

5.3 Future works

in terms of traffic overhead and therefore while designing a new network all
those parameters should be considered carefully.

86

Bibliography

[1] Petar Maymounkov and David Mazìeres. Kademlia: A Peer-to-peer In-
formation System Based on the XOR Metric.

[2] Mattia Francesco. Reverse engineering e analisi del protocollo eDon-
key2000.

[3] René Brunner. A performance evaluation of the Kad-protocol

[4] Yoram Kulbak and Danny Bickson. The eMule Protocol Specification
http://www.cs.huji.ac.il/labs/danss/p2p/resources/emule.pdf

[5] Ampezzan Roberto. PariMulo 2009.

[6] Piccolo Christian. PariKad.

[7] Marzo Alessio. PariPari: Callback eDonkey.

[8] M. Steiner, W. Effelsberg, T. En-Najjary, E. Biersack Load Reduction
in the KAD Peer-to-Peer System.

[9] M. Steiner, E.W. Biersack, T. En-Najjary Exploiting KAD: Possible
Uses and Misuses.

[10] D. Carra, E.W. Biersack Building a Reliable P2P System Out of Unre-
liable P2P Clients: The Case of KAD.

[11] M. Steiner, T. En-Najjary, E.W. Biersack A Global View of KAD.

[12] M. Steiner, D. Carra, E.W. Biersack Faster Content Access in KAD.

87

Listings

3.1 eMule CanSplit() method in RoutingZone 32
4.1 Portion of parseDatagram() in UDPListener 49
4.2 Portion of decodePacket() from PacketUDP in Packets.java . . 50
4.3 Class PacketUDPKadBootstrapRequest in PacketsUDP.java . 52
4.4 Int128 constructor . 55
4.5 split() method in RoutingZone.java 58
4.6 onSmallTimer() method in RoutingZone.java 59
4.7 onBigTimer() method in RoutingZone.java 60
4.8 addContacts() method in Lookup.java 62
4.9 distance() method in Utils.java 63
4.10 Portion of start() method in KadSearch.java 64
4.11 addResults() method in KadSearch.java 66
4.12 Portion of addIncomingKeyword() method in KadIndexed.java 68
4.13 Efficiency issues in addIncomingKeyword() in KadIndexed.java 69
4.14 onReceive() method that starts a firewall check 70
5.1 Decoding test in PackingDecodingTest.java 74
5.2 Bad doubleInt() method . 75
5.3 Sample test method for doubleInt() 77
5.4 Improved test method for doubleInt() 77
5.5 A test method in PacketEncodingTest.java 78
5.6 A test method in PackingDecodingTest.java 79

88

