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1 Introduction

In this master thesis we study the real tori R"/A endowed with a tropical
structure, namely with an atlas of Z-affine linear functions. The aim will be
to prove, in analogy with the theory of complex abelian varieties, a result
that gives conditions for a tropical torus to be embedded in the tropical
projective space. The main tool for this will be the study of tropical theta
functions, namely the global sections of tropical line bundles.

In section 2 we outline the case of polarized abelian varieties in the complex
setting, which will serve as a motivation for the further sections: we start
considering a complex torus X = V/A, where V is a complex vector space
of dimension n and A a full rank lattice in V', then we define its Picard
group Pic(X), which is the group of its holomorphic line bundles up to
isomorphisms. To an element L in Pic(X) we can link a hermitian form H
on V which is called the first Chern class of L, and its imaginary part F is
an alternating form on V. Then the following theorem holds:

Theorem 1.1 (Elementary divisor theorem). Let A be a commutative prin-
cipal ring and F a finite free A-module of rank m, let & be an alternating
bilinear form on F. Then there is a base {e1,...,en} of F and an even
integer r < m such that:

E(€17€2) = d17 .. '7E(67”—17€T‘) = dT/27

where the d; are unique non-zero elements of A such that d;|d;+1 for every
1<i<r/2—1. Moreover, all other elements E(e;, ej) with 1 < j are zero.

This implies that there is a basis of A for which E has the form:

(b )

where D is the diagonal matrix diag(dy, ..., d,) with integer eigenvalues and
dild;i4q for every i =1,...,n—1. We will call the tuple (dy,...,d,) the type
of the line bundle L.

Using the global sections of L we can also define a rational function:

o1 X - PV,

then we will see conditions on the integer d; defined above for this function
to be defined on the whole X, and to be an embedding, this last result is
called Lefschetz’s theorem.

In section 3 we switch to the tropical case, and begin defining the tropical
semifield:



Definition 1.2. The tropical semifield T is the set R U {—oo} with the
operations of sum: “z + y” = max{z,y}, and product “x-y” = x +y. We
use the convention that max{z, —co} = x and = + (—o0) = —o0 for every x
in T.

We are interested in defining the tropical analog of the notions of the
complex case, in particular we will consider tropical manifolds, defined in
the following way:

Definition 1.3. We call tropical manifold a manifold M with an atlas
{(U;, ¢i) }i such that ¢; o qﬁj_l is Z-affine linear on R™ for every U; NU; where
n is the local dimension of M in U; NU;. A map f : My — M between two
tropical manifolds is called tropical if locally it can be written as a Z-affine

linear map.

Examples of tropical manifolds are real tori, that will be the object of
the study of the rest of the thesis.
In section 4 we study the space of tropical theta functions, i.e. the global
sections of tropical line bundles. The main difference with the complex case
is that the first Chern classes of tropical line bundles are identified with
symmetric bilinear forms on R”, hence the Elementary Divisors Theorem
doesn’t hold. We will see that a symmetric bilinear form with at least one
negative eigenvalue gives rise to a line bundle with trivial set of global sec-
tions, therefore the strategy will be to distinguish the cases in which these
forms are positive definite or positive semidefinite. We will see that in the
positive definite case the space of theta functions can be identified with a
convex finite dimensional polyhedron in T for some positive integer N.
In section 5.1 we will fix a positive definite line bundle L on a tropical torus
X, similarly to the complex case, we are able to define a function:

or: X — PTV

where the tropical projective space PTY plays the role of the complex pro-
jective space. The advantage in the tropical setting is that this function
is always well-defined, but the fact that the Elementary Divisors Theorem
doesn’t hold implies that to obtain the tropical analog of Lefschetz’s theorem
we have to add the hypothesis that there is a basis for the lattice A and a
basis of Z" with respect to which the positive definite bilinear form linked
to the line bundle L has the form diag(dy,...,d,), where d;|d;+1 for every
i=1,...,n— 1. The result of this is the following theorem:

Theorem 1.4. Let X be an n-dimensional tropical torus and L = L(Q, «)
a positive definite line bundle on X, suppose that there is a basis of A and a



basis of Z™ such that the bilinear form @Q is represented by a diagonal matrix

d 0 ... 0
0 do ... O
0 0 ... d,

such that di|d; for every i = 1,....n, and di > 3. Then the map py, is
continuous and injective.



2 The complex abelian varieties case

The results of this thesis are mainly motivated by the theory of complex
abelian varieties, more specifically by the theory of projective embeddings of
polarized abelian varieties, in this preliminary section we summarise some of
its results, which can be found in [1]. In the classical setting, let V' denote
a complex vector space of dimension g and A a lattice in V, i.e. a discrete
subgroup which is also a free Z-module of rank 2g. The quotient X = V/A
is a complex torus. Since A is a discrete subgroup of V of full rank, we
have that X is the image via the projection of a compact subset of V', and
hence is compact. Moreover, by [1, Corollary A.7] it is a connected complex
manifold.

Definition 2.1. Let X be a complex torus, we define a holomorphic line
bundle to be the datum of a triple (L, 7, {(U;, ¢:)}:), where L is a complex
manifold, 7= : L — X is a surjective continuous map, {U;}; is an open
covering of X and ¢; : 71 (U;) — U; x C are holomorphic maps such that
the following properties hold:

1. For every open set U;, denoting with p; : U; x C — U; the first projec-
tion, we have that the following diagram commutes:

T — U; xC

\l“

2. For every open sets U;,U; there exists a holomorphic function g;; :
U;NnU; — C\ {0} such that (¢j 0 97 V) (w,2) = (x,2 - gij(z)) for every
T in U N U; and every complex number z.

We call the maps ¢; trivializations and the maps g;; transition functions.

The transition functions are holomorphic, nonvanishing, and satisfy the

relations:
9ij95i = 1
9ii9jwGwi = 1

It turns out that, given a complex torus X, the datum of a set of functions
{9ij}i; together with an open covering {U;}; satisfying these properties is
sufficient to define a line bundle on X. As a consequence, we define a product
on the set of holomorphic line bundles on X in the following way: suppose



that L, L' are holomorphic line bundles given respectively by the transition
functions {g;;}i; and { fi;}s; with respect to the same open covering (this can
always be done by taking a common refinement), then the product L ® L' is
given by {gi;fij}ij. This product gives the set of line bundles the structure
of an abelian group.

Definition 2.2. Let X be a complex torus, and let (L, w, {(U;, ¢;)}i) and
(L', 7', {(Ui, ¢})}i) be two holomorphic line bundles on X. We say that L
and L' are isomorphic if there exists a continuous function f : L — L’ such
that the following diagram commutes:

L1,

Nl

moreover we request that for every 4, j there is a holomorphic function h;; :
UiNUj; — C\ {0} such that the composite:

¢iofog; :UiNU; x C— U;NU; x C
is given, for every (x,z) in U; N U; x C, by

(¢ 0 fod; ) (x,2) = (z, zhij(x)).

We call Picard group the set of line bundles on X up to isomorphisms
and denote it with: Pic(X).

Definition 2.3. Let (L, {(U;, ¢i}i) be a holomorphic line bundle on a
complex torus X = V/A, and let U C X be an open set. A section of L on
U is a function:

s:U — n 1(U),

such that 7o s is the identity map on U and p; o ¢; o S|u.AU is a holomorphic
function for every i. If U = X we call s global section, and we denote with
HO(L) the set of global sections of L.

It turns out that the space H°(L) of global sections is a C-vector space
of finite dimension. One can show that there is a base of H(L) given by
theta functions, i.e. holomorphic functions on V' that are invariant under the
action of A up to a multiplication for a common factor.



Definition 2.4. Let X and Y be complex tori and f a holomorphic function
f: X —Y.

Let L be a line bundle in Pic(Y) given by the set of transition functions
{9ij}i; and the open covering {U;};, we define its pullback f*(L) to be the
line bundle defined by the set {g;; o f};; and the covering {f~1(U;)}:.

Denoting with Ox the sheaf of holomorphic functions on X, and with
O% its subsheaf of nowhere zero functions, we have that Pic(X) is naturally
identified with the first cohomology group H'(X, O%). For any open subset
U C X of a complex torus, denote with Z(U) the group of locally constant
functions on U with integer values, then recall that there is a short exact
sequence of sheaves:

O%Z@OX%O}—M, (1)

where i is the inclusion and exp(f) = €2™/. Consider the following part of
its long cohomology sequence:

HY(X,Z) - H (Ox) - H' (0%) <% H*(X,Z),

we call the map ¢y first Chern class map. The following lemma yields a
generalization of Kiinneth’s formula to n factors, and it can be proven just
by using it.

Lemma 2.5. The canonical map from the n-th exterior algebra over H' (X, 7)
to H"(X,Z) induced by the cup product:

n
NH'(X,Z) — H'(X,Z)
s an isomorphism for every n > 0.

Since the group H'(X,Z) can be identified via universal coefficient the-
orem with the group of homomorphisms Hom(H;(X,Z),Z) =Hom(A,Z), it
follows that there is a canonical isomorphism

H™(X,Z) = Alt,(A, Z),

where Alt, (A, Z) is the group of alternating n-forms on A. As a consequence,
we can identify the first Chern class ¢1(L) of a line bundle on X with an
alternating Z-valued 2-form on A.

Via an R-linear extension we can identify a class ¢1(L) with an alternating
form E: V xV — R. Conversely we can determine which alternating forms
come from line bundles in the following way:



Lemma 2.6. Let X = V/A be a complex torus and E an alternating form
E:V xV = R, then the following are equivalent:

i) There is a holomorphic line bundle L in Pic(X) such that E represents
C1 (L)

ii) E(A,A) CZ and E(iv,iw) = E(v,w) for all v,w in V.

Recall that a hermitian form is a map H : V x V — C that is C-linear
in the first argument and such that:

H(v,w) = H(w,v),

for every v,w in V. We have that alternating forms satisfying the second
part of the lemma above are actually the imaginary parts of hermitian forms,
we summarise this in the following lemma:

Lemma 2.7. There is a one-to-one correspondence between alternating forms
E on V such that E(iv,iw) = E(v,w) for every v,w in V and hermitian
forms H on V' such that S(H(A,A)) C Z. This correspondence is given by:

E(v,w) =S(H(v,w)) H(v,w)=E(iv,w)+iE(v,w),
where & denotes the imaginary part.

Definition 2.8. Given a complex torus X = V/A, we define the Néron-
Severi group NS(X) to be the group of hermitian forms H on V such that
S(H(AA)) CZ.

Notice that by Lemma 2.7 and Lemma 2.6 there is a canonical isomor-
phism between NS(X) and the image of ¢;.

Definition 2.9. A semicharacter x for an hermitian form H in NS(X) is
a map
X:A—{z€Clzz=1}

such that for every A, u in A:
XA+ 1) = x(AN)x () exp(miS(H (A, 1))

We denote with P(A) the set of pairs (H,x) where H € NS(X) and x is
a semicharacter for H. P(A) is a group with structure given by the product:
(H,x) - (H',Xx') = (H + H', xx").



Now, given a complex torus X = V/A we will define a function
L(-,-) : P(A) — Pic(X)
in the following way: for a pair (H, x) in P(A), define a function:
a:=agy) A xV — C\{0}
by setting
a(\,v) := x(\) exp(wH(v, A) + gH()\, )\))

The function a is called canonical factor for L(H, x), we have that theta
functions 0 for L are defined using the following quasi-periodicity property
for every x in X and A in A:

O(z+ \) =a(\ 2)0(z).

We define the holomorphic line bundle L(H, x) to be given by the quo-
tient:
L(H,x) = (V xC)/A,

where A acts on V' x C by:
A (Ua Z) = (U + )‘7a(H,x)(A>’U)Z)'

One can prove that the axioms for a group action are satisfied, moreover
considering the natural projection

(VxC)/A— X
we have that its fibers are copies of C. This map defines an isomorphism:
P(A) — Pic(X),

for the details see: [1, Section 2.2]. One can also notice that ¢;(L(H,x)) =
H.
Now, let v be an element of X, we can define an isomorphism ¢, : X — X
of X by setting:

ty(z) =x +v.

The following lemma gives a way to compute the pullback of a line bundle
via a translation ¢, in terms of the map L(-,-):



Lemma 2.10. Let X be a complex torus and (H,x) an element of P(A),
then for every v in X:

to(L(H, x)) = L(H, x exp(2miS(H (v, -)))).
As a consequence we find the following:

Theorem 2.11 (Theorem of the Square). Let X be a complex torus, for
every v,w in X and for every L in Pic(X) we have that:
t*

v+w

L=tLot, Lo L "

Now, let X be a complex torus and L an element of Pic(X), denote with
H the first Chern class of L and with E its imaginary part. From |2, Section
5.1] we get the following theorem:

Theorem 2.12 (Elementary divisor theorem). Let A be a commutative prin-
cipal ring and F a finite free A-module of rank m, let G be an alternating
bilinear form on F. Then there is a base {e1,...,emn} of F and an even
integer r < m such that:

G(er,e2) = dy,...,G(er—1,e) = dy )9,

where the d; are unique non-zero elements of A such that d;|d;+1 for every
1 <i<r/2—1. Moreover, all other elements G(e;,e;) with i < j are zero.

From the theorem above it follows that there is a base of A with respect
to which F is given by the matrix:

0 D
-D 0/’
where D is the diagonal matrix diag(dy,...,d,) where the d; are integers

such that d;|d; 1 for every 1 <i <mn — 1. We call the tuple (dy,...,d,) the
type of L.

Definition 2.13. We say that a holomorphic line bundle L = L(H, ) is
positive definite (respectively positive semidefinite) if H is positive definite
(respectively positive semidefinite). If L = L(H,x) is a positive definite
line bundle, we call its first Chern class H polarization, and the pair (X, L)
polarized abelian variety.

10



Suppose that {e1,...,ea,} is the base of A obtained with the Elementary
Divisors Theorem, then if

iel = €2,... ,iegn,1 = €2n,

from the equality:
H(ei, 61‘) = E(iei, 6i)

it follows that H is positive definite if and only if all the d; are positive.
However, this is not always true, and it will be a difference with the tropical

setting.
Fixing a base 0y, ...,on for H°(L), we obtain a rational map
¢ X --» PN
defined by:

or(x) := (op(x) : -+ : on(x)),

whenever there is an index 4 for which o;(x) # 0.

Definition 2.14. A line bundle L in Pic(X) is said to be very ample if the
map ¢y, is an embedding, it is said ample if there is an n > 1 such that L"
is very ample.

The following lemma gives a condition for which ¢, is defined on the
whole torus.

Lemma 2.15. Let L be a positive definite line bundle on X of type (d1, ..., dy),
with dy > 2, then the map ¢1, defined above is holomorphic.

Now, recall that |L| indicates the set of effective divisors on X that are
linearly equivalent to L, using again Lemma 2.10 we can prove the following:

Lemma 2.16. Tuke n elements v1,...,v, in X such that Z?’:l v; =0 and
a holomorphic line bundle L on X, then:

ét:iL =
=1

The question we ask at this point is when the function ¢; defines an
embedding of the complex torus in the projective space, to answer we first
need another technical lemma:

11



Lemma 2.17. Let L be a positive definite line bundle in Pic(X), then there
is an open dense set U in |L| such that for every divisor D in U:

t2D=D < z=0.
Finally, we can state the following theorem:

Theorem 2.18 (Lefschetz’s theorem). Let L be a positive definite line bun-
dle in Pic(X) of type (dy,...,d,) with di > 3, then ¢p : X — PN is an
embedding.

The proof of Lefschetz’s theorem involves the results stated before, and
as a direct consequence we get the following lemma:

Lemma 2.19. For a line bundle L on X, the following statements are equiv-
alent:

1. L is ample.

2. L is positive definite.

3 The tropical semifield

3.1 Tropical manifolds

Definition 3.1. The tropical semifield T is the set R U {—oo} with the
operations of sum: “z + y” = max{z,y}, and product “z-y” =z +y. We
use the convention that max{z, —oco} = x and = + (—o0) = —oo for every x

in T.

In the tropical semifield the element —oo is the additive unit, while 0 is
the unit for the product, indeed we get a commutative monoid for addition.
Notice that no element (except —oo) has additive inverse, while every real
number z has multiplicative inverse —z, hence we have that T* = R. We
will consider on T the order topology, i.e. the topology generated by subsets
of the form {z € T|z < a} and {z € T|z > b} for a,b in R; here we use the
convention that —oo < x for every x in R. We give the following:

Definition 3.2. Let (V,®) be a commutative monoid with unit —oo and a
map - : T x V — V such that the following properties hold for every z,y in
T and for every u,v in V:

1. (“z+y”") v=x-v®y-v.

12



2.z (udv)=z-udx-0.
3.z (y-v)=(“c-y") - v.
4. 0-v=n.
5. If x-v =1y -v then either z = y or v = —o0.
We say that V' is a tropical module and - is its scalar product.

Given a tropical module V and any element v in V', we have that:
1-(—o00-v)=(“l"—0") - v=—-00-v=(2-—00") - v =2 (—00"0),

hence axiom 5 of Definition 3.2 implies that —oco - v = —oo for every v in
V. As an example, the set T" with the componentwise scalar product is a
tropical module.

Definition 3.3. Let V, W be tropical modules, a function f: V — W is a
tropical linear function if f(vy ®ve) = f(v1) ® f(ve) and f(t-v1) =t f(v1)
for every ¢t in T and v1,vy in V. If f has an inverse which is also a tropical
linear function, we say that f is an isomorphism.

We call a function f : R™ — T a tropical polynomial if it is the constant

map to —oo or it has the form max;jes{a;+ j -} for a finite subset S of the
dual space of ZZ,, which we denote with (Z%,)*. Notice that such function is
piecewise-linear, but not all piecewise linear function arise in this way (take
as example the real function z — —|xz|).
We call f a tropical Laurent polynomial if S is a subset of (Z™)* instead. We
have that the set of tropical polynomials (resp. tropical Laurent polynomi-
als) on R™ is a tropical module: indeed for every ¢ in T and every tropical
polynomial f = maxjcg{a;+j-x} we can define t- f = maxjcg{a;+t+j -z},
and one can check that this defines a scalar product. We call Z-affine lin-
ear a map between two open subsets of R™ and R™ which is given by the
restriction of an affine map whose linear part is represented by an integral
matrix.

Definition 3.4. We call tropical manifold a manifold M with an atlas
{(Ui, ¢:)}:i such that ¢; o qﬁj_l is Z-affine linear on R™ for every U; NU; where
n is the local dimension of M in U; NU;. A map f: My — M between two
tropical manifolds is called tropical if locally it can be written as a Z-affine

linear map.

13



Example 3.5. The set R" with the trivial atlas {(R",idgn)} is a tropical
manifold.

Example 3.6. Let A C R" be a lattice, then consider an open covering
{Ui}ier of R™ for some set I such that for every i,j there exists an element
a;j in R™ such that U; = U;j 4 a;5. This induces a covering {f]i}ig of the
quotient space R™/A and we can suppose that each U; is homeomorphic to
U; via the projection map. For every ¢, fix a map s; : [NJZ — U, such that s;
is a local section of the projection R” — R"/A, then {(U;, s;)}ier is an atlas
for R™ /A which endows it with a tropical structure.

Definition 3.7. Let M be a tropical manifold and U an open subset of M.
A continuous function f : U — T is called regular if it can be written locally
as the restriction of a tropical Laurent polynomial.

A continuous function h : U — T is called rational if it can be written
locally as tropical quotient of two regular functions, i.e. for every x in U,
there exists an open neighborhood V' of x and two regular functions f, g such
that the restriction of h to V' is given by “f/¢” = f — g.

We define the structure sheaf Oy of U to be the sheaf of regular functions
on U. The sheaf Of; is its subsheaf of invertible regular functions.

Example 3.8. Consider the union X of the sides of the square with vertices
the four points (0,0), (0,1), (1,1), (1,0) in R2. Then X is a tropical manifold,
consider the function f on X that has value 0 on the top and right edge of
the square, and is given by —1 4+ x1 + x5 on the bottom and left edge. We
have that f is a continuous function, moreover f is locally the restriction of
a tropical Laurent polynomial: near (0,1) f(z,y) is given by xo — 1, while
near (1,0) it’s given by z; — 1. Notice that —f is given by 0 on the top
and right edge and by 1 — z1 — x5 on the bottom and left edge, hence — f is
regular and it’s the tropical inverse of f.

Notice that the sheaf Of; is equal to the sheaf of Z-affine linear functions:
indeed any Z-affine linear function on R" can be written as  — x-j +a; for
some j in Z" and a; in R", therefore its inverse is given by « — x- (—j) —a;
which is still a Z-affine linear function. Conversely, the inverse of a non-
monomial function

x r]neaég({aj +j-x},

where S is a subset of (Z™)*, is given by

T — —max{a; ) -xt =min{—a; — j-x
jes{j—i_] } jeS{ j—J-x},

14



which is not a tropical Laurent polynomial.
In the following definition we see how the set T* = R takes over the role of
C* from the complex manifold setting.

3.2 Tropical line bundles

Definition 3.9. Let M be a tropical manifold. A tropical line bundle on M
is a tuple (L, m,{(Ui, ¥;)}:), where L is a topological space, 7 : L — M a
continuous surjection, {U;}; is an open covering of M and ¥, : 7~ 1(U;) —
U; x T are homeomorphisms such that the following properties hold:

1. If we denote with p; the first projection U; x T — U;, then the following
diagram commutes:

™ i*)UXT

2. For every 1, j there exists a Z-affine linear function
(bij:UiﬁUj—)R:TX
such that (¥; o W;l)(x, t) = (z, “t - ¢ij(z)") for every x in U; N Uj.

We call {U;}; trivializing cover, the maps ¥, trivializations and the maps Oij
transition functions.

Notice that the transition functions satisfy the cocycle condition “g;; -
®jt” = ¢ir. One can also check that ¢;; = —¢;;.

Given a tropical manifold M and an open covering {U;}; with a set of
transition functions ¢;; : U; NU; — R, we can build a tropical line bundle on
M by taking the quotient [[, U; x T/ ~ where (x;,t;) ~ (x4,t;) for x; in U;
and z; in U; if 2; = x; and t; = “¢; - ¢3;(x;)”. One can show that a tropical
line bundle (L, 7, {(U;, ¥;)}) is isomorphic to the line bundle built as stated
above starting from the trivializing cover and transition functions of L, so
in general we can denote a tropical line bundle up to isomorphisms just by
the datum of the trivializing cover and transition functions.

We identify two line bundles (L, 7, {(Us, ¥;) }ier) and (L, m, {(U;, ¥;)}jer),
if (L, ™, {(Ul, qji)}ie[uj) is a line bundle.

In this way we can refine the trivializing covering of a line bundle L with
trivializing cover ({U;};, ¥;) by taking a refinement {V;}; of {U;};, then the

15



trivializations ¥; induce trivializations ¥; on {V;}; and the new line bundle
is identified with the first.

Notice that, given two tropical line bundles on a manifold M, up to taking
a refinement we can assume that they have the same trivializing covering,
in particular the following definition makes sense for every couple of line
bundles on a tropical manifold.

Definition 3.10. Let (L, 7, {(U;, ¥;)};) and (L', 7', {(U;, ®;)};) be two trop-
ical line bundles on the tropical manifold M. We say that L and L’ are
isomorphic if there exists a continuous map f : L — L’ and Z-affine linear
maps h;j : U; N U; — T such that (IDjofo\I/;ltUiﬂUj xT—=UnNU; xT
is given by (x,t) — (x, “t - hij(z)”).

Definition 3.11. Let L and L’ be two line bundles on a tropical manifold
M with transition functions ¢;; and v;;. We define their tensor product to
be the line bundle with same trivializing covering and transition functions
®ij + i;, and we denote this by L ® L.

Notice that the trivial line bundle (i.e. with transition functions equal to
0) is the identity for the tensor product, and that each tropical line bundle
admits an inverse, i.e. the line bundle whose transition functions are the
opposite.

Definition 3.12. Given a tropical manifold M, we define Pic(M) to be the
abelian group of the tropical line bundles on M up to isomorphisms, with
product given by the tensor product.

Definition 3.13. Let (L, w,{U;, ¥;};) be a tropical line bundle on M, then
for every open set U of M a function s : U — 7~ }(U) is a reqular section
on U if 7 o s is the identity on U, and p; o ¥; o S\, is a regular function,
where p; : U; X T — T is the second projection. If U = M we say that s is
a global section. We denote with I'(L, U) the set of regular sections of L on
U, and with H%(L) the set of global sections of L.

For a line bundle (L, m, {U;, ¥;};) on M and an open subset U of M,
we have that I'(L,U) is naturally endowed with a tropical module struc-
ture: given two of its elements s,s’, we first define their sum s @ s’ in the
following way: for every i, the restriction of s ® s’ to U N U; is given by
U (u, “pi(Wi(s(w)) + pi(Wi(s'(w))))”) for every u in U N U;. Indeed, one
sees that

b

. . , e <« . . y ; /
bio ;o (S ©®s )‘UiﬁU = Dbi° W0 S‘UiﬁU Tpie Vio S‘UimU
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which is regular, moreover 7o (s @ s’) =idy holds by definition. One checks
that this operation gives I'(L, U) the structure of a commutative semigroup,
with identity given by the identically —oco section. Moreover, we define the
product - : TxI'(L, U) by setting for every ¢ and for every x in T, v in UNU;
and s in I'(L,U):

- s(u) = U7 (u, “z - pi(i(s(w)))”),

and one checks that it satisfies the axioms of the scalar product. If we denote
with Affy the sheaf of Z-affine linear functions on M, we identify Pic(M)
with HY(M, Affz) = HY (M, O%)).

Let f: M — M’ be a tropical map and L a line bundle on M’ with covering
{U;}; and transition functions {¢;;}, we define the pull-back of L to be the
line bundle f*L on M defined by the covering {f~(U;)}; and transition
functions {¢;; o f}.

4 Theta functions

In this section we will consider a fixed lattice A in R™ of dimension n, and
the tropical torus X = R"/A. We denote with R the constant sheaf on X
with stalks R. Then R is a subsheaf of Affz, and hence we can consider the
quotient sheaf 7 = (Z")*. The natural map Affz — T induces a map in
cohomology: -

c1: HY(X, Affg) — HY (X, T7)

that we call Chern class map. We have that H'(X , T;) is isomorphic to
A ® (Z™)*, where with A* we denote the group Homy(A,Z). We get the
following proposition:

Proposition 4.1. With the above notations, the image of the map c¢1 in
AN ® (Z™)* is the set of elements which extend to symmetric bilinear forms
on R™.

For the proof of this proposition, see [3], section 5.1.
It follows that an element of ¢ (H'(X, Affz)) can be either seen as a map
A — (Z™)* or as a symmetric bilinear form on R".

Definition 4.2. Let [c] be an element in im(cq), if the bilinear form on R”
induced by [c] is positive definite, we say that [c] is a polarization. We say
that a tropical line bundle L is positive definite (resp. positive semidefinite)
if ¢1(L) is positive definite (resp. positive semidefinite). Given a polariza-
tion [c], since as a bilinear form it is symmetric and positive definite, we
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get that the image [¢](A) in (Z™)* is a lattice of rank n, hence the quo-
tient (Z™)*/[c](A) has a finite number of elements. We call degree of [c] its
cardinality.

Definition 4.3. Let X = R"/A be a tropical torus and L an element of
Pic(X) such that ¢;(L) is a polarization, then we call the pair (X, c;(L))
polarized tropical abelian variety and the torus X tropical abelian variety.

Recall that in Chapter 1 we obtained a A-action on V' x C by defining
a function a(y,y), the following definition is the tropical analogue of such
notion, defining a A-action on R™ x T.

Definition 4.4. Let o : R®™ — R be a linear map, and Q an element of
A* ® (Z™)* which extends to a symmetric bilinear form Qg on R™. We first
define a A-action on R™ x T by:

A (,0) = (24 At + Qu(h2) + 5Qu(\A) +a().

Indeed, we have that 0-(x,t) = (x,t) for every (x,t) in R™ x T, moreover
we have that for every A, u in A:

pe (e (@1)) = (24 0+ Qe(h ) + 5Qe(AA) +a() =

= (o At QA+ ) + 5 Qe A pt A) ot A) =
— () - (28).

We define the map L(-,-) : Ime; x (R")* — H'(X,Affz) by defining
the line bundle L(Q, ) on X to be the line bundle (R™ x T)/A. Consider
an open covering of R™ as in Ezample 3.6 such that for every open set U
in the covering the projection U — U/A is a homeomorphism, then the
trivialization of L(Q,«) corresponding to U is given by the commutative
diagram:

UxT— (UxT)/A

3 1
U/AxT —U/A

where all maps are natural projections. Notice that the two maps U x T —

U/AxTand U x T — (U x T)/A are homeomorphisms by the choice of U.
It’s interesting to notice that every line bundle on a tropical torus is of

the form as in definition 4.4, we obtain this in the following proposition:
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Proposition 4.5. The map L(-,-) defined above is a surjective group homo-
morphism. Furthermore, its kernel is 0 x (Z™)*.

For a proof see [4], Proposition 28.

Now, given a line bundle L := L(Q,«) on X, a global section s of L
is a function s : X — L such that, for every set U/A of the covering, the
composition with its restriction:

pu o Wy o sy

is a regular function, let’s denote it with hy. By the homeomorphism U 2
U/A we have that hy descends to a regular function fry : U — T. Patching
together all these functions we obtain a regular function

©:R" — T.

Now take an element x in R™ and a A in A, suppose that z + X\ belongs
to the open set U of the covering. Since we have that

s(fz+Al) = (@ + X hy(fe + AD] = [(z + A, Oz + A)] = [(, O(2))],

it follows that © satisfies the following quasi-periodicity with respect to the
lattice A:

O + ) = O(x) + Qa(\,7) + 3Q=(AN) +a()) (2)

for every z in R™ and A in A. By regularity, we have that © is either the
constant map with value —oo or has only real values, in the latter case
we have that such function can be locally expressed as a tropical Laurent
polynomial, and hence is "locally convex" in the sense that for every point
z in R™ there is a convex open set containing = such that the restriction of
© to that neighborhood is convex. The following proposition holds:

Proposition 4.6. FEvery locally convex function on a convexr subset of a
normed vector space is convez.

For a proof of the previous proposition see |5, Corollary 2|. As a conse-
quence, we have the following Corollary:

Corollary 4.7. Given a positive definite tropical line bundle L = L(Q, «) on
the tropical torus X = R™ /A, we have that every regqular function © obtained
with the above procedure is convex.
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It follows that we can then identify the tropical module I'(X, L(Q, «))
with the set of all regular functions on R” satisfying the quasi-periodicity

in 2, as well as the map which is constantly —oo. We call every element of
I'(X, L(Q,«)) different from —oo a tropical Theta function.

Observation 4.8. Suppose that @ has a negative eigenvalue with eigenvec-
tor A, then the term

Qr(M ) 4+ a(N) + Qr(\, z)

diverges quadratically to —oo for |A| — 400, because a(\) + Qr(A, x) is
linear in A. It follows that any function in I'(X, L(Q, «)) different from —oo
diverges to —oo in the direction of A, this contradicts the convexity of the
function.

4.1 Positive definite case

In the following we fix an element @) of A* ® (Z™)* and a linear function
a : R"™ — R. Suppose that @) extends to a positive definite and symmetric
bilinear form on R™. Denote with ¢ the map A — (Z")* given by ¢(\) =
Q(A, ), and denote with gg its extension to R™. Since Qp is positive definite,
we have that gr is invertible, hence there is a unique r in R™ such that
gr(r) = a. From now on, we will assume to have extended @ to Qg in the
following way: consider the canonical basis {e],...,e}} of (Z™")*, for every
i =1,...,n define A\; to be a primitive vector in A such that ¢(\;) = a;e}
for some positive integer a;. This is possible because the group (Z")*/q(A)
is torsion. It follows that the set B = {A1,...,A,} is a basis for A, and

let {e1,...,en} C Z" be the canonical basis. Then the bilinear form Qg is
defined by:
Q]R(bl)\l + by, crer + -+ cnen) = Z biCjQ(Aiv ej)'
0]

In particular, the matrix of Qgr with respect to the basis {A1,..., A\, }
and {eq,...,e,} is diagonal with integer coefficients.

Definition 4.9. Let B C (Z")* be a complete set of representatives of
(Z™)*/q(A), for every b in B we define the function ©p : R" — R by:

Op(x) := rilg[i({(b—i— q(N\) - x — %QR(/\+ qﬂgl(b) —-r A+ qﬂgl(b) - 7')}

We also define a(b, \) to be the term Qr(A+ gz (0) — 7, A+ g5 (b) — 1)
in the maximum.
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Notice that the cardinality of a set B as in definition 4.9 is by definition
the same as the degree of the polarization Q).

Proposition 4.10. The functions Oy of definition 4.9 are Theta functions.

Proof. Let b be an element of B, then we first check that ©,(x) satisfies the
quasi-periodicity with respect to the lattice A. Given any A in A, one has
that:

Op(z+A) = %lefi/{({(b+Q(M)) (T +X) - %QR(ququgl(b) —rpn+qg'(b) —7")}

and this value remains the same when we make the replacement p — p+ A
in the maximum. This leads to:

On(a+A) = max { (b+a(\) +a(4))-(+X) ~ 3 Qr M a (0)—r: it Aera (8)-1) )

which is equal to:

max { (b4 (1)) -2+ b A+ Qe(\A) + Qaln )+ Qa(h,2) — 2Qa(0 )~
HEA 2

~ SQR( g (0) — o+ g 0) 1) — Qe g () 1),

and this is equal to:
1
@b($) + QR(A, x) + 5QR(A7 A) + a(N).

This shows that if b+ ¢(\) is a slope of Oy, then b+ q(\) + ¢(p) is also a
slope of O for every p in A, it follows that the set of slopes of O is exactly
b+ q(A). Now, let D% be the closure of the subset of R" on which 6} is an
affine-linear function with slope b + ¢()\), by the quasi-periodicity we have
that

Dy =X+ D ®)

for every \,\ in A. It follows that DS’\ is a fundamental domain for the
quotient R™/A for every A, hence ©y, is fully determined by its values on Dlj\.
It follows that Oy is regular because near every point of R" it can be written
as the maximum of a finite number of Z-affine functions. O

As a consequence of proposition 4.10 we have that in the positive defi-
nite case there always exist theta functions for L(Q,«). Then take a theta
function © and consider its Legendre transform:

6(a) = max{a -z — O(x)}
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for every a in (Z™)*. One can see that ©(z) diverges to +oo quadratically
as |z| tends to infinity: this can be shown by taking z = 2’ + A\, where 2z’
lives in a bounded set of representatives of R™/A and |\| tends to infinity
and then use the quasi-periodicity and the positive definiteness of Q). As a
consequence, the maximum above exists. One can check directly that the
Legendre transform is convex in the sense that ©(a) < Yicr ti@)(ai) for a
finite set I, some a,a; in (Z™)*, and real numbers 0 < ¢; < 1 such that
Y icrtia; = aand Y, ;t; = 1. Moreover the Legendre transform satisfies
the following quasi-periodicity:

Blat g(~N) = B(a) — a- A+ JQu(\A) +a().

Moreover, by Corollary 4.7, the Legendre transform of O is O, therefore:

O(r) = max {a-z— @(a)} =
ac(Zm)*

= r&aé(r{lgxc{(b +q(=A) 2 =00+ q(-N)} =

~

= maxmax{(b+q(-A)) - = 6(b) +b- A~ %QR()H A) = Qr(A, 1)} =

— max(©4(2) + 5Qu(d’ ) ~ .z (1) — 1) - B(B)}

where in the last equality we had to replace A with —A. Then we have
that every Theta function © of I'(X, L(Q, gr(r))) can be written as:

O(x) = max{Op(z) + sv}

for some sp in T, therefore the functions ©y(z) generate I'( X, L(Q, qr(7))),
i.e. every theta function can be written as a tropical linear combination of
the ©.

Proposition 4.11. The Legendre transform induces a bijection between the

set of conver functions
n:(Z"*—R

that satisfy the following quasi-periodicity for every a in (Z™)* and X\ in A:

na-+a(N) =n(a) +a- A+ 5Qr(\A) ~ Qa(r, M),

and the set T'(X, L) \ {—oo}. Furthermore, the set above is convex.
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Proof. The first part of the statement follows from what was observed above.
For convexity, let 11,72 be two of its elements, then given two real numbers
0 < a,b <1 such that a + b =1 it follows that the sum an; + bny defines a
function from (Z™)* to R, and it’s easy to see that it satisfies the requested
quasi-periodicity. ]

Proposition 4.12. Let Q, « and B be as before. Then the set {Op}pep is a
minimal set of generators of I'(X, L(Q, «)), and hence the minimal number
of generators is | B|.

Proof. In the proof of proposition 4.10 we showed that any function Oy is
fully determined by its values on a fundamental domain DS’\, on which it is
affine-linear with slope b + ¢(\). Hence O, cannot be written as a tropical
linear combination of two or more Theta functions, because if it was the case,
then their maximum on DE’\ would be equal to only one of them. It follows
that the set {Op}pep is a minimal set of generators of I'(X, L(Q, ¢r)). O

Let’s now see what happens when instead of B we choose a different
subset B’ of (Z™)* as set of representatives of (Z™)*/q(A). Clearly for every o/
in B’ there is an element Ay in A and a unique b in B such that &' = b+q(\y).
We can make the following:

Observation 4.13. For every z in R"™ and b,b' as above, we have that
Op(z) = Op(x). Indeed, one just needs to consider the maximum defining
Op(z) with respect to an element p running through the lattice A, and then
make the substitution gy = A + Ay, where A runs through the lattice A.
As a consequence, we have that considering two different complete sets of
representatives of (Z")*/q(A), say B and B’, the set {Oy }ycp is equal to
the set {Op}pen-

We can say something more about the relation between a generator O
and the translate ©, 5, for an element A in A := gz " ((Z™)*): namely, it’s
straightforward to prove that:

O gu (i) () = Op(x — A) + Qr(\, ) — %QR(S\, A+ a(N), (4)

and, as a consequence:
- 8 1 .- 8
O ge(h) (2 +A) = Op(2) + Qr(A, 2) + SQr(AA) + a(A). (5)

As a consequence of the above relations, we get the following Lemma:
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Lemma 4.14. Consider the line bundle L(Q, «) on the n-dimensional trop-
ical torus X = R"™/A, and let B be a complete set of representatives for
(Z™)*/q(AN). Fiz an element X in A, then, for every X in A and b,b" in B,

one has that Dl)’\ + A= D?\Jqu()‘). Moreover, all the fundamental domains Dl)’\/
are translates of Df’\.

Proof. We have that for every x in~Df’\ + A, the element z — A belongs to DY,
and therefore the slope of Oy(z — \) is b+ ¢(\). Using formula 4 we obtain
that:

Ot gu() () = (0+ (V) - (& = X) = a(b,A) + Qr(A,z) — %QR@, N+ a(N),

which shows that the slope of ©, 5 in z is b-+qr(A)+q(A), hence x belongs

b+ar (X . . . .
to D/\Jqu( ). The reverse inclusion is proven similarly using formula 5. Now,

take an element b’ of B, there is an element A in A such that qR(S\) +bo="0.
It follows that

/

DY = e — pb oy X
0

Thanks to Observation 4.13 we can suppose that the element 0 belongs
to B. Now, following [6], we will give a result useful for the description of
DY.

Definition 4.15. Let G be a positive definite symmetric bilinear form on
R"™, we denote with N the norm on R" defined in the following way:

N(z):=G(z,x) VreR"™

Let A C R"™ be a full rank lattice, then for every A in A the Voronoi cell
V(A) is defined to be the set of points:

V(N =={z RNz — XN < N@—-X) VN €A}

Definition 4.16. Let G be a positive definite symmetric bilinear form on
R™ and A C R™ a full rank lattice. An element A # 0 in A is called Voronoi
vector if the hyperplane

1
{x € R'|G(a,\) = ;G0\, /\)}
has a non-empty intersection with the Voronoi cell V' (0). A Voronoi vector

is strict if this intersection is a (n — 1)-dimensional face of V(0), otherwise
it is laz.
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The following theorem holds:

Theorem 4.17. Let G be a positive definite symmetric bilinear form on R™
and A CR™ a full rank lattice. A non-zero vector A in A is a Voronoi vector
if and only if A is a shortest vector with respect to the norm N in the class
A+ 2A. It is a strict Voronoi vector if and only if A and —\ are the only
shortest vectors in A+ 2A.

Proof. Suppose that X\ is a Voronoi vector and there is a A’ in A such that
A— XN €2A and N(X) < N(A). Then the vectors:

1
ti=—-(A+ N
2( + )7

1
==X
u= 5O )

both belong to A. Let 2 be an element of R" such that G(z,\) = $G(\, \)
and the following inequalities hold:

G(z,u) <
From these inequalities we deduce the following
NA) =G\ A) =2G(z,\) =2G(z, t +u) =
= 2G(z,t) + 2G(z,u) < N(t) + N(u) =
= iG(A + A A+ M)+ iG(A — N A=\ =

= INO)+ SN Y),

which implies that N(A) < N()’), which is a contradiction. Conversely,
suppose that A is a shortest vector in A + 2A but not a Voronoi vector.
Suppose that for every X’ in A we have that G(A, \') < N(X'), then it follows
that the point z = \/2 belongs to the hyperplane

{2 e R'(G(z,3) = %G()\, »)

and to V(0), contradicting the fact that A is not a Voronoi vector. Then
there is a X' in A such that G(A, \') > N(X'), but then the following holds:

N =2V) = NA) +4N(V) — 4G\, N) < N(N),
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contradicting the fact that X is a shortest vector in A + 2A.
The last part of the theorem can be proven in a similar way. O

Corollary 4.18. Let X = R"/A be a tropical torus with a positive definite
line bundle L = L(Q,«), and define N to be the norm on R™ given by
N(z) = Qr(z,z) for every x in R™. Then we have that DY is equal to
the translation by —r of the Voronoi cell V(0) with respect to the norm N.
Moreover we have that DY can have at most 2(2" — 1) facets.

Proof. On DJ the theta function Oy is identically equal to —«a(r)/2, theore-
fore we must have that for every A in A and x in DY:

1
—a(r)/2 > Qr(\, x) — §QR()\ —rA=r),
which is true if and only if:
N(A) > 2Qr(x + 1, A),

and this implies that « + r belongs to V(0). The second part follows from
Theorem 4.17 and the fact that there are 2" —1 non-zero classes in A/2A. O

Example 4.19. Let L := L(Q, «) be a positive definite tropical line bundle
on the torus X = R"™/Z", suppose that @ with respect to the canonical basis
{e1,...,en} of Z™ is diagonal, with eigenvalues di,...,d,. Suppose that 0
belongs to the set B of representatives of (Z™)*/q(Z'"), then we have that
DY =[-1/2,1/2]". To see this, first notice that

1
Bp(0) = {_* A A }:Oa
0(0) max 2QR( )
moreover

1 1 1 1 1

Sa) = A .(7,...,7)—7 /\,)\},

@0<2 2) araneT {Q( ) (3g) 3N
)\:alel+"'+anen

which is equal to:

1
—- max {dl(al—a%)—l—'--—i—dn(an—ai)} =0.
2 ai,...,an€Z

A=aje1+--+anen

In a similar way one proves that ©g(aie; + ...ane,) = 0 for every
(a1,...,an) in {—1/2,1/2}", and then the convexity of O implies the state-
ment.
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Now, let 7 : TB — I'(X, L(Q, @) be the map given by 7((sp)pep)(z) =
maxpeg{Op(z) + sp}, by Observation 4.12, w is a surjective tropical mor-
phism.

Definition 4.20. We define the map ¢ : I'(X, L(Q, a)) — T? by

$(0) = (¢"(0))ren
where ¢°(0) = mingern {O(z) — Oy(x)}.

Notice that the minimum in the definition of ¢*(0) always exists because
by quasi-periodicity the difference ©(x) — ©y(x) is periodic with respect to
the lattice A, hence we can compute this minimum on a compact subset of
R™.

Observation 4.21. Let O(z) := maxpep{O(z) + sp} for an element (sp)y
in TB. We have that for every x in R” and every V' in B:

@(l’) — Oy ({E) > Oy (:L') + Sy — @b/(a?) = Sy,
hence ¢ (©) > sy.
We have the following;:

Proposition 4.22. Let O(z) := maxpep{Oy(x) + sp} for an element (sp)p
in TB. Then for all b in B we have that ¢* (©) = sy if and only if there
exists a y in R™ such that ©(y) = O (y) + sp -

Proof. Suppose that there exists an y in R™ such that ©(y) = Oy (y) + sy,
then the set A := {2z € R"|O(z) = O (2) + sy } is non-empty. We have that:

#(©) = min{6(x) - Oy (2)} < min{O() - Oy (x)} = sy

The converse inequality is true by Observation 4.21. ]

Notice that it’s not always true that ¢?(©) = s, for example when
Sp = —OQ.

Observation 4.23. The composition 7o is the identity map on I'( X, L(Q, «)).
Indeed, let O(z) = maxpep{Op(z) + sp} be a Theta function, then by Ob-
servation 4.21 we have that for every b in B and = in R™:

Op(z) + ¢°(©) > O4(z) + b,
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hence taking the maximum with respect to b we find that 7(¢(0))(z) > ©(x).
Conversely, we have that

Oy(z) + ¢°(0) = Oy(z) + yrrel]g,ll{@(y) —O5(y)} < O(x),

hence taking the maximum of the left side with respect to b we get the reverse
inequality. An immediate consequence of this is that the map ¢ is injective.

Via the map ¢ we can define a topology on I'( X, L), more precisely: if the
space T is equipped with the order topology, and T? is equipped with the
product topology, then the topology on I'( X, L) is generated by all preimages
of open sets in TB. We will need the following proposition as a useful way
of computing the map ¢:

Proposition 4.24. Let X be a tropical torus, L = L(Q,«) a tropical line
bundle on X, and let © be a theta function in I'(X, L), then for all b in B
we have:

¢"(©) = ~6(b) + a(b,0).
Proof. Recall that in the proof of Proposition 4.10 we have seen that the
function Oy is fully determined by its values on Df’\ for every b in B and
XA in A. As a consequence we can rewrite the minimum defining ¢ in the
following way

¢"(©) = min{6(z) — Oy(x)} =

TER™

= win [6(z) — 0,(2)) =
z€Dy

= minb{@(x) —b-x+a(b,0)}
zeDg

by the quasi-periodicity. Now notice that from the inequality Oy(z) > b- 2z —
a(b,0), which holds by definition, one deduces that

O(z) = b+ +a(b, 0) > O(z) — B4(x),
and taking the minimum with respect to x in R™ one finds that

mﬁg}b{@(a:) —b-z+a(b,0)} > mﬁg{@(m) — Op(x)} = mlrﬁ{@(m) — Op(x)}.
z€ TE zeDg

The reverse inequality holds, therefore one can write:
#(©) = min{O(x) ~ bz +a(b,0)} =
= —max{—0O(z)+b -z} +a(h,0) =

zeD}

= —0(b) + a(b,0).
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Observation 4.25. A consequence of Proposition 4.2 is that the image
o(I'(X, L)) is always a convex set.

Example 4.26. Let X = R/Z be a 1-dimensional tropical torus, let L be
the line bundle L(2,0) and define B to be the set B := {0,1}. We easily see
that in this case r = 0 and

_ 2
Oo(z) = %12%{2711' n},

O1(x) = mag{@n + 1Dz — (n+1/2)%}.
ne
One can compute the maximums and find that:
Oo(z) = 2afz] — [x)* + (2(2 — [z]) - DT,

01 (x) = 2x[z—1/2)+2—[z—1/2*~1/4—[x—1/2]+(2(x—1/2—[z—1/2])—1)T,

where [z] denotes the integer part of z and 2™ = max{0,z}. Now consider
the following cases:

o If x—[x] <1/2then [x—1/2] = [z]—1, and hence: x—1/2—[z—1/2] =
x — [z] +1/2 > 1/2. It follows that:

O (x) = 2z[z] — [2]?,
O1(z) = 2fz] — [2]? + 2 — [2] — 1/4,
and therefore Og(z) — ©1(z) = = — [] — 1/4.
o If z — [2] > 1/2 then [z] = [z — 1/2], and therefore one finds that:
O (x) = 2zfx] — [2]* + 2(x — [x]) — 1,
01(z) = 2z[z] + = — [2]% — 1/4 — [],
and hence Qg(z) — 01 (z) = = — [2] — 3/4.

As a consequence, by Proposition 4.22 we have that ¢%(0g) = 0, while
¢'(Q0) = min {G(x) — O1(2)} = ~1/4.

(0,—1/4), and this implies that Op(x) =

This proves that ¢(Qg) =
),01(z) — 1/4}. Moreover ¢'(0g) = —1/4 > —oo.

m(0,—1/4) = max{O(z
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In this way we can also construct theta functions with unexpected images
through ¢: for example define

O(z) := max{O¢(x) + 3/2,01(x) + 1},

then since we have that Og(z) — O1(z) > —1/4 > —1/2 =1 —3/2 it fol-
lows that ©g(z) + 3/2 > O1(x) + 1 for every z in R™. As a consequence
we have that ¢'(©) = mingern{Oo(z) + 3/2 — O1(2)} = 3/2 — 1/4 =
5/4 > 1. This shows that in general it’s possible that ¢*(©) > s if
O(z) = maxyep{Op(x) + sy}

We state the following lemma, which will be useful later, for the proof
see [4, Lemma 35|:

Lemma 4.27. Let D be a compact convex polyhedron in R™ and
f:DxR™ =R

a conver piecewise-linear function with finitely many slopes, i.e. it can be
written as the maximum of finitely many affine-linear functions. Define g :
R™ — R by: g(y) := mingep{f(x,y)}, then g is a conver piecewise-linear
function with finitely many slopes.

Now, a series of observations will lead to the proof of the main theorem
of this section. First of all, fix a tropical line bundle L on a tropical abelian
variety X = R™/A such that @ := ¢;(L) is positive definite, furthermore fix
a complete set B of representatives for (Z™)*/q(A) as done before.

Notice that an element (sp)pecp of T? belongs to the image of ¢ only if
there exists a Theta function ©(x) = maxpep{Op(x) + tp} in I'(X, L) such
that ¢(©) = (sp)pen, and therefore w((sp)pep) = maxpep{Op + sp} = O, so
one only needs to check that ¢(max{Op + sp}) = (sp)peB-

Moreover, take a Theta function ©(z) := maxycp{Oy(z) + ty}, we have
that for every b in B, asking that ¢’(©) = t; is equivalent to ask that:

ty > ;Ielilgb{b,g}%}fb}(@b/(x) +ty) — Op(2)}. (6)

Indeed, if #*(0) = t; then we have that

= 1 — > 1 / / - .
ty = min {6(z) @b(x)}_;gﬁg{b,g%b}(@b (@) + ty) — ©y(x)}
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For the converse, first notice that for every x in R™ one has that O(z) —
Op(z) > tp, therefore taking the minimum one deduces that ¢*(©) > t,.
Moreover, from the inequality

> 1 / / -
ty > gel]ﬁ%{b/gﬁ}{(b}(gb () + ty) — Op(x)}

one deduces that

tp > mi i Oy ty) —© C) ty — O

b= mln{gﬁg{b,gﬁﬁ}( v (x) +ty) — Op(x)}, Op(x) + tp — Op(2)},
and since the right hand side of the inequality is equal to mingcgn{O(x) —
Op(z)} one can conclude that ¢°(©) < t;, and hence ¢*(0) = t,.

Now, using the notation of Proposition 4.10, and using the periodicity of
the difference between two theta functions, we can rewrite the minimum in
6 in the following way:

ty > mi Oy +ty) — O )
p > ;Ielg%{b,gll;a\?b}( v () +ty) — Op(z)}

which is then equivalent to:

tpy > min{ max (Op(z)+ty)— (b-z—a(b,0))}.
min (s (Oy(@) + 1)~ (02~ a(3,0)))

Consider the right-hand side of the above inequality, and define a function

f: Dg x RE — R by setting
x, (ty )y = max (Op(x)+ty)—>b-x+a(b,0).
f(@, (ty)ven) b,eB\{b}( v (@) + ty) (6,0)

Notice that some of the t; might be equal to —oo, in that case the
corresponding sum Oy (x) + tp is trivial and doesn’t give a contribution to
the maximum above. Thus, one has to ignore this term and consider a space
of smaller dimension than RB. If all the ¢, are equal to —co except tp, then
the condition (ty)yecp € im¢ is automatically fulfilled. The function f is the
maximum of a finite number of affine linear functions, we can apply Lemma
4.27 and deduce that the right-hand side of the above inequality is a convex
function, say gp, that can be written as the maximum of a finite number of
affine linear functions. Now, we give the following definition:

Definition 4.28. A rational polyhedron in R™ is a subset of the form

ﬂ{x e R"x-a; > b;}
iel

where [ is a finite set, the a; belong to Z™ and b; are real numbers.
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We can summarise what we found so far in the following way: let {ey}ren
be the canonical basis for RE, then

img NRZ = ﬂ {z e RB|z - ey > gy(2)},
beB

and by what we have noticed above, there is a finite set J; and some a; in 7B
with real parameters b; for every j in Jp, such that gy(x) = max;ej{a;-x+0;}.
Then the set im¢ N R? can be written as a finite intersection of closed half
spaces with rational slopes as in Definition 4.28, therefore it is a rational
polyhedron. Now recall that in Observation 4.25 we have seen that the
image of ¢ is convex, we can deduce that its restriction to R? is a convex
polyhedron. To compute its dimension, let’s look at what points are certainly
contained in this image. First of all, consider the theta function E(x) :=
maxpep{Oy(z)} and define the lattice A := gz '(Z")*. For every n in A, b in
B and z in R™:

E(z +1n) = max{Op(x +n)},
beB

and remember that by formula 4 this is equal to:

10 {0y ) ()} + Qe (1,2) + 5Qa(n,m) + )

Recall that by Observation 4.13 the sets {Op}rep and {Oppq, () }oep are
equal, hence:

=+ ) = 5(2) + Qa0 2) + 5 @a(1,1) + ().

As a consequence, one sees that the set of slopes of E is exactly (Z™)*.
Now, since the set of slopes is (Z™)* and the sets b+¢(A) are pairwise disjoint,
then every @y is relevant in the tropical sum, this implies that ¢°*(Z) = 0 for
every b in B, and hence the origin (0,...,0) is an element of the image of ¢.
Now, fix an element b in B, by what we just noticed it’s clear that for every
b in B different from b there is an 1 in R™ such that

E(yy) = O (yp) > Op(yw),

because if this wasn’t true it wouldn’t be possible for Z(x) to have b’ + ¢(A)
as a subset of the set of slopes. Therefore, one can find a positive real number
Ey such that

Oy (yy) > Ov(yp) + v

32



Let &, be the minimum of all the ey, now exchanging b with another
element b” of B we find a number &, defined with a similar procedure as
before. Finally, we define:

€ := min &z,
beB
which by construction is positive and it has the following property: for every
b,b’ in B there exists an element y in R™ such that

E(y) = O (y) > Ou(y) +e.

As a consequence, for every b in B consider the theta function
0%(z) := max{E(x), Oy(x) + ¢},

by Proposition 4.22 we have that ¢°(60%) = ¢, because of the positivity of &
and the fact that ¢°(Z) = 0 trivially imply that the maximum that defines
©°(z) is realised by Oy (z)+¢ for some x in R™. Moreover, the construction of
¢ implies in the same way that ¢ (@%) = 0 for every ¥’ different from b. This
means that all the points (¢,0,...,0),(0,,0,...,0),...,(0,...,0,e) belong
to the image of ¢, and together with ¢(Z) we have a total of |B| + 1 points
in general position. By the convexity of the image of ¢, it follows that their
convex hull is contained in the image, which is then a convex polyhedron of
dimension |B].

We summarise the conclusions of the previous argument in the following
theorem, due to Sumi, one can find a similar proof in [4]:

Theorem 4.29. Let L = L(Q,«) be a tropical line bundle on a tropical
abelian variety X = R" /A such that Q extends to a positive definite bilinear
form on R™. Then T'(X,L) is generated by |B| = |Cok(q)| elements as
a T-module. Moreover, the map ¢ identifies I'(X, L) with a convex |B|-
dimensional polyhedron in TB.

4.2 Positive semidefinite case.

In the following section we will consider a line bundle L := L(Q,a) on
X = R"/A such that @ extends to a positive and symmetric semidefinite
bilinear form on R™. The first observation is that in this case the kernel of
gr is not necessarily 0, and there is a set of generators which are all in A
or in Z™ because of the symmetry (we call this properties respectively A-
rationality and Z-rationality). Remember that, by Proposition 4.5, for every
r in R™ and 7 in (Z™)* the line bundles L(Q, gr(r)) and L(Q, gr(r) + ) are
isomorphic. Therefore, the study of every element belonging to imgr + (Z™)*
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can be reduced to that of an element in imggr. So let’s first study the case
a = ggr(r) for 7 in R™, and let A be any element of ker(q) C A, then for every
theta function © in I'(X, L) we have that:

O +3) = O(x) + Qe(A, ) + 5Qx(\ A) +a(A) = O(a)

by the definition of A. The formula above together with the convexity of ©,
imply that ©(z) is constant along the directions of ker(q), hence for every u
in ker(gr):

O(z +u) = O(x).

As a consequence, we have that theta functions in I'(X, L) descend
to functions on R™/ker(gr). Define then the lattice A to be the lattice
A/ ker(q) in R"/ ker(qr), as well as Qg to be the element of (R"/ker(qr))* ®
(R™/ ker(gr))* induced by Qr and @ the linear map on R"/ker(gr) induced
by o. Similarly, call © a function descending from a theta function in
['(X, L), it satisfies the following quasi-periodicity for every A in A and x

in R"/ ker(qr):

B(s+ A) = B(x) + O, A) + %@R(/\, ) +a(n).

One can check that the slopes of © lie in (Z")*/(ker(gr)). Now, we can
identify (R™/ker(qr))* with imgg, and similarly we identify (Z"/(ker gg N
Z™))* with imgr N Z".

Define g : A —imgg N (Z")* to be the linear map induced by ¢, since now g is
positive definite we can apply the results of the previous section and obtain
that T'(X, L) is generated by ¢ := |Cok(q)| elements and is identified with an
(-dimensional convex polyhedron in T¥.

Now let’s analyze the case in which « doesn’t belong to imgg + (Z™)*: first
suppose that a(ker(¢gr) NZ") C Z, i.e. « is integral on ker(gr) N Z". Then
translating a by some element in (Z™)* we can suppose that a(ker(gr)NZ"™) =
0, but then the Z-rationality of ker(gr) implies that « is a linear map on
R™/ker(qr), hence it belongs to imgg, which is a contradiction. It follows
that « isn’t integral on ker(qr) N Z". Now, take any theta function © and
notice that given an element X' in A Nker(ggr) the quasi-periodicity implies
that:

Oz + N) = 0(z) + a(XN).

Then the A-rationality of ker(ggr) implies that © is affine linear on ker(qg)
with slope «, but since « isn’t integral on ker(gr) NZ", it would follow that
the function isn’t regular, which is absurd. Hence for such « the set I'(X, L) is
just {—oo}. We can then summarise the previous argument in the following:
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Theorem 4.30. Let X be a tropical torus of dimension n and L = L(Q, @)
be a tropical line bundle on X such that QQ extends to a positive semidefinite
bilinear form on R™. Then:

1. If « belongs to imqr + (Z™)*, then T'(X, L) is generated by ¢ elements,
where ¢ is the cardinality of the torsion part of Cok(q), as a T-module
and T(X, L) embeds into T' via the map ¢. Moreover, T'(X,L) is
identified with an ¢-dimensional convex polyhedron in T¢.

2. If a is not in imgg + (Z™)*, then T'(X, L) = {—o0}.

4.3 Divisors on tropical tori.

In this section we give some notions about divisors on tropical tori: remember
that we have defined a rational polyhedron in R™ to be a set of the form

Nier{r € R"|a; - © > b;}

for a finite set I, some a; belonging to (Z™)* and some real numbers b;. Now
let o be a rational polyhedron, we define a face of o to be a set of the form

oN{zx e R"a- -z =b}

where a belongs to (Z™)*, b is a real number, and the following condition
holds:
o C{zeR"|a-z >0}

We can then give the following definitions:

Definition 4.31. Let M be a tropical manifold of dimension n with atlas

{(Us, 9:)}-

e A rational polyhedron of M is a subset o C M such that for every chart:
¢i(oc NU;) is the intersection between im¢; and a rational polyhedron
p; in R™ for every 1. We define a face of o to be a subset 7 C o such
that ime;(7 N U;) is the intersection of im¢ with a face of p; for every
i.

o A rational polyhedral complex on M is a set 3 of rational polyhedra on
M that satisfies the following:

1. X is locally finite, i.e. each point of its support is contained in a
finite number of polyhedra in X.
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2. Any face of a rational polyhedron in o belongs to X.

3. For every o, 7 in ¥ such that o N7 # (), their intersection is a face
of both ¢ and 7.

A rational polyhedral complex is said to be pure k dimensional if its
maximal cells have dimension k.

e Let 3 be a pure n — 1 dimensional polyhedral complex in M, a weight
of ¢ is a function
f $Xp1 — Z,

where ¥,,_1 is the set of n — 1-dimensional cells in X. We call the pair
(%, f) a weighted rational polyhedral complex.

The k-dimensional polyhedral complexes that we want to study must
satisfy another condition, namely to be balanced at every k — 1-dimensional
cell in the following sense:

Definition 4.32. Let (3, f) be a weighted rational polyhedral complex in
R™, and let P be a n — 2-dimensional cell of 3. We denote with L(P) the
tangent space of P, we also denote with S1, ..., S the n—1-dimensional cells
adiacent to P. Consider the primitive outgoing vectors vy, ..., v, that are
respectively parallel to S1/L(P),...,Sx/L(P), notice that for dimensional
reasons the choice of these vectors is unique. We define (%, f) to be balanced
at P if Ele f(Si)vi = 0. We say that (X, f) is balanced if it’s balanced at
every n — 2-cell.

A weighted rational polyhedral complex on a tropical manifold is balanced
if its restriction to each chart is a balanced polyhedral complex.

A way to construct balanced polyhedral complexes is the following: let
fR" —R

be a piecewise-linear function with integer slopes. We define D(f) to be the
subset of R™ given by the points of non-differentiability of f. If we consider
the set K defined by:

K :={(z,y) € R""Yy = f(z), f non differentiable in z},

we have that, by the definition of f, each point of K has a neighborhood in
which K is the intersection of a finite number of hyperplanes, therefore it’s
homeomorphic to the restriction of a rational polyhedron in R"*!. Since the
projection K — R"™ given by (x,y) — x is a homeomorphism onto its image
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D(f), we have that D(f) is a rational polyhedral complex. We can also
define a weight on such complex in the following way: let .S be a maximal
cell of D(f), for dimensional reasons, we can find two open sets Uy, Uz such
that the intersection of their closures is S, and the restriction of f to these
subsets is linear with integer slope. We define the lattice length £g of the
difference between the slopes to be the largest positive integer that divides
such difference. Then the weight of .S is defined to be fg if f is convex near
S, and —{g otherwise. One can prove that this gives D(f) the structure of
a balanced polyhedral complex.

We can finally state the following:

Definition 4.33. Let M be a tropical manifold, a divisor D on M is a
balanced polyhedral complex on M. Notice that one can always write D
locally as D(f) for a rational function f on an open subset of X. This means
that a divisor is given by pairs {(U;, f;)} where {U;} is an open covering of
M and the f; : U; — R are rational functions.

One can check changing charts that for a divisor {(Uj;, f;)} the differences
fi — f; are Z-affine linear on U; N Uj;, therefore we can always associate to
a divisor D a line bundle O(D) on X defining the transition function ¢;; to
be the difference f; — f;. We denote with Div(X) the set of all divisors on
X, we can define a group structure on Div(X) by setting:

{Ui, f)} + (V3 95)} ={(Ui NV, fi + 95)}-

Definition 4.34. We say that a divisor D is effective if it’s given by a
global regular section of O(D), we say that two divisors Dy, Do are linearly
equivalent if O(D7) and O(D3) are isomorphic.

Notice that the definition of effective divisor is different from the classical
one, found for example in [6, page 37|, where we define an effective divisor to
be a divisor given by pairs {(U;, f;)} where all f; are regular. This because
it’s not always true that the set of non-differentiable points of the f; is equal
to the set of non-differentiable points of some theta function. Indeed, recall
Ezxample 4.26, in that situation we have that a divisor can have as support
any finite subset of R/Z, but a theta function ©® = max{Og + sp,©1 + s1}
can have at most four points of non-differentiability, since the generators
have one point of non differentiability each. Despite this we have that the
converse holds, namely every theta function gives rise to a divisor:

Lemma 4.35. Let X be a tropical torus with a positive semidefinite line
bundle L, and let © be a theta function in T'(X, L). Then there is an effective
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divisor D in |L| whose support is equal to the set of non-differentiable points

of ©.

Proof. We will construct an effective divisor D given by © in such way
that O(D) = L and the thesis holds. Suppose that the line bundle L is
given by the covering {U;} and the set of transition functions {¢;;}, in the
following argument we will assume that each transition function ¢;;, which
is Z-affine linear and defined only on U; N Uj, can be extended to a Z-affine
linear function on U;, and hence on any set U via the homeomorphisms
U, = R" =2 U;. Let’s start fixing two open sets U;,U; with non-empty
intersection, and define the function f; : U; — R by fi(p) = ¢45(p) + O(p),
also define f; : U; — R by f;j(p) = ©(p). As a consequence we have that
their difference f; — f; defined on Uj; is equal to ¢;;. As second step we
consider every open set Uy of the covering such that Uy N U; # ), and we
define a function fi, : Uy — R by fi(p) = ¢ri(p) + ¢45(p) + O(p), in this way
we have that fir — f; = ¢w;, and moreover, given two such subsets Uy, U,,:

Tk = fu = ki + bij + O — dui — bij — O = dri — Duwis

and remember that ¢;, = —¢u; and that transition functions satisfy the
cocycle condition, hence this is equal to

¢ki + ¢iw = Qbkw‘
Moreover, suppose that Uy N U; # (), then one computes the difference
fe =i = bki + ¢ij + © — O = di; + dij = Pij.

The further steps consist in considering sets U, for which f, is still not
defined and that have non-empty intersection with an open set U, for which
fe is defined, then we put: f. := ¢.0 + fr. In such way we have that the
difference f. — f; = ¢.¢, moreover for each f,, f,» defined in such way we
have similarly as before that:

f?‘ - fr’ = ¢r€ + fZ - ¢r’£ - f@ = ¢r€ + ¢Zr’ = Qb'rr’-

Furthermore, for every open set Uy for which f, was already defined and
such that Uy NU, # 0 we have that:

Jr—fo =+ fo— for = O+ Qo = brp

because by construction we have that f; — fpr = ¢gr. Compactness of X im-
plies that this procedure ends in a finite number of steps, then we can define
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a divisor D given by the covering {U;} and the set of regular functions { f;},
by construction we have that the line bundle O(D) is equal to L, moreover
we have by construction that every regular function f; is the sum of © and
a Z-affine linear function, therefore the set of points of non-differentiability
of f; is just the set of points of non-differentiability of © in Uy, hence D is
effective. O

Given a divisor D on X, we denote with |D| the set of all effective divisors
linearly equivalent to D.

5 Embedding in the projective space.

In this section we give the conditions for a tropical torus to be embedded in a
tropical projective space, most of the results included are original, although
strongly inspired by the theory of complex abelian varieties that one can
study from [1]|. In section 2 of this thesis one can find a complete set of the
results of which we find a tropical analogue in this section.

5.1 The function ¢y,

The notion of projective space extends to a tropical analogue in a way that
we give in the following definition:

Definition 5.1. Let ~ be the equivalence relation on T"*! given by:
x ~y <= It €Rsuch that z = “t-y”,

where “t - y” stands for the scalar product giving T"*! the structure of
a tropical module. Let’s still denote with —oo the n + 1-tuple of T"*!:
(—00,...,—00), then we define n-dimensional tropical projective space the
quotient:

TP := (T" ™\ {—o0})/ ~.
We consider this space to be equipped with the quotient topology.

We will now study the way and the conditions to give an embedding of a
tropical abelian variety in the tropical projective space, namely we consider
a tropical torus X = R™/A with a positive semi-definite line bundle L =
L(Q, a). As done before we consider a set B of representatives of (Z™)*/q(A)
and a basis {O}pep of T'(X, L), then we define a function:

o+ X — TPIBI-T
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by:
pr(z) = (0p(2))beB-

We first notice that if y = x + A for an element X\ in A, the quasi-
periodicity of theta functions implies that ¢r(x) = ¢r(y), and hence ¢y, is
well-defined. This is a difference with the complex analog of the function
L, indeed according to Lemma 2.15 we have that the function ¢y defined
in section 2 is well defined on a complex torus if every eigenvalue is bigger
or equal to 2.

Denote respectively with p and p’ the projections R” — X and TIBl —
TPIBI=1 moreover denote with f the function R” — TIBI\ {—oc0} defined by
f(z) :== (Op(x))pep. By definition the following diagram commutes:

R 5 TIBI\ {—o0}
L
X ¥ . priBI-1

By the universal property of the projection this implies that ¢ is a
continuous function, we would like to study when this it is injective, the
following example tells us that in general this is not true:

Example 5.2. Let’s recall Example 4.26, in which we had found that for
the 1-dimensional torus X the space I'(X, L(2,0)) has generators:

Oo(z) = 2a[z] — [z]* + (2(z — [2]) - DT,

01 () = 2x[z—1/2)+z—[x—1/2>~1/4—[x—1/2]4+(2(x—1/2—[z—1/2])—1)T.

We want to find to points x,y and a real number ¢ such that ¢ (x) =
“t - pr(y)”, by periodicity of the difference between theta functions we just
have to look at the case in which z, y belong to [0,1). There are two different
cases:

e If z,y < 1/2 then we have that ©(z) = 0 = Oy(y), so we must have
t = 0, but then the condition ¢ (x) = “t - ¢r(y)” becomes:

z—1/4=01(z) =01(y) =y — 1/4,

which implies z = y.
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o If x <1/2 and y > 1/2 we have that Og(z) = 0 and Op(y) = 2y — 1 so
we put ¢ := 1 — 2y. Then the condition ¢y (z) = “t- ¢r(y)” becomes:

r—1/4=01(x)=01(y) +1-2y=y—1/4+1—2y,

namely:
y=1—=xa.

It follows that all points x,y in |0,1) satisfying this condition have the
same image via o, which therefore is not injective.

We now state the following lemma:

Lemma 5.3. Let X = R"/A be a tropical torus and L = L(Q, &) a positive
definite line bundle such that there is an eigenvalue of Q) which is at least
2. Let y1,y2 be two points in X such that or,(y1) = ¢r1(y2), then for every
divisor D in |L|, y1 belongs to D if and only if yo does.

Proof. In this proof we will consider the basis B on A for which the matrix
of @R is in diagonal form. Take any divisor D in |L|, we have that it is given
by a global section of O(D) = L, therefore by a theta function of I'( X, L),
let it be:
0= )
max{6; + sy},

for some sp, in T. The hypothesis on the eigenvalues tells us that there are at
least two Theta functions. Assume that y; belongs to D, let’s first suppose
that there are two different elements b, in B such that:

O(y1) = Op(y1) + sp = Ov (Y1) + s,
and since O(y;) cannot be —oco it follows that s, # —oo, hence:
Op(y1) — Ov (y1) = spy — sb.
Now, the fact that ¢r(y1) = ¢r(y2) tells us that:
Op(y2) — Ow (y2) = Ov(y1) — O (Y1) = sy — s,

s0 Op(y2) + sp = Op (y2) + spr. It’s not obvious that this number realises the
maximum in ©(yz), but we can notice that for every bin B: ©y(y1)—05(t1) >
53 — Sp, s0 using once again the fact that o (y1) = or(y2) we get:

Op(y2) — O5(y2) = Ou(y1) — O3(y1) > 55 — sp,
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which implies the thesis. Now let’s suppose that there is a b* in B such that
O(y1) = Op«(y1) + sp=, and it’s the only function realising the maximum.
Since y; belongs to D it follows that ©« is non-differentiable in y;. By what
was noticed before we also have that ©(ya) = O (y2) + sp=, and this is the
only function realising the maximum. To study better this case, suppose that
0 is an element of B, and consider two representatives p, q of y1,y2 in D8.
Suppose that in a neighborhood U of p the divisor D is given by the function
Oy« + f, with f Z-affine on U, and suppose that p belongs to the facet of
the boundary of Dl)’\* with slope g()\’) for a A in A. Consider another theta
function of the form O, and a point  on the facet of the boundary of DS with
slope ¢()\’). Then the function F(y) := Op(y+p—2x)+Op(p) —Op(2p—x) is
regular and satisfies the quasi-periodicity that characterizes theta functions,
hence it’s a theta function, and it’s different from O« because it has different
slopes. As a consequence we can redefine D by taking on U the function
F + f, because it has the same non-differentiable points as before, then we
conclude using a similar argument as before. O

A consequence of the proof of this lemma is that if two elements x, y have
the same image via ¢y, then for every © = maxpcp{Op + sp} in I'(X, L) the
numbers O(z) and O(y) are written in the same way, i.e. there is one ¥ in B
such that Oy (x)+ sy and Oy (y)+ sp realise the maximums in the definition
of ©(x) and O(y).

We have that the converse of the previous lemma is also true:

Lemma 5.4. With the conditions of the previous lemma, take two points
y1,y2 in X such that for every divisor D in |L|:

y1 €D <= yy €D,

then ¢r,(y1) = ¢1(y2).

Proof. Let’s first suppose that in y1,y2 every Oy is differentiable. Fix two
distinct elements b, &’ of B and define D to be the divisor given by max{©,+
Sp, O + spr }, where sy, sp are chosen in such way that

Op(y1) — Op (Y1) = spr — sp-
Clearly y1 belongs to D and hence ys does too, therefore
O(y2) — O (y2) = sy — 55 = Op(y1) — Ow (11),

and repeating the same procedure for every b, b’ gives the thesis. Now sup-
pose that a generator ©p is non-differentiable in yq,y2, then consider two
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representatives p, ¢ for y1,y2 in DY and suppose that ©(g) — Oy(p) is posi-
tive. Define the theta function © by:

O(z) := max{Oy, O¢ + O(q) + a(r)/2},

then © is non-differentiable in ¢, and hence p belongs to the divisor defined
by ©. Since up to replacing Og+ 04 (q)+a(r)/2 with ©O¢g+0y(q) +a(r)/2+e,
for an € small enough, in the definition of ©, we find a contradiction, because
©p + Op(q) + a(r)/2 is differentiable in p. O

Lemma 5.3 and Lemma 5.4 imply the following corollary:

Corollary 5.5. Let X = R"™/A be a tropical torus and L = L(Q, &) a positive
definite line bundle such that there is an eigenvalue of QQ which is at least 2.
Then for every two points y1,y2 in X, we have that ¢r(y1) = ér(y2) if and
only if for every divisor D in |L|:

y1 €D < y2 € D.

Let’s now look at an example in which things go differently than in
Example 5.2:

Example 5.6. Let X be the 1-dimensional torus R/Z, and consider the line
bundle L := L(3,0) and the set B := {0,1,2}. For every b in B we have
that the generators of I'(X, L) have the form:

oo = mar{ o+ 3(257))

and we can compute this maximum, obtaining that it is equal to:

O(x) = max{ (3 — b/3] + b)a ~ ;’(W)Z

(3[z — b/3] + 3+ b)z — 2(3[‘7” - b/? +3+b>2}.

To understand this better let’s compute the difference between the two
elements I am considering, it is equal to:

3z —3[x —b/3] —3/2 b,
therefore the maximum above is equal to the second element of the set if and

only if:
3(x—b/3—[z—b/3]) —3/2>0,
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which is true if and only if:
x—b/3—[x—0/3] >1/2.
Suppose that x belongs to [0,1), this implies the following facts:

1. If x < 1/2 then ©¢(x) = 0, otherwise Oy(x) = 3z — 3/2.

2.If1/3 < x < 5/6 then [z —1/3] = 0 and = — 1/3 < 1/2, hence
O1(x) = x—1/6. Otherwise, if x > 5/6 we have that ©1(x) = 4o —8/3,
while if 0 <z < 1/3 we have that ©1(z) =z — 1/6.

3. If1/6 < x < 2/3 we have that [t—2/3] = —1, hence z—2/3—[z—2/3] =
x+1/3 <1/2, and therefore O2(x) = 2z — 2/3. Otherwise, if 2/3 < x
we have that  — 2/3 cannot be bigger than 1/2, and hence we still
have that ©3(z) = 2x — 2/3, while if 0 < z < 1/6 it follows that
O9(x) = —x — 1/6.

Now, let’s suppose to have two points z,y in [0,1) such that ¢r(x) =
©r(y), there are different possibilities:

e If they are both smaller than 1/2, then ©¢(z) = 0 = Oy(y), and hence
we must have z —1/6 = O;(x) = ©1(y) = y — 1/6, which implies that
r=y.

o If z,y > 1/2, then Op(x) = 3z — 3/2 and Oy(y) = 3y — 3/2, while
O9(x) = 22 — 2/3 and Oz(y) = 2y — 2/3, which implies that
3z —y) = 2(x —y),
ie. x=y.
o If x > 1/2 and y < 1/2, then ©y(y) = 0 and O¢g(z) = 3z — 3/2, the

following system of equalities must hold:

{em — 01(y) = B(x)
Os(x) — Oa(y) = Oy ()

Let’s first suppose that x < 5/6, the system becomes:

r—y=3x—3/2
2r — 2/3 — O3(y) = 3z — 3/2

Y
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and one sees that for all values that ©2(y) can assume one either gets
that x = y or a contradiction.
Suppose that x > 5/6, then the equation

O1(z) — ©1(y) = Op(x)
becomes
4 —8/3 —y+1/6 = 3x — 3/2,
which yields:
r=y+1,

which is absurd. It follows that in this case the map ¢y, is injective.

5.2 The tropical version of Lefschetz’s theorem.

Now, consider a tropical torus X = R™/A of dimension n, and a tropical
line bundle L = L(Q,«) on X. Recall that by definition L is given by the
quotient R™ x T/A where A acts on R” x T by: A - (z,t) = (z + A\t +
Qr(z,\) + 3Qr(A,A) + a(N)). It follows that we can compute directly the
transition functions: take two open subsets U,V of R™ such that they are
respectively homeomorphic to U/A, V/A and suppose that U/ANV/A # 0.
It follows that there exists (and it’s unique) a A in A such that x + A =y for
every x in U and y in V such that [z] = [y] in U/ANV/A. Then we have
that the transition function linked to U/A,V/A is equal to:

buv([a]) = Qe N) + 5 @A) + a()

for every x in U such that [z] belongs to U/ANV/A.
Then consider an element [v] in X, it defines a translation:

ty : X — X

by t,([x]) = [z]+[v]. As a consequence of what we just noticed we have that
the transition functions of ¢;L all look like:

8(la]) = Qa(x +v,X) + 3@, A) +a()

for some A in A. Since Qr(v,A) is linear in A\, we deduce the following
formula:

6 (L(Q, o)) = L(Q, o + Qr(—,v)). (7)
This formula allows us to prove the tropical version of the Theorem of
the Square:
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Theorem 5.7. Let v, w be two elements of R™, X a tropical torus of dimen-
sion n, and L = L(Q,«a) a line bundle on X. Then the following formula
holds:

t*

v+w

Lt Lot Lo Lt

Proof. The formula is consequence of the following chain of equalities, in

which we just use formula 7 and the fact that L(—, —) is a homomorphism:
torwl = L(Q,a + Qr(—,v +w)) =
= L(Q a+ Qr(—,v) + Qr(— w))) =
=L@+ Q-Qa+Qr(—v) +a+Qr(—w)—a)=
= L(Q, 0 + Qr(—,v)) ® L(Q,a + Qr(—, w)) ® L(-Q, —a) =
=t Lot Lo L™

O]

Observation 5.8. Notice that for every divisor D on X and for every z in
X, we have by definition that ¢;D = D — z, and therefore:

yet,D < wet,D. (8)
We now need to give some definitions:

Definition 5.9. Let X be an n-dimensional tropical torus and L = L(Q, «)
a line bundle on X, we define the group A(L) to be the set:

A(L) = {z e R"|Qgr(z,Z") C Z},
then we define the subgroup of X, K (L) := A(L)/A.

Lemma 5.10. Let X be an n-dimensional tropical torus and L = L(Q, «)
a positive definite line bundle on X, then K(L) is a finite group isomorphic
to the cokernel of Q.

Proof. Let {e1,...,e,} be the canonical base of Z™ and {\1,..., A\, } a base
of A such that the matrix of @Q with respect to this bases has the form
diag(di,...,dy). Take an element = of A(L), we can write

T=a1A1+ -+ agA,
for real numbers aq,...,a,. It follows that for every i =1,...,n

QR(xa ei) = aidia
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which is an integer if and only if a; belongs to 1/d;Z. As a consequence we
have that x belongs to the group

Z§M fda} @ - @ Z{ A/ din},
which modulo A is finite and isomorphic to Coker(Q). O

From now on we will denote with Pic?(X) the subgroup of Pic(X) given
by the line bundles whose first Chern class is 0, in the following lemma we
state some basic facts on the group K(L).

Lemma 5.11. Let X be an n-dimensional tropical torus and L = L(Q, «)
a line bundle on X, denote with mx the endomorphism of X induced by the
multiplication by m, where m is an integer. The following properties hold:

1. For every P in Pic®(X), K(L® P) = K(L).

2. K(L) = X if and only if L belongs to Pic®(X).

3. For every m in Z we have that K(L™) = my (K (L)).

4. For every m in Z \ {0}, we have that K(L) = mx(K(L™)).

Proof. The first two points follow directly from the definitions. For the third
point, observe that L™ = L(m@, ma), hence:

AL™) ={z € R"mQr(z,Z") CZ} = {z € R"|Qr(maz,Z") C Z},
so, making the substitution y = ma we get:
A(L™) = {y/m € R"|Qx(y, Z") C Z} = my' (K(L)).
The last point follows from the third. ]

The following theorem will be a useful tool for the study of the function
PL:

Theorem 5.12. Let X be an n-dimensional tropical torus and M = L(Q, «)
a line bundle on X, then there exists a line bundle L on X such that M = L™
if and only if the kernel of mx is contained in K(M).

Proof. First suppose that M = L™, by the third point of Lemma 5.11 we
have that
K(M) = K(L™) = my' (K(L)),
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and since 0 belongs to K (L), we have that m ' (0) is contained in K (M).
For the converse, suppose that ker(myx) C K (M), this implies that 1/mA C
A(M). As a consequence we can define: o/ : R" — R by o/(z) = a(x)/m for
every z in R" and Q" : A — (Z™)* by Q'(\, z) := Qr(\/m, z) for every A in
A and z in Z". We have that o’ is a linear map on R", while by hypothesis
Q' is well-defined, it follows that taking L := L(Q',a’) we have that:

L™ = L(mQ",md") = L(Q,a) = M.

We now state two technical lemmas which we will need later:

Lemma 5.13. Let X be an n-dimensional tropical torus and L = L(Q, ) a
positive definite line bundle on X, suppose we have t points of X: p1,...,pt
such that St p; = 0, then for every divisor D in |L| we have that:

¢
*
> tD~t-D,
i=1
or, equivalently:

t
Q) trL=1L"
i=1

Proof. The thesis is a consequence of the following computation, in which
we only use formula 7:

t t
Xty L=QLQ a+Qr(—p)) =
i=1 i=1 .
= L<t Q. t-a+ ZQR(—,pi)) =
=1
=Lt -Q,t-«a)) =
=L

O

Lemma 5.14. Let X be an n-dimensional tropical torus and L = L(Q, «)
a positive definite line bundle on X, if [x] belongs to X, then there exists a
divisor D in |L| such that t3D = D if and only if [x] = 0.
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Proof. By Lemma 4.35 we can consider the divisor D that rises from a theta
function of the form ©;. Now, consider an element x in R™ \ A, and recall
that by Proposition 4.12 the function Oy, is fully determined by its values on
a fundamental domain D?\, for a A in A. The points of R” on which ©; isn’t
linear are all the A-translates of the boundary of Dl)’\, and since z doesn’t
belong to A it follows that the translation by x cannot send the boundary
of D} to the boundary of a Df’\, for a X in A. O

Finally, we are able to prove the following theorem, which is an original
result of this master thesis:

Theorem 5.15. Let X be an n-dimensional tropical torus and L = L(Q, «)
a positive definite line bundle on X, suppose that there is a basis of A and a
basis of Z™ such that the bilinear form @ is represented by a diagonal matriz

d 0 ... 0
0 do ... 0
0 0 ... dy,

such that dy|d; for every i = 1,...,n, and di > 3. Then the map ¢y, is
continuous and injective.

Proof. We have already noticed continuity, suppose we have two points
[y1], [y2] in X such that ¢r([y1]) = ¢r([y2]). Consider an element [A/d;]
belonging to ker dy x, the hypothesis on the diagonal form of () implies that
[A/d;] belongs to K (L), and hence by Theorem 5.12 it follows that there is
a positive definite line bundle M in Pic(X) such that M% = L. By Lemma
5.14 we can now find a divisor D in |M| such that t:D = D only if [x] = 0.
Let’s fix an element [z1] in ¢ D, then take d; — 1 points [z2], ..., [z4,] such
that their sum is equal to —[z1]. Now suppose that [z2] belongs to t; D,
since the topological dimension of this divisor is n — 1, the open ball in X of
centre [x2] and ray € is not contained in ¢y D for some € > 0, it follows that
there is a v in R™ such that [x9 4+ v] doesn’t belong to t;;zD' Since dy > 3, the
points [xa], ..., [rq,] are at least 2, so we can replace [x2] with [z + v] and
[x3] with [z3 — v] obtaining d; — 1 points whose sum is still —[z1]. We can
repeat this procedure until we get to the point [zg4,]: if it belongs to ty, D,
analogously as before we can find a w in R™ such that [z4, + w] doesn’t
belong to t;, D, and since now [r1] doesn’t belong to t; D, we can choose w
small enough such that neither [z1 — w] does. Making these replacements
we end up with d; — 1 points, whose sum is —[z1] and neither of which is in
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ty, D. After a similar procedure and appropriate replacements, we can also
suppose that these points don’t belong to ¢; D either. Let’s still denote these

points with [xa], ..., [z4,]. Consider the divisor D’ := Z?;l ty. D, by Lemma
5.13it is linearly equivalent to dy - D, hence O(D’) = M% = [, and it’s also
effective because it’s sum of effective divisors. Therefore D’ belongs to |L|.
Moreover, we have that [y1] belongs to ¢ D, but by construction it doesn’t
belong to t; D for any i = 2,...,d, hence we have that [y;] belongs to D’.
Now, Lemma 5.3 implies that also [ys] belongs to D', so by construction we
must have that it belongs to ¢, D, i.e. [z1] belongs to ¢, D. Since this holds
for every point of ¢ D, it follows that ¢; D C t; D, and by symmetry we
get:
tnD=1t,,D.

Finally, this equality implies that ¢},_, D = D, so we can conclude

invoking Lemma 5.14. O

Definition 5.16. Let X be an n-dimensional tropical torus and L = L(Q, «)
a positive semi-definite line bundle on X, we say that L is very ample if ¢,
is injective, we say that L is ample if there is a positive integer m such that
L™ is very ample.

The theorem we just proved implies the following Corollary:

Corollary 5.17. Let X be an n-dimensional tropical torus and L = L(Q, )
a positive definite line bundle on X satisfying the same hypothesis as in
Theorem 5.15 except that dy can assume every positive value, then L™ is
very ample for every m > 3.

5.3 Examples

In this subsection we collect a couple of examples that illustrate how Theorem
5.15 works in the case of 2-dimensional tropical tori.

Example 5.18. Let X = R?/Z? be a tropical torus and let Q : Z? — (Z?)*
be the module homomorphism given by Q(e;) = 2ef, where {ej, ez} is a
canonical basis for Z2. Then the extension Qg is represented by a scalar
matrix with eigenvalue 2. Consider the line bundle L := L(Q,0), and define
B to be the set: {(0,0),(0,1),(1,0),(1,1)}, from now on we will refer to the
element (0,0) just with 0. By Ezample 4.19 we have that D = [~1/2,1/2]?,
so using Lemma 4.14 we can reconstruct the behaviour of each generator on
this fundamental domain for X. In particular, we obtain that © g 1) has slope
(0,1) on DY + (0,1/2), while it has slope (0,—1) on D§ + (0,1/2) — (0,1) =
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D§—(0,1/2). Similarly we have that © ¢y has slope (1,0) on D§ + (1/2,0),
while it has slope (—1,0) on DY — (1/2,0). As for ©(1,1), it has slope (1,1)
on DY+ (1/2,1/2), while it has slopes (—1,1), (1, —1), (=1, —1) respectively
on DY+ (—1/2,1/2), D+ (1/2,—1/2), D3+ (—1/2,—1/2). We sum up these
observations with the following images:

Figure 1: Generators of I'(X, L) on DY, from the top left going clockwise we
have: @(170), @(071), @(171) and @(070).

To see that ¢ in this case is not injective we need to find two points
p1,p2 in X such that given two representatives z,y in D8 we have that
Op(z) = Op(y) for every b in B. Let’s fix a point p in DY, say (1/4,1/3),
then the conditions ©,(x) = O(p),where we may suppose that b # 0, define
a union of lines in D8, which look like :
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0.2f

where lines of the same colour are the union of points satisfying the same
equality. Since their intersection contains four points, this shows that ¢y, is
not injective.

Example 5.19. Let X = R?/Z? be a tropical torus and let Q : Z? — (Z?)*
be the module homomorphism given by Q(e;) = 3ef. Then the extension
Qr is represented by a scalar matrix with eigenvalue 3. Consider the line
bundle L := L(Q,0), and define B to be the set:

{(0,0),(0,1),(1,0),(1,1),(0,2),(2,0),(2,1),(1,2),(2,2)}-

Once again, using Example 4.19 we can compute the values of all gener-
ators on DY = [~1/2,1/2]%, in this case the hypotheses of Theorem 5.15 are
satisfied, hence we must have that ¢y, is injective. Now the eight generators
different from ©q are represented by the following graphs:
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Figure 2: From the top left going clockwise we have: 019y, 0 (q,1), O(1,1) and
@(270) .
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Figure 3: From the top left going clockwise we have: Oy 2y, 02,2, 0 (g,2) and
@(271) .

Clearly Og is identically zero on D8 . Now let’s fix a point p in D8 , the
sets of points in DY satisfying ©y(z) = O(p) will look like:

oaf | ‘ \

0.2

\

—02k

~04f AY

o4



and we notice that the intersection of all these sets is only {p}, verifying
the injectivity of ¢r,.
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