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Abstract

During the last few years Unmanned Air Vehicles have seen a widespread
utilization, both in civilian and military scenarios, because of the benefits
of replacing the human presence in unsuitable or hostile environments and
dangerous or dull tasks. Examples of their use are surveillance, firefighting,
rescuing, extreme photography and environmental monitoring.
The main interest of this work is autonomous navigation of such air vehicles,
specifically quadrotor helicopters (quadrocopters), and the focus is on convergence
to a target destination with collision avoidance. In this work, a general model
for a quadrocopter UAV is obtained, making use of a first principles modeling
approach, and system identification is exploited in order to relate in a suitable
manner the control signals to the effective behavior of the vehicle. The main
contribution is the design of a controller for convergence and avoidance of
static obstacles, based both on considerations on the dynamics of the agent and
knowledge of the testbed for the experiments.
The controller is composed of a layered structure. The external layer consists
in the computation of a collision-free path leading to the target position and is
based on a navigation function approach. The inner layer is meant to make the
vehicle follow the waypoints imposed by the outer layer and thus consists in a
position controller. Experiments have been conducted in different scenarios in
order to analyze the behavior of the controlled system.
The final part of the work regards the design of a controller for 3D navigation
and collision avoidance for an air vehicle with more constrained dynamics in
respect to the quadrocopter. This controller exploits both dipolar navigation
functions and model predictive control in order to obtain the control inputs that
safely lead the vehicle to its destination with the desired orientation.
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Chapter 1

Introduction

The interest of mankind for aerial vehicles in general has always been flour-
ishing, and in the twentieth century the aircraft industry has seen its birth and
boost due to military employment first and civilian transport then.

The concept of Unmanned Air Vehicles (UAVs), or drones, was born quite
early in the twentieth century: as far back as in 1915 Nikola Tesla described an
armed, pilotless aircraft designed to defend the United States [1]. The development
of UAV technology has regarded largely military purposes, but lately a lot of
civilian applications have become established as well. The main applications are
intelligence gathering, surveillance, platooning, as well as climate and pollution
monitoring, rescuing operations, pipeline inspection [2]. The success of this
technology relies in replacing the human presence when navigation and maneuver
in adverse or uneasily reachable environments is needed.

The control of these vehicles can be either manual, via remote transmitters,
or automatic, thanks to computing units, that in turn can be onboard or remotely
connected to the agent. UAV units are usually equipped with various kinds of
sensors that aim to provide information on the environment or are exploited for
the control of the vehicle itself. We can number among these: GPS antennas,
vision, infrared (IR), thermal, proximity sensors, inertia measurement units
(IMU), accelerometers, magnetometers.

Our focus regards vertical take off and landing (VTOL) UAVs: their clear
advantages are the reduced maneuvering space required for takeoff and landing
operations and the possibility to hover. Multicopters, or multirotors, are VTOL
UAVs propelled by more than two rotors, and depending on the number of
propellers (four, six or eight) they are named quadrocopters, hexacopters or

1



2 CHAPTER 1. INTRODUCTION

octocopters respectively. These kinds of vehicles are increasingly being exploited
for visual documentation of sites and buildings because of their low-budget
availability.

In our work we will analyze and exploit a quadrocopter (or quadrotor).
Therefore, let us review the literature on control methodologies and goals for
such type of vehicles.

1.1 Literature survey

Literature on quadrotor control is ample, because of the above-mentioned
easy availability of multicopters, the possibility for both indoor and outdoor
flight and the simpler structure in respect to the other multicopters.

Some of the most common applications for the control of quadrotors are

• Stabilization

• Path following

• Obstacle avoidance

• Cooperative control (see [3], [4])

• Acrobatic and aggressive maneuver (see [5], [6])

Various control methodologies are associated to these control goals, let us
briefly describe them in association with their applications.

Stabilization. PID controllers are often used in onboard controllers to stabilize
the angles of the quadrocopter. The generic (theoretical) structure of a PID
controller in Laplace’s domain is, being KP , KI and KD nonnegative constants,

C(s) = KP + KI

s
+KDs.

This transfer function expresses the relation between the control input and the
process error.

Path following. Techniques as backstepping control [7], [8], [9], sliding mode
control [10], [11] associated with input-output feedback linearization [12] are
exploited for the task of path following; these methods all mean to control
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nonlinear dynamics. Backstepping is used to stabilize nested dynamical systems:
when a subsystem (e.g. position control and yaw control) is assumed to be
stabilized using some other method, backstepping provides a procedure to
progressively stabilize the whole system. Generally speaking, sliding mode
method consists in driving the trajectory of the nonlinear state of the system
into a pre-designed attractive surface of the state space (switching surface) and
to maintain the state on this surface by a control that switches its gain according
on the state trajectory being above or below the switching surface.

Obstacle avoidance The problem of obstacle avoidance presents basically
two approaches: the first one relies on vision and distance sensors onboard the
vehicle, the second one is based on a a priori knowledge of the environment
the agent moves in. The former case presents methodologies based on visual
recognition of the obstacles (see e.g. [13]), while the latter exploits techniques as

• C-obstacles: in [3] the region at disposal of the vehicle is restricted by the
subtraction of the subset that causes at least one collision from the total
area and then dynamic programming is exploited for the motion;

• LQG obstacles [14]: LQG-Obstacle is defined as the set of control objectives
that result in a collision with high probability. Selecting a control objective
outside the LQG-Obstacle then produces collision-free motion;

• Potential functions [15]: potential and navigation functions are designed
to be attractive towards the destination of the vehicle and repulsive from
the obstacles; these functions are integrated in the control to provide a
collision-free path to the agent.

1.2 Approach and motivations

The aim of the controller we design is providing collision-free navigation
towards a preset target. Fist we will present a heuristic controller: its structure
and design come from considerations about the actual testbed in which we
operate, in particular:

• The quadrocopter comes with an onboard out-of-the-box stabilization
system;
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• The structure of the quadrocopter is such that lateral movement is easily
achieved in every direction;

• We can rely on a very accurate motion capture system providing 6 degrees
of freedom (6DoF) data for the agent;

• The workspace is indoor so we need to take care of safety issues coming
from abrupt or too fast maneuvers

The control task will be pursued splitting it into collision-free path generation and
path following. In particular, we suppose to know the position of the obstacles1

and we will obtain a collision-free path for a kinematic agent, meaning by this that
we do not consider any dynamical constraints on the motion of the agent itself.
Because of this procedure, we cannot grant a priori that the path we generate
can be tracked exactly by the actual quadrotor, that presents a highly nonlinear
dynamic model. Nevertheless, the fact that our measurement system is extremely
precise and the possibility to exploit the stabilization system of the quadrotor
suggest that a point-to-point controller could be satisfactory implemented and
if the desired path is sampled in a suitable manner and safety margins are
considered, the control can track a collision-free path to the destination. The
experiments performed with the above-described heuristic controller aim to test
the collision avoidance system by reproducing in reduced scale possible scenarios
in which an unmanned air vehicle can be exploited, such as inspection and
patrolling of environment or reaching of an adequate position to perform tasks
of surveillance, rescue or visual documentation.

In order to extend the possibility of navigation in our framework it is suitable
to make the theory for a navigation controller as general as possible, so that
differently constrained air vehicles can be used in the testbed. For this purpose,
we will introduce a controller for a single integrator air vehicle that has a more
constrained dynamic than the one of the quadrotor. In this case the controller
is also based on a navigation function approach, but the analysis will not just
provide a suitable path, but also the inputs to feed the model in order to obtain
convergence and collision avoidance: these properties will be demonstrated
exploiting Lyapunov’s theory. Moreover, the controller will also take into account
the orientation of the vehicle, since for the sake of generality we do not consider it

1 or be able to retrieve this information thanks to the motion capture system
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symmetrical, and a generic performance measure, that can be adapted according
to the cases.

1.3 Outline

We will now present shortly the content of each of the next chapters.

Chapter 2. The hardware and software of the testbed is presented. After
a qualitative introduction on the principles of working of a quadrocopter, the
quadrocopter platform, the motion capture system and the communication link
are described in detail.

Chapter 3. First, a model of the dynamics of the quadrocopter is obtained
exploiting a first principles approach. Then, system identification is performed
in order to obtain suitable transfer functions that relate the user inputs to the
effective behavior of the agent.

Chapter 4. The heuristic controller for obstacle avoidance is presented, as
well as the numerical and visual results of the experiments performed to test its
behavior.

Chapter 5. The controller for a more constrained vehicle is presented and after
an introduction to dipolar navigation functions and model predictive control, its
properties of convergence and collision avoidance are demonstrated.

Chapter 6. The results of this work are summed up and perspectives for
future development are presented.
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Chapter 2

Hardware and software

2.1 Overview on quadrotors and test-bed

In this work we will exploit Jdrones ArduCopter quadrotors (see figure 2.1).
A detailed description of the hardware can be found in section 2.3.

Figure 2.1 – ArduCopter quadrotor (http://www.diydrones.com/profiles/
blogs/updates-on-arducopter-3d-model)

The experiments have been performed in the Smart Mobility Lab of KTH
- Royal Institute of Technology, Stockholm. Inside the laboratory a system of
cameras is used to track the movement of the quadrocopter and can be though
as an indoor, small-scale reproduction of a GPS system for outdoor tracking.
This is a fair assumption dealing with position tracking, but the motion capture
system provides also information about the orientation of the agent, and in an
outdoor testbed this feature could be replaced by the use of other navigational
instruments e.g. magnetometers.

7

http://www.diydrones.com/profiles/blogs/updates-on-arducopter-3d-model
http://www.diydrones.com/profiles/blogs/updates-on-arducopter-3d-model
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2.2 Principles of working

Here we present in an intuitive manner the basics that rule the flight of a
quadrotor; these are basic concepts that do not require any further knowledge on
the hardware or on the physical model, but give an appropriate understanding
on how the vehicle works. We refer to figure 2.2 for a visual representation.

g

z
..

(a) Upward movement

φ
..

(b) Pitch and lateral movement

θ
..

(c) Roll and lateral movement

..
ψ

(d) Yaw and rotational movement

Figure 2.2 – Basic movements of a quadrotor. The front propeller is marked in red
and the symbols z, φ, θ, ψ refer respectively to the vertical position
and the pitch, roll and yaw angles.

The four onboard motors can be controlled separately; each motor produces a
torque that makes the rotors spin producing an upward thrust. Just like in single-
rotor helicopters, the torque created by the motors would make the body of the
quadrotor spin in the opposite direction of the rotors: to avoid this phenomenon
two opposite rotors spin clockwise and the other two counterclockwise, so that
the effect is balanced.

The upward movement is achieved when all the rotors spin at the same rate:
in this case the total thrust vector is perpendicular to the ground and if its
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absolute value equals the gravity force acting on the quadrotor, the vehicle will
hover at a fixed height.

The lateral movement of the quadrotor is performed by decreasing the rate
of one rotor and increasing by the same amount the rate of the opposite one. In
this scenario the quadrotor will tilt towards the direction of the slow propeller
and as long as the total thrust do not variate, a lateral movement is achieved.
This tilting movement is referred as pitch if the rotor that slows down is the front
or the rear one, or roll if the rotor that slows down is a lateral one. However,
since the vehicle is symmetrical with respect to its center of gravity, the choice
of the orientation is non-influential to the dynamics.

Finally, the rotational movement1, or yaw movement, can be obtained by
slowing down the spinning rate of two opposite propellers and increasing the
spinning rate of the others by the same amount (so that the total thrust vector
is not influenced). In this way, the quadrotor will rotate in the same direction as
the slow propellers, in fact as we have already stated, the torque of the motors
produces a rotation of the body in the opposite direction according to the third
law of motion.

1 around the vertical axis passing through the center of gravity of the craft.
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2.3 Introduction to the resources

In this section we present the test-bed and the hardware and software used
for this project. The main components of the test-bed are the quadrotor (agent),
the Qualysis camera system, a PC running the motion capture software and a
PC running NI Labview and Matlab to control the quadrotor.

As a preliminary overview, we summarize in the next lines and in figure 2.3 the
representation of the testbed and how its various parts are put in communication
and form a closed loop.

In order to get the current position and orientation of the quadrotor, we
exploit the Qualisys motion capture system. It consists of a set of twelve Oqus
infrared cameras: after a calibration process that fixes the reference frame, they
are used to capture the position of small retro-reflective markers that are placed
on the quadrotor. The information coming from the cameras is sent via ethernet
to a desktop computer running a proprietary software that computes the 3D
position of the markers and provides the user 6 degrees of freedom data. A
library (QLC.lvlib) is provided to communicate this data to LabView.

The control of the system is performed using LabView and exploiting Matlab
scripts into LabView code. The reference signals coming from LabView (i.e.
one byte for each of desired throttle, pitch, roll, yaw and flight mode) are sent
via wifi to an actuator TMote Sky module onboard the quadrotor. Then these
signals are transferred via serial to a serial adapter board, that in turn forwards
the logic-level serial signals to the Pololu servo controller2, that converts them
in PWM signals. They, in turn, feed the Arduino CPU board containing two
cascade PID loops that stabilize the quadrotor with the desired references. The
outputs of the controller are finally delivered to the power distribution that
forwards those signals to the four speed controllers that set the input voltages of
each brushless AC motor individually.

In the following we will describe more accurately the hardware of the quadro-
copter, the motion capture system, the wireless communication link and the
operations that must be done to get the quadrocopter ready to fly.

2 Detailed information about the serial board and the Pololu board can be found in the
Smart Mobility Lab manual [16]
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Figure 2.3 – Testbed
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2.4 Jdrones ArduCopter

Arducopter is a platform for multicopters and helicopters that provides both
manual remote control and an autonomous flight system equipped with mission
planning, waypoints navigation and telemetry, managed via software from a
ground station.

The quadrocopter has been assembled from the ArduPilot Mega kit, con-
taining the Arduino controller board and the IMU board, and the JDrones
ArduCopter kit, containing the frame, the motors, the speed controllers, the
power distribution board and the propellers. Detailed instruction on how to
solder and assemble the parts of the kits are provided in the Wiki section of [17],
we here present briefly how these components are connected and their role in
the functioning of the quadrocopter.

2.4.1 ArduPilot Mega

The core processing unit of the quadcopter consists in the ArduPilot Mega
1 board (figure 2.5). The firmware of this board is uploaded via usb using the
APM planner software, downloadable from the Download section of [17].

Figure 2.4 – Screenshot of APM planner software.

Two boards compose the ArduPilot Mega: the control board (red) and the
IMU board (blue). In our testbed the control board is responsible for taking as
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input five remote signals in form of PWM waves (these signals correspond to
throttle, pitch, roll, yaw and flight mode3) provided by the user and use them as
references of the double cascade PID onboard controller. The control board is
connected to the IMU board, that is equipped with a large number of sensors
providing readings that are exploited by the controller board or can be used for
other applications; in our setup the exploited sensors are an accelerometer and a
gyroscope, other sensors are a GPS module (not connected), a magnetometer
(soldered but not used), pressure and temperature sensors.

(a) Control board. (b) IMU board.

(c) ArduPilot Mega soldered.

Figure 2.5 – ArduPilot Mega

3 In our implementation we do not actually exploit the flight mode signal, so the inputs of
interest are actually four.



14 CHAPTER 2. HARDWARE AND SOFTWARE

2.4.2 Arducopter frame, power distribution and motors

The frame of the quadrocopter is basically made of plastic pieces composing
the structure and the protection for the electronics, and four aluminium bars
(i.e. the arms of the quadrocopter) that support the four brushless AC motors
and contain the wires from the motors to the speed controllers (see figure 2.6).

(a) One motor. (b) One motor and the arm it is at-
tached to.

(c) The four arms with the plastic structure that
keeps them together.

Figure 2.6 – Motors and arms.

The electronic speed controllers (ESC) are soldered to the power distribution
board and they get from it both the power and the signal that is generated by
the ArduPilot board (figure 2.7).
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(a) One ESC. (b) Power distribution board attached
to the ESC’s.

(c) Quadrotor structure with motors, ESC’s and
power distribution board.

Figure 2.7 – Esc and power distribution.

The structure of the quadrocopter is completed placing the ArduPilot on
the top with its own structure and building the external frame that protects the
vehicle and make it stand still. The final configuration includes the propellers,
that are fixed to the motors, and the receiver of the remote signal. A polystyrene
structure has been added as base of the quadrocopter because the plastic legs
are indeed very fragile and do not stand aggressive landings (see figure 2.8).
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(a) Positioning of the ArduPilot board in
the frame.

(b) Complete frame with protections and
legs.

(c) Final structure, with propellers, RC re-
ceiver and polystyrene base.

Figure 2.8 – Frame and final configuration.

The propellers are plastic blades that are sold in pairs, the model of the ones
we used is 10x4.5. The front/rear propellers are different from the left/right
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ones, since as we remarked in section 2.2 the front and back ones must rotate
counter-clockwise (puller propellers) and the others clockwise (pusher propellers,
marked with the letter R after the size label) (see figure 2.9).

Figure 2.9 – Propellers of the quadrocopter, puller on the top and pusher on the
bottom.

The battery that powers the quadrocopter is a 3 cells Li-Po battery (see
figure 2.10) that provides 11.1V as output voltage and 2200 mAh as rated
capacity. The average time of flight before the battery discharges is from 5 to 10
minutes, depending on the throttle that is applied by the motors.

Figure 2.10 – Li-Po battery of the quadrocopter.
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2.5 Qualysis motion capture system

(a) Qualisys logo. (b) QTM logo.

Figure 2.11 – Qualysis and Qualisys Track Manager logos

The motion capture (MoCap) system provided by Qualisys consists in a
certain number of IR cameras, each of them equipped with an infrared flash. The
light of the flashes is reflected by small reflective balls (markers) that are placed
in advance on the objects we are interested in tracking, and the cameras capture
these reflected beams and compute relative position and size of the markers.
After the information collected by every camera is transmitted via ethernet to
a computer running the Qualisys Tracking Software (QTM) and the position
of the cameras being known, the 3D position of the markers is computed by
the software. If a group of markers have been previously gathered by the user
forming a body, then the software is able to track not just the position of the
markers, but also the 3D position and orientation of the body when it moves in
the workspace.

In order for the cameras to accurately compute the position of the markers, a
calibration process has to be carried out before data collection. This is performed
by placing an L-shaped tool representing the reference system on the ground, and,
after starting the procedure in the QTM software, carrying around a calibration
wand and moving it in all directions for a preset time (see the tools in figure 2.12).
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Figure 2.12 – Wand and reference system (www.qualysis.com).

In our testbed the cameras are twelve, hung in groups of three to the four
corners of the ceiling (see figure 2.13). Ten cameras are Oqus 4 and the remaining
two are Oqus 3+. These last have improved functions, such as light sensitivity,
image and high-speed video mode; for the full specifications see table 2.1.

Figure 2.13 – Group of three Oqus cameras.

www.qualysis.com
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Camera Normal mode High Speed mode Max fps
(full FOV) (full FOV) (reduced FOV)

Oqus 4 3 MP 480 fps n/a 10000 fps
Oqus 3+ 1.3 MP 500 fps 0.3 MP 1750 fps 10000 fps

Table 2.1 – Specifications of the Oqus cameras (www.qualisys.com). FOV stands
for Field Of View and fps for frames per second.

In figures 2.14 and 2.15 we show two screenshoots from the QTM software,
both are images from the point of view of one of the Oqus 3+ cameras framing
the quadrocopter: in the first one we can see the five markers that have been
placed on the quadrocopter, in the second one we overlap the video recorded by
the camera and the 3D visualization of the body and the reference system.

The 3D data4 obtained by the Qualisys software can be requested from other
computers connected to the PC that runs the QTM proprietary software via a
TCP/IP connection and exploiting the libraries that Qualisys provides for NI
Labview and Matlab. For all our experiment in the testbed, the frequency of the
camera has been set to 100[Hz]; this is enough considering that is ten times the
speed of the control loop for the quadrocopter (see section 4).

The performances of the Qualisys system are really good as far as the precision
is concerned: it has been observed that for a recorded body in a fixed position the
variance of the recorded position is less than 1[mm], that is definitely reliable for
our purposes. Therefore there is absolutely no need to filter the measurements
to get more reliable information on position.

4 3D position, pitch, roll and yaw of the body

www.qualisys.com
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Figure 2.14 – Snapshot of the markers viewed by an Oqus 3+ camera.

Figure 2.15 – Snapshot of the video capturing of an Oqus 3+ camera, overlayed
with the quadrocopter body and the reference system.
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2.6 Communication link

The wireless communication between the controller PC and the quadrocopter
is made using a pair of Tmote Sky devices. Tmote Sky is an ultra low power
wireless module for use in sensor networks, monitoring applications, and rapid
application prototyping. Figure 2.16 shows the components of a mote: for more
information about them and Tmote Sky in general, refer to the datasheet [18].

Figure 2.16 – Tmote Sky components.

One mote is plugged into an USB port of the controller computer and the
other one is attached to the quadrocopter in the manner we described in section
2.3. They have been programmed using TinyOS, exploiting the code available in
the Smart Mobility Lab repository5; refer to the manuals in the same website
for the procedure for programming the motes.

The scheme of the communication link is depicted in figure 2.17, we here
summarize it and refer once again to the laboratory manual [16] for a more
detailed description:

• A C-based serial forwarder is used to send data from the computer to
the PC mote: the serial forwarder creates a TCP server process in the
computer that listens to the local port we specify and forwards the received
data to the PC mote.

• The Labview program creates a TCP client process that connects to the
TCP server, therefore creating a TCP connection. The data we need to

5 https://code.google.com/p/kth-smart-mobility-lab/source/browse/#svn%
2Ftrunk%2FTinyOS_Code%2FQuad_TinyOS/

https://code.google.com/p/kth-smart-mobility-lab/source/browse/#svn%2Ftrunk%2FTinyOS_Code%2FQuad_TinyOS/
https://code.google.com/p/kth-smart-mobility-lab/source/browse/#svn%2Ftrunk%2FTinyOS_Code%2FQuad_TinyOS/
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Figure 2.17 – Communication link.

send are thus forwarded to the serial forwarder via this TCP connection
and in turn they are received by the PC mote;

• The motes use the IEEE 802.15.4 protocol to send data wirelessly from
the PC one (base) to the quadrocopter one (actuator). Please note that
the pair of motes need to be programmed on the same channel and they
should be the only ones using this channel in the working environment, in
order to avoid packet collisions;

• The data received by the actuator mote are forwarded via serial to the
serial board and the Pololu board and finally reach the Arduino board of
the quadrocopter.

2.7 Preliminary operations

Before flight, some procedures must be carried out in order to set the
quadrocopter in a proper way, exploiting the APM software. We will list them
briefly, referring once again to [17] for more details.

Radio range calibration. This operation has to be done before the first flight
and whenever the quadrocopter seems not to respond accordingly to the input
commands. It consists in setting the end points of each of the radio signals that
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feed the APM board and is done referring to the Radio calibration section of the
Configuration tab of the APM software.

Quadrocopter level. This operation has also to be done before the first flight
and whenever the quadrocopter seems not to respond accordingly to the input
commands. It consists in calibrating the accelerometer of the APM board and this
is performed automatically by the software (Level section of the Configuration
tab): the user only needs to orientate the APM accordingly to the onscreen
instructions and keep it still while the software records the data it needs.

Esc calibration. This operation has to be done right after building the quadro-
copter and whenever we suspect that the speed of the motors are not correctly
balanced. It aims to make the speed controllers react in the same fashion to the
APM and to the RC commands. Automatic calibration is the easiest way to
perform it, since it is just necessary to hear the tones emitted by the APM and
move the remote sticks6 as a consequence.

Onboard PIDs. This operation is not strictly necessary, but we observed
that it provides better results in the height control. Since the motors the
quadrocopter carries are quite powerful in respect to the weight of the vehicle
itself, it is recommended to modify the proportional gain parameter of the
stabilizing onboard controller.7 The default parameter is the one for medium-size
motors (0.110), we decided to switch it to 0.100, that is the mean value between
the ones recommended for medium-size and large-size motors.

6 or changing the input values if we are using remote Labview control
7 This can be done via the APM software, in the section Configuration → Standard

parameters → Arducopter PIDs → Stabilization, angular rate control



Chapter 3

Quadrotor modeling and
identification

3.1 Quadrotor mathematical model

We want to provide here a mathematical model of the quadrotor, exploiting
Newton and Euler equations for the 3D motion of a rigid body, i.e. the so-called
First principles modeling) (see for instance [19], [20], [21]). The goal of this
section is obtaining a deeper understanding of the dynamics of the quadrotor
and provide a model that is enough reliable for simulating its behavior.

We start by defining two reference frames: the body reference frame (B), that
is the local reference system of the quadrotor, and the Earth inertial reference
frame. In the continuation, all the quantities referring to the body and Earth
frames will be written with B or E superscripts respectively.

Let us denominate as

qE , [ x y z φ θ ψ ]T

the vector containing the linear and angular position of the quadrotor in the
earth frame and

q̇B , [ u v w p q r ]T

the vector containing the linear and angular velocities in the body frame. From
3D body dynamics, it follows that the two reference frames are linked by the

25



26 CHAPTER 3. QUADROTOR MODELING AND IDENTIFICATION

following relations (see [19], [22]):
ẋ

ẏ

ż

 = ERB


u

v

w

 ,

cψcθ −sψcφ + cφsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ



u

v

w



φ̇

θ̇

ψ̇

 = ETB


p

q

r

 ,


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ



p

q

r

 ,
(3.1)

so we get

q̇E =

 ERB 03×3

03×3
ETB

 q̇B (3.2)

We indicated for the sake of brevity sin(α), cos(α) and tan(α) as sα, cα and tα,
for a generic angle α.

Newton’s law states the following matrix relation for the total force acting
on the quadrotor in the body frame:

FB = mV̇ B + ΩB ×mV B, (3.3)

where FB ∈ R3×1 is the total force, m is the mass of the quadrotor, V B ∈ R3×1

is the linear velocity of the quadrotor and ΩB ∈ R3×1 is the angular velocity of
the quadrotor. Euler’s equation gives the total torque applied to the quadrotor:

τB = JΩ̇B + ΩB × JΩB, (3.4)

where τB ∈ R3×1 is the total torque and J ∈ R3×3 is the diagonal inertia matrix.

The kinematic equations (3.3) and (3.4) stand as long as we assume that the
origin and the axes of the body frame coincide with the center of mass of the
quadrotor and the axes of inertia, respectively.

Let us now consider the dynamics of the quadrotor, i.e. how the total force
and the total torque vectors are composed.
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Gravity. Gravity has effect on the total force and its direction is along the z
axis of the earth frame1:

FBgr = BRE F
E
gr = (ERB)T


0
0
−mg

 =


mgsθ

−mgcθsφ
−mgcθcφ

 (3.5)

Gyroscopic effects. Gyroscopic contributions are present if the total sum of
the rotational speeds of the rotors ΩRtot = −ΩR1 + ΩR2 −ΩR3 + ΩR4 is not zero
and they influence the total torque adding the following term (see [19], [23]):

τBgyro = JRot


−q
p

0

ΩRtot, (3.6)

where JRot is the moment of inertia of any rotor.

Control inputs. We here consider the inputs that can be applied to the
system in order to control the behavior of the quadrotor. The rotors are four
and the degrees of freedom we control are as many: commonly, the control
inputs that are considered are one for the vertical thrust and one for each of
the angular movements. Let us consider the values of the input forces and
torques proportional to the squared speeds of the rotors (see [19] for aerodynamic
motivations); their values are the following:

U1 = b(Ω2
R1 + Ω2

R2 + Ω2
R3 + Ω2

R4)

U2 = bl(Ω2
R3 − Ω2

R1)

U3 = bl(Ω2
R4 − Ω2

R2)

U4 = d(−Ω2
R1 + Ω2

R2 − Ω2
R3 + Ω2

R4),

(3.7)

wherer l is the distance between any rotor and the center of the drone, ΩRi is the
angular speed of the i-th rotor, b is the thrust factor, d is the drag factor. The
inputs Ui can be directly related, at least on first approximation, respectively the
vertical, pitch, roll and yaw accelerations (see also the oncoming equation (3.9)).

As we summarize the above-obtained relations in one matrix equation we get

1 Since BRE is a rotational matrix, it is orthogonal, i.e. its inverse equals its transposed.
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2  mI3×3 03×3

03×3 J

 q̈B +

 03×3 −Sk(mV B)
03×3 −Sk(JΩB)

 q̇B =

 FB

τB

 , (3.8)

where the second term can be written explicitly as

 FB

τB

 =



mgsθ

−mgcθsφ
−mgcθcφ + U1

Jrot(−q)ΩRtot + U2

Jrot(p)ΩRtot + U3

U4


.

Now, we are interested in obtaining the equations of motion in the Earth
reference frame, because this is the frame the motion capture system refers to:
we can use relation (3.2) to switch to the Earth reference frame. We notice
that for small variations of the pitch and roll angles, the transfer matrix ETB

approaches the identity matrix: we can exploit this approximation assuming
that the quadrotor flies close to hovering state.

Applying relation (3.2) to (3.8) and rewriting the matrix equation in form of
system, we obtain the following:

ẍ = −(cφsθcψ + sφsψ)U1
m

ÿ = −(cφsθsψ − sφcψ)U1
m

z̈ = g − (cφcθ)U1
m

φ̈ = φ̇ψ̇
(
JZ−JX
JY

)
− JR

JY
φ̇ΩRtot + U2

JY

θ̈ = θ̇ψ̇
(
JY −JZ
JX

)
− JR

JX
θ̇ΩRtot + U3

JX

ψ̈ = θ̇φ̇
(
JX−JY
JZ

)
+ U4

JZ

(3.9)

Several models in literature are obtained in the way we described, either
exploiting first principles modeling (e.g. [19], [24], [25]) or Euler-Langrange
equations (e.g. in [23]); since gyroscopic effects are not very effective for relatively
small values of the pitch and roll angles, they are often excluded from the model

2 We remind that the general cross product a× b ,

[
a1
a2
a3

]
×

[
b1
b2
b3

]
can be written as

Sk(a) b = −Sk(b) a, where Sk(a) is the skew-symmetric matrix

[ 0 −a3 a2
a3 0 −a1
−a2 a1 0

]
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[26], [4], [27], [12]. Other contributions apart the ones we dealt with are considered
e.g. in [23], [20] and consist for instance in aerodynamic damping, blade flapping
and ground effects.

The approach for modeling that we described takes into account the main
contributions for the flight dynamics. However, the control inputs we defined are
explicitly linked to the speed of the rotors by relations (3.7) and, as seen in the
previous chapter, in our test-bed we do not directly control the motor speeds, nor
we need to consider the inner dynamics of the motors (i.e. the transfer function
from the input voltage to the output torque) thanks to the onboard controller.

Basing on these considerations, let us consider a model for the quadrotor
that fits the control input we have at our disposal in the testbed. As a first
approximation we can state that the values for throttle, pitch, roll and yaw
movements we send to the quadrotor are the control inputs Ui we described in
the previous section. Since in equation 3.9 the values of inertia are unknown3

and willing to understand how the behavior of the actual system relates to those
equations, we now aim to retrieve the relations between our inputs and effective
vertical thrust, pitch, roll and yaw in the form of transfer functions (t.f.).

These transfer functions can be estimated thanks to the knowledge of the
inputs (expressed as byte values) and outputs of the system (expressed as height
wrt the throttle input and as angular value in degrees wrt the pitch, roll and
yaw), and this process will be content of the following section.

3 the value of the mass, instead, has been measured and is 1.1[Kg], polystyrene base included.
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3.2 Transfer functions identification

In order to perform the aforementioned identification, we will follow the
scheme depicted in figure 3.1, that is typical of this kind of procedure.

experiment
design

data
gathering

model
structure
selection

parameter
identification

validation

successful

unsuccessful

END

Figure 3.1 – Generical identification procedure

The identification process aims to give a clearer view on the system, in
particular how the agent reacts to the input signals sent by the user or the
control program.

Each of the four transfer functions we want to identify is related to one
single input. So the experiments in which the data for the identification and
validation have been collected consist in test flight focused on the variation of
one single input: for instance, when collecting the data for identifying the roll
transfer function, after a take-off phase the test consisted in moving the agent
with manual control only along the lateral axis (roll axis) and collecting the pair
of sequences of input bytes and output roll, the latter collected by the motion
capture system.

We decided to treat the system as discrete-time and identify the transfer
functions via Matlab’s System Identification Toolbox. The idea is trying to
identify polynomial models of the form Output-Error (OE) i.e. models with the
generic structure

y(t) = B(z)
F (z)u(t− nd) + e(t),

where B(z) and F (z) are the polynomials to identify, nd is the input-output
delay expressed as number of samples and e(t) is white noise. We chose this
kind of model since we are not interested in the structure of the noise, that we
indeed assume to be white, and since under hypothesis of small angular values,
equations (3.9) let us relate the input and output at our disposal in the following
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way: 
z̈ ≈ g − U1

m

φ̈ ≈ U2
JY

θ̈ ≈ U3
JX

ψ̈ ≈ U4
JZ

(3.10)

so a linear input-output transfer function can be considered a fair approximation
as long as the previous ones stand.

Let us now describe the procedure for identification; for each unknown transfer
function:

• The collected data (both inputs and outputs) have been divided into
identification and validation data;

• Two iddata objects are created, one for the identification and one for the
validation;

• The number of poles, zeroes and delay samples is set and Matlab function
oe is run on the data. This function is based on the prediction error
minimization method (PEM): starting from a chosen structure of the
model, a predictor of the present output is built, based on past inputs
and outputs. The PEM method estimates the parameters of the model
minimizing the prediction errors, i.e. minimizing a cost function that
depends on these errors, that in turn depend on the unknown parameters
and the measured outputs. For a detailed description and analysis of the
PEM method and system identification in general, see [28];

• The obtained transfer function is tested on the validation data using the
compare function of the toolbox, that gives both a numerical fit and a
visual depiction of the suitability of the estimated model;

• If the results are not satisfactory we change the order of the transfer
function and repeat the procedure.

We aim to find a decent trade-off between the order of the transfer function
and the fit we get with the validation data. The approximations (3.10) suggest
that second order models should already give proper results, since inputs and
outputs (z axis position, pitch, roll and yaw angles) are linked by second order
integrators and constant values. Of course the higher the order of the identified
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transfer function, the better the fit with the dataset used to obtain it, but if we
test the same transfer function on a different dataset the results will be extremely
inaccurate, since the large variance of the estimation would make the model
useless (this is referred in literature as the bias vs. variance dilemma).

In the following we report the results we got for the identification of the four
transfer functions. Please note that the roll and pitch dynamics are, at least
in theory, equivalent; in order to check this we will also cross-test the results
obtained with the pitch data with the ones obtained with the roll data.

3.2.1 Throttle transfer function

The dynamic of the throttle has been the most difficult to identify in a
satisfactory way, since the relation between throttle and vertical thrust is strictly
dependent on the battery charge and if this is quite low we are basically not able
to get an adequate response of the vehicle to the input. So in order to overcome
this problem the datasets were collected with full charged battery. A second
order linear model was not accurate enough to describe the dynamics of the
throttle; a third order transfer function with 8 samples delay was obtained, but
still its validation gives just a qualitative decent behavior:

B(z) = 16.74z−8 − 31.25z−9 + 14.51z−10

F (z) = 1− 2.829z−1 + 2.659z−2 − 0.83z−3

Fits of 76.95% and −15.41% were obtained with identification and validation
data respectively (see figure 3.2). Trials with higher order OE and ARMAX
models were conducted as well, but the improvements were not satisfactory.

3.2.2 Yaw transfer function

The yaw transfer function has been estimated with excellent results as a
second order transfer function with 3 samples delay:

B(z) = −0.2236z−3 + 0.2236z−4

F (z) = 1− 1.998z−1 + 0.9983z−2

Fits of 91.69% and 81.82% were obtained with identification and validation
data respectively (see figure 3.3).
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Figure 3.2 – Throttle identification results
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Figure 3.3 – Yaw identification results
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3.2.3 Pitch and Roll transfer functions

Both for the pitch and roll transfer functions we get satisfactory results. Even
though second order transfer functions provided a visible concordance between
inputs and outputs, we decided that it was worthy to keep as valid third order
t.f.’s (with one delay sample), since the fits with the validation data were more
than double the ones with second order t.f.’s.

For the pitch we obtain:

B(z) = 0.09248z−1 − 0.3035z−2 + 0.2111z−3

F (z) = 1− 2.295z−1 + 1.841z−2 − 0.5439z−3

Fits of 64.78% and 48.31% were obtained with identification and validation
data respectively (see figure 3.4).

For the roll we obtain:

B(z) = 0.09248z−1 − 0.3035z−2 + 0.2111z−3

F (z) = 1− 2.295z−1 + 1.841z−2 − 0.5439z−3

Fits of 67.15% and 54.5% were obtained with identification and validation
data respectively (see figure 3.5).

In order to compare the t.f.’s for the pitch and roll dynamics we applied the
model obtained for the roll4 to the validation data of the pitch. We obtained a
fit of 42.86% (see figure 3.6), that is very close to the one we had with the pitch
model itself.

From the zeroes-poles diagrams (3.7) of the two transfer functions we can
see that their positions are really close so the dynamics for the pitch and roll
can indeed be considered equivalent to a good approximation.

4 The sign of the transfer function had to be inverted in order to get concordance
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Figure 3.4 – Pitch identification results
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Figure 3.5 – Roll identification results
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Figure 3.6 – Roll model applied on pitch dataset.
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The identification results show that the less noisy dynamic is the one of the
yaw angle, whereas the relation between the throttle input and the vertical posi-
tion/acceleration is not straightforward and is affected by significant disturbances.
These considerations will match with the control presented in next chapter, since
if on the one hand the yaw is easily controllable with a proportional controller
and the pitch and roll controls are satisfactory, on the other hand the height
control is the most challenging, even if it does not affect critically the success of
the experiments.
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Chapter 4

Quadrotor control

In this section we will present the controller that has been designed and
implemented in the testbed. Since the setup allows online tuning of the controllers
with safety precautions that are not too onerous, we decided to bypass the tuning
on a simulated model, that would request to be refined online anyway, once
implemented in the testbed.

4.1 Controller description

The aim of the controller is point-to-point navigation with obstacle avoidance.
The controller is structured in a layered fashion, as we can see in figure 4.1:

• The most external control is the path planning, i.e. the computation of
a path to the destination point that provides obstacle avoidance. This is
done exploiting the implementation of a navigation-function based control
in Matlab. The path planning provides the waypoints that have to be
followed by the agent and deals with the switching from one waypoint to
the following when either a temporal or a positional condition is triggered.

• The references provided by the path planning feed four PID controllers1,
one for each of the throttle, pitch, roll and yaw movements of the quadrotor
and the output of the controllers is sent via wireless to the agent.

• As we already mentioned, the onboard controllers of the quadrotor stabilize
its position exploiting the references for throttle, pitch, roll and yaw.

1 We will not focus on the theory of the PID control, referring to any basic textbook of
automatic control for clarifications.

41
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• Additional control is also provided, in the form of a safety control that
makes the quadrotor land if it approaches non-fly zones and a manual
control, that can be either partial (control of one of more of the inputs,
while the others are generated by the PID’s) or full (the quadrotors only
responds to the joypad commands). We can say that the quadrocopter has
an onboard safety feature as well, since before it can fly it must be armed,
i.e. it has to receive a fixed sequence of inputs (0 64 64 127) for at least 4
seconds before the motors can be turned on by a throttle input; moreover,
when the throttle is cut and remains null for some time, or the user sends
continuously the disarm sequence (0 64 64 0), the quadrocopter needs to
be armed again in order to restart to fly.

Figure 4.1 – Control structure

In order to control separately the movements along the x, y and z axis and
the yaw rotation, we exploited both the model in 3.1 and heuristic considerations
we infer from the observation of the behavior of the vehicle in the workspace.

First of all, let us state that the roll and pitch angles cannot assume large
values during the flight. This is said both for safety reasons, since we do not
want the quadrocopter to perform off-hand maneuver, and in order to be able to
rewrite the equations of the model with the usual approximations sin(α) ≈ α

and cos(α) ≈ 1 that stand for small values of α2. Thus, we are able to rewrite

2 Let us say the approximation is pretty good if we bound the angles to 40°
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the equations for the movements along the earth-fixed axes as follows:
ẍ ≈ −(θcos(ψ) + φsin(ψ)) Tm
ÿ ≈ −(θsin(ψ)− φcos(ψ)) Tm
z̈ ≈ g − T

m

(4.1)

Let us suppose for now that the yaw angle is zero. We can assume this
without loss of generality, since in our application (navigation with obstacle
avoidance) we are just interested in the position of the quadrotor: being the
agent symmetrical wrt its vertical axis, a rotation around this same axis does
not affect the distance from any obstacle. Standing this assumption, we can
rewrite (4.1): 

ẍ ≈ −θ Tm
ÿ ≈ φ Tm
z̈ ≈ g − T

m

(4.2)

From the previous system we see clearly that, as long as the approximations
we made stand and for a fixed value of the thrust T, the movement along the
earth-fixed x and y axes can be controlled independently acting on the pitch and
roll inputs. Values of the acceleration T

m that are close to the gravity acceleration
g are the ones that keep the quadrocopter in stable flight, that is the agent
neither falls to the ground nor escapes towards the ceiling. Unfortunately, this
range of values of the thrust do not correspond to a fixed range of the throttle
input, since the relation between the two depends widely on the battery level,
and also for this reason the controller on the vertical motion is the one that gives
the greatest issues, as we will show in the following.

Before proceeding with the controller description, let us adapt equations 4.2
to the reference system of the motion capture we deal with in the lab, that is
rotated wrt the one we exploited to obtain the models of section 3.1. The system
we obtain and will use for the controller is

ẍ ≈ −φ Tm
ÿ ≈ −θ Tm
z̈ ≈ T

m − g
(4.3)

Please note that in the testbed the z axis is always positive, in contrast to the
previous situation.
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The four PIDs we implement are:

1. One full PID controller for the throttle, that controls the position along
the earth-fixed z axis. We remark here that the control of the throttle
influences the magnitude of the accelerations along the x and y axes as
well, so higher values for the throttle produce more aggressive movements
along these axes, for the same pitch/roll angle;

2. One PD controller for the pitch, that controls the position along the
earth-fixed x axis;

3. One PD controller for the roll, that controls the position along the earth-
fixed y axis;

4. One P controller for the yaw, that controls the yaw angle to zero in order
for system (4.3) to be valid. Please note that requiring the yaw angle to
be zero is not strictly necessary, but the equations we get in this situation
are really simple and allow us to control directly the x and y movements
using only one input each. Moreover, since our agent does not carry any
camera or end effector, there is no need to prefer one rotation in the xy
plane to another.

We will describe specifically the aforementioned controllers and the way they
were tuned in the next section. The PID controllers were implemented in NI
Labview modifying the script PID.vi of the PID and Fuzzy Logic Toolkit in order
to get three separate outputs, one for each contribution (proportional, integral,
derivative): seeing how each of them acts on the output helps to understand
which one should be modified in order to get the desired results, and in which
amount. The PID VI implements a PID controller with

• Derivative action operating on the process variable instead than on the
error, in order to avoid bumps (derivate kicks) due to the modification of
the set point:

uD(k) = −Kc
Td

∆T (PV (k)− PV (k − 1))

• Trapezoidal integration to avoid sharp changes in the integral action when
there is a sudden change in the process variable or the set point
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• Anti windup algorithm: it avoids that when the input saturates the inte-
grator keeps on integrating a considerable error, therefore making it easy
for the input to get back to the admissible interval. With this action the
presence of high and long lasting overshoots on the output is limited. The
pseudocode for this implementation of the anti windup is

if |uP (k) + uI(k)| > |limit|, then uI(k) = limit− uP (k)

4.2 Controller tuning

We will deal with the controllers according to the order we followed to tune
them. An idea of the order of magnitude of the control parameters was given
by a previous work with the same quadrocopter hardware3. In the Labview
controller program we left the possibility to change the PID parameters online,
so if minor adjustment were to be tried to improve the performances, it was not
necessary to stop the experiment to change them and run the program again.

We here remark that the sampling time we set for the loop that contains the
reference reading, the control and the forwarding of the inputs to the quadrotor
has been set to 100[ms]. This value has been set considering that the bottleneck
for the loop speed is the wireless connection between the sender and receiver
motes.

4.2.1 Yaw control

We decided to tune the yaw controller first, because its proper functioning
is paramount for equations (4.3) to stand and thus for the x and y positions
to be controlled independently. The tuning process consisted in placing the
quadrocopter on the ground with a non-zero angle, give a throttle step for the
quadrocopter to become airborne and observe the reactivity of the controller
to set the desired orientation. No extra safety measures4 were adopted for this
tuning procedure, since the inplace rotation of the agent is not a movement that
can be dangerous for people or provoke a crash. Nevertheless, we noticed that a
consistent yaw input produces a short upward acceleration of the agent.
3 EL2421 project course, KTH, 2012
4 With the expression "no extra safety measures" we mean that no other actions were taken

to improve safety apart from the safety net that protects the people in the room, the
emergency stop if the quadrocopter enters a non-flight zone and the possibility to act
immediately on the inputs with the joypad (manual control).
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A proportional controller was considered enough for the yaw dynamics, since
it is already very stable and also large initial errors of the angle are mitigated
in short time. The introduction of an integral part would compensate for
disturbances, but we noticed that for large initial errors even a small integral
part will introduce an overshoot that we want to avoid since the yaw controller
must be the most reactive, the other ones depending on its good performances.
Moreover, even if a small static error in the yaw angle exists, we observed
that this does not influence considerably the performance of the pitch and roll
controllers. The value of the gain of the controller has been set to 0.04.

Please note that if we assume that the variations of the yaw angle are not
very fast, we can deal with a yaw reference different from 0, simply adding a
coordinate rotation (of magnitude equal to the value of the yaw) between the
earth-fixed frame and the controlled frame, that is the body-fixed one.

4.2.2 XY plane position control

We gather the controller of the movements along the x and y axes since the
dynamics they regulate are equal; of course this is a theoretical consideration, that
is not completely true if the hardware of the quadrocopter presents asymmetries
along the two longitudinal axes. We noticed anyway that even rather obvious
bending of the arms or imperfections in the propellers do not influence really
much the behavior of the controlled system. Moreover, the identification process
we carried out revealed that the two dynamics can be considered equal with a
good approximation.

The setting for the tuning of these controllers was the following: a wire was
hung on the ceiling of the testbed and in order to tune a controller, say the
pitch controller, the arms controlled by the roll movement were fixed with the
wire and therefore kept steady, allowing just the pitch movement (see figure 4.2).
This action is meant to observe just the dynamics we are interested to and avoid
unsafe abrupt movements. The reference was set to the projection to the ground
of the vertical position of quadrotor when hung to the wires and not moving.

The tuning was first done on the proportional gain starting from the an
unitary value and varying it online according to how the quadrotor reacted to
regulate the tilting speed, keeping in mind that being tracking precision an
important feature for our controller, the movements should not be too aggressive.
Indeed, in order to make the response smoother and restrict the overshoot a
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Figure 4.2 – Setting for the xy plane position control.

derivative component has been added.
Once converted to proper input byte to send to the quadrocopter, the output

of the pitch and roll controllers have been limited to bound the output angles
as mentioned in section 4.1. The limitation on the input bytes have been set to
±20 wrt 64, that is the encoded value that corresponds to a value of zero for the
desired angle; this bounds the pitch and roll angles to about ±20°, a satisfactory
range for our maneuver.

In order to compensate any asymmetric behavior, for instance due to inac-
curate calibration of the accelerometers of the quadrocopter, the user is given
the possibility to shift (online) the input value corresponding to 0 in the output
angles.

We set the same parameters for the pitch and roll controllers, namely 0.7 for
the proportional and 0.7 for the derivative gain. Since different scenarios can
require different behaviors by the position controllers, if necessary an integral
contribution (0.05 ÷ 0.1) could be added when a higher overshoot could be
allowed for the sake of speed and steady precision.

4.2.3 Height controller

The controller of the vertical position is the one that took longer to tune,
and also the least accurate; its performances are deeply influenced by the battery
status. In order to tune this controller we placed the quadrocopter on the ground
and activate all the other (already tuned) controllers. A step was given to the
throttle in order for the vehicle to become airborne and the proportional and
derivative gains were tuned to keep it as steady as possible in the air, paying
attention to immediately decrease and eventually cut the throttle with the
manual control if the quadrocopter seemed to raise too fast in the air and going
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out of control. After obtaining reasonably reduced oscillations, an integral term
was added to eliminate the steady state error. A higher value of the integral
part produces an overshoot but speeds up the response.

For the height controller the zero output of the PID is not transformed to
a zero input for the throttle, indeed the output of the PID controller is added
to a base throttle that is suitable to keep the quadrotor in the air. This value
oscillates between 48 and 55, depending on the battery status (we considered
here situations in which the battery is still utilizable for flying, of course if it is
about to discharge completely the thrust decreases critically and it is impossible
to keep the vehicle airborne). Moreover, for safety reasons the input byte we
send to the quadrotor is bounded as well, in order to limit the maximum height
it can achieve (the upper bound with full battery is set to 63). The gains we
use for the height controller are 8 for the proportional gain, 1.24 for the integral
gain and 0.31 for the derivative gain.

We summarize in table 4.1 the controller gains we will use in the experiments.

Controller KP KI KD

Heigth 8 1.24 0.31
XY position 0.7 - 0.7
Yaw 0.04 - -

Table 4.1 – PID parameters.



4.3. EXPERIMENTAL RESULTS 49

4.3 Experimental results

In this section we report the results of the test-bed implementation of different
kinds of scenarios.

4.3.1 Hover

This scenario consists in hovering the quadrotor, i.e. maintaining the agent
in a fixed position in the 3D space. The experiment is meant to evaluate the
performances on the controls of the different inputs, with particular regard to
the throttle input, that revealed to be the most challenging to control. The
controllers for pitch, roll and yaw begin to work as soon as the scenario is started
and they aim to keep the agent flying above the reference xy position. A phase
of take off makes the quadrotor lift by rapidly increasing the throttle input and
when the agent reaches a height that is close enough to the hovering height,
the PID controller for the throttle switches on. We show in figure 4.3 the 3D
trajectory traced by the agent and in figures 4.4, 4.5 and 4.6 the position
and the reference in the three earth-fixed axis. The hovering reference point is
qd = (0, 0, 0.8) [m]. Moreover, we plot in figure 4.7 the yaw angle of the quadrotor
during the hover experiment; its reference value is set to 0.

We summarize in table 4.2 the results of this experiment, in the form of root
mean square and maximum errors after the take off phase.

Controlled value RMS error Max error

x axis 65[mm] 168[mm]
y axis 123[mm] −255[mm]
z axis 133[m] −194[mm]
yaw axis 6.77[°] −9.2[°]

Table 4.2 – Hover experiment: error
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Figure 4.3 – Hover experiment: 3D trajectory of the quadrotor.
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Figure 4.4 – Hover experiment: x position and reference
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Figure 4.5 – Hover experiment: y position and reference
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Figure 4.6 – Hover experiment: z position and reference
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Figure 4.7 – Hover experiment: yaw angle and reference

We can state that the x-axis and y-axis controllers work well and the static
error that is present in the x, y and yaw controllers are due to the lack of an
integral part in the corresponding controllers. Since this static error has a value
that does not exceed the 10[cm] for the x and y controllers and is about 7[°]
for the yaw controller, it is satisfactory: adding an integral part slows down
quite a lot the performances, in particular wrt the x and y controllers. The z
position is the most difficult to control, since the input range of the throttle
does not permit very smooth variations of the speed of the motors. This can be
fixed in a future implementation by increasing the quantization of the throttle
range. Anyway, after a settling time of 10÷ 15[s], the oscillations of the height
around its reference does not exceed ±20[cm] and for our purposes this value is
acceptable, since for the obstacle avoidance we will consider larger safety radii.
The transition between the takeoff phase and the controlled phase can be made
smoother if we provide that the gap between the last value of the throttle during
the takeoff and the base throttle of the height controller is null or sufficiently
small.

For this experiment and for each of the next ones, two videos have been
recorded:

• The fist one is a top view from a point near the ceiling of the laboratory,
recorded by a Logitech HD Webcam C310.

• The second one is a lateral view recorded by the camera of a Nokia Lumia
820 smartphone.
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Snapshots of the videos captured for this experiment are reported in figures 4.8
and 4.9.

(a) Before takeoff. (b) Takeoff.

(c) Hovering.

Figure 4.8 – Hover experiment, top view.
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(a) Before takeoff. (b) Takeoff.

(c) Hovering.

Figure 4.9 – Hover experiment, lateral view.
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4.3.2 Circular path

The first experiment using waypoints is a circular path, centered in the origin
of the earth reference system and with radius r = 1[m]. For this scenario the
height is not controlled, i.e. a fixed throttle is applied to the quadrocopter and
the aim of the experiment is to verify the correctness of the controllers for the
movement along x and y when the reference changes.

The circular trajectory has been created and sampled in Matlab, obtaining
20 waypoints. The switch from one waypoint to the following can be performed
manually by the user or by a time-based switch.

In the experiment first the vehicle is made hover above the starting point
(1,0)[m], and once it starts the tracking the time switch activates with a period
of 1000[ms] from one waypoint to the following. This is quite a reasonable time
since our aim is not to have speed maneuver but rather precision. In the following
pictures we show first the 2D path (reference vs. quadrotor position) and then
the x and y positions individually (figures 4.10, 4.11, 4.12) of a three-laps long
experiment.
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Figure 4.10 – Circular path experiment: xy position (blue) and reference (red)
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Figure 4.11 – Circular path experiment: x position (blue) and reference (red)
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Figure 4.12 – Circular path experiment: y position (blue) and reference (red)

As we can observe, the path is tracked in a satisfactory manner since the
error is almost always less that 20[cm], that is a value inside safety constraints if
we consider that is about one fourth of the diameter of the quadrocopter itself.
The major drift is along the roll axis and is about 50[cm]; this large error regards
the first lap of the path and can be due to the fact that the quadrocopter has
barely started its flight from the hovering position and has to accelerate from
zero speed in the positive direction of the y axis. In the other points of the
path and in the following laps the required acceleration is not as large, since the
quadrotor is already flying in the desired direction.

This experiment shows that even though the controller is able to make the
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vehicle follow sinusoidal references of the x and y positions, attention must be
paid to avoid collisions due to drifts of the quadrotor along the direction of
the movement. This can be done applying a safety margin on the radii of the
obstacles (see next subsection) or the quadrotor itself.

The snapshots of the cameras in three different positions along the circular
path are depicted in figure 4.13 and 4.14.

(a) First snapshot. (b) Second snapshot.

(c) Third snapshot.

Figure 4.13 – Circular path experiment, top view.
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(a) First snapshot. (b) Second snapshot.

(c) Third snapshot.

Figure 4.14 – Circular path experiment, lateral view.



4.3. EXPERIMENTAL RESULTS 59

4.3.3 Obstacle avoidance path tracking

The main object of our control is collision-free navigation. The procedure
we used in order to get a collision-free path exploits navigation functions to
get the sequential positions that should be tracked. We shall summarize in the
following lines the notion of navigation function and its utilization in autonomous
navigation.

4.3.3.1 Navigation functions and their application to autonomous
navigation

Once called En an n-dimensional Euclidean space, q the center of the position
of the agent and qd its destination, let us define a navigation function as follows:

Definition (Koditscheck and Rimon [29]) Let F ⊂ En be a compact con-
nected analytic manifold with boundary. A map Φ : F → [0, 1], is a navigation
function if it is:

1. Analytic on F ;

2. Polar on F , with minimum at qd ∈ F ;

3. Morse on F , i.e. all its critical points are non-degenerate

4. Admissible on F , i.e. lim
q→∂F

Φ(q) = 1.

Given the radius of the agent r, the destination qd, the positions and radii of
the M obstacles qj and ρj , the center and radius of the circular workspace q0

and ρ0, a suitable navigation function is the one expressed as follows.
Let us define

γd(q) , ||q − qd||2

and
γ(q) , γd(q)k,

with k ∈ N tuning parameter. γ(q) is a measure of how close the agent is to its
destination.

Let
βj , ||q − qj ||2 − (r + ρj)2,

β0 , (ρ0 − r)2 − ||q − q0||2
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and

β =
M∏
j=0

βj .

βj and β0 are indicators of how far the agent is from the obstacles and the
workspace boundary.

A function with the form

Φ =
(

γ

γ + β

) 1
k

has the properties required by the definition of navigation function. In short, this
function assumes high values in proximity of obstacles and workspace boundary
and low values in proximity of the destination. In figure 4.15 we depict an
example of navigation function for a bi-dimensional workspace of radius 15, an
agent of radius 0.05 with destination qd = [7, 0], an obstacle of unitary radius in
position [0,−2] and k = 2.

Figure 4.15 – Example of navigation function.

It is a known result that an agent with the kinematics of the form q̇ = u, i.e.
an agent of which we can directly control the speed in any given direction, can be
controlled with a law of the form u = −Ku∇Φ in order to obtain convergence and
obstacle avoidance (see [29]). We will exploit this result to obtain a collision-free
3D path for our agent to follow, aware that the nonlinear second order dynamics
of the quadrocopter do not allow a navigation function-based approach that
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acts directly on its inputs and we cannot prove a priori that the quadrocopter
can actually track in a proper way a path that is generated considering such a
different dynamical model. Nevertheless, the results we will get are encouraging.

Seen these last considerations and in order to effectively obtain obstacle
avoidance we payed attention to tune the parameters of the scenario and the
navigation function in such a way that we could rely on safety margins wrt the
distance from the points of the path to the obstacles. This has been done acting

• on the radius of the agent and the obstacles: the longer the radii, the more
reliable the distance constraint that provides collision-free navigation;

• on the gain k of the navigation function: a high value of k implies a path
closer to the obstacles, and vice versa.

The procedure we follow for obstacle avoidance navigation in our testbed is
the following:

• Get from the motion capture system or manually set the initial position,
destination and obstacles position in the workspace.

• Translate this coordinates to a simulated environment in Matlab and get
the collision-free path of a single-integrator omnidirectional agent.

• Take back the obtained path to the workspace coordinate system

• Sample the path to get a suitable number of waypoints to track. In the
following experiments the path has been sampled in such a way that the
euclidean distance from one waypoint to the following is 20[cm]. This value
has been chosen after some trials as a trade-off between an easily manageable
number of waypoints and a good matching between the continuous5 path
computed by Matlab and the path we get connecting the sampled waypoints.

• Make the quadrocopter hover on the starting point of the path and, when
a switch is commuted, start the tracking of the waypoints. As we said,
the switch from one waypoint to another can be done manually, basing on
a fixed-step timer but also using a rule on the time the agent stays in a

5 Of course the path computed by Matlab is not literally continuous, but is composed of
a number of points more than one order of magnitude greater than the sampled ones.
For instance, we set the Matlab solver to integrate along a 500 time samples interval, so
the output path is composed by 500 points. The number of waypoints we get for the
experiments, on the other hand, is always below 30.
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neighborhood of the current waypoint. Let us report the pseudocode for
the last case:

time_on_position = 0
for each iteration of the control algorithm do
c_d ← distance between agent’s position and current waypoint
if c_d≤ d_neighborhood AND time_on_position>max_time_on_position
then
switch to next waypoint
time_on_position = 0

else if c_d ≤ d_neighborhood then
time_on_position = time_on_position + ∆t

end if
end for

• Once the quadrocopter reaches its destination and if the space below is
clear from obstacles, land.

The implementation of the waypoint tracking has been done using a simple
state machine. The switching between its states can be either automatic or
manual; anyway even if the automatic switching is used we should always be
ready to intervene with the manual control in order to avoid major crashes or to
stop the experiment for any reason. In figure 4.16 we visualize the states of the
quadrocopter and the possible transitions.

IDLE TAKEOFF P2P

LAND

1 2

34 5

Figure 4.16 – State machine of the quadrotor.

The names of the states are self-explaining: Idle, Takeoff, Point to point
navigation (P2P), Land. Each number indicates a condition for the corresponding
transition to happen:

1. Takeoff button switched ON AND Land button OFF;
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2. P2P button switched ON OR distance from hovering position reached;

3. Land button switched ON OR last waypoint visited;

4. Throttle input = 0 AND Takeoff button OFF;

5. Land button switched ON.

Please note that the pitch, roll and yaw controllers are always active during
the flights, whereas the PID throttle controller is active only in the P2P state:
during the takeoff the throttle is quickly increased from the byte value of 45
in order to get the agent in air and in the landing state the throttle is quickly
decreased and is cut when either it reaches the value 40 or the agent reaches the
height of 400[mm].
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4.3.3.2 Experiment A: towers

We now present the experiments that have been conducted for obstacle
avoidance scenarios; we remark that in the collision-free path calculation we
assume that the obstacles are spherical and can float in the 3D space. On the
other hand, the obstacles we placed in the testbed have their base on the ground
and their top is about at the position where the spherical obstacles would be.
So before proceeding with the scenarios we needed to pay attention that the
path computed for the spherical obstacles is still collision-free and safely distant
from the obstacle bodies. In these test our aim is not to present an aggressive
controller nor to track a speed reference, but rather check the performances in
path following and the success in obstacle avoidance. For this reason we decided
to keep using a time-based switch for the waypoints, with period 1000[ms].

The first scenario consists in three obstacles of different height: two high
ones on the left of the agent facing the destination at 1.67[m] and 1.83[m] and
a small one on the right at 0.5[m]. The path provided by the four dimensional
navigation function passes between the left obstacles and the right one and first
raises up over the height of the two taller obstacles and the settles down to the
destination point, situated behind the tallest obstacles at 1.825[m] of height.

In figures 4.17 and 4.18 we see the trajectory of the quadrocopter in blue and
the collision-free path computed by Matlab (before the sampling) in red. We
can state that the collision avoidance goal is reached, and the XY position is
tracked pretty well: the maximum error we get is about 20[cm]. On the other
hand, the height controller is really precise in the first part of the trajectory and
gets a bump towards the end, before the quadrocopter starts to hover around
the destination point, of about 30[cm]. These values for the error are definitely
satisfactory, if we consider the fact that the vertical extension of the agent is
about 25[cm] so we can still rely on the safety margins given by the spherical
approximation of the agent itself.

Snapshots of the flight for experiment A are depicted in figures 4.19 and 4.20.
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Figure 4.17 – Experiment A, top view: xy position (blue), xy reference (red)
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Figure 4.18 – Experiment A, 3D view: xy position (blue), xy reference (red)
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(a) First snapshot. (b) Second snapshot.

(c) Third snapshot.

Figure 4.19 – Towers experiment (A), top view.
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(a) First snapshot.

(b) Second snapshot.

(c) Third snapshot.

Figure 4.20 – Towers experiment (A), lateral view.
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4.3.3.3 Experiment B: pillar

The second scenario also consists in three obstacles of different height: two
low ones (0.6[m]) in front of the quadrocopter facing the destination and a taller
one (1.1[m]) behind the first two. This setting has been designed ad hoc in order
to see the performance of the agent avoiding the first two obstacles from above
and the third one from aside.

In figures 4.21 and 4.22 we see the trajectory of the quadrocopter in blue
and the collision-free path computed by Matlab (before the sampling) in red.
Similarly to the previous case, here the position along the x and y axes is tracked
in a very satisfactory manner, the maximum error being approximately 25[cm],
due to a pretty abrupt change of direction towards the end of the path, when
the agent flies towards its destination behind the tall obstacle. Here the height
controller works decently as well, presenting the most significant errors at the
beginning (20[cm]) right when it has to avoid the first obstacles from above (once
again a proper margin on the distance between the path and the obstacles in
the design phase has avoided collision danger) and towards the end (25[cm]), in
conjunction with the XY error. The last part of the trajectory is thus the most
critical, and we must be aware of the error we observe when the direction of the
motion is changed quite abruptly.

Snapshots of the flight for experiment B are depicted in figures 4.23 and 4.24.

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

x

y

Figure 4.21 – Experiment B, top view: xy position (blue), xy reference (red)
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Figure 4.22 – Experiment B, 3D view: xy position (blue), xy reference (red)

(a) First snapshot. (b) Second snapshot.

(c) Third snapshot. (d) Fourth snapshot.

Figure 4.23 – Pillar experiment (B), top view.
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(a) First snapshot.

(b) Second snapshot.

(c) Third snapshot.

(d) Fourth snapshot.

Figure 4.24 – Pillar experiment (B), lateral view.
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4.3.3.4 Experiment C: slalom

The third experiment for collision avoidance differs from the other two since
in this case we decided to put one more obstacle in the workspace and keep all
the obstacles at the same height (0.8[m]); the path that results is bi-dimensional
(i.e. we can suppose to exploit a three dimensional navigation function to obtain
it), so the challenge is here having good performances in response only to abrupt
variations of the direction of the motion in the XY plane, while the vertical
reference is kept constant at 0.8[m].

We plot in figure 4.25 the the trajectory of the quadrocopter in blue and the
collision-free path computed by Matlab (before the sampling) in red, viewed from
above. In this last scenario, the tracking of the XY position is good, as a matter
of fact even thought the gaps between the obstacles in which the quadrotor must
pass are quite narrow wrt the agent dimension, the collision avoidance is still
achieved and the maximum tracking error in this case is around 10[cm], if we
neglect the very final section in which the agent stops quite abruptly since it
has reached its destination, provoking an error that is anyway little more than
20[cm]. It is interesting to note also the performances of the height controller
(figure 4.26): its performance is decent, even though the oscillating behavior is
clear but never exceeds 20[cm] after the initial take off.
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Figure 4.25 – Experiment C, top view: xy position (blue), xy reference (red)
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Figure 4.26 – Experiment C: height position (blue) and reference(red).

Here we report snapshots of the flight for experiment C (figures 4.27 and
4.28).

(a) First snapshot. (b) Second snapshot.

(c) Third snapshot.

Figure 4.27 – Slalom experiment (C), top view.
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(a) First snapshot.

(b) Second snapshot.

(c) Third snapshot.

Figure 4.28 – Slalom experiment (C), lateral view.
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Chapter 5

Autonomous navigation of an
air vehicle

In the previous chapter we stated that the heuristic controller we presented
allows path tracking with pretty satisfactory results. However, flying vehicles
have usually more complicated dynamics than the one of the quadrocopter, in the
sense that their structure allows more constrained movements. It is interesting
to analyze this kind of air vehicles and how an algorithm for stabilization and
obstacle avoidance can be implemented on them. As we already stated in the
Introduction, the controlled that has been presented in chapter 4 relies on
considerations on the features of the hardware that we have at our disposal; on
the other hand, the aim of the current chapter is to depict a more general vehicle
in order to make theory as general as possible and be able to handle a more
constrained dynamic agent in future applications in the framework.

For this purpose, let us consider the following model, that consists in a flying
vehicle governed by four inputs, one for the longitudinal velocity and one for
each of the angular velocities around the axis of the vehicle (see also [30]). The
control that will be presented is an extension to the three-dimensional case of
the controller designed in [31] and in the proof we will exploit some useful results
that are shown in that work.
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5.1 Air vehicle model

Here follows the kinematic model for an air vehicle moving in a three dimen-
sional space.

Let q be the state of the agent:

q =

 q1

q2

 =



x

y

z

φ

θ

ψ



}
position

}
orientation

(5.1)

where the orientation is expressed via the Euler angles [ φ θ ψ ]T , that we
assume restricted to the limits φ ∈ (−π, π], θ ∈ (−π

2 ,
π
2 ], ψ ∈ (−π, π]. Both

linear and angular positions are referred to an Earth-fixed coordinate system.

Let the motion of the agent be described by

q̇ =
[
q̇1

q̇2

]
, τ =

[
τ1

τ2

]
(5.2)

where τ1 and τ2 define the linear and angular velocities, respectively.

Now we want to express the motion of the vehicle in Body-fixed coordinates.
Let

r =

 l

a

 =



l1

l2

l3

a1

a2

a3


be the vector containing linear and angular positions of the agent in the Body-
fixed system and let us state that the directions of l1, l2 and l3 are as in figure
5.1.
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Figure 5.1 – Body-fixed coordinates

The corresponding velocities are

v =

 v1

v2

 =



u

v

w

p

q

r


.

The transformation between body-fixed and earth-fixed coordinates is the
following:

q̇1 = τ1 = J1(q2) · v1

q̇2 = τ2 = J2(q2) · v2
(5.3)

where

J1 =


cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

 ∈ SO(3)

J2 =


1 sφtθ cφtθ

0 cφ −sφ
0 sφ

cθ

cφ
cθ


(5.4)

where we shortened the trigonometric functions sin(·), cos(·) and tan(·) with s,
c and t.

The inputs of the system are the longitudinal linear velocity u in the body-fixed
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reference system and the angular velocities in the earth-fixed reference system.
Let us gather them in the input vector

vk = [ u ω1 ω2 ω3 ]T .

According to equations (5.3) we can derive the complete model that we are
going to consider:

q̇ = τ =
[
τ1

τ2

]
=
[

J̄ 03×3

03×1 I3

]
︸ ︷︷ ︸

,R∈R6×4

vk , R(n2) · vk (5.5)

where J̄ , [ cψcθ sψcθ −sθ ]T is the first column of J1.
Let us rewrite the previous matrix expression in form of system for the sake

of clarity and depict it in figure 5.2

ẋ = cosψ cos θ u
ẏ = sinψ cos θ u
ż = − sin θ u
φ̇ = ω1

θ̇ = ω2

ψ̇ = ω3

(5.6)

x

y

z

u

θ
ψ N

E
D

Figure 5.2 – Visualization of the axes, velocity vector and angles of interest.
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5.2 Control approach

Let us consider a spherical workspace W ∈ R3 of radius ρ0, in which No

spherical obstacles of radii ρ1, . . . , ρNo and in positions qo1 , . . . , qoNo stand. The
radius of the agent is taken large enough to guarantee the mentioned safety
requirement. The problem we consider is designing a control law to steer the
agent described in the previous section from an initial configuration q0 to a
desired configuration qd, avoiding collisions with the obstacles.

In order to reach our goal, we will exploit again a navigation function-based
approach and we will add a model predictive integration to satisfy desired
performance requirements. Regarding the navigation functions, we will now
exploit dipolar navigation functions, in order for the agent to reach the destination
with the desired orientation, avoiding in-place rotations.

5.3 Dipolar navigation functions

Dipolar navigation functions (DNF) are exploited in order to drive the agent
to destination with the desired orientation (see [32] and [30]). This is done by
creating a navigation function such that the integral lines of its potential field
are all tangent to the desired orientation at the destination. This is achieved
by considering the plane of which the normal vector is parallel to the desired
orientation, and includes the destination, as an additional artificial obstacle.
Namely, the obstacle function β described in section 4.3.3.1 is pre-multiplied by
the contribution

Hnh = εnh + nnh

with εnh small positive constant and

nnh = ||J̄(q2d) · (q1 − q1d)||2

where q1d and q2d are the desired position and orientation at destination.

In figure 5.3 we report an example of a three-dimensional DNF (i.e. in a
two-dimensional workspace) as presented in [30].
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Figure 5.3 – Dipolar navigation function with two obstacles (image from [30]); the
nonholonomic obstacle is the line x = 7.

The control law presented in [30] exploits DNF for 3D navigation and has
the following structure:

u = −sgn(J̄ ∂Φ
∂q1

)F (q1)

ω1 = −kφ(φ− φnh)

ω2 = −kθ(θ − θnh)

ω3 = −kψ(ψ − ψnh)

(5.7)

where Φ is the dipolar navigation function, F is a function that regulates the
magnitude of the linear velocity i.e. F = ku|| ∂Φ

∂q1
||2 + kz||q1||2, kφ, kθ, kψ, ku, kz

are positive gains and φnh, θnh, ψnh are the nonholonomic angles, described in
the following.

Let us define the function

atan2(y, x) , arg(x, y), (x, y) ∈ C

and the partial derivatives

Φx ,
∂Φ
∂x

Φy ,
∂Φ
∂y

Φz ,
∂Φ
∂z

The nonholonomic angles, i.e. the angles defined by the gradient of the
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dipolar navigation function, are:

ψnh = atan2 (sign(d)Φy, sign(d)Φx))

θnh = atan2
(
− sign(d)Φz,

√
Φ2
x + Φ2

y

)
φnh = atan2 (sign(d) cos θ ωψ, sign(d)ωθ)

(5.8)

where the vector sign(d)∇Φ is the direction that the longitudinal axis l1 steers
to align with and the angles ψnh and θnh represent respectively azimuth and
elevation of the vector. So according to sign of d the aircraft must approach
the target moving forward (i.e. it steers towards the direction of −∇Φ), or
backwards (i.e. it steers toward the direction of ∇Φ).

Since the above-defined angles are not continuous at the destination position
(where ∇Φ is null), the approximation scheme in [30] is employed, that guarantees
to have φnh = φd, θnh = θd and ψnh = ψd at the destination.

The bank angle φ does not influence directly the motion of the aircraft and
so the goal of the nonholonomic angle φnh is to track the reference bank angle so
that the agent tends to eliminate the yaw rate and achieve the required alignment
only through pitch rotation.

5.4 Model predictive control

Generally speaking, Model Predictive Control (MPC) consists in an iterative
finite horizon optimization, conducted with regards to a performance measure.
We would like our agent to reach the destination point and avoid obstacles and
at the same time minimize a functional, that can be related to the control effort,
to input constraints or other parameters we are interested to keep monitored.
Let us call Tp the prediction time horizon; we want to minimize a cost functional
in the form:

J(t, x, u, Tp) =
∫ (t+Tp)

t
Λ(q(τ), u(τ))dτ︸ ︷︷ ︸

Running cost

+ M(q(t+ Tp))︸ ︷︷ ︸
Terminal cost

(5.9)

At each calculation time t, the state of the system is sampled and a cost
minimizing control law is computed for a time horizon [t, t+ Tp). The control
law obtained with this minimization is applied during a shorter period of time
Tc < Tp and the minimization problem is solved again for the new state q(t+Tc).
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The terminal cost M represents an approximation of the cost-to-go from
t+ Tp →∞: such a function can be well represented by a navigation function Φ
(see [31]), so the cost functional becomes

J(t, x, u, Tp) =
∫ (t+Tp)

t
Λ(q(τ), u(τ))dτ + Φ(p(t+ Tp)) (5.10)

where we indicate with p the linear position vector of the agent.
Now, we want to focus on model predictive navigation, i.e. how MPC can be

applied to the model we are dealing with. In order to do so, let us consider that
a control law based only on a navigation function approach does not allow us to
choose one trajectory over another, so we need to introduce some deviations from
the direction of the DNF gradient in order to have some values we can act on
to minimize the index. We define those deviations in terms of variations of the
angles θ and ψ in respect to the value set by the DNF control (5.7): let us call
them δ̄θ and δ̄ψ and let us impose that for each prediction interval the deviations
are first order polynomials (i.e. straight lines) with the previous value of the
deviation as starting point and the candidate value for the current deviation as
ending point1. For each prediction interval [tk, tk+Tp) the minimization problem
to be solved is

J∗(tk, x, Tp) = min
δ̄θ([tk, tk + Tp)),
δ̄ψ([tk, tk + Tp))

J(tk, x, u, Tp)

and the optimal values of the deviations for each prediction interval are the
couple of deviations that minimize the index when applied together[

δθ

δψ

]
, argmin

δ̄θ([tk, tk + Tp)),
δ̄ψ([tk, tk + Tp))

J∗(tk, x, Tp)

1 We make this assumption in order to keep the value of the deviation bounded during the
prediction interval, a requirement that will be exploited in the upcoming demonstration of
stability (see also [31])
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5.5 Proposed control

The control law that we propose comes from the combination of the input
given by the navigation-function approach and the deviations given by the model
predictive control and is the following:

u = − sign
(
J̄
∂Φ
∂q1

)
ku

∣∣∣∣∣∣∣∣ ∂Φ
∂q1

∣∣∣∣∣∣∣∣2
ωφ = −kφ(φ− φnh) + φ̇nh

ωθ = −kθ(θ − θnh − δθ) + θ̇nh + δ̇θ

ωψ = −kψ(ψ − ψnh − δψ) + ψ̇nh + ˙δψ

(5.11)

where:

• Φ is the dipolar navigation function (DNF);

• ku, kφ, kθ and kψ are positive constant control parameters;

• φnh, θnh and ψnh are the nonholonomic angles;

• δθ and δψ are the optimal deviations provided by the model predictive
algorithm.

We recall from section 5.4 that the deviations provided by the MP algorithm
are calculated at every prediction interval [t, t+Tp) and applied during a shorter
time slot called control interval [t, t+Tc). At every control interval the deviations
are first order polynomials

δθ(τ) = (1− τ

Tc
)δθ(t) + ( τ

Tc
)δθ(t+ Tc) τ ∈ [t, t+ Tc)

δψ(τ) = (1− τ

Tc
)δψ(t) + ( τ

Tc
)δψ(t+ Tc) τ ∈ [t, t+ Tc)

and their concatenation is a continuous function by construction.
Moreover, the model predictive control is turned off as we reach a neighbor-

hood of radius rnb of the destination q1d, and we set:

δθ(t ≥ tf ) = ||q1 − q1d||2

rnb
δθ(tf )

δψ(t ≥ tf ) = ||q1 − q1d||2

rnb
δψ(tf ),

(5.12)
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with tf = inf{t : ||q1−q1d|| ≤ rnb}. These terms are continuous in ||q1−q1d|| = rnb

and are null with null derivative at the destination point:

δθ(||q1 − q1d|| = rnb) = δθ(tf )

δθ(q1d) = 0

δ̇θ(q1d) = 0

(5.13)

Similar expressions can be found for δψ(t ≥ tf ).

5.5.1 Useful lemmas

We report here two lemmas we are going to use in the demonstration. They
have been used for demonstrating the two-dimensional case of the problem in
[31] and their demonstration can be found in the same work.

Lemma 5.5.1 The deviations δθ and δψ are continuous functions and

|δθ| < π

2 , |δψ| < π

2 ∀t

Lemma 5.5.2 At every recalculation time tk, let us modify the sampling set for
the deviations, that originally were Θ = Ψ =

(
−π

2 ,
π
2
)
, as follows:

Θk =
(
−π2 + |θ(tk)− θnh(tk)− δθ(tk)|,

π

2 − |θ(tk)− θnh(tk)− δθ(tk)|
)

Ψk =
(
−π2 + |ψ(tk)− ψnh(tk)− δψ(tk)|,

π

2 − |ψ(tk)− ψnh(tk)− δψ(tk)|
)

By doing so, if at the beginning |θ(0) − θnh(0)| < π
2 and |ψ(0) − ψnh(0)| < π

2 ,
then

|θ(t)− θnh(t)| < π

2 , |ψ(t)− ψnh(t)| < π

2 ∀t

We remark that the hypothesis |θ(0)− θnh(0)| < π
2 and |ψ(0)− ψnh(0)| < π

2
are reasonable, in particular if we assume that the agent can perform maneuvering
before take off.
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5.5.2 Proof of convergence and collision avoidance

We can finally state the following

Theorem 5.5.3 (Convergence and collision avoidance) An agent described
by the model (5.5) navigating under the control law (5.11) converges to its target
destination with the desired azimuth and elevation angles, avoiding collisions
with obstacles.

Proof Let us consider the ordinate sequence of recalculation times in which the
model predictive algorithm is applied, tf being the last element: t0, t1, . . . , tk, tk+1, . . . , tf ,
with t0 = 0 and tk+1 = tk + Tc.

Now, for each interval [tk, tk+1), tk 6= tf we consider the Lyapunov function
candidate

Vk = Φ + 1
2 (θ − θnh − δθ[tk, tk+1))2 + 1

2 (ψ − ψnh − δψ[tk, tk+1))2 (5.14)

and the extended system

xext =



q1

θ

θnh

δθ

ψ

ψnh

δψ


, ẋext = f(xext) =



J̄u

ωθ

θ̇nh

δ̇θ

ωψ

ψ̇nh
˙δψ


We can define the Filipov set K[f ](xext) and the generalized derivative of

Vk, ∂Vk, as follows:

K[f ] =



J̄K[u]
ωθ

θ̇nh

δ̇θ

ωψ

ψ̇nh
˙δψ


, ∂Vk =



∇Φ
θ − θnh − δθ
−(θ − θnh − δθ)
−(θ − θnh − δθ)
ψ − ψnh − δψ
−(ψ − ψnh − δψ)
−(ψ − ψnh − δψ)
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And applying the chain rule we get

˙̃V =
⋂

ξ∈∂Vk

ξT (K[f ](xext, t)) =

=J̄K[u]∇Φ + ωθ(θ − θnh − δθ)− θ̇nh(θ − θnh − δθ)− δ̇θ(θ − θnh − δθ)+

+ ωψ(ψ − ψnh − δψ)− ψ̇nh(ψ − ψnh − δψ)− ˙δψ(ψ − ψnh − δψ)

Substituting the expressions for ωθ and ωψ (see (5.11)) and defining P , J̄∇Φ,
we obtain

˙̃Vk = J̄K[u]∇Φ− kθ(θ − θnh − δθ)2 − kψ(ψ − ψnh − δψ)2 =

= PK
[
− sign(P )ku ||∇Φ||2

]
− kθ(θ − θnh − δθ)2 − kψ(ψ − ψnh − δψ)2 =

= −|P |ku ||∇Φ||2 − kθ(θ − θnh − δθ)2 − kψ(ψ − ψnh − δψ)2

The last two terms of the previous sum are always nonpositive. The first term is
the product of ku ||∇Φ||2 > 0 (we are considering tk 6= tf and ∇Φ is practically
null only for q1 = q1d since the initial conditions that lead to saddle points are a
set of measure zero) and −|P |, that is strictly negative since P is null only if
||∇Φ|| = 0 or if the gradient is normal to the aircraft longitudinal axis2, but this
last condition is not verified as we adjusted the sampling sets following Lemma
1.2.

It is straightforward that Vk−1(tk) = Vk(tk), as a result of Lemma 1.1. So
the concatenation of the Lyapunov function candidates that we considered so
far is a continuous function of time.

Let us consider now the Lyapunov function candidate for t ≥ tf :

Vf = Φ + 1
2 (θ − θnh − δθ(t ≥ tf ))2 + 1

2 (ψ − ψnh − δψ(t ≥ tf ))2 .

It follows from (5.13) that the concatenation V = V1|V2| . . . |Vf is continuous as
well.

Moreover, as we write ˙̃Vf similarly as we did for ˙̃Vk, we get ˙̃Vf ≤ 0, because
in this case the first term of the expression can be null.

We now want to apply LaSalle’s principle to V , i.e. we want to exploit the
fact that the system converges to the largest invariant subset of S , {q| ˙̃V = 0}.

2 i.e. |θ − θnh| =
π

2 or |ψ − ψnh| =
π

2
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We have that ˙̃V = 0⇐⇒ ˙̃Vf = 0, i.e.

−|P |ku ||∇Φ||2 − kθ(θ − θnh − δθ(t ≥ tf ))2 − kψ(ψ − ψnh − δψ(t ≥ tf ))2 = 0

In order for this to hold, the last two terms of the sum must be zero and at
least one of |P | and ||∇Φ|| must be null as well. But actually because of Lemma
1.2 the only possibility to get |P | = 0 is that the gradient of the navigation
function also gets null, so for the product to be zero it is necessary and sufficient
that ||∇Φ|| is zero. As we already said, the initial conditions leading to saddle
points are a set of measure zero, so this practically only happens if q1 = q1d, i.e.
at the desired position.

Let us call S1 , {q|q1 = q1d} the set of configurations in which the agent has
the desired position. If q ∈ S, then

• q1 = q1d, therefore θnh = θd and δθ = 0 (for construction of θnh and δθ),
and similarly for ψ.

• [(θ − θnh − δθ(t ≥ tf ) = 0) ∧ (ψ − ψnh − δψ(t ≥ tf ) = 0)] implies θ = θd, ψ =
ψd

So if q ∈ S, the agent has the desired position and orientation and therefore S is
the singleton {qd}, that is an invariant set since the components of the input u,
ωθ and ωψ are null for q = qd.

The convergence to the desired configuration is hence proved.
The collision avoidance comes from the properties of the (dipolar) navigation

function. Let us assume no collisions for t = 0: so Φ(t = 0) < 1. Now let us
write the time derivative of Φ:

Φ̇ = ∇Φq̇1 = ∇ΦJ̄u = P (− sign(P )ku||∇Φ||2) = −|P |ku||∇Φ||2 ≤ 0 ∀t ≥ 0

Therefore Φ(t) < 1, ∀t > 0 and no collisions occur.

�
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Chapter 6

Conclusions

In this thesis convergence and obstacle avoidance navigation for an air vehicle
has been presented. After a detailed description of the quadrotor platform and
the Smart Mobility Lab testbed, a general model for quadrotor dynamics has
been obtained and the relations between the control inputs and the behavior
of the agent have been analyzed through system identification. An heuristic
controller for obstacle avoidance has been depicted and the experimental results
in the testbed have shown its reliability for our control goals. A more elaborated
controller for a general model of air vehicle has been presented and its properties
have been demonstrated, in order to provide a more general flight scenario,
independent from the specific quadrotor setup, that could be exploited in the
testbed in the future.

We wish to give some advice wrt the hardware of the testbed. The arms and
rotors of the quadrotor were quite fragile and required frequent replacements: to
overcome this problem components of more resistant material could be considered.
Furthermore, since the height control has been the most challenging and the most
imprecise as well, less powerful motors could be tested on the same quadrotor, in
order for the response to the throttle input to be smoother and for the battery
to have a longer lifetime between charges. For the same reason, a suggestion for
future implementation is increasing the input quantization.

As far as the control task is concerned, different controllers for waypoint
navigation, for instance LQG controllers, could be tested on the same platform
and performances could be compared with the ones of this work. The motion
capture system could be integrated with vision sensors onboard the vehicle in

89
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order to provide, for instance, the simulation of inspection or data gathering
tasks and IR sensors could be installed in order to improve safety in obstacle
avoidance. Nonlinear identification could be performed on the system to check
if more accurate relations can be retrieved and a control strategy that exploits
explicitly the knowledge of these relations could be studied. The control analyzed
in the last chapter or an adaption could be simulated and implemented in the
testbed in the future with air vehicle models fitting the depicted dynamics.
Cooperative navigation between two or more air vehicles could be implemented,
paying attention for the communication chain to be fast enough to provide safe
control.
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