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SUMMARY 

The aim of this thesis is to verify the effectiveness of the Peak Stress Method (PSM) on a welded 
steel tube-tube joint under combined loading. The experimental data, provided by Vormwald in terms 
of applied loads and cycles to failure, have been evaluated in terms of equivalent peak stress and 
compared with PSM design scatter bands.  
The procedure necessary to do that is particularly challenging and it requires to face up to a lot of 
issues. First, the experimental data considers a lot of different scenarios: stress-relieved and as-
welded specimens, uni-axial and multiaxial cases with two different biaxiality ratio, two different cycle 
ratios and also in-phase and out-of-phase loading conditions. 
In chapter one, the specimens’ geometry and experimental data were analysed and discussed in 
order to re-obtain the published SN curves and to calculate the ranges of the applied stresses on the 
inner tube, because this is where the loads will be applied in the Finite Elements Analysis (FEA). 
Furthermore, it was investigated the method proposed by Vormwald to take into account the out-of-
phase effect in the calculation of the equivalent stress. In fact, theoretically this effect would result in 
a fatigue life reduction and it is important to understand if it is negligible or not in this case, because 
the Peak Stress Method does not consider it and potentially could lead to unreliable results. 
In chapter two, the linear elastic fracture mechanics (LEFM) was recalled to introduce the local 
approach based on the Notch Stress Intensity Factors (NSIFs) to properly study the stress state 
around a sharp V-notch. Then, the focus switches to an energetic approach, using the NSIFs values 
to calculate the Strain Energy Density (SED) that brings the possibility to compare the fatigue life of 
notches with different opening angles. The next step is introducing the Peak Stress Method, that 
allows an easy and rapid calculation of the Notch Stress Intensity Factors (NSIFs) and recalling the 
SED definition it results in the formulation of the equivalent peak stress. Eventually, the equivalent 
peak stress design scatter bands are presented and these will be resumed in the end of the thesis 
to verify if the Peak stress Method is effective in this particular case. 
In chapter three, an application of the Peak Stress Method to cruciform specimens is presented, to 
underline how this approach makes it possible to calculate the NSIFs with FE meshes far less 
refined. In addition, several experimental data given in terms of nominal stress range were evaluated 
in terms of equivalent peak stress and compared with the design scatter bands. 
In chapter four, the core of the thesis is discussed, first with 2D models, then with 3D ones 
characterized by articulated and complex shapes. At the beginning, to study the state of tension 
around the root tip, two axis-symmetric geometries were modelled and solved, one for the pure axial 
loading condition and the other for the torsional case. The next step is the description of the 3D CAD 
creation and its analysis with the Ansys software. The extraction of the equivalent peak stresses of 
both loading cases has required several FEM models and a lot of procedures aimed to their 
validations. These extracted values are necessary to evaluate the experimental data in terms of 
equivalent peak stress and make a comparison with the design scatter bands. 
In the end of the thesis, the result of all operations, here briefly discussed, will be shown in a single 
SN diagram, but it has not to be forgotten that a lot of different factors are taken into account and the 
outcome could have a lot of different explanations. 
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CHAPTER 1: 
 
 

Fatigue of weld ends under combined loading 
 

1.1 Introduction 

 
Nowadays an interesting topic of research is represented by fatigue behaviour of weld ends under 
multi-axial load conditions. The automotive industry is committed in discovering the fatigue life of 
some welded parts, like steel tube-tube joints that were analysed by Shams and Vormwald in [1].  In 
this research project it has been taken into account not only the geometrical and statistical size effect 
but also the out-of-phase effects on fatigue strength using a multi-axial criterion. In literature it is 
known that in case of a discontinuous welding the critical zone is represented by the weld start and 
end points. This kind of failure happens in the fatigue application, due to the notch effect, and in order 
to be avoided the knowledge of S-N curves is strictly necessary. However, these curves are known 
only in uniaxial cases and rely on an idealized model obtained by a high precision 3D-scanning with 
notch radii of rtoe=0,20 mm and rroot=0,05 mm. The corresponding fatigue lives and hence the S-N 
curves were determined experimentally. Today different S-N curves are assigned to weld toe and 
weld root failure scenarios. Shams and Vormwald work, [1], proposed a method to develop S-N 
curves valid for the determination of fatigue life of weld ends under multi-axial loading conditions. 
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1.2 Nomenclature 

 
 
 

𝑎𝑤 Throat thickness 𝛿 Phase shift 

𝐴𝜓 Corresponding surface to 

the node  

𝜅 Weibull exponent 

𝑑𝑎,1 External diameter of inner 
tube 

𝜆 Ratio of semi-axes of ellipses 

𝑑𝑎,2 External diameter of outer 
tube 

𝜌 Non proportionality parameter 

𝐹⊥ Normal force 𝜌∗ Micro-structural length 

𝐼𝐴,𝑟𝑒𝑓 Highly stressed reference 
surface 

𝜎𝑎 Nominal normal stress 
amplitude 

𝐼𝐴,𝜌∗ Stress integral based on 
effective stress 

𝜎𝑒𝑞 Equivalent stress 

k Slope of S-N curve 𝜎𝑥 Normal stress in x direction 

𝑙𝑤 Weld length  𝜎𝑦 Normal stress in y direction 

𝑟𝑟𝑜𝑜𝑡 Radius at weld root 𝜎𝜌∗,𝑆𝑆𝐶𝐻 Effective stress including out-
of-phase effects 

𝑟𝑡𝑜𝑒 Radius at weld toe 𝜎𝜌∗,𝜅 Weighted effective stress 

R Load ratio 𝜎𝜌∗,𝜓 Effective stress 

s (x, y, z) Direction of highest stress 
gradient 

𝜏𝑎 Nominal shear stress 
amplitude 

𝑡1 Thickness of inner tube 𝜏𝑥𝑦 Shear stress 

𝑡2 Thickness of outer tube 𝜓 Node on a critical surface 

𝜎𝑤 Normal stress referring to 
the weld throat area 

∆𝜎𝑛 Range of normal stress 
referring to the inner tube  

𝜏𝑤 Shear stress referring to the 
weld throat area 

∆𝜏𝑛 Range of shear stress referring 
to the inner tube 
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1.3 Specimens and testing  

 
The experimental part of this research involved 16 series of tests (in total 142 tests) with tube-tube 
joints under pure axial force, pure torsional moment and combined in-phase as well as out-of-phase 
loadings. Specimens consisted in welded tube-tube joints from fine-grained and engineering steels 
(outer tube: S340+N and inner tube: E355+N) under constant amplitude loading in the range of 104–
5 106 cycles to failure. The 490 mm-long test specimen consists of two tubes with an overlap length 
of 60 mm. The external diameters of the inner and outer tubes are da,1 = 40 mm and da,2= 45 mm, 

respectively. The inner tube has a sheet thickness of t1 = 2.0 mm; while the sheet thickness of the 

outer tube is t2 = 2.5 mm. Two seam welds at opposing quadrants joined the two tubes, see Fig. 1.1. 

The tube-tube joints were manufactured using gas shielded metal arc welding. The welding was 
carried out in a twin-robot system, where two robots work simultaneously.  

 

Figure 1.1:  Overlapped tube-tube specimen [1]. 
 

Regarding the applied loads, in the case of combined loading two ratios were considered for the 
torsional moment to the axial force amplitudes Mt,a/F,a. This ratio assumes two values: 28 Nm/kN 

and 17.9 Nm/kN. Herein, dimensionless ratios expressed by nominal stress amplitudes a/a are 

also given. The normal stress is calculated from the value of axial force considering the weld throat 
area, fig 1.2: 

 
𝜎𝑤 =

𝐹⊥
2 𝑎𝑤𝑙𝑤

 
(1.1) 
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Figure 1.2: Rough weld idealized model. 

Furthermore, considering a couple of forces producing the torsional moment, the shear stress could 
be derived from equation: 

 
𝜏𝑤 =

𝑀𝑇

𝑑𝑎,1 𝑎𝑤𝑙𝑤
 

(1.2) 

Finally, considering da,1= 40 mm, the ratio between shear stress and normal stress results: 

 𝜏𝑤
𝜎𝑤
=

1

20 𝑚𝑚
 
𝑀𝑇

𝐹⊥
 

(1.3) 

Taking into account this last expression it results that a ratio Mt,a/F,a of 28 Nm/kN corresponds to a 

a/a equal to 1.4; while, with a Mt,a/F,a of 17.9 Nm/kN, the stress ratio results 0.895. 

The experiments have been conducted using a servo-hydraulic multi-axial test rig with testing 
frequencies of 8–10 Hz for uniaxial and 1–2 Hz for multiaxial loading conditions. The experimental 
set-up is depicted in Fig. 1.3.  
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Figure 1.3: Experimental set-up (a), scan of the weld (b), [1]. 
 

Prior to testing, the specimens were sprayed using a scan spray in order to ease the optical 
detectability of both formation and growth of fatigue cracks after the test. During testing, the fatigue 
cracks were monitored by taking photographs of the four existing weld start and end points at 
predefined numbers of cycles. If predefined upper and lower limits for deformation values were 
exceeded, the experiment was terminated.  

The failure criterion was established setting limits for deformation values to ±8 mm and ±5 degrees. 
The corresponding number of cycles was considered to plot the data in the S-N space.  
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1.3 Collected data 

 
In the following tables all the series are represented, making a distinction in terms of condition and 
nominal load ratio. In particular, any effect of residual welding stresses in series 01–12 is excluded 
because all specimens were stress-relieved by heat treatment (600 C° for 6 h and followed by slow 
cooling) prior to testing. Furthermore, four test series (series 13–16) were not exposed to any heat 
treatment, so that they have been tested in an as-welded condition in order to investigate the 
influence of residual stresses on fatigue resistance. In series 01-06 a load ratio R equal to zero is 
considered, while in the others R is always -1. In-phase as well as out-of-phase loading conditions 
have been considered, and the phase value will be indicated with the letter  
𝛿 and expressed in degrees.   

Regression lines are added for a 50% probability of survival. 

Series Condition R 𝛿 𝑀𝑇 𝐹⊥⁄  

[Nm/kN] 

𝜏𝑤 𝜎𝑤⁄  Number of 
specimens 

01 Stress-
relieved 

0 - - - 12 

02 Stress-
relieved 

0 - - - 12 

03 Stress-
relieved 

0 0° 28.0 1.40 12 

04 Stress-
relieved 

0 0° 17.9 0.895 12 

05 Stress-
relieved 

0 90° 28.0 1.40 12 

06 Stress-
relieved 

0 90° 17.9 0.895 12 

Table 1.1: Test program series 01-06. 

 

 
Figure 1.4: S-N curves for pulsating loading and stress-relieved specimens, [1]. 
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Series Condition R 𝛿 𝑀𝑇 𝐹⊥⁄  

[Nm/kN] 

𝜏𝑤 𝜎𝑤⁄  Number of 
specimens 

07 Stress-
relieved 

-1 - - - 7 

08 Stress-
relieved 

-1 - - - 7 

09 Stress-
relieved 

-1 0° 28.0 1.40 7 

10 Stress-
relieved 

-1 0° 17.9 0.895 7 

11 Stress-
relieved 

-1 90° 28.0 1.40 7 

12 Stress-
relieved 

-1 90° 17.9 0.895 7 

Table 1.2: Test program series 07-12. 

 
 
 
 

 

Figure 1.5: S-N curves for alternating loading and stress-relieved specimens, [1]. 
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Series Condition R 𝛿 𝑀𝑇 𝐹⊥⁄  

[Nm/kN] 

𝜏𝑤 𝜎𝑤⁄  Number of 
specimens 

13 As-welded -1 - - - 7 

14 As-welded -1 - - - 7 

15 As-welded -1 0° 28.0 1.40 7 

16 As-welded -1 90° 28.0 1.40 7 

Table 1.3: Test program series 13-16. 

 

 

Figure 1.6: S-N curves for alternating loading and as-welded specimens, [1]. 

 
When no cracks could be detected after 106 load cycles in the case of combined loadings or after 2 
106 load cycles otherwise the corresponding experimental results have been defined as run out and 
they have been indicated with horizontal arrows in Fig. 1.6. In the case of run out tests, the applied 
load(s) have then been doubled and the test was repeated. These data have been indicated with 
inclined arrows in Fig. 1.6. 

All the load amplitudes applied to the specimens, reported in the German report, have been re-
analysed in terms of stress range, calculated into the inner tube according to the following 
expressions: CHECK DE DI 

 
∆𝜎𝑛 =

∆𝐹

𝐴𝑖𝑛𝑛𝑒𝑟 𝑡𝑢𝑏𝑒
=

2𝐹𝑎
𝜋
4
(𝑑𝑒

2 − 𝑑𝑖
2)

 
(1.4) 

 
∆𝜏𝑛 =

∆𝑀𝑡
𝑊𝑡,   𝑖𝑛𝑛𝑒𝑟 𝑡𝑢𝑏𝑒

=
2𝑀𝑡,𝑎

𝜋
16
𝑑𝑎,1

4 − (𝑑𝑎,1 − 2𝑡)
4

𝑑𝑒

 
(1.5) 

Using these new definitions for the range of stresses, the two values of the ratio  
𝜏𝑛 𝜎𝑛⁄   become 1.55 and 0.99. All the data have been resumed in the following table, where all test 
series are represented along with details about the loading conditions, Tab 1.4. 
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Series 
 

Specimen 
 

𝐹⊥,𝑎 

[kN] 
𝜎𝑤 
[MPa] 

𝜎𝑛 
[MPa 

𝑀𝑇,𝑎 

[Nm] 
𝜏𝑤 
[MPa] 

𝜏𝑛 
[MPa 

𝑁𝑓 

 

1 1 15.0 135.1 125.65    39500 

 2 5.0 45.02 41.88    3246185 

 3 12.0 108 100.52    53000 

 4 9.0 81.03 75.39    220000 

 6 6.3 56.27 52.35    887000 

 7 17.3 155.3 144.91    19500 

 8 9.6 86.43 80.42    90000 

 9 18.5 166.6 154.97    15000 

 10 9.3 83.73 77.90    221000 

 11 19.5 175.6 163.34    18000 

 12 24.0 216.1 201.04    30000 

2 1    400 180.1 185.12 25000 

 2    300 135.1 138.84 50000 

 3    200 90.03 92.56 316500 

 4    125 56.27 57.85 547000 

 5    250 112.5 115.70 135500 

 6    100 45.02 46.28 3405000 

 7    175 78.78 80.99 297000 

 8    225 101.3 104.13 206000 

 9    450 202.6 208.26 32500 

 10    340 153.1 157.35 35500 

 11    275 123.8 127.27 64000 

 12    370 166.6 171.23 23000 

3 2 4.0 36.01 33.51 112 50.42 51.83 842000 

 3 3.2 28.81 26.81 89,6 40.33 41.47 1068000 

 4 7.6 68.42 63.66 213 95.88 98.58 51500 

 5 9.5 85.53 79.58 266 119.7 123.10 20000 

 6 4.8 43.22 40.21 134,4 60.5 62.20 221000 

 7 4.4 39.61 36.86 123,2 55.46 57.02 586000 

 8 5.8 51.77 48.17 161 72.48 74.51 168000 

 9 11.4 102.6 95.49 320 144.1 148.09 10000 

 10 7.0 63.02 58.64 196 88.23 90.71 41000 

 11 8.0 72.03 67.01 224 100.8 103.67 54000 

 12 9.0 80.58 74.97 250,6 112.8 115.98 40500 

4 2 7.5 67.52 62.82 134,4 60.5 62.20 80000 

 3 11.9 107.1 99.68 213 95.88 98.58 18000 

 4 10.0 89.58 83.35 178 80.13 82.38 39000 

 5 17.9 161.2 149.94 320 144.1 148.09 5000 

 6 6.3 56.27 52.35 112 50.42 51.83 244000 

 7 6.9 61.94 57.63 123,2 55.46 57.02 233000 
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 8 9.0 81.03 75.39 161 72.48 74.51 66000 

 9 8.4 75.45 70.20 150 67.52 69.42 78000 

 10 11.0 98.58 92.14 196 88.23 90.71 36000 

 11 12.5 112.5 104.71 224 100.8 103.67 17500 

 12 14.0 126 117.27 250,6 112.8 115.98 13500 

5 1 6.4 57.09 53.19 178 80.02 82.38 80000 

 2 4.0 35.96 33.51 112 50.35 51.83 170000 

 3 3.2 28.77 26.81 89,6 40.28 41.47 1406000 

 4 7.6 68.33 63.66 213 95.75 98.58 59500 

 5 9.5 85.41 79.58 266 119.6 123.10 26000 

 6 4.8 43.16 40.21 134 60.42 62.01 281000 

 7 4.4 39.56 36.86 123 55.38 56.92 308000 

 8 5.8 51.7 48.17 161 72.37 74.51 121000 

 9 11.4 102.5 95.49 320 143.9 148.09 19500 

 10 7.0 62.93 58.64 196 88.11 90.71 64000 

 11 8.0 71.93 67.01 224 100.7 103.67 50000 

 12 9.0 80.47 74.97 251 112.7 116.16 42500 

6 1 14.9 134.2 124.81 266 119.7 123.10 16000 

 2 7.5 67.52 62.82 134 60.5 62.01 96000 

 3 11.9 107.2 99.68 213 95.88 98.58 25500 

 4 10.0 89.58 83.35 178 80.13 82.38 57000 

 5 17.9 161.2 149.94 320 144.1 148.09 11500 

 6 6.3 56.27 52.35 112 50.42 51.83 319000 

 7 6.9 61.94 57.63 123 55.46 56.92 167000 

 8 9.0 81.03 75.39 161 72.48 74.51 79000 

 9 8.4 75.45 70.20 150 67.52 69.42 80000 

 10 11.0 98.58 92.14 196 88.23 90.71 75000 

 11 12.5 112.5 104.71 224 100.8 103.67 23500 

 12 14.0 126 117.27 251 112.8 116.16 21000 

7 1 19.5 175.6 163.34   0.00 46500 

 2 17.3 155.3 144.91   0.00 91000 

 3 15.0 135.1 125.65   0.00 143000 

 4 12.0 108 100.52   0.00 292000 

 5 9.6 86.43 80.42   0.00 930000 

 6 24.0 216.1 201.04   0.00 13500 

 7 18.5 166.6 154.97   0.00 69000 

8 1    500 225.1 231.40 9000 

 2    400 180.1 185.12 26500 

 3    300 135.1 138.84 87000 

 4    200 90.03 92.56 1600000 

 5    340 153.1 157.35 51000 
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 6    275 123.8 127.27 332000 

 7    285 128.3 131.90 209000 

9 1 12.4 111.2 103.87 346 155.8 160.13 19000 

 2 9.5 85.53 79.58 266 119.7 123.10 62500 

 3 7.6 68.42 63.66 213 95.88 98.58 115000 

 4 6.4 57.17 53.19 178 80.13 82.38 277000 

 5 5.8 51.77 48.17 161 72.48 74.51 212000 

10 1 19.3 173.8 161.67 346 155.8 160.13 9000 

 2 14.9 134.2 124.81 266 119.7 123.10 24000 

 3 11.9 107.1 99.68 213 95.88 98.58 79000 

 4 10.0 89.58 83.35 178 80.13 82.38 113000 

 5 9.0 81.03 75.39 161 72.48 74.51 193000 

 6 12.5 112.5 104.71 224 100.8 103.67 52000 

11 1 12.4 111.2 103.87 346 155.8 160.13 9000 

 2 9.5 85.53 79.58 266 119.7 123.10 33000 

 3 7.6 68.42 63.66 213 95.88 98.58 81000 

 4 6.4 57.17 53.19 178 80.13 82.38 240000 

 5 5.8 51.77 48.17 161 72.48 74.51 140000 

 6 10.7 96.33 89.63 300 135.1 138.84 23000 

 7 5.8 51.77 48.17 161 72.48 74.51 200000 

12 1 19.3 173.8 161.67 346 155.8 160.13 5500 

 2 14.9 134.2 124.81 266 119.7 123.10 15000 

 3 11.9 107.1 99.68 213 95.88 98.58 41000 

 4 10.0 89.58 83.35 178 80.13 82.38 143000 

 5 9.0 81.03 75.39 161 72.48 74.51 108000 

 6 12.5 112.5 104.71 224 100.8 103.67 21000 

 7 8.4 75.45 70.20 150 67.52 69.42 84000 

13 2 24.0 216.1 201.04   0.00 60434 

 3 19.5 175.6 163.34   0.00 194758 

 4 30.0 270.1 251.30   0.00 16615 

 5 17.3 155.3 144.91   0.00 431699 

 7 18.5 166.5 154.97   0.00 435631 

14 1    300 135.1 138.84 736789 

 2    400 180.1 185.12 95893 

 3    520 234.1 240.65 26663 

 4    340 153.1 157.35 302999 

 5    450 202.6 208.26 50567 

 6    370 166.6 171.23 205146 

 7    570 256.6 263.79 8670 

15 1 15.2 136.9 127.32 426 191.8 197.15 16312 

 2 9.5 85.53 79.58 266 119.7 123.10 570627 



  
 

  
 18 

Chapter 1 

 3 13.8 124.2 115.60 386 173.8 178.64 28872 

 4 12.4 111.2 103.87 346 155.8 160.13 213300 

 5 11.6 104.4 97.17 325 146.3 150.41 69429 

 6 13.0 117 108.90 364 163.9 168.46 40546 

 7 12.4 111.2 103.87 346 155.8 160.13 38122 

16 1 15.2 136.9 127.32 426 191.8 197.15 14348 

 2 9.5 85.53 79.58 266 119.7 123.10 249139 

 3 13.8 124.2 115.60 386 173.8 178.64 23857 

 4 12.4 111.2 103.87 346 155.8 160.13 23992 

 5 11.6 104.4 97.17 325 146.3 150.41 113527 

 6 13.0 117 108.90 364 163.9 168.46 17653 

 Table 1.4: Test program series 
Only few specimens are missing in previous table because of invalid test procedures or run-out data. 
Starting from these values, Wohler curves have been re-determined in this contribution by performing 
a statistical analysis and obtaining the same values already published in [1]. Only the slopes of S-N 
curves, k, are slightly different, this could be due to a possible different interpolation method, as an 
example a different confidence adopted in the statistical analysis. However, this difference could be 
ignored considering the scatter band of the statistical distribution.  

 

Figure 1.7: S-N curves for pulsating loading and stress-relieved specimens. 
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Figure 1.8: S-N curves for alternating loading and stress-relieved specimens. 
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Figure 1.9: S-N curves for alternating loading and as-welded specimens. 
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Fig. 1.10. Experimental results collected in terms of range of stress and cycles to failure. In the 

multiaxial cases and in the pure axial ones, the normal stress has been plotted, while for the pure 
torsional case, the shear stress has been presented. In the legend, the abbreviations mean: SR for 

stress relieved and AW for as-welded 
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1.4 Results 

 
Typical failures of specimens under pulsating uniaxial and multiaxial loading are shown in Fig. 1.11. 
Fatigue cracks initiated at the transition area between weld toe and root in all tested specimens, 
either at the weld start or at the weld end position.  

 In the case of specimens under pure axial loading, the fatigue cracks were initiated in both 
the weld start and end locations. The crack fronts spread toward each other at the weld toe 
on the outer tube side during cyclic loading and finally coalesced into one crack, Fig. 1.11a.  

 In specimens subjected to torsional moment the cracks spread to the inner and outer tube 
halves, Fig. 1.11b.  

 In the case of combined in-phase loading the fatigue cracks spread either into the outer pipe 
or through the weld metal, Fig. 1.11c.  

 In contrast, the welds failed only with crack spreading through the weld metal when force 
and moment were phase-shifted by 90°, Fig. 1.11d.  

Similar results were achieved for the case of nominal load ratio equal to -1.  

 

Fig. 1.11. Failure modes of welded joints under axial force (a), torsional moment (b) and 
proportional (c) as well as non-proportional (d) combinations, R = 0.  

 

Referring to the data re-calculated in terms of nominal stress range into the inner tube and not to the 
published ones, some considerations could be drawn. The slopes of the S-N curves, when described 
by a power law, vary within the range of 3.2–5,9 for stress-relieved specimens. The slopes of S-N 

curves are higher and vary between 6.3  k  9.4 for specimens tested in the as-welded conditions.  

The specimens in the as-welded condition provide higher fatigue strengths as compared to stress-
relieved specimens, especially in the area of higher fatigue lives. This could indicate the existence 
of compressive residual stresses resulting from the welding process which allow to obtain longer 
fatigue lives for a given loading condition. 
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Regarding out-of-phase behaviour, the reduction of fatigue life, typically observed in the literature, is 
not remarkably relevant. However, its effect could be seen as a k reduction in three cases, and in 
particular: 

1. in series 01-06, considering the amplitude ratio Mt,a/F,a of 17,9 Nm/kN with a k reduction 

from 3,7 to 3,0.  
2. in series 01-06, considering the amplitude ratio Mt,a/F,a of 28 Nm/kN with a k reduction from 

3,8 to 3,0. 
3. in series 12-16, considering the amplitude ratio Mt,a/F,a of 28 Nm/kN with a k reduction from 

7,5 to 6,6. 
 

1.5 The out-of-phase effect 

 
During multi-axial loading conditions, the specimens’ lifetime is decreased by the effect of out-of-
phase loading. In fact, for proportional loading the principal stress directions remain constant while, 
in case of non-proportional loading, they may change over time, which apparently causes the classic 
fatigue lifetime previsions procedures to fail. Figure 1.12 shows why the principal stress approach 
fails for non-proportional loading. The calculated stress range is smaller for this case (b), when 
compared to proportional loading (a), which indicates that it would be less damaging. However, 
practice shows that the opposite is generally the case, i.e. that non-proportional loading is more 
damaging than proportional loading.  

 

Figure 1.12: The range of principal stress is smaller for non-proportional loading than for 
proportional, [2].  

 
The literature provides an abundance of criteria for assessment of welded joints under multiaxial 
loads, typically based on either stress interaction equations or critical plane approaches. Pedersen 
in [2] discussed about the reliability of these criteria and found out that the best ones to describe the 
effects of out-of-phase loading were the Effective Equivalent Stress Hypothesis (EESH) proposed 
by Sonsino in [3] and the IIW approach presented in [4]. 

1.6 The EESH approach 

 
The first step is considering that conventional criteria such as Von Mises and Tresca are not 
representative of the state of tension in the case of out-of-phase stresses with variable stress 
directions. Sonsino, in his research [3], studied welded cruciform specimens and tube-tube joints 
under biaxial constant-amplitude loading in the range of 103 to 5 x 106 cycles to crack initiation and 
breakthrough respectively. All his specimens were relieved by heat treatment to be sure that residual 
stresses won’t interfere. The results showed that in all notch cases phase displacement results in a 
decrease of fatigue life. The influence of a combined in-phase load on the fatigue life could be 
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predicted in a satisfactory manner on the basis of the Von Mises equivalent stress: 

 
𝜎𝑒𝑞,𝑉𝑀 = √𝜎𝑥

2 + 𝜎𝑦
2 − 𝜎𝑥𝜎𝑦 + 3𝜏𝑥𝑦

2  
(1.6) 

However, this hypothesis failed in case of out-of-phase stresses with variable principal stress 
directions: depending on the notch case, the fatigue life was overestimated by a factor of 4.5-70. The 
application of Von Mises criteria failed because like all other conventional hypothesis it considers 
local stresses while only focusing on an effective equivalent stress promises a satisfying solution. 

Referring to a biaxial loading composed by torque and axial stress, this hypothesis considers an 
interference plane, shown in figure 1.13. 

 

 
Figure 1.13: interference plane and stresses.  

 
Stress tensor of the biaxial stress-state: 
 
 [𝜎] = [ 

𝜎𝑥 𝜏𝑥𝑦
𝜏𝑥𝑦 𝜎𝑦

 ] (1.7) 

 
Stresses of the biaxial-state: 
 

𝜎𝑛(𝜑) =
𝜎𝑥 + 𝜎𝑦

2
+
𝜎𝑥 − 𝜎𝑦

2
cos(2𝜑) + 𝜏𝑥𝑦sin (2𝜑) 

(1.8) 

 𝜏𝑛(𝜑) =
𝜎𝑥 − 𝜎𝑦

2
sin (2𝜑) − 𝜏𝑥𝑦cos (2𝜑) 

(1.9) 

 
The stresses acting in this plane could also be written: 

 𝜎𝑛(𝜑) = 𝜎𝑥cos
2𝜑 + 𝜎𝑦sin

2𝜑 + 2𝜏𝑥𝑦cos𝜑 sin𝜑 (1.10) 
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 𝜏𝑛(𝜑) = 𝜏𝑥𝑦(cos
2𝜑 − sin2𝜑) − (𝜎𝑥 − 𝜎𝑦)cos𝜑 sin𝜑 (1.11) 

According to EES the cause of crack initiation is represented by a shear stress n(). The interaction 

of shear stresses in various interference planes , in particular in the case of variable principal stress 
directions is considered by an effective shear stress: 

 
𝜏𝑎𝑟𝑖𝑡ℎ =

1

𝜋
∫ 𝜏𝑛(𝜑)𝑑𝜑
𝜋

0

 
(1.12) 

The effective shear stress is then used for determining the effective equivalent stress: 

 

𝜎𝑒𝑞(𝛿) = 𝜎𝑒𝑞(𝛿 = 0) ∗
𝜏𝑎𝑟𝑖𝑡ℎ(𝛿)

𝜏𝑎𝑟𝑖𝑡ℎ(𝛿 = 0)
∗ √𝐺 exp [1 − (

𝛿 − 90°

90°
)
2

] 

(1.13) 

 

with:  

 
𝐸𝐸𝑆𝐻 𝑂𝑈𝑇 𝑂𝐹 𝑃𝐻𝐴𝑆𝐸 𝐹𝐴𝐶𝑇𝑂𝑅 =

𝜏𝑎𝑟𝑖𝑡ℎ(𝛿)

𝜏𝑎𝑟𝑖𝑡ℎ(𝛿 = 0)
 

(1.14) 

 
𝜎𝑒𝑞(𝛿 = 0) = √𝜎𝑥

2 + 𝜎𝑦
2 − 𝜎𝑥𝜎𝑦 + 𝑓𝐺

23𝜏𝑥𝑦
2  

 

(1.15) 

 
𝑓𝐺 =

√𝜎𝑥
2 + 𝜎𝑦

2 − 𝜎𝑥𝜎𝑦

√3𝜏𝑥𝑦
 

(1.16) 

fG is the size effect factor that reflects the influence of the maximum stressed material volume on the 
supportable local stress. G is a factor that derives from the stress concentration factors that in case 
of complex geometries could be determined using the finite element analysis. In general G 
expression is given by eq (1.17), where the stress concentration factors were derived for a mean 
radius of rm = 0.45 mm for the un-machined flange-tube and tube-tube connections and for a mean 
radius of rm = 2.25 mm for the machined flange-tube connections.  

 
𝐺 =

1 + 𝐾𝑡𝑎
1 + 𝐾𝑡𝑡

 𝑜𝑟 
1 + 𝐾𝑡𝑏
1 + 𝐾𝑡𝑡

 
(1.17) 

Where 𝐾𝑡𝑎is the stress concentration factor for axial stress, 𝐾𝑡𝑏 for bending and 𝐾𝑡𝑡 for torsion. 

The root in equation 1.13 considers the influence of the material volume affected by rotating principal 
stress and principal strain axes in the case of a phase displacement. In fact, according to equation 

1.13, if  is different from zero the exponential function is not equal to one. 

1.6.1 Evaluation of result  

To explain the effectiveness of this approach it could be useful to analyse a S-N curve in terms of  
nominal stress and then another curve considering the equivalent one calculated by equation 1.13 
and evaluating the reduction of the scatter range. Sonsino in his work [3], considered welded 
machined tube-tube connections under pure bending and combined bending and torsion (in-phase 
and out-of-phase) loading conditions. The result of the experimental procedure is shown in fig. 1.14, 
considering the nominal stress.  
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Figure 1.14: Fatigue strength of welded machined tube-tube connections under multiaxial loading, 
[3].  

As it is shown in figure 1.14, it is quite obvious that with combined loading there is a decrease of the 
fatigue life and this reduction is remarked in case of a 90° phase between the two loading conditions.  
In order to unify all the experimental data within a single scatter range, Sonsino produced a S-N 
curve in terms of equivalent stress, eq 1.13. The specimens were the same of fig 1.14, however this 
new approach allow the pure bending curve to be representative also for the combined (in-phase 
and out-of-phase loading conditions. Regression lines were added for a 10% and 90% probability of 
survival and the outcome is a great reduction of the scatter range, if compared to fig 1.15. 

 

Figure 1.15: Evaluation of multiaxial stress states with the hypothesis of effective equivalent stress 
(EES) for welded, machined tube-tube connections, [3]. 
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In conclusion, the equivalent effective stress (EES) is based on local coordinate stresses in weld 
toes and considers the maximum stressed material volume governed by the stress gradient and the 
phase displacement between the local normal and shear stresses. The effectiveness of this method 
is shown by the capability of transferring the local normal and shear stresses and the local multiaxial 
stress states with constant and variable principal stress directions into a S-N curve determined under 
uniaxial load, irrespective of the stress concentration level given by the geometry and the machining 
of the welded joint.  

1.7 The SSCH approach 

 
In 2010, a new approach was proposed in [5] and called: “stress space curve hypothesis”, which 
includes the EESH as a particular case. This criterion is worth being noticed also because it includes 
a lot of classical approaches for special testing situations. The first step of the SSCH idea is 
represented by the generalization of classical approaches like Von Mises, eq. 1.18, and Tresca, eq. 
1.19, with eq 1.20. 

 
𝜎𝑒𝑞,𝑉𝑀𝑖𝑠𝑒𝑠 = √𝜎𝑥

2 + 𝜎𝑦
2 − 𝜎𝑥𝜎𝑦 + 3𝜏𝑥𝑦

2 = √𝐼1
2 − 3𝐼2 

 

(1.18) 

 
𝜎𝑒𝑞,𝑇𝑟𝑒𝑠𝑐𝑎 = √𝜎𝑥

2 + 𝜎𝑦
2 − 2𝜎𝑥𝜎𝑦 + 4𝜏𝑥𝑦

2 = √𝐼1
2 − 4𝐼2 

 

(1.19) 

 
𝜎𝑒𝑞 = √𝐼1

2 − (4 − 𝛼)𝐼2 = √𝜎𝑥
2 + 𝜎𝑦

2 − (2 − 𝛼)𝜎𝑥𝜎𝑦 + (4 − 𝛼)𝜏𝑥𝑦
2  

 

(1.20) 

with I1 and I2 invariants of the biaxial stress tensor. 

 𝐼1 = 𝜎𝑥 + 𝜎𝑦 (1.21) 

 𝐼2 = 𝜎𝑥𝜎𝑦 − 𝜏𝑥𝑦
2  (1.22) 

Because of a formulation using the invariants I1 and I2, the resulting equivalent stress is also invariant 

against rotations of the coordinate system. If  equals 0 the equivalent stress turns out to be Tresca, 
while if it equals 1 the equivalent stress is the Von Mises’ one. The biaxial stress tensor may be 
decomposed into two parts, eq. 1.23, described by Mohr’s stress components: 

 
[
𝜎𝑥 𝜏𝑥𝑦
𝜏𝑥𝑦 𝜎𝑦

] = [
𝑝 0
0 𝑝

] + [
𝑞 𝜏𝑥𝑦
𝜏𝑥𝑦 −𝑞] 

(1.23) 

With: 

 
𝑝 =

𝜎𝑥 + 𝜎𝑦

2
        and        𝑞 =

𝜎𝑥 − 𝜎𝑦

2
 

(1.24) 

 

p is the quasi-hydrostatic stress component, while q and xy are both deviatoric stress components. 

 
𝑝 =

3

2
𝜎ℎ      𝑤𝑖𝑡ℎ      𝜎ℎ =

𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

3
 

(1.25) 
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Rewriting the equivalent stress, introducing p and q, with different weighting factors  and  for the 
two kind of stresses, it results, eq 1.26: 

 
𝜎𝑒𝑞 = √𝛼𝑝

2 + 𝛽𝑞2 + 𝛽𝜏𝑥𝑦
2 = √𝛼𝑝2 + 𝛽(𝑞2 + 𝜏𝑥𝑦

2 ) 
(1.26) 

Taking into account uniaxial conditions eq=x with y=0 and xy=0, the relation +=4 must be 
satisfied, so that the following equation can be obtained: 

 
𝜎𝑒𝑞 = √𝛼𝑝

2 + (4 − 𝛼)(𝑞2 + 𝜏𝑥𝑦
2 ) 

(1.27) 

At this point it was introduced the idea of representing the state of tension in a p,q, stress space. 
Periodic stress-time histories lead to closed curves whose shapes are invariant against a rotation of 

the coordinate system. In case of uniaxial and proportional loadings, the p-q--space signals result 
in straight line segments, as it is shown in figure 1.16. 

 

Figure 1.16: p–q–s-space signals for uniaxial and proportional loadings, [5]. 

The basic idea is that the length of such stress space segments is the damage-relevant variable. 
This means that different types of uniaxial loadings with the same lifetime should lead to lines with 
the same length. To fulfil this condition, the stress variables are multiplied by weighting factors, which 
are given in the following equation: 

 𝑝 ⟶ 𝑝 ∗ √𝛼 

𝑞 ⟶ 𝑞 ∗ √4 − 𝛼 

(1.28) 

(1.29) 
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𝜏 ⟶ 𝜏 ∗ √4 − 𝛼 (1.30) 

In this way the stress space has been rescaled and considering the variable amplitude to rewrite the 
equivalent stress, it is now the half-length of the line segment. 

 
𝜎𝑒𝑞,𝑆𝑆𝐶𝐻 = √(√𝛼 ∗ 𝑝𝑎)

2 + (√4 − 𝛼 ∗ 𝑞𝑎)
2 + (√4 − 𝛼 ∗ 𝜏𝑥𝑦,𝑎)

2 
(1.31) 

The determination of the scaling factor  is not immediate. First of all, it depends on the material and 
the geometry but another observation needs to be done. Comparing the basic S-N curve for pure 
axial and pure torsional loading, the previous formula leads to a proportional coherency between 

these two types of loadings (assumption: y=  x; at the surface in the case of the sharp notch effect 
in the fatigue critical area of the weld root). 

 𝜎𝑒𝑞,𝑆𝑆𝐶𝐻,𝐴𝑥𝑖𝑎𝑙 = 𝜎𝑥,𝑎√1 + 𝜈
2 + (𝛼 − 2)𝜈 

 

(1.32) 

 𝜎𝑒𝑞,𝑆𝑆𝐶𝐻,𝑇𝑜𝑟𝑠𝑖𝑜𝑛 = 𝜏𝑥𝑦,𝑎√4 − 𝛼 (1.33) 

If α is a constant parameter, this would lead to a torsional S-N curve parallel to the axial one even 

though, in most cases, the slopes are different. To correct this, the constant  is now considered to 
be depend on the lifetime. This means that the fatigue processes may be based on different damage 

mechanisms, depending on the load level. The function (N) is shown in Fig. 1.17 for three 
investigated materials in the welded state. Equation 1.37 represents the modified SSCH approach 
for sinusoidal, constant amplitude signals. It must be solved numerically on condition that the point 

(eq,SSCH(N);N) has to fit onto the reference S-N curve.  

 𝜎𝑒𝑞,𝑆𝑆𝐶𝐻,𝐴𝑥𝑖𝑎𝑙(𝑁) = 𝜎𝑒𝑞,𝑆𝑆𝐶𝐻,𝑇𝑜𝑟𝑠𝑖𝑜𝑛(𝑁) (1.34) 

 𝜎𝑥,𝑎√1 + 𝜈
2 + (𝛼(𝑁) − 2)𝜈 = 𝜏𝑥𝑦,𝑎√4 − 𝛼(𝑁) (1.35) 

 
𝛼(𝑁) = 4 −

(1 + 𝜈)2

𝜐 + 𝜏𝑥𝑦,𝑎
2 (𝑁) 𝜎𝑥,𝑎

2 (𝑁)⁄
 

(1.36) 

Figure 1.17: (N) as a function of cycles to failure, [5]. 
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hence the equivalent stress is: 

 
𝜎𝑒𝑞,𝑆𝑆𝐶𝐻 = √𝛼(𝑁) ∗ 𝑝

2 + (4 − 𝛼(𝑁)) ∗ (𝑞2 + 𝜏𝑥𝑦
2 ) 

(1.37) 

Regarding out-of-phase loadings this hypothesis works, just with few adjustments. The effect of a 

phase different from zero is to result in an ellipse in the p-q- space, invariant against a rotation of 
the coordinate system.  

 

Figure 1.18: p–q–s-space signals for proportional and non-proportional loadings. , [5]. 

Applying the same stress amplitudes xa, ya, xya but changing the phase xy, three observations 
could be done: 

1- The length of the semi-major axis b decreases with increasing phase shifts and the length 

of the semi-minor axis a increases, Fig. 1.19.   

 

Figure 1.19: Influence of phase shifts xy on stress ellipses, [5]. 
 

2- For each of these ellipses, a circumscribing rectangle can be constructed. The diagonal 
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lengths of these rectangles are constant, i.e. all the corner points are located on a circle, and 

can be calculated from any ellipse, Fig 1.20.   

 

Figure 1.20: Circumscribing rectangles of stress ellipses, [5]. 

 
3- The enveloping rectangle from the xy = 90° ellipse encloses and touches all ellipses, Fig. 

1.21.   

 

Figure 1.21: Enveloping rectangle of stress ellipses. [5].  

 
The idea of the length of the straight-line segments that results from the uniaxial and proportional 
cases as being the damage-relevant variable can now be generalized for out-of-phase signals. One 
possible idea would be to consider it as a special case of the ellipses semi-major axis b, because 
the semi-major axis of the stress ellipse indicates the largest stress range. However, ductile materials 
react on loads, that cause a significant change over time of principal stress directions, with a 
reduction of fatigue life. Hence, the semi-major axis of the ellipse would be a disadvantageous value 
for ductile materials in deriving an equivalent stress, because the length of the semi-major axis 
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decreases with increasing phase shifts while, in experiments, the fatigue life is reduced. In order to 
properly represent the stress state it has been proposed to consider both semi-minor and semi-major 
axes of the stress ellipses. To achieve this the half diagonal is recommended as an assessment 
criterion, Fig 1.22. 

 

Figure 1.22: Stress ellipse with semi-minor and semi-major axes as assessment criterion, [5]. 
 

The equivalent stress formula is the same of the proportional case, but obviously the quasi-
hydrostatic stress component and the deviatoric ones take into account the corresponding phases. 

 1

2
𝐷 = √𝑎2 + 𝑏2 = 𝜎𝑒𝑞,𝑆𝑆𝐶𝐻 = √𝛼𝑝

2 + (4 − 𝛼)(𝑞2 + 𝜏𝑥𝑦
2 ) 

(1.38) 

The relationship between x(t), y(t) and p(t), q(t) is represented below ( xy(t) remains the same). 

 𝜎𝑥(𝑡) = 𝜎𝑥𝑎 ∗ sin(𝜔𝑡)                           𝑝(𝑡) = 𝑝𝑎 ∗ sin (𝜔𝑡 + 𝜑𝑝) (1.39) 

 𝜎𝑦(𝑡) = 𝜎𝑦𝑎 ∗ sin(𝜔𝑡 + 𝜑𝑦)                  𝑞(𝑡) = 𝑞𝑎 ∗ sin (𝜔𝑡 + 𝜑𝑞) (1.40) 

 𝜏𝑥𝑦(𝑡) = 𝜏𝑥𝑦𝑎 ∗ sin (𝜔𝑡 + 𝜑𝑥𝑦) (1.41) 

with: 

 
𝑝𝑎 = √(𝜎𝑥𝑎 + 𝜎𝑦𝑎 ∗ cos(𝜑𝑦))

2 + (𝜎𝑦𝑎 ∗ sin (𝜑𝑦))
2 

(1.42) 

 
𝜑𝑝 = arctan (

𝜎𝑦𝑎 ∗ sin (𝜑𝑦)

𝜎𝑥𝑎 + 𝜎𝑦𝑎 ∗ cos(𝜑𝑦)
) 

(1.43) 

 
𝑞𝑎 = √(𝜎𝑥𝑎 − 𝜎𝑦𝑎 ∗ cos(𝜑𝑦))

2 + (𝜎𝑦𝑎 ∗ sin (𝜑𝑦))
2 

(1.44) 

 
𝜑𝑞 = arctan (

−𝜎𝑦𝑎 ∗ sin (𝜑𝑦)

𝜎𝑥𝑎 − 𝜎𝑦𝑎 ∗ cos(𝜑𝑦)
) 

(1.45) 

 

However, in practice it would be complex to use these notations so an easier way to express both 

in-phase and out-of-phase effects is here proposed. An additional factor f = f() has been introduced 
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and it is a function of , the ratio between the semi-minor axis and the semi-major axis of the ellipse 

in the p-q- space. 

 

 

(1.46) 

 

The additional factor f() has to fulfil several conditions:  

1. f( = 0) = 1, because the proportional and uniaxial equivalent stresses should remain 
unchanged. This is the case without out-of-phase loadings.  

2. For xy = 90°, f(max), should be at a maximum for ductile materials and at a minimum for 

brittle materials. (For semi-ductile materials, f() = const. = 1). The global maximum for  is 

always  = 1, standing for a circle as a special case of a stress ellipse. 
3. The function f should be monotonically increasing for ductile materials, monotonically 

decreasing for brittle materials, but still f() > 0 must always be fulfilled. 

These conditions can be fulfilled with the approach in the following equation.   

 
𝑓(𝜆) = 𝑓(𝑎 𝑏⁄ ) = (1 +

𝜌 ∗ 𝑎 ∗ 𝑏

𝑎2 + 𝑏2
) = (1 +

𝜌 ∗ 𝜆

1 + 𝜆2
) 

(1.47) 

 The additional parameter  depend on the specimen material and its sign cover all three kinds of 

out-of-phase behaviour. In fact in case of a ductile material the out-of-phase effect is a decrease of 

lifetime so  will be positive, while in a brittle material it results in an increasing of lifetime and  will 
be negative. Last but not the least, the semi-ductile material is not influenced by the existence of a 

phase between loadings, so  results equal to zero. These considerations are derived from 
experimental data, in fact tests demonstrate that steel is more sensitive to a phase shift than 
aluminium alloys. All these cases are resumed in the following table.  

Material  f() Out-of-phase 
behaviour 

Ductile >  0   1 Decr. lifetime 

Semi-ductile =  0 1 Neutral 

Brittle <  0   1 Incr. lifetime 

Table 1.5: out-of-phase behaviour of different materials. 

Graphically the function f() modifies the ellipse by changing the length of both semi axes in the p, 

q,  space. The non-proportionality function f() lead to an equivalent stress formula, eq. 1.48, 
suitable for the analysis of multiaxial stresses. 

 
𝜎𝑒𝑞,𝑆𝑆𝐶𝐻 =

1

2
𝐷 ∗ 𝑓(𝜆) = √𝑎2 + 𝑏2 ∗ 𝑓(𝜆) = √𝛼𝑝2 + (4 − 𝛼)(𝑞2 + 𝜏𝑥𝑦

2 ) ∗ (1 +
𝜌 ∗ 𝜆

1 + 𝜆2
) 

(1.48) 

The last expression of this equivalent stress is the one used to analyse the fatigue life of the steel 
tube-tube joints that were under investigation by Shams and Vormwald in [1]. The importance of the 
SSCH method is validated by the fact that with this approach it could be possible to approximate the 
Equivalent Stress Hypotheses EESH, discussed in the previous paragraph. The quasi-hydrostatic 
stress is not considered by the EESH, so instead of the special stress ellipse, only the projection 

onto q,  space is taken into account. In fact the EESH approach considers that the cause of failure 

is represented only by shear stress n() and the phase effect corresponds in a decrease of the 

lifetime (true only in ductile materials). Considering a factor  = 0,22, the function f() approximate 
very well the EESH out of phase factor:  
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 𝜏𝑎𝑟𝑖𝑡ℎ(𝜑)

𝜏𝑎𝑟𝑖𝑡ℎ(𝜑 = 0)⏟        
≈ 𝑓(𝜆𝑞𝜏; 𝜌 = 0,22) = (1 +

0,22 ∗ 𝜆𝑞𝜏

1 + 𝜆𝑞𝜏
2 )

𝐸𝐸𝑆𝐻 𝑂𝑈𝑇−𝑂𝐹−𝑃𝐻𝐴𝑆𝐸 𝐹𝐴𝐶𝑇𝑂𝑅                                                                                                           

 
(1.49) 

The goodness of this approximation is represented by a low value of the error, as it is shown in the 
graphic below.  

 

Figure 1.23: Comparison of different out-of-phase factors from EESH and SSCH approaches, [5]. 

 
The data collected show that the out-of-phase effect is more relevant in steels than aluminium alloys, 
in terms of fatigue life reduction. The calculations with SSCH lead to a satisfactory estimation that 
tends more to the conservative side than to the non-conservative side and places the results in a 
tight scatter band. Below are reported examples of a St35, Fig 1.24, and an aluminum alloy, Fig 1.25.  



  
 

 35 

Fatigue of weld end under combined loading 

 

Figure 1.24: Local equivalent stresses for the steel joints according to the SSCH hypothesis versus 
fatigue life, [5]. 

 

 

Figure 1.25: Local equivalent stresses for the aluminium joints of the alloy AlMg3.5Mn according to 
the SSCH hypothesis versus fatigue life, [5]. 

After all considerations the SSCH criteria was adopted to estimate the out-of-phase effects, but it is 
necessary to introduce another theory to take into account the size effects. This new theory is called 
NuMeSiS. 
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1.8 The NuMeSiS approach 

 
Regarding welded joints, there is a great variety of Wöhler curves, depending on the structural shape 
and size. In order to unify structures different in shape and in size, a lot of theories have been 
produced, like the one proposed by Lazzarin et al. [7], based on the strain energy density. The 
NuMeSiS approach aims to determine a standardised notch stress considering a combination of 
geometrical and statistical size effect. With geometrical size effect we refer to the inhomogeneous 
stress distribution, while the statistical size effect relies on the fact that larger specimens have higher 
probability of defect. This method considers the micro-support effect according to Neuber for the 
geometrical size effect and weakest link model according to Weibull for the statistical size effect.  

Generally speaking, regarding the size effect, we know that in a structure proportionally scaled down 
but loaded with the same nominal and notch stress, the fatigue life of the smaller structure will be 
higher than the fatigue life of the larger one.  

 

 

Figure 1.26: Influence of size effect on fatigue life, [6]. 

 

First of all, the size effect could be derived from the fact that in reality properties scale non-
proportionally and can be divided into two components:  

 Notch sharpness: Geometric shape of the notch (rounding and opening angle) will determine 
the stress inhomogeneity.  

 Notch area: a large notch length (i.e. a long seam weld compared to short seam weld with 
identical weld toe rounding) will lead to larger highly stressed surface and thus decrease the 
probability of survival.  

In order to use this method, we need to refer to an effective stress, calculated by integrating the 

eq,VM over the micro-structural length * (to consider the geometrical size effect) in direction of the 
highest stress gradient s(x, y, z), see fig 1.27. 
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Figure 1.27: Combination of geometrical and statistical size effect, [6].  
 

Kaffenberger and Vormwald reported this method in [6], starting from the averaged effective stress, 

obtained by dividing the integrated stress by *, eq 1.50. 

 
𝜎(𝑥, 𝑦, 𝑧) =

1

𝜌∗
 ∫ 𝜎(𝑠(𝑥, 𝑦, 𝑧))𝑑𝑠

𝜌∗

0

 
(1.50) 

Then to consider the statistical size effect we consider Weibull’s weakest link theory, which refers to 
the probability of finding a weak link in a certain volume. This means that the higher is the volume 
considered, the higher is the probability to find a defect. The probability of survival for specimens 
with inhomogeneous distribution is obtained using the Weibull distribution function, eq 1.51.  

 
𝑃𝑆(𝑉0) = 𝑒

−(
𝜎
𝜎0
)
𝜅

 
(1.51) 

PS(V0) is the survival probability of a specimen with volume V0 with an applied stress equal to .  is 

the Weibull’s modulus and 0 the normalization parameter. To relate the survival probability with the 
highly stressed surface instead of the highly stressed volume, the surface has to be divided into 
areas with homogeneous stress distributions so that a stress integral Ia could be calculated. It results: 

 
𝑃𝑆(𝐴) = 𝑒

[−
𝐼𝐴
𝐼𝐴0

 (
𝜎𝑚𝑎𝑥
𝜎0

)]
𝜅

 

 

(1.52) 

The stress integral could be written referring to the effective stresses from eq 1.53, instead of elastic 
ones.  

 
𝐼𝐴,𝜌∗ = ∫

𝜎(𝑥, 𝑦, 𝑧)

𝜎𝑚𝑎𝑥
𝑑𝐴 

(1.53) 

𝜎𝑚𝑎𝑥 is the maximum effective stress while Ia represents the highly stressed surface, obtained by 
addition of weighted surface fractions. The integral could be expressed also with a summation, where 

A is the corresponding surface at node . 

 
𝐼𝐴,𝜌∗ ≈∑{(

𝜎𝜓

𝜎𝑚𝑎𝑥
)
𝜅

𝐴𝜓}

𝜓

 
(1.54) 
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Considering the depth of * we could derive an highly stressed volume: 

 
𝐼𝑉,𝜌∗ = 𝜌

∗   ∫
𝜎(𝑥, 𝑦, 𝑧)

𝜎𝑚𝑎𝑥
𝑑𝐴 

(1.55) 

The correction factor n* is introduced to include both geometrical and statistical size effect; it is 
obtained by equating identical survival properties of two specimens of different size: 

 

𝑛𝜌∗,𝜅 = (
𝐼𝑉,𝜌∗

𝐼𝐴 ∗ 𝜌
∗
)
−
1
𝜅

= (
𝐼𝐴,𝜌∗

𝐼𝐴,𝑟𝑒𝑓
)

−
1
𝜅

 

(1.56) 

Finally, a weighted effective stress could be derived by eq 1.57: 

 
𝜎𝜌∗,𝜅 =

𝜎𝑚𝑎𝑥
𝑛𝜌∗,𝜅

 
(1.57) 

Inserting eq 1.53 in 1.55 afterwards in 1.57 the weighted effective stress could be written in eq 1.58. 

 

𝜎𝜌∗,𝜅 = {∑(𝜎𝜌∗,𝜓
𝜅

𝐴𝜓

𝐼𝐴,𝑟𝑒𝑓
)

𝜓

}

1
𝜅

 

(1.58) 

*: micro-structural length, material property. 

: scatter parameter of Weibull distribution, material property. 

A: corresponding surface for each node . 

IA,ref: highly stressed reference surface, obtained by minimizing the scatter range of the S-N curve. 

1.9 A new combined approach 

The aim of the combination between the SSCH and the NuMeSiS is to propose an equivalent stress 
that takes into account not only the out-of-phase phenomenon, but also the geometrical and 
statistical size effects. The first problem is that the stress space curve hypothesis refers to two-
dimensional stress state while the NuMeSiS hypothesis considers weighted effective stress 
belonging to critical surfaces. In particular, it fails in the calculation of the effective stress because in 
the notch proximity in the planar case we have a plane stress, while in a 3D notch the inside notch 

length is represented by plane strain. The solution is considering the free parameter  equal to one, 
obtaining the equivalent Von Mises stress multiplied by the out-of-phase factor, eq 1.59. 

 
𝜎𝑒𝑞,𝑆𝑆𝐶𝐻 = 𝜎𝑒𝑞,𝑉𝑀 ∗ (1 +

𝜌 ∗ 𝜆

1 + 𝜆2
) 

(1.59) 

Once solved the problem with the SSC hypothesis it is time to deal with NuMeSiS. From the previous 

paragraph it is clear the higher it is , the lesser the statistical size effect is considered. So to turn off 

the statistical size effect it is necessary to allow exponent  to approach infinite. 
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 lim
𝜅→∞

𝜎𝜌∗,𝜅 = 𝜎𝜌∗,𝑚𝑎𝑥 (1.60) 

It is important to remark that * is the maximum effective stress and, generally, it is different from 

the maximum Von Mises stress eq,VM,max. In the new approach the maximum effective stress and 
the non-proportionally function, both based on Von Mises stresses, are combined. The resulting 
stress, including the geometrical size effect and the non-proportionally behaviour, is given in eq. 
1.61. 

 
𝜎𝜌∗,𝑆𝑆𝐶𝐻 = 𝜎𝜌∗,𝑚𝑎𝑥 ∗ (1 +

𝜌 ∗ 𝜆

1 + 𝜆2
) 

(1.61) 

*: micro-structural length, material property. 

: non proportionally parameter, reference to tab 1.5. 

1.10 Application to testing data 

Vormwald in [1] calculated the equivalent stress, according to eq 1.61, and reported all the result in 
the report [8]. At this point it is possible to plot all the data of tested specimens in Wohler diagrams. 

The parameters were set: = 1; *= 0,2 mm and  = 1,6. The graph below refers to a survival property 
of 50%, fig. 1.24. The scatter range of the scatter band with survival probabilities of 10% and 90% in 
strength direction was determined from the S-N curves.  

Figure 1.28: S-N curves for stress-relieved with cycle ratio R = 0. 
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Figure 1.29: S-N curves for stress-relieved with cycle ratio R = -1. 

Figure 1.30: S-N curves for stress-relieved with cycle ratio R = -1. 
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Figure 1.31 S-N curves for as-welded and stress-relieved specimens. 

The application of NuMeSiS does not provide better scatter values than the conventional strength 
hypothesis like Tresca or Von Mises. However, thanks to the combined approach with SSCH, a 
satisfactory scatter range of 1,3 for specimens in as-welded condition could be achieved by setting 

the parameters: = 1; *= 0,2 mm and  = 1,6. 
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CHAPTER 2: 
 
 

The NSIF approach 
 

 

2.1 Recall of linear elastic fracture mechanics 
 
In many mechanical components there are sharp notches, for example in welded joints or in shafts 
housing sealing ring where even though there is a tip radius different from zero, its value is so small 
that the rounded notch has the same structural behaviour of a sharp one. Dealing with components 
weakened by a sharp V-notch, the fatigue life assessment needs to be studied in a different way 
from a point-wise approach. Indeed, when considering a sharp V notch the stress state will be infinite 
at the tip of the notch and this would lead to the impossibility for the component to carry any kind of 
loads, from the point of view of a point-wise approach. However, practice shows that even with a 
sharp V notch a certain amount of strength resistance is still available. In order to estimate it, here 
Williams equations are recalled by considering a polar coordinate system centred at the notch tip.  
 

 
Figure 2.1: Sharp V-notch geometry and local coordinate system, [19].  

 

2.1.1 Mode I: Opening 

 
Figure 2.2: Mode I loaded structure. 

 
 

{

𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝑟𝜗

} = 𝜆1𝑟
𝜆1−1𝑎1 [{

(1 + 𝜆1)cos⁡(1 − 𝜆1)𝜗

(3 − 𝜆1)cos⁡(1 − 𝜆1)𝜗

(1 − 𝜆1)sin⁡(1 − 𝜆1)𝜗

} + 𝜒1(1 − 𝜆1) {

cos⁡(1 + 𝜆1)𝜗
−cos⁡(1 + 𝜆1)𝜗

sin⁡(1 + 𝜆1)𝜗
}] 

(2.1) 

 
 

 
𝜒1 =

−𝑠𝑖𝑛[(1 − 𝜆1)𝛾]

𝑠𝑖𝑛[(1 + 𝜆1)𝛾]
 

 

(2.2) 
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2.1.2 Mode ll: in-plane shear 

 
Figure 2.3: Mode II loaded structure. 

 
 

{

𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝑟𝜗

} = 𝜆2𝑟
𝜆2−1𝑎2 [{

(1 + 𝜆2)sin⁡(1 − 𝜆2)𝜗

(3 − 𝜆2)sin⁡(1 − 𝜆2)𝜗

(1 − 𝜆2)cos⁡(1 − 𝜆2)𝜗

} + 𝜒2(1 − 𝜆2) {

sin⁡(1 + 𝜆2)𝜗
−sin⁡(1 + 𝜆2)𝜗

cos⁡(1 + 𝜆2)𝜗
}] 

(2.3) 

   
 

𝜒2 =
−𝑠𝑖𝑛[(1 − 𝜆2)𝛾]

𝑠𝑖𝑛[(1 + 𝜆1)𝛾]
 

(2.4) 

 
𝜆1⁡and 𝜆2 are Williams’ eigenvalues, function of the notch opening angle, derived from the following 
equations and plotted in the graph below: 
 
 

𝜆1𝑠𝑖𝑛2𝛾 + 𝑠𝑖𝑛2𝜆1𝛾 = 0⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑚𝑜𝑑𝑒⁡𝐼⁡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 

𝜆2𝑠𝑖𝑛2𝛾 − 𝑠𝑖𝑛2𝜆2𝛾 = 0⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑚𝑜𝑑𝑒⁡𝐼𝐼⁡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 
 

 
Figure 2.4: stress singularity in the proximity of a sharp V-notch. 

 
Where 𝛾 = 𝜋 − 𝛼. In these equations the a1 and the a2 are parameters dependant on the loads and 
geometry. In order to estimate their values Gross and Mendelson defined the Notch Stress Intensity 
factors (NSIFs) with the following hypotheses: sharp V-notch, linear elastic isotropic and 
homogenous material and plane stress or plane strain condition. It results, respectively for mode I 
and II:  
 

 𝐾1
𝑉 = √2𝜋 lim

𝑟→0+
𝑟1−𝜆1𝜎𝜃𝜃(𝑟, 𝜗 = 0) 

 

(2.5) 

 𝐾2
𝑉 = √2𝜋 lim

𝑟→0+
𝑟1−𝜆2𝜏𝑟𝜗(𝑟, 𝜗 = 0) (2.6) 
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Both NSIFs are calculated along the notch bisector line (𝜗 = 0), in this condition 𝐾1
𝑉 depends only on 

the 𝜎𝜃𝜃 stress component, and 𝐾2
𝑉 only on the 𝜏𝑟𝜗 one; in any other zone near the notch there will be 

a relation between them. It is possible to calculate the a1 and a2 in relation to NSIFs, from eq 2.1 and 
eq 2.3: 
 

 𝜎𝜃𝜃(𝑟, 𝜗 = 0) = 𝜆1𝑟
𝜆1−1𝑎1[(1 + 𝜆1) + 𝜒1(1 − 𝜆1)] 

 

(2.7) 

 𝜏𝑟𝜗(𝑟, 𝜗 = 0) = 𝜆2𝑟
𝜆2−1𝑎2[(1 − 𝜆2) + 𝜒2(1 − 𝜆2)] 

 

(2.8) 

 
Inserting these last two equations in the NSIFs definitions, a1 and a2 are determined: 
 

 
𝑎1 =

𝐾1
𝑉

√2𝜋𝜆1[(1 + 𝜆1) + 𝜒1(1 − 𝜆1)]
 

 

(2.9) 

 
𝑎2 =

𝐾2
𝑉

√2𝜋𝜆2[(1 − 𝜆2) + 𝜒2(1 − 𝜆2)]
 

 

(2.10) 

 
Eventually, inserting in Williams equations, it results: 
 
Mode I: 

{

𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝑟𝜗

} =
𝑟𝜆1−1𝐾1

𝑉

√2𝜋[(1 + 𝜆1) + 𝜒1(1 − 𝜆1)]
[{

(1 + 𝜆1)cos⁡(1 − 𝜆1)𝜗
(3 − 𝜆1)cos⁡(1 − 𝜆1)𝜗
(1 − 𝜆1)sin⁡(1 − 𝜆1)𝜗

} + 𝜒1(1 − 𝜆1) {

cos⁡(1 + 𝜆1)𝜗

−cos⁡(1 + 𝜆1)𝜗
sin⁡(1 + 𝜆1)𝜗

}] 

 

(2.11) 

 
 
Mode II: 

{

𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝑟𝜗

} =
𝑟𝜆2−1𝐾2

𝑉

√2𝜋[(1 − 𝜆2) + 𝜒2(1 − 𝜆2)]
[{

(1 + 𝜆2)sin⁡(1 − 𝜆2)𝜗
(3 − 𝜆2)sin⁡(1 − 𝜆2)𝜗
(1 − 𝜆2)cos⁡(1 − 𝜆2)𝜗

} + 𝜒2(1 − 𝜆2) {

sin⁡(1 + 𝜆2)𝜗

−sin⁡(1 + 𝜆2)𝜗
cos⁡(1 + 𝜆2)𝜗

}] 

 

(2.11) 

  
In literature the last equations are resumed summing mode I and mode II contributes and simplified 
naming the terms in brackets as follows, eq 2.12:  
 

{

𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝑟𝜗

} =
𝐾1

𝑟1−𝜆1
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

1

+
𝐾2

𝑟1−𝜆2
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

2

 

 

(2.12) 

 

2.1.3 Mode lll: out-of-plane shear 
 

 
Figure 2.5: Mode III loaded structure. 

 
The local distributions for mode III loading referred to a polar reference system (r,θ) centred at the V 
notch tip are the following: 
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Figure 2.6: Polar reference system centered at the weld toe of a typical tube-to-flange welded joint 

geometry, [17]. 
 

 
{
𝜏𝜗𝑧
𝜏𝑟𝑧
}
𝜌=0

=
𝐾3

√2𝜋
𝑟1−𝜆3 {

cos⁡(𝜆3𝜗)
sin(𝜆3𝜗)

} 

 

(2.13) 

The mode III NSIF, K3, can be defined by extending the definitions of mode I and II NSIFs proposed 
by Gross and Mendelson: 
 

 𝐾3 = √2𝜋 lim
𝑟→0+

𝑟1−𝜆3𝜏𝜗𝑧(𝑟, 𝜗 = 0) 

 

(2.14) 

Where 𝜆3 is the stress singularity exponent, which depends on the notch-opening angle 2α (𝛾 = 𝜋 −
𝛼), according to eq 2.15: 
 

 cos(𝜆3𝛾) = 0 
 

(2.15) 

 𝜆3 =
𝜋

2𝛾
 (2.16) 

 
 
At this point it is possible to plot 𝜆1, 𝜆2 and 𝜆3 in the same graph in function of the notch angle, plotted 
on the graph below, Fig. 2.7.  
 

 
Figure 2.7: stress singularity in the proximity of a sharp V-notch, [20]. 
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What is remarkable from this diagram is that with an opening angle equal or major than 102° the 
mode II is not singular anymore and its influence could be neglected. 
Meneghetti and Lazzarin have studied this last statement in [22] restricting this problem to non-load 
carrying fillet-welded joints having the geometry shown in fig 2.8 with t =T, Ф =45°, h/T =0.6.  
 

 
Figure 2.8: geometry of the non-load carrying fillet-welded joints. 

 
The aim of this research was to bound the region where local stresses are described with good 
approximation only by the Mode I contribution. The circumstances in which Mode II stresses are 
negligible should be investigated for any radial line departing from the weld toe, not only along the 
free surface. This negligible condition could be interpreted by imposing the Mode II stresses 10% of 
the applied nominal stress as follows. 
  

 
𝐾2

𝑟1−𝜆2
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

2

= 0.1⁡𝜎𝑛 

 

(2.17) 

Mode II stress intensity factor has the following engineering expression: 
 

 𝐾2 = 𝑘2⁡𝜎𝑛⁡𝑇
1−𝜆2 

 

(2.18) 

k2  is a non-dimensional coefficient given in [23], which depends on the joint geometry and the 
external loading mode. Substitution of Equation 2.18 into Equation 2.17 leads the following 
equations: 
 

 
𝑘2⁡

(
𝑟
𝑇
)
1−𝜆2

{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

2

= 0.1⁡ 

 
 

(2.19) 

Which can be solved for the non-dimensional distance r/T as a function of the polar coordinate θ. 
Results are reported in fig 2.9 under the hypothesis of 𝜆2 = 1.302 (2α=135°). Inside the dashed areas 
the following condition holds true, and then, in principle the contribution to the local stresses due to 
Mode II cannot be considered negligible: 
 

 
𝐾2

𝑟1−𝜆2
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

2

≥ 0.1⁡𝜎𝑛 

 

(2.20) 
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Figure 2.9: Limit paths where mode II stress components are ten percent the applied nominal 

stress, [22]. 
 

In the figure is shaded the maximus circle where eq (2.20) is still valid. The corresponding (R0/T)max 
value is 0.28/32= 0.00875. However, Figure 2.9 shows that even with a lower T, Mode II stresses 
are higher than 10% the applied nominal stress only in a very small region. Then it is believed that 
ignoring the non-singular contribute doesn’t make a big concern in this particular geometry.  
 
There are also cases where including the singular contributes of Mode I and Mode II is not enough, 
for example in the case of thin welded lap joints. In fact, Williams’ equations have been simplified 
before, theoretically they would comprehend other terms: 
 

{

𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝑟𝜗

} =
𝐾1

𝑟1−𝜆1
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

1

+
𝐾2

𝑟1−𝜆2
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

2

+ ℎ𝑖𝑔ℎ𝑒𝑟⁡𝑜𝑟𝑑𝑒𝑟⁡𝑡𝑒𝑟𝑚𝑠 

 

(2.21) 

Considering cracks (2 = 0°) and not sharp open V-notches we could distinguish the T-stress 
contribute, between all the others higher order terms, as follows on eq. 2.22. 

{

𝜎𝜃𝜃
𝜎𝑟𝑟
𝜏𝑟𝜗

} =
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−
1
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+ 𝑂(𝑟

1
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(2.22) 

 
Where KI and KII are the Stress Intensity factors, defined by Gross and Mendelson by means of eq. 
2.23 and 2.24. 
 

 𝐾𝐼 = √2𝜋 lim
𝑟→0+

𝑟0.5⁡𝜎𝜃𝜃(𝑟, 𝜗 = 0) (2.23) 
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 𝐾𝐼𝐼 = √2𝜋 lim
𝑟→0+

𝑟0.5⁡𝜏𝑟𝜗(𝑟, 𝜗 = 0) (2.24) 

 
The constant term T is a slit-parallel tensile or compressive stress, named “T-stress” by Larsson and 
Carlsson and can be defined by the following equation: 
 

 𝑇 = lim
𝑟→0+

[⁡𝜎𝑟𝑟(𝑟, 𝜗 = 0) − ⁡𝜎𝜃𝜃(𝑟, 𝜗 = 0)] (2.25) 

The T-stress influence is relevant at the crack tip stress state and, not only in crack cases but also 
in presence of a sharp V-notch its contribute has to be studied properly. A very recent research 
shows that in case of short cracks the T-stress must be taken in account. We are in this conditions 
if: 

 𝑎

𝑅0
< 10 

 

(2.26) 

Thanks to the definitions of NSIFs we can describe the stress state near the notch tip taking 
advantage of a finite number avoiding the singularity problem (i.e. infinite stress). These numbers 
could be used as a failure criterion: if one of them is major than a critical value the cracked or notched 
component will break. Because of the definitions of NSIFs, we are dealing with a local approach that 
takes into account the stress state at the notch tip and it is irrelevant which kind of load is the cause 
of it, the only thing that matters is the local stress state. Here it is a first problem: stress states 
belonging to different geometries, in terms of opening angles, could not be compared with NSIFs, it 
would not make a sense because of a different unit of measurement (Williams’ eigenvalues change 
with different opening angles). 
Another issue is that the NSIFs are calculated considering the points located in the notch bisector 
line (θ=0) and their calculation requires very refined meshes with an element size near the tip of the 

notch close to 10−5⁡𝑚𝑚. The procedure becomes more time-consuming in case of 3D components 
that cannot be analysed by means of two-dimensional models.  
However, the NSIFs approach is valuable to summarize a lot of fatigue test data belonging to different 
geometries keeping constant the opening angle. 
For example, many tests have been performed by Maddox, Gurney, Kihl and Sarkani of fillet welded 
joints with an opening angle of 135° and it is possible to plot these results in terms of mode I NSIF 
and cycles to failure. Here are reported the results for both structural steels and aluminium alloys as 
well. Concerning the steel joints, we recall here that the main plate thickness varied in a wide range, 
from 6 mm to 100 mm, while the attachment to main plate thickness ratio ranged from 0.03 to 8.8. 
The welded joints were made of structural steels with a yield stress varying from 360 to 670 MPa. 
Concerning the aluminum joints the main plate thickness varied from 3 to 24mm, while the 
attachment to main plate thickness ratio ranged from 0.25 to 1. The aluminum alloys belonged to the 
5000 and 6000 series with a yield stress varying from 250 and 304 MPa. All fatigue results considered 
here are from welded joints under ‘as welded’ conditions, tested with a nominal load ratio close to 
zero. 

 
Figure 2.10 Fatigue strength of fillet-welded joints made of structural steels in terms of the Mode I 

NSIF [18]. 
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Figure 2.11 Fatigue strength of fillet-welded joints made of aluminium alloys in terms of the Mode I 
NSIF [18] 

 
The scatter index was evaluated considering the 97.7% and the 2.3% probability of survival. These 
graphs show the capability of the NSIF approach to summarize the fatigue strength data in a single 
scatter band taking into account the size effect for both steel and aluminium alloy. 
 

2.2 Fatigue of welded joints: from a nominal approach to a local one based 
on NSIFs 
 
A first good application of the local approach is represented by the fatigue life assessment of   
transverse non-load-carrying fillet welds in an “as welded” condition. The 12 series exhibited large 
variations of plate thickness (from 13 to 100 mm), attachment size and bead height (see Table 2.1). 
Plotting the number of cycles to failure versus nominal stress ranges, as is usual in S–N diagrams, 
due to large variations in the geometrical parameters, the scatter of the experimental data is 
obviously very pronounced. In the same figure, the fatigue strength data are also given in terms of 
mode I NSIF neglecting the Mode II influence (very low in these kinds of joints, it is not singular). It 
is evident that the scatter greatly decreases, in particular in the high cycle fatigue. The same series 
were separately analyzed using the least squares method to determine mean curves and their 
intercepts for 5 000 000 cycles (Table 2.1). The scatter in fatigue strength of different geometries 
reduces from ±40% (the variation referring to the mean of the overall distribution) to ±10%, assuming 
K1 is a meaningful parameter in fatigue strength predictions. It is worth noting that we have forced 
the N-SIF approach to lifetime predictions and no longer to estimation of crack initiation, because it 
can give stress distributions along all directions and therefore also take into account the stress 
distribution along the actual crack propagation path. 
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Figure 2.12. Fatigue strength in terms of nominal stress and N-SIF ranges, [22]. 

 

 
Table 2.1. Transverse non-load-carrying welded joints (Refs [10,11]) giving geometrical 

parameters, fatigue strength ranges at 5×106 cycles and differences in percent with respect to the 
mean value of the overall distribution, [22]. 

 
As it was said before, a comparison in terms of NSIFs requires a constant opening angle to guarantee 
the same unit of measurement. For example considering a transverse load-carrying fillet welds there 
will be one crack initiation point at the toe (2α=135°; NSIF’s measurement unit is MPa m0.326) and a 
second one at the root (2α=0°; NSIF’s measurement unit is MPa m0.5).  

 
Figure 2.13: load carrying cruciform joint, [22]. 

 
It is necessary a further step to solve this problem and the solution is given by an energetic approach: 
the strain energy density (SED). 
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2.3 The strain energy density (SED) approach 
 
The energetic criterion was first proposed by Lazzarin and Zambardi in [20] to restore the 
comparability of potential crack initiation points. Lazzarin et al. assumed a structural volume having 
circular shape with radius R0 as shown in Fig. 2.14 and provided the closed-form expression of the 
averaged SED parameter as a function of the relevant NSIFs.  
 

 
Figure 2.14: Structural volume for the calculation of SED 

 
Dealing with a general multiaxial fatigue loading situation (mixed mode I + II + III loading), the Strain 
Energy Density averaged over the control volume can be expressed as follows: 
 

 

∆𝑊̅ = 𝑐𝑤1
𝑒1
𝐸
[
∆𝐾1

𝑅0
1−𝜆1

]

2

+ 𝑐𝑤2
𝑒2
𝐸
[
∆𝐾2

𝑅0
1−𝜆2

]

2

+ 𝑐𝑤3
𝑒3
𝐸
[
∆𝐾3

𝑅0
1−𝜆3

]

2

 

 

(2.26) 

Where E is the modulus of elasticity, e1, e2 and e3 are known parameters which depend on the notch 
opening angle 2α and on the Poisson’s ratio ν, while ΔK1, ΔK2 and ΔK3 are the ranges of the NSIFs 
(maximum value minus minimum value). Relation 2.27 is not valid in case of short cracks, when the 
T-stress contribute cannot be neglected. We are in this conditions if: 
 

 𝑎

𝑅0
< 10 

 

(2.27) 

Where a is the crack length and R0 the control radius. Dealing with mixed mode crack problems 
under plane strain conditions and in case of as-welded specimens, the updated expression for the 
Strain Energy Density, eq. 2.28, is: 

 
∆𝑊̅ =

𝑒1
𝐸

𝐾𝐼
2

𝑅0
+
𝑒2
𝐸

𝐾𝐼𝐼
2

𝑅0
+
1 − 𝜈2

2𝐸
𝑇2 +

8√2

15 ∗ (𝜋)3 2⁄

(1 + 𝜈)(2 − 5𝜈)

𝐸

𝐾𝐼𝑇

√𝑅0
 

 

(2.28) 

Where KI, KII and KIII are the Stress Intensity Factors (SIFs) and T is the constant defined by eq. 
2.25. In Eq.2.27, strain energies due to mode I, II and III, respectively, can be simply summed up, 
mutual terms being null. Below, in table 2.2, are reported the values of the coefficients for selected 
notch opening angles 2α and with reference to two values of the Poisson’s ratio, namely ν=0.33 
(aluminium alloys) and ν=0.3 (structural steels); e1, e2 and e3 are referred to plane strain conditions. 
Lazzarin and Livieri in 2005 demonstrated that the control radius R0 was 0.28 mm for arc-welded 
joints made of structural steel and 0.12 mm for those made of aluminium alloy. These values are 
obtained imposing the equality of strain energy density between a smooth specimen and a notched 
one. It is worth remarking that in this last calculation the welded structures’ properties were 
considered because during a welding process all the local material characteristics are altered. 
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2𝛼⁡(°) 𝜆1 R0=0.12 mm R0=0.28 mm 

e1 e1 

0 0.500 0.125 0.133 
90 0.544 0.138 0.145 
120 0.616 0.124 0.129 
135 0.674 0.113 0.118 

Table 2.2: Values of Mode I constants, [21]. 

 
 

2𝛼 (°) 𝜆2 R0=0.12 mm R0=0.28 mm 

e2 e2 

0 0.500 0.337 0.340 

Table 2.3: Values of Mode II constants, [21]. 
 
 

2𝛼 (°) 𝜆3 R0=0.12 mm R0=0.28 mm 

e3 e3 

0 0.500 0.423 0.414 
90 0.666 0.317 0.310 
120 0.750 0.282 0.276 
135 0.800 0.265 0.259 

Table 2.4: Values of Mode III constants, [21]. 

 
 
Lazzarin, Sonsino and Zambardi in 2004 dealt with the cw coefficient, discovering that is dependent 
on the nominal load ratio R, according to the following expression: 
 

 

𝑐𝑤(𝑅) =

{
 
 

 
 ⁡

1 + 𝑅2

(1 − 𝑅)⁡2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓 − 1 ≤ 𝑅 ≤ 0

⁡
1 − 𝑅2

(1 − 𝑅)2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡⁡⁡0 ≤ 𝑅 < 1

 

 

 
 

(2.29) 

These equations are valid in stress-relieved conditions, while in case of as-welded structures cw=1, 
because the experimental evidence shows that their fatigue behavior is independent from the load 
ratio of the applied external loads. In particular in stress relieved specimens, the parameter cw equals 
0.5 for R=-1. 
Thanks to the knowledge of all these parameters it is possible to calculate the Strain Energy Density 
in every fatigue crack initiation point, for example in a transverse welded joint. In particular SED 
restores the possibility of comparing fatigue root and toe failures because of the same unit of 
measurement (that of an  energy). In Fig 2.15 900 fatigue failure data at the root side as well as at 
the toe side are reported in the same graph.  
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Figure 2.15: Design scatter band using the SED approach. 

 
The Strain Energy Density is proportional to the square of the nominal stress, so in a double 
logarithmic scale the inverse slope will be the half of the one proposed in literature, so it will be 1.5. 
Lazzarin and co-workers demonstrated that it is possible to calculate the averaged SED numerically 
by adopting coarse meshes with few elements within the control volume. However, even though the 
calculations will be less time-consuming, the control volume must be modelled. A further 
development is represented by the Peak Stress Method (PSM), that gives the possibility of 
calculating the NSIFs without the control volume and with coarser meshes. Moreover, the PSM 
evaluates only the singular linear elastic peak stresses evaluated at the V-notch tip.  
 

2.4 The Peak Stress Method (PSM) 
 
The Peak Stress Method is a simplified, FE method to quickly estimate the NSIFs values using 
coarse meshes. This approach was originally proposed by Nisitani and Teranishi to estimate the 
Mode I SIF (Stress Intensity Factor) of cracks, then Meneghetti and Lazzarin extended this method 
for sharp V notches. More precisely the authors who originally proposed the method showed that the 
linear elastic peak stress evaluated at the crack tip is proportional to the Mode I SIF. A further step 
forward was made widening this theory to sharp V-shaped notches where the local stress 
parameters, called NSIFs, were discovered to be dependent to the elastic peak stress as well. The 
PSM expressions estimate the NSIFs K1, K2 and K3 from the singular, linear elastic, opening 
(𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘), in-plane shear (𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘) and out-of-plane shear (𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘) FE peak stresses, 

which are referred to the V-notch bisector line. In more detail the following expression were 
previously validated: 
 

 
𝐾𝐹𝐸
∗ =

𝐾1

𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘𝑑
1−𝜆1

 

 

(2.30) 

 
𝐾𝐹𝐸
∗∗ =

𝐾𝐼𝐼
𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘𝑑

0.5
 

 

(2.31) 

 
𝐾𝐹𝐸
∗∗∗ =

𝐾3

𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘𝑑
1−𝜆3

 

 

(2.32) 
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Dealing with the Mode II case, the Peak Stress Method is valid only in crack cases, not for sharp V 
notches. In previous equations, d is “the global element size”, which is the average size of the finite 
elements to input in the numerical code before running the free mesh generation algorithm. The 
values of NSIFs are intended to be the “right” ones calculated from the definition, eqs. 2.5, 2.6 and 
2.14. Firstly, these equations were calibrated by using Ansys® FE code (a is the crack length and d 
the global element size) and their values are: 
 

 𝐾𝐹𝐸
∗ = 1.38⁡ ± 3% 

 
(2.33) 

 
 

Figure 2.16: sharply notched geometries used to investigate the range of applicability of the peak 
stress method (all dimensions in mm), [18]. 

 

 
Figure 2.17: Non-dimensional 𝐾𝐹𝐸

∗  ratio as evaluated from 61 FE analyses (see Fig. 6 for all 
models), [18]. 
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 𝐾𝐹𝐸
∗∗ = 3.38 ± 3% 

 

(2.34) 

 
Figure 2.18: Geometry and loading condition of the analysed mode II crack problem. Dimensions 

and applied displacements in mm, [18]. 
 

 
Figure 2.19: Calibration of the PSM approach for a crack (2α = 0°) under mode II loading. Finite 
element analyses performed by using the free mesh algorithm (as implemented in Ansys® code) 

with a mean element size d, [18]. 
 

 𝐾𝐹𝐸
∗∗∗ = 1.93 ± 3% (2.35) 
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Figure 2.20: Calibration of the PSM applied at the weld toe (2=135°) and at the weld root (2=0°) 
of tube-to-plate welded joints (a is the tube thickness). The two-dimensional, axisymmetric 

geometries were discretized with a free mesh of PLANE 25 FE elements available in the Ansys® 
element library (d is the mean value of the FE size), [17].  

 
Latest articles update these three values in case of different FEM software, for example Abaqus, 
Nastran and Straus7. Dealing with Ansys ® the calibration constants were obtained under four 
hypothesis; each of them must be fulfilled to recalculate these factors. 
 

1. Concerning Eqs. (2.30) and (2.31), use of two-dimensional, 4-node quadrilateral finite 
elements with linear shape functions, as implemented in ANSYS FE code (PLANE 42 or 
alternatively PLANE 182 with K-option 1 set to 3). Concerning Eq. (2.26), use of two-
dimensional, harmonic, 4-node linear quadrilateral elements, as implemented in ANSYS FE 
code (PLANE 25). Finally, the use of three-dimensional, eight-node brick elements (SOLID 
185 with K-option 2 set to 3 of Ansys Element Library) is allowed for all loading modes, i.e. 
for Eqs. (2.30)–(2.32); 

 
2. The FE mesh pattern close to the notch or crack tip must be generated following these 

instructions: four elements must share the node located at the notch tip if the notch opening 

angle 2α is equal to or lower than 90° (typically at the weld root 2 = 0), while two elements 
must share the node at notch tip when the notch opening angle is greater than 90° (typically 
at the toe side 2α = 135°). The mesh patterns, according to the PSM, are automatically 
generated by the free mesh generation algorithm available in ANSYS_ software, so that only 
the ‘global element size’ parameter d must be input by the FE analyst.  

 
3. Eqs. (2.30) and (2.32) can be applied to V-notches with an opening angle 2α between 0° 

and 135°; while Eq. (2.31) is restricted to the crack case (2α = 0°);  
 

4. For mode I loading (Eq. 2.31), the mesh density ratio a/d that can be adopted in FE analyses 
must exceed 3 to obtain 𝐾𝐹𝐸

∗ = 1.38⁡ ± 3%. For mode II loading more refined meshes are 

needed, the mesh density ratio a/d having to be greater than 14 to obtain 𝐾𝐹𝐸
∗∗ = 3.38 ± 3%. 

Finally, in the case of mode III loading (Eq. (2.32)), the mesh density ratio must be a/d ≥ 3 
at the weld toe (where 2α = 135°) and a/d ≥ 12 at the root side (where 2α = 0°), to get 𝐾𝐹𝐸

∗∗∗ =
1.93 ± 3%. In previous definitions of the ranges of applicability, the reference dimension a 
has the following meanings: when the root side is of interest, a is the minimum between the 
crack length (l in Fig. 2.21), the ligament length (z in Fig. 2.21) and the thickness (t in Fig. 
3), while a is always the thickness (t in Fig. 2.21) when assessing the toe side.  
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Figure 2.21. Typical 2D FE mesh to apply the PSM; the example reported in the figure shows a 

tube-to-flange fillet welded joint. Four-node, quadrilateral, harmonic PLANE 25 elements available 
in Ansys® Element Library were adopted to generate the free mesh shown in the figure. The Y-axis 

is the axis of the tube, [21]. 
 

2.4.1 The peak stress method using 3D finite element models 
 
Originally the PSM was calibrated with 2D models and only in recent studies it was extended to 3D 
FE models. In summary it was demonstrated that KFE values given by expressions 2.30 and 2.31 
using 3D FE models meshed with eight-node brick elements are equal to those calculated from four 
node quadrilateral elements. Considering 2D plane elements with four node, the displacement field 
is described by means of linear shape functions according to the classical formulation: 
 

 
𝑢(𝜉; 𝜂) =∑𝑁𝑖(𝜉; 𝜂)𝑢𝑖

4

𝑖=1

 

 

 
(2.36) 

 
𝑁𝑖(𝜉; 𝜂) =

1

4
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖) 

 

(2.37) 

According to Fig. 2.22a, u = (ξ; η) is the displacement field in the element, ξ and η are the natural 
element coordinates varying between -1 and +1, Ni(ξ,η) are the element’s shape functions and ui = 
(ξ, η)i is the displacement at node i.  
Considering now an eight-node, 3D FE, as shown in Fig. 2.22b, the displacement field in the 
element is described by the following expression: 
 

 
𝑢(𝜉; 𝜂; 𝜍) =∑𝑁𝑖(𝜉; 𝜂; 𝜍)𝑢𝑖

8

𝑖=1

 

 

(2.38) 

 
𝑁𝑖(𝜉; 𝜂; 𝜍) =

1

8
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)(1 + 𝜍𝜍𝑖) 

 

(2.39) 

Where (ξ,η,ζ ) are the natural element coordinates varying between -1 and +1. If a plane having 
constant 𝜍 = 𝜍 ̅coordinate is considered, expression 2.37 becomes: 
 

 
𝑢̅ = ∑

2

8

4

𝑖=1

(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)
(1 − 𝜍)̅𝑢𝑖 + (1 + 𝜍)̅𝑢𝑖+4

2
 

 

(2.40) 

By indicating: 
 

 
 𝑢̅𝑖 =

(1 − 𝜍)̅𝑢𝑖 + (1 + 𝜍)̅𝑢𝑖+4
2

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1, … ,4 
(2.41) 
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The displacement evaluated along the element edge between node i and node i + 4 at the point 
where = 𝜍 ̅, Eq. 2.40 becomes: 
 

 
𝑢̅ = ∑

1

4

4

𝑖=1

(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)𝑢̅𝑖 

 

(2.42) 

 
Figure 2.22: Four-node plane element (a); eight-node solid element and cutting plane where local 

stresses are evaluated (b), [16]. 

 
What is worth noting in this last expression is that it coincides with the displacement field of the four-
node element Eq 2.36. Therefore, for the same in-plane mesh pattern and under pure plane stress 
or pure plane strain conditions, 2D models meshed with four-node elements and 3D models meshed 
with eight-node elements will deliver the same elastic peak stresses. In case of complex 3D models 
it is recommended to use a coarse mesh of 10-node pyramid elements for the main model geometry, 
and a sub-model meshed with 8-node brick elements to respect PSM hypothesis. Furthermore, 
where is possible, the sub-model mesh or, in general, the one surrounding the notch tip is suggested 
being obtained by extrusion of a 2D mesh created with the free mesh generator algorithm, using as 
input the so-called global element size. Sometimes, in case of particular geometries, mapped 
meshes are required worsening the reliability of the Peak Stress Method, increasing errors in range 
from 6% to 7%.      
 

 

2.5 A link between the Peak Stress Method and the averaged value of the 
local strain energy density (SED) 
 
The PSM proposes an alternative formulation of the exact NSIFs that could be insert in the 
expression of the averaged SED that will be function of the singular, linear elastic FE peak stresses 
𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘 , 𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘 ⁡and 𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘. Furthermore, in plane strain condition, an equivalent peak 

stress can be expressed as follows: 
 

 
∆𝑊̅ = 𝑐𝑤1

𝑒1
𝐸
[𝐾𝐹𝐸

∗ ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆1

]

2

 

⁡⁡⁡⁡⁡⁡⁡⁡+⁡𝑐𝑤2
𝑒2
𝐸
[𝐾𝐹𝐸

∗∗∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆2

]

2

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡𝑐𝑤3
𝑒3
𝐸
[𝐾𝐹𝐸

∗∗∗∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆3

]

2

→=
1 − 𝜈2

2𝐸
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘

2  

 

 
 
 

 (2.43) 

Therefore the following expression of the equivalent peak stress is obtained: 
 

 
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑐𝑤1𝑓𝑤1

2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 + 𝑐𝑤2𝑓𝑤2

2 ∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 + 𝑐𝑤3𝑓𝑤3

2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘
2  

 

(2.44) 

If we are dealing just with Mode I: 
 

 ∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = 𝑓𝑤1∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘  (2.45) 
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The correction parameters fw1, fw2 and fw3 weight the peak stress both around the tip and along the 
radial direction, θ and r coordinates respectively. Their expressions are: 
 

 

𝑓𝑤1 = 𝐾𝐹𝐸
∗ ⁡√

2𝑒1
1 − 𝜈2

⁡(
𝑑

𝑅0
)
1−𝜆1

 

 

(2.46) 

 

𝑓𝑤2 = 𝐾𝐹𝐸
∗∗ ⁡√

2𝑒2
1 − 𝜈2

⁡(
𝑑

𝑅0
)
1−𝜆2

 

 

(2.47) 

 

𝑓𝑤3 = 𝐾𝐹𝐸
∗∗∗⁡√

2𝑒3
1 − 𝜈2

⁡(
𝑑

𝑅0
)
1−𝜆3

 

 

(2.48) 

 
Tables 1–3 report the values of fw1, fw2 and fw3, respectively where three values of the average FE 
size, namely d = 0.2 mm, 0.50 mm and 1 mm, different notch opening angles 2α and two values of 
the control radius for SED evaluation(i.e. R0 = 0.28 mm for structural steels and 0.12 mm for 
aluminium alloys, have been taken into account). 
 

2α (°) 𝜆1 R0=0.12 mm R0=0.28 mm 

𝑓𝑤1,𝑑=0.2𝑚𝑚
b 𝑓𝑤1,𝑑=1𝑚𝑚

b 𝑓𝑤1,𝑑=0.5𝑚𝑚
c 𝑓𝑤1,𝑑=1𝑚𝑚

c 

0 0.500 0.944 2.109 0.997 1.410 
90 0.544 0.969 2.019 1.015 1.392 
120 0.616 0.886 1.644 0.918 1.198 
135 0.674 0.821 1.387 0.849 1.064 

b values calculated with ν=0.33, 𝐾𝐹𝐸
∗ = 1.38 

c values calculated with ν=0.3  , 𝐾𝐹𝐸
∗ = 1.38 

Table 2.5: values of Mode I constants, [21]. 
 

2α (°) 𝜆2 R0=0.12 mm R0=0.28 mm 

𝑓𝑤2,𝑑=0.2𝑚𝑚
b 𝑓𝑤2,𝑑=1𝑚𝑚

b 𝑓𝑤2,𝑑=0.5𝑚𝑚
c 𝑓𝑤2,𝑑=1𝑚𝑚

c 

0 0.500 3.795 8.480 3.904 5.522 
b values calculated with ν=0.33, 𝐾𝐹𝐸

∗∗ = 3.38 
c values calculated with ν=0.3  , 𝐾𝐹𝐸

∗∗ = 3.38 

Table 2.6: values of Mode II constants, [21]. 
 
 

2α (°) 𝜆3 R0=0.12 mm R0=0.28 mm 

𝑓𝑤3,𝑑=0.2𝑚𝑚
b 𝑓𝑤3,𝑑=1𝑚𝑚

b 𝑓𝑤3,𝑑=0.5𝑚𝑚
c 𝑓𝑤3,𝑑=1𝑚𝑚

c 

0 0.500 2.428 5.431 2.459 3.478 
90 0.666 1.931 3.303 1.933 2.436 
120 0.750 1.745 2.610 1.737 2.065 
135 0.800 1.649 2.273 1.634 1.877 

b values calculated with ν=0.33, 𝐾𝐹𝐸
∗∗∗ = 1.93 

c values calculated with ν=0.3  , 𝐾𝐹𝐸
∗∗∗ = 1.93 

Table 2.7: values of Mode III constants, [21]. 
 
It should be noted that while parameters fw1, fw2 and fw3 as well as the peak stresses depend on the 
adopted FE size d, the equivalent peak stress defined by Eq. 2.44 does not. When stress 
components tied to mode II loading are null (for example: pure mode I loading at the weld root) or 
non-singular (for example: at the toe side as far as 2α > 102°), the expression of the equivalent peak 
stress can be simplified as follow: 
 

 
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑐𝑤1𝑓𝑤1

2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 + 𝑐𝑤3𝑓𝑤3

2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘
2  

 

(2.49) 
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In case of as-welded joints the correction factors cwi = 1, so the equivalent peak stress turns out to 
be: 
 

 
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑓𝑤1

2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 + 𝑓𝑤3

2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘
2  

(2.50) 

   

2.6 Design scatter bands according to PSM 
 
Many experimental results have been analysed, in order to be able to properly calibrate the design 
scatter bands in terms of equivalent stress and cycles to failure. The aim of this work was to create 
three design curves, one valid for the Mode I and II loaded conditions, one for the Mode III and 
another one valid for the combination of Mode I, II and III (multiaxial case). In the last loading 
condition, where the contributes of Mode I, II and III are present, the design scatter bands were 
obtained by considering the slope of the Mode III curves and some characteristics of the other curve 

(Tσ, ΔσA, 50%). This approach was proposed by Livieri and in this way a new standardized curve was 

created, valid for the multiaxial case.  
 
Below are reported the characteristics of the equivalent peak stress curves for steel divided in the 
three different cases:  

1. Mode I and Mode II;  
2. Pure Mode III;  
3. Mode I, Mode II and Mode III. 

 

 
Figure 2.23: Steel design scatter band for Mode I and Mode II loading conditions, [21]. 

 



  
 
 

 
 
62 

Chapter 2 

 
Figure 2.24: Steel design scatter band for pure Mode III loading conditions, [21]. 
 

 

 
Figure 2.25: Steel design scatter band for Mode I, Mode II and Mode III loading conditions, [21]. 
 
 
The general conservatism of steel welded joints under as welded conditions could be explained by 
high residual compressive state at the weld toe and at the weld root sites.  
These curves have been validated by over 1300 experimental results and might be useful to design 
engineers engaged in fatigue assessment of welded joints. 
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2.7 Fatigue assessments with the Peak Stress Method  
 
Previously the Strain Energy Density was introduced to restore the comparability of notches with 
different opening angles that NSIFs were not able to guarantee. The new expression of the 
equivalent peak stress, obtained from the combination of SED and PSM, is still able to compare 
failures relative to different notch geometries. A first application of this last statement is reported by 
a research considering welded joints failing from the weld root or the weld toe. In particular, weld root 
failures were generated from testing load-carrying cruciform fillet-joints under axial or bending 
loading. Due to this particular geometry, Mode II stresses were negligible at the root, so that eq. 2.45 
could be used. Concerning weld toe failures, the flank angle ranged from 30° to 70° (2α from 150° to 
110°) and then, again, eq. 2.45 was applied because the Mode II is not singular. Fig. 2.28 shows a 
comparison between the experimental results and the design scatter band previously calibrated on 
fatigue failures from the weld toe with flank angles around 45°. 
 

 
 

Figure 2.27. Fatigue strength of steel welded joints with weld toe or weld root failures in terms of 
the equivalent peak stress evaluated by using a finite element size equal to d = 1 mm. Scatter 

bands related to mean values ± two standard deviations (Tσ = 296/156 = 1.90) or to Ps = 10–90% 
(Tσ = 263/175 = 1.50), [18].  

 
It is worth noting that most of the data fall within the scatter range previously calibrated as a 
demonstration of the goodness of this method.  
A step forward is considering steel welded geometries were the mode II contribute is not negligible. 
Fatigue tests were performed on load-carrying lap joints (L) and partial load-carrying cover plates 
(C). The weld throat thickness was 3 mm ( L3 and C3 series) or 6 mm (L6 and C6 series). A total of 
40 specimens have been analysed keeping the load ratio constant to 0.1. The geometries and the 
failure position are resumed in table 2.8. 
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Table 2.8: Summary of fatigue tests results on welded lap joints (L) and cover plates (C), [18]. 

 
Plane strain, two-dimensional analyses of the welded joints were performed by using four-node 
quadrilateral elements as implemented in Ansys® code (PLANE 42 elements of the Ansys® element 
library). A free mesh was adopted, the only parameter used to drive the mesh generation being the 
so-called ‘‘global element size’’ which was set to d = 1 mm. A friction-free contact between main and 
cover plates was simulated by means of a symmetry boundary condition applied to the contact 
surface of the cover plates, as shown in Fig. 2.28.  
 

 
Figure 2.28: geometry of the welded lapped joint with the applied restraints, [18]. 

 
By so doing, linear elastic finite element analyses could be performed. It should be noted that the 
transverse displacement of the cover plates due to contraction of the main plate is prevented, which 
implies an approximation with respect to the actual structural behavior of the joint. To investigate this 
point, the joints tested by the authors have been analyzed also by using friction-free contact elements 
between main plate and cover plate. As a result, it could be verified that the equivalent peak stresses 
at the point of crack did not change by more than 7% with respect to the linear elastic analysis. Then 
the approximation introduced by the linear elastic finite element analysis was considered acceptable. 
Table 2.9 reports the peak stresses calculated at the root and at the toe along with the resulting 
equivalent peak stresses. It can be seen that except for the case L6, the equivalent peak stress 
correctly identifies the crack initiation point. 
 

 
a Calculated by means of eq (2.27), considering Mode I and Mode II contributes. 
b Calculated by means of eq (2.27), considering Mode I contribute. 
c Calculated directly from accurate FE analysis 
d Calculated by means of eq (2.43), considering Mode I and Mode II contributes. 
e Calculated by means of eq (2.43), considering Mode I contribute. 

Table 2.9. Stress parameters calculated at the toe and at the root of the joints tested in the present 

work. The nominal stress applied to the main plate is σnom = 100 MPa. The FE-based energy values 
were calculated by means of the same refined mesh adopted to calculate the NSIFs. Peak 

stresses evaluated by means of a free mesh, mean finite element size d = 1 mm and four-node 
quadrilateral elements (PLANE 42 of the Ansys Element library), [18]. 

 
In parallel very refined FE meshes with an element size on the order of 10-5

 mm were generated to 
calculate the NSIFs at the weld root and weld toe. Having in hands the NSIFs, the mean value of the 
SED could be evaluated considering the two first terms of eq. 2.26 at the root or considering just the 
first one for the toe. The SED was also evaluated directly from the FE analyses by using the same 
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numerical models adopted to evaluate the NSIFs. All results are reported in Table 2.9. In particular 
it is seen that the maximum difference between the SED parameter evaluated analytically (eq. 2.26) 
and numerically (by FEM) is about 15% at the root of C6 joints, which means that the influence of 
higher order terms can be neglected in this case, at least from an engineering point of view.  
Two additional points are worth mentioning: 

1. It has been shown that the direct evaluation of the SED parameter by means of a finite 
element analysis does not require a very refined mesh. In fact Lazzarin and co-workers were 
able to show that only four element having size 0.28 mm placed inside the structural volume 
can deliver a reasonably correct value of the SED parameter; 

2. In case of thin sheet lap joints (widely used in the automotive industry), the influence of 
higher order stress terms cannot be neglected inside the structural volume. Therefore the 
degree of accuracy of eq. 2.26 decreases if no extra-terms are included; conversely, the 
direct evaluation of the SED parameter by means of a finite element analysis leads to correct 
results. 

Additional experimental results were taken by literature and evaluated in terms of equivalent peak 
stress, considering the contribute of Mode I and Mode II . Fig 2.29 compares all the available data 
with the design scatter band previously calibrated, showing a fair agreement. 

 
Figure 2.29: Fatigue test results in terms of equivalent peak stress evaluated by means of finite 

element analyses with mean element size d = 1 mm, [18]. 
 
At this point, we dealt with Mode I and Mode II fatigue life assessment using the PSM, a further step 
is considering Mode III loaded geometries. In [17] are reported the experimental data of tube-to-
flange specimens under torsional loading evaluated in terms of equivalent peak. The aim of this work 
was, to validate the Mode III design scatter band and Fig 2.30 shows that it results a good agreement 
between the experimental data and the calibrated curve.  
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Figure 2.30: Fatigue test results in terms of range of the equivalent peak stress evaluated 
according to eqs (8) and (10). Data refer only to weld toe failures. Scatter band fitted on 

experimental results by setting k equal to 5.00 and Tσ,10–90 % equal to 1.5 [17]. 
 
 
 

2.7 The equivalent peak stress in special cases 
 
There are three cases where the PSM expression, eq. 2.44, is not valid anymore. The first exception 
occurs when the weld toe profile cannot be assumed as sharp V-notch because the tip radius is large 
enough to induce full notch sensibility. In the multiaxial case, the equivalent peak stress at the weld 
toe must be updated according to the following expression: 
 

 
𝑊̅ = 𝑐𝑤1

1 − 𝜈2

2𝐸
∆𝜎𝑚𝑎𝑥

2 +⁡𝑐𝑤3
1 + 𝜈

𝐸
∆𝜏𝑚𝑎𝑥

2 →=
1 − 𝜈2

2𝐸
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘

2  

 

(2.51) 

 

∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑐𝑤1∆𝜎𝑚𝑎𝑥
2 + 𝑐𝑤3

2∆𝜏𝑚𝑎𝑥
2

1 − 𝜈
 

 

(2.52) 

Where 𝜎𝑚𝑎𝑥 and 𝜏𝑚𝑎𝑥  are the maximum value of tension and torsion stresses evaluated at the 
weld toe with sufficiently refined FE meshes, as it is required to evaluate the stress concentration 
factor. 
 
Another special case is that of a box-beam fillet-welded joints under combined bending and torsion 
multiaxial fatigue loadings reported in fig. 2.32. 
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Figure 2.31: 3D FE mesh to apply the PSM according to Eq. (2.51); the example reported in the 
figure shows a box-beam fillet-welded joint [47]. Eight node brick SOLID 185 elements (with K-

option 2 set to 3) available in Ansys# Element Library were adopted to generate the 3D mesh of 
the submodel shown in the figure, [21]. 

 
In this case, Mode I bending stresses are not singular either at the weld toe and at the weld root 
because they are parallel to the weld toe as well as to the weld root paths. The equivalent peak 
stress can be evaluated by means of the following expression, which takes into account the mode I, 
non-singular, nominal bending stress and the mode III, singular, torsional shear stress: 
 

 
∆𝑊̅ = 𝑐𝑤1

∆𝜎𝑛𝑜𝑚
2

2𝐸
+⁡𝑐𝑤3

𝑒3
𝐸
[𝐾𝐹𝐸

∗∗∗∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆3

] =
1 − 𝜈2

2𝐸
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘

2  

 

(2.53) 

 
 

∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑐𝑤1
∆𝜎𝑛𝑜𝑚

2

1 − 𝜈2
+ 𝑐𝑤3𝑓𝑤3

2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘
2  

 

(2.54) 

Where σnom can be evaluated by Navier distribution, while the singular one (∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘) must be 

calculated from FE analyses according to PSM recommendations.  
The last special case occurs when dealing with geometries where the Mode I, Mode II and Mode III 
contribution to the strain energy density are not independent each other. Mutual work must be taken 
in account, inserting coupling terms. An example of such condition is represented by a plate having 
a box-welded joint subjected to biaxial fatigue loading due to two orthogonal forces (Fx and Fy in Fig 
2.30). 
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Figure 2.32. 3D FE mesh of a plate having a box-welded (wrap-around) joint [49]. Eight node brick 
SOLID 185 elements (with K-option 2 set to 3) available in Ansys(R) Element Library were adopted 

to generate the 3D mesh of the submodels shown in the figure, [21]. 

 
First the contribute of each force to the strain energy is calculated, then all contributes are summed 
up. Let us consider the weld root side at point A. The single force FX generates mode I and mode II 
singular stresses; the single force FY generates mode I, mode II singular stresses and also σzz non-
singular stresses. Considering the root side at point B, the single force FX generates mode I, mode II 
singular stresses and σzz non-singular stresses, while FY generates mode I and mode II singular 
stresses. According to the approximate approach adopted here, the total averaged SED, ΔW, is 
evaluated by summing up the contributions due to the forces FX and FY applied individually: 
 

 ∆𝑊̅ = ∆𝑊̅𝐹𝑥 + ∆𝑊̅𝐹𝑦 

 

(2.55) 

 
Where: 
 

∆𝑊̅𝐹𝑥 = 𝑐𝑤,𝐹𝑥 {
𝑒1
𝐸
[𝐾𝐹𝐸

∗ ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆1

] +
𝑒2
𝐸
[𝐾𝐹𝐸

∗∗∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆2

]

2

+
∆𝜎𝑧𝑧

2

2𝐸

2

}

𝐹𝑥

 

(2.56) 

 
 
 

∆𝑊̅𝐹𝑦 = 𝑐𝑤,𝐹𝑦 {
𝑒1
𝐸
[𝐾𝐹𝐸

∗ ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆1

] +
𝑒2
𝐸
[𝐾𝐹𝐸

∗∗∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘 (
𝑑

𝑅0
)
1−𝜆2

]

2

+
∆𝜎𝑧𝑧

2

2𝐸

2

}

𝐹𝑦

 

 

(2.57) 

 
 
The non-singular contribute resulted negligible, so the equivalent peak stress turns out to be: 
 

 
∆𝑊̅ =

1 − 𝜈2

2𝐸
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘

2  

 

(2.58) 
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CHAPTER 3: 
 
 

Application of the Peak Stress Method to steel welded 
joints. 

 

3.1 introduction 
 
In the previous chapter, the NSIFs approach was presented and, in particular, its summarizing 
capability was underlined. To be more precise, it was reported the example of transverse non-load-
carrying fillet welds in an “as welded” condition to emphasize how a switch from a nominal to a local 
approach could reduce significantly the scatter band. The calculation of the exact NSIF requires very 
refined meshes but thanks to the Peak Stress Method, with an acceptable range of error, we could 
calculate the approximated ΔK1 with coarser meshes. Taking as a reference point the article of G. 
Meneghetti and P. Lazzarin [10], four different geometries have been investigated to validate the 
results shown in this work, with a traction or bending load. The software Ansys® has been utilized, 
fulfilling all the PSM hypothesis. Dealing with weld toe failures, the notch opening angle is 2α = 135° 
for every geometry, so the Mode II contribute is not singular and it will be considered negligible. The 
aim of this investigation is to estimate the Mode I NSIF value both with refined meshes, applying the 
definition, both applying the PSM using coarser meshes. Eventually, there will be a discussion 
evaluating the results and judging if there is an acceptable match with the published values or not.    

 
Figure 3.1: transverse non-load-carrying joint. [10]. 

 

 
a Calculated by means of an element size d = 0.5 mm. 
b T = traction; B = bending. 
Table 3.1: Stress parameters for the analysed steel welded joints. The elastic peak stress was 

calculated by means of an element size d = 1 mm, [10]. 
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3.2 Experimental data  
 
Referring to the previous table, a nomenclature system to refer to the four joints has been 
established: 

 “T” for transverse non load carrying joints/ a / t / b. 

 “C” for cruciform   non load carrying joints/ a / t / b. 
For each of the selected series range of stresses and the corresponding cycles to failure have been 
provided, see table 3.1. These experimental results bring the possibility of filling a Wohler diagram 
in terms of range of tension and cycles to failure. What emerges is the clear size effect on the fatigue 
life assessment that is showed by the different disposition of the different series within this diagram. 
Only series 1 and 16 seem to be overlapped, perhaps a possible explanation is that two out of three 
geometrical parameters (t and b) are very similar so it is the fatigue behavior. 
 
 
 
 

Series  
 

a (mm) 
 

Nf 
 

Δσ [MPa] 
 

1 13 192000 200 

 13 507000 140 

 13 2937000 100 

 13 4297000 80 

12 100 109000 150 

 100 224000 120 

 100 322000 100 

 100 1153000 65 

 100 2147000 55 

16 100 120000 260 

 100 200000 220 

 100 302000 180 

 100 744000 140 

 100 1180000 120 

 100 2158000 110 

23 6 135000 300 

 6 237000 260 

 6 407000 200 

 6 573000 190 

 6 665000 180 

 6 1525000 160 

 6 1534000 150 

 6 2601000 140 

 

Table 3.2: experimental results for four different series, [10]. 
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Figure 3.2: S-N graph for every analyzed series. 

 
Running a statistical analysis, the outcome is a very high value of the scatter index (10%-90%), 
equal to 3.57 obtained imposing the inverse slope equal to 3; as shown in fig 3.3. 
 
 

 
Figure 3.3: statistical analysis of the experimental data. 
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3.3 FEM models to estimate the Mode I NSIF precisely. 
 
To correctly estimate the Mode I NSIF, K1, very refined meshes are required in the V-notch tip 
proximity. Since we are dealing with sharp V-notched geometries the tip radius is null, leading to a 
singular stress distribution. Looking at the maximum principal stress at the notch tip will be 
meaningless: the lower is the tip element size, the higher will be the stress. Theoretically, with an 
element size extremely low, near zero, the first principal stress will be infinite. The only way to 
estimate the stress distribution near the notch is to apply the NSIF definition, eq 3.1, which gives a 
finite value in relation to a local polar coordinate system centered in the notch tip, fig. 3.4. 
 
 𝐾1

𝑉 = √2𝜋 lim
𝑟→0+

𝑟1−𝜆1𝜎𝜃𝜃(𝑟, 𝜗 = 0) (3.1) 

 

 
Figure 3.4: Sharp V-notch geometry and local coordinate system, [11].  

 
In the present work, thanks to the specimens’ geometry, plane models have been considered, 
avoiding the time-consuming problem of a 3D mesh. In order to build suitable meshes to apply the 
NSIF definition, a particular technique was adopted in all models, drawing two circles around the 
notch tip. The bigger circle has a 0.28 mm radius while the smaller one just a 0.0001 mm radius. In 
the smaller circle, a specific mesh tool of Ansys code called “concentration keypoint” was adopted 
to guarantee a circular and uniform element disposition around the notch. 
 

 
Figure 3.4: Bigger circle, radius = 0.28 mm. 
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Table 3.3: meshed lines characteristics of the bigger circle. 

 

 
Figure 3.5: smaller circle, radius = 0.0001 mm 

 

Line number Number of divisions Spacing ratio 

8 10 1 
9 10 1 

14 5 1 
15 5 1 
16 5 1 

Table 3.4: meshed lines characteristics of the smaller circle. 
 
Only after having divided the area like it is showed in figs. 3.4 and 3.5 it is possible to create a 
“concentration Keypoint”. The command is located in the following path:  
 
MAIN MENU → PREPROCESSOR → MESHING →  

→ SIZE CNTRLS → CONCENTRATION KPS → CREATE.  
 
The input to be insert to successfully accomplish this operation are: 

 NPT: number of concentration keypoint 

 DELR: Radius of first row of elements derived from the radius value (10-4) divided by the 
number of divisions (5), it results: 2e-5 mmm) 

 NTHET: number of elements around the circumference (10) 
 

 
Figure 3.6: Ansys’ window for concentration keypoints creation. 

 

Line number Number of divisions Spacing ratio 

12 10 1 
13 10 1 
17 100 1500 
18 100 1500 
19 100 1500 
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Following these indication step by step, the output in the smaller circle will be the one shown in fig 
3.7. Concerning the mesh creation in the bigger one, the mesh is generated only imposing the lines 
divisions, the spacing ratios and launching the mapped mesh generator algorithm, the result is plot 
in figure 3.8. 
 

 
Figure 3.7: mesh of the smaller circle derived by the concentration Keypoint definition. 

 

 
Figure 3.8: mesh of the bigger circle. 

 
At this point the area near the V-notch tip is well meshed, what has still to be defined is the elements 
creation in the other areas. To create an homogenous mesh, every line has been studied in terms of 
number of divisions and spacing ratio, and after few attempts, all four geometries are characterized 
by an element size that decrease in the notch tip direction. This mesh generation path has been 
followed in all four studied cases, and the results will show a good match with the published ones, 
confirming the goodness of the here proposed FEM models.  
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3.3.1 Series 1 
 
The geometry of this series is a cruciform non load carrying fillet welded joint subjected to a traction 
load. The dimensions have been taken by table 3.1 and it has been modelled using the double 
symmetry on the XZ and YZ plane, taking as a reference system the one showed in fig 3.9. The 
traction load was equal of 1 MPa. 
 
FEM Characteristics: 
 

 Element type: PLANE 183 

 Keyoptions: K1 Simple enhanced strain; K3 Plane strain 

 Poisson’s ratio: 0.3  

 Young’s modulus: 206000 MPa 

 Minimum element size: 2*10-5 mm 
 
 

 
Figure 3.9: Geometry, constraints and loads of the series 1 FEM model. 

 
Once the structure has been solved, the output of the results has been displayed referring to a local 
Cartesian coordinate system located at the notch tip and with the x-axis aligned with the notch 
bisector line. 
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Figure 3.10: Local Cartesian coordinate system. 

 
The nodes belonging to the bisector line, within the bigger circle radius were selected and used to 
define a path with exception to the nodes belonging to the smaller circle because heavily sensitive 
to the singularity distortion. In this reference system the stress σy act like the 𝜎𝜃𝜃(𝑟, 𝜗 = 0) of the NSIF 

definition, eq. 3.1, so it was plotted in relation to the tip distance, fig 3.11. 
 

 
Figure 3.11: Y-stress distribution referred to the local coordinate system in fig. 3.10. 

 
The modulus of exponent of interpolation line (power law) is 0.326 confirming Williams eigenvalue. 
Having the stress distribution, the Mode I NSIF definition can be derived and what emerges is its 
finite and constant value within the considered distance. 
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Figure 3.12: NSIF value of the selected nodes belonging to the notch bisector line and within the 

bigger circle radius.  
 
 
The exponent of the power of law interpolation line is extremely low, so the NSIF value, considered 
constant is 2.6624. 
 
 
 
 

3.3.2 Series 12 
 
The geometry of this series is a cruciform non load carrying fillet welded joint subjected to a traction 
load. The dimensions have been taken by table 3.1 and it has been modelled using the double 
symmetry on the XZ and YZ plane, taking as a reference system the one showed in fig 3.13. The 
traction load was equal of 1 MPa. 
 
FEM Characteristics: 
 

 Element type: PLANE 182 

 Keyoptions: K1 Simple enhanced strain; K3 Plane strain 

 Poisson ratio: 0.3  

 Young modulus: 206000 MPa 

 Minimum element size: 2*10-5 mm 
 

y = 2.6624x-1E-04

R² = 0.1201

1

10

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

K
1
 [

M
P

a
 m

m
0
,3

2
6
]

x (mm)



  
 

 
 
80 

Chapter 3 

Figure 3.13: Geometry, constraints and loads of the series 12 FEM model. 

 
Figure 3.14 Zoom around the notch tip of the series 12 FEM model. 

 
Once the structure has been solved, the output of the results has been displayed referring to a local 
Cartesian coordinate system located at the notch tip and with the x-axis aligned with the notch 
bisector line. 
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Figure 3.15: Local Cartesian coordinate system. 

 
The nodes belonging to the bisector line, within the bigger circle radius were selected and used to 
define a path with exception to the nodes belonging to the smaller circle because heavily sensitive 

to the singularity distortion. In this reference system the stress σy act like the 𝜎𝜃𝜃(𝑟, 𝜗 = 0) of the NSIF 

definition, eq. 3.1, so it was plotted  in relation to the tip distance, fig 3.16. 
 

 
Figure 3.16: Y-stress distribution referred to the local coordinate system in fig. 3.15. 

 
The modulus of exponent of interpolation line (power law) is 0.327 confirming Williams eigenvalue. 
Having the stress distribution, the Mode I NSIF definition can be applied and what emerges is its 
finite and constant number within the considered distance. 

 

 
Figure 3.17: NSIF value of the selected nodes belonging to the notch bisector line and within the 

bigger circle radius.  
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The exponent of the power of law interpolation line is extremely low, so the NSIF value, considered 
constant is 5.375. 
 

3.3.3 Series 16 
 
The geometry of this series is a cruciform non load carrying fillet welded joint subjected to a bending 
load. The dimensions have been taken by table 3.1 and it has been modelled using the symmetry 
YZ plane, and the anti-symmetry on the XZ plane, taking as a reference system the one showed in 
fig 3.18. Furthermore, the displacement on the node in position (0; 0; 0) has been restrained in the y 
direction. 
 
FEM Characteristics: 
 

 Element type: PLANE 182 

 Keyoptions: K1 Simple enhanced strain; K3 Plane strain 

 Poisson ratio: 0.3  

 Young modulus: 206000 MPa 

 Minimum element size: 2*10-5 mm 
 
 

 
Figure 3.18: Geometry, constraints and loads of the series 16 FEM model. 
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Figure 3.19: zoom around the notch tip of series 16 FEM model 
 
Once the structure has been solved, the output of the results has been displayed referring to a local 
Cartesian coordinate system located at the notch tip and with the x-axis aligned with the notch 
bisector line. 
 

 
Figure 3.20: Local Cartesian coordinate system. 

 
The nodes belonging to the bisector line, within the bigger circle radius were selected and used to 
define a path with exception to the nodes belonging to the smaller circle because heavily sensitive 
to the singularity distortion. In this reference system the stress σy act like the 𝜎𝜃𝜃(𝑟, 𝜗 = 0) of the NSIF 

definition, eq. 3.1, so it was plotted  in relation to the tip distance, fig 3.21. 
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Figure 3.21: Y-stress distribution referred to the local coordinate system in fig. 3.20. 

 
The modulus of exponent of interpolation line (power law) is 0.327 confirming Williams eigenvalue. 
Having the stress distribution, the Mode I NSIF definition can be applied and what emerges is its 
finite and constant number within the considered distance. 
 

 
Figure 3.22: NSIF value of the selected nodes belonging to the notch bisector line and within the 

bigger circle radius.  
 
The exponent of the power of law interpolation line is extremely low, so the NSIF value, considered 
constant is 3.014. 
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3.3.4 Series 23 
 
The geometry of this series is a T non load carrying fillet welded joint subjected to a bending load. 
The dimensions have been taken by table 3.1 and it has been modelled using the symmetry on the 
YZ plane, taking as a reference system the one showed in fig 3.23. Furthermore, the displacement 
on the node in position (0; 0; 0) has been restrained in the y direction. 
 
FEM Characteristics: 

 Element type: PLANE 182 

 Keyoptions: K1 Simple enhanced strain; K3 Plane strain 

 Poisson ratio: 0.3  

 Young modulus: 206000 MPa 

 Minimum element size: 2*10-5 mm 
 

 
Figure 3.23: Geometry, constraints and loads of the series 12 FEM model. 

 
Once the structure has been solved, the output of the results has been displayed referring to a local 
Cartesian coordinate system located at the notch tip and with the x-axis aligned with the notch 
bisector line. 

 
Figure 3.24: Local Cartesian coordinate system. 
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The nodes belonging to the bisector line, within the bigger circle radius were selected and used to 
define a path with exception to the nodes belonging to the smaller circle because heavily sensitive 

to the singularity distortion. In this reference system the stress σy act like the 𝜎𝜃𝜃(𝑟, 𝜗 = 0) of the NSIF 

definition, eq. 3.1, so it was plotted  in relation to the tip distance, fig 3.25. 
 

 
Figure 3.24: Y-stress distribution referred to the local coordinate system in fig. 3.24. 

 
The modulus of exponent of interpolation line (power law) is 0.331 confirming Williams eigenvalue. 
Having the stress distribution, the Mode I NSIF definition can be applied and what emerges is its 
finite and constant number within the considered distance. 
 
 

 
Figure 3.25: NSIF value of the selected nodes belonging to the notch bisector line and within the 

bigger circle radius.  
 
The exponent of the power of law interpolation line is extremely low, so the NSIF value, considered 
constant is 1.8415. 
 
 
 
 
 
 
 

y = 0.7327x-0.331

R² = 0.9998

1

10

100

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

σ
Y

 [M
P

a
]

x (mm)

y = 1.8415x-0.005

R² = 0.5092

1

10

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

K
1
 [

M
P

a
 m

m
0
,3

2
6
]

x (mm)



  
 

 
 

87 

Application of the Peak Stress Method to steel welded joints 

 

3.4 Evaluation of results 
 
The results of the four analyzed models are summarised in the following table, comparing them with 
the published Mode I NSIF values.  
 

Series Calculated K1 
[MPa mm0,326] 

 

Published K1 in [10] 
[MPa mm0,326] 

Percentage error 
[%] 

1 2.6624 2.633 1,116597 

12 5.375 5.704 5,767882 

16 3.014 3.051 1,212717 

23 1.8415 1.793 2,704964 

 

Table 3.5: Comparison of calculated Mode I NSIF with the published ones. 
 
 
It is worth noting that three out of four models give as an output values with errors below the 3%, 
confirming the reliability of the FEM analysis. Concerning series 12, the higher value of the error 
maybe is due to a not-enough refined mesh, however, in this analysis, it is considered acceptable.  
The radius of the bigger circle was not chosen by chance, but the value of 0.28 mm was selected 
because it is the control radius suitable to the calculation of the Strain Energy Density (SED) in the 
steel joints. The Ansys ® software allow us to know the value (called “sene”) of the SED in relation 

to the applied stress (in our models Δσ = 1 MPa) and referring to a volume or an area (called “volu”). 

The following equation bring the possibility of calculating the value of the SED and extend it to other 
stress values: 
 
 ∆𝑊̅ =

𝑠𝑒𝑛𝑒

𝑣𝑜𝑙𝑢
∗ ∆𝜎2 

 

(3.2) 

This relation is consistent with the fact that the Strain Energy Density is proportional to the square of 
the applied stress. Eventually, the experimental data could be studied in terms of SED and K1, using 
the values obtained by the accurate FE analysis, tab. 3.6. 
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Series 
 
 

a 
[mm] 

 

Nf 
[cycles] 

 

Δσ 

[MPa] 

 

senea 

[MJ] 
 

volua 

[m3] 
 

∆𝑊̅b 
[MJ/ m3] 

 

K1/σnom 

[mm0,326] 
 

K1 
[MPa mm0,326] 

 

1 13 192000 200 1,43E-06 0,153938 3,72E-01 2,6624 532,48 

1 13 507000 140 1,43E-06 0,153938 1,82E-01 2,6624 372,736 

1 13 2937000 100 1,43E-06 0,153938 9,31E-02 2,6624 266,24 

1 13 4297000 80 1,43E-06 0,153938 5,96E-02 2,6624 212,992 

12 100 109000 150 5,65E-06 0,152951 8,31E-01 5,33 799,5 

12 100 224000 120 5,65E-06 0,152951 5,32E-01 5,33 639,6 

12 100 322000 100 5,65E-06 0,152951 3,69E-01 5,33 533 

12 100 1153000 65 5,65E-06 0,152951 1,56E-01 5,33 346,45 

12 100 2147000 55 5,65E-06 0,152951 1,12E-01 5,33 293,15 

16 100 120000 260 1,82E-06 0,152951 8,03E-01 3,014 783,64 

16 100 200000 220 1,82E-06 0,152951 5,75E-01 3,014 663,08 

16 100 302000 180 1,82E-06 0,152951 3,85E-01 3,014 542,52 

16 100 744000 140 1,82E-06 0,152951 2,33E-01 3,014 421,96 

16 100 1180000 120 1,82E-06 0,152951 1,71E-01 3,014 361,68 

16 100 2158000 110 1,82E-06 0,152951 1,44E-01 3,014 331,54 

23 6 135000 300 6,95E-07 0,152951 4,09E-01 1,8415 552,45 

23 6 237000 260 6,95E-07 0,152951 3,07E-01 1,8415 478,79 

23 6 407000 200 6,95E-07 0,152951 1,82E-01 1,8415 368,3 

23 6 573000 190 6,95E-07 0,152951 1,64E-01 1,8415 349,885 

23 6 665000 180 6,95E-07 0,152951 1,47E-01 1,8415 331,47 

23 6 1525000 160 6,95E-07 0,152951 1,16E-01 1,8415 294,64 

23 6 1534000 150 6,95E-07 0,152951 1,02E-01 1,8415 276,225 

23 6 2601000 140 6,95E-07 0,152951 8,91E-02 1,8415 257,81 
a calculated via accurate FE analisys using Ansys ® 

b calculated by means of eq 3.2  

Table 3.6: SED and K1 parameters calculated for every series and every load condition.  

 
 

Figure 3.26: Comparison of the experimental data evaluated in terms of Stain Energy Density with 
the SED design scatter band. 
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Figure 3.27 Comparison of the experimental data evaluated in terms of Mode I NSIF design scatter 
band, [24]. 

 
These last graphs, figs, 3.26 and 3.27, show that almost every experimental data fall within the 
calibrated scatter band, confirming the goodness of the analytical procedure and the FEM models. 
Plotting the SED and the K1 parameters, what emerges is that all the experimental data fall within a 
unique scatter band, as claimed by the local approach. Also, the inverse slope of the SED is half of 
the K1 one because of the quadratic dependence of the applied stress. The major result is that the 
local approach allow all the data to be located in a single scatter band with a great decrease of the 
scatter index. To emphasize this achievement, both the NSIF approach and the nominal one were 
plotted in the same graph, figure 3.28. 
 

 
Figure 3.28: Wohler diagram in terms of nominal stress or Mode I NSIF and cycles to failure. The 
NSIF approach guarantee a scatter index (10%-90%) reduction from 6.19 to 1.69. 
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As it was previously underlined, these Mode I NSIF values were obtained with a minimum element 
size of 2*10-5 mm, which is acceptable in two-dimensional cases but, when dealing with 3D models, 
this would lead to high calculation times. Furthermore, the complexity of the solution, in terms of 
building the stiffness matrix and its inversion, requires computer with high dynamic memories (RAM). 
A possible solution to this issue is applying the Peak Stress Method, to calculate the NSIFs 
approximated values with coarser meshes but still considered valid from an engineering point of 
view. 
 

3.5 FEM models to estimate the approximated Mode I NSIF value using the 
Peak Stress Method (PSM). 

 
In order to apply the Peak Stress Method to the four analyzed geometries, new models with coarser 
meshes have been built. These fulfill all the hypothesis of the PSM and the Mode I constant 𝐾𝐹𝐸

∗   has 
been calculated to estimate their reliability. First it was necessary to estimate the peak stress at the 

notch tip. Here it is the first approximation: instead of the 𝜎𝜗𝜗,𝜗=0, the first principal stress, in relation 

to the global reference system, was considered 𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘 . The table 3.1, reports the peak stresses 

obtained with a global element size of 1 mm; it is authors’ opinion that this value leads to over refined 
meshes for this approach, so the models have been analyzed with this global size but also with a 
much bigger one.  
Then the 𝐾𝐹𝐸

∗  was estimated with eq. 3.3: 
 
 

𝐾𝐹𝐸
∗ =

𝐾1

𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘𝑑1−𝜆1
 

(3.3) 

 
Theoretically the result should be: 
 
 𝐾𝐹𝐸

∗ = 1.38 ± 3% 
 

(3.4) 

Eventually this value will be compared with the ones calculated with the global element size of 1 mm 
and the ones with the coarser meshes. 
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3.5.1 Series 1 
 
The FEM characteristics are the same of the previous one, always adopting the PLANE 182 elements 
with the first keyoption set to “Simple enhanced strain”; what changes is the mesh pattern. A global 
element size was imposed equal to 2 mm and the free mesh generator algorithm was launched, the 
result is shown in fig. 3.29. 
 
 

 
Figure 3.29: mesh pattern of series 1 obtained with a global element size of 2 mm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 
 
92 

Chapter 3 

3.5.2 Series 12 
 
The FEM characteristics are the same of the previous one, always adopting the PLANE 182 elements 
with the first keyoption set to “Simple enhanced strain”; what changes is the mesh pattern. A global 
element size was imposed equal to 15 mm and the free mesh generator algorithm was launched, 
the result is shown in fig. 3.30. 
 
 

 
Figure 3.30: mesh pattern of series 12 obtained with a global element size of 15 mm.  
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3.5.3 Series 16 
 
The FEM characteristics are the same of the previous one, always adopting the PLANE 182 elements 
with the first keyoption set to “Simple enhanced strain”; what changes is the mesh pattern. A global 
element size was imposed equal to 5 mm and the free mesh generator algorithm was launched, the 
result is shown in fig. 3.31. 
 

 
 

Figure 3.31: mesh pattern of series 16 obtained with a global element size of 5 mm.  
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3.5.4 Series 23 
 
The FEM characteristics are the same of the previous one, always adopting the PLANE 182 elements 
with the first keyoption set to “Simple enhanced strain”; what changes is the mesh pattern. A global 
element size was imposed equal to 2 mm and the free mesh generator algorithm was launched, the 
result is shown in fig. 3.32. 
 

 
Figure 3.32: mesh pattern of series 23 obtained with a global element size of 2 mm.  
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3.6 Evaluation of results. 
 
All the series have been analysed by adopting FE models with two different global element sizes. 
The results, resumed in table 3.7, show a good agreement for series 1 and 23, while the other ones 
are quite different and exceed the 3% limit of eq. 3.3. In fact the 𝐾𝐹𝐸

∗  should be comprehended 
between 1,3386 and 1,4214 to be consistent with the definition and series 12 and 16 does not. 
However it is interesting to remark that the calibration constant obtained with the much coarser 
meshes is not far away from the correct value, which means that even in this case the PSM is 
applicable for engineering purposes. 
 

Series 
 

d  
(mm) 

𝜎𝑝𝑒𝑎𝑘/𝜎𝑔
a 𝐾𝐹𝐸

∗ b 
[MPa mm0,326] 

 

d  
(mm) 

𝜎𝑝𝑒𝑎𝑘/𝜎𝑔
a 𝐾𝐹𝐸

∗ b 
[MPa mm0,326] 

1 1 1,87145 1,42264 2 1,51882 1,398399 

12 1 3,85617 1,3822 15 1,66424 1,324663 

16 1 2,17446 1,386091 5 1,1022 1,324071 

23 1 1,37595 1,338348 2 1,043555 1,407734 
a 𝜎𝑔 = 1 𝑀𝑃𝑎 
b 𝐾𝐹𝐸

∗  has been calculated by means of eq 3.3. 
 

Table 3.7: Stress parameters for the analyzed steel welded joints. 
 
Eventually the equivalent peak stress was calculated, referring to the peak stress obtained with the 
coarser mesh and not with the one characterized by a global element size of 1 mm. First from the 
known tables, see chapter 2 table 2.2, e1 was found to be 0.118, then the calculation of fw1 was 
carried out with the following equations, eq 3.5. 
 

𝑓𝑤1 = 𝐾𝐹𝐸
∗  √

2𝑒1

1 − 𝜈2
 (

𝑑

𝑅0

)
1−𝜆1

 

(3.5) 

 
Then, applying the equivalent peak stress definition in case of only Mode I loading conditions: 
 

 ∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = 𝑓𝑤1∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘  (3.6) 

 
Finally, all the four values of the equivalent stress were multiplied for the nominal stress range in 
order to compare the experimental data with the calibrated curve, fig. 3.33.  
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Figure 3.33: Steel design scatter band for mode I+II loading conditions. 

 

Series 
 
 

N 
[cycles] 

 
fw1 
 

Δσ 
[MPa] 

 

Δσeq,peak 

[MPa] 
 

1 192000 1.334064 200 410.6436 

 507000 1.334064 140 287.4505 

 2937000 1.334064 100 205.3218 

 4297000 1.334064 80 164.2575 

12 109000 2.573041 150 621.7725 

 224000 2.573041 120 497.418 

 322000 2.573041 100 414.515 

 1153000 2.573041 65 269.4348 

 2147000 2.573041 55 227.9833 

16 120000 1.798478 260 604.3359 

 200000 1.798478 220 511.3611 

 302000 1.798478 180 418.3864 

 744000 1.798478 140 325.4116 

 1180000 1.798478 120 278.9243 

 2158000 1.798478 110 255.6806 

23 135000 1.334064 300 426.0443 

 237000 1.334064 260 369.2384 

 407000 1.334064 200 284.0295 

 573000 1.334064 190 269.8281 

 665000 1.334064 180 255.6266 

 1525000 1.334064 160 227.2236 

 1534000 1.334064 150 213.0222 

 2601000 1.334064 140 198.8207 

Table 3.8: experimental results evaluated in terms of equivalent peak stress 
 
The result is that all the data fall within the calibrated scatter band, confirming the goodness of the 
calculation process to estimate the equivalent peak stress for all four series. 
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CHAPTER 4: 
 

Application of the Peak Stress Method to the welded joint 
 

4.1 Axis symmetric model 
 
Before applying the PSM to the 3D geometry, it would be interesting to see if in a 2D model there is 
a significant influence of higher order terms. In fact, the Peak Stress Method does not consider them 
and in case of a non-negligible presence of them it cannot be used as originally proposed, but it 
would require a proper extension. One of the possible alternative way would be the application of the 
SED approach, because the SED value, calculated by Ansys, takes into account all possible 
contributes. Considering a polar reference system centred at the V-notch tip, equations 4.1 and 4.2 
show that higher order terms could be present in Mode I and II loading conditions but also in the 
Mode III case. 

 
Figure 4.1: Polar reference system centred at the V-notch tip, [9]. 

 

{

𝜎𝜃𝜃

𝜎𝑟𝑟

𝜏𝑟𝜗

} =
𝐾1

𝑟1−𝜆1
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

1

+
𝐾2

𝑟1−𝜆2
{

𝜎̃𝜗𝜗(𝜗)
𝜎̃𝑟𝑟(𝜗)

𝜏̃𝑟𝜗(𝜗)
}

2

+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

 

(4.1) 

{
𝜏𝜗𝑧

𝜏𝑟𝑧
}

𝜌=0
=

𝐾3

√2𝜋
𝑟1−𝜆3 {

cos (𝜆3𝜗)
sin(𝜆3𝜗)

} + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 
(4.2) 

 
After these considerations, it is clear that two models have to be studied; one loaded with Mode I 
and II and the other with Mode III. 
Dealing with the 2D models an observation has to be done: the specimens’ geometry cannot be 
studied properly with planar geometries because it is not axis symmetric. The weld is not continuous 
along the outer surfaces but there are two separated welds. However, an axis symmetric geometry 
was modelled and analysed. Even though it does not simulate exactly the specimen geometry, it 
allow us to investigate in a simple manner (2D analyses) the higher order terms presence. The planar 
geometry is the one showed in figure 4.2, where the outer cylinder is considered with its full length, 
while just 60 mm for the inner one because we are focusing on the root side that is far away from the 
upper edge. In order to build suitable meshes to apply the SED definition, a particular technique was 
adopted in both models, consisting in drawing two circles around the notch tip. The bigger circle has 
a 0.28 mm radius while the smaller one just a 0.0001 mm radius. In the smaller circle, a specific 
mesh tool of Ansys code called “concentration keypoint” was adopted to guarantee a circular and 
uniform element disposition around the notch.  
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Figure 4.2: Axis symmetric geometry. 

 
FEM characteristics:  
 

 ELEMENT TYPE: PLANE 83 (AXIS SYMMETRIC, HARMONIC) 

 MATERIAL PROPERTIES: E =206000 MPa ; ν=0.3 

 Mesh free out of the control radius, after imposing lines divisions. 

 Inside the bigger circle the mesh mapped technique was adopted after dividing 
conveniently the lines. 

 Inside the smaller circle the concentration keypoint technique was adopted, parameters 
showed in figure 4.3. 

 

 
Figure 4.3: Ansys’ window for concentration keypoints creation. 
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Figure 4.4: Mesh inside the control volume 

 
Figure 4.5: Mesh pattern within the minor circle. 

 
The mesh pattern becomes more and more refined near the notch tip, figure 4.6. 
 

R0 = 0.28 mm 
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Figure 4.6: Axis symmetric model mesh pattern. 
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4.1.1 Axis symmetric model: pure axial 
 
With this model we are analysing the Mode I and II loading cases. The main purpose of this work is 
to calculate the Mode I and II NSIFs K1 and K2, then calculate the analytical SED with these two 
values and then compare it with the SED value obtained directly with Ansys. In case of a match or a 
low error the higher order terms influence is negligible. The first step is to define the loads and 
constraints: all degrees of freedom of the lower line of the outer tube were constrained and a pressure 
in the x direction of 1 MPa was applied to the upper line of the inner tube, figure 4.7. 

 

 
Figure 4.7: pure axial load and costraints. 

 
Considering a Cartesian reference system centred at the root tip the Mode I loading condition is 
derived from a 𝜎𝑦𝑦 stress component and the Mode II from a 𝜏𝑥𝑦 stress component. Both have been 

calculated defining a path selecting the nodes belonging to the notch bisector line in x direction within 
the control radius. However, in the stress analysis the nodes belonging to the smaller circle were not 
considered due to numerical errors in detecting the stress singularity. The results of this analysis are 
shown in figure 4.8. 
 

x
' 

y 
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Figure 4.8: stress components path within the control radius, pure axial case. 

 
What emerges from this graph is that adding power law interpolation lines the exponent is more or 
less 0.5 that is the ideal value for a V-notch with notch opening angle of 0°, typical of the root side. 
At this point we could apply the NSIFs definitions and plot the result in a graph: 
 

 𝐾1 = √2𝜋 lim
𝑟→0+

𝑟1−𝜆1𝜎𝑦𝑦(𝑥, 𝑦 = 0) 

 

(4.3) 

 𝐾2 = √2𝜋 lim
𝑟→0+

𝑟1−𝜆2𝜏𝑥𝑦(𝑥, 𝑦 = 0) (4.4) 

 
Figure 4.9: Mode I and II NSIFs graph. 

 
In regard of the last plot, the analysis was restricted to a smaller interval because here the NSIFs 
value is constant. This statement is proved by the very low exponent of the power law interpolation 
lines, proximal to zero. The Mode I NSIF K1 is 0.3966 MPa mm0.5 and the Mode II NSIF K2 is 1.3628 
MPa mm0.5. Knowing these parameters the SED definition (2D case) could be applied, eq 4.5. 
 

 

∆𝑊̅𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 =
𝑒1

𝐸
[

𝐾1

𝑅0
1−𝜆1

]

2

+
𝑒2

𝐸
[

𝐾2

𝑅0
1−𝜆2

]

2

= 1.131 ∗ 10−5  [
𝑀𝐽

𝑚3
] 

(4.5) 

   
At this point the obtained SED value has to be compared with the one calculated by Ansys, that 
considers also higher order terms. The Ansys commands are reported below: 
SELECT => ENTITIES AREAS BY NUM/PICK (pick all areas within the control radius) 
SELECT => EVERYTHING BELOW => SELECTED AREAS 
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GENERAL POSTPROCESSOR => ELEMENT TABLE => DEFINE TABLE => ADD => ENERGY 
=> SENE => APPLY  
GENERAL POSTPROCESSOR => ELEMENT TABLE => DEFINE TABLE => ADD => 
GEOMETRY => VOLU => APPLY 
GENERAL POSTPROCESSOR => ELEMENT TABLE => SUM OF EACH ITEM 

 
At this point to calculate the SED value it is necessary to apply the equation 4.6: 
 

 
∆𝑊̅𝐴𝑛𝑠𝑦𝑠 =

𝑠𝑒𝑛𝑒

𝑣𝑜𝑙𝑢
=

3.56 ∗ 10−4

30.9505
= 1.15 ∗ 10−5  [

𝑀𝐽

𝑚3
] 

(4.6) 

   
The difference between the two values of the Strain Energy Density is very low, see table 4.1: 
 

∆𝑊̅𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 1.131 ∗ 10−5  [
𝑀𝐽

𝑚3
] 

∆𝑊̅𝐴𝑛𝑠𝑦𝑠 
1.15 ∗ 10−5    [

𝑀𝐽

𝑚3
] 

Error (absolute) 1.62 % 

Table 4.1: Pure axial case SED comparison. 
 
Eventually, the last consideration is that in the pure axial loading condition, related to the Mode I and 
II, the higher order terms contribution is negligible and the Peak Stress Method could be applicable. 
 

4.1.2 Axis symmetric model: pure torsion 
 
With this model we are analysing the Mode III loading case. The geometry and the constraints are 
the same of the previous model, what changes is the load. In order to create a torsional moment, a 
force orthogonal to the XY plane was applied on the outer keypoint of the upper edge of the inner 
tube, see the red cross in figure 4.10.  
 

 
Figure 4.10: pure torsional load and constraints and reference system. 

 
The calculation of the exact force to generate a 𝜏𝑛𝑜𝑚 = 1 𝑀𝑃𝑎 is reported below and follows the path 
showed in the Ansys help topics of the axis-symmetric harmonic element adopted in this model. The 
reference system is shown in figure 4.11, where the 2D model is located on the XY plane. 
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Figure 4.11: axis-symmetric element reference system. 

 
The total applied moment (M) due to a tangential input force (Fz) acting about the global axis is: 
 
 

𝑀 = ∫ (𝑓𝑜𝑟𝑐𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ) ∗ (𝑙𝑒𝑣𝑒𝑟 𝑎𝑟𝑚) ∗ (𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ)
2𝜋

0

 
(4.7) 

 
𝑀 = ∫ (−𝐹𝑧/2𝜋𝑅) ∗ (𝑅) ∗ (𝑅𝑑𝜃)

2𝜋

0

= −𝑅 ∗ 𝐹𝑧 
(4.8) 

But: 
 
 

𝜏𝑛𝑜𝑚 =
𝑀

𝑊𝑠𝑡

 
(4.9) 

 
Where 𝑊𝑠𝑡 is the torsional resistance modulus. Isolating M from eq. 4.9 and inserting it in eq. 4.8, it 
results: 
  
 

𝐹𝑧 =
𝜏𝑛𝑜𝑚 ∗ 𝑊𝑠𝑡

𝑅
 

(4.10) 

 

In our case 𝜏𝑛𝑜𝑚 = 1 𝑀𝑃𝑎 and  𝑅 =
𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑒𝑥𝑡

2
; so the last relation becomes: 

 
 

𝐹𝑧 =

𝜋
32

∗
𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑒𝑥𝑡

4 − 𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑖𝑛𝑡
4

𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑒𝑥𝑡 2⁄

𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑒𝑥𝑡

2

 

 

(4.11) 

 

𝐹𝑧 =

𝜋
32

∗
404 − 364

40 2⁄

20
= 216,08 𝑁 

(4.12) 

 
At this point, once solved the model, we can calculate the stress components typical of the Mode III 
loading case. Considering equation 4.2 it is clear that with a crack opening radius of 0° only the 𝜏𝜗𝑧 
should be present as the singular component, but in this particular case there is also a constant 𝜏𝑟𝑧 
contribute along the crack bisector line, figure 4.12. 
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Figure 4.12: stress components path within the control radius, pure torsional case. 

 
Again, in the singular case, the power law interpolation line has an exponent near 0.5, confirming the 
theoretical behaviour of a 0° opening angle V-notch. Dealing with the non-singular component, the 
power law interpolation line has an exponent near zero, underlining the fact that there is a constant 
contribute equal to 0.4053 MPa. 
 

 
Figure 4.13: Mode III NSIF graph. 

 
The very low value of the power law interpolation line proves that the Mode III NSIF K3 is constant 
and equal to 1.0128 MPa mm0.5. Proceeding calculating the SED value, it results: 
 

 

∆𝑊̅𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 =
𝑒3

𝐸
[

∆𝐾3

𝑅0
1−𝜆3

]

2

= 7.36 ∗ 10−6 [ [
𝑀𝐽

𝑚3
]] 

 

(4.13) 

At this point the obtained SED value has to be compared with the one calculated by Ansys, that 
includes also higher order terms. The Ansys commands are the same of the previous model. To 
calculate the SED value it is necessary to apply the equation 4.14: 
 

 
∆𝑊̅𝐴𝑛𝑠𝑦𝑠 =

𝑠𝑒𝑛𝑒

𝑣𝑜𝑙𝑢
=

2.47 ∗ 10−4

30.9505
= 7.98 ∗ 10−6  [ [

𝑀𝐽

𝑚3
]] 

(4.14) 

   

y = 0.404x-0.497

y = 0.4053x0.013

0.1

1

10

100

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

τ θ
z
/τ

n
o
m

a
n
d
 τ

rz
/τ

n
o
m

r [mm]

τθz

τrz

0.28

y = 1.0128x0.0035

0.1

1

10

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

K
3

[M
P

a
 m

m
0

.5
]

r [mm]

k3



  
 

 108 

Chapter 4 

The difference between the two values of the Strain Energy Density is bigger than the pure axial 
case, see table 4.2: 
 

∆𝑊̅𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 
7.36 ∗ 10−6 [ [

𝑀𝐽

𝑚3
]] 

∆𝑊̅𝐴𝑛𝑠𝑦𝑠 
7.98 ∗ 10−6   [ [

𝑀𝐽

𝑚3
]] 

Error (absolute) 7.78 % 

Table 4.2: Pure torsional case SED comparison. 
 
This error could be partially explained by including the  𝜏𝑟𝑧 constant contribute, figure 4.12. It could 
be taken into account, in an approximate manner, in the Strain Energy Density calculation as follows: 
 

 
∆𝑊̅𝜏𝑛𝑜𝑚,𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = (1 + 𝜈) ∗

(𝜏𝑛𝑜𝑚)2

𝐸
= (1 + 𝜈) ∗

(0.4053)2

𝐸
= 1.04 ∗ 10−6  [

𝑁 ∗ 𝑚𝑚

𝑚𝑚2
] 

(4.15) 

   
It should be noted that in the previous expression, the contribution of the 𝜏𝑟𝑧 stress component has 
been assumed as constant inside the whole control volume, while it has been checked that it is 
constant only along the crack bisector line, here is the approximation. However no other solutions 
are available for an analytical calculation of the SED value. 
Adding this contribute to the analytical SED the difference with the one calculated by Ansys is lower 
but still bigger than 5%. 
 

∆𝑊̅𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 + ∆𝑊̅𝜏𝑛𝑜𝑚,𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑒 
8.399 ∗ 10−6  [

𝑀𝐽

𝑚3
] 

∆𝑊̅𝐴𝑛𝑠𝑦𝑠 
7.98 ∗ 10−6    [

𝑀𝐽

𝑚3
] 

Error (absolute) 5.2 % 

Table 4.3: Pure torsional case SED comparison considering 𝜏𝑛𝑜𝑚contribute. 
 
Eventually, the last consideration is that in the pure torsional loading condition, related to the Mode 
III, the higher order terms contribute is bigger than the pure axial case. However, the Peak Stress 
Method is applicable considering that it is proportional to the square root of the Strain Energy Density, 
so also the error will decrease to an acceptable value, being the error in terms of stress value almost 
half of the error in terms of energy value. 
 
In conclusion, these 2D axis symmetric analysis show that the Peak Stress Method could be applied 
with an acceptable error in both loading cases. However, this planar section does not represent well 
the real geometry behaviour, so this last statement has to be validated once we solved the 3D model. 
In order to create this three dimensional model we referred to an idealized geometry, the same used 
by Vormwald in [1] and described in detail in the following paragraph. 
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4.2 Idealised 3D weld geometry 
 
Vormwald in [1] calculated notch stresses with an idealised weld end model illustrated in previous 
works [2-4]. The real geometry of weld ends was obtained with high precision using a 3D scanner 
characterized by a depth resolution of 5 μm. Based on surface scan results volume models were 
created that contained weld end geometries. In order to validate this model, in [27] it is remarked that 
comparative calculations with idealised geometries have been performed varying parameters such 
as the weld angle and the toe radius. Dealing with the weld angle, the best accuracy was achieved 
with the value of 45° and the geometry shown in figure 4.14. 
 

 
Fig 4.14: Construction of idealised weld end, [27]. 

 
In this model the 1/8 circle of the weld toe rounds steadily to 3/4 circle of the weld root, in this way 
the rounding of the weld toe bends continuously into the weld root. Therefore a unified weld end 
geometry has been defined with the sheet thickness S = 2.24 mm and the radius r = 0.2 mm. The 
geometry can be scaled up linearly to the desired sheet thickness (S) according to the following 
recommendations:  
 
 𝑓𝑜𝑟 𝑆 ≤ 5 𝑚𝑚:                                 𝑟 = 0.2 𝑚𝑚 

 

𝑓𝑜𝑟 𝑆 > 5 𝑚𝑚:                                 𝑟 =
0.2 ∗ 𝑆

2.24
 𝑚𝑚 

(4.16) 
 
 

(4.17) 
 
In the case of the overlapped tube-tube specimens a rroot = 0.05 mm was considered after breaking 
the seam weld at temperatures below the transition from ductile to brittle. In regards of these last 
changes, a new idealised model was created with different radii values. It is evident that there is a 
transition zone where the notch radii vary from 0.05 mm to 0.2 mm, shown in fig 4.15. 
 

 
Fig 4.15: idealised weld end model with different radii at weld root and toe, [1]. 

 
In order to build the correct geometry, it is necessary to calculate the coordinates of the points in 
figure 4.16 thanks to the relations shown below in table 4.4. 

1/8 circle of weld toe 

3/4 circle of weld root 
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Figure 4.16: Points and angles to create the new idealised weld model with different toe and root 

radius, [28].  
 
As shown in previous figure, v is defined as follows and its value is established from works [2-4]. 
 
 

𝑣 =
ℎ1

ℎ2

=
𝑅1

𝑅2

= 2 
(4.18) 

 

 
Table 4.4: relations useful to calculate the coordinate of the points of the new idealised weld 

geometry, [28]. “ν” is not the Poisson ratio, but the ratio defined eq. 4.18. 
 
Eventually, the α parameter is set to 90° in relation to previous works and figure 4.16. The unified 
weld end geometry consider a value equal to 2.24 mm for the sheet thickness parameter S, but in 
the case under study it would not be right. In fact from specimens images (see chapter 2, figures 1.3 
and 1.11) it is clear that there is no space between the weld toe and the edge of the outer tube. In 
other words, both welds touch the edge of the bigger tube. The sheet thickness of the outer tube 
being 2.5 mm, also the overall width of the weld has to be of the same value.  
Considering figure 4.14: 
 
 ℎ = 𝑆 + 𝑟𝑟𝑜𝑜𝑡 = 2.5 𝑚𝑚 (4.19) 
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But the root radius is known: 
 𝑟𝑟𝑜𝑜𝑡 = 0.05 𝑚𝑚 

 
(4.20) 

So: 
 𝑆 = ℎ − 𝑟𝑟𝑜𝑜𝑡 = 2.5 − 0.05 = 2.495 𝑚𝑚 (4.21) 

 
All parameters’ values are recapped in table 4.5. 
 

PARAMETERS VALUE 

𝑟𝑟𝑜𝑜𝑡 0.05 mm 

𝑟𝑡𝑜𝑒 0.2 mm 

S 2.495 mm 

v 2 

α 90° 

Table 4.5: Parameters used to calculate the weld model. 
 
Inserting these values in the relations of table 4.4, it results: 
 

Points X- coordinates 
[mm] 

Y- coordinates 
[mm] 

P1 1.53  2.46 

P2 0 0.93 
P3 0.765 0.17 

P4 1.53 0.17 

M1 1.53 0.93 

M2 0.765 0.93 

Table 4.6: Points coordinates for the idealised weld model. 
 
Furthermore, the described geometry has been modified in order to apply the PSM, which adopt a 
sharp geometry both at the weld root and at the weld toe. Accordingly, both rtoe and rroot have been 
set to zero to create sharp V-notches. All the coordinates have been calculated with the previous 
values of the radii, but a few adjustments have been necessary to create a proper geometry. To be 
precise the Y coordinates of the points P3 and P4 have been set to zero and the P1 to 2.50 mm 
instead of 2.46 mm. Furthermore, the values of the radii R1 and R2 have been modified to create 
this geometry without changing other parameters. The detailed changes are shown in tables 4.7 and 
4.8. 

 Original values Updated values 

𝑅1 [mm] 1.53 1.57 

𝑅2 [mm]  0.76 0.93 

𝑣 =
𝑅1

𝑅2

 
2.01 1.7 

Table 4.7: New radii values for the idealized weld end model. 
 

In this way at the root we have created a crack where the weld is always attached to the root and the 
weld width is exactly equal to the thickness of the outer tube. 
 

Points X- coordinates 
[mm] 

Y- coordinates 
[mm] 

P1 1.53  2.50 
P2 0 0.93 
P3 0.765 0 
P4 1.53 0 
M1 1.53 0.93 
M2 0.765 0.93 

Table 4.8: New points coordinates for the idealised weld model. 
 



  
 

 112 

Chapter 4 

4.3 CAD model creation 
 
Due to the non-planar surfaces, it would have been difficult to model the weld geometry directly with 
the Ansys® software. In order to create the model described in the previous paragraph the software 
Solidworks® has been adopted. Thanks to the geometry of the specimens, two symmetry planes, 
orthogonal each other, could be considered and only a quarter of the total geometry will be modelled; 
so it is necessary to create only half of the weld, figure 4.17. 
 

 
Figure 4.17: CAD geometry with symmetry planes. 

 
First, the profile of the weld seam has been drawn on a plane XZ taking into account the coordinates 
given in tab 4.8 and considering the Z axis instead of the Y one, see figure 4.18. 
 

 
Figure 4.18: 2D sketch of the profile. 

 
Then a volume is created with a revolution considering as an axis of rotation the P3P4 line, figure 
4.19. The angle of revolution was set to 110°, an overestimated value with respect to the 90° value 
which could be sufficient to cover the gap between the outer and the inner tube. However, the 110° 
angle  was adopted to be sure that the weld seam intersect the surface of the inner tube, so that the 
connection between the different volumes is guaranteed . 

X
x
x
x
x 

Z 
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Figure 4.19: Volume created due to revolution along P3P4 line. 

 
Now it is necessary to restore the 45° weld angle with an extruded cut, figure 4.20. 

 

 
Figure 4.20: Geometry after the first extruded cut. 

 
At this point an extruded cut was used again, but considering a 3D sketch (grey lines in figure below). 
The cut direction is represented by the red arrow. 
 

 
Figure 4.21: Geometry after the second extruded cut 

 
Now with a revolution cut the weld end geometry is finished. Thanks to the 110° revolution of the 
second step, at this point we are sure that the inner surface is cylindrical (see figure 4.22) 

110° 

45° 
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Figure 4.22: Weld end geometry before the revolution cut considering the AB axis. 

 

 
Figure 4.23: Weld end after the revolution cut. 

 
To create the full weld geometry a revolution extrusion was used, figures 4.24 and 4.25.  
 

A 

B 

Cylindrical 
inner surface  
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Figure 4.24: Lateral view of the half weld geometry 

 

 
Figure 4.25: Front view of the half weld geometry. 

 
Eventually, the 3D CAD file was saved with the ACIS extension and imported to Ansys. The 
remaining volumes have been created directly into Ansys to be sure to create attached surfaces and 
avoid tolerances problems. 
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4.4 FEM Mainmodel creation 
 
First, after importing the ACIS file it is suggested to check the areas and the volumes created 
because this particular geometry could lead to visualization issues due to the great changes of 
surfaces curvatures. To reduce the amount of calculation and simplify the geometry, only a quarter 
of the total geometry will be modelled considering two symmetry planes, shown with a top view in 
figure 4.26. 
 

 
Figure 4.26: Symmetry planes location, [1]. 

 
The procedure necessary for the creation of the 3D model now will be described in detail, taking as 
reference figure 4.27.  
An observation has to be done before going on with the modelling procedure. In figure 4.29, it is 
shown the procedure to create an air wedge between the inner and outer tubes starting from the line 
passing through the root tip. This wedge has a tip opening angle of just 1 degree and it has been 
introduced to create a separation of the two tubes to avoid submodelling issues and the adoption of 
contact elements, which require an iterative solution of the FE model. If they had been attached, 
there would have been more than one surface in the same place and when it comes the time to apply 
the boundary condition to the cut boundary of the submodel, the output will be wrong. These happens 
because without this expedient, the interpolation of the degree of freedom of the submodel could be 
done both in the outer tube as well as in the inner one.  
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To create such air edge there are a few operations to be done. 
 

 
Figure 4.27: Ansys modelling procedure part 1. 

 
a) First it is necessary to import the CAD geometry. The Ansys commands are:  

FILE => IMPORT => ACIS. 
b) Now it is possible to create the inner tube, starting from the imported weld geometry. The 

first step is switching to a global cylindrical coordinate system, then we can extrude the 
cylindrical inner surface of the weld. The Ansys commands are:  
PREPOCESSOR => MODELING => OPERATE => EXTRUDE => AREAS => BY XYZ 
OFFSET => (Pick the inner cylindrical surface of the weld model) => OK => DX = - 2 mm. 

c) The creation of the plotted surface is not immediate. First a global Cartesian system is 
restored, then an arc was drawn in the XZ plane and extruded in y-direction for 2.5 mm, 
exactly the “height” of the weld volume. At this point, the profile of the volumes created with 
the extrusion on point b) can be used to divide the area just created with the command 
“divide => area by line”. Now the area shown in c) is divided in a concave part and a convex 
one, hidden within the weld. The convex part is useless and has to be throw away, while the 
concave is kept.  
 

 
Figure 4.28: Concave and convex surfaces on point c). 

 
 
 
 

Concave surface 

Convex surface 
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d) Now we need to switch again to a cylindrical coordinate system and the concave area 
created before can be “extruded by XYZ offset” with a DX of -2 mm. With this articulate 
procedure, we have created several volumes, but all touching each other, so in the meshing 
phase they will behave like a unique model, without detachments. 

e) Drawing the upper surface of the outer tube, perfectly attached to the inner tube but not 
using the same lines, by doing this at the root tip there will be a sharp V-notch, but the two 
tubes are not connected there, they are just touching. 

f) Create a Local cylindrical coordinate system centred in the global one and rotate of -180° 
considering a rotation along the X axis and -1° considering another along the Y axis. 

g) Extrude the area created on point e) and the lower surface of the weld with a DZ offset of – 
3 mm. This value is chosen because this will be the lower edge of the submodel. 

h) Switch to the global Cartesian system and extrude the lower surfaces of the inner tube with 
an offset DY of -3 mm. 

i) Always considering the Global Cartesian system, extrude the upper surfaces of the inner 
tube with an offset DY of 3 mm. 

 

 
Figure 4.29: Ansys modelling procedure part 2. 

Perfect 
attachment 
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j) Eventually, the full geometry is obtained with a Y-direction extrusion of the upper and lower 

edges, respectively of the inner and outer tube, with an offset of 60 mm. The real specimens’ 
geometry is longer than this, but it is preferred to model a portion of the total model to reduce 
the elements count and because the edges are far enough from the weld and their influence 
is negligible. The quoted final FEM model is shown in figure 4.30. 
 

 
Figure 4.30: Quoted Ansys FEM model. 

 

4.4.1 Mesh characteristics  
 
The mesh pattern creation is quite delicate and a few observations need to be done. First, the global 
element size has to decrease from the edges to the welded part without evident discontinuities and 
in a uniform way. Furthermore, the complex curved shape of the weld forces a very small global 
element size, equal to 0.1 mm, and as a consequence just the solution of this part is particularly time-
consuming. In particular, it is not possible to use a bigger global element size because the Ansys 
meshing algorithm would produce a non-solvable error. Second, the global element size has to be 
the smallest possible, but this is limited to the calculation power of the computer. This model has 
been run with a lot of different meshes and the most of the times the output was that the amount of 
RAM was not sufficient to end all the calculations. After many tries, it was figured out a mesh pattern 
enough refined, solvable and uniform. The pyramid tetragonal 10 nodes elements were used, 
meshed with the free technique just imposing the so-called “global element size”. In order to be clear, 
numbers have been assigned to the volumes, figure 4.31, and the mesh characteristics are recapped 
in table 4.9. 
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Figure 4.31: Numbers assigned to the volumes 

 

Mainmodel Global element size 

D1 
[mm] 

D2 
[mm] 

D3 
[mm] 

D4 
[mm] 

0.1 0.4 0.5 1.5 

Table 4.9: Volumes global element sizes. 
 

 
Figure 4.32: Mesh pattern with increasing zooms. 
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4.4.2 Loads and constraints 
 
Starting from the pure axial loaded model, dealing with the load, a uniform pressure of 1 MPa was 
applied to the upper surface of the inner cylinder in the Y-direction. In regard of the constraints, 
symmetry boundary conditions have been applied to surfaces belonging to both geometrical 
symmetry planes shown in red in figure 4.26. Also, all degree of freedom have been constrained in 
the lower surface of the outer tube; the lower surface of the inner tube was let free to glide.  

 
Figure 4.33: Loads and constraints of the pure axial model. The S stand for: Symmetry boundary 

condition. 
 
Regarding the pure torsional loaded model, dealing with the load, it necessary to calculate a force to 
create shear stress of 1 MPa in the inner tube.  
 

 
Figure 4.34: Pure torsional case loading condition. 

 
 
The total applied torsional moment is: 
 𝑀𝑡 = 4𝐹 ∗ 𝑟 (4.22) 

Ux = 0  
Uy = 0  
Uz = 0 
ROTX = 0 
ROTY = 0 
ROTZ = 0  



 122 

Chapter 4 

But: 

𝜏 =
𝑀𝑡

𝑊𝑡

= 1 𝑀𝑃𝑎 
(4.23) 

It results, from eq. 4.24: 

𝐹 =
𝑊𝑡

4 ∗ 𝑟
=

𝜋
32

∗
𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑒𝑥𝑡

4 − 𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑖𝑛𝑡
4

𝑑𝑖𝑛𝑛𝑒𝑟𝑡𝑢𝑏𝑒,𝑒𝑥𝑡 2⁄

4 ∗ 𝑟

(4.24) 

𝐹 =

𝜋
32

∗
404 − 364

40 2⁄

4 ∗ 20
= 54 𝑁 

(4.25) 

𝐹

2
= 27 𝑁 

(4.26) 

This Force of 27 N has been applied to the edge keypoints of the upper surface of the inner tube in 
the tangential direction, as shown in figure 4.34 
In regard of the constraints, anti-symmetry boundary conditions have been applied to surfaces 
belonging to both geometrical symmetry planes shown in red in figure 4.26. In addition, all degrees 
of freedom have been constrained in the lower surface of the outer tube; the lower surface of the 
inner tube was let free to glide. Solving this model, the exaggerated deformed shape shows a 
penetration of the two tubes, however the real one (not scaled) displays that there is a gap between 
the two cylinders. This positive outcome is also a result of the insertion of the air wedge described in 
detail previously and gives the possibility not to insert the contact in this analysis. In fact, the insertion 
of the contact between the two cylinders would make the analysis non-linear and the result less 
reliable. 

Figure 4.35: Loads and constraints of the pure torsional model. The A stand for: Anti-Symmetry 
boundary condition. 

Ux = 0 
Uy = 0 
Uz = 0 
ROTX = 0 
ROTY = 0 
ROTZ = 0 
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Figure 4.36: Exaggerated deformed shape, axial case 

Figure 4.37: Exaggerated deformed shape, torsional case. 
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4.5 FEM Submodel creation 

The submodelling technique was used to analyse with a more refined mesh the critical zone, located 
at the weld end, in proximity to the separation of the two tubes that is experimentally the crack 
initiation point in most cases. Considering figure 4.39 some observations could be done: 

1. The submodel extension is half of 45°, so a quarter of the total 90° weld. This width angle
allow us to use a mesh pattern enough refined and to study the largest portion possible by
our calculation power. Previous attempts considered a 45° angle, but the mesh would result
gross and leads to non-satisfactory results.

2. The 3 mm distance from the weld is calculated from convergence analysis. At the beginning,
model with just 2.5 mm height from the weld have been used, but the outcome was that this
distance was not sufficient not to be influenced by the Mainmodel mesh.

3. The Submodel with this characteristics starts exactly from the critical point C. This is forced
by the geometry itself, in particular, within the weld, the root tip is constituted by only one
line, so by a succession of nodes one after the other and never in the same position, while
out of the weld there could be more nodes in the exact same position. The two cylinders are
touching at the root tip out of the weld, not merging like within it. If a larger submodel had
been created, including the critical point C, in the zone before it, out of the weld, the
interpolation procedure would have given a wrong output, because considering the
displacement of the outer tube sometimes and of the inner one the other times. This happens
because Ansys is not able to understand which one of the two lines has to consider for the
interpolation procedure because they are located in the exact same place. This fact leads to
the consideration that the nodes belonging to the surface where the submodel starts will be
part of the cut boundary. In this way, the resultant stresses and displacements will be deeply
influenced by the Mainmodel geometry because deriving from the interpolation of shape
functions of very big elements. The solution of this problem is refining the Mainmodel mesh
pattern, but we reached the limit of the calculation power.

Figure 4.39: submodel geometry and location. 

The creation of the geometry of the submodel is here described, step by step: 
a) Starting from the Mainmodel geometry, several volumes have been deleted with the

exception of the ones plotted in figure 4.40. The used commands are:
PREPROCESSOR => MODELING => DELETE => VOLUME AND BELOW

b) To proceed with the submodel creation it is necessary to switch to a cylindrical reference
system. Then it is possible to extruded the shaded surfaces with the commands:
PREPROCESSOR => OPERATE => EXTRUDE => AREAS => (Pick shaded areas) => DX
= 3 mm.
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c) The result of the previous operations is here shown using the colours to emphasize the
volumes edges.

d) Now we focus only on the just created volumes. The following steps are aimed to keep
only their surfaces.
SELECT => ENTITIES => (Pick the new volumes)
SELECT => EVERYTHING BELOW => SELECTED VOLUMES
PREPROCESSOR => MODELING => DELETE => VOLUME AND BELOW => (Pick the
new volumes)

e) The useless areas are eliminated.
PREPROCESSOR => MODELING => DELETE => AREA AND BELOW => (Pick all areas
with exception to the one showed in the figure below)

f) The outcome of this first part of the submodel modelling procedure is showed with the
commands:
SELECT => EVERYTHING
PLOT => VOLUMES

Figure 4.40: Ansys submodel modelling procedure part 1. 
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g) The areas shown at point e) are used to slice the volumes indicated by the black arrows on
point f). The result is plotted using colours to underline that two new volumes have been
created.
PREPROCESSOR => MODELING => OPERATE => BOOLEANS => DIVIDE => VOLUME
BY AREA

h) The new volumes are useless so they have been eliminated.
PREPROCESSOR => MODELING => DELETE => VOLUME AND BELOW

i) The lines indicated by the arrows have been divided in two parts. The path is the following:
PREPROCESSOR => MODELING => OPERATE => BOOLEANS => DIVIDE => LINES
INTO 2 LINES => (Pick every line and repeat the procedure)

j) Create lines connecting the keypoints derived from previous line division and use them to
create an area.
PREPROCESSOR => MODELING => CREATE => LINES => LINES => STRAIGHT LINE
PREPROCESSOR => MODELING => CREATE => AREA => ARBITRARY => BY LINES
=> (Pick the just created lines)
Use the area painted in red to divide the volumes intersecting it.
PREPROCESSOR => MODELING => OPERATE => BOOLEANS => DIVIDE => VOLUME
BY AREA => (Pick one volume and the corresponding area and repeat the procedure)
Delete the part of volumes not belonging to the critical point side.
PREPROCESSOR => MODELING => DELETE => VOLUME AND BELOW

k) This is the last operation and it is not necessary but aimed to improve the uniformity of the
mesh pattern. In particular, the volumes indicated by the arrows are added.
PREPROCESSOR => MODELING => OPERATE => BOOLEANS => ADD => VOLUMES
=> (Pick the indicated volumes, both red in the picture)
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Figure 4.41: Ansys submodel modelling procedure part 2. 

 
 

4.5.1 Submodel mesh characteristics 
 
In order to apply the Peak Stress Method (PSM) the condition that has to be fulfilled is to mesh 
mapped with Brick 8 nodes elements. In fact, the meshing technique has to guarantee that in case 
of a crack with a 0° opening angle four elements are located at its tip, as shown in the figure below. 
 

 
Figure 4.42: Suggested mesh patterns for different opening angle cases to apply the PSM, [10]. 

 
However, the particular geometry of the submodel does not allow to mesh mapped, even dividing it 
into smaller volumes. The reason of this is that we are dealing with curved shapes, in particular the 
area near the critical point, and Ansys is not able to correlate the opposite surfaces of each volume. 
There are two different path to follow at this point and at the end of the analysis the results will be 
compared and discussed. 
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4.5.2 The two-submodels method 

The first idea is to mesh also the submodel with pyramid tetragonal 10 nodes elements and use it to 
interpolate a second submodel meshed with bricks 8 nodes. This is possible sketching a second 
submodel with a geometry suitable not give any problems during the mapped meshing. The 
submodel is modelled around the root tip at a distance of 1 mm and contains the air wedge, like the 
first submodel. However, since it is starting from the critical point, all the nodes belonging to that 
surface (shaded in yellow in figure 4.43) are interpolated in the first submodel where this is again a 
cut boundary that is interpolated in the Mainmodel. To resume, the “frontal” surface of the second 
submodel interpolated indirectly in the Mainmodel, so the solution of the nodes belonging to that 
surface will be extremely non-reliable.  

Figure 4.43: Second submodel geometry and location. 

The cut boundaries have been applied to all surfaces with exception to the two areas contained 
within the second submodel. More precisely the two areas are the one connecting the “bottom” of 
the submodel to the line passing through the root tip.  
In order to apply the Peak Stress Method in the second submodel, the mesh density ratio a/d (a = 
ligament length = 2.5 mm; d = global size) has to assume different values depending in which loading 
condition we are dealing with; they are recapped in the following table. 

Mode I Mode II Mode III 
(root side) 

Minimum a/d 3 14 12 
dmax [mm] 0.83 0.18 0.21 

Table 4.10: required meshes density ratios for every loading case. 

Since the maximum acceptable value for the global element size is 0.18 mm, in this analysis we are 
investigating dimensions lower that this value and four different mesh cases were studied, table 4.11. 

Solution 
number 

# 

Submodel 1 Submodel 2 

Global element size 
[mm] 

1 0.15 0.15 

2 0.05 

3 0.12 0.15 

4 0.05 

Table 4.11: Convergence analysis of the two submodels technique. 
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Figure 4.44: solution 1 mesh example. Global element size of 0.15 mm for both models. 

 
All four cases analysis were carried out for the pure axial model as well as the pure torsional one. 
Starting from the pure axial case, the procedure to calculate the equivalent peak stress is reported 
step by step: 

1. Solve the Mainmodel loaded with the pure axial load. 
2. Interpolate the cut boundaries of the first submodel, in the Mainmodel just solved, and solve. 
3. Interpolate the cut boundaries of the second submodel, in the first one, and solve. 
4. Considering the just solved second submodel, select all nodes belonging to the line located 

at the root tip and extract the Mode I and Mode II peak stresses. Then it is possible to 
calculate the equivalent peak stress with equation 4.27, that becomes eq. 4.28 in the as-
welded case, since cw =1: 

 
Figure 4.45: Nodes belonging to the line passing through the root tip. 

 
 

𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑐𝑤1𝑓𝑤1
2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘

2 + 𝑐𝑤2𝑓𝑤2
2 ∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘

2  

 

(4.27) 
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𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑓𝑤1

2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 + 𝑓𝑤2

2 ∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2  

 

(4.28) 

Where: 
 

𝑓𝑤1 = 𝐾𝐹𝐸
∗  √

2𝑒1

1 − 𝜈2
 (

𝑑

𝑅0

)
1−𝜆1

=  1.38 √
2 ∗ 0.133

1 − 0.32
 (

0.05

0.28
)

0.5

= 0.315 

 

(4.29) 

 

𝑓𝑤2 = 𝐾𝐹𝐸
∗∗  √

2𝑒2

1 − 𝜈2
 (

𝑑

𝑅0

)
1−𝜆2

= 3.38 √
2 ∗ 0.340

1 − 0.32
 (

0.05

0.28
)

0.5

= 1.235 

 

(4.30) 

 
The more refined case, solution 4, is reported as an example considering figure 4.45 reference 
system: 
 

 
Figure 4.46: Stress analysis in terms of equivalent peak stress of solution 4 mesh case, root side, 

pure axial loading condition. Global element size of the second submodel = 0.05 mm; nominal 
applied load Δσ = 1 MPa (to the mainmodel). 

 
The σyy,peak stress component is relate to the Mode I loading case: opening; while the τxy,peak refers to 

the Mode II: in-plane shear. Once multiplied for the correction parameters fw1 and fw2, it is clear that 
the Mode II contribute is by far bigger than the other one, in fact: 
 
 𝑀𝑜𝑑𝑒 𝐼𝐼 

𝑀𝑜𝑑𝑒 𝐼
=

𝑓𝑤2
2 ∆𝜏𝑥𝑦,𝑥=0,𝑝𝑒𝑎𝑘

2

𝑓𝑤1
2 ∆𝜎𝑦𝑦,𝑥=0,𝑝𝑒𝑎𝑘

2 = 19.2 
(4.31) 

 

Furthermore, the σyy,peak is negative, which means that the V-notch, created thanks to the air wedge, 

is closing and not opening. Eventually, it is remarked how the first node value is unreliable because 
interpolated indirectly in the Mainmodel. This is the explanation of the discontinuity and as a first 
estimation of the equivalent stress, it is sufficient to read the value of the second node that is almost 
9 MPa.  
It would be useful to plot the equivalent peak stresses of the four solution cases in a single graph to 
study the convergence. In the legend, sub1 stands for submodel 1 and it is followed by the global 
element size and the same nomenclature was adopted for submodel 2. 
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Figure 4.47: Equivalent peak stress calculated along the root tip for the four solution cases. 

Nominal applied load Δσ = 1 MPa (to the mainmodel) 

 
What emerges from this graph is that all solutions are showing the same path, they are overlapped, 
with exception to the first point, because of reasons previously discussed, and around 4 mm in z-
direction. This is due to the mesh pattern and it would be certainly eliminated with a smaller global 
element size but this cannot be done because we reached again our calculation limit.  
 
Dealing with the torsional case, the data extraction procedure is exactly the same, what differs is that 
now there is only the Mode III contribute and the equivalent stress is calculated with equation 4.32, 
that becomes eq. 4.31 in the as-welded case: 
 

 
𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑐𝑤3𝑓𝑤3

2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘
2  

 

(4.32) 

 
𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑓𝑤3

2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘
2  

(4.33) 

   
Where:  
 

𝑓𝑤3 = 𝐾𝐹𝐸
∗∗∗ √

2𝑒3

1 − 𝜈2
 (

𝑑

𝑅0

)
1−𝜆3

= 1.93√
2 ∗ 0.414

1 − 0.32
 (

0.05

0.28
)

0.5

= 0.778 

 

(4.34) 

The more refined case, solution 4, is reported as an example, considering the reference system of 
Figure 4.48: 

 
Figure 4.48: Torsional case reference system 
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Figure 4.49: Stresses analysis in terms of equivalent peak stress of solution 4 mesh case, root 
side, pure torsional loading condition. Global element size of the second submodel = 0.05 mm; 

Nominal applied load Δτ = 1 MPa (to the mainmodel). 

 
This graph shows discontinuities and change of concavity that are not physically meaningful. The 
comparison with the other three solution cases continues to show this unusual slope. The reasons 
of this strange behaviour are two: 

1. The submodel 1 or the submodel 2 should have been enlarged, not to be influenced by the 
gross mainmodel mesh. However, this is not possible for geometrical problems discussed 
before and for the reduced calculation power available.  

2. The mesh of the first submodel is not enough refined giving a wrong output. The problem is 
always the same, further mesh refinement is not possible. 

These facts lead to the conclusion that the two submodel technique gives positive outcomes only in 
the pure axial case, while totally unreliable in the torsional loading case. The next step is trying 
another technique to confirm equivalent stress slope in the pure axial case and find a more accurate 
stress distribution for the torsional moment loaded model. 
 

4.5.3 The “volume sweep” method 
 
The main achievement of the meshing procedure of the first submodel is to generate an element 
pattern characterized by having four elements at the root tip. Furthermore, in order to obtain reliable 
stress distributions, the mesh has to be uniform and not made by very distorted elements. This is not 
possible with the free mesh generator algorithm but only with the mapped one. However, the mapped 
mesh generator works only with very simple geometries (like the submodel 2) and it is rarely 
applicable. A possible alternative to this model is the so-called “volume sweep” method. The main 
difference from a standard volume meshing technique is that this procedure starts meshing a surface 
with 2D elements (typically shell elements) with the mapped technique and then with the command 
volume sweep, the 2D elements are extruded following the volumes shape until reaching a “target” 
surface. So when the 2D mesh is done and the starting and finishing surfaces are selected, the mesh 
will be generated automatically. The result is a very regular brick 8 nodes mesh, similar to a mapped 
one. Once the volumes are meshed it is necessary to clear the surface meshed with 2D elements, 
in fact this is not belonging to the geometry itself but it was only necessary for the mesh creation. 
The detailed procedure is here exposed. 

1. ELEMENT TYPE => ADD => SHELL181 
2. ELEMENT TYPE => ADD => SOLID185 => K1 SIMPLE ENHANCED STRAIN 
3. MESHING => SIZE CONTROLS => MANUAL SIZE => GLOBAL => SIZE => 0.12 mm 
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4. MESHING => SIZE CONTROLS => MANUAL SIZE => LINES => PICKED LINES  (divide
the lines around the root tip properly to create the four elements of the same size)

Figure 4.50: Numbers of the lines divided for the meshing procedure. 

Line number Number of divisions Spacing ratio 

L16 17 1 

L53 28 1 

L28 28 1 

L62 30 1 

L30 30 1 

Table 4.12: Lines characteristics for meshing procedure. 

5. MESHING => MESH => AREAS => MAPPED => 4 OR 6 SIDED (pick the areas belonging
to the front section, where the critical point is located).

Figure 4.51: 2D shell elements mesh, before volume sweep command. 
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6. MESHING => MESH => VOLUME SWEEP => SWEEP => (Pick one volume touching the 
shell elements) => OK  (repeat this procedure for every volume, starting from the one 
touching the 2D meshed elements). The target area is automatically individuated. 

 
Figure 4.52: meshed submodel 1 with the volume sweep technique. Global element size = 0.12 

mm.  
 

7. MESHING => CLEAR => AREAS => ALL (to eliminate the areas meshed with shell 
elements) 

At this point we need to interpolate the degree of freedoms belonging to the cut boundaries nodes, 
once for the pure axial model and once for the pure torsional one. Starting from the pure axial case, 
solving the model and selecting the nodes belonging to the line at the root tip, it is possible to analyse 
the data in terms of equivalent peak stress. The correction parameters values are reported in eqs 
4.35 and 4.36. 
 

 

𝑓𝑤1 = 𝐾𝐹𝐸
∗  √

2𝑒1

1 − 𝜈2
 (

𝑑

𝑅0

)
1−𝜆1

= 1.38 √
2 ∗ 0.133

1 − 0.32
 (

0.12

0.28
)

0.5

= 0.488 

 

(4.35) 

 

𝑓𝑤2 = 𝐾𝐹𝐸
∗∗  √

2𝑒2

1 − 𝜈2
 (

𝑑

𝑅0

)
1−𝜆2

= 3.38 √
2 ∗ 0.340

1 − 0.32
 (

0.12

0.28
)

0.5

= 1.913 

 

(4.36) 

The results are plotted in the graph below in relation to the coordinate system of figure 4.42. 
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Figure 4.53: Stresses analysis in terms of equivalent peak stress from the submodel meshed with 
the volume sweep technique, root side, pure axial case. Global element size of the submodel = 

0.12 mm; nominal applied load Δσ = 1 MPa (to the mainmodel) 
 
What emerges is that we are confirming the stress distribution obtained with the “two submodel 
method”: overlapping the two method’s result there would be any visible gaps. However, this last 
distribution appears more uniform and without any kind of discontinuities or concavity changes; this 
is due to the very uniform mesh pattern. The first node is again unreliable because of the indirect 
interpolation in the mainmodel, but considering the value of the equivalent peak stress on the second 
node we read a value of 10 MPa, not far from the 9 MPa value obtained before.  
 
Dealing with the torsional case, solving the model and selecting the nodes belonging to the line at 
the root tip, it is possible to analyse the data in terms of equivalent peak stress. The correction 
parameter value are reported in eq 4.37. 
 

 

𝑓𝑤3 = 𝐾𝐹𝐸
∗∗∗ √

2𝑒3

1 − 𝜈2
 (

𝑑

𝑅0

)
1−𝜆3

= 1.93√
2 ∗ 0.414

1 − 0.32
 (

0.12

0.28
)

0.5

= 1.205 

 

(4.37) 

The results are plotted in the graph below in relation to the coordinate system of figure 4.54. 
 

 
Figure 4.54: Torsional case reference system 
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Figure 4.55: Stresses analysis in terms of equivalent peak stress from the submodel meshed with 

the volume sweep technique, root side, pure torsional loading condition. Global element size = 0.12 

mm; nominal applied load Δτ = 1 MPa (to the mainmodel). 

 
The first thing that emerges from this stress distribution is that is far way more uniform than the one 
obtained with the “two submodel technique”. Moreover, this appears to be more truthful, because 
from a physical point of view the equivalent peak stress has to decrease moving far from the critical 
point and not to show a fluctuating path. The critical point is always affected by the interpolation 
problem, so moving to the second node stress we read an equivalent peak stress of 9.5 MPa. 
Due to the uniformity of the stresses distribution obtained with the “volume sweep technique”, only 
these last two diagrams will be considered in further analysis. Always considering figure 4.54 
reference system now the two loading cases will be combined in a single diagram, figure 4.56. The 
calculation of the equivalent peak stress was carried out with eq. 4.38. 
 

 
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = √𝑐𝑤1𝑓𝑤1

2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 + 𝑐𝑤2𝑓𝑤2

2 ∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 + 𝑐𝑤3𝑓𝑤3

2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘
2  

 

(4.38) 
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Figure 4.56: Stresses analysis in terms of equivalent peak stress from the submodel meshed with 
the volume sweep technique, root side, multiaxial loading condition. Global element size 0.12 mm, 

nominal load Δσ = 1 MPa and Δτ = 1MPa. 
 

It could be interesting to calculate how much is the contribute of Mode I and II in respect to Mode III 
to the equivalent peak stress, eq. 4.39. Since there are two biaxiality ratio 𝜏𝑎/𝜎𝑎 (0.99 and 1.55), we 
need to distinguish two cases of the solution in table 4.13. 
 

 𝑀𝑜𝑑𝑒 𝐼 + 𝐼𝐼

𝑀𝑜𝑑𝑒 𝐼𝐼𝐼
=

[𝑓𝑤1
2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘

2 + 𝑓𝑤2
2 ∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘

2 ] ∙ (𝜎𝑎)2

𝑓𝑤3
2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘

2 ∗ (𝜏𝑎)2
 

(4.39) 

 
 

𝜏𝑎

𝜎𝑎

 
𝑀𝑜𝑑𝑒 𝐼 + 𝐼𝐼

𝑀𝑜𝑑𝑒 𝐼𝐼𝐼
 

0.99 1.07 

1.55 0.44 

Table 4.13: Mode I+II contribute in respect to Mode III in terms of biaxiality ratio. 
 
In both cases Mode I and II seems to be more influent in the calculation of the equivalent peak stress. 
In order to validate the equivalent peak stress graph of both loading cases, a further investigation 
has been done in terms of Strain Energy Density (SED). 
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4.6 Validation of results with SED approach 
 
At this point, It is important to check if the influence of higher order terms is negligible or not. This is 
possible calculating directly the Strain Energy Density on a control volume because it takes into 
account all possible contributes, not only the singular ones. In order to do this, the two-submodel 
technique was resumed with some changes regarding the second submodel. 
In fact, the cylindrical control volumes, required for the averaged SED calculation, were modelled 
within it, to bring the possibility of knowing how the SED parameter changes along the root tip line. 
 

 
Figure 4.57: Model necessary to the calculation of the SED. 

 
Since we are dealing with structural steel, the control radius is set to 0.28 mm and every cylinder’s 
width is also 0.28 mm. The procedure to create such geometry is here presented in detail. 
 

a) Resume the second submodel geometry and clear the mesh and the loads. 
PREPROCESSOR => MESHING => CLEAR => VOLUMES => ALL 
PREPROCESSOR => LOADS => DEFINE LOADS => DELETE => ALL LOAD DATA => 
ALL LOAD DATA AND OPTIONS => OK 

b) For the next step is necessary to move the working plane to the critical point. 
WORKPLANE => DISPLAY WORKING PLANE 
WORKPLANE => ALIGN WITH => KEYPOINTS => (Pick keypoint 5, then 19 and eventually 
23) 

c) To model the control volume, it is necessary to start drawing a circular area around the notch. 
PREPROCESSOR => MODELING => CREATE => LINES => ARCS => BY CENT & 
RADIUS => PICK “WP COORDINATES” => PRESS “0” (keyboard) => ENTER (keyboard) 
=> write 0.28 => OK => OK 
PREPROCESSOR => MODELING => CREATE => AREAS => ARBITRARY => BY LINES 

d) This step is aimed to create a geometry to divide internally the submodel 2 geometry.  
PREPROCESSOR => MODELING => CREATE => KEYPOINTS => IN ACTIVE 
COORDINATE SYSTEM (Global Cartesian) => (0;0;0) => OK 
PREPROCESSOR => MODELING => CREATE => KEYPOINTS => IN ACTIVE 
COORDINATE SYSTEM (Global Cartesian) => (0;2;0) => OK 
PREPROCESSOR => OPERATE => EXTRUDE => AREAS => ABOUT AXIS => (Pick the 
circular area just created) => OK => (Pick the keypoints defining the y axis previously 
created) => 45° => OK 
PREPROCESSOR => MODELING => DELETE => VOLUMES ONLY => (Pick the volume 
just created) => OK 
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e) Internal division of the submodel 2 geometry. 
PREPROCESSOR => MODELING => OPERATE => BOOLEANS => DIVIDE => VOLUME 
BY AREA => PICK ALL (Volumes) => OK => (pick the lateral surfaces of the volume 
eliminated on point g) 

f) Beginning of the creation of several cylindrical volumes to figure out how change the Strain 
energy density along the line connecting the root tip. 
PREPROCESSOR => MODELING => OPERATE => BOOLEANS => DIVIDE => LINE INTO 
N LINES => (Pick the indicated lines) => NDIV = 28 => OK (Repeat this procedure for every 
line indicated by the arrows) 

 
Figure 4.58: Procedure to create the geometry suitable to apply SED approach, part 1. 

 
g) PREPROCESSOR => MODELING => CREATE  => LINES => ARCS => BY END KPs & 

RADIUS => (Pick keypoints 31 and 61) => OK => (Pick keypoint 88) => RAD = 0.28 => OK 
PREPROCESSOR => MODELING => CREATE  => LINES => LINES => STRAIGHT LINE 
=> (Pick keypoints 88 and 61)  

h) At this point the operation described before has to be repeated for every keypoint derived 
from lines division on point f. 
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i) Now, using the just created arcs and lines it is possible to create circular areas that will be 
used in the next operation. The commands are: 
PREPROCESSOR => MODELING => CREATE => AREAS => ARBITRARY => BY LINES 
=> (Pick an arc and two lines to create a circular sector) => OK (Repeat this operation until 
all arcs and all lines have been used to the areas creation) 

j) Use the areas created on point i to slice the “partial inner toroidal volume” and create 28 
different volumes to calculate the SED value.  
PREPROCESSOR => MODELING => OPERATE => BOOLEANS => DIVIDE => VOLUME 
BY AREA => (Pick the partial toroidal volume within the submodel 2 model) => OK => (Pick 
the areas of point i) => OK 
With this articulate procedure all volumes are perfectly attached each other and to the 
remaining volumes of submodel 2. In this way, once meshed, there will be no detachments 
and all volumes will behave like a unique component. 
 

 
Figure 4.59: Procedure to create the geometry suitable to apply SED approach, part 2. 

 
The meshing procedure was carried out using again the volume sweep technique, so starting 
meshing the front view with shell elements, running the volume sweep command to mesh the 
volumes and clearing all areas. Technically the SED calculation is reliable with a few elements within 
the control volume, but in this case more elements are required; this has been proved empirically 
running models with coarser meshes.  
 
MESHING => MESH => VOLUME SWEEP => SWEEP => (Pick one volume touching the shell 
elements) => OK (repeat this procedure for every volume, starting from the one touching the 2D 
meshed elements). The target area is automatically individuated. 
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Figure 4.60: Lines division to create the shell mesh pattern on the frontal view.  

 
 

Lines numbers Number of divisions Spacing ratio 

L2 10 1 

L8 22 1 

L10 22 1 

L11 10 1 

L17 10 1 

L29 10 1 

L31 10 1 

L41 10 1 

L43 10 1 

L45 10 1 

L50 22 1 

L51 22 1 

L57 22 1 

L61 22 1 

L62 22 1 

L66 22 1 

L67 22 1 

L72 8 1 

L73 8 1 

L76 8 1 

L77 8 1 

L79 8 1 

Table 4.14: Lines divisions characteristics. 
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Figure 4.61: Mesh of the model used for the SED calculation 

 
At this point, the cut boundaries have been interpolated in the submodel 1 meshed with the volume 
sweep technique (fig 4.52), once for the pure axial case and once for the pure torsional one. Now 
the calculation of the Strain Energy Density was done with the following procedure: 
 

1. SELECT => ENTITIES => BY NUM/PICK => OK => (pick the volumes of the first cylinder) 
=> OK 

2. SELECT => EVERYTHING BELOW => SELECTED VOLUMES  
3. GENERALPOST => ELEMENT TABLE =>  DEFINE TABLE => ADD => GEOMETRY => 

VOLU => OK 
4. GENERALPOST => ELEMENT TABLE =>  DEFINE TABLE => ADD => ENERGY => SENE 

=> OK 
5. GENERALPOST => ELEMENT TABLE =>  SUM OF EACH ITEM 
6. SELECT => EVERYTHING 

 
By following these steps, Ansys will give the sum of the “sene” and “volu” of all elements of the first 
cylinder. To calculate the Strain Energy Density, in an Excel sheet it is sufficient to apply equation 
4.40. 
 

𝑆𝑡𝑟𝑎𝑖𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = ∆𝑊̅ =
𝑠𝑒𝑛𝑒

𝑣𝑜𝑙𝑢
  [

𝑀𝐽

𝑚3
] 

 

(4.40) 

This procedure has to be redone 28 times to consider every cylinder. Considering the reference 
system plotted in figure 4.61, the SED development along the volumes located at the root tip line is 
plotted in figures 4.62 and 4.63. Here the Strain Energy Density value has been assigned to the mid 
width of each cylinder, so 0.14 mm.  
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Figure 4.62: SED development along the volumes located at the root tip line, pure axial case. 

Global element size = 0.1 mm; nominal applied load Δσ = 1 MPa (to the mainmodel) 

 

 
Figure 4.63: SED development along the volumes located at the root tip line, pure torsional case. 

Global element size = 0.1 mm; nominal applied load Δτ = 1 MPa (to the mainmodel) 

 
At first sight, it is clear that there is wide discontinuity between the first and second SED values. The 
reason is the same of all previous models; also the frontal surface of this model, where the critical 
point is located, has been interpolated in the mainmodel, where the mesh is not enough refined so 
the first value is unreliable. While in previous analysis it was sufficient to read the second node value 
because every node was very near to the following one; here this operation would give an 
unacceptable error. In fact, every data is distant from the following one by a distance of 0.28 mm, 
moving to the second data would mean to be too far from the critical point, and the Strain Energy 
Density calculated in this way would not be representative of the stress state near the singularity. 
However there is a solution, but first it is interesting to calculate the equivalent peak stress from the 
SED and compare it to the one calculated with the volume sweep technique. The equivalent peak 
stress from the SED is derived from equation 4.41:  
 

 
∆𝑊̅ =

1 − 𝜈2

2𝐸
∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘,𝑆𝐸𝐷

2  
(4.41) 
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∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘,𝑆𝐸𝐷 = √
2 ∗ 𝐸 ∗ ∆𝑊̅

1 − 𝜈2
 

(4.42) 

 
Figure 4.64: Comparison of the equivalent peak stress calculated with the SED approach and the 
one calculated with the PSM applied to the model meshed with the volume sweep technique, pure 

axial case. Equivalent Peak stress from SED approach: global element size = 0.1 mm while 

considering the PSM: global element size = 0.12 mm. Nominal load Δσ = 1 MPa (to the mainmodel 

for both cases). 

 
Figure 4.65: Comparison of the equivalent peak stress calculated with the SED approach and the 
one calculated with the PSM applied to the model meshed with the volume sweep technique, pure 

torsional case. Equivalent Peak stress from SED approach: global element size = 0.1 mm while 

considering the PSM: global element size = 0.12 mm. Nominal load Δτ = 1 MPa (to the mainmodel 

for both cases). 
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Considering the pure axial case, the two slopes are almost perfectly overlapped, validating the 
equivalent peak stress path. Going to positive z-direction the equivalent peak stress reduces quickly 
near the singularity and then reaches a constant value at the end of the considered data. This 
underlines that the submodel extension is sufficient to study the stress field because the analysed 
data shows completely the transition between a singularity and the reaching of a plateau. 
Dealing with the torsional case, the two slopes show a decreasing gap from the critical point until 2 
mm distance. This is explained by the evident presence of inducted loading Modes and higher older 
terms that are taken into account by the SED calculation, but not by the PSM. In fact the equivalent 
peak stress was calculated only considering the Mode III, even though there are three-dimensional 
effects that induce Mode I as well as Mode II. In other words, in this case the torsional load is also 
associated to a notch opening and in-plane shear while we were expecting only out-of-plane shear. 
These contributes were calculated and retained negligible due to a low percentage error that could 
be totally absorbed in the Peak Stress Method uncertainty.  
Eventually, the estimation of the equivalent peak stress at the critical point is here described 
distinguishing the two loading cases: 

1. PURE AXIAL: In relation to figure 4.64 and previous considerations, it could be affirmed that 
the equivalent peak stress distribution found with the volume sweep technique is validated. 
The value of the equivalent peak stress at the critical point is obtained reading its value at 
the second node from the origin; so it would be of 10 MPa. 

2. PURE TORSIONAL: In relation to figure 4.65, the equivalent peak stress value of 9.5 MPa 
calculated considering the second node value from stress distribution of the model meshed 
with the volume sweep technique is not exact and needs a revision. To find the correct value 
a mathematical approach was used, because the finite element analysis could not be refined 
in any way. Without considering the first node, an polinomial interpolation line was calculated 
and used to make a prevision of the first value located at a distance Z = 0.14 mm, figure 
4.52.  

 
Figure 4.66: Polinomial interpolation line added to the equivalent peak stress graph of the 

torsional case. Global element size = 0.1 mm; nominal applied load Δτ = 1 MPa (to the 

mainmodel). 
 
Inserting Z = 0.14 mm in the interpolation line equation it result an equivalent peak stress 
value of 10.2 MPa. This was the adopted value for the torsional case. 

 

 PURE AXIAL PURE TORSIONAL 

𝜎𝑒𝑞,𝑝𝑒𝑎𝑘  10.0 MPa 10.2 MPa 

Table 4.15: Equivalent peak stress values for both loading cases. 
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4.7 Procedure flow chart 
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4.8 Comparison of experimental results with PSM-design scatter bands 
 
To verify the effectiveness of the Peak Stress Method in this particular case, it is necessary to 
evaluate the experimental data (see chapter 1, table 1.4) in terms of equivalent peak stress. 
Considering the pure axial case, to calculate the equivalent peak stress, equation 4.43 is used: 
 
 ∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘,𝑎𝑥𝑖𝑎𝑙𝑐𝑎𝑠𝑒 = 𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 ∗ ∆𝜎𝑛𝑜𝑚 ∗ √𝑐𝑤 

 

(4.43) 

Where: 

 𝜎𝑒𝑞,𝑝𝑒𝑎𝑘  is the equivalent peak stress derived from the FEM analysis with the volume sweep 

technique considering the value of the second node, so in this case 10 MPa. 

 ∆𝜎𝑛𝑜𝑚 is the stress range considering the inner tube: 
 

 
∆𝜎𝑛 =

∆𝐹

𝐴𝑖𝑛𝑛𝑒𝑟 𝑡𝑢𝑏𝑒

 
(4.44) 

   

 𝑐𝑤 is equal to 1 In all as-welded and stress-relieved cases with cycle ratio R = 0, while it is 
0.5 in the case of stress-relieved specimens with R = -1.  

 
Figure 4.67: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: pure axial case. 
 

Considering the pure torsional case, to calculate the equivalent peak stress, equation 4.45 is used: 
 
 ∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘 = 𝜎𝑒𝑞,𝑝𝑒𝑎𝑘,𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙𝑐𝑎𝑠𝑒 ∗ ∆𝜏𝑛𝑜𝑚 ∗ √𝑐𝑤 

 

(4.45) 

Where: 

 𝜎𝑒𝑞,𝑝𝑒𝑎𝑘  is the equivalent peak stress derived from the FEM analysis with the SED approach 

considering the value obtained with interpolation technique, so in this case 10.2 MPa. 

 ∆𝜏𝑛𝑜𝑚 is the stress range considering the inner tube: 
 

 
∆𝜏𝑛 =

∆𝑀𝑡

𝑊𝑡,   𝑖𝑛𝑛𝑒𝑟 𝑡𝑢𝑏𝑒

 
(4.46) 
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 𝑐𝑤 is equal to 1 In all as-welded and stress-relieved cases with cycle ratio R = 0, while it is 
0.5 in the case of stress-relieved specimens with R = -1.  

 
Figure 4.68: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: pure torsional case. 
 
Considering the multiaxial case, to calculate the equivalent peak stress, equation 4.47 is used: 
 
 
 

∆𝜎𝑒𝑞,𝑝𝑒𝑎𝑘

= √𝑐𝑤1𝑓𝑤1
2 ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘

2 ∆𝜎𝑛𝑜𝑚
2 + 𝑐𝑤2𝑓𝑤2

2 ∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘
2 ∆𝜎𝑛𝑜𝑚

2 + 𝑐𝑤3𝑓𝑤3
2 ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘

2 ∆𝜏𝑛𝑜𝑚
2  

 

(4.47) 

In fact both FEM models, pure axial and pure torsional, are solved considering Δσ = 1 MPa and Δτ = 

1 MPa and the deriving peak stresses are scaled up considering the range of nominal stress. In 
equation 4.47: ∆𝜎𝜗𝜗,𝜗=0,𝑝𝑒𝑎𝑘 , ∆𝜏𝑟𝜗,𝜗=0,𝑝𝑒𝑎𝑘  and ∆𝜏𝜗𝑧,𝜗=0,𝑝𝑒𝑎𝑘 are the stresses extracted from the 

submodel 1 meshed with the volume sweep technique solved for the axial and torsional case 
respectively, considering the values of the second nodes. In all as-welded and stress-relieved cases 
with cycle ratio R = 0, 𝑐𝑤1 = 𝑐𝑤2 = 𝑐𝑤3 = 1; while in the case of stress-relieved specimens with R = -

1, 𝑐𝑤1 = 𝑐𝑤2 = 𝑐𝑤3 = 0.5. In figure 4.69 all data are distinguished between as-welded, stress-relieved 

cycle ratio R, biaxiality ratio 𝜏𝑎/𝜎𝑎and phase displacement. 
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Figure 4.69: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: multiaxial case. 
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Plotting all experimental data evaluated in terms of equivalent peak stress, the outcome will be the 
one plotted in figure 4.70. 

 
Figure 4.70: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: all loading cases. 
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CONCLUSIONS 
 
 
 
Considering the specimens’ failures reported in the original paper in terms of figure of crack 
propagation path, it emerges a strange cracking behaviour under pure axial loading. The crack 
spreads along the separation between the weld and the outer tube while it was supposed to split the 
weld. The hypothesis is that there is a lack of penetration and the welded material is not well attached 
to the outer cylinder.  
The Peak Stress Method has been applied and the equivalent peak stress distribution along the root 
tip has been validated using the Strain Energy Density (SED) approach. What emerges from this 
comparison is that in the pure axial case, the singular components are representative of the stress 
state and the higher older terms influence is negligible. On the other hand, this last statement is not 
valid anymore for the pure torsional case and to find the correct value of the equivalent peak stress 
a direct calculation of the averaged SED is needed. To be more precise, the percentage error of the 
equivalent peak stress calculated with the PSM in comparison with the one obtained with the SED 
approach was around 7%. As a consequence, its value was calculated considering a polynomial 
interpolation line of the equivalent peak stress distribution derived from the SED path along the root 
tip line, because this energetic parameter takes into account all stress contributes, not only the 
singular ones.  
All this considerations are based on FEM analysis and it is possible to affirm that these results are 
reliable due to several convergence analysis and comparisons of stress distributions obtained with 
different methods. 
To summarize, the equivalent peak stress value was obtained by the application of the Peak Stress 
Method for the axial case and by the application of the Strain Energy Density approach for the 
torsional case.   
Dealing with the design scatter bands of the Peak Stress Method, it emerges that as-welded 
specimens’ failure data are largely located on the safe side. The possible explanation of this 
phenomenon is the presence of a high compressive residual stress derived from the welding 
procedure. It is remarkable that Vormwald in his work supposed the presence of this compressive 
residual stress and it would have been interesting to measure it.  
Regarding stress-relieved specimens, the conclusion is similar. In fact, they are also on the safe side 
and perhaps the reason is that the heat treatment (600° for 6 h and followed by slow cooling) is 
ineffective and the supposed compressive residual stress is still present.  
These observations are shared for uniaxial as well as multiaxial cases, strengthening the hypothesis 
of the compressive residual stress. Furthermore, running a statistical analysis of the multiaxial 
experimental data it results a low value of the scatter index, meaning that the Peak Stress Method 
has been able to summarize SN data of very different loading conditions. The goal of this approach 
has always been to unify fatigue failures data in a single curve considering the local stress state, so 
not taking into account the applied load but the deriving stress state near the V-notch. 
Eventually, from the analysis of the equivalent peak stress distributions it is clear that there is a very 
high stress gradient in the hoop direction under both axial and torsion loading. For this reason, it 
would be helpful to know the exact crack initiation point. In fact, the equivalent peak stress varies 
significantly just moving a fraction of millimetres far from the critical point. In other words, if the crack 
was not starting exactly from the so-called critical point, the equivalent peak stress would significantly 
reduce and in this way the experimental data could fall within the scatter band. However, the exact 
crack initiation point is not known and maybe this fact would lead to further experimental 
investigations since the simulation work and computational analysis are accomplished in this thesis.     
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APPENDIX 
 
In previous analysis, the experimental data were evaluated in terms of equivalent peak stress 
considering its value in proximity of the critical point (Z = 0 mm) from the distributions obtained with 
the volume sweep technique, see figures A1 and A2. A further investigation could be done re-
analysing the experimental data considering the minimum value of the equivalent peak stress 
distribution, supposing it constant along the entire weld. Therefore, the experimental data could also 
be re-analysed considering the mean value of the equivalent peak stress distribution, supposing it 
constant along the entire weld. It must be underlined that the stress distribution was limited to a 
quarter of the total weld (Z ≈ 8 mm), due to the submodel geometry, and to extend it to half of the 
weld (Z ≈ 16 mm) the last value was supposed constant. In the axial case, this operation does not 
represent a big approximation because we had just reached a plateau, while in the torsional case 
the discontinuity is quite evident and the output of this analysis less reliable.  
 
 

 
Figure A1: Stresses analysis in terms of equivalent peak stress from the submodel meshed with 
the volume sweep technique, root side, pure axial case. Global element size of the submodel = 

0.12 mm; nominal applied load Δσ = 1 MPa (to the mainmodel). In blue it is represented the mean 
value of this distribution. 
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Figure A2: Stresses analysis in terms of equivalent peak stress from the submodel meshed with 

the volume sweep technique, root side, pure torsional loading condition. Global element size = 0.12 

mm; nominal applied load Δτ = 1 MPa (to the mainmodel). In blue it is represented the mean value 

of this distribution. 
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Figure A3: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: axial case. 
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Figure A4: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: torsional case. 
 

 
Figure A5: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: multiaxial case. 
 

100

1000

10000

1.E+04 1.E+05 1.E+06 1.E+07

Δ
σ

eq
,p

ea
k

(M
P

a)

Number of cycles to failure, Nf

torsion SR R=0

torsion SR R=-1

torsion AW R=-1

NA

488

354

257

ΔσA,50% = 354 MPa

NA = 2 ∙106 cycles

Scatter Index (2.3%-97.7%):

Tσ =  488/257 = 1.90

Slope k = 5.0

Steel design scatter 

band for mode III 

loading conditions

100

1000

10000

1.E+04 1.E+05 1.E+06 1.E+07

Δ
σ

eq
,p

ea
k

(M
P

a)

Number of cycles to failure, Nf

axial-torsion, SR, R=0, τa⁄σa=1.55 

axial-torsion, SR, R=-1, τa⁄σa=1.55 

axial-torsion, AW, R=-1, τa⁄σa=1.55 

axial-torsion, SR, R=0, τa⁄σa=0.99

axial-torsion, SR, R=-1, τa⁄σa=0.99 

axial-torsion, SR, R=0, τa⁄σa=1.55 phase 90°

axial-torsion, SR, R=0, τa⁄σa=0.99 phase 90°

axial-torsion, SR, R=-1, τa⁄σa=1.55 phase 90°

axial-torsion, SR, R=-1, τa⁄σa=0.99 phase 90°

axial-torsion, AW, R=-1, τa⁄σa=1.55 phase 90°

NA

296

214

156

ΔσA,50% = 214 MPa

NA = 2 ∙106 cycles

Scatter Index (2.3%-97.7%):

Tσ =  296/156 = 1.90

Slope k = 5.0

Steel design scatter 

band for mode I+II+III 

loading conditions



 162 

 
Figure A6: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: all loading cases. 
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Evaluation of experimental data in terms of 𝝈𝒆𝒒 ,𝒑𝒆𝒂𝒌 considering 𝝈𝒎𝒆𝒂𝒏,𝒑𝒆𝒂𝒌 

 
Figure A7: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: axial case.

 
Figure A8: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: torsional case. 
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Figure A9: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: multiaxial case. 
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Figure A10: Comparison of the experimental data evaluated in terms of equivalent peak stress with 

the design scatter band: all loading cases. 
 
Eventually, it could be interesting to compare the areas below the equivalent peak stress distributions 
with the one that would result considering constant values. In particular the area that would results 
below a constant 𝜎𝑚𝑒𝑎𝑛,𝑝𝑒𝑎𝑘  and  𝜎𝑚𝑖𝑛,𝑝𝑒𝑎𝑘within the half weld. 
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Table A1: Comparison of the areas below the equivalent peak stress slope with the ones obtained 
considering constant values, axial case. 
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Table A2: Comparison of the areas below the equivalent peak stress slope with the ones obtained 
considering constant values, torsional case. 
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the real equivalent peak stress distribution is the one obtained considering the mean value 𝜎𝑚𝑒𝑎𝑛,𝑝𝑒𝑎𝑘. 
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