
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

Study of b- and c- jets identification with quantum

machine learning algorithms and application to the

Higgs reconstruction.

Thesis supervisor Candidate

Prof. Donatella Lucchesi Carlos Cocha

Thesis co-supervisor

Dr. Lorenzo Sestini

Academic Year 2021-2022





Contents

Introduction 1

1 Theoretical introduction 3

1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The Fermion and Gauge Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 The Scalar Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Higgs Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Production mechanisms and decay channels . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Higgs Experimental Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 b- and c-quark production in proton-proton collisions . . . . . . . . . . . . . . . . . . . 8

1.4 Hadronization of b- and c-quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Partons and Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The LHCb experiment and jet identification 11

2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The LHCb detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The tracking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Tracking performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Ring Imaging Cherenkov detectors . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.6 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Level 0 trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 High Level Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Jet reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 The Particle Flow algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 The anti-kt algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 E-recombination scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.4 Jet Energy Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.5 Jet identification efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Heavy-Flavor jet identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Secondary Vertex tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 SV-tagging performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Development of new tagging algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Data-set selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Quantum Machine Learning 27

3.1 Introduction to Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Density matrix and mixed states . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



CONTENTS

3.2.3 Multi-qubit states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Quantum measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 1-qubit gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Controlled gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Measurement gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Machine Learning with quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Training a ML model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Parameterized quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.1 PQC Data encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Variational circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.3 Gradients of PQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Results on b- and c-jet tagging with Quantum Machine Learning 37
4.1 Training data-set selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Quantum Machine Learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Amplitude Encoding classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Angle Encoding classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 QAOA Encoding classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Measurement stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Classical Neural Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 PennyLane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 JAX implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Data-set Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 QML optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 QML Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Higgs Search 51
5.1 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Higgs significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 H → bb̄ and H → cc̄ search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Classifiers efficiency for the H → cc̄ search . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Higgs Significance Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusions and future developments 59
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 67

iv



Introduction

In particle physics, machine learning algorithms have been crucial for jet classification and physics
analysis. A jet is a narrow cone of hadrons and other particles produced by quark fragmentation
and quark hadronization. Recently, the LHCb collaboration at CERN has already demonstrated the
benefit of using QuantumMachine Learning for the b- versus b̄-quark jet classification which potentially
can perform better than classical machine learning algorithms. At the LHCb experiment, jet tagging
exploits the excellent capability of the detector to precise reconstruct vertices displaced with respect
to the interaction point, which allow to distinguish the long-lived heavy quarks from light quarks jets
using a standard machine learning technique, called Boosted Decision Trees, trained with secondary
vertex features.

In this thesis, I present for the first time a new approach for jet flavour tagging, between b- versus c-
quark jets, based on Quantum Machine Learning techniques. In this technique, the data are embedded
in quantum states of a quantum circuit through a quantum feature map, then the initial states
get processed by a variational quantum circuit with trainable parameterized gates and finally, the
measurement of the final state is mapped to a binary classification label (b- or c-quark jet). Besides,
the training of the model will be carried out by using official LHCb simulated data at the center of
mass energy of 13 TeV and the tagging performance is compared with standard machine learning
methods like the Boosted Decision Trees. The light quark contribution is not considered here because
the goal of the thesis is to study the b- versus c-quark jet separation. Finally, the optimized code will
be used for the Higgs search to determine the H → bb̄ and H → cc̄ sensitivity on samples of LHCb
simulated data corresponding to the integrated luminosity 6 fb−1 of the Run 2.

The results of this work for the jet flavor classification and the Higgs search are structured as follows:

• Chapter 1: A brief overview of the Standard Model (SM) is given. Later, the Higgs boson
production mechanisms and its decay channels are discussed. Additionally, the b- and c-quark
production mechanisms at colliders are presented as well as their hadronization process.

• Chapter 2: The LHCb experiment is presented. First, the LHC accelerator and the LHCb
detector are described. Then, the jet reconstruction algorithm is described. This chapter finishes
describing the current jet identification technique for jet flavor tagging between b- and c-quark
jets.

• Chapter 3: This chapter introduces the theory about Quantum Computing. First, a theoretical
overview of the qubit and entanglement concepts are presented. After, a brief introduction of
key concepts of Supervised Machine Learning and the general concept of Quantum Machine
Learning are treated.

• Chapter 4: The results of jet flavor tagging using Quantum Machine Learning models and the
standard classical model are treated. An explanation of the data-set used for the analysis in
terms of variables and selections is discussed as well. Then, a detailed explanation of several
quantum models including their software implementation are explained. A classical model, based
on Boosted Decision Trees is also presented and used as a reference. Finally, the performance of
the quantum models is evaluated and compared with the classical method.
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• Chapter 5: Here, a optimized quantum machine algorithm will be used for the Higgs to cc̄
analysis. The Higgs sensitivity by using the algorithms discussed in Chapter 4 is calculated. The
performance of the quantum model is compared with the classical method using their significance.

• Chapter 6: Lastly, a summary of the results of the quantum machine learning algorithms and
their use for the Higgs search are presented, together with some final considerations.

2



Chapter 1

Theoretical introduction

1.1 Standard Model

The Standard Model is a Quantum Field Theory (QFT) mixing quantum mechanics and special
relativity to describe elementary particles as quantizations of fields spread across the entire universe.
Besides, the underlying foundation of the SM is built on the concepts of local gauge symmetry and
spontaneous symmetry breaking. This model also provides a mechanism for mass generation through
a scalar field sector but it does not include a description of the gravitational interaction, which has
negligible impact at subnuclear scales.

The elementary particles can be divided in four main categories: gauge and scalar bosons, leptons and
quarks. The gauge bosons are represented by four different spin-1 particles, the gluon (g) mediating the
strong interaction, the photon (γ) mediating the electromagnetic interaction and the W and Z bosons
mediating the weak force. The quarks, represented by six spin-1/2 fermions grouped in three families,
feel the strong force and also carry an electric and weak charge, making them interacting also through
the electromagnetic and weak force. Among these particles are the quark up (u), down (d), charm (c),
strange (s), top (t) and bottom (b). Three leptons interact through the weak and electromagnetic
interaction and are composed of electrons (e), muons (µ) and taus (τ), grouped in three families
where each one is coupled to their corresponding neutrinos, νe, νµ and ντ . Neutrinos are special type
of leptons since they interact only through the weak interaction and do not carry any electric charge. A
summary of the properties and interactions of the SM elementary particles are presented in Figure 1.1.

Figure 1.1: Particle content of the Standard Model [1].
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1.1. STANDARD MODEL

The last piece is the Higgs boson which is the only spin-0 (scalar) particle which through the spon-
taneous symmetry breaking mechanism provides masses to the weak (W and Z) bosons, quarks and
leptons. This boson differs from vector bosons as it couples only to particles carrying a mass, and not
a charge as for the spin-1 bosons.

1.1.1 The Fermion and Gauge Sectors

In QFT, the requirement of gauge invariance, or symmetry of the Lagrangian density under local phase
transformations of a mathematical group, introduces the presence of massless boson fields, which are
interpreted as the quanta mediating the interaction. One example of a gauge QFT is the quantum
electrodynamics (QED) where the Lagrangian density of the electron field (Ψ) interacting with an
electromagnetic field is defined as LQED = −FµνF

µν + iΨ̄Dµγ
µΨ−meΨ̄Ψ, where Fµν = ∂µAν −∂νAµ

is the electromagnetic field strength, Aµ is the photon field introduced by gauge invariance, Dµ = ∂µ−
iqAµ is the covariant derivative, and q is the absolute value of electron electric charge. LQED is
invariant under the group local transformations U(1)Q of the electron field Ψ′(x) = eiqα(x)Ψ(x), and
photon field A′

µ = Aµ − ∂µα(x)/q.

The SM is a generalization of the fundamental interactions under the SU(3)C
⊗

SU(2)L
⊗

U(1)Y
group. The strong interaction is studied by quantum chromodynamics (QCD) based on the SU(3)C
color group. The electromagnetic and weak interactions are studied in a unified manner by the
electroweak (EW) theory based on the SU(2)L

⊗

U(1)Y group. Experimental measurements show
that only fermions with left-handed chirality interact via charged weak interactions.

The short range nature of weak interactions implies the existence of massive vector bosons. Fur-
thermore, observed fermions like the electron are massive particles. However, explicit mass terms
associated to the gauge boson and fermion fields are forbidden in the EW Lagrangian density due to
SU(2)L

⊗

U(1)Y gauge symmetry. Therefore, the formulation needs a gauge invariant mechanism to
generate these masses [2, 3].

1.1.2 The Scalar Sector

The Brout-Englert-Higgs (BEH) mechanism solves elegantly the mass-generation paradigm without
violating gauge symmetry. It adds a complex scalar doublet Φ by means of a Lagrangian density
LBEH = D†

µΦDµΦ− V (Φ), where V (Φ) = −µ2(Φ†Φ) + λ2(Φ†Φ) and µ2, λ > 0 [2, 3].

In the BEH mechanism, Φ has a vacuum expectation state ⟨Φ⟩0 that satisfies the ⟨Φ†Φ⟩0 = µ2/2λ =
ν2/2 condition, where ν is known as the vacuum expectation value. This leads to a ‘spontaneous’
breaking of the electroweak symmetry group ⟨Φ⟩0 (or EWSB) to the electromagnetic group U(1)Q
with a massless photon, and generating the masses to the charged- and neutral-current weak bosons
W and Z, respectively. Furthermore, a real scalar field named the Higgs field is introduced with
its massive particle, the Higgs boson. Table 1.1 summarizes and Figure 1.2 illustrates the BEH
Lagrangian terms after EWSB.

LBEH terms after EWSB Meaning
1
2(∂µH)(∂

µH) Higgs kinematic term
- 1

2m
2
HH

2 - νλHHHH
3 - 1

4λHHHHH
4+ 1

4λν
4 Higgs potential term and self-interactions

+ m2
WHW−

µW
+,µ +gHWWHW−

µW
+,µ W mass term and HWW interaction

+ 1
2m

2
ZZµZ

µ + 1
2gHZZHZµZ

µ Z mass term and HZZ interaction
+ gWWHHH

2W−
µW

+,µ WWHH quartic interaction

+ 1
2gZZHHH

2ZµZ
µ ZZHH quartic interaction

Table 1.1: BEH Lagrangian terms after the spontaneous electroweak symmetry breaking (EWSB).

On the other hand, charged fermion fields acquire mass through the Higgs-fermion Yukawa interac-
tion, where fermion masses are given by mf = yfν/

√
2 , and yf is the associated Yukawa coupling.

Controversially, neutrino fields remain massless in the theory [2, 3].
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CHAPTER 1. THEORETICAL INTRODUCTION

Figure 1.2: Higgs interaction terms [3].

One important prediction is the structure of the Higgs boson potential with the associated cubic
(λHHH) and quartic (λHHHH) Higgs self-interactions which are responsible for the Higgs boson mass
mH. Furthermore, the Higgs self-couplings are connected to the Higgs boson mass and the vacuum
expectation value by the relation λHHH = λHHHH = m2

H/2ν
2. The experimental confirmation of this

relation is crucial to our understanding of the BEH mechanism and a test of the internal consistency
of the SM formulation.

1.2 The Higgs Boson

On July 4th 2012, the CMS and ATLAS Collaborations of CERN announced the observation of
a new resonance with mass around mH = 125 GeV and properties compatible with the SM Higgs
boson [4, 5]. Since then, both collaborations have performed associated precision measurements using
proton-proton collision data with 7, 8 and 13 TeV center of mass energy.

1.2.1 Production mechanisms and decay channels

The value of mH was the only free parameter left to predict the Higgs boson phenomenology. After
its discovery, its production mechanisms and decays can be fully studied. The Higgs boson has several
production mechanisms where gluon fusion (ggF-H) is the main production mode followed by the
vector-boson fusion (VBF-H), with a cross section production of approximately one order of magni-
tude smaller. Other subdominant production modes are the associated production with a W or a Z
boson (VH) and the associated production with a top quark pair (ttH), among others. Examples of
representative leading order (LO) diagrams are shown in Figure 1.3 while in the Table 1.2 different
theoretical production cross section for several modes are shown.

√
s ggF-H VBF-H WH ZH ttH total

13 TeV 48.6+4.4%
−7.0% 3.78+2.2%

−2.2% 1.37+2.6%
−2.6% 0.88+4.1%

−3.5% 0.50+6.8%
−9.9% 55.1

14 TeV 54.7+4.4%
−7.0% 4.28+2.2%

−2.2% 1.51+1.9%
−2.0% 0.99+4.1%

−3.7% 0.60+6.9%
−9.8% 62.1

Table 1.2: Higgs boson production cross sections (in pb) and their relative uncertainties (e.g. theory, PDF, αS)
for several Higgs boson (mH = 125 GeV) production modes at

√
s = 13 and 14 TeV proton-proton collisions [3].

The order of QCD (EW) calculation is N3LO (NLO) for ggF and NNLO (NLO) for the others.
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1.2. THE HIGGS BOSON

Figure 1.3: Main LO Feynman diagrams contributing to the Higgs boson production in (a) gluon fusion, (b)
Vector-boson fusion, (c) associate production with a W or Z gauge boson at tree level from a quark-quark
interaction, (d) associated production with a gauge boson (at loop level from a gluon-gluon interaction), (e)
associated production with a pair of top quarks (there is a similar diagram for the associated production with
a pair of bottom quarks), (f) production in association with a single top quark.

The main theoretical Higgs boson decays to gauge bosons and to some fermions are shortlisted in
Table 1.3. The dominant Higgs boson decay channel is to a bottom quark pair (H → bb̄) with around
58.2% branching ratio. Note also that the Higgs boson can indirectly decay into massless particles
via intermediate fermion loops: two photons (H → γγ), a Z boson and a photon (H → Zγ), and two
gluons (H → gg).

Decay mode Branching ratio Relative uncertainty

H → γγ 2.22× 10−3
±2.1%

H → ZZ 2.62× 10−2 ±1.5%
H →W+W− 2.14× 10−1

±1.5%
H → τ+τ− 6.27× 10−2

±1.6%

H → bb̄ 5.82× 10−1 +1.2%
−1.3%

H → cc̄ 2.89× 10−2 +5.5%
−2.0%

H → Zγ 1.53× 10−3
±5.8%

H → µ+µ− 2.18× 10−4
±1.7%

Table 1.3: Higgs boson branching ratios and relative uncertainties for several Higgs boson (mH = 125 GeV)
decay modes [3].

1.2.2 Higgs Experimental Status

The discovery of the Higgs boson at the LHC was carried out analyzing a broad range of production
mechanisms and decay channels. The most sensitive decay channels for studying the Higgs boson are
the H → ZZ → 4l (l = e, µ) and H → γγ channels where, despite the low expected rates, they benefit
from small background processes to have the best mass resolution (∼ 1−2%) due to well-reconstructed
final state products.

The H → W+W− → l+νll
′−νl′ channel has relatively better rates, but the unmeasured (missing)

energy from neutrinos has an impact on the resolution of different mass-related observables, e.g. the
transverse mass resolution is ∼ 20%. The H→ bb̄ (τ+τ−) decay channel benefits from high rates
and intermediate mass resolution, 10% (15%), but is affected by overwhelming irreducible background
contamination [3]. On the other hand, very challenging channels due to low very rates or large
background levels are H → µ+µ− and H→ cc̄, respectively.
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Figure 1.4: CMS Higgs physics results in Run 2.

In the LHC Run 1 (2009-2012), the ATLAS and CMS collaborations analyzed the pp collision datasets
at

√
s = 7 and 8 TeV to discover the Higgs boson [6, 7]. The decay channels involving gauge bosons,

H → ZZ → 4l (l = e, µ) and H → γγ, contributed with the most significant excesses. Besides, the
H → W+W− → l+νll

′−νl′ , H→ bb̄ and H → τ+τ− channels were included but contributed with lower
significance. After that, studies of the spin-parity (JP) quantum numbers revealed the scalar and
even-parity nature (JP = 0+) of the discovered particle as predicted by the SM [8, 9]. The combined
Run 1 ATLAS and CMS Higgs boson mass measurements yield to a value of mH = 125.09± 0.24 GeV
using H → ZZ → 4l (l = e, µ) and H → γγ, taking advantage from their excellent mass resolution [10].

During the LHC Run 2 (2015-2018), ATLAS and CMS experiments had an excellent operation perfor-
mance collecting high-quality data at

√
s = 13 TeV, around 6 times the LHC Run 1 dataset integrated

luminosity. Measurements of the mass, couplings, differential and fiducial cross sections have been
performed with the partial and full dataset by ATLAS [11, 12] and CMS [13, 14]. The Higgs boson
mass measurement has been performed using the H → ZZ → 4l (l = e, µ) and H → γγ decay channels.
The distribution of the di-photon invariant mass in the 2016 data is presented in Figure 1.4.a. The
best mass measurement yields a value of mH = 125.38 ± 0.14 GeV from the CMS combination of
Run 1 and 2016 datasets [15].

Both experiments have presented the observation of the Higgs coupling to third generation fermions
studying the H→ bb̄ [16, 17] and H → τ+τ− [18, 19] decays, and the ttH production mode [20, 21]. For
one side, the CMS experiment found the first evidence for the Higgs coupling to the second generation
fermions in the analysis of the H → µ+µ− decay channel [22]. One the other hand, ATLAS showed
the first evidence for the H→ (γ/Z)∗γ → llγ decay channel [23]. Besides, Figure 1.4.b shows the Higgs
coupling measurements using CMS Run-2 data.

In particular, the measurement of H→ bb̄ decays was believed to be impossible to achieve due to
the overwhelming multi-jet background and intermediate mass resolution. However, novel analysis
methods based on machine learning (ML) were developed for object identification, reconstruction and
signal identification, to maximize the search sensitivity. Nowadays, both experiments are developing
novel methods to measure the H→ bb̄ decay where more data are needed to measure it [24, 25].
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1.3. B- AND C-QUARK PRODUCTION IN PROTON-PROTON COLLISIONS

1.3 b- and c-quark production in proton-proton collisions

At LHC, quark pairs are produced in pp collisions at
√
s ≈ 13 TeV. The kinematic reconstruction

of a pp collision requires the position and momentum of the quark and gluon content of the proton
which is encoded in the Parton Distribution Functions (PDFs) [26]. The PDF fa/A(x, µ) represents
the probability distribution of finding the parton a inside the hadron A, carrying a fraction x of the
total momentum of A. The parameter µ is related to the renormalization scale (with mass units).

The PDFs is expressed in terms of cross sections involving hadronic initial states. Using the QCD
Factorization Theorem [27] for the case of quark pair production, it can be written as

dσpp→QQ̄ =
∑

n,m

∫ ∫

dxndxm fn/p(xn, µ)fm/p(xm, µ) dσ̂nm→QQ̄ (1.1)

where n and m run over all the possible partons with a non-vanishing contribution in dσ̂nm→QQ̄ at
the parton level. Besides, the processes contributing to the b- and c- production in the Leading (LO)
Order approximation, are:

• QCD quark-fusion: a quark and an anti-quark in the initial state annihilate each other into
a gluon which produces a QQ̄ pair.

• QCD gluon-fusion: two gluons in the initial state interact with a third gluon (in the s-channel)
or a quark (in the t-channel), producing a QQ̄ pair.

• EW quark-antiquark annihilation: a quark-antiquark pair in the initial state annihilates
each other into a Z0/γ which produces a QQ̄ pair.

The Feynman diagrams of these processes are illustrated in Figure 1.5.

Figure 1.5: LO Feynman diagrams for heavy-quark production in pp collisions, pp→ QQ̄ [28].

For example, Figure 1.6 illustrates the quark-fusion process QQ̄ → g → bb̄ in the case of the bb̄
production in pp collisions, weighted by the two PDFs fq/p and fq̄/p.

proton
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b

Q

Q/p

Q/p

Q
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Figure 1.6: Factorization diagram of a pp→ bb̄ event.
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CHAPTER 1. THEORETICAL INTRODUCTION

1.4 Hadronization of b- and c-quarks

The principle of confinement states that partons can never be observed freely in nature [29]. The
partonic structure of hadrons has been widely studied but the process by which they are formed from
scattered partons is not completely understood. This process is the so-called hadronization or frag-

mentation which is formulated in terms of Fragmentation Functions (FFs). These functions represent
the probability density distribution for the fraction of the q-quark energy taken by the Q-hadron. The
q-quark fragmentation function is defined as

D(z) =
1

σtot

dσ

dz
(1.2)

where σtot is the total hadronic cross section, while z relates the energy of the q-quark and Q-hadron
and is invariant under Lorentz boosts along the quark direction,

z =
(E + pL)Q
(E + p)q

(1.3)

where pL is the momentum of the Q-hadron along the direction of the q-quark. Using the QCD
Factorization Theorem [27], the perturbative and non-perturbative contribution are fold to use the
FF, so that

Dobserved(z) =

∫ ∞

0
Dpert.(t)×Dnon-pert.

(

t

z

)

dz

z
(1.4)

A consequence of the Factorization Theorem is that the non-perturbative component does not depend
on the initial partonic state. Monte Carlo generators, like PHYTIA8, deal with this perturbative
part using the Parton Shower model [30]. On the other hand, the non-perturbative part is treated
using phenomenological schemes that are used to model the carry-over of the parton momentum and
flavor to the hadrons. Finally, the Peterson model [31] proposes the following parametrization of the
non-perturbative FF,

Dnon-pert.(z) ∝
1

z
(

1− 1
z − ϵ

1−z

)2 (1.5)

Due to their large mass, the b- and c-quark tends to keep a large fraction of its energy, which is finally
transferred to their corresponding hadron. Figure 1.7 shows the FF using the Peterson model for
different quarks.

Expectations for di�erent quark species

e.g. Peterson:
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Figure 1.7: Quark Fragmentation functions as function of the z-variable for different quarks using the Peterson
model [31].
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1.4. HADRONIZATION OF B- AND C-QUARKS

1.4.1 Partons and Jets

As was mentioned before, QCD hard scattering processes create high transverse momentum quarks or
gluons. Immediately after being produced, a quark or gluon fragments and hadronises, leading to a
collimated spray of energetic hadrons jointly known as a jet in the partonic picture. The probability
of creating a set of jets can be described by the jet production cross section, which is an average of ele-
mentary perturbative QCD quark, antiquark, and gluon processes, weighted by the parton distribution
functions.

Perturbative QCD calculations have colored partons in the final state, but only the colorless hadrons
that are ultimately produced are observed experimentally. Thus, to describe what is observed in a
detector, all outgoing colored partons must first undergo parton showering and then combination of
the produced partons into hadrons (hadronization).

As the parton, which was generated in a hard scatter, get out of the interaction, the strong coupling
constant will increase with its separation. This rises the probability for QCD radiation, which is
mainly shallow-angled with respect to the originating parton. Thus, one parton will radiate gluons,
which will in turn radiate qq̄ pairs, with each new parton nearly collinear with its parent. This can be
described by convolving the spinors with fragmentation functions Pji(x/z,Q

2), in a similar manner to
the evolution of parton density functions. This is described by the Dokshizer Gribov Lipatov Altarelli
Parisi equations (DGLAP) type equation [32]:

∂

∂ lnQ2
Dh

i (x,Q
2) =

∑

j

∫ 1

x

dz

z

αS

4π
Pji

(

x

z
,Q2

)

Dh
j (z,Q

2) (1.6)

At each stage, parton showering produces partons of successively lower energy. So, the quarks and
gluons in the shower are all roughly collinear. Eventually, the momentum transfer in the splittings
falls below 1 GeV, the value of the strong coupling becomes large, and the strong interaction effects
of QCD take over, combining quarks and antiquarks into mesons and baryons giving as a result a jet
of hadrons.

Phenomenological models must then be applied to describe the length of time when showering oc-
curs, and also the combination of colored partons into bound states of colorless hadrons, which is
inherently not-perturbative. Figure 1.8 illustrates the evolution of the particles produced during the
fragmentation and the hadronization of quarks.

Figure 1.8: Schematic view of a hadron collision event showing the evolution of the produced particles. The
parton shower phase is dominated by radiations of quarks and gluons in the initial and the final state. During
the hadronization, colored partons are bound into colorless hadrons which are lately detected [33].
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Chapter 2

The LHCb experiment and jet

identification

2.1 The Large Hadron Collider

The European Organization for Nuclear Research, known as CERN, is a research organization oper-
ating the largest particle physics laboratory in the world [34]. Established in 1954, the organization
is based in Geneva on the Franco-Swiss border. CERN’s main function is to provide the particle
accelerators and other infrastructure needed for high-energy physics research, as a result, numerous
experiments have been constructed at CERN through international collaborations.

Many activities at CERN spans around its flagship experimental project, the Large Hadron Collider
(LHC), and associated experiments. The LHC represents a large-scale, worldwide scientific cooperation
project. The LHC tunnel is located 100 meters underground and consists of a 27 km circumference cir-
cular tunnel where several experiments (CMS, ATLAS, LHCb, ALICE) are located along the collider.
Each of them operates with a different physical perspective and uses different detection technologies,
see Figure 2.1.

Figure 2.1: Schematic representation of accelerator facilities at CERN [35].

At the LHC, the acceleration of protons starts by stripping the electrons on hydrogen atoms originally
contained in a hydrogen bottle. Next, those protons are accelerated successively by the LINAC 4,
Booster, PS and by the Super Proton Synchrotron (SPS) to achieve an energy up to 450 GeV. Finally,
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2.2. THE LHCB DETECTOR

the protons are injected into the two LHC rings (one in clockwise and other in counter-clockwise
direction) where each beam can reach a final energy of ≈ 7TeV, consequently acquiring a center of
mass energy

√
s ≈ 14TeV. Once the beams are stable, they are separated in bunches with around

1011 protons each spaced by around 25 ns each other, reaching a collision frequency of 40 MHz.

Four main experiments are located around the LHC collision points: ATLAS (A Toroidal LHC Ap-
paratuS)[7] and CMS (Compact Muon Solenoid)[6] are the two general-purpose detectors, designed
with a cylindrical structure around the collision point, that concentrate on measurements of SM pro-
cesses and BSM physics searches at the TeV scale. ALICE (A Lead Ions Collision Experiment)[36] is
dedicated to the study of phases of matter where quark and gluons are free, e.g. quark-gluon plasma.
Finally, the LHCb detector [37] which was initially designed to the study of b- and c-quarks properties
in the forward region of the collision and by means of different upgrades is turning into a general
purpose detector as well.

A key parameter to describe the collider operation is the instantaneous luminosity (L),

L =
N2

b nbfγ

4πϵβ

√

1 +
(

θcσz

2σ∗

)2
(2.1)

which depends on the beam properties listed in Table 2.1. The LHC operation was originally designed
to achieve a luminosity peak of L = 2 × 1034 cm2 s−1. An increase in the luminosity will imply
an increase in the production rate of physics processes, and thus potential new physics discoveries.
However, high luminosity also implies an increase in the number of pp interactions per bunch crossing
or pile-up (UP), which poses challenges to the experiments for reconstruction and radiation harness.

Variable LHC design experimental parameters Design or nominal values

f revolution frequency 11.245 kHz
nb number of proton bunches per beam 2808
Nb number of proton per bunch 1.15× 1011

β optical beta function at the IP 55 cm
σz RMS bunch length 7.55 cm
σ∗ transverse RMS beam size 16.7 µm
γ relativistic gamma factor 7461
ϵ normalized transverse beam emittance 3.75 µm.rad
θc crossing angle at the IP 285 µrad

Table 2.1: Instantaneous luminosity parameters for the LHC proton-proton collisions [38].

The expected number of produced events of a particular process during the LHC collisions (without
taking into account the detector acceptance) is predicted as Nexp = σ · L, where σ is the theoretical
production cross section, and L is the integrated luminosity defined as the integral of the instantaneous
luminosity L over the LHC operation time.

2.2 The LHCb detector

LHCb [39] is a single-arm forward spectrometer with a pseudo-rapidity1 η coverage between 1.8 and
4.9. The LHCb detector is composed of several sub-detectors systems, see Figure 2.2. The LHCb
coordinates system involves a z-axis parallel to the beam direction, the y-axis parallel and opposite
to the gravitational acceleration and the x-axis orthogonal to the yz-plane, forming a right-handed
system. The main sub-detectors are:

1The pseudo-rapidity is defined as η = − ln tan θ

2
, where θ is the polar angle formed by the particle momentum and

the beam axis.
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CHAPTER 2. THE LHCB EXPERIMENT AND JET IDENTIFICATION
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Figure 2.2: Schematic representation of the LHCb detector illustrating each sub-system. The z-axis is parallel
to the beam direction while the y-axis is parallel to the gravitational acceleration [39].

• VErtex LOcator (VELO) is a system located around the interaction point.
• Tracking system is a system of four tracking stations. One station called Trigger Tracker (TT)
located upstream of the magnet, while the other three (T1, T2 and T3) are located downstream
of the magnet.

• Ring Imaging Cherenkov (RICH) detectors where one is located upstream and one down-
stream of the magnet. These are used for efficient particle identification, in particular for pions
versus kaons separation.

• Calorimeter system made of a Scintillator Pad Detector and Preshower (SPD/PS), an elec-
tromagnetic calorimeter (ECAL) and an hadronic calorimeter (HCAL).

• Muon detection system which is located in the outer part of the detector.

The optimal LHCb luminosity has a maximum of 2.5 proton-proton interactions per bunch crossing.
In order to achieve this value, the luminosity provided by LHC is reduced using a luminosity levelling

technique [40] where the two beams do not collide head-on but instead the beam axes are tilted in
such a way a larger interaction area is obtained. It allows to reach a constant luminosity of around
4.5 × 1032 cm−2 s−1. Table 2.2 summarizes the integrated luminosity for the Run 2 campaign with√
s = 13 TeV.

year 2015 2016 2017 2018 Total

Lint (fb
−1) 0.33 1.67 1.81 2.19 6.00

Table 2.2: Run-II integrated luminosity at LHCb with
√
s = 13 TeV [39].

2.2.1 The tracking system

The LHCb detector includes a high-precision tracking system. It consists of a VELO, surrounding the
pp interaction point, which provides high precision track measurements close to the interaction region.
It has also four tracking stations, one is a large-area silicon-strip called TT, which is a upstream
detector located after the dipole magnet, and three tracking stations (T1, T2, T3) placed downstream
of the magnet. Silicon micro-strips are used in the Inner Tracker (IT) while straw-tubes are employed
in the Outer Tracker (OT).
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2.2. THE LHCB DETECTOR

Vertex Locator

The VELO [41] is a sub-system designed for the measurement of the distance r (from 8 mm to 42
mm) and the direction ϕ (from 15 mrad to 390 mrad) of the tracks coordinates close to the interaction
point. This is useful in the secondary vertex identification associated to b- and c- hadrons decays.
The VELO is built as a series of silicon modules, each providing a measure of the r and ϕ coordinates
using the R and ϕ sensors, see Figure 2.3.

Figure 2.3: Schematic layout of the VELO system [39, 41].

The VELO system is built with 21 stations of these semi-circular sensors, placed parallel to the beam
axis along 1 m. Besides, the sensors are mounted in a vessel that maintains the vacuum separated
from the machine vacuum. These sensors operates at 8 mm far from the beam axis. This distance
is smaller than the beam width during the injection phase, that’s why, sensors are retractable and
the VELO can stay in the open configuration until the beam conditions are stable and reaching an
individual hit sensor resolution around 7 µm.

Tracking stations

The tracking system has four planar stations perpendicular to the beam axis. One is the TT which
is 150 cm wide and 130 cm high located upstream of the dipole magnet to cover the full geometrical
acceptance of the experiment. T1-3 stations are located downstream the magnet where the inner part
is 120 cm wide and 30 cm high, and together with the TT forms the Inner Tracker (IT), see Figure 2.4.
Besides, the IT is made of 200 µm wide silicon micro-strip sensors, displaced in four layers each with
small angle stereo-view: x-layers with strips aligned with the vertical (y) axis, u-layers with strips
tilted −5◦ and m v-layers with strips tilted +5◦.
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CHAPTER 2. THE LHCB EXPERIMENT AND JET IDENTIFICATION

(a) Tracking system, IT (violet) and OT (cyan). (b) Layout of x-layer of a IT station.

Figure 2.4: Layout of a Inner Tracker (IT) and layout of the x-layer [39].

The external regions of the T1-3 stations are called Outer Tracker (OT), see Figure 2.4.a. It is a drift
tube detector with a geometrical acceptance of 300 mrad and 250 mrad on the the horizontal and
vertical plane, respectively. It consists of an array of straw-tube modules, each one with two layers of
4.9 mm diameter drift-tubes encapsulating a mixture of Ar (70%), CO2 (28.5%) and O2 (1.5%). The
final drift distance resolution is around 200µm.

2.2.2 Tracking performance

The VELO together with the tracking stations (TT and T1-3) measure the trajectory and momentum
of charged particles by measuring the curvature induced by the magnet. Commonly, pattern recog-
nition algorithms are used to reconstruct the track trajectory through all the tracking sub-detectors.
The tracks are reconstructed via a Kalman fit [42] and are classified in four categories:

• Long tracks with hits in the VELO and in all the T stations.
• Downstream tracks with hits only in the VELO and the TT station.
• Upstream tracks with hits in all the T stations but not in the VELO.
• VELO tracks with hits only in the VELO.

The track momentum resolution (δp/p) has been measured using data samples of the J/ψ → µ+µ−

decay. Figure 2.5.a shows its behavior as a function of the momentum of the two muon final state.
On the other hand, the invariant mass resolution (σm/m) was determined using six resonances in the
dimuon data sample, J/ψ, ψ(2S), Υ(1S), Υ(2S), Υ(3S) mesons and the Z0-boson. Figure 2.5.b shows
its behavior as a function of the invariant mass of the dimuon resonance.
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Figure 2.5: Relative momentum and relative mass resolution at LHCb [43].
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2.2. THE LHCB DETECTOR

The Primary Vertex (PV), where particles are generated in the pp interaction point, is reconstructed
from the detected tracks and it involves the minimization of

χ2
PV =

ntracks
∑

i=1

χ2
IP,i ·WT,i (2.2)

where χ2
IP,i is the χ

2 of the track impact parameter with respect to the PV, and WT,i denotes to the
corresponding weight. The PV reconstruction efficiency and resolution depend on the tracks multi-
plicity [44]. The average efficiency runs from 90.0% to 97.5%, with a probability of reconstructing a
false PV around 1%. The resolutions on the x, y and z coordinates are 8 µm, 10 µm and 50 µm,
respectively.

2.2.3 Magnet

A dipole magnet is located between the TT and the T1-3 stations. It allows the measurement of the
momentum of charged particles, by measuring the curvature induced by a magnetic field parallel to
the y-axis. Therefore, the trajectories are bent on the xz-plane. The integrated magnetic field for
10 m long tracks is around 4 Tm, while the residual magnetic field inside the two RICHs is ∼ 2 Tm.
The magnet covers a forward acceptance of ±250 mrad vertically and ±300 mrad horizontally.

2.2.4 Ring Imaging Cherenkov detectors

The excellent particle identification (PID) performance is due to the two Ring Imaging Cherenkov
(RICH) detectors, RICH1 and RICH2, which discriminate charged hadrons (π, K, p). Besides, the
RICH system can identify charged leptons (e, µ) to complement the information coming from the
downstream calorimeters and muon system.

Particles crossing the RICH radiator travel at velocities larger than the speed of light, in the same
medium, emit Cherenkov radiation in a cone with axis parallel to the particle velocity. The cone angle
θc is related to the particle velocity v by

cos θc =
c/n

v
=
cm
v

=

√

m2c2 + p2

np
(2.3)

where n is the refractive index of the RICH active medium, m is the particle mass and p its momentum,
c and cm are the speed of light in the vacuum and in the active medium, respectively. By measuring
the angle of the Cherenkov cone θc of a charged particle and estimating the p from the tracking system,
an estimation of m can be achieved, allowing its mass identification.

The active media of RICH1, located upstream of the magnet, is silica aerogel and C4F10 used to
distinguish particles with a momentum range between 1 and 60 GeV/c. It covers an angular acceptance
range from ±25 mrad up to ±300 mrad horizontally and up to ±250 mrad vertically. On the other
hand, RICH2, located downstream of the magnet, between the T3 station and the muon station M1,
distinguishes particles with momentum between 15 and 100 GeV/c. It covers an angular acceptance
from ±15 mrad up to ±120 mrad horizontally and up to ±100 mrad vertically. Aditionally, it uses
CF4 as active medium.

2.2.5 Calorimeters

The calorimeter is a very important system which selects hadrons, electrons and photons with sig-
nificant transverse momentum. It also provides an excellent PID for electrons, photons and hadrons.
Besides, it measures the energy of neutral particles such as photons, π0 and other neutral hadrons.

The LHCb calorimeter is made of a Scintillating Pad Detector (SPD), a Pre-Shower detector (PS),
an Electromagnetic Calorimeter (ECAL) and an Hadronic Calorimeter (HCAL). Figure 2.6 shows the
structure and granularity of HCAL and ECAL.
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Figure 2.6: (Left) Structure and granularity of the SPD/PS and ECAL systems and (right) HCAL [39].

The SPD/PS system is used to identify electrons and photons since, in the SPD, photons do not
produce any signal before triggering a shower, while the electrons do. On the other hand, photons
passing the lead layer of the SPD produce showers on the PS. Hadrons do not produce showers on the
PS, therefore they can be separated from electrons. Additionally, it covers and angular acceptance
range from ±30 mrad to ±300 mrad horizontally and ±250 mrad vertically.

In the ECAL, electrons and photons deposit their energy. ECAL is composed by 66 layers of alternating
4 mm lead tiles and scintillators coupled to PMT via WLS fibers, resulting in a total length of 42 cm
(25 radiation lengths). The granularity of the ECAL allows of a good energy resolution of

(

σE
E

)

ECAL

=
10%√
E

⊕ 1%

Where E is the energy of the particle (in GeV). It has the same geometrical acceptance as the SPD/PS
system. Finally, the HCAL collects the residual energy of charged and neutral hadrons. Its structure
is very similar to ECAL made of 5.6 radiation lengths of 1 cm iron tiles and scintillators. Its energy
resolution is

(

σE
E

)

HCAL

=
69%√
E

⊕ 9%

where E is the energy of the hadron (in GeV).

2.2.6 Muon System

Figure 2.7: LHCb muon system in the yz
plane [39].

The muon system allows fast muon detection. It is the out-
ermost detector from the interaction point composed of five
stations M1-5 of rectangular shape, see Figure 2.7. The
detector has 1380 chambers that cover an angular accep-
tance range from ±20 mrad to ±306 mrad horizontally and
from ±16 mrad to ±258 mrad vertically. The M1 station
is located upstream of the RICH2 detector to improve the
transverse momentum measurement in the trigger. The
M2-5 stations are located upstream of the calorimeters,
they have 80 cm (20 interaction lengths) interleaved thick
iron absorbers used to select muons whose minimum mo-
mentum to pass over all the five stations is approximately
6 GeV/c. The muon system is built with Multi-Wire Pro-
portional Chambers (MWPCs), except for the most inner
part where triple-GEM detectors are used. MWPCs are
filled with a gas mixture of Ar/CO2/CF4, in a 40:55:5 pro-
portion achieving a time resolution of around 5 ns. The
GEM detectors are filled with a “faster” gas mixture of
Ar/CO2/CF4 in a 45:15:40 proportion allowing a time res-
olution of 3 ns.
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2.3 Trigger

LHCb operates with a bunch crossing rate around 40 MHz which represents lower average luminosity
than the maximum designed luminosity of LHC. At the beginning of the Run 2 data taking (2015),
the storage system was able to write and save events at a rate of 12.5 kHz. The purpose of the trigger
system is to reduce the rate from MHz to kHz selecting just a small fraction of interesting events. The
LHCb trigger system operates in two stages, Level 0 (L0) which is an hardware trigger stage operating
synchronously with the bunch crossing rate and High Level Trigger (HLT) which is a software trigger
operating on a processor farm. Figure 2.8 shows the data flow on the LHCb trigger.

Figure 2.8: Schematic representation of the data flow in the LHCb trigger system (Run 2 configuration)

2.3.1 Level 0 trigger

The L0 trigger is designed to detect particles with high transverse momentum or high transverse
energy. The L0 Decision Unit (L0-DU) is connected to the calorimeters and the muon system in order
to choose a likely event, reducing the event rate from 40 MHz to 1 MHz. Then, multiple interactions
events are rejected applying a cut on the number of hits inside the SPD, called Global Event Cut
(GEC), where an event is accepted if one of the following conditions is satisfied:

• L0-Muon: a particle is identified as a muon if it has a pT > 1.76 GeV/c.
• L0-Dimuon: two particles which pT product p1T · p2T > 1.62 GeV2/c2 are identified as 2 muons.
• L0-Hadron: is a particle which releases a cluster in the HCAL and has ET > 3.7 GeV.
• L0-Photon: is a particle which emits a cluster in the ECAL and has ET > 3 GeV.
• L0-Electron: is a particle with an ET > 3 GeV producing a cluster in the ECAL and hits in
the PS and the SPD as well.

2.3.2 High Level Trigger

After an event is accepted by the L0 trigger, it is processed by the HLT which runs on a large computing
facility called Event Filter Farm. HLT reduces the event rate from 1 MHz to 12.5 kHz in two stages:

• HLT1 which uses the information from the VELO and the T1-3 stations to partially reconstruct
the events selecting tracks with high pT and high displacement from the interaction point.

• HLT2 which reconstructs and selects an event using an inclusive or exclusive algorithm to select
all particles or a specific decay mode, respectively.
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2.4 Jet reconstruction

The LHCb detector has been initially designed to study b- and c- hadrons physics. However, jets can
be studied efficiently by means of the unique forward geometry and excellent tracking performance of
the detector, covering a complementary phase space with respect to CMS and ATLAS.

As was described in the previous chapter, jets are produced as the result of the hadronization and
fragmentation of partons (quarks and gluons) produced in the hard-scattering processes at the interac-
tion point. Jets is manifested in the detector as collimated sprays of charged particles in the tracking
system and as concentrated clusters of energy in the calorimeters. Despite the LHCb detector has
excellent tracking performance, its calorimeters are not equally well performing in the forward region.
Therefore, contrary to CMS and ATLAS which exploit calorimeters for jet reconstruction, the LHCb
experiment employs both calorimeter clusters and tracking information to efficiently reconstruct jets.

At the LHCb, the jets reconstruction algorithm workflow is

1. Particle Flow which provides a list of particles at the input of the clustering algorithm.
2. Anti-kt algorithm which clusters particles providing a list of output jets.
3. E-recombination scheme where four-momentum of the jet as a function of the particles

momenta is calculated.
4. Jet Energy Correction which applies a final correction to the jet energy based on Monte

Carlo simulations.

2.4.1 The Particle Flow algorithm

This algorithm chooses particles based on different criteria. Charged particles are selected depending
on the category they belong (long, downstream, upstream or VELO tracks), and if they fulfil the
requirements described in Table 2.3. Moreover, a mass/type information can be associated to particles
(p/p̄, π±, µ±, e± and K±) using the information coming from the RICH detectors and calorimeters.

Variable Description long downstream upstream VELO tracks

pT Transverse momentum [MeV/c] - - > 100 -
χ2 Kalman fit χ2 < 5 < 1.5 < 1.5 < 10

Pghost Wrong reconstruction probability < 0.5 - - -
σ(q/p)
q/p Momentum resolution > 10 > 10 > 2 -

Table 2.3: Particle Flow algorithm requirements to select charged particles.

Then, isolated neutral particles show clusters in calorimeters but can not be associated to tracks. In
the ECAL, these are mainly photons or π0s that decay in two photons which discrimination depends
on the shape of the calorimeter clusters. Therefore, a likelihood for the photon or π0 hypothesis is
computed. After, π0s are divided in two categories: merged π0 where the two photons are almost
collinear and show as a single cluster, and resolved π0 where the two photons are detected as two
separate clusters. Table 2.4 shows the applied requirements for each particle category. In the HCAL,
there are no specific particle identification requirement, just different χ2

track-cluster requirements are
applied for different energy thresholds, χ2

track-cluster > 25 for E < 10 GeV and χ2
track-cluster > 15 for

E > 10 GeV.

Variable Description merged π0 resolved π0 photons

ET transverse energy [MeV] - - > 200
PhotonID photon hypothesis likelihood - > −2 -
χ2
track-cluster track - cluster probability > 25 > 25 > 25

Table 2.4: Cluster requirements for neutral particle selection.
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Finally, non-isolated neutral particles show clusters and are associated to tracks. Therefore, the selec-
tion is as follows:

1. ECAL and HCAL χ2
track-cluster requirenments:

• ECAL: χ2
track-cluster < 25

• HCAL: E < 10 GeV a χ2
track-cluster > 25; E > 10 GeV a χ2

track-cluster > 15.
2. Tracks are not shared between ECAL and HCAL clusters.
3. The expected energy Eexp released in the calorimeters is estimated using an empirical E/p

parametrization, where E is the cluster energy released by charged particles and p the track
momentum. If Eexp is 1.8 times larger than the measured energy Emeas the cluster group is
discarded.

4. If Emeas > 1.8 Eexp, then Esub = Emeas − Eexp.
5. Finally, if ET > 2 GeV then Esub is selected as a non-isolated neutral particle (used as input of

the anti-kT algorithm).

2.4.2 The anti-kt algorithm

It follows the next steps:

1. For each pair of particles the distance dij is calculated

dij = min(k−2
t,i , k

−2
t,j )

∆2
ij

R2
∆2

ij = (yi − yj)
2 + (ϕi − ϕj)

2 (2.4)

where kt,i, yi and ϕi are the transverse momentum, the rapidity and the azimuthal angle of the
particle i, respectively. R is a tunable parameter of the algorithm called radius.

2. Then, a similar distance is calculated between each particle and the beam axis

diB = k−2
t,i (2.5)

3. After, the smallest distance between dij or diB is selected. If the smallest distance is dij , the
particles i and j are combined into a single particle (summing their four-momenta) and removed
from the list of input particles. If the smallest distance is diB, the particle i is defined as a jet
and removed from the list of particles.

4. The algorithm restarts from step 2 until any particles is remaining to be clustered.

The anti-kt algorithm normally clusters soft particles with hard particles instead of composed jets
only with soft components. Then, the parameter R can be tuned in order to optimize the jet energy
resolution depending on the experimental environment, the detector properties or the process under
study. At LHCb the optimal ranges from 0.5 ≤ R ≤ 0.7.

2.4.3 E-recombination scheme

The four-momenta (Ejet,pjet) of the reconstructed jets after the clustering process can be estimated
as

Ejet =
∑

i

Ei pjet =
∑

i

pi (2.6)

Monte Carlo jet simulation samples are used to validate the reconstructed jet energies. The main
difference between reconstructed jets (jetreco) and MC jets (jetMC) is that the last ones are clustered
by the anti-kT algorithm using all the stable truth-level particles (true kinematical values) while
for jetreco just reconstructed particles are used where invisible particles (e.g. neutrinos) are removed
from the list to unbias the reconstructed energy. To associate a jetMC with a jetreco, the distance
∆R =

√

∆η2 +∆ϕ2 between them in the η-ϕ plane should be smaller than 0.4. If more than one jet
fulfil this requirement, the jet with the closest distance is chosen. Also, jets reconstructed with charged
particles are in agreement with MC simulation as expected. On the other hand, neutral particles show
worse performance due to the lack of tracking information (only calorimeter data is used).
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2.4.4 Jet Energy Correction

Later, a correction is applied to the energy of the reconstructed jets Ejet
reco to match with the energy

of one of the associated MC jets Ejet
MC. This is done using a kMC factor, called Jet Energy Correction

Ejet
MC = kMCEjet

reco (2.7)

Inside the kMC factor the integrated effect of pile-up, noise and non-uniformity of the detector are
considered. kMC is calculated using MC simulations of b-, c-, light- quarks and gluons jets. It is
non-uniform with respect to the η and ϕ jet axis as well as with the fraction of charged particles in the
jet (cpf ). Moreover, it depends on the jet flavor. In addition, other correction is applied to suppress
differences between the jet energy real data and MC simulations using the Jet Energy Scale factor.

2.4.5 Jet identification efficiency

Finally, some requirements are applied to reject jets originated from noise or high energetic leptons:

• Tracks pointing to the PV (nPVtracks) ≥ 2,
• pT fraction carried by a single Particle Flow particle (mpf) < 0.8,
• pT carried by a track (mpt) > 1.2 GeV/c,
• fraction of charged particles inside the jet (cpf) > 0.1.

The jet identification efficiency ϵjet is evaluated

ϵjet =
N [reconstructed jets]

N [true jets]
(2.8)

It has been tested using Z0 → µµ and MC events at
√
s = 7 TeV. The jet identification efficiency

increases with respect to the jet pT , see Figure 2.9.

Figure 2.9: Jet identification efficiency as function of the jet pT

2.5 Heavy-Flavor jet identification

The identification of jets originated from the heavy quarks hadronization is crucial to study Standard
Model (SM) and to search New Physics (NP) processes. The measurement of the Higgs decay to heavy
quarks relies in the ability to efficiently classify b-, c- and light jets. This task is done using the Jet-
flavor tagging algorithms which determine the flavor of the heavy-quark that originated the tagged
jet, identifying b-, c- and light-quark jets with low misidentification rates.
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This technique is called Secondary Vertex tagging which exploits the fact that heavy (b- and c-)
hadrons travel a sizable distance before decaying, producing a Secondary Vertex (SV) detached from
the Primary Vertex (PV). This algorithm identifies heavy (b- and c-) events from light-partons events
and also can separate b- from c-events.

2.5.1 Secondary Vertex tagging

Heavy (b- and c-) hadrons produced from proton-proton collisions at
√
s = 13 TeV at LHCb travel an

average distance ⟨d⟩

⟨d⟩ = βγcτ ≈ 7 mm β =
v

c
γ =

1
√

1− β2
(2.9)

where c is the speed of light, v is the speed of the hadron and τ is the average lifetime of the
hadron. Then, b- and c- events contain a SV with decay products of the heavy quark. This tagging
algorithm [45] works as follows

1. Tracks selection:

• long tracks,
• p > 5 GeV/c and pT > 0.5 GeV/c,
• Track fit χ2/ndof < 3,
• Variation of the χ2 of the PV fit when the track is removed (χ2

IP) > 16,
• Pghost < 0.3.

2. Tracks are used to build 2-body SVs in the 3D space. Fits are used to determine the SV position.
Two tracks linked to a SV are mixed to form a particle whose flight direction vector points from
the PV to the SV and its four-momentum is the sum of four-momenta tracks assuming the π
mass. These 2-body particles requires:

• Distance of closest approach (DOCA) between the two tracks < 0.2 mm,
• SV χ2 fit < 10,
• invariant mass 400 < m < 5279.4 MeV/c2 (B0 mass).

3. If ∆R =
√

(ηjet − ηSV)2 + (ϕjet − ϕSV)2 < 0.5, a 2-body particles is assigned to a jet. 2-body
particles inside the same jet sharing at least one track are associated together, creating n-body
particles that do not share tracks. The resulting n-body particles are called tagSV whose position
is the average of the 2-body SV positions, weighted with the χ2 of the SV position fit. The tagSV
flight direction points from the PV to its position and the tagSV four-momentum is the sum of
the four-momenta tracks, assuming the mass.

4. Light quark jets are reduced requiring tagSVs with

• pT > 2 GeV/c,
• jet z-position < 200 mm,
• flight distance/p < 1.5 mm/(GeV/c),
• the flight distance χ2 obtained from the PV fit must be > 5 σ,
• a tagSV formed by two tracks is rejected if the invariant mass is compatible with KS ,
• tagSV must contain at most one track with ∆R > 0.5,

• to remove kaons or hyperons, the corrected mass Mcorr =
√

M2
SV + pmiss

T + pmiss
T > 600

MeV/c2 is required, whereMSV is the SV mass and pmiss
T represents the missing component

of the momentum with respect to the particle flight direction.

5. If more than one tagSV per jet pass the conditions, the one with the higher pT is selected. A jet
coming from an heavy quark is tagged if at least one tagSV is chosen by this algorithm.

6. Finally, two Boosted Decision Trees (BDT) trained on simulated samples of heavy and light-
parton jets are used to identify b- and c- jets:

22



CHAPTER 2. THE LHCB EXPERIMENT AND JET IDENTIFICATION

• One BDT(bc|udsg) is used to separate heavy (b-, c-) jets from light-parton jets.
• Other, BDT(b|c) is trained to separate b- jets from c- jets.

2.5.2 SV-tagging performance

The performance of the SV flavor tagging algorithm is measured calculating the b-(c-) tagging efficiency
ϵb(c) and the light jets misidentification ϵq. The b-(c-) tagging efficiency ϵb(c) is defined as the ratio

between the number of tagged b-(c-) jets N tag
b(c) over the total number of reconstructed jets N tot

b(c)

ϵb(c) =
N tag

b(c)

N tot
b(c)

σϵb(c) =

√

ϵb(c)(1 + ϵb(c))

N tot
b(c)

(2.10)

while the light jets misidentification is defined as the ratio between the number of tagged light- jets
N tag

q over the total number of light- jets N tot
q

ϵq =
N tag

q

N tot
q

(2.11)

The results from the tagging performance evaluated on MC samples of pp→ qq̄ di-jets events of b-, c-
and light- quarks at

√
s = 13 TeV generated with PYTHIA8 [46] are

• ϵb(c) increases as pT increases,
• ϵb efficiency is larger than ϵc,
• both ϵb(c) behave similarly with respect to pT , while ϵq is almost constant.

Figure 2.10: SV-tagging efficiency for b-jets and c-jets as a function of pT , measured on simulated data for
2.2 < η < 4.2 [47].

2.6 Development of new tagging algorithms

Recent results from the LHCb collaboration showed that there still room from improvement for the
heavy jet classification [48]. Basically, novel machine learning methods should exploit the complex
structure of jets and all the available experimental variables, looking to unveil correlations between
particles that could enhance the identification process. Some modern Machine Learning techniques
have been already implemented by the CMS[49, 50] and ATLAS [51] Collaboration. On the other
hand, LHCb still lacks of high-performance algorithms for the classification of b- and c- events that
potentially could give a boost to the H → bb̄ and the H → cc̄ search. Therefore, the main purpose of
this thesis is to explore the new-born field of Quantum Machine Learning to work out in a quantum
tagger for the b- vs c- classification, comparing the results with ’classical’ Machine Learning models.
The performance of the new tagger will be compared in terms of the following metrics:
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• Tagging efficiency ϵeff calculated as the ratio between the number of tagged events N tag over
the total number of events N tot

ϵeff =
N tag

N tot
(2.12)

• Mistag efficiency ω calculated as the ratio between the number of not interested tagged events
N tag

wrong over the total number of not interested events N tag

ω =
N tag

not int

Nnot int
(2.13)

2.7 Data-set selection

Data-set samples produced from official LHCb Monte Carlo simulations of di-jet produced from pp
collisions at

√
s = 13 TeV (Run 2 conditions) were used either for the training of the machine learning

models or for the Higgs Search. bb̄, cc̄, H→ bb̄ and H→ cc̄ dijet productions are done using PYTHIA8

generator that also estimate the jet fragmentation. PYTHIA8 includes production processes at LO
QCD and LO Z0/γ decaying into a bb̄ pair and cc̄, see the Feynman diagrams in Figure 1.5, as well
as all the production mechanism for the Higgs production, see Figure 1.3. Events are generated with
two opposite polarization of the magnet. EvtGen [52] simulates the b- and c- hadron decays and
Geant4 [53] simulates the jet particle interactions with the detector. Finally, the simulated signals
are digitalized and the jet reconstruction is done applying the ParticleFlow algorithm and the anti-kT
clustering algorithm as was described previously. In this work the background produced by the light
flavour jets is considered as negligible, since light jets with (fake) SV are very low (<0.5%). Although,
another discriminator could be also implemented to remove this small contribution in future analyses.

The data-set is generated in different HDF files stored in the LHCb Padova cloud and split according
to the momentum exchanged p̂ in the hard collision, the polarization of the magnet (up or down)
and the production mechanism (QCD or Z0/γ). Table 2.5 lists all the files together with their total
number of events Ngen.

Filename Processes Magnet p̂ [GeV/c] Nevents

Dijet bb pt10 15 dw.hdf QCD down [10,15] 409 662
Dijet bb pt10 15 up.hdf QCD up [10,15] 390 508
Dijet bb pt15 20 dw.hdf QCD down [15,20] 791 488
Dijet bb pt15 20 up.hdf QCD up [15,20] 799 134
Dijet bb pt20 50 dw.hdf QCD down [20,50] 880 412
Dijet bb pt20 50 up.hdf QCD up [20,50] 919 768
Dijet bb pt50 dw.hdf QCD down > 50 961 646
Dijet bb pt50 up.hdf QCD up > 50 999 540
Dijet cc pt10 15 dw.hdf QCD down [10,15] 438 622
Dijet cc pt10 15 up.hdf QCD up [10,15] 496 842
Dijet cc pt15 20 dw.hdf QCD down [15,20] 772 780
Dijet cc pt15 20 up.hdf QCD up [15,20] 812 122
Dijet cc pt20 50 dw.hdf QCD down [20,50] 907 660
Dijet cc pt20 50 up.hdf QCD up [20,50] 839 298
Dijet cc pt50 dw.hdf QCD down > 50 823 954
Dijet cc pt50 up.hdf QCD up > 50 893 384
Dijet Higgsbb tot.hdf all both all 1 846 208
Dijet Higgscc tot.hdf all both all 1 689 526

Table 2.5: Data-sets used for the Higgs search.

24



CHAPTER 2. THE LHCB EXPERIMENT AND JET IDENTIFICATION

The total number of events increases as the exchanged momentum p̂ increases for all the QCD files,
either for bb̄ and cc̄. For the H→ bb̄ and H→ cc̄ files, the total number of events is one order of
magnitude larger than its background counterparts. Besides, the background contribution coming
from the light jets are assumed to be negligible.
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Chapter 3

Quantum Machine Learning

The following chapter will cover an overview of theoretical formulations behind Quantum Machine
Learning and its building block concepts: qubit and entanglement.

3.1 Introduction to Quantum Computing

Quantum computing born in 1980 when Paul Benioff proposed the quantum version of the Turing
machine [54]. Later, Richard Feynman suggested a quantum computer will be capable to simulate
complex processes a normal computer could not do [55]. The research in this field caused more
interest after Peter Shor demonstrated that a quantum algorithm can solve the factorization problem
in polynomial time [56] in 1994. Two years later, Lov Grover scripted a quantum algorithm which
performs an unstructured search in a database of size n using only O(

√
n) evaluations [57], much

faster than a classical algorithm O(n). In 1998 Isaac Chuang, Neil Gershenfeld and Mark Kubinec
built the first two-qubit quantum computer able to perform computations [58]. In recent years, the
interested and the investment in quantum computing research has increased considerably due to its
great potential.

3.2 The Qubit

In the Classical Information theory, the basic information unit is the bit which represents a logic state
taking only two possible values: 0 (False, off, etc.) or 1 (True, on, etc.). Bits are concatenated into
strings to represent a larger number where a n-bits string can represent a maximum of 2n different
states, e.g., count integers from 0 to 1000 requires at least 10 bits, 210 = 1024.

On the other hand, in Quantum Computing the elementary information unit is the qubit which is a
two-levels quantum system that can be measured as two orthonormal states |0⟩ and |1⟩. These states
are the computational basis of the 2-dimensional Hilbert space H where all the possible states of the
qubit are defined. Then, the state |ψ⟩ of a qubit can be written as

|ψ⟩ = α0 |0⟩+ α1 |1⟩ (3.1)

where α0, α1 ∈ C and satisfy the normalization condition |α0|2 + |α1|2 = 1. H is isomorphic to the C2

vector space, so

|0⟩ ∈ H →
(

1
0

)

∈ C
2

|1⟩ ∈ H →
(

0
1

)

∈ C
2

This isomorphism allows the representation of the quantum states as complex (normalized) vectors
and linear operators as complex matrices.
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3.2.1 Bloch sphere

The 1-qubit state can be represented graphically using the Bloch sphere by rewriting the equation (3.1)
as:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (3.2)

where θ, ϕ ∈ R with 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. Therefore, the state |ψ⟩ can be visualized as a R3

vector (sin θ cosϕ, sin θ sinϕ, cosϕ) pointing from the origin to the surface of a sphere, see Figure 3.1.

Figure 3.1: Bloch sphere representation as a generic pure state |ψ⟩ [59].

3.2.2 Density matrix and mixed states

The density matrix ρpure = |ψ⟩ ⟨ψ| of the pure state |ψ⟩ represents a projector operator:

ρpure = |ψ⟩ ⟨ψ| =
(

|α0|2 α0α
∗
1

α∗
0α1 |α1|2

)

(3.3)

which has the following properties:

• ρpure = ρ†pure.
• ∀ |ϕ⟩ :

〈

ϕ
∣

∣ ρpure
∣

∣ϕ
〉

≥ 0.
• Tr ρpure = 1.
• ρ2pure = ρpure.

The density matrix framework allows us to define a mixed state ρmix

ρmix =
∑

i

pi |ψi⟩ ⟨ψi| (3.4)

where pi represents the probabilities associated to a set of pure state |ψi⟩. ρmix does not satisfy the
same properties of ρpure, in particular:

• ρ2mix ̸= ρmix and

• Tr ρ2mix < Tr ρmix = 1.

3.2.3 Multi-qubit states

Multi-qubit quantum systems are tensor products between Hilbert spaces, e.g., a n-qubit quantum
system is represented by the tensor product of n single qubits:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩ |ψ1⟩ , |ψ2⟩ , ... |ψn⟩ ∈ H |ψ⟩ ∈
n
⊗

i=1

H (3.5)
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A completely generic n-qubits state is represented by 2n complex coefficients:

|ψ⟩ = α1 |0...00⟩+ α2 |0...01⟩+ α3 |0...10⟩+ ...+ α2n |1...11⟩ αi ∈ C (3.6)

Finally, pure and mixed density matrices can be generalized using a n-qubits state |ψ⟩, then

|ψ⟩ =
2n
∑

i=1

αi |i⟩ ρpure = |ψ⟩ ⟨ψ| ρmix =
∑

i,j

αij |i⟩ ⟨j| αi, αij ∈ C (3.7)

3.2.4 Quantum measurements

For the seek of simplicity, let us assume the generic 1-qubit state represented in equation (3.1). For
this case, the two possible results of a measurement in the computational basis (0 or 1) are associated
to the two projectors on the eigenspaces

P0 = |0⟩ ⟨0| P1 = |1⟩ ⟨1| (3.8)

Therefore, the probabilities associated to the two measurement are:

p(0) = ⟨ψ |P0 |ψ⟩ = |α0|2 p(1) = ⟨ψ |P1 |ψ⟩ = |α1|2 (3.9)

Then, the quantum state collapses into the eigenstate associated to the measurement outcome. For a
0 result, the quantum state after the measurement is

|ψ⟩ → P0 |ψ⟩
√

⟨ψ |P0 |ψ⟩
= |0⟩ (3.10)

Note that the final quantum state was destroyed. This kind of measurements in a qubit system are
called projective measurements on the computational basis.

For an n-qubits system, a computational basis measurement is obtained by sampling a binary string
of length n from the quantum state distribution. Then, each the 2n possible outcomes is associated
to a projector defined in the eigenspace on which the state collapses after the measurement.

3.3 Entanglement

Another fundamental concept in quantum computing, which no classical counterpart, is the entan-

glement between quantum systems. For example, a composite system made of A and B quantum
systems (e.g. two qubits or two groups of qubits), is called separable if it can be written as a classical
probability distribution pi over uncorrelated states of the two subsystems ρA and ρB:

ρ =
∑

i

piρ
A
i ⊗ ρBi (3.11)

When a state is non-separable, it is called an entangled state, e.g., the Bell states:

|ϕ±⟩ = 1√
2
(|0⟩A ⊗ |0⟩B ± |1⟩A ⊗ |1⟩B) (3.12)

|ψ±⟩ = 1√
2
(|0⟩A ⊗ |1⟩B ± |1⟩A ⊗ |0⟩B) (3.13)

which are known as maximally entangled states, since the measurement on the subsystem B is exactly
determined by a measurement on the subsystem A, due to both subsystem are maximally correlated.
This effect is purely quantum and cannot be obtained by classical operations, as Bell proved in
1964 [60]. This phenomenon shows the incompatibility of locality and realism in Quantum Mechanics
and represents a unique feature in the Quantum Information theory.
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3.4 Quantum circuits

Classical computers operate using bit-strings by means of logical function f : {0, 1}n → {0, 1}m that
gets a n-bits string as input and returns a m-bits string as output. Every logical function can be
decomposed in elementary logical function, called logical gates, such as the AND gate, the OR gate,
the NOT gate, the XOR gate, etc. Elementary logical gates can be combined in logical circuits

implemented electronically. In analogy with classical computers, qubits can be manipulated by mean
of quantum gates represented by unitary operators1 acting on the quantum state.

3.4.1 1-qubit gate

It is described by 2× 2 complex unitary matrices, e.g., the Pauli operators :

X =

(

0 1
1 0

)

Y =

(

0 −i
i 0

)

Z =

(

1 0
0 −1

)

(3.14)

The X gate is also know as the NOT gate because it flips the computational basis of the qubit:
X |0⟩ = |1⟩ and X |1⟩ = |0⟩. Other widely used quantum gates are the Hadamard gate H, the phase

gate S and the π/8 gate T :

H =
1√
2

(

1 1
1 −1

)

S =

(

1 0
0 i

)

T =

(

1 0

0 ei
π

4

)

(3.15)

Besides, the operators that rotates, an angle θ, the state vector around the x, y and z axis on the
Bloch sphere are the rotation gates:

Rx(θ) = e−i θ
2
X = cos

θ

2
1 − i sin

θ

2
X =

(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)

(3.16)

Ry(θ) = e−i θ
2
Y = cos

θ

2
1 − i sin

θ

2
Y =

(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)

(3.17)

Rz(θ) = e−i θ
2
Z = cos

θ

2
1 − i sin

θ

2
Z =

(

e−i θ
2 0

0 ei
θ

2

)

(3.18)

3.4.2 Controlled gates

A controlled gate does controlled operations such as “If A is true, then do B”. For example, let U
be an arbitrary 1-qubit unitary operation, then controlled-U operation is a 2-qubits operation with a
control qubit and a target qubit. If the control qubit is set to |1⟩ then U is applied to the target qubit
or in the other way around. Figure 3.2 (left) represents a controlled-U operation where the control
qubit (on the top) is wired to the controlled gate (on the bottom).

Controlled-U Controlled-NOT Controlled-Z

Figure 3.2: Controlled gates. The top wire represents the control qubit while the bottom wire is the target
qubit. Next to the circuit symbol the matrix representation is shown.

The Controlled-NOT (CNOT) gate and the Controlled-Z (CZ) gate are the most common controlled
gates. Their matrix representations and circuit symbols are shown in Figure 3.2.

1An operator O on an Hilbert space is called unitary if OO† = O†O = 1, where 1 is the identity operator.
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3.4.3 Measurement gates

These type of gates are used to do projective measurements on the computational basis, represented
as“meter” symbols, see Figure 3.3.

Figure 3.3: Measurement gate.

The principle of deferred measurement [61] demonstrated that measurements performed at an inter-
mediate stage of a quantum circuit can always be moved to the end of the circuit without loss of
generality. Besides, according to the principle of implicit measurement [61], any unmeasured qubit at
the end of the circuit may be assumed to be measured, or in other words, measuring an unmeasured
qubit at the end of the circuit does not affect the probability distribution of the other measurements.

3.5 Machine Learning with quantum circuits

3.5.1 Introduction to Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) based in the computer learning from
data to make predictions or decisions without being explicitly programmed to do so. ML automatizes
the process to make predictions with known and unknown information. It is a very powerful tool in
tasks where the data patterns are very complex and difficult to understand. Therefore, this approach
involves a very general and agnostic mathematical model where the data is adapted to each case.
Normally, the ML model is considered as a black box that has learned the patterns of the system in
order to produce reliable predictions.

ML is classified in three main branches depending of the prediction problem:

• Supervised learning. This model performs the training phase pairing the input data with the
expected predictions of the model.

• Unsupervised learning. In this model, the expected predictions are not used during the
training, but instead, it does self-learning using the patters produced from the input data.

• Reinforcement learning. This model is trained using a rewards/punishment mechanism where
the optimization is done by trial and error.

This thesis will use supervised learning for the training and classification of b- and c- jets.

3.5.2 Supervised learning

The main structure of a generic supervised machine learning algorithm (Figure 3.4) is the following:

1. Problem definition. Given a training data-set D = {(x1, y1), ... , (xM , yM )} with M couples
of training inputs xi ∈ X (input domain) and expected outputs yi ∈ Y (output domain). The
relationship between the xi and the yi is still unknown. This relationship will be approximated
using a ML model, see the top-left of Figure 3.4. For this thesis, a N -dimensional real vectors,
knows as feature vectors, will be used as input data.

2. Select a model family. It is a function

y = f(x, θ) (3.19)

with x ∈ X, y ∈ Y and θ = {θ1, ... , θD} is a set of real parameters that will be optimized during the
training, see Figure 3.4 (upper-right). More complex models also depend on hyper-parameters
that are not included explicitly in the notation.
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Figure 3.4: Supervised learning algorithm employs four main stages. First, the train data-set is selected (top
left). Later, a model family is chosen (top right). Afterward, the model is trained (bottom left). Finally, the
model is employed on new data to do predictions (bottom right) [62].

3. Training the model. The model is trained by fitting the θ parameters and the hyper-parameters
to the training data D using a specific model function. Later, a test data-set can be used to
validate the performance of the model on new data, see Figure 3.4 (lower-left).

4. Employment of the model. After the training, the optimized model can be used to do
predictions, see Figure 3.4 (lower-right).

3.5.3 Training a ML model

The training phase is the most crucial step in a ML algorithm. The goal of the training is to obtain
the best predictions using a set of parameters θ. These parameters are the result of the optimization
of an objective function L(θ), called loss function. This function quantifies the quality of the predic-
tions given the current set of parameters θ. Therefore, the training phase can be considered as an
optimization problem. The choice of a certain loss function implies different training strategies and
results. This thesis will use the mean squared error loss,

LMSE(θ) =
1

M

M
∑

i=1

(f(xi, θ)− yi)2 (3.20)

and the cross-entropy loss,

LCE(θ) =
M
∑

i=1

−yi log pi − (1− yi) log(1− pi) (3.21)

where pi = f(xi, θ) are the outputs of the model in terms of prediction probabilities. The loss function
L(θ) has to be minimized with respect to the model parameters θ in order to obtain the optimal
parameters θ̄,

θ̄ = argmin
θ
L(θ) (3.22)

However, complex ML tasks often fall in hard optimization problems since the loss function can be non-
convex. Therefore, popular methods based on iterative searches are used such as the gradient descent

method, see Figure 3.5. Commonly, gradient descent algorithms are local optimization methods that
iteratively updates the parameters of the loss function L(θ) towards the direction of the steepest
descent

θt+1 = θt − λ∇L(θt) (3.23)
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Figure 3.5: Illustration of a gradient descent method. Several minima points are observed implying a difficult
and slow convergence at saddle points [62].

where λ is a tunable hyper-parameter called learning rate and t is the iteration index. Figure 3.5
illustrates an example the converge of a loss function in a 1-parameter model. Since the gradient of
the loss function is used during the optimization, the method can get stuck on a local minimum and
it convergence rate can get negligible low on saddle points, where ∇L tends to 0. To deal with these
effects, several optimized methods have been derived starting from the gradient descent method. In
this thesis, the ADAMAX [63] optimizer has been used.

3.6 Parameterized quantum circuits

Parametrized Quantum Circuits (PQC), also known as Variational Quantum Circuits (VQC), are nor-
mally build as a combination of fixed quantum gates (e.g., CNOT, CZ, H, etc) and variational quantum
gates of tunable parameters (e.g., RX, RY, RZ, etc). This kinf of VQC can be employed as a Quan-
tum Machine Learning (QML) model. Besides, VQCs have already showed that are able to produce
non-trivial results not efficiently simulated by classical hardware, even at low circuit complexity.

The main constituents of a QML model based on a VQC are illustrated in Figure 3.6, where classical
steps are highlighted in light blue while the quantum step in pink. These are:

1. Pre-processing. A feature vector x is sampled from the training data-set PD and then is
mapped, following a classical pre-processing scheme, by a function ϕ where x→ ϕ(x). This step
can include feature importance selection and normalization or scaling techniques.

2. Parameterized Quantum Circuit. The pre-processed data is mapped to the parameters of
a quantum encoder circuit Uϕ(x) which embeds the data into an n-qubits state. A VQC, with
tunable parameters θ and represented by Uθ, performs quantum operations over the n-qubits
state of the model. This is followed by the measurements of the expectation values {⟨Mk⟩x,θ}Kk=1

over the final quantum states. Note that all the components of the PQC circuit are parameterized
and optimized continuously during the training phase.

3. Post-processing. Finally, the measured expectation values {⟨Mk⟩x,θ}Kk=1 are mapped to a
prediction model through a post-processing function y = f({⟨Mk⟩x,θ}Kk=1).

Figure 3.6: Parameterized Quantum Circuit and its main components [64].
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3.6.1 PQC Data encoding

This is the first step of the QML model based on PQC after the data pre-processing. It maps a vector
of classical data x into an n-qubits quantum state x → |x⟩. This task can be done in different ways.
In this thesis, the Amplitude Encoding, Angle Encoding and Quantum Approximate Optimization

Algorithm Encoding techniques were used.

• Amplitude Encoding. It embeds up to 2n features into the amplitudes of the state vector
of an n-qubits system. The main advantage of this method is the exponential scaling to large
number of features. In the case of features smaller than 2n, the the remaining amplitudes are
fed with constant values (normally 0). Assuming exactly 2n features, the amplitude encoding
mapping is

|x⟩ =
2n
∑

i=1

xi |ni⟩ (3.24)

where xi refers to the ith feature and |ni⟩ is the ith vector of the computational basis. Note how
the x vector must be normalized, i.e.,

∑

i |xi|2 = 1.

• Angle Encoding. This technique encodes up to n data features into an n-qubits state trough
angle rotations around one of the three axes, i.e. with i = 0, ... n− 1 the ith qubit state is

|ψ⟩i = Rx(xi+1)Ry(xi+2)Rz(xi+3) |0⟩i (3.25)

where Rx, Ry and Rz are the rotation gates, see Eqn. (3.16) - Eqn. (3.18). Then, the feature
vectors x are represented by the full n-qubits state |x⟩ built as the tensor product of the single
|ψ⟩i states.

|x⟩ =
n−1
⊗

i=0

|ψ⟩i (3.26)

It is important to take advantage that the rotational gates are periodic unitary operator with
respect to the parameter θ. Therefore, Ri(θ) = Ri(θ + 2π). Then, each feature vector must be
scaled (pre-processed) to the [0, 2π] range. However, more restricted ranges could improve even
more the training performance.

• QAOA Encoding. It was introduced by Farhi et al. [65]. It encodes N features into n > N
qubits, using a trainable quantum circuit. A single quantum layer applies two circuits (“Hamil-
tonians”) where the first encodes the features, and the second is a variational ansatz inspired by
a 1-dimensional Ising model. The feature-encoding circuit associates features with the angles of
RX rotations. Its initial state |ψ⟩0 will be the uniform superposition over computational basis
states:

|ψ⟩0 =
1√
2n

∑

x∈{0,1}n

|x⟩ (3.27)

When there are fewer features than qubits, the feature-encoding rotation is substituted by a
Hadamard gate.

3.6.2 Variational circuits

They are the core of PQC circuits where, similarly to the universal approximation theorem in neural
networks [64], there always exists a quantum circuit able to act as a target function within an arbitrary
small error. Nevertheless, this circuit may get deeper exponentially and impractical to implement on
current quantum hardware. That’s why, circuit templates with fixed structure of gates (circuit ansatz )
are used. Note, despite the fact that the dimension of the Hilbert space grows exponentially with the
number of qubits, the number of free parameters to be optimized scales as a polynomial of the qubit
count.
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Figure 3.7: Variational circuit ansatz example in a PQC model. The angle parameter of each rotational gate
(Rx and Rz) can be tuned during the training.

Figure 3.7 illustrates the structure of an example of a variational ansatz for QML model. The first
stage of this circuit has tunable rotational gates applied to the single qubits and a second stage of
controlled gates to entangle the qubits. This ansatz can be repeated multiple times growing the
number of parameters and the complexity of the model.

3.6.3 Gradients of PQC

They are important operations during the implementation of a gradient descent algorithm on a QML
model. Eqn (3.23) needs the evaluation of the partial derivatives of the loss function with respect to
the tunable parameters θi of each rotational gate. These parameters can be evaluated numerically
using the finite difference method:

∂L

∂θi
≈ L(θ + ϵêi)− L(θ − ϵêi)

2ϵ
(3.28)

where ϵ represents a infinitesimal parameter and êi is the θi unitary direction vector. However, ML
is not free of optimization problems where instabilities with respect to numerical differentiation can
arise. Therefore analytical gradients are used if available.

Fortunately, analytical gradients for PQC can be calculated exactly using the so-called parameter shift

rule [66, 67]. Using the chain rule and recalling that L(θ) is defined as a function of the expectation
values ⟨Mk⟩θ, so, the derivatives of L(θ) can be rewritten as a function of derivatives of ⟨Mk⟩θ. Then,

∂⟨Mk⟩θ
∂θi

=
⟨Mk⟩θ+π

2
êi − ⟨Mk⟩θ−π

2
êi

2
(3.29)

Therefore, that exact gradients can be computed doing two evaluations of the quantum circuit per
parameter, even on quantum hardware.
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Chapter 4

Results on b- and c-jet tagging with

Quantum Machine Learning

This chapter will be focused to detail all the software implementation and the results from the b- and
c- jet classification using different QML models and comparing them with the best classical method
doing this classification.

4.1 Training data-set selection

A list of jets is extracted from the data-set, described in section 2.7, with the following requirements:

• Jets with transverse momentum 20 < pT < 1000 GeV/c.

• Jets with pseudo-rapidity 2.2 < η < 4.2.

• Jets must be originated from a QCD event.

Initially the amount of available events was around 106 jets. After the selection criteria, the data-set
was reduced to 4× 105 jets equally distributed in b- (50%) and c- (50%) jets which have been split in
training and test subsets in 70/30 proportion. First, this data should be pre-processed extracting the
13 Secondary Vertex (SV) features among all the available features in order to be used as the input
of the QML models. The following SV features have been used for the training:

• The SV mass M .

• The SV corrected mass Mcor.

• The transverse flight distance of the two-track SV closest to the PV.

• The fraction of the jet pT carried by the SV, pT (SV)/pT (jet).

• ∆R between the SV flight direction and the jet.

• The number of tracks in the SV.

• The number of SV tracks with ∆R < 0.5 relative to the jet axis.

• The net charge of the tracks that form the SV.

• The flight distance χ2.

• The sum of all SV track χ2
IP .

• The SV transverse momentum pT .

• The SV lifetime.

• The SV z-position.
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The first row of Figure 4.1 shows the correlation matrix between the 13 SV features either for b- and
c- jets. Both correlation matrices looks very similar, as well as with the correlations between features,
e.g, the correlation between the SV corrected mass and the SV mass looks the same for the b- and c-
jets. Regarding the features distributions, the SV corrected mass is the distribution that presents the
most remarkable differences between b- and c- jets, as expected. Besides, each jet carries information
about its quark origin (coming from the matched Monte Carlo jet) through the Monte Carlo truth
label as described in section 2.4.3, taking a value of 0 if it is b-quark or 1 if it is a c-quark. This variable
represents the target feature for the tagging algorithms and is called Jet Label.

Additionally, each di-jet (bb̄ or cc̄) event in the data-set contains two jets of opposite charge associated
to the same pp collision, which surely will induce feature correlations. Nevertheless, a jet tagging
algorithm must be able to do a prediction on a jet flavour based only on its particle content. Therefore,
for training purposes, a shuffled list of jets will be produced to suppress any correlation.
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Figure 4.1: Correlation matrices (first row) for the b- and c- jets as well as their feature distributions.
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4.2 Quantum Machine Learning models

Different QML models have been tested for the b- and c- jet identification and compared with the
classical method [45] used at the LHCb Collaboration, in terms of tagging performance.

4.2.1 Amplitude Encoding classifier

This model consists in a PQC made of an encoding circuit (Amplitude Encoding) followed by a
variational circuit, see Figure 4.2. The amplitude encoder circuit is used to embed the 13 features of the
data-set into the amplitudes of a 4-qubit circuit. After the encoder, the variational circuit composed of
L strongly entangled layers are connected. In this stage, each layer consists of parameterized rotational
gates R(αi, βi, γi) applied to each qubit connected to another qubit through CNOT gates in order to
entangle all the qubits. Besides, the complexity of this n-qubit circuit classifier can be tuned adjusting
the number of strongly entangles layers L and, consequently, the number of tunable parameters Npar

equal to

Npar = 3× n× L (4.1)

Note that even if the dimension of the Hilbert space scales exponentially (2n) with respect to the
number of qubits n, the number of parameters Npar just scales linearly. This exponential scaling is
exploited by the amplitude encoder which is capable to deal with large number of features using low
number of qubits. For this thesis, the number of strongly entangled layers is fixed to L = 7, leading
to a total number of parameter of Npar = 84.

Figure 4.2: Circuit representation of the Amplitude Encoding classifier model. The amplitude encoding stage
(blue) is connected to the parametric rotational gates (red) to be optimized during the training phase followed
by the entangling CNOT gates (green).

4.2.2 Angle Encoding classifier

This circuit requires a one to one correspondence between the input features and the number of qubits.
Therefore, during the first stage of the circuit n features are embedded in n rotational gates Rx(θi)
as parameters θi, see Figure 4.3. The variational stage of the circuit is identical to the Amplitude
Embedding classifier, where L strongly entangled layers can be employed to tune the complexity of the
model. Therefore, the number of parameter Npar to be optimized are the same as with the Amplitude
Embedding classifier, see again Eqn. (4.1) where the Npar scales linearly with respect to n. However,
this embedding does not exploit the exponential scaling of the Hilbert space. This means that doing
predictions with high-dimensional data-set requires a large number of qubits. For this thesis, the
number of repetitions of the variational layer L was also fixed to 7, so that the model has a total
number of variational parameters Npar = 273.
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Figure 4.3: Angle Encoding classifier model. The encoding stage is represented by rotational gates (blue)
followed by the parametric rotational gates (red) to be optimized during the training phase. Finally couples of
qubits are entangled using CNOT gates (green).

4.2.3 QAOA Encoding classifier

This model has a structure inspired from Tree-Tensor Networks (TTNs) [68]. In this circuit, n features
are encoded into an n-qubit quantum circuit using the QAOA encoding, see Figure 4.4. This encoding
stage contains trainable parameters that presumably enhance the quality of the embedding and must
be trained along the other parameters of the circuit. The variational stage of the circuit has a tree
structure to process the information coming from the n features, gradually reducing the total number
of qubits up to a single qubit which is measured identically as in the previous models. This model
contains tunable parameters also in the embedding part where the total number of trainable parameter
is Npar = 2× n× L = 182, using L = 7 variational layers.

Figure 4.4: Quantum circuit of a QAOA encoding classifier.

4.2.4 Measurement stage

For the measurement stage, the expectation value of the Pauli operator σz is measured, with range
⟨σz⟩ ∈ [−1,+1]. Thus, the probability to be a b-jet (Pb) or a c-jet (Pc) are defined as

Pb =
⟨σz⟩+ 1

2
(4.2)

Pc =
1− ⟨σz⟩

2
= 1− Pb (4.3)

Using this particular choice, a measurement of ⟨σz⟩ = −1 corresponds a 100% probability to be a
b-jet, while a measurement of ⟨σz⟩ = +1 corresponds to a 100% probability to be a c-jet. Note that
⟨σz⟩ = 0 will corresponds to the maximum uncertainty (50% probability). The measurement stage is
basically the same for the 3 QML classifiers described before.
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4.3 Classical Neural Network model

In addition to the QML models, a classical ML model was used as a reference. This model is the
Boosted Decision Tree (BDT) which is commonly used for jet flavour tagging at the LHCb Collabo-
ration [45]. Other classical methods were also used such as Deep Neural Network (DNN) and Convo-
lutional Neural Network (CNN) but the best results were obtained using the BDT model. Therefore
only the BDT model will be used to compare its performance with the QML methods.

The BDT is a Gradient boosting classifier which is a machine learning technique that combine many
weak learning models (decision trees) together to create a strong predictive model. A decision tree
takes a set of input features and splits input feature data at each node recursively based on those
features, see Figure 4.5. The terminal nodes is called leaves and represent a class label or probability.

The following parameters can be tuned in a BDT model:

• Maximum depth. How tall a tree can grow, sometimes defined by the number of leaves. Set
10 in this work.

• Maximum features. How many features can be chosen randomly to build a given tree.
• Minimum samples per leaf. How many samples are required to make a new leaf where
usually is less that 1% of data and sometimes defined by samples per split.

• Number of trees. Set 100 in this work.

Figure 4.5: Diagrammatic representation of a classical Boosted Decision Tree [69].

A summary of all the analysed models is available in Table 4.1.

Model Nfeat. n L Npar

Amplitude Embedding 13 4 7 84
Angle Embedding 13 13 7 273
QAOA Embedding 13 13 7 182
BDT 13 - - 1 000

Table 4.1: Summary of all the structure parameters of the QML models used for the jet b- and c-jet tagging.
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4.4 Software implementation

Python Programming Language has made a huge effort to incorporate libraries dedicated to the simu-
lation of quantum computers, allowing the creation of QML models. For this thesis, the QML models
have been implemented using the PennyLane [70] library and for the BDT method the XGBoost [71]
library was used.

4.4.1 PennyLane

PennyLane is a modern Python library designed specifically for differentiable programming of quan-
tum computers. This allows to simulate the training of a quantum computer in the same way as a
neural network, allowing QML applications. Therefore, the core feature of PennyLane is the power
to automatically compute gradients of parameterized quantum circuits in a way that is compatible
with classical optimization techniques, like back-propagation. This enables the development of hybrid
quantum-classical machine learning models built and trained with the same library. Besides, a plugin
system supplies access to several quantum simulators and cloud quantum hardware devices.

Figure 4.6 illustrates a basic example of a QML algorithm. The first line loads the PennyLane
package followed by the second line that defines a quantum device setting an execution back-end
(e.g., default.qubit). The default variable for the number of qubit is wires. After, a 1-qubit circuit
(wires=1) is defined using the function circuit, built with a Rx rotational gate and the expectation
value of the qubit state (using the σz). This circuit is executed together with the qml.qnode(dev)

decorator which maps the circuit to a device, creating a quantum computation node (QNode). Then,
calling the function circuit implies the evaluation of the quantum circuit on the selected device.
On the other hand, a cost function defines a classical computation node, whose input is a weight
array of tunable parameters, which calls the quantum circuit. Finally, the last three rows of the code
implement an optimization step of the cost function with respect to the weight parameters with the
help of a simple Gradient Descent optimizer.

Figure 4.6: Basic example of a QML algorithm built with a quantum node followed by a classical node using
the PennyLane package. The output of the classical node is the optimization target [70].

PennyLane supports several type of devices including quantum simulator and hardware devices:

• Simulators:

– default.qubit. It implements needful methods as well as some built-in qubit operations.
Therefore, it supplies a very simple pure state simulation of a qubit-based quantum circuit
architecture written in Python.
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– default.qubit.tf: This module contains a TensorFlow implementation version of the
default.qubit reference plugin. This allows automatic differentiation through the simu-
lation.

– default.qubit.autograd. This is a state simulator of default.qubit but written using
the Autograd library for the automatic differentiation.

– default.qubit.jax. This device provides a pure-state qubit simulator written using JAX

library. JAX can automatically differentiate through a large subset of Python’s features
which compiles and runs on accelerators, like GPUs and TPUs.

• Hardware:

– IBM Quantum Experience. It is an online platform to log into cloud-based quantum
computing services provided by IBM.

– Amazon Braket. It is an Amazon Web Services (AWS) cloud-based access containing
several quantum simulators and hardware devices.

– Rigetti Forest. It is a cloud-based quantum computing solutions supplied by Rigetti.

PennyLane supports the following automatic differentiation methods

• Simulation-based differentiation. It is based on the adjoint [72] or the back-propagation
method. This method is not compatible with hardware devices since it needs the manipulation
of the quantum state vector.

• Hardware-compatible differentiation. It is based on the finite differences method or the
parameter-shift rule. This method can be executed on both simulators and hardware devices.

• Device gradients. It is provided by some devices (e.g., AWS Braket devices) which evaluates
the gradient by themselves.

Other important feature of PennyLane is its support for hybrid quantum and classical models and
its compatibility with existing machine learning libraries such as PyTorch [73] and TensorFlow [74],
together with its high-level ML library Keras [75]. Therefore, Quantum circuits can be set up to
interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU com-
putations. For example, PennyLane can combine KerasLayer and TorchLayer to convert a QNode to
a neural network layer that can be used in a Keras/PyTorch model. The main advantages will be:

• The quantum layer can be added to a classical neural network model producing a hybrid model.

• The optimization of the PQC is boosted using the tools provided by Keras and PyTorch.

• default.qubit.tf can exploit the GPU computational power for the training within an end-
to-end differentiable TensorFlow model.

For this work, the new default.qubit.jax device is used because it has shown the best performance
overall, specially for its high speed automatic differentiation calculations able to run on accelerators
like GPUs.

4.4.2 JAX implementation

The training phase is the most computational demanding phase in a ML model. For the development
of a PQC both on quantum hardware and quantum simulators, the gradient descent method needs a
large amount of steps where in each step the quantum circuit is evaluated for each data point. The
amount of steps to reach the convergence of the model depends on the optimization algorithm and on
the differentiation and on number of parameters of the model. GPUs provide the ideal solution to this
demanding problem, allowing the circuit evaluation per each data point in parallel making possible a
faster evaluation of the whole gradient.
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Fortunately, in 2019 Pennylane was able to implement JAX transformations to build and optimize
quantum circuits. JAX was originally designed for classical ML and now many of its transformations
are also available for QML, and can be used directly with PennyLane. In this context, the gradient
descent technique can be implemented using the jax.grad tool, run quantum circuits in parallel using
jax.vmap, the simulations can be compiled and optimized with the jax.jit tool, and control and
seed the random nature of quantum computer simulations using the jax.random. Therefore, quantum
computing programs can be complemented with JAX to run in parallel on GPUs as is normally done
in classical neural networks nowadays. For that reason, JAX was implemented in all the QML models.

4.5 Data-set Pre-processing

The key for a successful secondary vertex reconstruction is a precise understanding of the primary
vertex and the correct selection of the tracks of the decay products. Tracks are reconstructed in each
tracking system through different steps. For each track candidate, the track model is fitted to the hits
in order to get the best estimates of the track parameters, usually in terms of χ2. An abnormally large
value of the χ2 suggests a random combination of hits, i.e., a “fake” or “ghost” track [76], which is
normally know as an outlier. An outlier is defined as a measurement that does not follow the expected
behaviour. Outliers can either be removed from the track or down-weighted by employing a robust
estimator.

Note that tracking efficiency affects the quality of the Data-set and therefore, the classification accuracy
in the last instance. Unfortunately, as 100% tracking efficiency is not possible, some of the events inside
the data-set could be outliers. Therefore a pre-processing of the data-set is essential to counteract
this effect. For example, possible outlier values in the data could correspond to very large values of
the flight distance χ2 or the sum of all SV tracks χ2

IP (> 10 000) or the fraction of the jet pT carried
by the SV pT (SV)/pT (jet) where some values are > 1, see again Figure 4.1.

Then, different processes can be followed in order to deal with the outlier in the data-set:

1. Remove the events with outliers by applying extra cuts.

2. Down-weight the anomalous values by employing a robust scaling.

In this work, the second option was used in order to don’t eliminate some possible physical meaning
for those anomalous values in the data-set, but for future works is worth exploring the first option. For
that reason, several scaler functions were tested to see their impact on the training accuracy. Figure 4.7
shows the training accuracy as a function of the iterations done during the training applying different
scaling functions in the data-set, using the Angle Embedding (left) and the QAOA Embedding (right).
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(a) Accuracy as function of the number of iterations using
the Angle Embedding..
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(b) Accuracy as function of the number of iterations using
the QAOA Embedding.

Figure 4.7: Training accuracy dependence on the Scaling function for different QML models.
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The most relevant fact that can be observed is a “gap” that appears between different scaling
functions in the training accuracy. It is because some scaling functions (e.g., Standard, Robust,

PowerTransformer) are specialized to deal with outliers in the data-set. Based on the different results
observed, PowerTransformer scaler is the one which provides the best accuracies. Therefore this
scaler function is used to pre-process the data-set in combination with the MinMax(0, π) scaler to scale
the data-set after the first scaling in values inside the [0, π] range because the embedding functions
work better under angular values (rotational gates). Due to the different nature of the Amplitude
Embedding, the best scaling function for this model is the QuantileTransformer in combination with
the MinMax(0, 1) scaler.

4.6 Training Phase

The loss function used for the training phase is the Mean Squared Error, defined in Eqn. 3.20, for all
the quantum models as well as for the classical method (BDT). The ADAMAX [63] optimizer is used
for all the quantum models fixing the learning rate at 0.01. For each QML model, the parameters
matrix is initialized randomly at the beginning of each training stage which provokes a initial bad
prediction. However, after the training phase takes place, the prediction distributions of b- and c-
quark jets start to separate each other, getting closer to the extreme values of the [0,1] range. A
perfect classification stage will place the b-quark jets in 0 and c-quark jets in 1 which means that the
final quantum state (before the measurement) is |0⟩ for b-quark jets and |1⟩ for c-quark jets.

Each QML model has been trained for 100 iterations (epochs) where during each epoch, the optimizer
processes the training data-set and updates the parameters at the end. Figure 4.8.a shows the be-
haviour of the loss function as a function of the number of iterations for the QAOA Embedding model
as the training proceeds. The training is done using the data-set designated for the training (70%).
As expected, the loss function gets progressively smaller, converging after around 80 epochs and a
good separation between b-quark and c-quark jets can be appreciated.

(a) Mean Square Error loss as function of the training iter-
ations for the QAOA Embedding method.

(b) Training time required for each iteration as function of
the number of layers using the QAOA Embedding method.

Figure 4.8: Loss function and training time per iteration behaviour for the QAOA Embedding method.

Other important parameter to take into account is the training time. As was mentioned before, the
JAX library will be used in order to speed up the training time using GPUs. For this work, initially 2
GPUs was used for the training phase. Specifically, the evaluations of the simulation on the quantum
circuit will be parallelized over the 2 GPUs. Figure 4.8.b shows the required time per iteration using
the QAOA embedding running on 2 GPUs. As expected, as the number of qubits increase the training
time also increases. The same effect is observed increasing the number of layers. Note that there is a
linear dependence between the training time and the number of layers. Thus, a 100-iteration training
using the QAOA Embedding model with 13 qubits (all features) and 7 layers will require 10 hours.
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4.7 QML optimization

One of the most important steps to build a robust QML is identify the perfect combination of number
of qubits and quantum mechanical operations (layers) needed to get the best test accuracy defined,
together with its standard uncertainty, as:

Accuracy =
N tag

b(c)

N tot
b(c)

σAcc =

√

Accuracy(1 + Accuracy)

N tot
b(c)

(4.4)

where N tag
b(c) is the number of events correctly classified and N tot

b(c) is the total number of events.

Therefore, the test accuracy for different number of qubits and different number of layers was studied
for all the QML models. For example, Figure 4.9(left) shows the test accuracy using the QAOA
Embedding model for different number of qubits and layers. As expected, increasing the number of
qubits (features) the accuracy improves as well as increasing the number of layers. Note that there
exits a critical number of layers where the accuracy cannot improve more. On average, the critical
number of layers for all the models starts at 7. Therefore, this value is fixed for future analysis.
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Figure 4.9: Test accuracy (left) and its corresponding ROC area under the curve (right) as a function of number
of qubits and number of layers using the QAOA Embedding model.

4.8 QML Performance

There are different scores to measure the performance of ML algorithms. The most used is the area
under the curve (AUC) of the Receiver Operating Characteristic (ROC) curve, where a classifier
performs better than other if its AUC is larger. The ROC curve is obtained by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings over the prediction
distributions [77] as can be observed in Figure 4.10. The TPR, also known as sensitivity, and the FPR
are defined as:

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(4.5)
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Figure 4.10: ROC curve main parameter.

Figure 4.11 shows the b- and c-quark jet prediction distributions for the different QML models (using
7 layers) and the classical model using all the available features. As can be observed in Figure 4.11.a,
the BDT is the model that most separate the prediction distributions of b- from c-quark jet, followed
by the distributions produced by the QAOA Embedding model. For the other models, the separation
between b- and c-quark jet distributions can be observed but with less effectiveness than the classical
method. More deep studies are needed in order to understand where these differences come from.
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(a) BDT predictions.
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(b) QAOA Embedding predictions.
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(c) Angle Embedding predictions.
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(d) Amplitude Embedding prediction.

Figure 4.11: Distributions of the output of the different classification algorithms.

Figure 4.12 shows the ROC curves for all the QML models and for the BDT model for comparison. As
expected, the BDT model is the one with the largest AUC, followed for the QAOA embedding model.
The results of the AUC make sense when looking to the prediction distributions in Figure 4.11.
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Figure 4.12: ROC curves for different classification models.

Besides, it is important to study the test accuracy of these models under physical quantities such as
the jet transverse momentum pT and the jet pseudorapidity η. In Figure 4.13, the test accuracy is
evaluated in several pT bins in the region of [20, 100] GeV/c and η bins in the [2.2, 4.2] region. As
expected, the classical method classifies better than the QML models as function of pT and η as can be
observed in Figure 4.13.a and Figure 4.13.b, respectively. At this point, it is evident that the QAOA
Embedding is the QML model with the best results, therefore, this model will be used to calculate
the test accuracy for the individual b- and the c-quark jet classification as function of pT and η.
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(a) Test accuracy as a function of jet pT .
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(b) Test accuracy as a function of jet η.

Figure 4.13: Test accuracy as function of jet pT and jet η.

As can be appreciated in Figure 4.14.a and Figure 4.14.b, the b-quark jet test accuracy for the QAOA
model and the BDT are very similar between each other, and in some high pT regions the QAOA
accuracy is slightly larger than for the BDT accuracy. Note also that the b-quark jet test accuracy
increases as the jet pT increases. Unfortunately, for the c- jet accuracy the BDT method is considerably
better than the QAOA. Figure 4.14.c and Figure 4.14.d show that the BDT test accuracy is larger than
the QAOA over all the pT and η spectrum. This effect is more remarkable specially when increasing
the jet pT , where a huge drop in the accuracy is observed for the QAOA method. Unlike to the b-jet
classification, the accuracy for the c-quark jet reduces increasing the jet pT or the jet η.

48



CHAPTER 4. RESULTS ON B- AND C-JET TAGGING WITH QUANTUM MACHINE

LEARNING

20 30 40 50 60 70 80 90 100
pT (GeV/c)

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y
BDT-b QAOA-b

(a) Test accuracy as a function of b-quark jet pT .
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(b) Test accuracy as a function of b-quark jet η.
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(c) Test accuracy as a function of c-quark jet pT .
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(d) Test accuracy as a function of c-quark jet η.

Figure 4.14: Test accuracy as function of b- and c-quark jet pT and η.

4.9 Results

Table 4.2 summarizes the test accuracies and AUCs for the different QML models using all the SV
features. Accuracies, ROCs and AUCs suggest that among all the QML algorithms, the QAOA Em-
bedding model is the one with the best classification performance. On the other hand, Angle and
Amplitude models performs very similar, but the advantage of the Amplitude model is the low num-
ber of qubits necessary to embed the SV features in the quantum circuit, followed by a faster training.
However, the classical method (BDT) still performs better than the QML models.

Model features qubits layers accuracy AUC

BDT 13 - - 0.852 0.927
QAOA 13 13 7 0.828 0.901
Angle 13 13 7 0.777 0.852
Amplitude 13 4 7 0.761 0.843

Table 4.2: Result from different ML models.

This work presents for the first time, and represents the starting point, for the jet flavor classification
using this new tool. There are still different variables to explore in order to optimize more the QML
results. Given the latest results, the BDT model and the QAOA Embedding model will be used for
the Higgs search in the next chapter.
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Chapter 5

Higgs Search

In this chapter, the best QML classification model (QAOA Embedding) and classical ML model (BDT)
for jet flavor tagging are used for the Higgs Search. The Higgs decay channels that will be analyzed
are the H → bb̄ and H → cc̄ by means of the Monte Carlo simulated data-sets for the signal and the
irreducible background, assuming a negligible light jet contribution as was described in the section 2.7.
The main purpose of this analysis is to compare the results for the Higgs search obtained between the
classical ML and the QML classifier in terms of significance, tagging efficiency and mis-tag efficiency.

5.1 Event selection

The first task is to calculate the number of expected events Nexp for the H → bb̄ and H → cc̄ decay
channels and for the bb̄ and cc̄ irreducible background. Therefore, the following workflow was applied
to the available data-sets:

1. Obtain the number of events Nevents after applying the following criteria on the jet transverse
momentum pT and pseudo-rapidity η:

• 20 < pT < 100 GeV/c
• 2.2 < η < 4.2

These requirements ensure that the jets are reconstructed in a phase space region where the
reconstruction efficiency is uniform with respect to pT and η [45] and to remove not desired
events like light-quark jets.

2. Calculate the selected events Nselected for the bb̄ and cc̄ samples by re-weighting the events Nevents

because these sample were divided in 4 different intervals:

Nselected =
∑

i

ωi ·N i
events (5.1)

where wi are the weights which are proportional to the cross sections related to the different
intervals of transverse momentum exchanged in the hard interaction p̂T . Therefore, the sum
extends over all the files of the data-set. Table 5.1 summarizes these weights obtained using
PYTHIA. For the Higgs signals, Nevents = Nselected.

p̂T (GeV/c) ω(bb̄) ω(cc̄)

[10, 15) 1.0 1.0
[15, 20) 0.2497949295 0.2078621513
[20, 50] 0.1465910663 0.1203924034
> 50 0.0045055782 0.0034683555

Table 5.1: Production weights as function of the transverse momentum exchanged in the hard interaction.
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3. Finally, calculate the Nexp as:
Nexp = L · σ · ϵ (5.2)

where L = 6 fb−1 is the Run-II integrated luminosity at
√
s = 13 TeV, σ is the production cross

section of an event within the LHCb geometrical acceptance (computed using PYTHIA8) and ϵ
is the efficiency estimated as

ϵ =
Nselected

Ngenerated
(5.3)

Following the procedure described before and the cross section σ and Ngenerated values detailed in
Table 5.2, the expected events Nexp for both Higgs decay channels and the irreducible backgrounds
can be calculated.

Channel cross section Ngenerated efficiency (%) Nexp

H → bb̄ 1.51 pb 2×105 12.953 1173
H → cc̄ 94 fb 2×105 1.531 9
bb̄ 3.26 ×109 fb 2×106 1.214 237× 106

cc̄ 3.26 ×109 fb 2×106 0.135 26 ×106

Table 5.2: Set of parameters used for the Higgs search.

Note how the expected events for the Higgs decay channels are very low compared with the irreducible
background, specially for the H → cc̄ decay channel. That’s why the observation of both decays are
challenging. Then, the expected events are used in order to calculate the significance for the observation
of both Higgs decay channels.

5.2 Higgs significance

A common particle physics experiment involves the search for new phenomena by observing a unique
class of events in particle interactions that cannot be described by background hypotheses. This
search can be simplified to that of a “counting experiment” where one identifies a class of events using
well-defined criteria, counts up the total number of selected events and estimates the events that come
from the various background processes. Then, to estimate the p-value (often also expressed in terms
of level of statistical significance) of a given observation of signal events, assuming that the probability
density for the signal follows a Poisson distribution [78], i.e. the formula for the statistical significance
S in terms of standard deviation for the observation is given by:

S =
Nsignal

√

Nsignal +Nbackground

(5.4)

In particle physics, this observation could be represented as a narrow enhancement in a small invariant
mass interval of signal events above an expected background events. Assuming that (E1,p1) and
(E2,p2) are the four-momenta of the two jets, the invariant mass mjj of di-jet events is calculated as:

m2
jj = (E1 + E2)

2 −∥p1 + p2∥2 (5.5)

Then the significance for the Higgs observation in the H → bb̄ and H → cc̄ decay channels will be
done using the calculated expected events Nexp, detailed in Table 5.2 and the di-jet invariant mass
mjj range produced by the di-jet four-momenta.
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5.2.1 H → bb̄ and H → cc̄ search

Figure 5.1 shows the distribution (left) and the normalized (right) distribution of the di-jet invariant
mass produced by theH → bb̄ andH → cc̄ decay channels and for the bb̄ and cc̄ irreducible background.
In the normalized distribution is clear the peaks for both Higgs signals are around the 125 GeV/c2

measured by the CMS [4] and ATLAS experiments [5]. On the other hand, the un-normalized dis-
tribution clearly shows why both measurements are very challenging. It can be appreciated that the
overwhelming background is several orders of magnitude larger than the Higgs signals, specially for
the H → cc̄ decay channel because of its low branching ratio.
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(a) Di-jet invariant mass distributions used for the Higgs
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Figure 5.1: Di-jet invariant mass distribution used for the Higgs search in the H → bb̄ and H → cc̄ decay
channels.

In order to calculate the significance for the observation of both Higgs decays channels, the followed
steps were done:

1. Select the invariant mass range where the significance is the maximum for both decay channels.
This is done by an optimization process and the results of this calculation correspond to the
invariant mass region between [103-160] GeV/c2, see the shaded region of Figure 5.2.
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(a) Di-jet invariant mass distribution for the H → bb̄ decay
channel and its background.
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Figure 5.2: Di-jet invariant mass distribution for the Higgs search in the H → bb̄ and H → cc̄ decays channels
and its corresponding background. The shadow regions correspond to the invariant mass region where the
significance is the maximum.
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For the optimization of the significance of the H → bb̄ observation, the background corresponds
to the sum of the expected events of the bb̄ and cc̄ backgrounds and the H→ cc̄ signal. Similarly,
for the optimization of the significance of the H → cc̄ observation, the background corresponds
to the sum of the expected events of the bb̄ and cc̄ irreducible background and the H → bb̄
signal. The significance inside the shadow region for the H→ bb̄ and H→ cc̄ are 0.1845 and
0.0033, respectively. Although, these values could improve by applying ML classifier techniques
for jet flavour tagging.

2. At this point, the QML classifier and the classical classifier can be applied to the expected events
inside the optimized invariant mass range in order to separate mostly the cc̄ background for the
H → bb̄ search, and to separate the bb̄ background for the H → cc̄ search. Figure 5.3 shows
the probability distribution for the signal and the background obtained using the QML and the
classical ML models. Note, the probability to be a signal event is 1 and the probability to be a
background event is 0.
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Figure 5.3: Prediction distribution for the H → bb̄ and H → cc̄ signals and their respective backgrounds. The
prediction to have a signal event is 1 and the probability to have a background event is 0.

The quality of the separation relies on the classifier performance for the b- and the c-quark jet
classification. As can be appreciated in the Figure 5.3.a, the background is not well separated
from the H → bb̄ signal for the larger number of bb̄ events than the cc̄ events. On the other
hand, for the previous reasons the H → bb̄ signal is better separated from the background, see
Figure 5.3.b. This separation will be useful to cut the signal and background events below a
certain probability limit in order to remove background events.

3. Finally, the significance can be improved by applying a probability or prediction cut x over the
prediction distribution. This is done by removing all the di-jet events below this cut x either
from the signal and the background. Therefore, the significance improvement relies in a good
separation between the signal and the background events, where the cut x is mainly applied to
suppress the background events because they ideally are located close to 0.

Figure 5.4 shows the results for the significance as function of the prediction cut x for the H → bb̄
(left) and the H → cc̄ (right) observation. Unfortunately, the significance for the H → bb̄ signal
cannot be improved under any prediction cut. On the other hand, the significance for the
H → cc̄ signal was improved more than a factor of 2, where the maximum improvement in the
significance is located at x = 0.45. The drop in the significance after reaching the maximum is
because the background becomes huge compared with the signal, even if most of the background
events were cut. Then, it is important to quantify the classification efficiency of the QML and
the classical ML techniques at the point of maximum significance x = 0.45.
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Figure 5.4: H → bb̄ and H → cc̄ significance as function of the prediction cut.

5.3 Classifiers efficiency for the H → cc̄ search

Now it is important to quantify the classification efficiency of the QML and the classical ML techniques
at the point of maximum significance with respect to some important physical quantifies like the pT ,
η and mjj . Due to the significance improvement is just observed for the H → cc̄ signal at x = 0.45,
this cut will be used to calculate the actual efficiency ϵ and mis-tag ω for the QML and classical ML
classifiers, defined as

ϵ(c-jet) =
Nc(Pc > x)

Nc
ω(b-jet) =

Nb(Pc > x)

Nb
(5.6)

where Nc is the total number of c- events used for the measurement and Nc(Pc > x) represents total
number of c- events above the prediction cut x. Both quantities quantify the discrimination power of
these algorithms, ranging from a random classifier (ω = 50%) to a perfect classifier (ω = 0%). Also,
their corresponding statistical errors are:

σϵ =

√

ϵ(1 + ϵ)

Nc
σω =

√

ω(1 + ω)

Nb
(5.7)

Figure 5.5 shows the efficiency and the mis-tag as function of the jet transverse momentum pT (first
row), the jet pseudorapidity η (second raw) and the di-jet invariant mass mjj (third raw) using x = 45.
The efficiency as function of the jet pT and jet η exhibits similar behaviors compared to the results
obtained on the c-jet test accuracy as function of the jet pT and jet η in Chapter 4, see Figure 4.14.e and
Figure 4.14.f, respectively. When the jet pT increases the ϵ(c-jet) decreases for both methods, but the
efficiency for the BDT classifier is better than the QML classifier. Similarly, as the jet η increases the
efficiency slightly decreases, being the classical method again the one with better efficiency. Besides,
the QML method gives a ω(bb̄-jet) larger than the BDT, but it slightly decreases as the pT or the η
increases while for the BDT method it increases.

On the other hand, the di-jet efficiency ϵ(cc̄-jet) and the di-jet mis-tag ω(bb̄-jet) have been computed
in 4 equidistan bins of the di-jet invariant mass mjj from [34, 214] GeV/c2, summarised in Table 5.3.
As expected from the previous cases, the ϵ(cc̄-jet) and the ω(bb̄− jet) are slightly constant along the
invariant mass mjj range, but smoothly decreasing as the invariant mass increases. It is a positive
outcome since any structures in the efficiencies would indicate a bias introduced by the classifiers
in the mass spectrum. Besides, the ϵ(cc̄-jet) at the Higgs mass (125 GeV/c2) is 69.77 ± 2.79 for
the BDT model while 63.18 ± 3.24 for the QML model, with ω(bb̄-jet) = 3.74 ± 0.65 for the BDT
model and ω(bb̄-jet) = 3.46 ± 0.63 for the QML model. Note, the mis-tag evaluated per pair of jets
shows, on average, values around 15% lower than the mis-tag evaluated per single jet, as shown in
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Figure 5.5 (bottom left). Finally, these results seem to be consistent between the classical ML method
with the QML method due to the statistical uncertainties in most of the cases overlap between each
other.
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Figure 5.5: Classification efficiency ϵ(cc̄-jet) and the mis-tag efficiency ω(bb̄ − jet) at x > 0.45 using the QML
classifier and the ML classifier.

mjj (GeV/c2) ϵ(cc̄-jet) ω(bb̄-jet)

BDT (%) QML (%) BDT (%) QML (%)
[35, 71] 75.99± 0.47 76.80± 0.45 3.85± 0.14 5.07± 0.16
[71, 107] 73.15± 0.96 69.62± 1.06 3.35± 0.24 3.77± 0.25
[107, 143] 69.77± 2.79 63.18± 3.24 3.74± 0.65 3.46± 0.63
[143, 179] 66.73± 7.32 52.54± 9.26 4.25± 1.74 3.52± 1.59

Table 5.3: Efficiency and mis-tag values in different mjj bins, on the point of maximum efficiency x = 0.45
using the classical BDT and the QML classifier.
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5.4 Higgs Significance Prediction

An interested question is when the H → bb̄ and H → cc̄ decay channels will have a relevant significance
value to proclaim their observation. Taking into account the current significances, S(H → bb̄) = 0.1845
and S(H → cc̄) = 0.0033, is possible to obtain a raw estimation of their next significances for the
incoming data taking campaigns. So, using Eqn. (5.2) and Eqn. (5.4) where the significance S0 scales
out with respect to the square root of the number of the expected events Nexp, and Nexp is proportional
to its luminosity L0, a new significance can be estimated as:

S′(L′) ≈ S0

√

L′

L0
(5.8)

assuming Nbackground >> Nsignal, a constant cross section σ and efficiency ϵ.

Therefore, using Eqn. (5.8) and the future expected LHCb luminosities, the future significances for
both Higgs decays are estimated and summarized in Table 5.4. At the end of the HL-HLC campaign,
the significance to have an observation of the S(H → bb̄) decay channel will be still below the value to
proclaim this observation. Unfortunately, the expected S(H → cc̄) is still very low. That’s why, more
sophisticated studies and improvements are necessary. These will be discussed in the next chapter.

Campaign Luminosity
√
s S(H → bb̄) S(H → cc̄)

Run 2 6 fb−1 13.0 TeV 0.1845 0.0033
Run 3-4 50 fb−1 13.6 TeV 0.5326 0.0095
HL-HLC 300 fb−1 14.0 TeV 1.3046 0.0233

Table 5.4: Expected significances for futures LHC data taking campaigns.
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Chapter 6

Conclusions and future developments

6.1 Conclusions

In this thesis, a new proof-of-concept for the application of QML algorithms for the b- and c-quark
jet identification on Run2 LHCb simulated data was developed. Several QML models have been
tested and compared to the best classical ML algorithm doing this task in terms of classification
performance. Then, the best QML model for the b- and c-quark jet classification was used for the
H → bb̄ and H → cc̄ search on simulated data to estimate the significance for their observation. The
results can be summarized as follows:

• As can be observed in Figure 4.14, at overall the best classical ML algorithm (BDT) has slightly
better performance than the best QML algorithm (QAOA Embedding), with AUC = 0.927 for
that classical model and AUC = 0.901 for that QML model. Besides, both QML and classical
ML algorithm have similar b-quark jet test accuracies, while the classical algorithm gives a better
c-quark jet test accuracy.

• Using the best QML model for the Higgs search in the H → bb̄ and H → cc̄ channels, Figure 5.4
shows that the classical ML model gives a better improvement for the S(H → cc̄), while any
significance improvement was possible for the S(H → bb̄). At the point of maximum significance
improvement for the S(H → cc̄) observation, the efficiency ϵ(c-jet) for the classical model was
slightly better than the QML model and, as expected, the QML has a slightly larger mis-tag
efficiency than the classical ML model against different physical quantities like the jet pT , jet η
and di-jet mjj , as can be observed in Figure 5.5. Also, the mis-tag performance gets enhanced
when is evaluated on di-jet bb̄ pairs.

• In spite of the QML is a field at its early stage, the results obtained in this thesis showed a
performance comparable with the classical algorithm for the jet flavour tagging. Therefore,
this good result is encouraging to continue with the research in this field looking for a better
performance.
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6.2 Future Developments

This search has many developments to explore either in the Software and Physics sides.

The QML developments are:

• Improvement on machine learning techniques. Despite different QML algorithms were
used, future analysis should explore new QML models to exploit the relationship between the
quantum circuit ansatz, such as qubits or the trainable parameters, and the structure of the
input data-set.

• Quantum hardware. Nowadays several quantum hardware are available via quantum comput-
ing cloud solutions such as IBM Quantum Experience, Amazon Braket. These hardware devices
are not always available, limiting the experience for short periods of user time. However, the
availability of quantum resources is expected to grow quickly in the near future [79].

• Quantum noise. In this work, only noiseless quantum simulators were used but future studies
about it affects the measurements is necessary. It requires a large number of evaluations for the
estimation of the gradient and consequently a high computational power. However, software
libraries and simulators are quickly improving over time, then the use of noise-aware simulators
can be considered soon.

The developments on detector/analysis are:

• Detector upgrades. The new data tacking of Run 3 will take advantage of several LHCb
detector upgrades such as the Vertex detector upgrades which enables a better SV reconstruction
efficiency, a new Calorimeter to measure the jet energy with better resolution allowing to obtain
a narrower invariant mass peak, etc.

• New data. The future data taking campaigns will run at higher center of mass energies boosting
the cross section, the detector acceptance and increasing the luminosity L. These new features
obviously will boost the Higgs search.

• New Higgs analysis techniques. More sophisticated analysis can be used for the Higgs search,
e.g., fitting the QCD background and the signal invariant mass shape instead of counting events
in an invariant mass window. This technique (fit the QCD shape) has already been implemented
for the Z → bb̄ measurement at the LHCb [80], see Figure 6.1.
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Figure 6.1: Background-subtracted distribution compared with the Z → bb̄ mass model [80].
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• Add other production channels to the analysis. New Higgs production channels should
be included in the analysis like the production channel associated with a W/Z boson.

• Search for particles correlations inside jets. The internal structure of jets is the result
of non-perturbative QCD mechanisms occurring in the hadronization process. The ability of
detecting correlations among particles inside the jet is unique to quantum algorithms and opens
new possibilities to build up new methods of jets reconstruction and identification, opening the
door for new physics measurements [81].
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