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“Experience serves not only to confirm theory, but differs from it without disturbing it, it
leads to new truths which theory only has not been able to reach.”

Jean-Baptiste Le Rond d’Alembert
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Abstract
Dipartimento di Ingegneria dell’Informazione (DEI)

Master Degree in ICT for Internet and Multimedia

Approximating optimal Broadcast in Wireless Mesh Networks with Machine
Learning

by Giovanni PERIN

With the advent of the Internet of Things and the forthcoming beginning of the 5G
era, the need for efficient wireless broadcast protocols arises, in order to enable a
wide range of future use cases. Mesh networks are a very generic type of topol-
ogy, working among peers and therefore perfectly adapting to the IoT case. More-
over, they are attractive for their reliability from a security point of view and high
adaptability. Nevertheless, state-of-the-art protocols use very primitive solutions for
broadcast transmissions, like repeating each message three times, which is the case
of a commonly used protocol named BATMAN. Hence, a more efficient solution has
to be found.

The problems of minimum-delay as well as power-optimal broadcast have been
researched and proved to be either NP-hard or NP-complete, respectively. There-
fore, Machine Learning shall be used to approximate an efficient solution. Specifi-
cally, in this thesis, a reinforcement learning approach based on Multi-Armed Ban-
dits is explored, designing two algorithms, one employing traditional Q-tables and
the other one using Bayesian Neural Network (BNNs).

The wireless medium exhibits a broadcast characteristic by itself which is ex-
ploited by Opportunistic Routing. Under certain assumptions, a protocol called
MORE, that employs Random Linear Network Coding, was proved to be optimal
in terms of airtime for a unicast stream. In a first stage, this protocol is used to es-
tablish how close the developed solutions come to optimality. Then, the algorithms
are applied to the broadcast scenario and analyzed in terms of airtime and latency,
inspecting as well the adaptability of the learning based protocols to channel qual-
ity variations. The simulations, performed on a simple environment created from
scratch with Python, show that the BNN based algorithm has a median improve-
ment of 8%− 12% and 10%− 22% in terms of airtime concerning MORE multicast
and BATMAN respectively, while being 6%− 17% and 4%− 31% better in latency
when comparing to the same two protocols. Moreover, when testing with the addi-
tion of a maximum allowed delay, the constraint is satisfied consistently in over the
97% of the cases.
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Chapter 1

Introduction

A Wireless Mesh Network (WMN) is a type of communication network which con-
sist of a set of radio nodes organized in a mesh topology, able to dynamically self-
organize. Part or all of these nodes have routing functions, meaning that they ac-
tively participate to the decisions about how the packets’ delivering is performed
in the network. Other nodes not being routers are called clients and they can be ter-
minals such as laptops, mobile phones and other wireless devices. Mesh routers
form the backbone for the clients and often, but not always, have minimal mobil-
ity. Advantages of using this kind of topology in the wireless medium include high
resilience and ability to rapidly find new routes in case of link failure or topology
changes. Further more, it allows multiple sources to transmit simultaneously, hence
exploiting spatial reuse, and it is a decentralized architecture without any network
controller, improving thus security. Just this last fact is sufficient to understand that
mesh networks will be at the centre of the Internet of Things revolution that will have
place in the next decade, since IoT requires indeed a distributed and self-organizing
network architecture.

Because WMNs can be large, routing algorithms must be efficient. Optimization
can concern a number of different objectives, like throughput, energy and end-to-
end delay. In this thesis, I develop a framework based on machine learning for the
minimization of the airtime cost of the network. Since, for the sake of simplicity, I
work in a single rate and flow scenario, this corresponds to the minimization of the
number of transmissions. This optimization objective reflects directly on both good-
put and energy consumption, improving them. This is because transmitting less
means having less overhead that fills the network uselessly and, at the same time,
saving energy for future transmissions, which is extremely important when devices
have a finite battery life. In a second moment, I also add to the optimization goal
hard latency constraints, which are typical of real-time applications like streaming,
online gaming, vehicular and healthcare communications.

In the past, routing algorithms operated sending uncoded packets along a com-
puted path considered to be the shortest one according to a certain metric. For ex-
ample, Dijkstra’s and Bellman-Ford’s algorithms are well known for finding shortest
paths in a graph in terms of hop counts. Therefore, to guarantee a sufficient reli-
ability against lossy links, which in wireless networks are very common, existing
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protocols used Automatic Repeat reQuest (ARQ), Forward Error Correction (FEC)
or a mixture of the two approaches (HARQ). ARQ consists in asking the repetition
of the transmission of a corrupted packet, whereas FEC involves the attempt of re-
constructing the original transmitted symbol starting from the corrupted one. From
the beginning of the millennium, however, Network Coding (NC) started to be stud-
ied and researchers found that it was a suitable method for achieving the maximum
theoretical multicast throughput [2]. NC techniques integrate original informative
symbols by means of elementary operations like bit-by-bit XOR, creating in this way
coded packets, sent by the source and decoded at the destination. Since the wire-
less medium is a broadcast one by nature and at that time the wireless technology
was starting to be good enough, the first protocols combining routing with network
coding arose, showing immediately that this solution was worthy.

In the same years, Opportunistic Routing (OR) was conceived, with a protocol
named ExOR [13], that sent messages across multiple paths, thus exploiting lucky
receptions. With MORE [16], Network Coding was integrated to this kind of ap-
proach, allowing for a better spatial reuse and a higher throughput performance.
MORE was designed for the minimization of the airtime cost in wireless networks
for the unicast case, i.e. the scenario in which a single source sends a message to a
single destination. This protocol was also proven to be theoretically optimal in such
a case.

MORE was then extended to multicast communications, namely the setting in
which the source transmits to more than one destination. When the message has to
be delivered to all the nodes of the network, we talk about message broadcasting.
This paradigm is used nowadays for the spreading of audio and video contents,
for instance for the television or web streaming. With the expected diffusion of the
IoT, however, message broadcasting will soon become of extreme importance also
for connected applications such as smart cities, smart grids, vehicular networks, do-
motics, digital health and industrial and medical robotics. Even though broadcast
will assume an increasing important role in the near future, a theoretical optimum
is not yet available for this type of communications, at least for what concerns the
airtime 1.

The objective of this thesis is thus to approximate an optimal solution in terms
of airtime cost for message broadcasting in WMNs, where all the nodes are consid-
ered to have full routing functions. To reach this goal, I use some of the most recent
advances in machine learning, particularly in the field of reinforcement learning, to
develop an unsupervised and data-driven framework. Following this direction, I
implement contextual Multi-Armed Bandits in two versions: a classic Q-table and
a Neural Network based solution. The goal of the bandits is to determine the min-
imum number of transmissions that each node should perform to broadcast the in-
formation in the network. Moreover, the implemented framework supports fully

1Indeed, a theoretical optimum generally exists in terms of throughput [6]. However, besides being
the objectives different, the distributed Linear Programs proposed are infeasible for large networks
due to the high computational complexity.
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distributed algorithms, since nodes in the network are treated as independent learn-
ers, each with its own bandit in a multi-agent scenario. The only information about
the network known by each node is what it can get just by overhearing to its one-
hop neighbors transmissions. This is extremely important because many protocols
rely on full knowledge of the network’s topology, having thus a relevant amount
of control packets traffic. This thesis is structured in two steps. In the first one, the
learning framework is compared with the theoretically optimal solution represented
by MORE in the unicast case, to assess whether the designed algorithms are satis-
factory enough. This first phase can be considered as a preliminary for the second
one, which is the actual work on broadcast. Here, a comparison of the implemented
algorithms with the multicast version of MORE and of another popular protocol
named BATMAN [19] is accomplished. To summarize, the original contributions of
this work are:

• Implementation of a reinforcement learning framework for the minimization
of the airtime cost. Previous work employing machine learning focused on
single path selection minimizing the end-to-end delay and was done only for
the unicast case.

• Use of only local information, gathered by each node just by overhearing
its neighbors’ transmissions. The topology configuration at a larger scale is
learned directly from data and this allows to reduce significantly the overhead
due to common hello messages.

• Realization of solutions based on fully distributed algorithms, which is a strict
requirement of WMNs, since they lack of a network controller in their infras-
tructure.

• Good scalability with respect to the mesh size, which is a direct consequence
of the fact that nodes only use local information and the optimization is ap-
proximated in a distributed way.

• High adaptability to the environment and to non-stationary conditions, as
routers learn directly from on-field data.

The rest of this thesis is structured as follows. In Chapter 2 an intuitive explana-
tion of the use of network coding is given, together with a motivating example and
the definitions of the most important parameters of Random Linear Network Cod-
ing (RLNC). The chapter proceeds with a review of the most commonly used rout-
ing algorithms, both in the unicast and multicast case, with a particular emphasis on
MORE and BATMAN, which constitute the main terms of comparison with the im-
plemented learning algorithms. Finally, previous work found in the literature about
the use of reinforcement learning for routing tasks is presented in the last section.
Chapter 3 is dedicated to the mathematical definition of the optimization objectives,
as well as the presentation of the framework employed in this thesis. Specifically,
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some theoretical background on recent findings in the Deep Reinforcement Learn-
ing (DRL) field and multi-agent control will be given before a detailed explanation of
the learning algorithms designed to reach the defined goals. In Chapter 4 the simple
simulation environment created in Python is presented, together with the chosen
settings and the experiments performed. Chapter 5 is dedicated to the simulation
results and their analysis and, finally, in Chapter 6 a resume of the notable results of
this thesis is drawn up, possible future work is suggested and current open issues
are highlighted.
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Chapter 2

Related Work

2.1 Network coding

Network coding was introduced between the late ’90s and the beginning of the mil-
lennium to improve network throughput, in particular as for what concerns the
multicast scenario. Besides, it offers improvements in wireless resources, security,
complexity and resilience. Studies show that using network coding is also beneficial
in terms of the minimization of the number of transmissions in broadcast, because
coded packets are more likely to be useful for a higher number of nodes and most of
the ARQ retransmissions can be avoided [7], [8].

The classical introductory example is the so called "butterfly" network, that is
shown in Fig. 2.1 and was firstly introduced in [2]. The source s must deliver to the
destinations t and u three packets, namely x, y and z. A traditional routing solution
can be the one that follows. At time slot 1, the source sends x and y, routing x to both
the destinations and y only to u. At time slot 2, the source emits y and z, successfully
delivering z to both the destinations and y only to t. The multicast throughput of
this solution is 1.5 packets per channel use, because three packets are delivered in 2
time slots. This throughput is the best achievable by any routing solution. However,
if node b, instead of routing one packet and blocking the other, transmits the bit-by-
bit XOR of x and y, both destinations receive the packet x ⊕ y, from which node t
can immediately recover y as x ⊕ (x ⊕ y) = y and, similarly, node u can recover x.
In this way, the multicast throughput is increased to 2 packets per channel use, at
the cost of performing a coding operation at node b and the correspondent decoding
operations at the destinations. In the case of this topology, there is no way to do
better: actually, the destinations are connected to the network by two edges, so it is
impossible to receive more than two packets per unit time [1].

2.1.1 Random Linear Network Coding (RLNC)

Linear coding is an operation defined over a Galois finite field, usually denoted as
Fpn or GF(pn), where p is a prime number and n ≥ 1. Since we want to send bits
0 or 1 over the channel, in network coding we use finite fields of the form F2n , so
that the sum of two polynomials in these fields is simply defined as the bit-by-bit
XOR of them, like in the example above. If we also need multiplications by scalar
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FIGURE 2.1: Butterfly example.

values, it is sufficient to combine XOR operations with left shifts. The number n
defines the complexity of the field, that is to say how many different combinations
of polynomials can be generated. In our case, if n = 1 so that we are in F2, each
packet can be either selected or not selected, with scalar coefficients 0 or 1. As n
grows, the number of possible scalar coefficients grows accordingly. In our scenario,
sometimes F2 is chosen for its simplicity both in the coding and decoding operations.
To increase reliability, however, often F8 is preferred, at the cost of a higher decoding
computational complexity.

Random Linear Network Coding (RLNC) is a linear coding technique which con-
sists of summing up available packets multiplied by coefficients randomly picked
from the finite field selected. Two different approaches can be distinguished and
they are generation-based RLNC and sliding window RLNC [4]. In the former ap-
proach a set of symbols to be coded is called generation and the generation size
defines the number of original symbols inside each disjoint generation. In the lat-
ter case, a sliding window with a certain size and stride spans the symbols. Here,
the coding is partially overlapping between subsequent windows. In both cases na-
tive symbols are picked up and coded with the previously described approach to
generate coded symbols, described by code vectors. The code vector, of length equal
to the number of symbols in a generation or a window, collects the multiplicative
coefficients of each symbol. Intermediate nodes and destinations collect the data
arriving from the upstream and build a matrix with the code vectors. When this
matrix reaches full rank, every symbol of the current generation or window can be
decoded. If K is the number of native symbols, we need N ≥ K coded symbols to
retrieve the original information, because, in general, some of the coded symbols
received may be linearly dependent on the others.

Although the butterfly example showed the advantage of using Network Coding
in terms of throughput, there are still some open issues:
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• High computational complexity due to the gaussian elimination process, used
to solve the linear system in the decoding phase;

• Linear dependency among coding blocks, which can reduce significantly the
rate of innovative packets received;

• High overhead due to the fact that code vectors must be appended in the
header of transmitted packets;

• High latency, because all information will be retrieved when the matrix reaches
full rank, which happens at the end of the transmission in generation-based
coding.

For what concerns the first two points, a trade-off is obtained by choosing a proper
finite field. A Galois field with higher complexity, as already remarked, will require
higher efforts in the gaussian elimination process but will also decrease the proba-
bility of sending linearly dependent packets, as there are more coefficients combina-
tions available. The overhead is instead kept acceptable for a certain protocol choos-
ing the generation or window size, which determine the code vectors’ lengths. The
last point is a bit trickier but recent literature proposed PACE, a generation-based
coding algorithm which consists of adding m coded packets every n non coded ones,
thus increasing the latency performance while keeping the reliability advantage of
NC [9]. Sliding window coding, instead, suffers less the latency problem but more
the computational complexity. Therefore, Caterpillar was introduced as a sliding-
window solution approaching the lower computational complexity of generation
RLNC while keeping the typical latency of this kind of approach [10].

2.2 Routing protocols

Traditional routing approaches include Optimized Link State Routing (OLSR) and
Ad hoc On-demand Distance Vector (AODV), both standardized by the Internet En-
gineering Task Force (IETF) in 2003 [5], [11].

OLSR is a proactive routing protocol in which each node of the network keeps a
routing table. This table is built basing on a high knowledge of the topology, deriv-
ing from the exchanging of Topology Control (TC) packets between routers. Nodes
in OLSR also keep a list of neighbors, only considering bi-directional links, estimated
via HELLO messages. Control packets are flooded from a node by a subset of relays
in its symmetric 1-hop neighborhood. This set is called MultiPoint Relay (MPR)
and is chosen so that it covers all the symmetric strict 2-hop nodes. There may be
multiple choices of valid MPRs, however, in general, the smaller the set, the less
the control traffic. In OLSR each node selects the path towards the destination by
means of Dijkstra’s shortest path algorithm, using the simple hop-count as metric.
However, in a more recent version of the protocol, olsrd, the metric used has been
changed to ETX [12], which has been proved to be more performing. An advantage
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of OLSR and pro-active protocols in general is that they always maintain a fresh list
of routes, thus making path immediately available. The main drawback is instead
the huge amount of routing traffic generated for routes that may never be used.

AODV is a reactive protocol, meaning that it does not keep any routing table but
rather every time a transmission is requested a new route is established thanks to
the route discovery process. When a node needs to transmit, it broadcasts a Route
REQuest (RREQ) through the network. Candidate forwarders respond with a Route
REPly (RREP) or a Route ERRor (RERR) in the case in which a relay that was previ-
ously available is now not reachable any more. RREQs have a Time To Live (TTL)
that limits the number of times that they can be retransmitted, thus preventing the
network from being overloaded by control packets. Basing on the RREPs received,
the source can establish the best route, using the hop-count metric. AODV is mostly
used in mobile ad-hoc networks, where routes change frequently and it is thus use-
less to store them in a table since they will be outdated after a short while. The
advantage of reactive protocols is that they do not need to compute routes that pos-
sibly will never be used. On the other hand, when a new route is required, the route
discovery process may delay transmissions unacceptably.

While in commonly used protocols multicast communications are often seen as a
set of unicast ones, where NC can increase the efficiency (Section 2.1), broadcasting
is tackled with a slightly different approach. Actually, a common and surely reliable
way to broadcast messages is by flooding, which consists in transmitting the upcom-
ing packet through all the possible routes except the one from which it just arrived.
The drawback in this simple algorithm that makes it usually infeasible in this basic
version is that the wireless medium gets overloaded rapidly. A trick used to prevent
this problem is to choose a probability value p defining a Bernoulli random variable.
If this random variable assumes value 1, the packet is transmitted, otherwise it is
discarded. However, this procedure is certainly suboptimal at least in terms of la-
tency when using full RLNC, as keeping information for a second moment does not
guarantee any advantage.

2.2.1 Opportunistic routing

Opportunistic or anypath routing is the paradigm proposed to improve the through-
put of mesh networks by exploiting lucky receptions. In traditional routing, like
OLSR and AODV protocols, nodes receiving packets discard them if they are not the
next-hop in the pre-computed path between the source and the destination. How-
ever, because of the broadcast nature of the wireless medium and the fact that con-
nections are often unreliable, it is extremely inefficient to discard packets at nodes
that are closer to the destination. In opportunistic routing every node closer to the
destination in some metric sense is a potential forwarder and a specific path is never
pre-computed, although a list of possible forwarders may in fact be.

The first protocol that was introduced in this sense was ExOR [13] in 2005. It
selects nodes basing on an immediate version of the Expected Transmission Count



Chapter 2. Related Work 9

(ETX) metric, considering only the forward delivery probabilities. Let i and j be two
connected nodes and pij the delivery probability from i to j. This simplified version
of the ETX can be written as:

ETXij =
1
pij

(2.1)

Multi-hops ETXs are computed simply summing up ETXs of each link in the
path. In ExOR a node is considered closer to the destination if it has an ETX to
the destination smaller than the one of the current transmitter. However, in large
networks, the number of possible forwarders rapidly explodes. This is why ExOR
performs pruning selecting in the forwarders list only those nodes that perform at
least 10% of the transmissions thanks to a batch simulation. The knowledge of the
state of the network, that is to say the estimation of delivery probabilities, is re-
trieved with periodic link-state flooding of per node measurements. In ExOR nodes
have priorities based on their ETX distance to the destination and only one node is
allowed to transmit at a time. Thus, higher priority nodes transmit first and lower
priority nodes do not transmit if their radio overhears a transmission of the same
packet done by a higher priority relay.

Simple Opportunistic Adaptive Routing (SOAR) is a variant of ExOR in which
forwarders are constrained to be near the shortest path to improve coordination
and communications between relays [14]. Performances are very similar to the ones
found for ExOR.

MORE

ExOR and SOAR impose a strict schedule on routers’ access to the medium and,
although it shows an opportunistic gain, it prevents spatial reuse and thus it may
underutilize the channel. To cope with this limit, MAC-independent Opportunistic
Routing & Encoding (MORE) was proposed in 2007 [16], [15].

MORE is the first opportunistic protocol which integrates network coding, hav-
ing the beneficial effects described in Section 2.1. In MORE, the source sends to
the destination N transmission batches, each split in K packets, called native packets,
where K is the generation size of the coding. When the MAC allows the source to
transmit, it generates a new coded packet and broadcasts it to its neighbors. In the
header of each packet there are the code vector, the batch ID, the source and destina-
tion addresses and the forwarders list computed by the source. Each relay, instead,
when receiving a packet, performs the following operations:

1. Checks whether it is in the forwarding list. If not, it stops here.

2. Checks the code vector to see if the packet is innovative, i.e. if it contains new
information. If not, it stops here as well.

3. Creates a new recoded packet which contains also the information of the most
recent arrived informative packet and puts it into a buffer.
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4. Increments its credit counter by its transmission credit.

5. Waits for the MAC to allow transmissions and broadcasts the most recent
packet in the buffer if its counter is positive.

6. Decrements the credit counter by a unit.

As soon as the coding buffer of the destination reaches full rank, the destination
sends a batch ACK to the source to stop transmissions. All the relays that overhear
the ACK message stop forwarding as well.

The optimization objective of MORE is the minimization of the airtime cost,
which produces a fair utilization of spectral resources. To reach this objective MORE
computes the optimal forwarding rate for each relay belonging to the forwarders
list. The first thing MORE does, is that it orders forwarders basing on their ETX to
the destination. It defines the forwarding rate zi as the expected number of trans-
missions that forwarder i must do to route one packet from the source, s, to the
destination, d. The number of packets that node j receives from the upstream is

∑i>j zi(1− εij), where εij is the loss probability of the link between i and j. Every
received packet should be forwarded only if no node in the downstream has already
overheard it and this happens with probability ∏k<j εik. The number of packets that
j must forward is therefore

Lj = ∑
i>j

(
zi(1− εij)∏

k<j
εik

)
(2.2)

if j is a relay. If instead we are considering the source we have Ls = 1 because it must
forward every packet of the generation.

To compute the forwarding rate, MORE considers that node j should transmit
each packet until a node closer to the destination does not receive it. Therefore, the
number of transmissions that j should perform follows a geometric random variable
with parameter p =

(
1−∏k<j εjk

)
and the forwarding rate is thus:

zj =
Lj(

1−∏k<j εjk

) (2.3)

The last step is the computation of the transmission credit, which corresponds to
the number of transmissions that j should perform to for every packet it receives
from a node in the upstream. For each packet sent by the source, node j receives

∑i>j(1− εij)zi. So, the transmission credit of node j is:

TX_creditj =
zj

∑i>j(1− εij)zi
(2.4)

Pruning is performed in MORE like in ExOR, with the exception that the former
does not need to simulate a batch to evaluate which nodes should be excluded from
the forwarders list. Actually, it is sufficient for MORE to exclude those nodes for
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which zi < 0.1 ∑j∈N zj. Since the list of forwarders is kept in the header, this prevents
the size of the overhead to increase too much when networks are large.

The author proves in [16] that MORE is the optimal solution to the problem of
the minimization of the overall network-wide cost of the flow, under the constraint
that full information is retrieved at the destination. This is true only for an infinite
generation size and it is suboptimal for small ones. However, MORE represents the
best approximation of an optimal solution for big enough generation sizes. It works
well, for example, in the practical scenarios where it is typically between 64 and 256.

There exists also a straightforward extension of the unicast version of MORE to
the multicast scenario. The only changes that must be done are:

• The source waits for the ACKs of all the destination before proceeding to the
following batch;

• The list of forwarders is the union of the lists for each destination;

• Transmission credits are computed with Eq. 2.4 considering the maximum of
the zi for each unicast flow;

• Both the forwarders list and the transmission credits are recomputed dynami-
cally when a destination is acknowledged, considering only those destinations
that are not acknowledged yet.

In terms of throughput performance, MORE reaches 22% better throughput than
ExOR and 95% better than traditional routing in the unicast case and this gain is
mainly due to MORE’s spatial reuse. Throughput gain is instead up to 35− 200%
with respect to ExOR and 3x to traditional routing in the multicast case.

Finally, an improved version of MORE uses the metric Expected Anypath Trans-
missions (EAX or EOTX), that allows the choice of a better list of forwarders [17],
[18]. First of all, the ETX based set of forwarders of the source is computed as in the
older version. Then, let Cs,d

i be the candidate with highest priority (with 1 being the
highest) with delivery probability pi, the EAX can be computed recursively as:

EAX(s, d) =
1 + ∑i EAX(Cs,d

i , d)pi ∏i−1
j=1(1− pj)

1−∏i(1− pi)
(2.5)

A practical forwarders selection is the following. Firstly, a set of forwarders is deter-
mined with the classic ETX metric, including in the list neighbors that have a lower
ETX to the destination. Then, the node with the best priority is selected to initial-
ize a new set and, finally, the rest of the forwarders are selected incrementally. A
new node among the ones that are candidates, joins the actual forwarders only if it
reduces the EAX of a factor of at least φ.

2.2.2 BATMAN

Better Approach to Mobile Ad-hoc Networking (BATMAN) is a proactive distance
vector routing protocol developed in 2008 and proposed as an IETF standard [19]. It
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was born as a response to the shortcomings of OLSR, such as the unnecessary flush-
ing up of routing tables or the keeping of outdated routes that may cause routing
loops. Its routing objective is the maximization of the probability of delivering a
message.

The only thing BATMAN cares about is to remember which is the best next-hop
given the source and the destination. It is thus a distributed protocol, requiring
only local information and does not need to broadcast the information about topol-
ogy changes. This is why it is particularly suitable for Mobile Ad-hoc Networks
(MANETs) and also for Wireless Mesh Networks (WMNs), where, due to the nature
of the wireless medium, the link quality often changes quite rapidly. In BATMAN,
each routing node generates periodically Originator Messageses (OGMs) with a se-
quence number and broadcasts them to its neighbors, setting a TTL and attaching its
own IP as originator address. Neighbors that receives the message change the send-
ing address to their own, increase the sequence number and re-broadcast the OGM
if the TTL is not expired. The originator does a bidirectional link check when receiv-
ing back its own OGM using the sequence number, to verify if the link can be used
in both directions. Thus, links are just compared in terms of number of originator
messages received within the current sliding window. From a practical viewpoint, a
BATMAN route is chosen as [20]:

1. Let m be the message from s to d on the graph G. Remove all the links (s, i) ∀i 6∈
K, where K is the set of the neighbors of s;

2. Associate to each link the weight wsi, the weight being the number of orig-
inator messages received from the destination through i during the current
window;

3. Send m to the neighbor with highest link weight;

4. Repeat steps 1-3 until i = d.

This protocol, unlike OLSR and AODV, takes into account the possibility that links
have different qualities in the two directions.

Comparisons between OLSR and BATMAN show how the latter is able to exploit
asymmetrical links, having an improvement in terms of throughput of about 17%,
even though OLSR keeps a 1% better packet loss probability. It is also important
to highlight that BATMAN is a lightweight protocol, having a 10 fold reduction in
CPU load with respect to OLSR in a testbed of 49 nodes and the routing overhead
is also much lower [20]. However, there are particular cases where still OLSR has
a better throughput, basing on the size of the sliding window [19]. Performance
comparison against AODV has also been performed [22]. Authors show how AODV
has generally a slightly lower delay because the path selected are shorter, whereas
throughput results are very close. BATMAN shows better performances in cases
where link connections are poor or in presence of bottlenecks and is in general more
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reliable for multi-hops. However, it also causes routes to change at a much higher
rate, because AODV performs the route discovery process to find a new route and
keeps it unvaried until it is not broken. Finally, AODV is faster on average in route
recovery in case of failure, even though it has a larger variance.

There exists also a broadcast extension of BATMAN using the simple concept of
classic flooding. This approach consists just in repeating those frames that were re-
ceived with a new sequence number, unseen until the current time step. Each new
frame is transmitted three times with a timeout of 5ms to increase the probability of
reception at another node in the network, avoiding at the same time the problem of
broadcasting storms. A couple of other rules are added to prevent the relay from re-
transmitting the frame, reducing thus the overhead. An intermediate node, actually,
does not rebroadcast the received frame if one of the following cases occur:

• the interface has no neighbor among the ones that require the message, so
sending the frame into the void would be useless;

• the interface has only one neighbor among the ones that require the message
and it coincides with the previous sender.

2.2.3 Geographical routing

One of the first routing protocols entirely working with geographical information
is called Geographic Random Forwarding (GeRaF) and was proposed in 2003 [23].
This protocol, conceived particularly for WSNs, relies on the assumption that nodes
can determine their location and that the position of the final destination and of the
transmitter are known and attached on the message. In this way, an intermediate
node which overhears the transmission can easily determine its priority in the set of
the forwarders, and decide accordingly if it has to forward the message or not. The
main advantage of this idea is that, unlike traditional routing, the source does not
need to precompute any end-to-end route to the destination but packets can rather
be sent on the fly.

This simple unicast routing solution employing geographical information, repre-
sents an inspiration also for applications in several broadcast scenarios. For example,
in vehicular networks (VANETs), having destinations in a target area is extremely
useful. This can be because nodes, here represented by vehicles, are prone to fre-
quent and quick topology changes and events on the street may have to be notified
basing on a geographical position in which nodes are at a certain time frame. Com-
puting fixed routes in such a scenario would be extremely inefficient because these
routes would become outdated too fastly.

GeoNetworking is the response to this problem by the European Telecommuni-
cations Standards Institute (ETSI) and it is explained in the EN 302 636 series. It
supports both the transport of packets to an individual node (GeoUnicast) or any
node inside a certain area (GeoBroadcast/GeoAnycast), as well as the broadcast in a
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n-hops neighborhood. In this protocol, two types of transport packets are used: Co-
operative Awareness Messages (CAMs) for periodic single-hop broadcast and Dis-
tributed Environment Notification Messages (DENMs), which are the ones actually
used for the delivery of event-driven messages in a geo-area. Further more, there
exist three main forwarding schemes:

• Simple GeoBroadcast (S) restricts the retransmissions inside the geo-area. Ev-
ery node inside the area retransmits the packet immediately after the reception.
A duplicate detection is performed checking the source identifier and the se-
quence number. Packets are also endowed of a maximum hop count and a
lifetime.

• Contention-based forwarding (CBF) sets timers for the receiving neighbors,
with duration which is inversely proportional to the distance from the source,
i.e. the further the node from the source the shorter the timer. The packet is
either rebroadcasted when the timer expires or discarded if it was received a
second time in the meanwhile.

• CBF with greedy forwarding (GFC) adds a selection of the next-hop forwarder
for immediate transmission performed by the current sender, to avoid the de-
lay caused by the timer in CBF. In this scheme, the sender transmits packets
to the unicast MAC address of a fictitious destination which correspond to its
best geographically located neighbor. There exist also two advanced flavours
of GFC. The first one uses a retransmission threshold (GFC-RT) so that a packet
is only retransmitted if the number of reception after the first one is above a
threshold. CBF has the threshold set to 1, since it discards the packet after the
second reception. The second advanced version utilizes a sectorial contention
area (GFC-SECT) to restrict the number of candidate forwarders.

A deep performance evaluation of the different algorithms of GeoNetworking in
terms of traffic overhead, coverage ratio and end-to-end delay is carried out in [24].
Authors show that S only performs acceptably in low vehicle density conditions and
it is soon outperformed by the other algorithms. The CBF algorithm suffers from
high overhead in high vehicle density conditions because packets must wait in the
queue until the MAC let nodes transmit. In the meanwhile, yet, other timer expires
and more nodes than needed transmit the packet. This behavior directly translates
into poor performances in terms of coverage ratio for high vehicle densities. GFC,
instead, shows difficulties in the latency performance, because the virtual target of-
ten lies in the gray zone of the wireless medium and more retransmissions may be
required. In light of this, authors suggest to set a minimum link quality requirement
for the virtual destination and to enable multipath transmissions instead of persist-
ing using the lossy link.
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2.3 Routing with reinforcement learning

In 1994 the work of Boyan and Littman [25] was revolutionary as it proposed Q-
routing, an algorithm able to find the best path in a generic network, minimizing the
expected delivery time. It estimates the delivery time as a Q-value and updates it
basing on the rule:

∆Qx(d, y) = η(q + s + t−Qx(d, y)) (2.6)

where q + s + t is the new estimate, including also the time spent in the queue,
Qx(d, y) is the old Q-value and η is the learning rate, set to 0.5 to account more for the
recent behavior of the network. Authors compare this solution with Bellman-Ford’s
shortest path algorithm and show that Q-routing has much better performances in
high load conditions, as this method is able to find rapidly alternative ways avoiding
possible bottlenecks. The problem of poor performances in low load conditions is
addressed and improved in [26], whereas Kumar and Miikkulainen further improve
the exploration-exploitation policy, obtaining better results [27], [28], [29]. A gradi-
ent ascent algorithm is finally proposed in [30], with exploration policy based on a
softmax rule with varying temperature. Although performances with respect to the
shortest path algorithm, that was the state-of-the-art in the ’90s, were much better,
these algorithms suffered problems of scalability in large networks. This is because
the authors proposed solutions based on Q-tables as at that time neural networks for
reinforcement learning were not yet effective.

More recently, d-AdaptOR has been proposed [31] as a reinforcement learning
framework for opportunistic routing. It guarantees low complexity and overhead
and a distributed asynchronous implementation. This proposal uses Q-learning to
minimize the expected transmissions per packet considering also a generic cost ci

for every node i in the network. The authors prove the convergence of their policy
comparing the results of the trained framework with the ones of a genie-aided pol-
icy having full knowledge on the network. They also compare the performance of
their opportunistic routing scheme with the ones of ExOR (Sec. 2.2.1) for random
networks with 36 nodes. Results show how their method performs better in terms
of number of transmissions per packet.

In literature we also find reinforcement learning to maximize path shortness and
stability in MANETs [33]. In this work the author performs a comparison with Dy-
namic Source Routing (DSR) and ant-colony based routing (ACR), finding better re-
sults as for both the end-to-end delay and the packet delivery probability. Here the
Q-table is also compared with a deep Q-network (DQN) solution, which, however
still performs poorly.

Only very recently neural networks started to work properly, and they were par-
ticularly applied to the domain of Software Defined Networks (SDN). The first work
found in the literature uses an off-policy actor-critic deep deterministic policy gra-
dient method (DDPG) [34]. Here the authors makes use of the Traffic Matrix (TM,
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being the bandwidth request between each source-destination pair) as input to guess
the weights of the links between nodes. The goal of their framework is the minimiza-
tion of the end-to-end delay. They use a scale-free network with 14 nodes to test their
policy, comparing it with thousands of randomly generated different valid policies,
showing that the learned policy always places itself in the first quartile of the random
policies, varying the traffic intensity. Following basically the same settings and the
same framework, DROM is proposed in [35]. The comparison performed is also the
same, as similar are the results. In this paper the author also inspects the through-
put maximization with respect to two theoretically optimal solutions (SDN-LB and
QAR). When the traffic load exceeds the 30%, DROM performs slighlty better than
the other algorithms if trained for 105 steps. Although these two solutions proved
good results, they deal with SDNs, which have a centralized controller. This net-
work element does not exist in WMNs and for applying reinforcement learning to
this scenario, a more decentralized algorithm is needed.

In [36], authors propose a fully-distributed learning following the settings of the
Q-routing cited above and with the goal of delay minimization also here. Each node
is treated as an independent learner. They use a DQN with replay buffer to stabi-
lize the training and ε-greedy exploration policy, sampling a training batch for each
decision epoch. They compare two settings, one in which the input to the neural
network is the same as in the original Q-routing, the other in which the information
is expanded, including the action history and the future destinations of the next m
packets. Results show that the neural network with non expanded input does not
provide any improvement on tabular Q-routing, performing even worse. Providing
additional information is instead the trick that makes the neural network effective,
as it shows gains of about 30% in the average time delay with respect to classic Q-
routing.
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Chapter 3

Theory

3.1 Optimization objective

The primary goal of this thesis is to develop a suitable distributed algorithm for
routing in mesh networks. As shown in literature, the minimization of the airtime
cost is beneficial both in terms of energy saving and throughput, because this type
of optimization objective promotes a low traffic congestion in the network. In this
work only single-rate communications are considered and all the transmissions are
regarded as equally expensive. The problem of airtime optimization can be thus
defined as the minimization of the total number of transmissions performed in the
network to deliver a message from source to destination, expressed as:

min
N

∑
i=1

TXi (3.1)

where N is the total number of nodes taking part in the forwarding from source to
destination, and TXi indicates the number of transmissions executed by node i.

The first phase of my thesis regards a comparison between MORE (Section 2.2.1)
and the implemented learning algorithms for unicast communications. Therefore,
the same optimization must be performed to compare the protocols on the same
field. As MORE does not consider any constraint on other costs but the one that
full information must be retrieved at the destination, in this part of my work no
further objectives are added. However, for broadcast applications very often we
face latency constraints, because they may be quasi-real time ones, such as video
and audio streaming or controllers for robotics. In these cases, information goes
rapidly out of scope and it is therefore valuable to make sure that all the nodes that
need it have it in useful time. We can thus define a constraint on the end-to-end
delay, considering a maximum delivery time τ that the network must satisfy for all
the destinations. In mathematical terms, if we call di the delay associated to the
message delivery to node i, we have:

di < τ ∀ i ∈ [N] (3.2)
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The constraint (3.2) can be further simplified pondering the fact that if the maximum
delay satisfies it, then automatically all the others do. It becomes thus:

max(di) < τ (3.3)

So, in the second part of this thesis, the minimization objective pursued is the one of
equation (3.1) subject to the constraint (3.3). Performances comparison with MORE
and BATMAN are also evaluated in terms of how much the protocols are able to
satisfy the imposed time constraint.

3.2 Reinforcement Learning

Reinforcement Learning (RL) is a tool for learning how to map situations into actions
maximizing a numerical reward. The learner, called agent, must discover from raw
data which actions yields the highest reward, just by trying them.1 The intuitive
explanation of reinforcement learning is provided in Fig. 3.1. The agent, finding
itself at time t in a certain state st interacts with the environment performing an
action at and, as a result, will get a new state st+1 and a reward rt+1, which is the
numerical value of the action taken previously. Formally, reinforcement learning is
a way to solve Markov Decision Processes (MDPs), discrete time stochastic control
processes defined by the tuple of elements (S ,A, p, r, γ), where:

• S is a set of states;

• A is a set of actions;

• p : S ×A× S 7→ [0, 1] is a state-transition probabilities function;

• r : S ×A× S 7→ R is a reward function;

• γ ∈ [0, 1] is a discount factor.

As we want to learn the process, we are supposed not to know the function p, which
describes the dynamics of the process itself. In this case we talk about model free
reinforcement learning and it is the one of interest in this thesis.

The ultimate goal of the agent is to maximize its expected accumulated future
reward, defined by the discounted value function:

V(st) = E

[
∞

∑
t=0

γt rt+1

]
(3.4)

where γ specifies how much the agent cares about the future. For γ < 1, distant
rewards in time are less important and this may be a condition that should be satis-
fied in order to guarantee the convergence of the series. In practice, however, these
processes often have a finite horizon, so the summation does not go to infinity and

1Theory about reinforcement learning throughout this chapter is based on [37].
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FIGURE 3.1: The agent–environment interaction in a Markov Deci-
sion Process.

what happens between an initial and a final state is called episode. The equation
above can be expanded taking out the first term of the summation to derive the
fundamental Bellman recursive equation:

V(st) = E [rt + γV(st+1)] = E[rt] + γV(st+1) (3.5)

The way the agent maximizes the function expressed in (3.4) is by learning a
control policy function to choose which actions will result in greater reward basing
on which is the current observed state and the previous experience. If deterministic,
this policy is defined as:

π(s) = argmax
a

Q(s, a) (3.6)

where Q is the action value function, stating which is the expected value of the ac-
tion a when the observed state is s. However, often the policy is stochastic and its
function becomes the distribution π(a | s) defining the probabilities of taking each
action given the state s. Intuitively, the meaning of the state value function Vπ(s) is
the expected return of following policy π when the state is s, whereas Qπ(a, s) gives
the value of taking action a in state s. The relation between Q(·) and V(·) is:

Vπ(s) = ∑
a∈A

π(a | s) Qπ(a, s) (3.7)

and it is valid also in case of deterministic policy (3.6), as we can see it as a degen-
erate distribution probability which outputs probability 1 for the best action and 0
otherwise. In other words, an indicator function selecting the action which yields
the maximum value. In this case the relation is thus reduced to:

Vπ(s) = max
a∈A

Qπ(a, s) (3.8)

Two common ways to learn the state value function are Monte Carlo (MC) meth-
ods and Temporal Difference (TD) learning. Both of them try to reach the actual
value of V(·) with progressive updating of their estimate based on experience. Monte
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Carlo methods wait to see the return Gt of the actions taken in the whole episode and
use that value as a target, moving towards convergence with rate α and following
the updating rule:

V(st)← V(st) + α [Gt −V(st)] (3.9)

The main drawback of this method is that it needs to wait the end of the episode,
that is the moment when the agent reaches a final state, evaluating in a single shot
the whole history of actions taken. TD learning, on the other side, exploits feedback
after each action performed by the agent, as the reward rt+1 is immediately available
after at is taken. The simplest update of TD is based on a rule derived from Eq. (3.5):

V(st)← V(st) + α [rt+1 + γV(st+1)−V(st)] (3.10)

As can be seen the target here is represented by rt+1 + γV(St+1), which is a better
estimate of V(·) than the one before. A step of size α is taken in the direction of this
new estimate also in this case. Experiments show that, in general, the possibility of
updating the estimate after each action induces a faster convergence to the actual
value, which, however, is guaranteed for both the methods.

However, learning the state value function is not sufficient for the agent to find
the optimal policy, as it is only learning which is the value of each state following
a certain given policy π. As said at the beginning of this chapter, we want to learn
how to map an observation coming from the environment into an action and in this
way learn which actions lead to the highest rewards. Therefore, it is straightforward
at this point that we need to learn the action value function Q(s, a) and then follow
the optimal policy defined in (3.6).

3.2.1 Tabular Reinforcement Learning

TD learning can be used to learn as well the action value function. The first ap-
proach to achieve this goal is to create a storage structure having the form of a ma-
trix, called Q-table. It keeps on the entry qi,j the estimated value of taking action aj

while in state si. Naturally, the MDP modeled must be finite, namely A and S must
have a finite cardinality in order to use the Q-table, because we do not have infinite
storage capabilities. Two methods are commonly used: SARSA and Q-learning, be-
longing respectively to the on-policy and off-policy class. On-policy methods base
the updating rule on the policy that is currently on learning and yielded past actions,
whereas off-policy ones do not care about the current policy but rather select actions
that will yield the highest value. As for the state value function learning, also the
Q-value is updated basing on Bellman recursive equation:

Q(st, at) = E[rt] + γ max
a

Q(st+1, a) (3.11)
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State-Action-Reward-State-Action (SARSA) update is based therefore on the rule:

Q(st, at)← Q(st, at) + α [rt+1 + γ Q(st+1, at+1)−Q(st, at)] (3.12)

where Q(st+1, at+1) is computed with the learned policy π and defined to be 0 if
st+1 is a final state, i.e. the episode has ended. This rule employs all the elements of
the tuple (st, at, rt+1, st+1, at+1), giving rise to the name SARSA. Q-learning, instead,
uses the rule:

Q(st, at)← Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a)−Q(st, at)

]
(3.13)

and it is considered off-policy, because the learned policy is not used to compute
the value of the next state-action pair but rather the maximum over all the possible
actions in the observed new state is taken. An algorithm which is very similar to
Q-learning is Expected SARSA, whose update rule is equal to the one expressed in
(3.13), with the exception that maxa Q(st+1, a) is replaced with the expectation

∑
a

π(a | st+1) Q(st+1, a) (3.14)

resulting often in faster convergence.
There is still a problem to be faced in these algorithms: if the action taken in

a certain state is always selected with the rule defined in (3.6), the same action will
always be chosen until its Q-value does not decrease below the one of another action.
This is inefficient because it is highly dependent on initializations and also it would
not adapt easily if the environment was non-stationary. A common solution to this
issue is to choose ε ∈ [0, 1] and play a random action with probability ε, otherwise
follow the greedy rule (3.6). This algorithm, called precisely ε-greedy, ensures that
all actions are taken, because if we do not observe what happens when taking action
aj in state si, we will never know if it is a good action or not. It is thus important to
find a good balance between action exploration and policy exploitation.

However, although tabular methods are proved to converge to the optimum and
often in a reasonable time, they suffer from an important drawback. Actually, even
though they are perfectly suitable when the number of possible states and actions is
low, we should remember that, if there are M states and N actions, the number of
Q-values to store is O(N ·M). Intuitively, it is convenient to have the best possible
description of the environment to decide which is the best action to perform. This
means that it is desirable to feed the algorithm with as much information as possible,
thus enlarging the dimension of the state space. Moreover, and most importantly,
often relevant control tasks are in the continuous domain, so that actions are defined
with real numbers. These considerations make Neural Networks attractive solutions
for reinforcement learning as they are universal functions approximators.
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3.2.2 Deep Reinforcement Learning

Deep Reinforcement Learning is the attempt to combine the possibilities of Neural
Networks with the ones of reinforcement learning. The advantage, as said before, is
that the chance of having a wider description of the state and also accounting for a
higher number of actions, if allowed, comes at a minor cost. This is because it would
be sufficient to change the number of neurons at the input and output layers, leaving
the deeper layers unchanged. The first working algorithm after some promising
attempts produced Deep Q-Network (DQN) in 2013 [38], a neural network able to
play Atari games. The network is trained minimizing, at each iteration i, the loss

Li(θi) = E
[
(yi −Q(st, at | θi))

2] (3.15)

where the target is yi = E[rt+1] + γ maxa Q(st+1, a | θi−1) and θi are the network
weights at iteration i. In this version, a single Q-Network is used both to evaluate the
current Q-value and the target. The fundamental novelties introduced with works
on DQN are:

• The use of a replay buffer with a fixed capacity to store the most recent tuples
(st, at, rt+1, st+1). The training of the network is executed offline sampling n
of these tuples, n being the minibatch size. This shrewdness serves to reduce
sample correlation, since the training of a NN suffers if following samples are
correlated and this usually happens in an MDP.

• The introduction of two Q-Networks, one for the policy and the other for the
target. The target network is periodically updated with the policy network
weights, every k iterations. This addition improves the velocity and the stabil-
ity of training and solves the problem of optimistic estimation of the Q-values
computed by the standard version of DQN [39].

With DQN an estimate of the value of taking action a in state s can be computed.
However, still it is not possible to solve continuous control tasks. The only way to
do so using this framework would be to discretize the continuous space. Yet, this
could be inefficient in many cases. This is why Deep Deterministic Policy Gradient
(DDPG) was proposed in 2016, dealing with the problem of continuous control [40].
In DDPG a double actor-critic approach is used, inspired from the version of double
DQN. The actor is here a parameterized function µ(s | θµ) which deterministically
maps states to specific actions and is used as policy. The critic Q(s, a) is instead the
estimation of the Q-value, learned with the standard Bellman equation as in DQN.
The actor parameters are updated following the direction suggested by the critic:

∇θµ J = ∇aQ(s, a | θQ)∇θµ µ(s | θµ) (3.16)

and approximated taking the average over a minibatch. There are moreover two
versions of the actor and two of the critic, each couple is used to compute either
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the target or the current policy. Unlike in DQN, where updates of the target are
accomplished abruptly and occasionally, here a constant and low process with τ � 1
is proposed every iteration:

θQ
′
← τθQ + (1− τ)θQ

′
(3.17)

θµ
′
← τθµ + (1− τ)θµ

′
(3.18)

The last relevant introduction of this work is the exploration policy: instead of using
the classic ε-greedy method, suitable for discrete action spaces, an approach based
on the addition of a certain noise process N is proposed:

µ
′
(st) = µ(st | θ

µ
t ) +N (3.19)

The most recent advance in DRL, is represented probably by the Soft Actor-Critic
(SAC) algorithm, dated 2018, which modifies the learning objective of the agent [41],
[42]. Actually, while before it was said that the goal of the agent was to maximize
its expected reward, given by the discounted value function in (3.4), now a term
accounting for the entropy is added, obtaining the policy:

π∗ = argmax
π

∑
t

γt E [r(st, at) + αH(π(· | st))] (3.20)

where α is a temperature term regulating the importance of the entropy in the maxi-
mization task, controlling thus the stochasticity of the optimal policy. The advantage
of introducing the entropy term in the maximization objective is on the exploration
behavior: the policy is incentivated to explore more widely, while discarding un-
promising avenues. Moreover, in this way multiple near-optimal modes can be cap-
tured, and to this a similar probability is assigned. The process of adjusting the
temperature parameter is also performed during learning, providing an automated
way to tune the exploration policy. Results on typical RL tasks show that learning
benefits from this novelty, as other state-of-the-art frameworks are outperformed.

Although single agent DRL is starting to work with quite satisfying results, the
same thing cannot be said about the Multi-Agent case (MADRL). The first investi-
gated algorithm was MADQN, in a scenario where the two involved agents played
the popular game Pong [43]. Here, cooperative and non-cooperative tasks are ex-
plored but the dynamics of the environment are extremely easy, with just two agents,
four actions available per agent and an extremely simple reward function. An ap-
proach become more popular is the one proposed with MADDPG [44]. As the stan-
dard multi agent version of DDPG performed poorly, here the critic network is aug-
mented with the information coming from other agents’ actors. Therefore, the critic
represents a centralized action-value function, making the algorithm not suitable for
scenarios where it is not possible to have an omniscient critic. Moreover, these algo-
rithms in general suffer when the number of involved agents increase. This happens
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because each agent is interacting with the environment while other agents may not
know it, thus adding noise to their observations. Because in mesh networks there is
no network controller and for the above mentioned reasons, these algorithms would
work poorly for the task of this thesis. It is therefore necessary to find an alternative
solution, able to reach a fair result in a completely distributed way and at the same
time efficiently handle many agents, as WMNs can easily have many nodes with
routing functions.

3.2.3 Multi-Armed Bandits

A simpler form of reinforcement learning is represented by the Multi-Armed Bandits
(MABs), so called in analogy with the popular slot machine. Each arm, namely
action, available to the bandit is like a lever of the slot machine and the goal of the
bandit is to learn which arm will yield the highest expected reward. In the most basic
version, the bandit finds itself always in the same state and has to choose which of
the k available arms it should play. The episode lasts one single step, meaning that
in this case the target is just the reward:

q∗(a) = E[rt | at = a] (3.21)

This expression is a particular case of the Bellman recursive equation (3.11), where
Q(st+1, ·) = 0 because there is no next state.

Contextual Multi-Armed Bandits (CMABs) are a more interesting tool, being the
extension of MABs when there are many possible states but the horizon is still lim-
ited to one step. In this case there is a Q-value for each state-action pair, exactly like
explained in Section 3.2.1. The tabular solution of the contextual bandit problem
relies therefore on the update:

Q(s, a)← Q(s, a) + α[r−Q(s, a)] (3.22)

where α can be selected as 1
n , n being the number of times that a was selected while in

state s, thus performing an online average. Often, however, tasks are non-stationary
and we may want to assign higher value to more recent experience, thus choosing a
fixed rate α.

3.3 Algorithmic details

CMABs are an attractive solution for the unicast routing problem, which constitutes
the first task of this thesis. This is because the network finds itself in a certain state,
or context, described by the source ID, the destination one and possibly other in-
formation about the topology. It is reasonable to think that the network topology, if
non-stationary, changes with a negligible speed if compared to the time needed for
a single end-to-end communication. Moreover, once a full communication is ended,
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it is also reasonable to consider the following one as uncorrelated. In this way, an
episode starts with the beginning of the transmissions from the source and ends
with the acknowledgment message of the destination. Nodes participating to the
forwarding of the information represent agents involved in the interaction with the
environment and are allowed to choose a single action per batch transmission. In
analogy with MORE (Section 2.2.1), routers can choose their own TX_credit, i.e. the
number of packets that they forward for each innovative packet received from the
upstream. In this thesis, a CMAB version of Q-learning is implemented as tabular
solution and a Deep CMAB version of DQN as a neural networks based solution.
Naturally, as said before, this comes at the cost of discretizing the continuous space
and it would be interesting to investigate a solution that can handle the continuous
control of the forwarding rate as future work. The same framework is then applied
to broadcast communications, considering that nodes can choose a forwarding rate
at the beginning of each batch transmission and must keep it unvaried until the last
acknowledgment is broadcasted. Some simple local rules for flow control are added
to improve the behavior of the network in the optimization objective sense.

3.3.1 Exploration vs exploitation

The most basic exploration-exploitation policy for MABs is the already explained
ε-greedy. However, it often performs poorly and, in this thesis, a different approach
called Upper Confidence Bound (UCB) is preferred. Unlike ε-greedy, UCB does not
explore actions completely randomly but rather tries actions that are close to be op-
timal or particularly uncertain, almost ignoring the ones that are clearly not worthy.
A way to look for actions that have a higher potential is by following the policy
defined by the equation

π(st) = argmax
a

[
Q(st, a) + c

√
ln t

Nt(st, a)

]
= at (3.23)

Here c > 0 controls the trade-off between exploration and exploitation. The square-
root term is a measure of the uncertainty or variance of a’s value. Since ln t is at
the numerator, the uncertainty grows less than linearly as time goes by. It is also
true that the logarithm makes the exploration policy try all the actions, because it
is unbounded, but together less frequently when t increases. At the denominator,
Nt(st, a) indicates the number of times that a was taken while in state st. Therefore,
when an action is performed frequently, the uncertainty keeps low, if instead that
action is not taken for a certain amount of time, the uncertainty grows.

This method perfectly applies to the tabular solution when the state space is not
too large. The training algorithm is schematically presented in Alg. 1. At first, Q-
values are initialized to zero for every agent and state-action pair, then the simula-
tion of the environment begins. If the communication is in unicast mode, the context
of the bandit contains the couple (source, destination), whereas in the broadcast case
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Algorithm 1: Multi Agent Contextual MAB (MACMAB)
Input : set of states S ; set of actions A; reward function r : S ×A 7→ R;

communication environment E ; transmission mode, either U
(unicast) or B (broadcast); learning rate α.

begin
foreach agent i do

foreach (s, a) do Qi(s, a) = 0;
end
foreach communication do

src← source ID;
dst← destination(s) ID(s);
N ← set of the routers involved in this communication;
if mode = U then context← (src, dst);
else context← src;
foreach batch do

foreach agent i ∈ N do
si ← context;
sample ai ← UCB(si) transmission credit;

end
perform the batch transmission in E ;
foreach agent i ∈ N do

Ri ← r(si, ai);
Qi(si, ai)← Qi(si, ai) + α [Ri −Qi(si, ai)];

end
end

end
end

only the source ID is required. This means that in the first case we have to store
O(KN2) values, where K is the number of arms of the bandit and N the number of
nodes in the network, since there are N(N − 1) possible source-destination pairs. In
the second case the storage space required is much less as it is just O(KN). Each
communication from source to destination(s) has a certain number of subtransmis-
sions, named batches according to MORE (Section 2.2.1). For each of these batch
transmissions every router samples a TX_credit from its action space given the ob-
served state and following the UCB exploration-exploitation policy (3.23). The batch
transmission is then simulated and, as a final result, each node gets a reward (Sec-
tion 3.3.2) coming from the final ACK of the destination and can update its Q-value
with equation (3.22).

However, when using the neural network, it would be desirable to expand the
available information and the UCB policy is not a suitable method when the number
of possible states is too large. Exploration policies like ε-greedy and UCB are called
distribution-free, because they do not need any prior about the probability distribu-
tion over the action values. Methods that require such an initial information, are
called instead Bayesian, and they update the known distribution at each iteration.
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Hence, a possible solution is to select actions basing on their posterior probability of
being the best one and this algorithm is known as Thompson sampling.

A neural network can be seen as a function approximator parameterized by its
weights θ. If the network outputs the required distribution probability discussed
before, the initial prior is simply given by the random weights initialization and the
network is progressively trained to learn the actual distribution. Therefore, Thomp-
son sampling can be used with profit when dealing with neural networks. However,
problems arise when considering that the output of a NN is deterministic and spec-
ified by the trainable parameters θ. Thus, the exploration behavior would not be
sufficient and we need to add uncertainty on estimates. Luckily, there exists an easy
way to make the output stochastic and it is to use dropout: it is proved, actually, that
by using the standard Bernoulli dropout we can build a Bayesian Neural Network
(BNN) [47].

Dropout is defined by the Bernoulli random variable with parameter p in the
following way. When performing a forward pass, for every neuron unit in each
layer but the last one, a Bernoulli binary variable with parameter p is sampled. If
the resulting value is one, the neuron is kept, otherwise it is dropped, i.e. turned
off. The fact that the activity of neurons is regulated by a random variable generates
uncertainty, giving birth to the desired BNN and to an effective way of performing
Thompson sampling, since now the network’s output is stochastic.

To these properties, it would be desirable to add another feature: the ability to
automatically tune the trade-off between exploration and exploitation, because, as
the model earns experience, its initial uncertainty should collapse. With Concrete
Dropout [48], the parameter p becomes a trainable one as network’s weights are and
it is also shown that this method gives better performances, calibrated uncertainties
and faster convergence. Concrete dropout can be seen as a continuous relaxation of
Bernoulli dropout, described by a distribution qθ(ω), where ω = {W}L

l=1 is the set
of random weight matrices with L layers and θ are the variational parameters. The
dropout probability is optimized using a gradient method following the objective

L̂(θ) = − 1
M ∑

i∈S
log (p(yi) | fω(xi)) +

1
N

KL(qθ(ω)||p(ω)) (3.24)

where θ are the parameters to be optimized, N is the number of observed data
points, S a random set of M data points, fω(xi) the BNN’s output on input xi and
p(yi) | fω(xi) is the model’s likelihood. The Kullback-Leibler divergence is a term
accounting for entropy regularization and ensuring that the approximate posterior
qθ(ω) does not deviate too far from the prior distribution p(ω). The KL divergence
depends linearly, with negative slope, on the entropy of the Bernoulli random vari-
able defined by

H(p) := −p log p− (1− p) log (1− p) (3.25)

So, this term is regularizing dropout, since it depends on the probability p alone.
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Minimizing the KL divergence is thus equivalent to maximizing the entropy H(p),
which means that p is pushed towards 0.5 when N is small, decreasing towards 0 as
N increases, as can be deduced from equation (3.24).

The last step of this method is the moving from a discrete random variable to a
continuous one, now that we are able to tune the parameter p. This is done with the
concrete distribution relaxation z̄ of the Bernoulli random variable:

z̄ = sigmoid
(

1
t
(log p− log(1− p) + log u− log(1− u))

)
(3.26)

with u ∼ U (0, 1) and t being the temperature parameter of the sigmoid. This version
is differentiable with respect to p and therefore can be optimized accordingly to the
objective (3.24).

The training procedure for the neural network based bandits is resumed in Alg.
2. At the beginning, all the BNNs are randomly initialized and empty memory
buffers are created for the storage of replay data. As in the case of the tabular solu-
tion, for each batch transmission inside a whole message communication, a TX_credit
is chosen for every router involved in the forwarding operation, this time thanks to
the neural networks. The state in this case is increased with the available transmis-
sion credits of the neighbors and with the known estimates of the delivery proba-
bilities to nodes with which a link is active. The environment is then simulated to
get a new reward observation together with the batch ACK but, now, differently
from before, the Q function update is not performed immediately but rather the in-
formation about the state-action pair and the reward obtained is pushed into the
memory buffer. Since training a neural network is an expensive operation, this is
done at the end of the batch transmission, averaging the gradient of m random sam-
ples taken from the memory. Moreover, the rate of training decreases exponentially,
as we need to train less often when the experience is already sufficient. Because the
rate decreases, the amount of data observed in the meanwhile is larger, of size N,
therefore bN/mc epochs of m samples are required. In this way, also the dropout
parameter is progressively brought to zero accordingly to the optimization objective
(3.24).

3.3.2 Reward shaping

There are two common ways to model multi agent systems: joint and independent
learners, depending on the information available at each agent. In the case of joint
learners, the spaceA of actions is the joint space {ai, a−i}, where ai denotes the action
performed by player i and a−i is a compact way to denote other players’ actions aj,
j 6= i. This is a powerful method in terms of performances but it is quite infeasible
because the cardinality of the joint space grows exponentially with the number of
agents. Furthermore, it would require every agent to have full knowledge on what
other players are doing and also that agents act synchronously. These conditions
are not met in mesh networks. Actually, as it has already been remarked, WMNs
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Algorithm 2: Multi Agent Deep Contextual MAB (MADCMAB)
Input : set of states S ; set of actions A; reward function r : S ×A 7→ R;

communication environment E ; minibatch size m; number of initial
steps before training P; exponential retraining coefficient K;
maximum retraining interval M.

begin
foreach agent i do

foreach (s, a) do
randomly initialize BNNi;
initialize empty replay memory buffer memi;

end
end
k← 1;
L← 1;
N ← m;
foreach communication do

src← source ID;
dst← destination(s) ID(s);
N ← set of the routers involved in this communication;
foreach batch do

foreach agent i ∈ N do
prob← delivery probabilities to i’s neighbors;
act← available transmission credits of i’s neighbors;
si ← (src,dst,prob,act);
sample ai ← BNNi(si)

end
perform the batch transmission in E ;
d←maximum ACK delay;
foreach agent i ∈ N do

Ri ← r(si, ai);
push in memi tuple (si, ai, Ri)

end
end
if k = P then

L← L ∗ K;
dist← min(bLe, M);
P← P + dist;
N ← min(dist ·m, M);
foreach agent i do

for l = 1 to bN/mc do
sample m random points from memi;
train BNNi with that minibatch;

end
end

end
k← k + 1

end
end



Chapter 3. Theory 30

need algorithms that use only local and not global information. On the other hand,
independent learners work in the space of their own action and nothing more, which
is surely an easier solution but often leading to poorer performances.

It is convenient now to introduce the concept of Pareto dominance of a joint
strategy, namely an action in the joint actions space. An action ai is said to be Pareto
dominated by a′i if:

∀ i qt
i(si, a′i) ≥ qt

i(si, ai) (3.27)

∃ i | qt
i(si, a′i) > qt

i(si, ai) (3.28)

where qt
i(si, ai) indicates the value of action ai while in state si at time t for player i.

If an action ai is not dominated by any other action a′i, it is named Pareto efficient or
optimal and it belongs to the so called Pareto frontier, the set of these type of actions.

Recall that the network’s objective is the minimization of the overall airtime cost,
defined for the sake of simplicity as just the number of transmissions (3.1). Pareto
optimal solution are efficient in a global welfare sense, since they rely on the joint
action space, therefore an ideal solution to the optimization problem of this thesis
should belong to the Pareto frontier. However, as said before, working in the joint
space is not a feasible solution and, while in this case agents are pushed towards a
Pareto optimal solution, in the independent learners scenario they naturally tend to
a Nash Equilibrium (NE), defined by:

ai∗ = argmax
a

qi(si, ai, a−i) (3.29)

where it is expressed also the dependency of the action value on other players’ ac-
tions. In this way, agents want to maximize their own profit and act in a selfish way,
ending up generally in an equilibrium point which guarantees a worse global wel-
fare with respect to a Pareto optimal solution. Which equilibrium point is dependent
on the initial conditions and on the dynamics of the specific environment simulation
[49].

A way to improve agents’ coordination and cooperation and to promote the
achievement of a better Nash Equilibrium even if the context is the one of indepen-
dent learners, is to exploit communications among agents. In the case of this thesis,
some useful details at least at local level can be gained by routers just by overhearing
neighbors’ transmissions. The required information can be thus piggybacked in the
header of data packets, being careful not to increase relevantly traffic overhead with
this trick. In this way, nodes can be aware at least of what other routers are doing,
if not at a global scale, at least at a local one. Another practical way for increasing
the probability of reaching a good NE, is to properly project the reward. The design
of a reward function is indeed a delicate matter, because sometimes it may happen
that the agents learn unexpected behaviors and, moreover, it also affects the rate of
convergence. The first solution that may come to mind, is that each router could
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track the number of transmissions that it fulfilled and then try to minimize it with
its replay experience. This, however, performs poorly, because agents tend to find an
egoistic solution rather than pushing towards the one desired. Luckily, we can ex-
ploit again the wireless medium and, if we assume that the final ACK is broadcasted
from the destination to all the routers involved, the total number of transmission
executed for that batch can be easily retrieved. In this way, each node will have the
same reward, depending exactly on the global optimization objective (3.1), even if
most of the topology information is unknown.

Since the reward, in the traditional form of reinforcement learning, must be max-
imized, it can be expressed as:

ri(si, ai) =

−∑j TXj(sj, aj) if maxj(dj) < τ

−M otherwise
(3.30)

where the penalty M must be chosen large enough so that agents learn that they
should avoid it. In the unicast scenario, where for fair comparison with MORE a
maximum delay is not considered, it is sufficient to set τ = ∞. This very easy reward
function is directly applied for the tabular case. For the neural network, instead, it
turned out to be more convenient to map the output in the range [0, 1], so that the
cross-entropy loss could be used instead of the MSE or MAE criteria, since it is em-
pirically proved that it guarantees more training stability. The procedure chosen is
a bit convoluted because, from the moment that nodes do not have full knowledge
about the topology, it is not possible to compute theoretical bounds on the number
of transmissions required for delivering the message. Therefore, an alternative so-
lution must be found if a maximum and a minimum are not available. Two slightly
different methods are tested, one considering respectively as minimum and max-
imum reward the maximum and minimum number of transmissions required for
that state until the current moment. The other one considers only the values that are
currently in the replay buffer: in principle this should also help to track a possible
non-stationarity of the environment but it may cause excessive exploration behavior.
Once that this linear mapping is performed, the following non-linear function f (x)
is applied to the input in [0, 1] for better reward shaping:

f (x) =

w(1− xγ) + (1− w) if maxj(dj) < τ

0 otherwise
(3.31)

where γ defines the decay rate of the reward and can be chosen smaller than 1 so
that the reward tends to the close to optimal solutions with a higher than linear rate.
The weight term w ∈ [0, 1] is added to account for the discontinuity generating the
penalty for not satisfying the latency constraint. In the case of unicast transmission,
w can be set to 1 so that there is no penalty. In Fig. 3.2 an example of this function
can be seen when the constraint (3.3) is satisfied.
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FIGURE 3.2: Mapping function for the reward in the BNN settings.
Parameters are chosen as γ = 0.45 and w = 0.75.
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Chapter 4

Simulation

The simulation environment is entirely created from scratch, without the help of any
existent network simulator. The programming language employed is Python 3, for
better integration with existing Machine Learning libraries.

4.1 The mesh model

Mesh networks are modeled as graphs G = (V, E), where V is the set of vertices
and E the one of edges and created as Random Geometric Graphs (RGGs) with the
package NetworkX1. The size of the mesh is dependent on the experiment performed.
It is kept fixed to 20 nodes for the unicast simualtions whereas it is progressively
increased for broadcasting. Real numbers in [0.1, 0.99] are assigned as weights to the
edges and determined with a law which is inversely proportional to the square of the
distance between nodes. This choice is made to simulate in some way the decrease
in the power of the received signal accordingly to the path loss formula, assuming
that antenna gains and transmitting power are unitary and the wavelength is fixed.
Weights on edges represent therefore delivery probabilities on links.

4.2 Transmission rules

The algorithm used for simulating communications is the one explained in Section
2.2.1 for MORE: nodes having routing functions for the current batch transmission
increase their credit counter by their own transmission credit when receiving an in-
novative packet from the upstream and they decrease it by a unit when transmitting
a recoded packet. The coding and recoding operations are performed using the NC
library Kodo2, that provides a Python-C++ interface for easily handling these oper-
ations on bytearrays of data. The Galois field over which the coding is performed
is F8, with varying generation size, depending on the specific experiment executed,
and a symbol size of 8 bytes. This approach is kept both for the unicast and the
broadcast case, because it is shown that network coding helps to improve the spatial
reuse and at the same time keeping new information to be sent in a second moment

1https://networkx.github.io/
2http://docs.steinwurf.com/kodo.html

https://networkx.github.io/
http://docs.steinwurf.com/kodo.html
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can only cause an increase in the end-to-end delay experienced. To make commu-
nications more realistic, the capture effect is considered. Nodes that are too close
to each other cannot transmit during the same time frame, otherwise interference
would be too high and receiving nodes could not distinguish different data streams.
Therefore, a Medium Access Control (MAC) functionality is simulated so that if a
certain node is transmitting at time t, other nodes that find themselves at d < 0.5
distance units are prevented from transmitting in that frame. Besides the two learn-
ing algorithms described in Section 3.3, other protocols are implemented for com-
parison. Specifically, they are MORE in both unicast and multicast flavors and BAT-
MAN (Section 2.2.2) only for broadcasting. The broadcast version of batman-adv does
not provide directly an algorithm that employs network coding, yet it is said that it
can be used improving performances. So, the same approach as the other protocols
is applied for better comparison, considering that the transmission credit for every
node in BATMAN is fixed to 3. Moreover, further simple local criteria are added in
all the protocols to prevent certainly suboptimal transmissions and they are the ones
used also in MORE and BATMAN that are resumed here:

• When a batch ACK is received, nodes stop transmitting data belonging to that
batch;

• If the packet is received at j from node i and i is the only active neighbor, j does
not transmit;

• If the originator is the only active neighbor of node j, it does not transmit;

• Nodes stop transmitting when all the neighbors have received the message in
the broadcast scenario.

In a recent thesis work, it is shown how shifting the source is beneficial for reducing
the number of transmissions [50]. However, this improvement is not considered in
this thesis for the unicast scenario, where it is implemented a standard and omni-
scient version of MORE which knows exactly the delivery probabilities without the
need for pinging the channel every 10s to estimate its quality. The source shifting
behavior is automatic, instead, in broadcast, because of the previous fourth rule. It
is important to notice that nodes do not transmit always until all the neighbors can
retrieve the full message. They may end their credit in advance and switch to sleep
mode to save energy and transmissions if the network’s topology allows for it.

The action space A for the bandits is composed by a discrete grid of linearly
spaced values belonging to the range [l, h], where l = 0.05 in the unicast case and
l = 0 for broadcasting. This is desired because in the former case the set of optimal
forwarders is precomputed using the EAX metric (2.5), with a threshold of φ = 0.2
and preventing a forwarder from transmitting may cause combinations that break
the constraint requiring that full information is retrieved at the destination. Instead,
in the broadcast scenario, the task of the bandits is also to find which nodes can
avoid transmissions altogether, thus saving energy and airtime cost. The maximum
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transmission credit that node i can choose is instead set to be h = maxj(1/pi,j),
which is the average number of transmissions required to deliver a packet to the
neighbor j with the worst link quality with i.

The timeout threshold is dependent on the size of the mesh as, if we want to
broadcast a message, obviously, the larger is the network the more time will be re-
quired to successfully complete the transmissions. It is interesting to note that setting
a timeout threshold forces the algorithm to learn also which solutions are feasible.
This is because if transmissions end before all the destinations can correctly retrieve
the message, the timeout will be reached giving as reward the penalty term.

4.3 Neural networks design

The Neural Networks are built with the package PyTorch3, which allows for a wide
range of opportunities to personalize the models and the class implementing Con-
crete Dropout is directly taken from the licensed repository of the author Y. Gal4. The
architecture of the network is a fully-connected one with 5 layers, input and output
included. In the first inner layer there are 4 sets of 32 perceptron units, each set is
specializing for the specific input, which can be the source ID, the destination ID, the
neighbors’ delivery probabilities and the neighbors’ chosen transmission credits. In-
puts are encoded with the one-hot encoding technique, so neurons in the input layer
are 4n, n being the total number of nodes in the mesh. The other two inner layers are
composed by 128 units and the output has finally 50 neurons since the number of
possible actions is indeed 50. This means that the total number of trainable param-
eters, excluding the dropout probability and considering biases, is 132n + 39552,
depending linearly on the size of the mesh network. With networks of 20 nodes,
which are used for the unicast problem, they are 42192, which is a very low number
if compared with the state-of-the-art solutions in deep learning. The network is rep-
resented in Fig. 4.1, where each input represents the encoding in n neurons of the 4
pieces of information that form the context of the bandit.

For the training procedure, the Adam optimizer is used, with learning rate 0.01
and weight decay is not applied because regularization is not desired in reinforce-
ment learning, as the overfitting problem does not exist. The replay buffers have
a capacity of 8000 samples and the batch size of the transmissions is kept fixed to
32, even though generally it can be variable. The maximum capacity of the mem-
ories affects the maximum retraining interval, that is set to b8000/mc = 125 full
communications, as the minibatch size is m = 64. This choice is made not to waste
too much experience, even though the minibatches are randomly sampled from the
buffers. An alternative solution when reaching the maximum retraining interval
would be to train on all the available points shuffling them to cope with the corre-
lation problem. As explained in Section 3.3, the rate of retraining is exponentially

3https://pytorch.org/
4https://github.com/yaringal/ConcreteDropout

https://pytorch.org/
https://github.com/yaringal/ConcreteDropout
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FIGURE 4.1: Architecture of the Neural Network employed.

increasing until the maximum interval is reached. The retraining distance is multi-
plied by a coefficient K = 1.05 every time the optimization is performed and such
distance is then rounded, replacing the old one. Choosing such a K and rounding
the result means that at the beginning there are 9 retrainings performed after each
full communication with points from m random batch transmissions. Therefore, just
one optimization step (3.24) is performed with M = m and N = m, with an initially
high entropy on the dropout parameter p. As time goes by, the distance d progres-
sively increases and there will be d optimization steps again with M = m but with
N = d ·m, relaxing the amount of uncertainty since we have observed more points.
Finally, the weight and the exponent on the reward mapping function for the BNNs
are set respectively to w = 0.5 and γ = 0.45.

4.4 Tabular bandit parameters

For what concerns the tabular bandit, the exploration-exploitation coefficient is set to
c = 2 for the unicast case and c = 10 for broadcasting. There is no particular reason
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for such a difference but the fact that results where empirically better. Actually, in
the machine learning field, some parameters must be tuned with a grid search and
there is no magic rule to select them. The learning rate α of equation (3.22) is chosen
as 1/Nt, hence the bandits compute the real arithmetic average of the Q-value. In
a non-stationary environment, as already discussed, it would be more efficient to
choose a fixed learning rate, e.g. α = 0.1.

The penalty term M of equation (3.30) is dependent on the diameter of the mesh
and it increases accordingly. Also here, there is no special rule to select it, but the
one that it must be sufficiently big so that the bandits learn to avoid receiving −M
as reward.
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Chapter 5

Results and Analysis

In this chapter, results will be shown with the help of plots and tables and further
discussed. The first evaluation metric used is obviously the airtime cost, measured
as the total number of transmissions carried out by the mesh, as it is the objective
of the optimization. However, a special consideration is also given to latency, mea-
sured in terms of timesteps required to deliver the message. Latency is certainly
dependent on the size and specific topology of the network, but it can be used for
comparison between different protocols applied on the same mesh. Moreover, as
stated in Section 3.1, latency is also part of the minimization problem as a constraint
for broadcasting.

5.1 Unicast results

The three mesh networks employed for the simulations in the unicast case are de-
picted in Fig. 5.1 and they are generated as explained in Section 4.1. These random
geometric graphs have 20 nodes each and, as can be seen, are highly connected.
However, only the links between very close nodes have a high quality in terms of de-
livery probability. The majority of the links, actually, belong to the so called gray area,
a wide zone where receptions happen more rarely but can be well exploited in op-
portunistic routing with network coding. Twelve random pairs source-destination
are chosen for each graph, with distance ranging uniformly from 1-hop to the max-
imum number of hops of the meshes. The simulation is then performed on the
subgraph defined by the set of forwarders delivering the message from source to
destination. This means that a total number of 36 different topologies are tried for
every generation size G ∈ {32, 64, 128, 160}.

The first 1500 transmissions are considered as training period, then, the explo-
ration behavior of the tabular bandit is switched off, while the neural network tunes
it on its own. The last 500 are hence considered for evaluation. The following fig-
ures and discussion refer to graph 1 and the few differences with other meshes will
be commented afterwards. In Fig. 5.2 the result relative to the airtime cost is shown,
in logarithmic scale. In the background the actual value of the airtime cost of each
batch transmission is shown, whereas a thicker line obtained with a moving average
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FIGURE 5.1: Random geometric graphs employed for the unicast sim-
ulations.
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filter of length 32 samples (one full transmission) is plotted on top to better appre-
ciate the behavior of the algorithms. As can be seen, the learning response of the
two algorithms is consistent even though the generation size increases. Both the al-
gorithms requires about 100 transmissions at the beginning to find the way towards
a good optimum. After that, only some refinement is needed, although some kind
of oscillations can occur from time to time. This may happen because the task is
multi agent and the action exploration of only one node may perturb significantly
other routers. It is evident the case of Fig. 5.2c around transmission 700, where
the neural network based algorithm worsens considerably its performance, except
then recovering a good one. In the evaluation range, it can be seen how the BNN
based bandits perform slightly better than the tabular algorithm, confirming that in-
creasing the information available as input is beneficial. However, both the methods
perform around 12%− 30% worse than MORE on average. This is an expected re-
sult, as we are approximating the set of real numbers with which MORE computes
the optimal transmission credits with a discrete grid of 50 evenly spaced possible
values. Of course, even though optimality could be reached in this action space, the
possibility of enlarging it by learning real numbers in a continuous set would cer-
tainly decrease this distance. A possible solution would be the use of infinitely many
multi-armed bandits and a proper formulation should be found. In Fig. 5.4 boxplots
of the airtime cost in the evaluation period are illustrated, in linear scale. Here we
can see how the variance of the solutions learned by the two automated algorithms
is generally slightly larger than the one belonging to MORE. The general shape of
random variables describing the airtime is however consistent among protocols, as
transmissions are performed on the same source-destination pairs. The tabular al-
gorithm is moreover on average very close to the neural networks based one only
for generation size 32 (Fig. 5.4a), then the gap increases for G = 64 and, afterwards,
it keeps almost constant if we do not consider the obvious little variabilility due to
the specific learning history of the simulation.

Besides the airtime performance, which, however, is the addressed optimization
objective, latency is also evaluated and results are shown for the same settings in
Fig. 5.3. At the beginning, when credits are randomly chosen, latency can be very
high because choosing a too low credit on an important path may cause significant
bottlenecks. Also here it is evident that about 100 transmissions are required before
finding a good way to the optimum, that yields approximately the same end-to-end
delay of MORE. Indeed, it can be assessed that being suboptimal in terms of airtime,
i.e. performing more transmissions than required to deliver the message, can be
advantageous for the delay. The two learning algorithms, particularly the tabular
one, experience an e2e delay of up to 5% better than MORE’s one.

It is important to recall that results are averaged and, also for MORE, they change
over time because source-destination pairs are randomly picked each time and air-
time and latency highly depend on the number of hops selected. Moreover, even
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(A) Generation size 32. (B) Generation size 64.

(C) Generation size 128. (D) Generation size 160.

FIGURE 5.2: Airtime cost as a function of the transmission index. MORE, depicted in green, represents the optimal policy to be
approached by the two learning algorithms.
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(A) Generation size 32. (B) Generation size 64.

(C) Generation size 128. (D) Generation size 160.

FIGURE 5.3: End-to-end delay (latency) as a function of the transmission index. Here, it can be seen how being not optimal in terms of
airtime cost can be beneficial as for the latency.
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FIGURE 5.4: Boxplots of the airtime costs of the three compared algorithms. Results are evaluated on the last 500 full transmissions.
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FIGURE 5.5: Scatter plots of airtime cost and latency.
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FIGURE 5.6: Cumulative regret of the two learning algorithms versus the performances of MORE.
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when considering the same path, there will always be minor oscillations due to par-
ticular realizations about message deliveries.

Scatter plots of evaluation points, namely after transmission number 1500, in the
airtime-latency plane are presented in Fig. 5.5. From this plot, ideally we would like
to find points lying on the bottom left corner, i.e. for which both the airtime and the
latency are low. Many clusters can be observed in these plots and they correspond to
different realizations of the same sampled pair source-destination. Also, as we go far
from the bottom left corner, we find paths of increasing length, as they require both
more time and more transmissions. It is not surprising that the area where points
lie gets wider as hops increase, because the more routers are involved in the task,
the more possible solutions will exist. We can see that, as expected from previous
results, blue and orange clusters are often moved to the right and slightly down with
respect to their correspondent green cluster. This is again because the performance
of the two proposed methods are worse in terms of airtime, along the x-axis and
equal or slightly better as for the latency, along the y-axis.

In Fig. 5.6, finally, the cumulative regret of the two versions of the bandits with
respect to MORE is shown. It is simply computed as the cumulative sum of the
difference between the number of transmissions performed with the bandits and the
ones that MORE executes. As can be seen, a complete saturation is not reached and
will never be, because of the already mentioned problem of the approximation of the
action space with a discrete set of transmission credits. However, as the generation
size increases, the BNN bandit accumulates a regret which is significantly less than
the one of the Q-table. Also, from the plot, it seems that, although diverging in both
cases, the Q-table’s regret increases linearly whereas the neural networks’ one only
logarithmically, which is way better in an asymptotic sense.

A comparison between the airtime performance obtained in the different meshes
can be inferred looking at Tab. 5.1. While the general behavior of the approaches
based on the bandits versus MORE does not change when varying the mesh and
the generation size, there are notable results to highlight. To begin, in general there
exists, for both of the two automated protocols, a gap between between the mean
and median values, the latter measure being significantly lower. Moreover, we can
observe how this gap is smaller for graph 2, and this is confirmed also by the smaller
standard deviation measured. This gap is instead quite big for graph 3, and partic-
ularly in the case of the BNN algorithm. It is useful to look at Fig. 5.7 to understand
to what is due this difference. For graph two, we find that the distribution of the air-
time costs in the evaluation period has a mean value which is almost coincident with
the median value, and from the scatter plot we do not observe significant distances
between clusters of different protocols. On the other hand, for graph 3 we observe
that the mean value is far from the median value also for MORE, and this is due to
some statistical outliers, represented by points due to two pair source-destination
with a high hop-count value. Moreover, for these two settings, the airtime perfor-
mances of the two proposed algorithms are significantly worse, while the latency
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mean median std

graph 1 +18.56% +13.04% 0.169
graph 2 +15.96% +14.75% 0.085
graph 3 +25.83% +14.35% 0.266

(A) BNN - G = 32

mean median std

graph 1 +19.48% +14.68% 0.172
graph 2 +21.27% +17.78% 0.131
graph 3 +26.88% +15.47% 0.263

(B) Q-table - G = 32

mean median std

graph 1 +17.42% +11.51% 0.188
graph 2 +19.28% +17.51% 0.121
graph 3 +25.33% +9.97% 0.282

(C) BNN - G = 64

mean median std

graph 1 +24.53% +16.28% 0.218
graph 2 +22.74% +18.66% 0.158
graph 3 +29.09% +19.16% 0.275

(D) Q-table - G = 64

mean median std

graph 1 +15.40% +8.23% 0.179
graph 2 +12.33% +11.23% 0.072
graph 3 +23.17% +8.36% 0.276

(E) BNN - G = 128

mean median std

graph 1 +21.90% +12.52% 0.207
graph 2 +26.55% +21.87% 0.166
graph 3 +30.95% +22.43% 0.287

(F) Q-table - G = 128

mean median std

graph 1 +14.07% +8.35% 0.173
graph 2 +17.33% +16.84% 0.092
graph 3 +21.39% +8.52% 0.250

(G) BNN - G = 160

mean median std

graph 1 +23.08% +14.17% 0.220
graph 2 +18.86% +16.75% 0.108
graph 3 +28.46% +23.19% 0.273

(H) Q-table - G = 160

TABLE 5.1: Performance comparison in terms of airtime of the two
proposed algorithms considering MORE as a baseline. Results are

shown for all the three random geometric graphs of Fig. 5.1.

experienced is almost the same. Probably, these two clusters simply needed more
training epochs, as they are the ones where the highest number of agents are in-
volved, and this means more noise. These outliers affect results on the mean value
of the airtime for graph 3, as can be deduced from Tab. 5.1.

A last interesting point to notice is that MORE is optimal for an infinite genera-
tion size in an average sense, which means that it should approach actual optimality
as long as the generation size increases. Therefore, a wider gap between MORE
and the learning algorithms would be expected increasing G. Surprisingly, this is
not true: as we can get from Fig. 5.8, where the average distance from MORE is
represented as a function of the generation size, the Q-table is generally oscillating
without a clear increasing behavior. The behavior of the BNN is even more peculiar:
in two cases out of three, i.e. in meshes 1 and 3, it shows a clear linear decrease in the
average distance from MORE as G grows. Since the length of symbols is fixed and
the generation size is larger, more data is transmitted in this case. Therefore, because
transmissions last longer and require a higher airtime accordingly, the difference in
absolute terms between two different solutions will be enlarged by the same factor
as well. This may be helpful for the learning procedure and speed of the bandits.
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FIGURE 5.7: Comparison of the performance of graphs 2 and 3 with generation size 160.
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FIGURE 5.8: Average airtime cost performance of the two algorithms
as the generation size increases.
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How much the differentiation is significant certainly depend on the specific topology
and on the path. Actually, the same result is not valid for graph 2, but the argument
is still valid because, as it was highlighted before, points in the airtime-latency plane
are very close and performances are already quite good even with a low generation
size (Tab. 5.1).

5.2 Broadcast results

Simulations about message broadcasting in mesh networks are performed using the
same methods of the unicast case. There is a minor difference with respect to what
was declared in Alg. 2: at each iterations every neural network is trained with 5 ran-
dom minibatches, just for diminishing the duration of the simulations and the learn-
ing period. Here, the task is more complex as, while before the set of forwarders
was predetermined thanks to the EAX metric (2.5), now this same measure has no
more meaning, because it is applied only to streams with single destination. There-
fore, the learning algorithms should assimilate from experience which routers can
be switched off, choosing a transmission credit equal to 0 and saving thus energy
and transmissions. Moreover, any source can be the message originator, which also
makes the task difficult. In many practical cases, originators can be a small subset of
the nodes of the mesh, which, however, may also be much larger than 20 nodes.

In this section, studies on the behavior of airtime and latency are evaluated as
the size of the mesh increases, up to 20 nodes and keeping a fixed generation size
G = 64. In Fig. 5.9 the RGGs used as meshes are shown. They have a generic shape,
also with the presence of bottlenecks between two clusters of highly connected com-
ponents. The mesh with 12 nodes is also used to evaluate the adaptability of the
algorithm to channel quality variations, i.e. in case of link failure, if the channel gets
worse, and link addition, if the channel gets better.

5.2.1 Airtime and latency

The optimization objective for broadcast communications described in Section 3.1
includes the minimization of the airtime subject to a latency constraint, modeled as
a maximum timeout threshold τ before which all the nodes must be able to retrieve
the full message. Therefore, airtime and latency should be evaluated together, with
timeout thresholds set to the number of time steps reported in Tab. 5.2. From Fig.
5.10 to Fig. 5.13, the plots of airtime and latency are shown, for the increasing size
meshes, and with a moving average filter of length 320 samples, corresponding to 10
full transmissions. As a general result, it is evident that the two learning algorithms
are able to avoid the timeout after a first adjustment period, which is required also
for avoiding infeasible solutions for which the information flow is smaller than the
100%, which is of course mandatory. On the other hand, MORE multicast and BAT-
MAN often do not satisfy the delay constraint, hitting therefore the top of the latency
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FIGURE 5.9: Random geometric graphs employed for the broadcast
simulations.

plots. More in the detail, for the smallest mesh with 8 nodes, it can be observed from
the plot that MORE multicast seems to have a better average airtime cost than the
BNN based algorithm. However, this is true only because the majority of the trans-
missions was stopped after reaching the timeout: in this case, MORE only satisfies
the constraint in the 17.40% of the cases1. BATMAN’s behavior is instead quite ran-
dom in that, regardless of the specific topology of the mesh, it always forces routers
to transmit three new packets for every innovative packet received. Results show
that BATMAN is the worse protocol in terms of airtime in three cases out of four
and the delay constraint is satisfied consistently only for the mesh with 12 nodes.
Moreover, although the tabular based algorithm performs better than the two rout-
ing protocols used for the comparison with regard to the time constraint, a clear gain
is not observed in airtime. Unlike the deep learning solution, actually, it only learns
to avoid the penalty reducing the airtime just marginally. The reason for this can
be found in the different reward functions: the developed mapping function (3.31)
in [0, 1] for the reward seems to work better than the commonly used large penalty
when breaking constraints. More detailed numerical results are summarized in Tab.
5.2.

1In fact, MORE is implemented exactly as described theoretically. However, in order to make it
work practically, some feedback with possible retransmissions should be implemented to increase re-
liability and resilience against dead ends. This, of course at a cost of some airtime and overhead.
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Nodes Timeout τ BNN Q-table MORE multicast BATMAN

8 1250 98.52% 96.68% 17.40% 52.19%
12 1500 99.94% 99.85% 49.94% 97.08%
16 2000 97.17% 72.10% 64.39% 45.18%
20 4500 96.91% 95.34% 85.65% 38.23%

TABLE 5.2: Percentage of transmissions for which the maximum de-
lay constraint (3.3) is satisfied by the different protocols.

Nodes MORE multicast BATMAN
8 8.4% 22%
12 9.5% 18%
16 10% 14%
20 12% 10%

(A) BNN.

Nodes MORE multicast BATMAN
8 −7.6% 8.4%
12 1.5% 11%
16 1.4% 6.1%
20 1.7% ∼

(B) Q-table.

TABLE 5.3: Improvement in the median airtime cost of the two learn-
ing algorithms with respect to MORE multicast and BATMAN.

From these time plots, it can be assessed that the Neural Network based algo-
rithm has the best performance, as it keeps the latency under the timeout threshold
consistently above the 97% in every mesh while having always the smallest airtime
cost. Also, the Q-table learns well to avoid the timeout in at least three meshes, yet,
airtime results are not as good as the BNN’s ones. As it is shown in Tab. 5.3, with the
BNN there is an improvement in airtime of 8%− 12% and 10%− 22% when com-
paring with MORE and BATMAN respectively. The Q-table, instead performs really
close to MORE multicast and up to 10% better than BATMAN. In Tab. 5.4, similar
results for the latency are reported: the Neural Network has a gain of up to 17% and
31%, whereas the Q-table here looses some points, performing worse until the 16%
and 18% respectively for MORE multicast and BATMAN. As can be seen graphically
in Fig. 5.14, the gain with respect to BATMAN decreases as the size of the mesh in-
creases. It would be interesting, with further studies, to assess whether this behavior
saturates or not. Also, it is notable the sudden drop in the latency gain for the mesh
with 20 nodes with the tabular bandits. It may be due to a particular topology, hav-
ing a heavy bottleneck (see Fig. 5.9) or maybe just we reached the maximum number
of agents that can be handled efficiently by a set of tabular bandits.

Nodes MORE multicast BATMAN
8 17% 31%
12 14% 25%
16 13% 17%
20 5.6% 3.6%

(A) BNN.

Nodes MORE multicast BATMAN
8 −2.7% 15%
12 ∼ 12%
16 4% 8%
20 −16% −18%

(B) Q-table.

TABLE 5.4: Improvement in the median end-to-end delay (latency)
of the two learning algorithms with respect to MORE multicast and

BATMAN.
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FIGURE 5.10: Airtime cost and latency, mesh with 8 nodes.

FIGURE 5.11: Airtime cost and latency, mesh with 12 nodes.
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FIGURE 5.12: Airtime cost and latency, mesh with 16 nodes.

FIGURE 5.13: Airtime cost and latency, mesh with 20 nodes.
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FIGURE 5.14: Median performance of the learning algorithms as the
size of the mesh increases.

From the box plots of Fig. 5.15 a general evaluation of the airtime statistics can
be derived. Only points that satisfies the latency constraint are considered here and
boxes confirm that the BNN algorithm has both mean and median values below all
the other algorithms. In some cases the variance is slightly larger than BATMAN,
but we shall consider that the number of points with which the boxes are built is
much higher for the BNN, which considers also transmissions that BATMAN is not
able to manage.

Finally, and being probably visually the most effective plots, from Fig. 5.16 to Fig.
5.19 heatmaps in the airtime-latency are shown. Like for the unicast case, our wish is
to find hot spots in the bottom left corner, where both the latency and the airtime are
low. Further more, in these plots, not only the position of the spot is relevant, but also
its color: the more dark it is, the better, as the concentration of points in that area gets
higher. Also, the darkest value in each heatmap is considered to be the maximum
value among all the evaluated protocols. Therefore, lighter heatmpas also means
that the number of valid points are less, as it is the case of MORE multicast for the 8
nodes mesh. In every plot, it can be seen how hot spots of the BNN are constantly on
the bottom left corner, whereas for the Q-table they are more centred. BATMAN lies
instead on the upper right part and it approaches the centre progressively with the
increasing mesh size. MORE multicast, finally, keeps close to the bottom left corner
but its hot spots are often weak and the distribution of points is much more spread.
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FIGURE 5.15: Box plots of the airtime cost for the different protocols, considering only points satisfying the delay constraint (3.3).
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FIGURE 5.16: Heatmap in the airtime-latency plane for the four eval-
uated protocols, mesh with 8 nodes.
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FIGURE 5.17: Heatmap in the airtime-latency plane for the four eval-
uated protocols, mesh with 12 nodes.
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FIGURE 5.18: Heatmap in the airtime-latency plane for the four eval-
uated protocols, mesh with 16 nodes.
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FIGURE 5.19: Heatmap in the airtime-latency plane for the four eval-
uated protocols, mesh with 20 nodes.
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5.2.2 Adaptability to channel variations

Besides the study on the performance reached on a stationary environment, it is in-
teresting to inspect also the adaptability of the algorithms when the wireless medium
changes. In this section, results relative to two simple experiments are presented,
employing the mesh with 12 nodes (Fig. 5.9b). In the first one, five random links are
removed, so that the quality of the channel gets worse; in the second one, three new
random links are added, improving thus the medium.

As for what concerns the link failure experiment, if we just let the algorithms
run in their basic form as explained in Section 3.3, the performance is poor in terms
of convergence time, as can be seen in Fig. 5.20a. Actually, even though the two
algorithms start again to look for a new approximately optimal solution after the
breaking point, which is around transmission 750, the period in which the latency
constraint cannot be satisfied lasts at least 500 full transmissions. Moreover, during
the evaluation period, which is again after transmissions 1500, the reached airtime
is of 952 and 965 transmission, for BNN and Q-table respectively. As this is not
satisfying at all, because in a wireless medium the rate of non-stationarity can be
higher than the time needed to recover a good perfomance, the algorithm should be
slightly changed to allow for more exploration when needed.

We can easily detect if the exploration should be increased because we can mea-
sure the perfomance to assess whether it is worsening too much. In this case, for the
Neural Networks, we can reset the buffer so that old values that are no more updated
for the current state of the channel are deleted. The minimum and maximum value
for the reward mapping in [0, 1] stored until that moment should be deleted as well.
Further more, the dropout entropy can be maximized again restoring to the original
value N, the size of the observed points, as well as the rate of training, which is re-
initialized if needed. The Q-tables, instead, only need to change the learning rate α

to a fixed value, here 0.1. In this way an exponentially weighted average over the
past history is computed and recent samples are considered more than older ones.
Results are shown in Fig. 5.20b and it can be seen how for the BNN based solution
the latency constraint is satisfied again after only about 20 full transmissions. The
tabular solutions requires more time, about 300 transmissions. So, the convergence
speed is greatly improved for both the methods and the percentage of satisfied time-
out constraints increases as well, particularly 6.5% for the tabular solution. Also, the
BNN based algorithm finds a better optimum as for the airtime cost, performing 5%
better than before. Results are summarized in Tab. 5.5.

In Fig. 5.21 results relative to the link addition experiment are shown. Here,
we can observe how, for the BNN algorithm, results in the evaluation window are
unchanged. However, the speed of convergence is about five times faster when the
exploration reset is active. In this case, however, no gain in speed is observed for
the tabular bandits and also we find a decrease in performance as for the latency
constraint. On the other hand, the airtime cost is slightly improved, of about 1.3%.
Results are finally summarized in Tab. 5.6.
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(A) Without exploration reset.

(B) With exploration reset.

FIGURE 5.20: Learning behavior with link failure, mesh with 12
nodes.
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(A) Without exploration reset.

(B) With exploration reset.

FIGURE 5.21: Learning behavior with link addition, mesh with 12
nodes.
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BNN Q-table

Timeout 97.74% 92.05%
Transmissions 952 965

(A) No reset.

BNN Q-table

Timeout 98.78% 98.63%
Transmissions 905 969

(B) With reset.

TABLE 5.5: Fraction of latency constraint respected and median num-
ber of transmissions in the link failure experiment.

BNN Q-table

Timeout 100% 99.42%
Transmissions 552 693

(A) No reset.

BNN Q-table

Timeout 100% 96.77%
Transmissions 553 684

(B) With reset.

TABLE 5.6: Fraction of latency constraint respected and median num-
ber of transmissions in the link addition experiment.

The BNN algorithm shows a good level of adaptability in both the experiments
when the exploration policy is renewed. However, we should keep in mind that
it means that the neural networks are trained at a higher rate every time a reset is
needed. Therefore, it is important to understand whether significant changes in the
channel, like relevant SNR variations or moving nodes that produce a change in the
mesh topology, comes at a rate that makes infeasible this solution from a practical
point of view. IoT devices, for instance, often have a limited computational power
and battery life and training for a long time a neural network is energy consuming.
For this kind of application, therefore, the channel should not vary with a too high
rate. On the contrary, when dealing with routers installed in powerful Base Stations
(BSs) or when the power grid is available, energy does not respresent a problem
any more. A possible trade-off could be the definition of a threshold of maximum
performance decay, considering also the duration of this degradation. The latest
reward values are considered and, when the quality threshold is overcome for more
than the choosen maximum period, the exploration policy is reset. Depending on
our power possibilities we can thus be more or less strict with these thresholds,
conditioning the rate of learning in non-stationary conditions.
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Chapter 6

Conclusion

In this thesis, two novel algorithms for routing are proposed, basing on the paradigm
of Opportunistic Routing. Machine learning is introduced in this domain, more
specifically the tool of reinforcement learning, and the objective is to find an opti-
mal forwarding rate for each router for the minimization of the airtime cost with
delay constraints. The use of Neural Networks as function approximators reveals
that increasing the dimensionality of the state space is beneficial for the task, as the
deep learning based solution works generally better than the traditional Q-table.

As this work is applied to Wireless Mesh Networks (WMNs), a fully distributed
algorithm is highly desirable, because nodes act as peers and not in the classic master-
slaves configuration, nor a network controller is present, which is the case of Soft-
ware Defined Networks (SDNs). Therefore, every router of the mesh is considered
as one agent in a multi-agent with independent learners scenario, requiring only lo-
cal information. This last point is also advantageous, because nodes do not need to
know the global topology of the mesh, which may be large, requiring thus too much
information to be shared by far routers. It is well known, however, that independent
learners often do not lead to good Nash Equilibria, hence, in this thesis, convergence
is improved exploiting the already existing communications among neighbors, pig-
gybacking the additional useful information. Moreover, through a proper reward
shaping, the convergence is pushed towards a Pareto optimal solution, improving
global welfare. At the same time, this design keeps a very lightweight protocol in
terms of overhead, since it only requires to estimate the delivery probabilities in the
1-hop range and communicate the transmission credits played by the neighbors.

In a first stage, the learning frameworks are compared, in a unicast scenario,
with MORE, a protocol which is proved to be optimal in terms of airtime when the
generation size is infinite. Results sow that airtime performance is about 15%− 25%
worse when reaching convergence. Nevertheless, the algorithms developed in this
thesis only employ local information, and they learn the actual topology of the mesh,
whereas MORE relies on a complete knowledge of the topology and of its changes.

In the second part of the thesis, the broadcast behavior of the algorithms is in-
spected. Here, a theoretical optimum does not exist and protocols employed are
adaptations from unicast or suboptimal heuristics. In this case, the two learning
algorithms outperform both MORE multicast and BATMAN when it comes to the
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delay constraint. Moreover, the deep learning bandits show significant improve-
ments also in the airtime and latency, as clearly visible from the heatmaps in Section
5.2.

The BNN based routing protocol seems to be highly promising as the algorithm
is fully distributed, scalable as far as experiments were performed and with a good
capability of adaptation to channel and topology variations. Nevertheless, this thesis
only represent a starting point for future developments. Specifically, these modifica-
tions may be tried to improve performances:

• Switch to a continuous control framework, since discretizing the action space
of the bandits is certainly a practical solution, but something is certainly lost
with respect to the optimal solution that could possibly be reached with a con-
tinuous action space.

• Extend the bandits to full reinforcement learning in broadcast, because in
this case we may see an advantage in adopting MORE multicast’s behavior of
dynamically changing the transmission credits every time the ACK of one of
the destination is received. At the current state, actually the bandit adopts a
static solution for the whole batch, regardless of the fact that optimal credits
may change.

• Tune progressively the latency constraint, as neural networks require data at
the beginning to find a way towards a local optimum. With a random initial-
ization, actually, it is very likely that combinations tried are not good enough to
satisfy a tight contraint and rewards are therefore always very low, resulting in
a non learning framework. If, instead, the delay costraint is made tighter after
the networks have learned which are fair enough combinations, convergence
would be faster and, possibly, a shorter delay could at the end be reached.

Moreover, the simulation environment was extremely simplified and rather un-
realistic. The following step would be the use of a more advanced network simula-
tor, including more different topologies, also less connected, and the on-field testing.
However, following the principle that the developed tool learns from data, it should
adapt as well to a real scenario and better than other heuristic based protocols. It
would be interesting to evaluate also the performance in a multi-rate scenario, pos-
sibly using as input feature the maximum receiving rate of neighbors. Another case
in which reinforcement learning should be effective, finally, is in the presence of
multi-flow communications, when the network is overloaded by traffic data. Actu-
ally, Q-routing has already proved to be effective in finding alternative paths under
these conditions, improving hence throughput by avoiding congestions.
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