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Introduction

One of the aims of algebraic number theory is to describe the field of algebraic
numbers Q̄, i.e., to describe the group theoretic structure of the Galois group
Gal(Q̄/Q) of Q̄/Q. The simplest Galois extensions K ⊂ Q of Q are those such
that Gal(K/Q) is abelian, called abelian extensions; for instance, they arise from
maps

Gal(Q̄/Q) −→ C×

because any continuous homomorphism Gal(Q̄/Q) −→ C× factors through a finite
abelian extension. For example, any quadratic extension of the field Q, obtained
by adjoining the roots of a quadratic polynomial, is abelian; another example of
abelian extension of Q is the so called cyclotomic field, obtained by adjoining the
nth-root of unity. Gauss proved that any quadratic field is contained in a cyclo-
tomic field. Moreover, the Kronecker-Weber theorem states that any finite abelian
extension of Q is contained in some cyclotomic extension. This means that, il K
is an abelian extension of Q, then there exists some integer n ≥ 1 such that

K ⊂ Q(ζn)

where ζn is a nth-root of unity.
For a general number field K it is an open question to describe all the abelian

extensions of K. This problem appears as the 12th problem in the complete list
of Hilbert’s problems. Hilbert presented, at the Paris Conference of International
Congress of Mathematicans in 1900, a list of ten unsolved (at the time) problems
about various branches of mathematics, from geometry to calculus, from physics
to algebra and number theory. The complete list of 23 Hilbert’s problems, which
contains the problem of the field extension, was published later, in 1902. Some of
these problems had a great impact on the development of mathematical research of
the XX century. Up to now, ten of these problems have been completely resolved,
seven have a solution not universally accepted by the community of mathemati-
cians, or a partial solution, four of them have a too vague formulation to have a
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solution. The last two problems are the 8th, the Riemann hypothesis, and the 12th,
the explicit description of the abelian extensions of a number field (by explicit we
mean F = K(ai) for some ai): they are unsolved, up to now.

Even if the 12th Hilbert’s problem is unsolved, the case of quadratic imaginary
fields is completely understood, thanks to the theory of elliptic curves with com-
plex multiplication. An elliptic curve E/C is a complex torus. We say that E/C
has complex multiplication if the endomorphism ring End(E) is isomorphic to an
order in a quadratic imaginary field K, for example the ring of integers RK of K.

Then, using the theory of complex multiplication of the elliptic curves we will
show the following theorem:

Theorem. Let K be an imaginary quadratic field, namely, K = Q(τ), with τ a
quadratic imaginary irrational, let E/C be an elliptic curve with complex multi-
plication by the ring of integers RK of K. Then, the maximal abelian extension of
K can be obtained as

Kab = K( j(E), h(Etors))

namely, by adjoining some algebraic numbers related to an elliptic curve E.

More precisely, j(E) is the singular j-invariant of the curve that depends on
the coefficients of the equation that defines the curve, a priori it is an element of
C but in the case of a curve with complex multiplication it is an algebraic integer.
Etors denotes the torsion subgroup of E, namely the set of the points of finite order
of the curve E, and the function h : E −→ P1, called the Weber function, sends any
point P of E to a function of its x-coordinate (up to a suitable change of variables
in the equation of the curve, it is simply the x-coordinate of the point, for almost
all the curves E). Thus, h(Etors) is the set of the x-coordinate of the torsion points
of the curve E.

From this description of the maximal abelian extension, we will able to char-
acterize any abelian extension of K.

We remark that the case of non-abelian extensions ofQ in Q̄ is much more dif-
ficult to study. For instance, some GL2-type extensions, i.e., such that Gal(K/Q) �
GL2(K) for some field K, can be described by the theory of modular forms, and a
much more general perspective is given by the Langlands program.

The purpose of this dissertation is to introduce some definitions and properties
of the elliptic curves (in Chapter 1), of the complex multiplication on them (in
Chapter 2), of the class field theory (in Chapter 3) and then to prove the result
about the maximal abelian extension of quadratic imaginary fields, with some
other interesting properties about the elliptic curves with complex multiplication
(in Chapter 4).



Chapter 1

Elliptic curves

1.1 Geometry of elliptic curves
Elliptic curves are curves of genus one with a specified base point. We start the
study of elliptic curves given by explicit polynomial equations called Weierstrass
equations.

1.1.1 Weierstrass equation
Every elliptic curve can be written as the locus in P2 of a cubic equation with only
the base point on the line at infinity.

Definition 1.1 (Weierstrass equation). After X and Y are scaled appropriately, an
elliptic curve has equation of the form

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6

called Weierstrass equation, with a1, . . . , a6 ∈ K̄ algebraically closed field. Here,
the base point is O = [0, 1, 0].

To ease notation, we generally write the Weierstrass equation using non-homogeneous
coordinates x = X/Z and y = Y/Z, so in the form

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

with the base point O = [0, 1, 0] at infinity. If the coefficients a1, . . . , a6 are in K,
we say that E is defined over K. Moreover, if char(K̄) , 2 we can complete the
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8 Elliptic curves

square and simplify the equation, thus the substitution

y 7→
1
2

(y − a1x − a3)

gives

(y − a1x − a3)2+2a1x(y − a1x − a3)+2a3(y − a1x − a3)=4x3+4a2x2+4a4x+4a6

⇔ y2 − a2
1x2 − a2

3 − 2a1a3x = 4x3 + 4a2x2 + 4a4x + 4a6

⇔ y2 = 4x3 + (a2
1 + 4a2)x2 + 2(a1a3 + 2a4)x + (a2

3 + 4a6).

So, if we define the coefficients

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6

the equation takes the form

y2 = 4x3 + b2x2 + 2b4x + b6.

Moreover, with the assumption that char(K̄) , 2, 3, with the substitution

(x, y) 7→
( x − 3b2

36
,

y
108

)
we get

y2

1082 = 4
(x − 3b2)3

363 + b2
(x − 3b2)2

362 + 2b4
x − 3b2

36
+ b6

⇔ y2 = x3 − 27(b2
2 − 24b4)x − 54(−b3

2 + 36b2b4 − 216b6).

Then we define the quantities

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6

and the equations gets the form

y2 = x3 − 27c4x − 54c6.

Moreover, we can define the quantities, depending on the coefficients ai, b j, ck

previously determined,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a4

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

j =
c3

4

∆

ω =
dx

2y + a1x + a3
=

dy
3x2 + 2a2x + a4 − a1y
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Figure 1.1: Three examples of elliptic curves.

and it is easy to prove that

4b8 = b2b6 − b2
4, 1728∆ = c3

4 − c2
6.

Definition 1.2 (Discriminant, j-invariant, invariant differential). The quantity ∆ is
called discriminant of the Weierstrass equation, while j is the j-invariant of the
Weiestrass equation and ω is the invariant differential associated to the Weier-
strass equation.

Definition 1.3 (Singular point of a curve). Let C be a curve given by the non-
constant polynomial f (X,Y) = 0, then P ∈ C is a singular point if and only if

∂ f
∂X

(P) = 0 =
∂ f
∂Y

(P).

In general, let P = (x0, y0) be a point satisfying a Weierstrass equation

f (x, y) = y2 + a1xy + a3y − x3 − a2x2 − a4x − a6 = 0.

Assume that P is a singular point of the curve f (x, y) = 0, then we have

∂ f
∂x

(P) = 0 =
∂ f
∂y

(P).

It follows that there are α, β ∈ K̄ such that the Taylor series expansion of f (x, y)
at P has the form

f (x, y) − f (x0, y0)

= ((y − y0) − α(x − x0))((y − y0) − β(x − x0)) − (x − x0)3.
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(a) Cusp: one tangent direction. (b) Node: two distinct tangent directions.

Figure 1.2: Two singular cubic curves.

Definition 1.4 (Node, cusp, tangent lines). With notation as above, the singular
point P is:
• a node if α , β. In this case, the two distinct lines

y − y0 = α(x − x0), y − y0 = β(x − x0)

are the tangent lines at P.
• a cusp if α = β. In this case, the only tangent line at P is

y − y0 = α(x − x0).

To what extend is the Weierstrass equation for an elliptic curve E unique? As-
suming that the line at infinity Z = 0 in P2 intersects E only at the base point
[0, 1, 0], the only change of variables fixing the point and preserving the Weier-
strass form of the equation is

x = u2x′ + r, y = u3y′ + u2sx′ + t

where u, r, s, t ∈ K̄ and u , 0. In fact, if we substitute into the equation we get

(u3y′ + u2sx′ + t)2+a1(u2x′ + r)(u3y′ + u2sx′ + t) + a3(u3y′ + u2sx′ + t)

= (u2x′ + r)3 + a2(u2x′ + r)2 + a4(u2x′ + r) + a6
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⇔ y′2 +
a1 + 2s

u
x′y′+

a3 + ra1 + 2t
u3 y′ = x′3 +

a2 − sa1 + 3r − s2

u2 x′2

+
a4 − sa3 + 2ra2 − (t − rs)a1 + 3r2 − 2st

u4 x′

+
a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u6

and, if we define new coefficients a′1, . . . , a
′
6 such that

ua′1 = a1 + 2s

u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t

u4a′4 = a4 − sa3 + 2ra2 − (t − rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

the equation has the form

y′2 + a′1x′y′ + a′3y′ = x′3 + a′2x′2 + a′4x′ + a′6

so this shows that the substitution preserves the form of the equation.
Under this transformation, similarly we can show the following relations hold:

u2b′2 = b2 + 12r

u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4

u6c′6 = c6

and using these results we see that, under the substitution, the quantities associated
to the equation change as

u12∆′ = ∆, j′ = j, u−1ω′ = ω.

This is now clear why the j-invariants have been so named: it is an invariant
of the isomorphism class of the curve, and it does not depend on the particular



12 Elliptic curves

equation choosen. As we will see in the next paragraph, precisely in (1.5.b), for
algebraically closed fields also the converse is true.

If we consider the simplest form for the Weierstrass equation, y2 = x3 +Ax+B,
we can easily compute the quantities associate to it:

∆ = −16(4A3 + 27B2)

j = −1728
(4A)3

∆

and, as in the general case, we can see that the only change of variables preserving
this form of the equation is

x = u2x′ y = u3y′

for some element of the multiplicative group of the closed field u ∈ K̄×. Again,
we can compute the new coefficients for the equation, after the substitution:

u4A′ = A, u6B′ = B

and see also that
u12∆′ = ∆.

After this results, we can show how to use the coefficients and the quantities
defined above in order to have informations about the curve.

Proposition 1.5. [6, III.1.4, p. 45].

(a) The curve given by a Weierstrass equation satisfies the following state-
ments:

(i) it is non-singular if and only if ∆ , 0;
(ii) it has a node if and only if ∆ = 0 and c4 , 0;

(iii) it has a cusp if and only if ∆ = 0 and c4 = 0.

In the singular case, there can be only one singular point.

(b) Two elliptic curves are isomorphic over K̄ if and only if they both have the
same j-invariant.

(c) Let j0 ∈ K̄. There exists an elliptic curve defined over K( j0) whose j-
invariant is equal to j0.
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Proof. (a) Let E be an elliptic curve given by the Weierstrass equation

E : f (x, y) = y2 + a1xy + a3y − x3 − a2x2 − a4x − a6 = 0.

We can easily prove that the point at infinity of the curve is never singular:
we can look at the curve in P2 with homogeneous equation

F(X,Y,Z) = Y2Z + a1XYZ + a3YZ2 − X3 − a2X2Z − a4XZ2 − A6Z3 = 0

at the point O = [0, 1, 0]: since ∂F
∂Z (O) = 1 , 0, the point is not singular.

Then, suppose E is singular: let P0 = (x0, y0) be a singular point. From what
we have computed above, the substitution x = x′ + x0, y = y′ + y0 leaves
∆ and c4 invariant, so we may assume that E is singular at (0, 0). We can
easily compute some coefficients:

a6 = f (0, 0) = 0, a4 =
∂ f
∂x

(0, 0) = 0, a3 =
∂ f
∂y

(0, 0) = 0

and simplify the equation for the curve:

E : f (x, y) = y2 + a1xy − x3 − a2x2 = 0.

The quantities associated to the equation are c4 = (a1 + 4a2)2 and ∆ = 0.
By definition, the curve E has a node in (0, 0) if and only if the quadratic
form y2 + a1xy + a2x2 has two distinct factors: this happens if and only if its
discriminant satisfies

a1 + 4a2 , 0

but it follows immediately that c4 , 0. Similarly, the point (0, 0) is a cusp
for E if and only if the quadratic form has two equal factors, if and only if
its discriminant is zero, so c4 = 0. To complete the proof we need to show
that, if E is non-singular, then ∆ , 0. To simplify the computation we can
assume that char(K) , 2 and that the Weierstrass equation for E is of the
form

E : f (x, y) = y2 − 4x3 − b2x2 − 2b4x − b6 = 0.

Then E is singular if and only if there exists a point (x0, y0) of E such that

∂ f
∂x

(x0, y0) = −12x2
0 − 2b2x0 − 2b4 = 0,

∂ f
∂y

(x0, y0) = 2y0 = 0.
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This tells us that the singular points of E are exactly the points (x0, 0) of E
such that x0 is a double root of the polynomial 4x3 + b2x2 + 2b4x + b6. This
polynomial has double roots if and only if its discriminant vanishes: it is
equal to 16∆, so it follows that ∆ = 0. Finally, any cubic polynomial cannot
have two double roots, so the curve E has at most one singular point.

(b) If two elliptic curves are isomorphic then by the transformation formulas
we can easily see that they have the same j-invariant. Conversely, let E, E′

be two elliptic curves with Weierstrass equations

E : y2 = x3 + Ax + B

E′ : y′2 = x′3 + A′x′ + B′.

Then we suppose that j(E) = j(E′): by definition it means that

(4A)3

4A3 + 27B2 =
(4A′)3

4A′3 + 27B′2
=⇒ A3B′2 = A′3B2.

We look for an isomorphism of the form (x, y) = (u2x′, u3y′), so we need to
find u. We have to consider three cases:

• A = 0 (so j = 0): then B′ = 0 since ∆ , 0, so also A′ = 0. Using

u =
(

B
B′

)1/6
we get the isomorphism we were looking for.

• B = 0 (so j = 1728): then A′ , 0 so B′ = 0. Using u =
(

A
A′

)1/4
we get

the isomorphism we were looking for.

• AB , 0 (so j , 0, 1728): then A′B′ , 0 (since if one of them were
0, then both of them would be 0, contradicting ∆ , 0). Using u =(

A
A′

)1/4
=

(
B
B′

)1/6
we get the isomorphism we were looking for.

(c) Assume that j0 , 0, 1728, consider the elliptic curve of Weierstrass equa-
tion

E : y2 + xy = x3 −
36

j0 − 1728
x −

1
j0 − 1728

.

A simple calculation yields to

∆ =
j3
0

( j0 − 1728)3 , j = j0.
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This gives the elliptic curve we were looking for if j0 , 0, 1728. In the
other two cases:

E : y2 = x3 + Ax + B ∆ = −27 if j = 0

E′ : y′2 = x′3 + A′x′ + B′ ∆ = −64 if j = 1728.

We observe that, if char(K) = 2, 3 it holds 0 ≡ 1728, so even in these cases
one of the two curves will be non-singular and fill in the missing value of j.

�

We state here a useful proposition, whose proof is omitted.

Proposition 1.6. [6, III.1.5, p. 48]. Let E be an elliptic curve. Then the invariant
differential ω associated to a Weierstrass equation for E is holomorphic and non-
vanishing.

Proof. See [6, III.1.5, p. 48]. �

Next, we look at what happens when a Weierstrass equation is singular.

Proposition 1.7. [6, III.1.6, p. 48]. If a curve E given by a Weierstrass equation
is singular, then there exists a rational map φ : E −→ P1 of degree one, i.e., the
curve E is birational to P1.

Proof. Given a Weierstrass equation for the curve

E : f (x, y) = y2 + a1xy + a3y − x3 − a2x2 − a4x − a6 = 0

we know that making a linear change of variables we may assume that the singular
point of E is (0, 0). So, checking the value of the function and of the partial
derivatives

f (0, 0) = a6 = 0,
∂ f
∂x

(0, 0) = −a4 = 0,
∂ f
∂y

(0, 0) = a3 = 0

we may simplify the equation to

E : y2 + a1xy = x3 + a2x2.

Then, the rational map E −→ P1, (x, y) 7→ [x, y] has degree 1, since it has an
inverse given by P1 −→ E, [1, t] 7→ (t2 + a1t − a2, t3 + a1t2 − a2t). To derive this
formula, let t = y/x and note that f (x, y)/x2 yields to t2 + a1t = x + a2, so both x
and y = xt are in K̄(t). �
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1.1.2 Reduction types
Let K be a field with the ring of integers RK and let P be a prime ideal of K,
namely a prime ideal in RK . Let FP = RK/P be the residue field of K modulo P.

Definition 1.8 (Reduction of E moduloP). Given a minimal Weierstrass equation
for the elliptic curve E/K (see [6, VII.1, p. 186] for details) of the form

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

we can reduce its coefficients modulo P to obtain a curve over the residue field
FP, namely

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x2 + ã4x + ã6.

The curve Ẽ/FP is called the reduction of E modulo P.

We started from a minimal equation for E (the proposition [6, VII.1.3.a, p.
186] ensures the existence of such equation) so the equation for Ẽ is unique up
to the standard change of coordinates (1.18.b) for Weierstrass equations over the
residue field (from [6, VII.1.3b, p. 186]).

Then we give some useful definitions about Ẽ, in order to get informations
about E. From the proposition (1.5), the reduced curve is one of three types: we
can classify E according to these possibilities.

Definition 1.9 (Reduction types). Let E/K be an elliptic curve.

(a) E has good reduction or stable reduction if Ẽ is non-singular (otherwise,
we say that E has bad reduction and distinguish the types of singularity).

(b) E has multiplicative reduction or semistable reduction if Ẽ has a node. The
reduction is said to be split if the slopes of the tangent lines at the node are
in the residue field FP, otherwise it is said to be non-split.

(c) E has additive reduction or unstable reduction if Ẽ has a cusp.

It is quite easy to read off the reduction type of an elliptic curve from a minimal
Weierstrass equation:

Proposition 1.10. [6, VII.5.1, p. 196]. Let E/K be an elliptic curve given by a
minimal Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Let ∆ be the discriminant of this equation and let c4 be the usual expression in-
volving the coefficients of the equation. Recall that R×K denotes the unit group of
RK .
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(a) E has good reduction if and only if ∆ ∈ R×K .
(b) E has multiplicative reduction if and only if ∆ ∈ P and c4 ∈ R×K .
(c) E has additive reduction if and only if ∆ ∈ P and c4 ∈ P.

Proof. It follows immediately from the proposition (1.5) applied to the reduced
Weierstrass equation over the field FP. �

When an elliptic curve E/K has bad reduction, it is often useful to know
whether it attains good reduction over some extension of K.

Definition 1.11 (Potential good reduction). Let E/K be an elliptic curve. We say
that E/K has potential good reduction if there is a finite extension K′/K such that
E/K′ has good reduction.

Then we want to know how reduction type behaves under field extension,
so we state the next proposition. Finally, the proposition immediately following
provides a useful characterization of when an elliptic curve has potential good
reduction.

Proposition 1.12. [6, VII.5.4, p. 197]. Let E/K be an elliptic curve.

(a) Let K′/K be an unramified extension. Then the reduction type of E over K
is the same as the reduction type of E over the extension K′.

(b) Let K′/K be a finite extension. If E has good or multiplicative reduction
over K, it has the same reduction type over the extension K′.

(c) There exists a finite extension K′/K such that E has good or (split) multi-
plicative reduction over K′.

Proof. See [6, VII.5.4, p. 197]. �

Proposition 1.13. [6, VII.5.4, p. 197]. Let E/K be an elliptic curve. E has
potential good reduction if and only if its j-invariant is integral, namely j(E) ∈ RK .

Proof. See [6, VII.5.5, p. 199]. �
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1.1.3 Group law
Let E be an elliptic curve given by a Weierstrass equation. Thus E ⊂ P2 consists of
the points P = (x, y) satisfying the equation and the point at infinity O = [0, 1, 0].
Let L ⊂ P2 be a line: since the equation of the curve has degree three, L ∩ E
contains exactly three points, say P,Q,R, that could be not distinct (if L is tangent
to E). Using this fact, we may define a composition law ⊕ on E as follows:

Definition 1.14 (Composition law). Let P,Q ∈ E, let L be the line through P and
Q (if P = Q then L is tangent to E at P) and let R be the third intersection point
of L with E. Let L′ be the line through R and the point at infinity O. Then L′

intersect E at R, O and a third point. We denote this third point by P ⊕ Q.

This composition law has the following properties:

Proposition 1.15. [6, III.2.2, p. 51]. The composition law makes E into an abelian
group with identity element O. In particular

(a) If a line L intersects E at the points P,Q,R (not necessarily distinct), then
(P ⊕ Q) ⊕ R = O;

(b) P ⊕ O = P for all P ∈ E, it means that O is the identity for the composition
law;

(c) P ⊕ Q = Q ⊕ P, so the composition law is abelian;
(d) Let P ∈ E, there is a point of E, denoted by 	P, that satisfies P⊕ (	P) = O,

so for every element there is an inverse;
(e) Let P,Q,R ∈ E, then (P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R), so the composition law is

associative.
(f) Suppose that E is defined over K. Then

E(K) = {(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6} ∪ {O}

is a subgroup of E.

Proof. (a) It follows directly from the definition. It is easy to see it graphically
in the figure (1.4).

(b) Taking Q = O in the composition law (1.14), we see that the lines L and L′

coincide. The former intersects E at P,O,R and the latter in R,O, P ⊕O, so
necessarily P ⊕ O = P. See the figure (1.4) for a graphic representation.

(c) It follows from the symmetry of the construction of P⊕Q in the composition
law: the line through P and Q is clearly the same line through Q and P.
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(a) Addition of distinct points: P ⊕ Q (b) Adding a point to itself: P ⊕ P

Figure 1.3: Group law over an elliptic curve.

(d) Let the line through P and O also intersect E at R. Using (a) and (b) we find
that

O = (P ⊕ O) ⊕ R = P ⊕ R

so 	P = R is the desired point.

(e) To prove the associativity we could use the Riemann-Roch theorem, as in [6,
III.3.4.e, p. 61], or a geometric argument. A third, laborious, way to check
this property uses the explicit formulas given later in this section. Again in
the figure (1.4) there is a graphical example that shows this property holds.

(f) If P and Q have coordinates in K, then the equation of the line connecting
them has coefficients in K. If, further, E is defined over K, then the third
point of intersection has coordinates given by a rational combination of the
coordinates of coefficients of the line and of E, so will be in K.

�

From now on, we simply write the symbols + and − for the group operations
⊕ and 	.

For m ∈ Z and P ∈ E, we can add the point to itself m times and get another
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(a) Sum of three aligned
points.

(b) Existence of the iden-
tity.

(c) Associativity.

Figure 1.4: Some graphic proofs of the proposition (1.15).

point of the curve, simply as follows:

[m]P =


m terms︷       ︸︸       ︷

P + · · · + P if m > 0
−P − · · · − P︸         ︷︷         ︸

m terms

if m < 0

[0]P = O.

A nice application of this simple definition is the elliptic curve cryptography
(ECC): given an elliptic curve E defined by the Weierstrass equation y2 = x3 +

ax + b on some finite field, when we sum two points of E (or sum a point to itself)
we obtain a new point of E whose location is not immediate from the location of
the initial summands. If we repeat the process a large number of times we obtain a
point that may be essentially everywhere on the curve. Reverting this process, i.e.,
given the points P and Q = nP on the curve with n unknown integer, determining n
can only be done by trying all the possible integers n. If this number is sufficiently
large this process is computationally intractable. The security of modern ECC
depends exactly on the intractability of determining the integer n from Q = nP
given known values of Q and P. This is known as the elliptic curve discrete
logarithm problem, by analogy to other cryptographic systems.

To go deep to the heart of this subject, see "Guide to elliptic curve cryptogra-
phy", Hankerson, Menezes, Vanstone.

Now we want to derive explicit formulas for the group law on E: given the
coordinates of two points of E we want to find a way to express their sum point in
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terms of their coordinates. We state the following group law algorithm.

Theorem 1.16 (Group law algorithm). [6, III.2.3, p. 53]. Let E be an elliptic
curve given by the Weierstrass equation

E : F(x, y) = y2 + a1xy + a3y − x3 − a2x2 − a4x − a6 = 0.

(a) Let P0 = (x0, y0) ∈ E, then the opposite point has coordinates

−P0 = (x0,−y0 − a1x0 − a3) (negation formula).

(b) Let Pi = (xi, yi) ∈ E for i = 1, 2, 3, such that P1 + P2 = P3. If x1 = x2 and
y1 + y2 + a1x2 + a3 = 0, then P1 + P2 = O. Otherwise, we define λ and ν by
the following formulas:

λ ν

if x1 , x2 :
y2 − y1

x2 − x1

y1x2 − y2x1

x2 − x1

if x1 = x2 :
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

Then y = λx+ν is the equation of the line through P1 and P2 (or the equation
of the tangent line to E if P1 = P2). The point P1 + P2 = P3 has coordinates

x3 = λ2 + a1λ − a2x1 − x2, y3 = −(λ + a1)x3 − ν − a3.

Proof. (a) Let P0 = (x0, y0) ∈ E, in order to compute −P0 we follow the proof
of proposition (1.15.d): we take the line L through P0 and O and find the
third point of intersection with E. Namely, the equation of the line L is
x − x0 = 0, we substitute it into the Weierstrass equation of the curve and
get

F(x0, y) = y2 + a1x0y + a3y − x3
0 − a2x2

0 − a4x0 − a6 = 0

whose roots are y0, already known, and y′0, which is the value we are looking
for, so we can write also as

F(x0, y) = c(y − y0)(y − y′0)

= cy2 − c(y0 + y′0)y + cy0y′0

and equating the coefficients of the two expressions we deduce that c = 1
from the coefficient of y2, and y′0 = −y0 − a1x0 − a3 from the coefficient of
y. So −P0 = (x0, y′0) = (x0,−y0 − a1x0 − a3) and this proves the statement.
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(b) Let P1 = (x1, y1) and P2 = (x2, y2) be two points of E. If x1 = x2 and
y1 + y2 + a1x2 + a3 = 0, then by the previous computation P1 + P2 = O.
Otherwise the line through P1 and P2, or the tangent line if the two points
coincide, has equation of the form L : y = λx + ν, where the values of λ and
ν are exactly as in the statement. Then, substituting the equation into the
Weierstrass equation of E gives

F(x,λx+ν) = (λx+ν)2 + a1x(λx+ν) + a3(λx+ν) − x3
0 − a2x2

0 − a4x0 − a6 =0

⇔− x3 + (λ2+a1λ−a2)x2 + (2λν+a1ν+a3λ−a4)x + ν2 + a3ν − a6 = 0.

On the other hand, this polynomial has roots x1, x2, x3, where P′3 = (x3, y′3)
is the third point of intersection of L and E. So again, we can write also

F(x, λx + ν) = c(x − x1)(x − x2)(x − x3)

= cx3 − c(x1 + x2 + x3)x2 + c(x1x2 + x2x3 + x1x3)x − cx1x2x3

and equating the coefficients of the two expressions we obtain c = −1 from
the coefficient of x3 and x3 = λ2 + a1λ − a2 − x1 − x2 from the coefficient of
x2. We substitute the value of x3 into the equation of the line L and get the
second coordinate of the point P′3, y′3 = λx3 +ν. Finally, since P′3 is the third
point of intersection of the line with E, after P1 and P2, then (1.15.a) tells
us that P1 + P2 + P′3 = O, so P1 + P2 = −P′3. Thus, to compute P3 = P1 + P2

we need to apply the negation formula to P′3 = (x3, λx3 + ν), namely

P3 = P1 + P2 = −P′3 = (x3,−y′3 − a1x3 − a3) = (x3,−(λ + a1)x3 − ν − a3)

and we obtain the desired result.
�

Using the explicit formulas, as we already noticed above, it is possible to prove
directly (1.15.e), namely the associativity of the composition law over E.

1.1.4 Elliptic curves as abelian groups
Let E be a smooth curve of genus one, for example we may consider the curves
defined by the non-singular Weierstrass equations described above. We have also
seen that such curves can be given the structure of abelian group. In order to
make a set into a group we need to choose the identity element: this leads to the
following definition.
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Definition 1.17 (Elliptic curve). An elliptic curve is a pair (E,O) where E is a
non-singular curve of genus one and O ∈ E. The elliptic curve E is defined over
K if E is defined over K as a curve and O ∈ E(K), we write it as E/K.

We generally denote the elliptic curve by E, the point O is usually understood.
In order to connect this definition with the material in the previous sections,

we need to show that every elliptic curve can be written as a plane cubic, and
conversely every smooth Weierstrass plane cubic curve is an elliptic curve. The
key tool that allows us to prove this facts is the Riemann-Roch theorem.

Proposition 1.18. [6, III.3.1, p. 59]. Let E be an elliptic curve defined over K. We
denote by K(E) be the function field of E over K, namely, the field of the rational
functions on E (ratio of polynomials).

(a) There exist functions x, y ∈ K(E) such that the map φ : E −→ P2, φ =

[x, y, 1] gives an isomorphism of E/K onto a curve given by a Weierstrass
equation

C : Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

with coefficients a1, . . . , a6 ∈ K and satisfying φ(O) = [0, 1, 0]. The func-
tions x, y are called Weierstrass coordinates for the elliptic curve E.

(b) Any two Weierstrass equations for E as in (a) are related by a linear change
of variables of the form

X = u2X′ + r, Y = u3Y ′ + su2X′ + t

with u ∈ K× and r, s, t ∈ K.

(c) Conversely, every smooth cubic curve C given by a Weierstrass equation as
in (a) is an elliptic curve defined over K with base point O = [0, 1, 0].

Proof. See [6, III.3.1, p. 59]. �

From these facts we can deduce the following

Remark 1.19. Let E/K be an elliptic curve with Weierstrass coordinate functions
x and y, then K(E) = K(x, y) and [K(E) : K(x)] = 2.

Remark 1.20. [6, III.3.2, p. 61]. We note that (1.18.b) does not imply that, if
two Weierstrass equations have coefficients in a given field K, then every change
of variables mapping one to the other has coefficients in K. For instance, the
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Weierstrass equation y2 = x3 − x has coefficients in K = Q, but it is mapped to
itself by the substitution

x = −x′, y =
√
−1y′

which has not coefficients in Q.

Finally one can prove a fundamental fact about the addition law on an elliptic
curve: it is a morphism.

Theorem 1.21. [6, III.3.6, p. 64]. Let E/K be an elliptic curve. Then the equa-
tions giving the explicit form of the composition law on E define morphisms

+ : E × E −→ E, and − : E −→ E
(P1, P2) 7−→ P1 + P2 P 7−→ −P

Proof. See [6, III.3.6, p. 64]. �

1.1.5 Isogenies
After the geometry of an elliptic curve, we need to study the maps between curves.
Since an elliptic curve has a distinguished zero point, it is natural to single out the
maps that respect this property.

Let K be a field, give a curve E/K we denoted by K(E) be the function field of
E over K, namely, the field of the rational functions on E (ratio of polynomials).

Definition 1.22 (Isogeny). Let E1 and E2 be two elliptic curves. An isogeny from
E1 to E2 is a morphism

φ : E1 −→ E2 satisfying φ(O) = O

Two elliptic curves E1 and E2 are said to be isogenous if there exists an isogeny
from E1 to E2 with φE1 , {O}.

We recall that the theorem [6, II.2.3, p. 20] tells us that a morphism of curves
is either constant or surjective. From this fact, it follows that an isogeny satisfies
either φ(E1) = {O} or φ(E1) = E2. Thus, except for the zero isogeny defined by
[0](P) = O for all P ∈ E1, every other isogeny is a finite map of curves. Hence we
obtain the injection of function fields

φ∗ : K̄(E2) −→ K̄(E1), f 7→ φ∗( f ) = f ◦ φ.



1.1 Geometry of elliptic curves 25

Moreover, the theorem [6, II.2.4.a, p. 20] tells us that K̄(C1) is a finite extension
of the field φ∗(K̄(C2)). The degree of φ, denoted by degφ, is the degree of the finite
extension of fields K̄(E1)/φ∗(K̄(E2)), namely

deg(φ) = [K̄(C1) : φ∗(K̄(E2))]

and similarly we define the separable degree of φ, degsφ, and inseparable degree
of φ, degiφ, as the separable and inseparable degree of the field extension, respec-
tively. We also refer to the map φ as being separable, inseparable, purely insepa-
rable according to the corresponding property of the field extension. Further, by

convention we set deg[0] = 0, so for all chains of isogenies E1
φ
−→ E2

ψ
−→ E3

deg(ψ ◦ φ) = deg(ψ) deg(φ).

Elliptic curves are abelian groups, so the maps between them form groups: we
denote the set of isogenies from E1 to E2 by

Hom(E1, E2) = {isogenies E1 −→ E2}

and define the sum of two isogenies φ, ψ ∈ Hom(E1, E2) is defined pointwise as

(φ + ψ)(P) = φ(P)ψ(P) for all P ∈ E1

and the theorem (1.21) says that φ + ψ is a morphism, so it is an isogeny. This
proves that Hom(E1, E2) is a group.

If E1 = E2 = E we can also compose isogenies, so End(E) = Hom(E, E) is the
endomorphism ring of E, a ring whose addition law is as given above and whose
multiplication is the composition of isogenies, namely for all φ, ψ ∈ End(E)

(φψ)(P) = φ(ψ(P)) for all P ∈ E.

End(E) is an important invariant of the elliptic curve E. The invertible elements of
the endomorphism ring form the automorphism group of E, denoted by Aut(E).

If the curves E1, E2, E are defined over a field K, we can restrict attention to
those isogenies that are defined over K, so the corresponding groups of isogenies
are denoted by

HomK(E1, E2), EndK(E), AutK(E).

In particular, the remark (1.20) shows that Aut(E) may be strictly larger than
AutK(E).
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An isogeny is a map between elliptic curve that sends O to O. Since an elliptic
curve is a group, it might seem more natural to focus on those isogenies that are
group homomorphisms. However it turns out that every isogeny is automatically
a homomorphism.

Theorem 1.23. [6, III.4.8, p. 71]. Let φ : E1 −→ E2 be an isogeny, then

φ(P + Q) = φ(P) + φ(Q) for all P,Q ∈ E1.

Proof. See [6, III.4.8, p. 71]. �

Corollary 1.24. [6, III.4.9, p. 72]. Let φ : E1 −→ E2 be a non-zero isogeny, then
ker(φ) = φ−1(O) is a finite group.

Proof. See [6, III.4.9, p. 72]. �

Example 1.25. [6, III.4.7, p. 71]. We can easily show that any morphism between
elliptic curves is the composition of an isogeny and a translation. Let E/K be an
elliptic curve and let Q ∈ E. Then we can define a translation-by-Q map

τQ : E −→ E, P 7→ P + Q

that is clearly an isomorphism, with inverse the translation τ−Q, but if Q , O
it is not an isogeny. Let E1, E2 be two elliptic curves and consider an arbitrary
morphism F : E1 −→ E2 between them. The composition

φ = τ−F(O) ◦ F

sends O into O by construction, so it is an isogeny. This proves that any morphism
F between elliptic curves can be written as the composition of an isogeny and a
translation, namely F = τF(O) ◦ φ.

Definition 1.26 (Multiplication-by-m isogeny). For each m ∈ Z we define the
multiplication-by-m isogeny [m] : E −→ E in the natural way: for each P ∈ E

[m](P) = P + · · · + P︸       ︷︷       ︸
m terms

if m > 0

[m](P) = [−m](−P) if m < 0
[0](P) = O
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Using the theorem (1.21), an easy induction shows that [m] is a morphism and
since clearly it sends O to O so it is an isogeny. Moreover, if E is defined over
K then also [m] is defined over K. We start the study of the group of isogenies
by showing that, if m , 0, then the multiplication-by-m map is non-constant, and
then we deduce some characteristics of the endomorphism ring of E.

Proposition 1.27. [6, III.4.2, p. 68].

(a) Let E/K be an elliptic curve and let m ∈ Zwith m , 0, then the multiplication-
by-m map [m] : E −→ E is non-constant.

(b) Let E1 and E2 be elliptic curves, then the group of isogenies Hom(E1, E2) is
a torsion-free Z-module.

(c) Let E be an elliptic curve, then the endomorphism ring End(E) is a ring of
characteristic 0 with no zero divisors, not necessarily commutative.

Proof. (a) We start by showing that [2] , [0]. The duplication formula (proved
in [6, III.2.3.d, p. 54]) says that if a point P = (x, y) ∈ E has order 2, then it
must satisfy

4x3 + b2x2 + 2b4x + b6 = 0

where the coefficients are defined in the first section. If char(K) , 2,
this shows immediately that there are only finitely many such points; if
char(K) = 2 the only way to have [2] = [0] is for the cubic polynomial to be
identically zero, which means b2 = 0 = b6, that implies that ∆ = 0. Hence
in all cases we have [2] , [0]. Now, using the fact that [mn] = [m] ◦ [n], we
are reduced to study only the case with m odd.

Assume that char(K) , 2, then one can check that the polynomial 4x3 +

b2x2 + 2b4x + b6 does not divide the polynomial x3 − b2x2 − 2b6x − b8

(otherwise we get again ∆ = 0). Hence we can find an x0 ∈ K̄ such that the
former polynomial vanishes to higher order at x0 than the latter. Choosing
y0 ∈ K̄ so that P0 = (x0, y0) is a point of the curve E, the duplication formula
says that [2]P0 = O, in other words, E has a non-trivial point P0 of order 2.
Then for odd integers m we necessarily have [m]P0 = P0 , O, so clearly
[m] , [0]. If char(K) = 2 we can proceed as above, using a triplication
formula (see [6, III.Exercise 3.2, p. 104]) to produce a point of order 3.

(b) Suppose that φ ∈ Hom(E1, E2) and m ∈ Z satisfy [m] ◦ φ = [0], so their
degrees satisfy deg([m]) deg(φ) = 0. So either m = 0, or else (a) implies
that deg([m]) ≥ 1, in which case we must have φ = [0].
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(c) From (b), it follows that the endomorphism ring End(E) has characteristic
0. Suppose that φ, ψ ∈ End(E) satisfy φ ◦ ψ = [0], then their degree satisfy

deg(φ) deg(ψ) = deg(φ ◦ ψ) = 0

so either φ = [0] or ψ = [0]. Therefore End(E) is an integral domain.
�

Definition 1.28 (m-torsion subgroup, torsion subgroup of E). Let E be an elliptic
curve and let m ∈ Z with m ≥ 1. The m-torsion subgroup of E is the set of points
of E of order m, namely

E[m] = { P ∈ E : [m](P) = O } .

The torsion subgroup of E is the set of points of E of finite order,

Etors =

∞⋃
m=1

E[m].

If E is defined over K, then Etors(K) denotes the points of finite order in E(K).

The most important fact about the multiplication-by-m map is that it has degree
deg[m] = m2, it will be proven later. From this property one can deduce the
structure of the finite subgroup of m-torsion E[m].

1.1.6 The invariant differential

We first recall some definitions and properties of the vector space of differential
forms of a curve C, then we consider in particular the invariant differential of an
elliptic curve E.

Definition 1.29 (Space of differential forms on a curve). Let C be a curve, the
space of (meromorphic) differential forms on C, denoted by ΩC, is the K̄-vector
space generated by symbols of the form dx for x ∈ K̄(C) that satisfy the following
relations: for all x, y ∈ K̄(C), for all a ∈ K̄

(a) d(x + y) = dx + dy;
(b) d(xy) = xdy + ydx;
(c) da = 0.
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Let φ : C1 −→ C2 be a non-constant map of curves, the associated function
field map φ∗ : K̄(C2) −→ K̄(C1) induces a map on differentials, that we denote
again as

φ∗ : ΩC2 −→ ΩC1 ,
∑

fi dxi 7→ φ∗
(∑

fi dxi

)
=

∑(
φ∗ fi

)
d(φ∗xi)

and call it the pull-back of omega via φ. This map provides a useful criterion for
determining when the map φ is separable: in fact proposition [6, II.4.2, p. 30] tells
us that

(a) ΩC is a 1-dimensional K̄-vector space;
(b) if x ∈ K̄(C), then dx is a K̄(C)-basis for ΩC if and only if K̄(C)/K̄(x) is a

finite separable extension;
(c) given φ as above, then it is separable if and only if φ∗ : ΩC2 −→ ΩC1 is

injective (equivalently, non-zero).

Let E/K be an elliptic curve given by the usual Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

We have seen in proposition (1.6) that the invariant differential

ω =
dx

2y + a1x + a3
∈ ΩE

has neither zeros nor poles. The following proposition tells us that it is also in-
variant under translation.

Proposition 1.30. [6, III.5.1, p. 76]. Let E and ω be as above, let Q ∈ E and let
τQ : E −→ E be the translation-by-Q. Then

τ∗Qω = ω.

Proof. See [6, III.5.1, p. 76]. �

We know that differential calculus is a linearization tool: the invariant differ-
ential is useful to linearize the, otherwise quite complicate, addition law on the
elliptic curve.

Theorem 1.31. [6, III.5.2, p. 77]. Let E, E′ be elliptic curves, let ω be an invari-
ant differential on E and let φ, ψ : E′ −→ E be isogenies. Then the pull-back is
compatible with the sum of isogenies:

(φ + ψ)∗ω = φ∗ω + ψ∗ω.
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Proof. See [6, III.5.2, p. 77] �

Corollary 1.32. [6, III.5.3, p. 79]. Let ω be an invariant differential on an elliptic
curve E, Let m ∈ Z. Then the pull-back of omega via the multiplication-by-m
isogeny is simply the multiplication-by-m of the differential:

[m]∗ω = mω.

Proof. We prove it by induction over m.
The assertion is true for m = 0, since [0] is the constant map; it is also true for

m = 1, since [1] is the identity map.
Using the theorem (1.31) with φ = [m] and ψ = [1] and applying induction we

obtain
[m + 1]∗ω = [m]∗ω + ω = mω + ω = (m + 1)ω. �

As an example of the utility of the invariant differential, we can give a less
computational proof of proposition (1.27.a).

Corollary 1.33. [6, III.5.4, p. 79]. Let E/K be an elliptic curve and let m ∈
Z. Assume that m , 0 in K, then the multiplication-by-m map on E is a finite
separable endomorphism.

Proof. Let ω be an invariant differential on E. Then corollary (1.32) and the
assumption on m imply that [m]∗ω = mω , 0, so certainly [m] , 0. Hence [m]
is finite, so by proposition [6, II.4.2, p. 30], already seen at the beginning of this
section, [m] is separable. �

As a second application of the theorem (1.31) and the corollary (1.32), we ex-
amine when a linear combination involving the Frobenius morphism is separable.
In order to do this, we first recall the definition of Frobenius map and some of its
basic properties.

Assume that k is a field of char(k) = p > 0, let q = pr for some r natural.
For any polynomial f with coefficients in k, let f (q) be the polynomial obtained by
raising each coefficient of f to its qth- power. The, for any curve C/k defined by a
polynomial f we can define the curve C(q)/k, given by the polynomial f (q).

Definition 1.34 (Frobenius morphism). We define the qth-power Frobenius mor-
phism the natural map

φ : C −→ C(q), P 7→ Pq

namely, φ sends any point P of C to the point of C(q) whose coordinates are the
qth-power of the coordinates of P.
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The next proposition shows the basic properties of the Frobenius map:

Proposition 1.35. [6, II.2.11, p. 25]. With notations as above:
(a) φ is purely inseparable;
(b) degφ = q.

Proof. See [6, II.2.11, p. 25]. �

Finally, an important consequence of those basic properties of φ, which will
be useful later, is the following:

Corollary 1.36. [6, II.2.12, p. 26]. Every map ψ : C1 −→ C2 of curves over a
field k of char(k) = p > 0 factors as

C1
φ
−−→ C(q)

1
λ
−−→ C2

where q = degiψ is the inseparable degree of ψ, φ is the qth-power Frobenius
morphism and λ is a separable map.

Proof. See [6, II.2.12, p. 26]. �

Now, we can go back to the second application of theorem (1.31) and corollary
(1.32) we were talking about.

Corollary 1.37. [6, III.5.5, p. 79]. Let E be an elliptic curve defined over a finite
field Fq of characteristic p, let φ : E −→ E be the qth-power Frobenius morphism
and let m, n ∈ Z. Then the map

m + nφ : E −→ E

is separable if and only if p - m. In particular, the map 1 − φ is separable.

Proof. See [6, III.5.5, p. 79]. �

Corollary 1.38. [6, III.5.6, p. 80]. Let E/K be an elliptic curve and let ω be a
non-zero invariant differential on E. We define a map

End(E) −→ K̄, φ 7→ aφ such that φ∗ω = aφω.

Then:
(a) The map φ 7→ aφ is a ring homomorphism;
(b) The kernel of φ 7→ aφ is the set of inseparable endomorphisms of E;
(c) If char(K) = 0 then End(E) is a commutative ring.

Proof. See [6, III.5.6, p. 80]. �
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1.1.7 The endomorphism ring
Let E be an elliptic curve. In this section we characterize which rings may occur
as the endomorphism ring of E.

Definition 1.39 (Order of aQ-algebra). LetK be a (non-necessarily commutative)
Q-algebra that is finitely generated over Q. An order R of K is a subring of K
that is finitely generated as a Z-module and satisfies R ⊗ Q = K .

Definition 1.40 (Quaternion algebra). A quaternion algebra is an algebra of the
form

K = Q + Qα + Qβ + Qαβ

whose multiplication satisfies

α2, β2 ∈ Q, α2 < 0, β2 < 0, βα = −αβ.

Theorem 1.41. [6, III.9.3, p. 100]. Let R be a ring of characteristic 0 having no
zero divisors, and the following properties:

i. R has rank at most four as a Z-module;
ii. R has an anti-involution satisfying

α̂ + β = α̂ + β̂, α̂β = β̂α̂, ˆ̂α = α, â = a for a ∈ Z ⊂ R.

iii. For α ∈ R, the product αα̂ is non-negative integer, and αα̂ = 0 if and only if
α = 0.

Then R is one of the following types of rings:
a. R � Z;
b. R is an order in an imaginary quadratic extension of Q;
c. R is an order in a quaternion algebra over Q.

Proof. See [6, III.9.3, p. 100]. �

Corollary 1.42. [6, III.9.4, p. 102]. The endomorphism ring of an elliptic curve
E/K is either Z, an order in an imaginary quadratic field, or an order in a quater-
nion algebra. If char(K) = 0 then only the first two are possible.

Proof. From some properties of the isogenies (see [6, III.6.2, p. 83] and [6, III.6.3,
p. 85]) and from (1.27.b) we know that the ring End(E) satisfies all the conditions
needed to apply theorem (1.41). This proves the first part of the corollary. If
char(K) = 0, then the corollary (1.38.c) says that End(E) is commutative, so it
cannot be an order in a quaternion algebra. �
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Figure 1.5: A lattice and three fundamental parallelograms.

1.2 Elliptic curves over C
Our goal in this section is to study the space C/Λ for a given lattice Λ, known as
the complex torus induced by Λ. We will show that it is isomorphic to EΛ(C) for
a certain elliptic curve EΛ/C, then we will introduce the uniformization theorem,
which says that every elliptic curve E/C is isomorphic to some EΛ.

1.2.1 Elliptic functions over C
Let Λ ⊂ C be a lattice, that is, Λ is a discrete subgroup of C that contains an
R-basis for C.

Definition 1.43 (Elliptic function). An elliptic function relative to the lattice Λ is
a meromorphic function f (z) on C that satisfies

f (z + ω) = f (z) for all z ∈ C and all ω ∈ Λ.

The set of all such functions is denoted by C(Λ), and it is clearly a field.

In order to prove the next proposition we need the following
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Definition 1.44 (Fundamental parallelogram). A fundamental parallelogram for
Λ is a set of the form

D = { a + t1ω1 + t2ω2 : 0 ≤ t1, t2 < 1 }

where a ∈ C and { ω1, ω2 } is a basis for Λ.

Note that the definition of D implies that the natural map D → C/Λ is bijec-
tive.

Proposition 1.45. [6, VI.2.1, p. 161]. A holomorphic elliptic function, i.e. an
elliptic function with no poles, is constant. Similarly, an elliptic function with no
zeros is constant.

Proof. Suppose that f (z) ∈ C(Λ) is holomorphic. Let D be a fundamental paral-
lelogram for Λ. The periodicity of f implies that

sup
z∈C
| f (z)| = sup

z∈D̄
| f (z)|

where D̄ denotes the closure of D in C. Since f is a continuous function and
D̄ is compact, then | f (z)| is bounded on D̄. Hence f is bounded on all of C, so
Liouville’s theorem tells us that f is constant. This proves the first statement.
Finally, if f has no zeros, then 1/f is holomorphic, hence constant. �

Let f be an elliptic function and let ω ∈ C. Then we can look at

ordω( f ) = order of vanishing of f at ω
resω( f ) = residue of f at ω.

We can define those two quantities for any meromorphic function, the fact that
f is elliptic implies that the order and the residue of f do not change if we replace
ω with ω + ω for any ω ∈ Λ

Notation 1.46. We denote by
∑
ω∈C/Λ a sum over ω ∈ D. The value of the sum

is actually independent on the choice of the fundamental parallelogram and only
finitely many terms of the sum are non-zero.

With this notation it is easier to state the following theorem:

Theorem 1.47. [6, VI.2.2, p. 162]. Le f ∈ C(Λ) be an elliptic function relative to
the lattice Λ. Then∑

ω∈C/Λ

resω( f ) = 0,
∑
ω∈C/Λ

ordω( f ) = 0,
∑
ω∈C/Λ

ordω( f )ω ∈ Λ.



1.2 Elliptic curves over C 35

Proof. See [6, VI.2.2, p. 162]. �

Definition 1.48 (Order of an elliptic function). The order of an elliptic function
is its number of poles, counted with multiplicity, in a fundamental parallelogram.
Equivalently, by the second relation in (1.47), the order can be defined as its num-
ber of zeros.

It is immediate to prove the following

Corollary 1.49. [6, VI.2.3, p. 164]. A non-constant elliptic function has order at
least 2.

Proof. Suppose that f (z) has order 1, i.e., it has a single pole. Then by the first
relation in (1.47) the residue at the pole is necessarily 0, so f (z) is actually holo-
morphic. Then we can conclude by applying the theorem (1.45) that f (z) is con-
stant. �

Now we want to construct some useful non-constant elliptic functions. From
the previous corollary (1.49), we know that any such function has order at least 2,
so we look for a function with a pole of order 2 at z = 0.

Definition 1.50 (Weierstrass ℘-function). Let Λ ⊂ C be a lattice. The Weierstrass
℘-function relative to Λ is defined by the series

℘(z; Λ) =
1
z2 +

∑
ω∈Λ
ω,0

( 1
(z − ω)2 −

1
ω2

)
.

For notational convenience, if the lattice Λ has been fixed we write only ℘(z).
One can prove the following results, given in [6, VI.3.1, p. 165]: the series defin-
ing the Weierstrass ℘-function converges absolutely and uniformly on every com-
pact subset of C \ Λ; moreover, the series defines a meromorphic function on C
having a double pole with residue 0 at each lattice point and no other poles, and
lastly the ℘-function is an even elliptic function.

Next, one can show that every elliptic function is a rational function on the
Weierstrass ℘-function and its derivative.

Theorem 1.51. [6, VI.3.2, p. 166]. Let Λ ⊂ C be a lattice, then

C(Λ) = C(℘(z), ℘′(z))

i.e., every elliptic function is a rational combination of ℘ and ℘′.
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Proof. See [6, VI.3.2, p. 166]. �

We next derive the Laurent series expansion for ℘(z) around z = 0, from which
we will deduce the fundamental algebraic relation satisfied by ℘(z) and ℘′(z).

Theorem 1.52. [6, VI.3.5, p. 169].

(a) The Laurent series for ℘(z) around z = 0 is given by

℘(z) =
1
z2 +

∞∑
k=1

(2k + 1)G2k+2z2k

where G2n = G2n(Λ) =
∑
ω∈Λ
ω,0

ω−2n is the Eisenstein series of weight 2n for
Λ.

(b) For all z ∈ C \Λ, the Weierstrass ℘(z)-function and its derivative satisfy the
relation

℘′(z)2 = 4℘(z)3 − 60G4℘(z) − 140G6.

Proof. (a) For all z with |z| < |ω| we have

1
(z − ω)2 −

1
ω2 =

1
ω2

( 1
(1 − z/ω)2 − 1

)
=

∞∑
n=1

(n + 1)
zn

ωn+2 .

Substituting this formula into the series for ℘(z) and reversing the order of
summation gives

℘(z) =
1
z2 +

∑
ω∈Λ
ω,0

( ∞∑
n=1

(n + 1)
zn

ωn+2

)

=
1
z2 +

∞∑
n=1

(n + 1)zn
∑
ω∈Λ
ω,0

ω−(n+2)

=
1
z2 +

∞∑
n=1

(n + 1)znGn+2 and necessarily n must be even

=
1
z2 +

∞∑
k=1

(2k + 1)z2kG2k+2

so we obtain the desired result.
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(b) We write out the first few terms of various Laurent expansions:

℘′(z)2 = 4z−6 − 24G4z−2 − 80G6 + . . .

℘(z)3 = z−6 + 9G4z−2 + 15G6 + . . .

℘(z) = z−2 + 3G4z2 + . . .

and comparing these expansions we see that the function

f (z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6

is holomorphic at z = 0 and satisfies f (0) = 0. But f (z) is an elliptic
function relative to the lattice Λ and from the properties of the ℘(z)-function
it follows that it is holomorphic away from Λ. So f (z) is a holomorphic
elliptic function. Then the proposition (1.45) says that f (z) is constant, and
the fact that f (0) = 0 tells us that it is identically zero.

�

Notation 1.53. It is standard notation to set

g2 = g2(Λ) = 60G4(Λ), g3 = g3(Λ) = 140G6(Λ).

Then the algebraic relation satisfied by ℘(z) and ℘′(z) is

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3.

Let E/C be an elliptic curve. The group law E × E −→ E is given by ev-
erywhere locally defined rational functions, by (1.21), so we see in particular that
E = E(C) is a complex Lie group, i.e., it is a complex manifold with a group law
given locally by complex analytic functions. Similarly, if Λ ⊂ C is a lattice, then
C/Λ with its natural addition is a complex Lie group.

The next result says that C/Λ is always complex analytically isomorphic to an
elliptic curve.

Proposition 1.54. [6, VI.3.6, p. 170]. Let g2 = g2(Λ) and g3 = g3(Λ) be the
quantities associated to the lattice Λ ⊂ C.

(a) The polynomial f (x) = 4x3 − g2x − g3 has distinct roots, so its discriminant
∆(Λ) = 16(g3

2 − 27g2
3) is non-zero;
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(b) Let E/C be the elliptic curve E : y2 = 4x3 − g2x − g3. Then the map

φ : C/Λ −→ E(C) ⊂ P2(C), z 7→ [℘(z), ℘′(z), 1]

is a complex analytic isomorphism of complex Lie groups, i.e., it is an iso-
morphism of Riemann surfaces that is also a group homomorphism.

Proof. See [6, VI.3.6, p. 170]. �

Then we need to investigate complex analytic maps between complex tori. It
turns out that they all have a particular simple form and that the maps they induce
on the corresponding elliptic curves are isogenies, i.e., they are given by rational
functions.

Let Λ1 and Λ2 be lattices in C, and suppose that α ∈ C has the property that
αΛ1 ⊂ Λ2. Then the scalar multiplication by α induces a well-defined holomor-
phic homomorphism

φα : C/Λ1 −→ C/Λ2, z 7→ φα(z) = αz (mod Λ2).

The next result tells us that these are essentially the only holomorphic maps from
C/Λ1 to C/Λ2.

Theorem 1.55. [6, VI.4.1, p. 171].

(a) With notation as above, the association

{
α ∈ C : αΛ1 ⊂ Λ2

}
→


holomorphic maps
φ : C/Λ1 → C/Λ2

with φ(0) = 0


α 7→ φα

is a bijection.

(b) Let E1 and E2 be elliptic curves corresponding to lattices Λ1 and Λ2 respec-
tively. Then the natural inclusion

{
isogenies φ : E1 −→ E2

}
→


holomorphic maps
φ : C/Λ1 → C/Λ2

with φ(0) = 0


is a bijection.
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Proof. (a) We first prove that the association is injective: if φα = φβ then

αz = βz (mod Λ2) for all z ∈ C.

Hence, the map z 7→ (α − β)z sends C to Λ2, which is discrete, so the map
must be constant. Necessarily α = β and this shows the injectivity.

Next, we prove the surjectivity: let φ : C/Λ1 −→ C/Λ2 be a holomorphic
map with φ(0) = 0. Then, since C is simply connected, then we can lift φ
to a holomorphic map f : C −→ C with f (0) = 0 such that the following
diagram commutes:

C C

C/Λ1 C/Λ2

f

φ

Thus f (z + ω) ≡ f (z) (mod Λ2) for all ω ∈ Λ1 and for all z ∈ C. Since Λ2

is discrete, the difference f (z + ω) − f (z) must be independent from z, so
differentiating we obtain

f ′(z + ω) = f ′(z) for all ω ∈ Λ1 and for all z ∈ C

and this means that f ′(z) is a holomorphic elliptic function. But then propo-
sition (1.45) tells us that f ′(z) is constant, so f (z) = αz+γ for some α, γ ∈ C.
The assumption f (0) = 0 implies that γ = 0 and so f (z) = αz, while the fact
that f (Λ1) ⊂ Λ2 means that αΛ1 ⊂ Λ2, hence φ = φα. This completes the
proof of the surjectivity of the correspondence.

(b) First we note that, since an isogeny is given locally by everywhere defined
rational functions, i.e., an isogeny is a morphism, then the map induced be-
tween the corresponding complex tori is holomorphic. Thus, the association

Hom(E1, E2) −→ Holomorphic maps(C/Λ1,C/Λ2)

is well defined and injective.

To prove the surjectivity: from (a), it suffices to consider a map of the form
φα where α ∈ C× satisfies αΛ1 ⊂ Λ2. The induced map on Weierstrass
equations is given by

E1 → E2, [℘(z; Λ1), ℘′(z; Λ1), 1] 7→ [℘(αz; Λ2), ℘′(αz; Λ2), 1]
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so we must show that ℘(αz; Λ2) and ℘′(αz; Λ2) can be expressed as rational
expressions in ℘(z; Λ1) and ℘′(z; Λ1). Using the fact that αΛ1 ⊂ Λ2 we see
that, for any ω ∈ Λ1

℘(α(z + ω); Λ2) = ℘(αz + αω; Λ2) = ℘(αz; Λ2)

and similarly for ℘′(αz; Λ2). Thus ℘(αz; Λ2) and ℘′(αz; Λ2) are in the field
C(Λ1) and the result follows from Theorem (1.51), which tells us thatC(Λ1) =

C(℘(αz; Λ2), ℘′(αz; Λ2)).
�

From this theorem, we can deduce a useful consequence.

Corollary 1.56. [6, VI.4.1.1, p. 173]. Let E1/C and E2/C be elliptic curve corre-
sponding to lattices Λ1 and Λ2 respectively. Then E1 and E2 are isomorphic over
C if and only if Λ1 and Λ2 are homothetic, i.e., there exists some α ∈ C× such that
αΛ1 = Λ2.

Remark 1.57. Since the maps φα are homomorphisms, the previous corollary
ensures that every complex analytic map from E1(C) to E2(C) taking O to O is
necessarily a homomorphism. This is the analytic analogue of the theorem (1.23),
which says that every isogeny of elliptic curves is a homomorphism.

1.2.2 Uniformization

The uniformization theorem for elliptic curves says that every elliptic curve over
C is parametrized by elliptic functions. The most natural proof of this fact uses the
theory of modular functions, that is, functions whose domain is the set of lattices
in C, for example the functions g2(Λ) and g3(Λ). In this section we only state the
result and use it to make some useful deductions.

Theorem 1.58 (Uniformization Theorem). [6, VI.5.1, p. 173]. Let A, B ∈ C be
complex numbers satisfying the condition 4A3 − 27B2 , 0, then there exists a
unique lattice Λ ⊂ C satisfying

g2(Λ) = A, g3(Λ) = B.

Proof. See [7, I.4.3, p. 35]. �
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Corollary 1.59. [6, VI.5.1.1, p. 173]. Let E/C be an elliptic curve. There exist a
lattice Λ ⊂ C, unique up to homothety, and a complex analytic isomorphism

φ : C/Λ −→ E(C), φ(z) = [℘(z; Λ), ℘′(z; Λ), 1]

of complex Lie groups.

Proof. The existence follows from the theorems (1.54.b) and (1.58), while the
uniqueness is immediate from the corollary (1.56). �

We may observe, after these results, a useful category equivalence:

Theorem 1.60. [6, VI.5.3, p. 175]. The following categories are equivalent:

(a)
{

Objects: Elliptic curves over C
Maps: Isogenies

}
(b)

{
Objects: Elliptic curves over C

Maps: Complex analytic maps taking O to O

}
(c)

{
Objects: Lattices Λ ⊂ C, up to homothety

Maps: Maps(Λ1,Λ2) = { α ∈ C : αΛ1 ⊂ Λ2 }

}
Proof. The one-to-one correspondence between elliptic curves over C and lattices
Λ ⊂ C, up to homothety follows from the proposition (1.54.b), the corollary (1.59)
and the proposition [6, VI.5.2, p. 174]. The matchup of the maps in the three
categories is precisely the theorem (1.55). �

We now use the uniformization theorem, in particular the corollary (1.59), to
make some general deductions about elliptic curves over C: actually, everything
that we are about to prove would at least apply to those elliptic curves that occur
in the theorem (1.54.b), the uniformization theorem merely says that this class of
curves includes every elliptic curve over C.

Proposition 1.61. [6, VI.5.4, p. 175]. Let E/C be an elliptic curve and let m ≥ 1
be an integer.

(a) There is an isomorphism of abstract groups

E[m] � Z/mZ × Z/mZ.

(b) The multiplication-by-m map [m] : E −→ E has degree m2.

Proof. (a) From the corollary (1.59), we know that E(C) is isomorphic to C/Λ
for some lattice Λ ⊂ C. Hence

E[m] �
(
C

Λ

)
[m] �

1
mΛ

Λ
�

(
Z

mZ

)2

.
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(b) Since char(C) = 0 and the map [m] is unramified, the degree of [m] is equal
to the number of points in E[m] � [m]−1{O}.

�

Let E/C be an elliptic curve. Note that the theorem (1.55) allows us to identify
End(E) with a certain subring of C. Thus if E(C) � C/Λ, then

End(E) � { α ∈ C : αΛ ⊂ Λ } .

Since Λ is unique up to homothety, this ring is independent of the choice of Λ.
We use this description of End(E) to completely characterize the endomorphism
rings that may occur.

Definition 1.62 (Order in a field). Let K be a number field. An order R in K is a
subring of K that is finitely generated as a Z-module and satisfies R ⊗ Q = K .

Example 1.63. Let K be an imaginary quadratic field and let RK be its ring of
integers. Then, for each integer c ≥ 1 the ring Z + cRK is an order of K. In fact,
we will see in the next chapter that these are all of the orders of K.

Theorem 1.64. [6, VI.5.5, p. 176]. Let E/C be an elliptic curve, let ω1 and ω2 be
generators for the lattice Λ associated to E. Then one of the following is true:

(a) End(E)= Z;
(b) The field Q(ω1/ω2) is an imaginary quadratic extension of Q and End(E) is

isomorphic to an order in Q(ω1/ω2).

Proof. Multiplying Λ by τ = ω1/ω2 shows that Λ is homothetic to Z + τZ, so we
may replace Λ by Z + τZ. Let

R = { α ∈ C : αΛ ⊂ Λ }

so R � End(E), from (1.55). Then, for any α ∈ R, there are integers a, b, c, d such
that

α = a + bτ, ατ = c + dτ.

From these relations we can eliminate τ: using the latter we get τ = c
α−d and

substituting it into the former yields

α = a +
bc

α − d
⇒ α(α − d) = a(α − d) + bc

⇒ α2 − (a + d)α + ad − bc = 0
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and this proves that R is an integral extension of Z.
Now suppose that R , Z and choose some α ∈ R \ Z. Then, with notation as

above, we have that b , 0, so substituting α = a + bτ into the equation gives a
non-trivial equation:

(a + bτ)2 − (a + d)(a + bτ) + ad − bc = 0⇒ b2τ2 + (a − d)bτ − bc = 0

⇒ bτ2 + (a − d)τ − c = 0.

It follows thatQ(τ) is an imaginary quadratic extension ofQ (in particular we note
that τ < R). Finally, since R ⊂ Q(τ) and R is integral over Z, it follows that R is
an order in Q(τ). �





Chapter 2

Complex multiplication

Most elliptic curves over C have only the multiplication-by-m endomorphisms.
Suppose that char(K) = 0, then the map [ · ] : Z −→ End(E) usually makes
End(E) � Z, in other words the only endomorphisms of E are multiplication-
by-m, for m ∈ Z, but in some cases there may be extra endomorphisms. On the
other hand, if K is a finite field, then End(E) is always larger than Z, so there are
always other endomorphisms.

2.1 Definition and basic properties
Definition 2.1 (Elliptic curve with CM). An elliptic curve that possesses extra
endomorphisms, i.e., such that End(E) is strictly larger than Z, is said to have
complex multiplication.

Elliptic curves with complex multiplication have many special properties, some
of which we are going to discuss in the following chapters.

Example 2.2. Assume that char(K) , 2 and let ı ∈ K̄ be a primitive fourth root of
unity, i.e., ı2 = −1. Then, as we observed in the remark (1.20), the elliptic curve
E/K given by the equation

E : y2 = x3 − x

has endomorphism ring End(E) strictly larger than Z, since it contains a map given
by

[ı] : E −→ E, (x, y) 7→ (−x, ıy).

Thus E has complex multiplication.

45
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Clearly, [ı] is defined over K if and only if ı ∈ K. Hence even if E is defined
over K, it may happen that EndK(E) is strictly smaller than End(E).

Continuing with the same example, we observe that

[ı] ◦ [ı](x, y) = [ı](−x, ıy) = (x,−y) = −(x, y)

so [ı] ◦ [ı] = [−1]. There is thus a ring homomorphism

Z[ı] −→ End(E), m + nı 7→ [m] + [n] ◦ [ı]

If char(K) = 0 this map is an isomorphism, so the ring of endomorphism of the
curve E is (isomorphic to) the ring of Gaussian integers Z[ı].

Let E/C be an elliptic curve with complex multiplication. We know, from the
theorem (1.64), that End(E) ⊗ Q is isomorphic to a quadratic imaginary field K
and that End(E) is an order in that field. In view of this, we may give the following
definition.

Definition 2.3 (Complex multiplication by R or K). If End(E) � R ⊂ C, then we
say that E has complex multiplication by R or by K.

We denote by RK the ring of integers of K and put our attention to elliptic
curves with complex multiplication by RK , in order to get a much easier theory.

If E has complex multiplication, there are two ways to embed the order End(E)
into C. One of these embeddings is described in the following proposition. We
can easily observe that the corollary(1.32) is the particular case with α ∈ Z.

Proposition 2.4. [7, II.1.1, p. 97]. let E/C be an elliptic curve with complex
multiplication by the ring R ⊂ C. There is a unique isomorphism

[ · ] : R ˜−→End(E), α 7→ [α] : E −→ E

such that, for any invariant differential ω ∈ ΩE on E it holds

[α]∗ω = αω.

Proof. Choosing a lattice Λ ⊂ C and an isomorphism E � EΛ, it suffices to show
the proposition for EΛ.

We need to recall that, by the computations in the first chapter, an isomorphism
has the effect of multiplying an invariant differential by a constant. Moreover we
recall that, by the theorem (1.60), the endomorphism ring of EΛ is isomorphic to
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{ α ∈ C : αΛ ⊂ Λ } = R ⊂ C. Each α ∈ R gives an isomorphism [α] : EΛ −→ EΛ

determined by the commutativity of the following diagram:

C/Λ C/Λ

EΛ EΛ

φα

f f

We claim that the map [ · ] : R ˜−→End(EΛ) satisfies [α]∗ω = αω. To verify the
claim, we observe that, given any two non-zero invariant differential on EΛ, their
quotient would be a translation invariant function, hence it would be constant, so
those invariant differential are scalar multiples of one another. So, if we take any
invariant differential ω ∈ ΩEΛ

and pull back via the isomorphism f : C/Λ −→ EΛ,
we obtain a multiple of the invariant differential dz on C/Λ, say f ∗ω = c dz. The
commutativity of the diagram given above shows the desired result:

[α]∗ω = ( f −1)∗ ◦ φ∗α ◦ f ∗(ω) = ( f −1)∗ ◦ φ∗α(c dz)

= ( f −1)∗(cα dz) = αω. �

If the curve E with the isomorphism [ · ] satisfy the previous proposition, we
say that the pair (E, [ · ]) is normalized.

Corollary 2.5. [7, II.1.1.1, p. 98]. Let (E1, [ · ]1) and (E2, [ · ]2) be two nor-
malized elliptic curves with complex multiplication by R. Let φ : E1 → E2 be an
isogeny. Then

φ ◦ [α]1 = [α]2 ◦ φ for all α ∈ R.

Proof. Let 0 , ω ∈ ΩE2 be an invariant differential. Then

(φ : [α]E1)
∗ω = [α]∗E1

(φ∗ω)
= αφ∗ω since φ∗ω is an invariant differential on E1

= φ∗(αω)
= φ∗([α]∗E2

ω)
= ([α]E2 ◦ φ)∗ω.

Since we work in characteristic 0, every non-zero isogeny isogeny E1 −→ E2 is
separable, so by the proposition [6, II.4.2.c, p. 30], already cited in the subsection
(1.1.6), the map

Hom(E1, E2) −→ Hom(ΩE1 ,ΩE2), ψ 7→ ψ∗

is injective. Therefore φ : [α]E1 = [α]E2 ◦ φ. �
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Theorem 2.6. [5, 3.2, p. 297]. Let E1 = C/Λ1, E2 = C/Λ2 be two elliptic curves
and suppose there exists a complex analytic homomorphism f : E1 −→ E2. Then
there exists β ∈ C with βΛ1 ⊂ Λ2 such that f is induced by the map z 7→ βz on C.

Proof. This theorem states exactly the surjectivity of the one-to-one corrispon-
dence

{
β ∈ C : βΛ1 ⊂ Λ2

}
→


holomorphic maps
φ : C/Λ1 → C/Λ2

with φ(0) = 0


β 7→ φβ

where φβ : C/Λ1 −→ C/Λ2, φβ(z) = βz (mod Λ2), proved in the theorem (1.55.a).
�

We fix K an imaginary quadratic field and denote by RK its ring of integers.
By the definition (1.62) it is easy to see that RK is an order in K and contains any
other order R, so it is the maximal order of K. Moreover we recall that RK can be
expressed as

RK = [1, τ] where τ = ωK =
dK +

√
dK

2
with dK the discriminant of K. We observed, in the example (1.63) that for each
integer c ≥ 1 the ring Z + cRK is an order of K. We can show that these are all of
the orders of K.

Theorem 2.7. [5, 3.3, p. 297]. Let R be an order in the imaginary quadratic field
K. Then there exists a unique positive integer c such that R = Z + cRK = [1, cτ].
In particular, the integer c is the index of R in RK as an abelian group.

Proof. [3, 8.1, Theorem 6, p. 91]. We first note that R is a sublattice of RK =

[1, τ], so it has a finite index. Let c > 0 be the unique positive integer such that
R ∩ Zτ = Zcτ. We need to show that this integer satisfies the statement. Let
λ ∈ R, then surely there exist some integers m, n such that λ = m + nτ, but it
means that nτ = λ − m and since nτ ∈ Zτ, λ − m ∈ R, then this quantity belongs
to their intersection, but by construction R ∩ Zτ = Zcτ. Thus c | n and then
λ ∈ Z + Zcτ. �

Definition 2.8 (Conductor of R). The integer c in the theorem (2.7) is called the
conductor of R and we write R = Rc.
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We recall that, if Λ ⊂ K is a lattice, in particular it is a subgroup isomorphic
as a group to Z2 and Λ ⊗ Q = K.

Definition 2.9 (Conductor of Λ). Let Λ ⊂ K be a lattice, let R denote the largest
order in K such that αΛ ⊂ Λ for α ∈ R. By the theorem (2.7) R = Rc for some
positive integer c, that we call conductor of Λ.

The following theorem tells us that, given an elliptic curve E = C/Λ over
C with complex multiplication, we can always attribute to the case in which the
lattice is in some imaginary quadratic field. Thus we do not lose generality when
we fix a imaginary quadratic field K.

Theorem 2.10. [5, 3.5, p. 298]. Suppose that E = C/Λ an elliptic curve over C
with complex multiplication. Then there exists β ∈ C such that βΛ is a lattice in
some imaginary quadratic field K.

Proof. [3, 1.5, pp. 19-20]. Consider the theorem (1.55.a) with Λ1 = Λ2 = Λ: it
tells us that End(E) is in bijective correspondence with the set S = { α ∈ C : αΛ ⊂ Λ }.
Since E has complex multiplication, we know that End(E) is strictly larger that Z,
so it contains also non-trivial endomorphisms (we say that an endomorphism is
trivial when it is induced by ordinary integers in S ): so S contains also elements
of C \ Z. In general, let Λ = ω1Z + ω1Z and let α ∈ S , so αΛ ⊂ Λ. Then there
exist some integers a, b, c, d such thatαω1 = aω1 + bω2

αω2 = cω1 + dω2

so α is a root of the polynomial

det
(x − a −b
−c x − d

)
= 0 ⇔ (x − a)(x − d) − bc = 0

so α is a quadratic irrational over Q and integral over Z. Dividing αω2 by ω2

yields to
α = c

ω1

ω2
+ d

ω2

ω2
= cτ + d where τ =

ω1

ω2
.

Since ω1, ω2 span a lattice, their ratio cannot be real, so τ < R.
Moreover, suppose that α induces a non-trivial endomorphism, i.e., α < Z.

This implies that c , 0 (otherwise α = d ∈ Z), and then Q(τ) = Q(α) so α < R,
i.e., α is quadratic imaginary.

Thus the ring R of elements α ∈ Q(τ) such that αΛ ⊂ Λ is a subring of the
quadratic field K = Q(τ) and, in fact, a subring of RK . �
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Then, without loss of generality, by replacing C/Λ by the isomorphic curve
βC/βΛ = C/βΛ we may assume that Λ is a lattice in an imaginary quadratic field.

Remark 2.11. [5, 3.6, p. 298]. Let E be an elliptic curve which admits an abstract
embedding i : R −→ End(E) for an order R in K. Then each α ∈ R induces an
endomorphism [α] by the given embedding. On the other hand, if ω is an invari-
ant differential on E, then [α]∗ω = µ(α)ω for a complex number µ(α). Clearly,
µ : R −→ C is a homomorphism, so we may view R as a subring of C by the I st

theorem of isomorphism.

2.2 Classification of the CM elliptic curves
Our task here is to classify the elliptic curves with complex multiplication up to
isomorphism, at least over C, by the conductors. Let c denote a positive integer
and consider the set of isomorphism classes of complex elliptic curvesC/Λ, where
Λ is a lattice with associated order R = Rc ⊂ RK .

Definition 2.12 (R-lattice, principal R-lattice). We say that a lattice Λ in K is an
R-lattice if it is stable under multiplication by R. It is principal if there exists some
α ∈ K such that Λ = αR.

We note that a principal R-lattice has conductor c.

Definition 2.13 (Invertible R-lattice, proper R-lattice). Since the product of R-
lattices is again an R-lattice, we can say that a lattice Λ in K is an invertible
R-lattice if there exists another R-lattice Λ′ such that ΛΛ′ is a principal R-lattice.
Moreover, we note that any ideal a in the ring R is automatically a R-lattice, so if
a has conductor c we call it a proper R-ideal.

Theorem 2.14. [5, 3.8, p. 298]. Let Λ denote a lattice of K of conductor c. Then
Λ is invertible as a lattice over R = Rc. Conversely, any invertible R-lattice has
conductor c. The set of lattices of conductor c form a multiplicative group.

Proof. It follows from [3, 8.1, Theorem 2, p. 90]. �

Definition 2.15 (Ideal prime to c). Let a denote an ideal in R. We say that a is
prime to c if

a + cR = R or a + cRK = R.

Remark 2.16. [3, 8.1, pp. 91-92]. The two conditions in the definition of ideal
prime to c are actually equivalent. In fact:
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• Suppose that a + cR = R, but a + cRK , R. Then a + cRK is contained in a
maximal ideal p, which also contains a+ cR = R: this gives a contradiction.

• Suppose that a + cRK = R, but a + cR , R. Then a + cR is contained in a
maximal ideal p and since RK is integral over R, there is a maximal ideal of
RK lying above p: this gives a contradiction with the assumption.

We denote by IK,c the monoid of ideals of RK that are prime to the ideal cRK

and by IR,c the monoid of ideals of R that are prime to c.

Theorem 2.17. [5, 3.10, p. 299]. There is a multiplicative bijection between IK,c

and IR,c given by a 7→ a ∩ R, whose inverse is given by a 7→ aRK . Moreover, any
ideal of R that is prime to c has conductor c and so is a proper R-ideal.

Proof. [3, 8.1, Theorem 4, p. 92]. To show that the two sets are in bijection we
show that the composition of the given maps is the identity. We first denote them
as follows:

φ : IK,c −→ IR,c ψ : IR,c −→ IK,c

a 7−→ φ(a) = a ∩ R a 7−→ ψ(a) = aRK .

Let a ∈ IK,c be an ideal of RK prime to cRK , so a + cRK = RK . We claim that
a = ψ ◦ φ(a) = (a ∩ R)RK . The direct inclusion is obvious; to show the converse
we see that

R = RK ∩ R = (a ∩ cRK) ∩ R ⊂ (a ∩ R) + cRK ⊂ R.

so the inclusions are actually equalities. In particular (a∩R)+cRK = R, that means
that a ∩ R is prime to c. Next, we observe that ac ⊂ a ∩ R, so

a = aR = a((a ∩ R) + cRK) ⊂ RK(a ∩ R) + cRK ⊂ (a ∩ R)RK .

This shows the claim, ψ ◦ φ = idIK,c .
On the other hand, let a ∈ IR,c, i.e., it is an R-ideal which is prime to c: a+cRK =

R. We claim that a = φ ◦ ψ(a) = aRK ∩ R. The direct inclusion is clearly true; also
the converse is quite immediate:

aRK ∩ R = (aRK ∩ R)R = (aRK ∩ R)(a + cRK) ⊂ a + acRK ⊂ a + aR ⊂ a.

This shows that φ ◦ ψ = idIR,c .
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Now we need to show that those bijections preserve the multiplication: using
the surjectivity of φ, for any a0, b0 ∈ IR,c there exist some a, b ∈ IK,c such that
a0 = a ∩ R and b0 = b ∩ R. Then a0b0 ∈ IR,c and

φ(a)φ(b) = (a ∩ R)(b ∩ R) = a0b0 = (a0b0RK) ∩ R (using the second claim)
= ((a ∩ R)(b ∩ R)RK) ∩ R = (ab) ∩ R (using the first claim)
= φ(ab).

Finally, in order to show that an R-ideal a prime to c is proper, let λ ∈ K and
suppose that λa ⊂ a. Then

λR = λ(a + cRK) = λa + λcRK ⊂ a + cRK = R

and since 1 ∈ R we conclude that λ ∈ R. �

Theorem 2.18. [5, 3.11, p. 299]. Let Λ be an R-lattice of conductor c and let m
be a positive integer. Then there exist an ideal a ⊂ R such that a = αΛ and a is
prime to m.

Proof. See [3, 8.1, Theorem 5, p. 93]. �

Let Ic denote the monoid of R-lattices of conductor c and Pc denote the sub-
monoid of principal R-lattices (which are automatically of conductor c, so Pc ⊂

Ic).

Definition 2.19 (Group of ideal classes of R). We define the group of ideal classes
of R as the quotient Gc = Ic/Pc.

Remark 2.20. In view of the theorem (2.18), that tells us that in the equivalence
class of Λ there exists a lattice that is prime to m and is integral, we see that every
element of Gc has a representative that is prime to the conductor c. Thus we may
replace Ic and Pc in the definition by the corresponding sets of ideals prime to c.

In particular, using this observation, we can express Gc as a factor group of
a generalized ideal class group of the full ring of integers in K. Let PZ(c) be the
monoid of principal ideals of RK of the form a = αRK such that α ≡ a (mod cRK)
for some a ∈ Z and such that a is prime to c. Let I(c) denote the monoid of ideals
of RK prime to c (previously called IK,c) Then, as previously observed, we can
prove the following statement:

Theorem 2.21. [5, 3.14, p. 299]. There exists an isomorphism I(c)/PZ(c) � Gc

given by a 7→ a ∩ R.
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Proof. [3, 8.1, p. 94]. We start by proving the following lemma:

Lemma 2.22. Let α ∈ PZ(c) be as above, then a ∩ R = αR.

Proof. Let x ∈ RK and suppose that xα ∈ R: we can writex = m + nτ
α = a + bcτ

with m, n, a, b ∈ Z such that (a, c) = 1

then

xα = (m + nτ)(a + bcτ) = ma + mcbτ + anτ + ncbτ2

≡ ma + anτ (mod cRK).

Since xα ∈ R = Z + cRK , it follows that c | na; by assumption (a, c) = 1 so
necessarily c | n. It means that n = cn′ for some n′ ∈ Z, so x = m + cn′τ ∈ R and
then xα ∈ αR. This shows that a ∩ R ⊂ αR.

To show the converse it suffices to note that, since α ∈ R then αR ⊂ a ∩ R. �

Next we recall that, by theorem (2.17) and with the new definitions for the
monoids, there is a multiplicative bijection between I(c) and Ic given by a 7→ a∩R.

We need to show that the inverse image of Pc is PZ(c). To show the first
inclusion we suppose that a is an element of the inverse image of Pc: it means that
a ∩ R = αR with α ≡ a (mod cRK) and a ∈ Z. Then necessarily a = αRK , so
a ∈ PZ(c). The other inclusion follows from the lemma (2.22).

Thus we can conclude that Gc = Ic/Pc � I(c)/PZ(c). �

We easily observe that the ring of integers RK is an order of conductor c = 1
of K. We introduce a particular notation for its ideal class group: we set

CL(RK) =
{ non-zero fractional ideals of K }{

non-zero principal ideals of K
}

in order to point out the ring RK . Moreover, we define the class number of K,
denoted by hK , as the order of the ideal class group CL(RK).

Finally, we can use these properties in order to classify the CM elliptic curves
up to isomorphism (over C) with respect to the conductor. The basic case is that
of the maximal order, namely, curves of conductor 1.
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Theorem 2.23. [5, 3.7, p. 298]. The elliptic curves of conductor 1 with complex
multiplication are in bijective correspondence with the elements of the ideal class
group of RK , denoted by CL(RK):{

CM elliptic curves
of conductor c = 1

}
1: 1
←→ CL(RK).

In particular, there are exactly hK non-isomorphic curves of conductor 1 with
complex multiplication, where hK is the class number of K.

Proof. Let E = C/Λ denote a CM elliptic curve of conductor 1. By definition,
Λ is a lattice in K which is stable under multiplication by RK . Thus Λ defines a
fractional ideal of K. Moreover, the class of Λ modulo principal ideals depends
only on the isomorphism class of E and every ideal class of RK is obtained in this
way from some E. It remains only to show that if E and E′ give the same class,
then they are isomorphic. But this follows from the theorem (2.6). �

Theorem 2.24. [5, 3.16, p. 299]. The elliptic curves of conductor c > 1 with
complex multiplication are in bijective correspondence with elements of the group
Gc: {

CM elliptic curves
of conductor c > 1

}
1: 1
←→ Gc

Namely, the bijection is induced by sending an R-ideal a of conductor c to the
elliptic curve C/a. In particular, there are exactly hc non-isomorphic CM curves
of conductor c, where hc is the order of the group Gc.

Proof. It is similar to the case with c = 1. �

2.3 Complex multiplication over C
In order to study elliptic curves with complex multiplication, it is useful to study
the set of isomorphism classes of elliptic curves with the same endomorphism
ring, namely we define

ELL(R) =

{
elliptic curves E/C with End(E) � R

}
isomorphism over C

=
{ lattices Λ with End(EΛ) � R }

homothety
.
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Given a quadratic imaginary field K, we can build an elliptic curve with com-
plex multiplication by RK in several ways. For example, if a is a non-zero frac-
tional ideal of K (or integer ideal of RK), then using the embeddings a ⊂ K ⊂ C
we see that a is a lattice in C. Hence we can define an elliptic curve Ea whose
endomorphism ring is

End(Ea) � {α ∈ C : αa ⊂ a}
= {α ∈ K : αa ⊂ a} since a ⊂ K
= RK since a is a fractional ideal

Thus each non-zero fractional ideal of K will define an elliptic curve with
complex multiplication by RK . On the other hand, since homothetic lattices give
isomorphic elliptic curves, then the ideals a and αa give the same element of
ELL(RK): so we look at the group of fractional ideals modulo principal ideals.
We recall the definition of ideal class group of RK , given in the previous section:

Definition 2.25 (Ideal class group of RK).

CL(RK) =
{ non-zero fractional ideals of K }{

non-zero principal ideals of K
}

the ideal class group of RK . If a is a fractional ideal of K, we denote by ā its class
in the quotient, called ideal class of a in CL(RK).

By the previous argument, then, we can define a map

CL(RK) −→ ELL(RK), ā 7→ Ea

namely, we can associate to each ideal class an elliptic curve.
More generally, if Λ is any lattice with EΛ ∈ ELL(RK) we can define the

product
aΛ = {α1λ1 + · · · + αrλr : αi ∈ a, λi ∈ Λ}

and we will show that this induces a simply transitive action of the ideal class
group on the set of elliptic curves.

Proposition 2.26. [7, II.1.2, p. 99].

(a) Let Λ be a lattice with EΛ ∈ ELL(RK), let a and b be two non-zero fractional
ideals of K. Then:

i. aΛ is a lattice in C.
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ii. The elliptic curve EaΛ satisfies End(EaΛ) � RK .
iii. EaΛ � EbΛ if and only if ā = b̄ in CL(RK).

Hence, there is a well-defined action of CL(RK) on ELL(RK) given by

∗ : CL(RK) × ELL(RK)→ ELL(RK), (ā, EΛ) 7→ ā ∗ EΛ = Ea−1Λ.

(b) The action is simply transitive. In particular |CL(RK)| = |ELL(RK)|.

Proof. (a) (i) By assumption End(EΛ) = RK , so RKΛ = Λ. By definition
of fractional ideal, we can choose a non-zero integer d ∈ Z such that
da ⊂ RK . Then aΛ ⊂ 1

d Λ, which means that aΛ is a discrete subgroup
of C. Similarly we can choose a non-zero integer d ∈ Z such that
dRK ⊂ a, so we find that dΛ ⊂ aΛ. Using both of these relations we
have dΛ ⊂ aΛ ⊂ 1

d Λ, so aΛ spans C: this proves that aΛ is a lattice.

(ii) For any α ∈ C and any non-zero fractional ideal a we have that

αaΛ ⊂ aΛ ⇐⇒ a
−1αaΛ ⊂ a−1

aΛ ⇐⇒ αΛ ⊂ Λ.

Hence

End(EaΛ) = {α ∈ C : αaΛ ⊂ aΛ}
= {α ∈ C : αΛ ⊂ Λ}

= End(EΛ) = RK .

(iii) From the corollary (1.56) we know that the isomorphism class of the
curve EaΛ into the quotient ELL(RK) is univocally determined by the
homothety class of the lattice aΛ, namely EaΛ � EbΛ if and only if
there exists c ∈ C× such that aΛ = cbΛ, but then by multiplying by a−1

and using the fact that RKΛ = Λ we get

EaΛ � EbΛ ⇐⇒ Λ = ca−1
bΛ.

Similarly, multiplying by c−1b−1 gives

EaΛ � EbΛ ⇐⇒ Λ = c−1
ab
−1Λ.

Using both these results, we deduce that if EaΛ � EbΛ then both ca−1b

and c−1ab−1 take Λ to itself, so they are both contained in RK:

Λ = ca−1
bΛ ⊂ RKΛ = Λ, Λ = c−1

ab
−1Λ ⊂ RKΛ = Λ
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and so they are both equal to RK . Therefore a = cb, from which it
follows that c ∈ K and ā = b̄ in CL(RK).

Then we need to show that ∗, defined into the proposition, is an action of
CL(RK) on ELL(RK):

¯(1) ∗ EΛ = ER−1
K Λ = ERKΛ = EΛ

ā ∗ (b̄ ∗ EΛ) = ā ∗ Eb−1Λ = Ea−1(b−1Λ) = E(ab)−1Λ = ab ∗ EΛ

where the first relation holds since ¯(1) is the class of RK into CL(RK). Recall
that RK is the ring of integers of a field, so CL(RK) is an abelian group, then
a−1b−1 = (ab)−1.

(b) Given two elliptic curves in ELL(RK), namely EΛ1 and EΛ2 , we choose any
non-zero element λ1 ∈ Λ1 (respectively λ2 ∈ Λ2), and consider the lattice
a1 = 1

λ1
Λ1 (resp. a2 = 1

λ2
Λ2). From theorem (1.64) it follows that a1 ⊂ K

and by assumption it is a finitely generated RK-module, hence a fractional
ideal of K (analogous for a2). Then we see that

λ2

λ1
a2a
−1
1 Λ1 = Λ2

and, if we denote a = a−1
2 a1, then

ā ∗ EΛ1 = Ea−1Λ1 = E λ1
λ2

Λ2
� EΛ2

where the last isomorphism is given by the fact that homothetic lattices give
isomorphic elliptic curves. This shows the transitivity of the action. From
part (ii) in (a) we deduce that, if a ∗ EΛ = b ∗ EΛ then ā = b̄, and it means
that the action is simply transitive.

�

Example 2.27. [7, II.1.3.1, p. 101]. In the example (2.2) we have seen an elliptic
curve with complex multiplication by the ring Z[ı]. Now we look at this curve
from a complex point of view.

Let Λ = Z[ı] be the lattice of Gaussian integers, let EΛ be the curve associate
to it, so the endomorphism ring of the curve EΛ is Z[ı]. The curve is given by a
Weierstrass equation of the form

y2 = 4x3 − g2(Λ)x − g3(Λ)
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where g2(Λ) = 140
∑
ω ω

−6, g3(Λ) = 60
∑
ω ω

−4. We can easily get some informa-
tions about the functions g2, g3, in particular we see know that ıΛ = Λ, so

g3(Λ) = g3(ıΛ) = 140
∑
ω

(ıω)−6 = 140ı−6
∑
ω

ω−6 = −140
∑
ω

ω−6 = −g3(Λ)

so necessarily g3(Λ) = 0. Moreover, after a suitable isomorphism, we can delete
the coefficient of the x3 term, thus the equation of the curve simplifies as

y2 = x3 − g2(Λ)x.

By applying the definition, we can easily compute the discriminant and then the
j-invariant of the curve:

∆ = −16(−4g2(Λ)3 + 27g3(Λ)2) = 43g2(Λ)3

j(EΛ) = −1728
(4g2(Λ))3

∆
= 1728.

Since j(EΛ) is rational, we know that EΛ is isomorphic to an elliptic curve defined
over Q (for example the curve in (2.2) of equation y2 = x3 − x), but it does not
imply that that g2(Λ) itself is an element of Q: indeed a theorem by Hurewitz says
that

g2(Z[ı]) = 64
( ∫ 1

0

dt
√

1 − t4

)4

.

If E has complex multiplication we will use torsion points of E to generate
abelian extensions of K. We could restrict the study to the points of order m for
various integers m, but since E has complex multiplication, there are also other
natural finite subgroups to look at.

Definition 2.28 (Group of a-torsion points of E). If a is any integral ideal of RK

we define
E[a] = { P ∈ E : [α]P = 0 for all α ∈ a }

and call it the group of a-torsion points of E.

Remark 2.29. The previous definition depends on the choice of a particular iso-
morphism [ · ] : RK → End(E). We always choose the normalized isomorphism
defined in (2.4).

Example 2.30. If we consider a principal integral ideal a = mRK for some m ∈ RK ,
then E[a] = E[m], defined in (1.28). So the definition of E[a] extends the m-
torsion subgroup to a generic ideal a.
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If a is an integral ideal of RK , then Λ ⊂ a−1Λ and it induces a natural homo-
morphism between the corresponding elliptic curves

C −→ C/a−1Λ, z 7−→ z

which induces a natural isogeny

EΛ −→ ā ∗ EΛ.

To describe this isogeny and the group E[a] we consider the following

Proposition 2.31. [7, II.1.4, p. 102]. Let E ∈ ELL(RK) and let a be an integral
ideal of RK .

(a) E[a] is the kernel of the natural map E −→ ā ∗ E.
(b) E[a] is a free RK/a-module of rank 1.

Proof. Let E be an elliptic curve, let Λ be the lattice associate to it: we can fix an
analytic isomorphism C/Λ � E(C). The we find that

E[a] � { z ∈ C/Λ : αz = 0 for all α ∈ a }
= { z ∈ C : αz ∈ Λ for all α ∈ a } /Λ
= { z ∈ C : za ⊂ Λ } /Λ

= a
−1Λ/Λ

= ker
(
C/Λ

z7→z
−−−→ C/a−1Λ

)
= ker (E → ā ∗ E).

This shows (a).
To show (b) we choose a non-zero λ ∈ Λ, then by the theorem (1.64) we know

that the lattice 1
λ
Λ ∈ K and is a finitely generated RK-module, so is a fractional

ideal of K. Since homothetic lattices give isomorphic elliptic curves, we may
assume that Λ is a fractional ideal of K. From (a) it follows that E[a] � a−1Λ/Λ
as RK/a-module. Note that, if q is any integral ideal dividing a, the fact that
RKΛ = Λ implies that

(a−1Λ/Λ) ⊗RK (RK/q) � a−1Λ/(Λ + qa−1Λ) = a
−1Λ/qa−1Λ.

Hence, by the Chinese Remainder Theorem, we write

RK/a �
∏
p prime

RK/p
e(p)
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then
E[a] �

∏
p prime

a
−1Λ/pe(p)

a
−1Λ.

It suffices to show that if b is a fractional ideal of RK , such as b = a−1Λ and
pe is a power of a prime ideal, then b/peb is a free RK/p

e- module of rank one. In
order to ease notation, let

R′ B RK/p
e, p

′ B p/pe, b
′ B b/pe

b

and observe that R′ is a local ring whose ideals are exactly {(0), p′e−1, ..., p′, (1)},
so its maximal ideal is p′. Finally we claim that the vector space over the field
R′/p′ � RK/p

b
′/p′b′ � b/pb

is a 1-dimensional vector space. We first observe that any two elements of b are
RK-linearly dependent, so the dimension of b/pb over RK/p is at most one. If, by
contraddiction, this dimension was zero, then we would have that b = pb but this
gives a contraddiction. Applying Nakayama’s Lemma to the local ring R′ and the
R′-module b′, it follows that b′ is a free R′-module of rank one, and this gives the
proof of (b). �

Finally, we can deduce from the previous proposition how to compute the
degree of the isogeny E → ā ∗ E, as well as the degree of the endomorphism
[α] : E → E.

Corollary 2.32. [7, II.1.5, p. 103]. Let E ∈ ELL(R).
(a) For all integral ideals a ⊂ RK , the natural map E → ā ∗ E has degree NK

Qa.
(b) For all α ∈ RK , the endomorphism [α] : E → E has degree

∣∣∣NK
Qα

∣∣∣.
Proof. It follows immediately from (2.31): namely

deg
(
E → ā ∗ E

)
= |E[a]| from (2.31.a)

= NK
Qa from (2.31.b)

and similarly

deg[α] = |ker[a]| = |E[αRK]| = NK
Q (αRK) =

∣∣∣NK
Qα

∣∣∣. �

Definition 2.33 (Singular j-invariant). The j-invariant of an elliptic curve with
CM is called singular j-invariant.

Into the following chapters we will study some properties of the singular j-
invariant of an elliptic curve.



Chapter 3

Class field theory

Class field theory describes the abelian extensions of a number field K in terms
of the arithmetic of K. The theory of complex multiplication provides an analytic
realization of class field theory for quadratic imaginary fields.

3.1 A brief review
As in the previous chapter, we restrict attention to totally imaginary fields, that is,
fields with no real embeddings.

Let K be a totally imaginary number field and let L be a finite abelian extension
of K, i.e., L/K is Galois with abelian Galois group Gal(L/K) = G. As usual, we
write RK and RL for the rings of integers of K and L respectively. In order to ease
the notation, we say that p is a prime (ideal) of a field if it is a prime (ideal) in its
ring of integers.

Definition 3.1 (Ramification index of Pi over p). Let p be a prime of K and
suppose that if factorizes as product of powers of prime ideals of L, i.e.,

pRL = P
e1
1 . . .P

en
n , for some naturals e1, . . . , en

such that P1 ∩ RK = p for each i = 1, . . . , n. The natural value ei is called
ramification index of Pi over p.

Since the extension L/K is Galois, it is possible to prove that ei = e j for all
i, j.

We define the residue fields Fp = RK/p and its extensions FPi = RL/Pi for
each i = 1, . . . , n, that are in particular finite fields. Moreover, the extension is
Galois and we denote by Ḡ = Gal(FP/Fp) its Galois group.

61
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Definition 3.2 (Inertia index ofPi over p). The degree of the extension [FPi : Fp] =

fi is called the inertia index of Pi over p.

If L/K is an extension of degree n, the indeces ei, fi for i = 1, . . . , n and n are
related by the formula

n =

n∑
i

ei fi.

Moreover, we suppose that p does not ramify in L, it means that it factorizes
as product of distinct prime ideals of L, so ei = 1 for all i = 1, . . . , n, and the
previous formula simplifies to n =

∑n
i fi.

G acts transitively over the prime factors of pRL, i.e., for each pairPi,P j there
exists an automorphism σ ∈ G such that P j = Pσ

i .

Definition 3.3 (Decomposition group of P over p). Fix P as one of the primes
of L that lie over p, i.e., P is one of the Pi’s. Then we define the decomposition
group of P over p as

D(P/p) = { σ ∈ G : Pσ = P }

namely, the subgroup of G of the automorphisms that fix the prime ideal P.

Each σ ∈ G = Gal(L/K) induces an isomorphism between residue fields,
namely if σ : L −→ L fixes the subfield K, then if we restrict it to the ring of
integers we get σ|RL : RL −→ RL such that σ(RK) = RK and sends P to one of
the other prime factors of p, and we get an isomorphism σ̄ : FP −→ FPσ . If
we consider the same argument with σ ∈ D(P/p), then Pσ = P, so we obtain
an automorphism σ̄ : FP −→ FP. This automorphism also fixes the subfield Fp,
because σ fixes both RK = RL ∩ K and p = P ∩ K, thus σ̄ ∈ Gal(FP/Fp).

This actually means that we can define a homomorphism from the decompo-
sition group of P over p to the Galois group of the extension of the residue fields

πP : D(P/p) −→ Ḡ, σ 7→ σ̄

where we denoted by Ḡ the Galois group Gal(FP/Fp).

Definition 3.4 (Inertia group of P over p). The group

ker(πP) = E(P/p) = { σ ∈ G: σ(α) ≡ α (mod P) for all α ∈ RL }

is called the inertia group of P over p.
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Since E(P/p) is a subgroup of D(P/p) and is the kernel of a homomorphism,
then it is normal in the decomposition group, and by the I st isomorphism theorem
it follows that

D(P/p)/E(P/p) ↪→ Ḡ

but one can prove that this morphism is also surjective, so it is an isomorphism.
So the situation is the following: E(P/p) / D(P/p) < G and this tells that we can
construct an exact sequence

1 −→ E(P/p) −→ D(P/p)
πP
−−−→ Ḡ −→ 1.

Since we are assuming that p is unramified, then the order of the inertia subgroup
of P (that is the ramification index e of P over p) is equal to 1, so E(P/p) is the
trivial group and actually D(P/p) � Ḡ.

Next, since FP/Fp is an extension of finite fields, it follows that D(P/p) �
Gal(FP/Fp) is a cyclic group generated by the Frobenius automorphism

x 7→ xNK
Q

(p)

where NK
Q (p) = p f ′ with f ′ = dimFp(Fp), and the order of this cyclic group is equal

to the inertia index of P over p, namely, |Ḡ| = [FP : Fp] = f .

Definition 3.5 (Frobenius element). Since p is unramified, there is a unique ele-
ment σp ∈ D(P/p) ⊂ Gal(L/K) which is mapped by πP to Frobenius, and we call
it the Frobenius element or the Frobenius substitution of P over p.

Note that in our situation it is completely determined by the prime ideal p
of K (for a general Galois extension L/K, p will only determine the conjugacy
class of σp and making a new choice for the prime P over p will change σp by
conjugation; but we are assuming that the extension L/K is abelian, so σp will not
change). Thus, σp ∈ Gal(L/K) is uniquely determined by the condition

σp(x) ≡ xNK
Q

(p) (mod P) for all x ∈ RL.

Let c be an integral ideal of K that is divisible by all primes that ramify in
the extension L/K, and let I(c) be the group of fractional ideals of K which are
prime to c. It means that a =

∏
pprime p

np where np ∈ N and each prime ideal
p of K is unramified in L (otherwise the ramified p’s would be divisors of c by
construction).
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Definition 3.6 (Artin symbol). For each prime ideal p of K we define the Artin
symbol for unramified prime ideals of K as(L/K

p

)
= σp

i.e., we associate to each prime ideal p of K the unique Frobenius element of p in
G = Gal(L/K).

Then we observe that, if we factorize p as product of prime ideals of L, p =

P1 . . .Pm, we can define the Artin symbol for each factor Pi, but since L/K is an
abelian extension, the Frobenius elements depend only on p, so the symbol takes
the same value for each factor:(L/K

Pi

)
= σPi = σP j =

(L/K
P j

)
for every i = 1, . . . ,m

so we denote it simply as the Artin symbol of p.
Up to now, we use the Artin symbol as a function mapping unramified prime

ideals p of K to Frobenius elements σp ∈ Gal(L/K). We wish to extend this map
to a multiplicative homomorphism from the ideal group I(c) to Gal(L/K). We
observe that, since any prime factor p of any element a of I(c) is unramified, the
homomorphism πp : D(p/a) −→ Gal(Fp/Fa) is a bijection, so the construction is
actually well defined.

Definition 3.7 (Artin map). The Artin map is defined using the Frobenius maps
σp’s and linearity as follows:(L/K

·

)
: I(c) −→ Gal(L/K), a 7→

(L/K
a

)
=

( L/K∏
p p

np

)
B

∏
p

σ
np
p .

Note that the Artin map is defined by piecing together local information, one
prime at a time.

One of the main result of class field theory is that the Artin map is surjective
(this is part of what is known as Artin’s reciprocity law).

Theorem 3.8. [2, X.1, Theorem 1, p. 199]. Let L/K be an abelian extension.
Then the Artin map is surjective as a map from I(c) to Gal(L/K), for any ideal c
divisible by all the ramified primes.
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Proof. Let c be a fixed ideal of K, divisible by all the ramified primes. Let H be
the subgroup of Gal(L/K) given by the image of the Artin map. Let F be the field
fixed by H. We claim that F = K.

We first observe that, for any unramified prime p in I(c) , p splits completely
if and only if the Artin symbol of q is equal to 1 for every prime q that lies above
p (in fact, p is unramified so ep = 1, it splits if and only if the extension of residue
fields has degree 1, i.e., fp = [Fq : Fp] = 1. But then, the two conditions are
equivalent to ep fp = 1, if and only if D(q/p) =

〈
σq

〉
= 1).

So, using this observation, we deduce that any p ∈ I(c) must split completely
in F (otherwise

(
F/K
p

)
, 1 and since

(
F/K
p

)
is the restriction of

(
L/K
p

)
, this contra-

dicts the fact that F is fixed by H). Thus, all but finitely many primes of K split
completely in F. If we suppose, by contradiction, that F , K then F contains a
subfield F0 which is cyclic over K, of degree > 1 and all but finitely many primes
of K split completely in F0. This contradicts a corollary of the global norm index
equality (see [2, IX.5, p. 194]), namely, if the extension F0/K is cyclic of degree
> 1, then infinitely many primes of K do not split completely in F0. This proves
the theorem. �

The following proposition, which is a weak version of the Artin’s reciprocity
law, provides important global informations.

Proposition 3.9 (Artin Reciprocity). [7, II.3.1, p. 117]. Let L/K be a finite
abelian extension of number fields. Then there exists an integral ideal c ⊂ RK ,
divisible by precisely the primes of K that ramify in L, such that(L/K

(α)

)
= 1 for all α ∈ K× satisfying α ≡ 1 (mod c).

Proof. See [2, X.2, p. 200]. �

Proposition (3.9) ensures the existence of the ideal, it can be not unique: if it
is true for two ideals c1 and c2, then it is also true for c1 + c2.

Definition 3.10 (Conductor of the extension L/K). We call the largest ideal for
which Artin reciprocity is true the conductor of the extension L/K and denote it
by cL/K .

In view of (3.9), it is natural to define the group of principal ideals congruent
to 1 modulo c:

P(c) =
{

(α) : α ∈ K×, α ≡ 1 (mod c)
}
.
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Artin reciprocity says that the kernel of the Artin map contains P(c) for an
appropriate choice of c, more precisely if we take the conductor of the extension:

a ∈ P(cL/K) ⇒

(L/K
a

)
= 1 ⇒ P(cL/K) ⊂ ker

(L/K
·

)
.

It is important to observe that a principal ideal (α) may be in P(c) even if the
generator α . 1 (mod c): it suffices the existence of a unit ε ∈ R×K such that
εα ≡ 1 (mod c).

During the proof of theorem (3.8), we observed that a prime p of K, unramified
in L, splits completely in L if and only if the extension of residue fields has degree
1, or equivalently, if and only if

(
L/K
p

)
= 1. Thus, the unramified prime ideals in

the kernel of the Artin map are precisely the primes of K that split completely in
L.

Let K be a number field, let c be an integral ideal of K and let I(c) be as
above. Let PZ(c) denote the group of principal ideals of K which have a generator
congruent to an integer modulo c. Let Gc = I(c)/PZ(c) be the ideal class group of
modulo c. let H be a subgroup of Gc and let H̃ be its inverse image in I(c). An
abelian extension L of K is said to be a class field for H if the prime ideals of K
not dividing c that split in L are exactly those in H̃.

In particular, a class field exists for each subgroup of a class group Gc, it is
unique and every finite abelian extension of K arises as the class field of some
subgroup of a class group.

If L is the class field of H ⊂ Gc then

Gal(L/K) � Gc/H

and the prime ideals p of K not dividing c are unramified in L and for every prime
ideal q of L that lies above p the inertia index f (q/p) is equal to the order of the
image of p in the quotient group Gc/H.

More precisely, if c′ | c then I(c) ⊂ I(c′) defines a surjective homomorphism

Gc −→ Gc′ .

If H ⊂ Gc is the inverse image of H′ ⊂ Gc′ , then every class field for H′ will also
be a class field for H. If L is a class field for H ⊂ Gc and H does not arise in this
way from a prime ideal properly dividing c, then the set of prime ideals that divide
c consists exactly of the prime ideals ramifying in L.
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Definition 3.11 (Ray class field). Let c be an integral ideal of K. A ray class field
of K (modulo c) is a finite abelian extension Kc/K such that for every finite abelian
extension L/K

cL/K | c ⇒ L ⊂ Kc

namely, if the conductor of the extension L/K divides the ideal c then the field L
is a subfield of Kc.

Ray class field of K is the class field corresponding to the subgroup H′ = P(c)
of the ideal class group Gc = I(c)/P(c) and is characterized by the property that
primes splitting completely are the principal ones and have a generator congruent
to 1 modulo c. Intuitively, Kc is the largest field with a given conductor (that need
not actual to be equal to c). Moreover, if we apply the Artin map to the extension
Kc/K we see that it induces an isomorphism

Gc = I(c)/P(c) −→ Gal(Kc/K).

We conclude this section with the following proposition, that shows some re-
sults of class field theory. In order to understand what we are going to prove, we
start with a definition.

Definition 3.12 (Norm ideal). Given an extension L/K of number fields and a
prime fractional ideal q of L we define the fractional ideal NL

K(q) of K as follows:

NL
K(q) = p

f

where p = q ∩ RK is a prime of K lying below q. The norm is multiplicative, so
we can extend the definition to any fractional ideal a of L.

Then we denote by NL
K(IL) the group of norms from L to K of the fractional

ideals of L, namely the group whose elements are of the form NL
K(a) where a

ranges over the fractional ideals of L prime to the conductor cL/K .

Proposition 3.13 (Class field theory). [7, II.3.2, p. 118]. Let L/K be a finite
abelian extension of number fields, and let c be an integral ideal of K.

(a) The Artin map
(

L/K
·

)
: I(cL/K) −→ Gal(L/K) is a surjective homomorphism.

(b) The kernel of the Artin map is NL
K(IL) P(cL/K), where IL is the group of non-

zero fractional ideals of L coprime to cL/K .



68 Class field theory

(c) There exists a unique ray class field Kc of K (modulo c). The conductor of
the extension Kc/K is not necessarily c, but divides c.

(d) The ray class field Kc is characterized by the property that it is an abelian
extension of K and satisfies the following condition:{

primes of K that
split completely in Kc

}
= { prime ideals in P(c) } .

Proof. (a) We already proved this fact in theorem (3.8).

(b) As we observed, by the Artin reciprocity (3.9) it follows that the kernel of
the Artin map contains P(cL/K).

Then we need to show that also the norm ideal NL
K(IL) is contained into

the kernel of the Artin map. Let q be a prime ideal in IL: it is a non-zero
fractional ideal of L coprime to cL/K and so, by the definition of cL/K , it is
coprime to every prime ideal of K that ramifies in L. It means that the prime
ideal p = q ∩ RK of K that lies below q is unramified in L. Then we can
compute the norm of the prime ideal q, that is

NL
K(q) = p

f

where f = f (q/p) is the inertia index of q above p. Next, we apply the Artin
map: ( L/K

NL
K(q)

)
= σ

f
p = 1

since the order of the Frobenius element σp ∈ Gal(L/K) equals f (q/p) for
every prime above p (since we work with abelian extensions, the Frobenius
element depends only on p and not on its prime factors, and since we con-
sider unramified primes the inertia index of the factors over p has the same
value). Thus for every a ∈ IL, it can be factored as product of powers of
prime ideals qi of L, and, by applying the Artin map on the norm of each
prime factor we obtain 1, so by the definition of the Artin map it follows
that ( L/K

NL
K(a)

)
= 1.

so NL
K(IL) is contained into the kernel of the Artin map.
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Hence the ideal NL
K(IL) P(cL/K) is contained into the kernel. Then using the

universal norm index inequality (see [2, VIII.3, p. 164]) we obtain that it is
actually an equality,

ker
((L/K
·

))
= NL

K(IL) P(cL/K)

and this concludes the proof of (b).

(c) The existence theorem (see [1, 2.8.A, Theorem 8.6, p. 162]) asserts that
every generalized ideal class group is the Galois group of some abelian
extension L of K. So, given any ideal c in K, the theorem ensures that there
is a unique abelian extension Kc of K such that

P(c) = ker
((L/K
·

))
where P(c) is the subgroup of PZ(c) of the principal ideals coprime to c with
a generator congruent to 1 modulo c. The field Kc is exactly the ray class
field of K modulo c and then it is unique.

The statement about the conductor of the ray class field follows from the
definition.

(d) From [4, Theorem 0.7, p. 9], let L be an abelian extension of K of conductor
cL/K , then the Artin map

(
L/K
·

)
: I(cL/K) −→ Gal(L/K) factors through GcL/K

and defines an isomorphism

I(cL/K)/NL
K(IL) P(cL/K) −→ GcL/K .

In particular, the prime ideals of K splitting in L are exactly those in the
subgroup of I(cL/K)

H̃ = NL
K(IL) P(cL/K).

Then, if we apply this theorem with L = Kc and recall that if we apply the
Artin map to the extension Kc/K, it induces an isomorphism

Gc = I(c)/P(c) −→ Gal(Kc/K),

it follows that H̃ = P(c). This concludes the proof of (d).
�

In particular, from (3.13.a) and (3.13.b), by applying the I st homomorphism
theorem, we see that the Artin map induces the follows isomorphism

I(cL/K)/(NL
K IL)P(cL/K) � Gal(L/K).
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3.2 Hilbert class field
Definition 3.14 (Hilbert class field). Consider the ray class field of K modulo the
unit ideal c = (1). It is the maximal abelian extension of K which is unramified at
all primes. We call the field K(1) the Hilbert class field of K and denote it by H or
HK .

We notice that, by (3.13.c), the conductor of the extension divides the modulus
c = (1), so cH/K | (1), that implies necessarily that cH/K = (1). Then

I(cH/K) = I((1)) = { all non-zero fractional ideals of K }
P(cH/K) = P((1)) =

{
all non-zero principal ideals of K

}
so the Artin map induces an isomorphism between the ideal class group of K and
the Galois group of the Hilbert class field of K:(H/K

·

)
: CL(RK) ˜−→Gal(H/K).

We can see some easy examples of the things we defined above, in particular
[4, V.3, Examples 3.9, 3.10, p. 155], [7, II.6, Example 6.2.1, 6.2.2, p. 141-142]
and [7, II, Exercise 2.13, p. 180].

Example 3.15. The Hilbert class field of Q is Q itself, since its class number is
hQ = 1.

As it is well known, there are only nine quadratic imaginary fields of class
number equal to 1, namely

Km = Q(
√
−m) with m ∈ { 1, 2, 3, 7, 11, 19, 43, 67, 163 }.

For each of these fields then

hKm = [Hm : Km] = 1 =⇒ Hm = Km

namely, each of these fields is equal to its Hilbert class field.
Now let’s look at an example with class number larger than 1. Consider the

field K = Q(
√
−15). Since m = −15 ≡ 1 (mod 4), then its ring of integers is

RK = Z[α] where α =
1 +
√
−15

2
.
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The class number of the field is hK = 2 and a non-trivial ideal class is given by the
ideal a = 2Z + αZ. Further, in order to find the Hilbert class field of K we look
for the primes that ramify in K. Let p be a prime divisor of m, namely p = 3 or
p = 5. Since in both the cases p is an odd prime, then both the ideals (3) and (5)
ramify in RK as

3RK = (3,
√
−15)2 5RK = (5,

√
−15)2.

If we consider the prime p = 2, since −15 ≡ 1 (mod 8) then the ideal 2RK splits
completey, while if we take p as any other prime it totally decomposes or is inert.

Then we consider the fields Q(
√

5) and Q(
√
−3): the only ramified prime

in the former is p = 5, in the latter is p = 3. This means that the field H =

Q(
√
−3,
√

5) is everywhere unramified over K = Q(
√
−15), so H is the Hilbert

class field of K.
The Hilbert class field of the field L = Q(

√
−5) is H = Q(

√
−1,
√

5). In fact,
let m = −5 ≡ 3 (mod 4), then the ring of integers of L is

RL = Z[
√
−5].

If p ∈ Z is a prime that divides −5, namely p = 5, then the ideal (p) = (5) ramifies
in L as

5 RL = (5,
√
−5)2.

If p = 2 then also the ideal (p) = (2) ramifies in L as

2 RL = (2,
√
−5 + 1)2.

Any other prime is inert or unramified. Then we observe that
• in the field Q(

√
5) the only prime that ramifies is exactly p = 5;

• in the field Q(
√
−1) the only prime that ramifies is exactly p = 2.

so the primes of Q(
√
−5) that divide 5 and 2, precisely the ideals (5,

√
−5) and

(2,
√
−5 + 1) respectively, do not ramify in the field Q(

√
−1,
√

5). So we can
conclude that this field is the Hilbert class field of L = Q(

√
−5).

Example 3.16. Let m be a positive integer which is odd or divisible by 4. The ray
class field for the ideal = (m) is K(m) = Q(ζm + ζ̄m) where ζm is a mth-primitive
root of the unit.

Thus, the reciprocity law implies the Kronecker-Weber theorem: every abelian
extension of Q is contained in a cyclotomic extension.
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Example 3.17. Let K = Q(ı). We denote, as usual, by K(c) the ray class field of
K modulo the principal ideal (c) for c ∈ Z. Then we will compute in the next
chapter, precisely in the example (4.24), the ray class fields of K with respect to
the ideals (2), (3), (4):

K(2) = K, K(3) = K(
√

3), K(4) = K(
√

2).



Chapter 4

Applications of the theory of
complex multiplication to class field
theory

4.1 Rationality of j

In this section we will study the field of definition for elliptic curves with complex
multiplication and their endomorphisms. First of all we can show that any CM
elliptic curve is defined over an algebraic extension of Q.

It is useful to recall the definition of the field of algebraic numbers

Q̄ = { z ∈ C : there exists a non-zero f (x) ∈ Q[x] such that f (z) = 0 }

and the fact that Q ⊂ Q̄ ⊂ C.
Given an elliptic curve E/C, we can associate to it a Weierstrass equation with

coefficients in C of the form

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Let σ : C → C be any field automorphism of C. Then we can construct a new
elliptic curve Eσ from E simply by letting σ act on the coefficients of the Weier-
strass equation of E

Eσ : y2 + aσ1 xy + aσ3 y = x3 + aσ2 x2 + aσ4 x + aσ6 .

Proposition 4.1. [7, II.2.1, p. 104].

73
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(a) Let E/C be an elliptic curve, let σ : C→ C be any field automorphism of C.
Then End(Eσ) � End(E).

(b) Let K be a quadratic imaginary field, let E/C be an elliptic curve with com-
plex multiplication by RK . Then the j-invariant of E is algebraic, namely,
j(E) ∈ Q̄.

(c) It holds

ELL(RK) =

{
elliptic curves E/Q̄ with End(E) � RK

}
isomorphism over Q̄

(the point is that the definition of ELL(RK) is in terms of isomorphism
classes of elliptic curves over Q, not over Q̄).

Proof. (a) If φ : E → E is an endomorphism of E, clearly φσ : Eσ → Eσ is an
endomorphism of Eσ. This gives the isomorphism between the two spaces
of endomorphism.

(b) Let σ ∈ Aut(C), given E we obtain Eσ as previously showed. Since j(E) is
a rational combination of the coefficients of the Weierstrass equation, it is
clear that j(Eσ) = ( j(E))σ. On the other hand, by (a)

End(Eσ) � End(E) � RK

(the latter relation is by assumption). So, by the proposition (2.26.b), Eσ

is contained in one of the C-isomorphism classes of elliptic curves, which
are finitely many. By the proposition (1.5.b), the isomorphism class of an
elliptic curves is determined by its j-invariant, so it follows that j(E)σ takes
on only finitely many values as σ runs over Aut(C), namely the set of con-
jugates of j(E) is finite. It means that the degree of the extension of fields
[Q( j(E)) : Q] is finite, i.e. j(E) is an algebraic number.

(c) For any subfield F ⊂ C, we denote

ELLF(RK) =

{
elliptic curves E/F with End(E) � RK

}
isomorphism over F

.

Fix an embedding Q̄ ⊂ C: then it induces a natural map

ε : ELLQ̄(RK) −→ ELLC(RK)

We claim that ε is a bijection:
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• to prove the surjectivity: let E/C be a representative of its isomor-
phism class in ELLC(RK), then

– j(E) ∈ Q̄, by (b);
– there exists an elliptic curve E′/Q( j(E)) with j(E′) = j(E), by

(1.5.c);
– E′ is isomorphic to E over C.

These three facts tell us that ε(E′) = E, so that ε is surjective.

• to prove the injectivity: let E1/Q̄ and E2/Q̄ be representatives of their
isomorphism classes in ELLQ̄(RK) and suppose that ε(E1) = ε(E2),
i.e., they generate the same class in ELLC(RK). Then, by the proposi-
tion (1.5.b), we can deduce that j(E1) = j(E2) . Again from (1.5.b), it
follows that E1 and E2 are isomorphic over Q̄, so they actually repre-
sent the same element in ELLQ̄(RK) and it implies that ε is injective.

�

Then we can study the effect of the field automorphisms over the maps [α] : E →
E described in the proposition (2.4) and find a field of definition for them. Note
that if φ is an endomorphism of E and σ is any automorphism of C, then φσ is an
endomorphism of Eσ.

Theorem 4.2. [7, II.2.2, p. 105].

(a) Let E/C be an elliptic curve with complex multiplication by the ring R ⊂ C,
then

[α]σE = [ασ]Eσ , for all α ∈ R and for all σ ∈ Aut(C)

where the isomorphism [ · ]E : R →̃End(E) and [ · ]Eσ : R →̃End(Eσ) are nor-
malized as in (2.4).

(b) Let E be an elliptic curve defined over a field L ⊂ C, with complex multipli-
cation by the quadratic imaginary field K ⊂ C. Then every endomorphism
of E is defined over the compositum LK.

(c) Let E1/L and E2/L be two elliptic curves defined over a field L ⊂ C. Then
there is a finite extension L′/L such that every isogeny from E1 to E2 is
defined over L′.
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Proof. (a) Let ω ∈ ΩE be a non-zero invariant differential on E, then the nor-
malization of [ · ] says that

[α]∗Eω = αω.

Further, for all σ ∈ Aut(C), ωσ is an invariant differential on Eσ, so again
by the normalization of [ · ] it follows that

([β]Eσ)∗ωσ = βωσ for all β ∈ R.

Now, for any α ∈ R and for any σ ∈ Aut(C) we get

([α]σE)∗(ωσ) = ([α]∗Eω)σ = (αω)σ = ασωσ = ([ασ]Eσ)∗(ωσ).

Thus [α]σE and [ασ]Eσ have the same effect on the invariant differential ωσ.
It follows that the natural map End(Eσ) −→ End(ΩEσ), ψ 7→ ψ∗ is injective:
for all φ, ψ ∈ End(Eσ) suppose that φ∗ = ψ∗. Since we work with fields of
char(K) = 0, any finite function is separable, in particular φ, ψ are separable:
by [6, II.4.2, p. 30], already cited at the beginning of the subsection (1.1.6),
both φ∗, ψ∗ are injective. If we take dx as a basis for End(ΩEσ), then

φ∗(dx) = ψ∗(dx)⇔ d(φ∗x) = d(ψ∗x)⇔ d(x ◦ φ) = d(x ◦ ψ)

and then we can conclude that φ = ψ. This implies, then, that [α]σE = [ασ]Eσ .

(b) Let σ ∈ Aut(C) be an automorphism that fixes L: since, by definition, E is
defined over L, then we can take a Weierstrass equation with coefficients in
L, so Eσ = E. By (a), for all α ∈ R

[α]σE = [ασ]Eσ = [ασ]E.

Then we suppose that σ fixes also K, so ασ = α. This proves that

[α]σE = [α]E for all σ ∈ Aut(C) such that σ fixes LK.

Hence the endomorphism [α] is defined over LK.

(c) As in (b), we can take Weierstrass equations for E1 and E2 with coefficients
in L. Let φ ∈ Hom(E1, E2) be an isogeny, then for any σ ∈ Aut(C) that
fixes L we have that also φσ ∈ Hom(E1, E2), and that deg(φσ) = deg(φ).
From [6, III.4.11, p. 73] it follows that an isogeny as φ is determined by
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its kernel, up to isomorphism of E1 and E2. Since E1 has only finitely
many subgroups of any finite order and both Aut(E1) and Aut(E1) are finite,
then Hom(E1, E2) contains only finitely many isogenies of a given degree.
Therefore { φσ : φ ∈ Aut(C), σ fixes L } is a finite set, which implies that
φ is defined over a finite extension of L. Finally, by [6, III.7.5, p. 91],
Hom(E1, E2) is a finitely generated group, so it suffices to take a field of
definition for some finite set of generators.

�

Remark 4.3. [7, II.2.2.1, p. 107]. Using (2.26.b) and (4.1.b) we can deduce that,
if End(E) � RK , then

[Q( j(E)) : Q] ≤ hK

where hK = |CL(RK)| is the class number of K.

Actually we will prove in the theorem (4.15.a) that also the other inequality
holds, so it is an equality.

In particular j(E) ∈ Q if and only if hK = 1.

Example 4.4. [7, II.2.2.2, p. 107]. In view of this observation we see that, if RK

has class number 1, then E has a model over Q. We have already seen an example
of this, precisely in the example (2.27), where we looked at curves with complex
multiplication by the ring Z[ı]. From what we computed into the example, the
curve of Weierstrass equation

E : y2 = x3 + x

has this property. By the proposition (2.4) there is a unique isomorphism [ · ] :
Z[ı] ˜−→End(E) that normalizes the curve E, namely, such that for every invariant
differential ω ∈ ΩE on E

[α]∗ω = αω, for all α ∈ Z[ı].

We can easily show that the isomorphism

[ı] : Z[ı] ˜−→End(E), (x, y) 7→ [ı](x, y) = (−x, ıy)

is the correct one: it suffices to show that it satisfies the characterizing property

and then we can conclude by unicity. Let ω =
dx
y

be an invariant differential on

E, then

[ı]
dx
y

=
d(−x)
ıy

= ı
dx
y
.
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We can show that E satisfies the theorem (4.2.a) with the isomorphism [ı]. If
σ ∈ Aut(C) is the complex conjugation automorphism, then

([ı](x, y))σ = ((−x, ıy))σ = (−xσ, (ıy)σ) = (−xσ, ıσyσ)
= (−xσ,−ıyσ) = [−ı](xσ, yσ) = [ıσ](xσ, yσ)

and we conclude that [ı]σ = [ıσ], as it should be by (4.2.a).

An immediate consequence of (2.31.b) and (4.2.b) is that the torsion points of
E generate abelian extensions of K( j(E)).

Theorem 4.5. [7, II.2.3, p. 108]. Let E/C be an elliptic curve with complex
multiplication by the ring of integers RK of the quadratic imaginary field K. Let

L = K( j(E), Etors)

be the field generated by the j-invariant of E and the coordinates of the torsion
points of E. Then L is an abelian extension of the field K( j(E)).

Proof. We denote by H = K( j(E)) the extension field and, for all m ∈ Z, define
the family of fields

Lm = K( j(E), E[m]) = H(E[m]),

namely, the extensions of H generated by the m-torsion points of E for each m.
Since L is the compositum of all the Lm’s, it suffices to show that each Lm is an
abelian extension of H. So we fix m ∈ Z and define an action of Gal(K̄/H) over
E[m] as follows:

Gal(K̄/H) × E[m] −→ E[m], (σ, P) 7→ σ ◦ P B Pσ.

It is easy to see that the action is well defined (for all P ∈ E[m] by definition
[m]P = 0, so [m](Pσ) = ([m]P)σ = 0σ = 0, so actually Pσ ∈ E[m]). It follows that
there is a representation

ρ : Gal(K̄/H) −→ Aut(E[m]), σ 7→ ρ(σ) : E[m] −→ E[m]

such that ρ(σ)(P) = Pσ for all σ ∈ Gal(K̄/H), P ∈ E[m]. For an arbitrary elliptic
curve, this tells us that Gal(Lm/H) injects into the automorphism group of the
abelian group E[m]:

Gal(K̄/H) . Aut(E[m]) � GL2(Z/mZ),
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namely, Gal(Lm/H) is isomorphic to a subgroup of GL2(Z/mZ). But E has com-
plex multiplication, so we can take a model for E defined over H and, by (4.2.b),
every endomorphism of E is also defined over H. So every elementσ ∈ Gal(Lm/H)
will commute with every element α ∈ RK in their action on E[m]:

([α]P)σ = [α](Pσ).

It means that ρ is an homomorphism from the group Gal(K̄/H) to the group of
RK/mRK-module automorphism of E[m], hence it induces an injection

φ : Gal(Lm/H) ↪→ AutRK/mRK (E[m]).

Then, by using (2.31.b) that says that E[m] is a free RK/mRK-module of rank 1,
we get that

AutRK/mRK (E[m]) � (RK/mRK)×

so we can conclude that Gal(Lm/H) is abelian. �

Remark 4.6. In general L is not an abelian extension of K.

From now on, we will use (4.1) to identify ELL(RK) with the Q̄-isomorphism
classes of elliptic curves with complex multiplication by RK . Then there is a
natural action of Gal(K̄/K) on ELL(RK) defined as follows:

Gal(K̄/K) × ELL(RK) −→ ELL(RK), (σ, [E]) 7→ [Eσ]

where [E] denotes the isomorphism classe of the curve E. On the other hand, we
showed in (2.26.b) that the class group CL(RK) acts on ELL(RK) with a simply
transitive action, so there is a unique ā ∈ CL(RK), depending on σ, such that

ā ∗ E = Eσ.

In other words, there is a well defined map

F : Gal(K̄/K) −→ CL(RK), σ 7−→ F(σ) = a

such that Eσ = F(σ) ∗ E for all σ ∈ Gal(K̄/K). Our goal is to study this map F
in order to describe completely the field K( j(E)). It is easy to show that F has the
following properties:
• F is a homomorphism;
• F is independent of the choice of the curve E ∈ ELL(RK);
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• F is actually well defined on the larger group Gal(Q̄/Q), but only on Gal(K̄/K)
the independence on the curve holds.

Before proving those properties, we note that the definition of F has an essential
analytic component, since F(σ) depends on the way the in which the lattice as-
sociated to the elliptic curve changes when the lattice is multiplied by an ideal.
Thus, if we denote by j(Λ) the j-invariant of the curve EΛ, we know it is an ana-
lytic function of Λ, and the map F is characterized by the formula

j(Λ)σ = j(F(σ)−1Λ)

so F converts the algebraic action of σ into the analytic action of multiplication
by F(σ)−1.

Proposition 4.7. [7, II.2.4, p. 112]. Let K/Q be a quadratic imaginary field.
There exists a homomorphism

F : Gal(K̄/K) −→ CL(RK), σ 7−→ F(σ)

uniquely characterized by the following condition:

Eσ = F(σ) ∗ E for all σ ∈ Gal(K̄/K) and for all E ∈ ELL(RK).

This tells us exactly that F is independent on the choice of the curve E.

Proof. By (2.26.b) and (4.1) it follows that, for all σ ∈ Gal(K̄/K) and for all
E ∈ ELL(RK) there exists a unique ā ∈ CL(RK) such that Eσ = ā ∗ E. So, for a
fixed elliptic curve E, we get a well-defined map F as in the proposition.

We first show that F is a homomorphism: for all σ, τ ∈ Gal(K̄/K)

F(στ) = Eστ = (Eσ)τ = (F(σ) ∗ E)τ

= F(τ) ∗ (F(σ) ∗ E) = (F(τ)F(σ)) ∗ E
= (F(σ)F(τ)) ∗ E

(where, in the last equality, we use the fact that the group CL(RK) is abelian).
Then we show that F is independent of the choice of E: let E1, E2 ∈ ELL(RK),

let σ ∈ Gal(K̄/K), we can write Eσ
1 = ā1 ∗ E1, Eσ

2 = ā2 ∗ E2 and we need to show
that ā1 = ā2. Since CL(RK) acts transitively on ELL(RK), then there exists b̄ such
that E2 = b̄ ∗ E1. Then

(b̄ ∗ E1)σ = Eσ
2 = ā2 ∗ E2 = ā2 ∗ (b̄ ∗ E1) = (ā2b̄ā

−1
1 ) ∗ Eσ

1 .

In order to go on with the proof, we need the following
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Proposition 4.8. [7, II.2.5, p. 112]. Let E/Q̄ be an elliptic curve representing an
element of ELL(RK), let ā ∈ ELL(RK) and let σ ∈ Gal(Q̄/Q). Then

(ā ∗ E)σ = ā
σ ∗ Eσ.

This statement gives us the relationship between the algebraic action of σ
and the analytic action of multiplication by ā. The idea behind the proof is that
C/a−1Λ � ā ∗ E � Hom(a, E) and we want to describe Hom(a, E) as an algebraic
variety and not just as an RK-module.

Proof. We choose a lattice Λ such that EΛ � E and fix an exact sequence

Rm
K Rn

K a 0A

where A denotes a n×m matrix with coefficients in RK . Let Hom(−,−) denote the
homomorphism of RK-modules: we apply it to the product of the previous exact
sequence with the following one:

0 Λ C E 0

and, recalling that Hom(−,−) is covariant on the first entry, contravariant on the
second, we obtain the following commutative diagram:

0 0 0

0 Hom(a,Λ) Hom(a,C) Hom(a, E)

0 Hom(Rn
K ,Λ) Hom(Rm

K ,C) Hom(Rn
K , E)

0 Hom(Rm
K ,Λ) Hom(Rm

K ,C) Hom(Rn
K , E)

For any RK-module M we have that Hom(Rn
K ,M) � Mn; moreover, we have

also the following tool:

Lemma 4.9. [7, II.2.5.1, p. 113]. Let R be a Dedekind domain, let a be a frac-
tional ideal of R and let M be a torsion-free R-module. Then the natural map

φ : a−1M −→ HomR(a,M) x 7→ (φx : α 7→ αx)

is an isomorphism.
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So, using this lemma first with M = Λ, then with M = C, the previous com-
mutative diagram can be rewritten as

0 0 0

0 a−1Λ C Hom(a, E)

0 Λn Cn En

0 Λm Cm Em

where At denotes the transpose of the matrix A. The bottom two rows are exact on
the right, since they are just a number of copies of the exact sequence 0 −→ Λ −→

C −→ E −→ 0. So we can apply the Snake lemma to the bottom two rows and get a
new exact sequence:

0 a−1Λ C ker(En At

−→ Em) Λm/AtΛn.

Note that, since At is a matrix with coefficients in End(RK) = RK , the map Em At

−→

En is an algebraic map of algebraic varieties. Hence its kernel, namely, the inverse
image of the point (0, 0, . . . , 0) ∈ Em is an algebraic subvariety of En. Both En and
Em are group varieties, so this kernel is an algebraic group variety. Further, by
(4.2.a), it follows that, for any σ ∈ Aut(C), the corresponding map

(Eσ)n (Eσ)m(Aσ)t

is obtained by considering the entries of At as elements of RK ⊂ C and by applying
σ to each of them. On the other hand, looking at the complex topology we note
that Λn/AtΛm is discrete and C/a−1Λ is connected. So the last exact sequence
gives

(a ∗ E) = C/a−1Λ � (identity component of ker(En At

−→ Em)).

This describes algebraically a ∗ E in terms of the algebraic map En At

−→ Em. Then
for any σ ∈ Gal(Q̄/Q) we apply the characterization first on E, then on Eσ: we



4.2 Hilbert class field of K 83

obtain

(a ∗ E)σ = (identity component of ker(En At

−→ Em))

= (identity component of ker((Eσ)n (Aσ)t

−−−→ (Eσ)m))
= a

σ ∗ Eσ.

This completes the proof of (4.8). �

Then, the last result in the proof of (4.7) was that (b̄∗E1)σ = (ā2b̄ā
−1
1 )∗Eσ

1 . We
note that, since b ⊂ K and σ ∈ Gal(K̄/K), surely b̄σ = b̄. Using this observation
and the proposition (4.8), we obtain that

(ā2b̄ā
−1
1 ) ∗ Eσ

1 = (b̄ ∗ E1)σ = b̄ ∗ Eσ
1

and we can cancel b̄ from both sides, so

Eσ
1 = (ā2ā

−1
1 ) ∗ Eσ

1

and we can conclude, by (2.26.a.iii) that ā1 = ā2. �

4.2 Hilbert class field of K

Our goal in this section is to prove the following theorem:

Theorem 4.10. [7, II.4.1, p. 121]. Let K/Q be a quadratic imaginary field with
ring of integers RK and let E/C be an elliptic curve with End(E) � RK . Then
K( j(E)) is the Hilbert class field H of K.

In other words, this theorem says that the Hilbert class field of a quadratic
imaginary field K is generated by the value of a certain holomorphic function
j(τ) evaluated at a generator of the ring of integers of K. In fact, once we fix
the field K we have fixed the ring RK and then we can produce an elliptic curve
E with endomorphism ring End(E) = RK in several ways. At the beginning of
the section (2.3) we have seen that, if if a is a non-zero fractional ideal of K the
elliptic curve Ea satisfies this request. Another method is to take directly the curve
corresponding to the lattice Λ = RK . So we consider the second construction. We
can associate to the curve a Weierstrass equation of the form

Y2 = X3 − g2(RK)X − g3(RK)
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and finally compute the j-invariant associate to the curve:

j(E) = j(RK) = 1728
g2(RK)3

g2(RK)3 − 27g3(RK)2 ,

given in terms of series g2(RK) and g3(RK) involving the elements of RK .
Alternatively, if we write RK = Z + τZ then

j(E) = j(RK) =
1

e2πıτ +

∞∑
n=0

c(n)e2πınτ

where c(n) ∈ Z are the coefficients in the q-series expansion of j.
We will actually prove much more than the statement of the theorem (4.10), in

fact we will give an explicit description of how the Galois group of H/K acts on
j(E).

To do this we will use some tools defined into the previous chapters, that we
recall here.

We defined, at the beginning of the section (2.3)

ELL(RK) =

{
elliptic curves E/C with End(E) � RK

}
isomorphism over C

=
{ lattices Λ with End(EΛ) � RK }

homothety

and in the definition (2.25) we denoted by

CL(RK) =
{ non-zero fractional ideals of K }{

non-zero principal ideals of K
}

the ideal class group of RK . If a is a fractional ideal of K, we denote by ā its class
in the quotient.

In proposition (2.26) we showed that there is a well-defined action of CL(RK)
on ELL(RK) given by ā ∗ EΛ = Ea−1Λ for all ā ∈ CL(RK), for all EΛ ∈ ELL(RK),
and that the action is simply transitive.

Then, in section (4.1), we deduced the existence of the map

F : Gal(K̄/K) −→ CL(RK), σ 7−→ F(σ)

characterized by the following property: Eσ = F(σ) ∗ E for all σ ∈ Gal(K̄/K),
and proved in proposition (4.7) that there is a well defined map, independent from
choice of the curve E.
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Since CL(RK) is an abelian group, F factors through F : Gal(Kab/K) −→
CL(RK) where Kab is the maximal abelian extension of K. Finally, we recall
the Frobenius element σp ∈ Gal(Kab/K) corresponding to a prime p in K, defined
in (3.5).

The following proposition will help us to completely determine F in order to
use it in our proof of theorem (4.10).

Proposition 4.11. [7, II.4.2, p. 122]. There is a finite set of rational primes S ⊂ Z
such that, if p < S is a prime which splits in K, say as pRK = pp′, then the
Frobenius element associated to p is sent by F to the class of p in the ideal class
group, namely

F(σp) = p̄ ∈ CL(RK).

Proof. In order to prove this proposition we need the following lemma:

Lemma 4.12. [7, II.4.4, p. 124]. Let L be a number field, let P be a maximal
ideal of L, let E1/L and E2/L be elliptic curves with good reduction at P, with Ẽ1

and Ẽ2 their reductions modulo P. Then the natural reduction map

Hom(E1, E2) −→ Hom(Ẽ1, Ẽ2), φ 7→ φ̃

is injective. Further, it preserves degree, so deg(φ) = deg(φ̃).

Proof. See [7, II.4.4, p. 124]. �

From (2.26.b) we know that ELL(RK) is finite, and in (4.1.c) we have seen
that every curve in ELL(RK) can be defined over Q̄, so we can choose a finite
extension field L/K and representatives E1, . . . , En defined over L for the distinct
K̄-isomorphism classes in ELL(RK).

Further, by the theorem (4.2.c), we may replace L by a finite extension so that
every isogeny connecting every pair of Ei’s is defined over L.

Let S be the finite set of rational primes p satisfying one of the following
conditions:

(i) p ramifies in L;

(ii) some Ei has bad reduction at some prime of L over p;

(iii) p divides either the numerator or the denominator of one of the numbers
NL
Q( j(Ei)− j(Ek)) for some i , k (it means that, if p < S and P is a prime of

L dividing p, then Ẽi � Ẽk (mod P), since their invariants are not the same
modulo P).
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Now let p < S be a prime which splits as pRK = pp′ in K, and let P be a prime
of L lying over p. Let Λ be a lattice for E, so E(C) � C/Λ. Choose some integral
ideal a ⊂ RK , relatively prime to p, such that ap = (α) is principal.

From (1.55.b) there are isogenies φ, ψ connecting E, p̄∗E, ā∗p̄∗E respectively,
corresponding to the analytic maps f , g, induced by the inclusions Λ ⊂ p−1Λ

and p−1Λ ⊂ a−1p−1Λ = (α)−1Λ respectively, such that the following diagram
commutes:

C/Λ C/p−1Λ C/(α)−1Λ C/Λ

E p̄ ∗ E (α) ∗ E E

f
z 7→ z

∼

g
z 7→ z

∼

∼

z 7→αz

∼ ∼

φ ψ λ
∼

The composition is, then

C/Λ −→ C/Λ, z 7→ αz

i.e., the multiplication by α, that we denote by [α].
Next we choose a Weierstrass equation for E/L, minimal at P, and let

ω =
dx

2y + a1x + a3

be the associated invariant differential on E. The pull-back of ω to C/Λ will be
some multiple of dz. Since the map along the top row of the diagram is simply
[α], then dz pulls back to d(αz) = αdz. So we can conclude that

(λ ◦ ψ ◦ φ)∗ω = αω.

Since the equation for E/L is minimal at P, by reducing modulo P its coeffi-
cients we obtain an equation for Ẽ, so the reduced differential

ω̃ =
dx

2̃y + ã1x + ã3

is a non-zero invariant differential on Ẽ.
Further, since (α) = ap and P divides p, we find that

(λ̃ ◦ ψ̃ ◦ φ̃)∗ω = ˜(λ ◦ ψ ◦ φ)
∗
ω = α̃ω̃ = 0̃.
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From proposition [6, II.4.2, p. 30], already cited at the beginning of the section
(1.1.6), it follows that λ̃ ◦ ψ̃ ◦ φ̃ is inseparable. On the other hand, using (4.12) and
(2.32.b) we can compute the degrees of these functions:

deg(φ̃) = deg(φ) = NK
Q (p) = p

deg(ψ̃) = deg(ψ) = NK
Q (a)

deg(λ̃) = deg(λ) = 1.

Since NK
Q (a) is coprime to p, by assumption, then both ψ̃ and λ̃ are separable, so

we conclude that φ̃ : Ẽ −→ ˜̄p ∗ E must be inseparable. Recall that, from corollary
(1.36), any map of this type factors as a qth-power Frobenius map followed by a
separable map. So the fact that φ̃ has degree p and is inseparable implies that φ̃
must be the pth-power Frobenius map. More precisely, there is an isomorphism
from the curve Ẽ(p) (obtained from Ẽ by raising to the pth-power the coefficients
of the Weierstrass equation of Ẽ ) to ˜̄p ∗ E so that the composition

Ẽ
pth-power
−−−−−−→
Frobenius

Ẽ(p) ˜−→ ˜̄p ∗ E

equals Ẽ. In particular, we deduce that

j(˜̄p ∗ E) = j(Ẽ(p)) = j(Ẽ)p,

from which we obtain the so called Kronecker congruence

j(p̄ ∗ E) ≡ j(E)p (mod P).

Moreover it holds, by using the definition of F and the other results, that

j(E)p = j(E)NK
Q

(p)
≡ j(E)σp = j(Eσp) = j(F(σp) ∗ E) (mod P)

so we can conclude that

j(p̄ ∗ E) ≡ j(F(σp) ∗ E) (mod P).

But from the original choice of excluded primes S , we have that

j(Ei) ≡ j(Ek) (mod P) ⇐⇒ Ei � Ek

Hence it is p̄∗E � F(σp)∗E. The simplicity of the action of CL(RK) on ELL(RK)
gives the desired conclusion: F(σp) = p̄. �
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Then we are able to prove the theorem (4.10).

Theorem 4.13. [7, II.4.3, p. 122]. Let K/Q be a quadratic imaginary field with
ring of integers RK and let E/C be an elliptic curve with End(E) � RK . Then
K( j(E)) is the Hilbert class field H of K.

Proof. Let L/K be a finite extension corresponding to the homomorphism

F : Gal(K̄/K) −→ CL(RK),

namely, L is the fixed field of the kernel of F. Then

Gal(K̄/L) = ker(F)

=
{
σ ∈ Gal(K̄/K) : F(σ) = 1

}
=

{
σ ∈ Gal(K̄/K) : F(σ) ∗ E = E

}
=

{
σ ∈ Gal(K̄/K) : Eσ = E

}
=

{
σ ∈ Gal(K̄/K) : j(Eσ) = j(E)

}
=

{
σ ∈ Gal(K̄/K) : j(E)σ = j(E)

}
= Gal(K̄/K( j(E)))

where the equality {σ ∈ Gal(K̄/K) : F(σ) = 1} = {σ ∈ Gal(K̄/K) : F(σ) ∗ E = E}
follows from the simple transitivity of the action, while the last one is obvious
since σ ∈ Gal(K̄/K) fixes K by definition, and also j(E), so it fixes the field
K( j(E)).

Hence L = K( j(E)), i.e., K( j(E)) is the fixed field of the kernel of F. Further,
since F maps Gal(K̄/L) injectively into CL(RK), L/K = K( j(E))/K is an abelian
extension.

Let cL/K be the conductor of L/K, consider the composition of the Artin map
with F:

I(cL/K) Gal(L/K) CL(RK)
(

L/K
·

)
F

We claim that this composition is the natural projection of I(cL/K) onto CL(RK),
namely, we need to show that

F
((L/K

a

))
= ā for all a ∈ I(cL/K).

To prove the claim we will use the following version of Dirichlet theorem on
primes in arithmetic progressions:
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Theorem 4.14. [7, II.3.4, p. 118]. Let K be a number field and c an integral ideal
of K. Then every ideal class in I(c)/P(c) contains infinitely many degree 1 primes
of K.

Let a ∈ I(cL/K) and let S be the fixed set of primes described in proposition
(4.11). By the Dirichlet theorem there exists a degree 1 prime p ∈ I(cL/K) in the
same P(cL/K)-ideal class as a and not lying over a prime in S . In other words, there
is an α ∈ K× satisfying the two conditions

α ≡ 1 (mod cL/K), a = (α)p.

Then we compute

F
((L/K

a

))
= F

((L/K
(α)p

))
= F

((L/K
p

))
since α ≡ 1 (mod cL/K)

= p̄ from (4.11), since NK
Q (p) < S

= ā since a = (α)p

and this proves the claim.
An immediate consequence is that F

((
L/K
(α)

))
= 1 for all principal ideals (α) ∈

I(cL/K), not just for those that are congruent to 1 modulo cL/K . We also know
that F : Gal(L/K) −→ CL(RK) is injective, so it implies that

(
L/K
(α)

)
= 1 for all

(α) ∈ I(cL/K). But the conductor of L/K is the smallest integral ideal c such that

α ≡ 1 (mod c) ⇒

(L/K
(α)

)
= 1

so it follows that cL/K = (1). Since by Artin reciprocity, proposition (3.9), the
conductor is divisible by every prime that ramifies, L/K must be everywhere un-
ramified. So we conclude that L is contained in the Hilbert class field H of K.

On the other hand, the natural map I(cL/K) = I((1)) −→ CL(RK) is clearly sur-
jective, so by the claim it follows that F : Gal(L/K) −→ CL(RK) is also surjective,
hence an isomorphism. Therefore

[L : K] = |Gal(L/K)| = |CL(RK)| = |Gal(H/K)| = [H : K].

So L is contained in H and the extensions L/K and H/K have the same degree: it
follows that L = H, i.e., K( j(E)) = H is the Hilbert class field of K. �
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Finally, we deduce some consequences of proposition (4.11), some of which
have been already proved into the previous proof.

Theorem 4.15. [7, II.4.3, p. 122]. Let E be an elliptic curve representing an
isomorphism class in ELL(RK).

(a) [Q( j(E)) : Q] = [K( j(E)) : K] = hK , where hK = |CL(RK)| = |Gal(H/K)| is
the class number of K.

(b) Let E1, . . . , Eh be a complete set of representatives for ELL(RK). Then
j(E1), . . . , j(Eh) is a complete set of Gal(K̄/K)-conjugates for j(E).

(c) For every prime ideal p of K

j(E)σp = j(p̄ ∗ E).

More generally, for every non-zero fractional ideal a of K

j(E)
(

H/K
a

)
= j(ā ∗ E).

Proof. (a) The second inequality, [K( j(E)) : K] = hK , has been proved during
the proof of the main theorem (4.13). To show the first equality, we use the
easy observation (4.3) after the theorem (4.2), that ensures the first inequal-
ity we need: if End(E) � RK , then the degree of the extension Q( j(E))/Q
satisfies

[Q( j(E)) : Q] ≤ hK .

This inequality, combined with the second equality and the assumption that
[K : Q] = 2, implies that

[Q( j(E)) : Q] = hK

and this completes the proof.

(b) From (2.26.b) we know thatCL(RK) acts transitively on the set of j-invariants
J = { j(E1), . . . , j(Eh) } and by (1.5.b) two elliptic curves are isomorphic
over K̄ if and only if they have the same j- invariant, so the set ELL(RK)
may be identified with the set J simply by the correspondence

ELL(RK)
1: 1
−−−→ J , [E] 7→ j(E).
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The map F : Gal(K̄/K) −→ CL(RK) is defined by identifying the action
of Gal(K̄/K) on J with the action of CL(RK) on J , so Gal(K̄/K) acts
transitively on J . Therefore J is a complete set of Gal(K̄/K)-conjugates
of j(E), and this proves the statement.

(c) The claim proved into the proof of (4.13) gives the assertion for all ideals in
I(cL/K). But cL/K = (1) so I(cL/K) is exactly the set of all non-zero fractional
ideals of K, so also the second relation is proved.

�

4.3 Maximal abelian extension of K

Let K be a quadratic imaginary field, let RK be the ring of integers of K and let
E be an elliptic curve with complex multiplication by RK . We assume that the
isomorphism [ · ] : RK → End(E) is normalized as in (2.4).

In this section, we want to show how to generate the ray class field for a given
modulo c and the maximal abelian extension Kab of K.

Let L/K be an abelian extension. The following lemma tells us when an en-
domorphism of the reduced curve Ẽ (mod P) actually comes from an endomor-
phism of E.

Lemma 4.16. [7, II.5.2, p. 129]. Suppose that E is defined over the number field
L, let P be a prime of L at which E has good reduction and let Ẽ be the reduction
of E modulo P. Let θ : End(E) −→ End(Ẽ) be the natural map that sends any
endomorphism of E to its reduction modulo P. Then γ ∈ Image(θ) if and only if γ
commutes with every element in Image(θ).

In other words, Image(θ) is its own commutator inside End(Ẽ).

Proof. We prove the two implications separately:

(⇒) Let γ ∈ Image(θ). Since End(E) � RK then Image(θ) is a commutative ring:
so certainly γ commutes with the other elements of Image(θ).

(⇐) We note that, from (4.12) it follows that θ is injective. Moreover, from
(1.42) there are exactly two cases:

– if End(Ẽ) is an order in a quadratic imaginary field, then by assumption
End(E) � RK is the maximal order in K, so θ is an isomorphism: this
case is done;
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– if End(Ẽ) is an order in a quaternion algebraH , thenK = Image(θ) ⊗
Q is a quadratic subfield of H . Note that K � K, but H may contain
several distinct subfields each isomorphic to K. We choose a Q-basis
{ 1, α } for K , namely, K = Q + Qα, such that α2 ∈ Q, then using
again (1.42) we extend it to a Q-basis for H of the form { 1, α, β, αβ }
satisfying the following conditions:

α2, β2, (αβ)2 ∈ Q, αβ = −βα

soH = Q + Qα + Qβ + Qαβ.
Now we need to find the commutator of K in H : for any γ ∈ H we
write γ = d + aα + bβ + cαβ where a, b, c, d ∈ Q, so γ commutes with
K if and only if

γα = αγ ⇔ (d + aα + bβ + cαβ)α = α(d + aα + bβ + cαβ)

⇔ dα + aα2 + bβα + cαβα = dα + aα2 + bαβ + cα2β

⇔ −bαβ − cα2β = bαβ + cα2β since αβ = −βα

⇔

−b = b
−cα2 = cα2

since { 1, α, β, αβ } is a Q-basis for K and α2 ∈ Q

⇔ b = c = 0
⇔ γ = d + aα ∈ Q + Qα = K

So we have found that γ commutes with K if and only if γ ∈ K .
Finally let δ ∈ End(Ẽ) commute with Image(θ): then δ commutes with
K , so δ is in K , by what we have already proved. But we also know
that δ is integral over Z and that Image(θ) � RK is the maximal order
in K � K, so δ ∈ Image(θ). �

In the theorem (4.10) we showed that, given an elliptic curve E with complex
multiplication by RK , H = K( j(E)) is the Hilbert class field of K. Since, by
construction, j(E) ∈ H, we can find an equation for E with coefficients in H, so
we may assume that E is defined over H. The following proposition shows that
we can lift the pth-power Frobenius map Ẽ −→ Ẽ to a map in characteristic 0.

Proposition 4.17. [7, II.5.3, p. 131]. Let K be a quadratic imaginary field, let
H be its Hilbert class field, let E/H be an elliptic curve with CM by RK . Let
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σp ∈ Gal(H/K) be the Frobenius element associated to a prime p of RK , and let P
be a prime of H lying over p. Assume that p has degree 1 and is not in the finite set
S of primes specified in the theorem (4.11), so in particular E has good reduction
at P. Then there exists an isogeny

λ : E −→ Eσp

whose reduction modulo P
λ̃ : Ẽ −→ Ẽσp

is the pth-power Frobenius map.

Proof. To ease notation we will write σ instead of σP. From what we have shown
into the proof of the proposition (4.11), there is an isogeny E −→ p̄ ∗ E whose
reduction modulo P, Ẽ −→ ˜̄p ∗ E, is purely inseparable of degree p. Composing
this isogeny with the isomorphism

p̄ ∗ E � Eσ,

by (4.13), we get a third isogeny

λ̃ : Ẽ −→ Ẽσ

that is purely inseparable of degree p. From (1.36) it follows that λ̃ factors as

Ẽ Ẽ(p) Ẽσ
φ ε

where Ẽ(p) is the elliptic curve obtained from E by raising to the pth-power the
coefficients of the Weierstrass equation, while φ is the pth-power Frobenius map
and ε is a map of degree 1. But, by definition, the reduction of Eσ is precisely
Ẽ(p), so ε is an automorphism of Ẽσ.

Now we claim that ε lies in the image of Aut(Eσ) inside Aut(Ẽσ): from (4.16)
it suffices to show that ε commutes with the image of End(Eσ) inside End(Ẽσ).
Recall that we have two normalized isomorphisms

[ · ]E : RK ˜−→End(E) and [ · ]Eσ : RK ˜−→End(Eσ)

and, by the corollary (2.5), these isomorphisms satisfy

λ ◦ [α]E = [α]Eσ ◦ λ for all α ∈ RK .

Now we look at the reduction of [α] modulo P.
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Remark 4.18. In general, suppose that f : V −→ W is a rational map of algebraic
varieties over a field k of characteristic p, let

φV : V −→ V (p), φW : W −→ W (p)

be the pth-power Frobenius maps, let σ ∈ Aut(k) be the pth-power Frobenius
automorphism of k. Then f σ : V (p) −→ W (p) is a rational map and the following
diagram commutes:

V V (p)

W W (p)

φV

f fσ

φW

namely, φW ◦ f = f σ ◦ φV .
Indeed, we can write f = [ f0, . . . , fn] (locally) as a map given by homogeneous

polynomials. For a polynomial f (x) = f (x1, . . . , xm) =
∑

i aixi it holds

f σ(φ(x)) =
∑

i

ap
i xip =

(∑
i

aixi
)p

= φ( f (x))

and this ends the proof of observation (4.18).

From the theorem (4.2.a), since σ ∈ Gal(H/K) fixes α ∈ K, then

[α]σE = [α]Eσ .

Using this fact and the observation on [α]E : Ẽ −→ Ẽ we obtain

φ ◦ [̃α]E = [̃α]σE ◦ φ = [̃α]Eσ ◦ φ.

Moreover, since ε ◦ φ = λ̃ then

[̃α]Eσ ◦ ε ◦ φ = [̃α]Eσ ◦ λ̃ = λ̃ ◦ [̃α]E

= ε ◦ φ ◦ [̃α]E = ε ◦ [̃α]Eσ ◦ φ.

Therefore,
[̃α]Eσ ◦ ε = ε ◦ [̃α]Eσ

and this completes the proof of the claim.
So, from the claim it follows that we can lift ε to ε0 ∈ End(Eσ) and, by (4.12),

ε0 has degree 1. then it is in Aut(Eσ). We obtain that ε is the reduction modulo P
of ε0 ∈ Aut(Eσ): so we can replace λ by ε−1

0 ◦ λ and conclude. �
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Remark 4.19. [7, II.5.3.1, p. 131]. In general, there is no reason to expect an
elliptic curve to be isogenous to one of its Galois conjugate. Of course there are
always maps

E Eσp

Ẽ Ẽ(p)

∃ λ

modP modP

λ̃

But (4.17) says exactly that there exist an isogeny λ : E −→ Eσp that makes the
diagram commutative. Thus, λ lifts the Frobenius map from characteristic p to
characteristic 0.

An important special case of (4.17) occurs when p is a principal ideal: in this
case σp =

(
H/K
p

)
= 1, then λ is an endomorphism of E. The following proposition

enable us to identify that endomorphism.

Corollary 4.20. [7, II.5.4, p. 133]. Let K be a quadratic imaginary field, H be the
Hilbert class field of K and E/H an elliptic curve with complex multiplication by
RK . For all but finitely many degree 1 prime ideals p of K that satisfy

(
H/K
p

)
= 1

there is a unique π = πp ∈ RK such that p = πRK and the diagram

E E

Ẽ Ẽ

[π]

φ

is commutative, where φ is the pth-power Frobenius map.

Note that
(

H/K
p

)
= 1 is equivalent to say that that p is a principal ideal.

Proof. Let P be a prime of H lying over p. By hypothesis we have escluded
finitely many p’s, including those for which Ẽ (modP) is singular, so we may use
(4.17) to obtain a commutative diagram

E Eσp

Ẽ Ẽ(p)

λ

modP modP

φ
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where σp =
(

H/K
p

)
, λ is an isogeny and φ is the pth-power Frobenius map. The

assumption
(

H/K
p

)
= 1 means that Eσp = E, so λ is an endomorphism of E, say

λ = [π]. It also implies that Ẽ(p) = Ẽ, so the diagram becomes

E E

Ẽ Ẽ.

λ

modP modP

φ

Now we can compute the norm of p:

NK
Qp = p since p has degree 1

= degφ since φ is the pth-power Frobenius

= deg[π] from (4.12), since [̃π] = φ

=
∣∣∣NK

Qπ
∣∣∣ from (2.31.b).

Since p is a prime ideal in the quadratic field K, either p = πRK or p = π′RK ,
where π′ is the Gal(K/Q)-conjugate of π. To decide which one is the correct
form of p we use the fact that (E, [·]) is normalized: we take an equation for E/H
with good reduction at P, let ω ∈ ΩE be a non-zero invariant differential whose
reduction ω̃ is a non-zero invariant differential on Ẽ. The normalization (2.4) says
that [π]∗ω = πω, so

π̃ω̃ = π̃ω = [̃π]∗ω = [̃π]
∗

ω̃ = φ∗ω̃ = 0

where the last equality follows from [6, II.4.2, p. 30], cited at the beginning
of the subsection (1.1.6), since the Frobenius map φ is separable. Now ωE is a
one-dimensional vector space generated by ω̃, so π̃ = 0. In other words π ≡ 0
(mod P), so π ∈ P ∩ K = p. We can conclude that p = πRK . This proves the first
half of the proposition, the existence of π.

To show the second half, the uniqueness of π, we need to observe that the
composition

RK End(E) End(Ẽ)
[·]

is injective. Since π has to satisfy [̃π] = φ ∈ EndẼ there is at most one such π. �

Our goal is to show that the torsion points of an elliptic curve E with complex
multiplication by RK can be used to generate abelian extensions of K. We need to
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remark that the points themselves do not generate abelian extensions of K: they
only generate such extensions of the Hilbert class field H = K( j(E)).

In order to pick out the correct subfield, we take a model for E � C/Λ defined
over H, namely we fix Λ, the function

f : C/Λ −→ E(C) z 7→ (℘(z,Λ), ℘′(z,Λ))

and a Weierstrass equation

Y2 = X2 − g2(Λ)X − g3(Λ).

Definition 4.21 (Weber function). We define the Weber function of E/H as

hE : E −→ E/End(E) � P1,

hE( f (z)) =



g2(Λ)g3(Λ)
∆(Λ)

℘(z,Λ) if j(E) , 0, 1728

g2(Λ)2

∆(Λ)
℘(z,Λ)2 if g3(Λ) = 0

g3(Λ)
∆(Λ)

℘(z,Λ)3 if g2(Λ) = 0.

Into this definition ∆(Λ) = g2(Λ)2 − 27g3(Λ3) is the usual modular discrimi-
nant.

An important property of the Weber function is that it is model independent,
namely, it does not change if we take another lattice for E, or equivalently a new
Weierstrass equation for E. So we can consider g2 and g3 as constants. This means
that, if g2g3 , 0, hE is just a constant multiple of the ℘ function, once we fixed the
lattice Λ. Since hE vanishes identically when g2g3 = 0, we need to exclude this
case, which corresponds to j(E) = 0, 1728, and define separately these two cases.
In any case, hE is a rational function on E. Moreover, since we already noticed
that it is possible to define a Weierstrass equation for E over H, from the model
independence we can deduce that hE : E −→ P1 is defined over H.

Example 4.22. [7, II.5.5.1, p. 134]. Consider a Weierstrass equation for E of the
form

y2 = x3 + Ax + B for some A, B ∈ H

then the following function is a Weber function for E/H:

hE(P) = hE(x, y) =


x if AB , 0
x2 if B = 0
x3 if A = 0.
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So, except for the two particular cases j = 0 and j = 1728, a Weber function is
just a x-coordinate for the curve.

To generate abelian extensions of K we will use the values of a Weber function
on torsion points, so essentially we will take their x-coordinate.

Theorem 4.23. [7, II.5.6, p. 135]. Let K be a quadratic imaginary field, let E
be an elliptic curve with complex multiplication by RK and let h : E −→ P1 be a
Weber function for E/H. Let c be an integral ideal of RK . Then the field

L = K( j(E), h(E[c]))

is the ray class field of K modulo c.

Proof. We gave the definition of ray class field in (3.11).
We know, from the theorem (4.13) that H = K( j(E)) is the Hilbert class field

of K and, by definition, H ⊂ L. In order to prove that L is the ray class field of H
we need to prove that (L/K

p

)
= 1 ⇔ p ∈ P(c)

and it suffices to prove it for all but finitely many primes of degree 1 in K.

(⇒) We take a prime p of degree 1 satisfying
(

L/K
p

)
= 1. Then(H/K

p

)
=

(L/K
p

)∣∣∣∣∣
H

= 1

so, excluding finitely many primes, we can apply the corollary (4.20) to get
a π ∈ RK such that

– p = πRK ,

–
E E

Ẽ Ẽ

[π]

φ

is a commutative diagram,

where we denote φ the pth-power Frobenius map.

We also choose σ ∈ Gal(K̄/K) whose restriction to Kab, the largest abelian
extension of K, is σ|Kab =

(
Kab/K
p

)
. Then in particular σ|L =

(
L/K
p

)
= 1, and
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also σ|H = 1, since H ⊂ L. Now let P ∈ E[c] be any c-torsion point: we
compute

h̃([̃π]P̃) = h̃([̃π]P)

= h̃(φ(P̃)) from the commutativity of the diagram

= h̃(P̃σ) since ω reduces to pth-power Frobenius

= h̃(Pσ)

= h̃(P)σ since ω|H = 1 and h is defined over H

= h̃(P) since h(P) ∈ L and ω|L = 1

= h̃(P̃).

Next we observe that the reduction of h modulo P is the map

h̃ : Ẽ −→ ˜E/Aut(E) � Ẽ/Ãut(E)

(since Aut(Ẽ) may be larger than Ãut(E), the image is not Ẽ/Aut(Ẽ)). Using
this fact and the last computation, we deduce that there is an automorphism
[ξ] ∈ Aut(E) such that

[̃π]P̃ = [̃ξ]P̃.

By the injectivity of the torsion, [6, VII.3.1.b, p. 192], E[c] ↪→ Ẽ[c] so we
get [π − ξ]P = 0. A priori the particular ξ that satisfies this relation may
depend on the choice of the c-torsion point P, but from (2.31.b) we know
that E[c] is a free RK/c-module of rank 1, hence there is a single ξ ∈ R×K
such that [π − ξ] annihilates all of E[c]. This implies that π ≡ ξ (mod c),
therefore ξ−1π ≡ 1 (mod c) and we have that p = πRK = (ξ−1π)RK since ξ
is a unit. This proves that p ∈ P(c).

(⇐) Suppose that p ∈ P(c) is a prime of K of degree 1. This means, by definition
of P(c), that

p = µRK for some µ ∈ RK with µ ≡ 1 (mod c).

In particular p is principal, so
(

H/K
p

)
= 1. Hence, after excluding finitely

many primes, we can apply the corollary (4.20) to get some π ∈ RK such
that

– p = πRK ,
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–
E E

Ẽ Ẽ

[π]

φ

is a commutative diagram,

where, as usual, φ is the pth-power Frobenius map.

So now we have that p = πRK = µRK: there must be a unit ξ ∈ R×K such that
π = ξµ. Note that [ξ] ∈ Aut(E), so [π] and [µ] differ by an automorphism of
E.

We already know that
(

L/K
p

)
fixes H; we need to show that it fixes all of L:

in order to do it we need to show that it fixes h(E[c]). Let P ∈ E[c] be any
c-torsion point, then the commutativity of the diagram gives

˜(L/K
p

)
(P) = φ(P̃) = [̃π]P.

On the other hand, the proposition [6, VII.3.1.b, p. 192] tells us that the
reduction map E −→ Ẽ is injective on torsion points whose order is prime
to p: if we exclude the finitely many p’s which divide the order |E[c]|, then
the reduction map E[c] −→ Ẽ[c] is injective. Therefore

(
L/K
p

)
(P) = [π]P.

Now we compute(L/K
p

)
(h(P)) = h

((L/K
p

)
(P)

)
since

(H/K
p

)
= 1 and h is defined over H

= h([π]P)
= h([ξ] ◦ [µ]P) since π = ξµ

= h([µ]P) since h is Aut(E)-invariant and [ξ] ∈ Aut(E)
= h(P) since P ∈ E[c] and µ ≡ 1 (mod c)

so
(

L/K
p

)
fixes any element of h(E[c]) and this completes the proof.

�

Example 4.24. [7, II.5, Example 5.8.1, p. 138]. We can illustrate the theorem
(4.23) with the curve of Weierstrass equation

y2 = x3 + x

which has complex multiplication by the ring of Gaussian integers Z[ı] in the field
K = Q(ı). In particular, we will compute the ray class field of K modulo the ideals
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(2), (3), (4) and prove what we claimed in the example (3.17). From the example
(3.15) we know that the class number of the field K is hK = 1, so the Hilbert class
field coincides with the field K itself.

Let c = (2), then the set of (2)-torsion points of E is

E[(2)] = E[2] = { O, (0, 0), (ı, 0), (−ı, 0) }

and then if we apply the Weber function to the points in E[(2)] we obtain the set
of values { 0,±ı }. So the ray class field of K modulo (2) is

K(2) = K( j(E), h(E[(2)]) = K

as we claimed in the example (3.17).
Let c = (3), if P = (x, y) is a point of the curve, then the duplication formula

cited in (1.27) reads

2P =

( x4 − 2x2 + 1
4x3 + 4x

,
x6 + 5x4 − 5x2 − 1

8y3

)
and, from the explicit formulas derived in the first chapter, we know that 3P =

P + 2P = O if and only if x(P) = x(2P), namely

x =
x4 − 2x2 + 1

4x3 + 4x
3x4 + 6x2 − 1 = 0.

The roots of this polynomial are α,−α, 1
√

3α
,− 1
√

3α
where α =

√
2
√

3−3
3 , and from

them we can compute the coordinates of the 3-torsion points. Then, the Weber
function on E is h(x, y) = x2, so the ray class field of K modulo (3) is

K(3) = K( j(E), h(E[(3)]) = K(
√

3)

and this coincides with the field in the example (3.17).
Let c = (4), the point P = (x, y) is a point of the curve of order 4 if and only

if y(2P) = 0. Using again the duplication formula, this condition is equivalent to
x6 + 5x4 − 5x2 − 1 = 0. The roots of this polynomial are 1,−1, γ,−γ, γ−1,−γ−1

where γ = (
√

2 − 1)ı. Hence, the ray class field of K modulo (4) is

K(4) = K( j(E), h(E[(4)]) = K(
√

2)

and again, this coincides with the field in the example (3.17).
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Finally, we can characterize the maximal abelian extension of the field K.

Corollary 4.25. [7, II.5.7, p. 135]. With notation as above, the maximal abelian
extension of K is

Kab = K( j(E), h(Etors)).

In particular, if j(E) , 0, 1728 and if we take an equation for E with coefficients
in H = K( j(E)) , then the maximal extension of K is generated by j(E) and the
x-coordinates of the torsion points of E.

Proof. To show the first part of the corollary, let L/K be a finite abelian extension
and let cL/K be the conductor of L/K. By class field theory (3.13.c), L is contained
in the ray class field of K modulo c. Using theorem (4.23), this means that

L ⊂ K( j(E), h(E[cL/K])).

Taking the compositum over all conductors gives

L ⊂ K( j(E), h(Etors))

then taking the union over all the abelian extensions L’s gives

Kab ⊂ K( j(E), h(Etors)).

But theorem (4.23) says that K( j(E), h(Etors)) is a compositum of abelian exten-
sions, so it is necessarily abelian: then by maximality of Kab, it must be

Kab = K( j(E), h(Etors)).

To show the second part, it suffices to observe that, by the example (4.22), if
j(E) , 0, 1728 then the x-coordinate on a Weierstrass equation for E/Q( j(E)) is a
Weber function for E. �

Remark 4.26. Using all the results we derived, we can characterize any abelian
extension of the quadratic imaginary field K. We have that any abelian extension
L/K is contained in a ray class field Kc/K for some integral ideal c of K. On
the other hand, the union of the ray class fields of K gives the maximal abelian
extension of K, so we can conclude that the abelian extensions L of K are exactly
the subfields of the ray class fields Kc of K, for integral ideal c of K.
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Remark 4.27. [7, II.5.8, p. 138]. In light of corollary (4.25), we naturally wonder
what happens if we adjoin all of Etors to K, rather than just the values of a Weber
function. In general, it does not generate an abelian extension of K, although Etors

generates an abelian extension of the Hilbert class field H of K, as we have already
seen in (4.5).

Suppose now we look at the special case of K of class number 1, so that
H = K. Then we have the inclusions

Kab = H(h(Etors)) ⊂ H(Etors) ⊂ Hab = Kab

so the inclusions are actually equalities. Thus if K has class number 1 then

Kab = K(h(Etors)) = K(Etors)

and the j-invariants of these curves will be in Q.

4.4 Integrality of j

We have seen in the proposition (4.1.b) that the j-invariant of an elliptic curve
E with complex multiplication is an algebraic number. In this section we are
going to prove that it is in fact an algebraic integer, or equivalently that E has
everywhere potential good reduction. In other words, our goal is to show the
following theorem.

Theorem 4.28. [7, II.6.1, p. 140]. Let E/C be an elliptic curve with complex
multiplication. Then j(E) is an algebraic integer.

It is not hard to see that an elliptic curve E has complex multiplication if and
only if there is an endomorphism E→ E whose degree is not a square. In fact,
we proved in the proposition (1.61.b) that, for any m ∈ Z, the multiplication-by-
m endomorphism has degree m2, so if there is an endomorphism of degree not a
square it cannot be a multiplication-by-m endomorphism. Thus End(E) contains
some extra endomorphisms: E has complex multiplication.

This suggest us how to prove our sentence: we take an arbitrary elliptic curve
E and a positive integer n and study the set of all the elliptic curves E′ such that
there is an isogeny E → E′ of degree n. Then we are going to show that, in
this situation, j(E′) is integral over Z[ j(E)], by explicitly constructing a monic
polynomial Fn( j(E), X) ∈ Z[ j(E)][X] having j(E′) as a root. Finally, if E has
complex multiplication, for an appropriate choice of n we can take E′ = E: then
Fn( j(E), j(E)) = 0, which means that j(E′) is integral over Z.
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Definition 4.29 (Dn,Sn). Fix an integer n, we define the sets

Dn =

{ ( a b
c d

)
∈ M2(Z) : ad − bc = n

}
Sn =

{ ( a b
0 d

)
∈ M2(Z) : ad = n, d > 0, 0 ≤ b < d

}
.

We first observe that Sn is a finite subset of Dn and that S L2(Z) = Γ acts on
Dn via multiplication:

Γ ×Dn −→ Dn, (γ,α) 7→ γα

(clearly det(α) = n and det(γ) = 1 so det(γα) = n, i.e., γα ∈ Dn, so the map is
well defined; moreover it is easy to see that this is actually an action). Thus, we
can show that the natural inclusion Sn ⊂ Dn induces a one-to-one correspondence
Sn � Γ\Dn.

Then for any matrix α =
( a b

c d
)
∈ M2(R) with det(α) > 0 we define the function

j ◦α as the composition of the function j with the fractional linear transformation
defined by α :

( j ◦ α)(τ) = j
(aτ + b
cτ + d

)
and observe that, if α ∈ S L2(Z) then j ◦ α = j.

Remark 4.30. [5, 5, p. 300]. We recall that the j-invariant is an invariant function
for the group Γ = S L2(Z) which s holomorphic on the upper half plane and has
Fourier expansion q−1 + . . . at infinity. Instead of define Dn and Sn we could
consider a positive integer n and the set of integral primitive matrices

∆∗n =

{ ( a b
c d

)
∈ M2(Z) : ad − bc = n, (a, b, c, d) = 1

}
.

The matrices in ∆∗n are said to be primitive, since their determinant is positive
and have coprime coefficients. Then we can prove that it is actually equivalent to
choose either the former or the latter definition, due to the following fact:

Proposition 4.31. [5, 5.1, p. 301]. We can decompose ∆∗n using Γ = S L2(Z) as
follows:

∆∗n = Γ

( n 0
0 1

)
Γ.

Moreover ∆∗n =
⋃
αi

Γαi where αi runs over the matrices of the form

αi =

( a b
0 d

)
with 0 < a, 0 ≤ b < d, (a, b, d) = 1 and ad = n.
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Proof. [3, 5.1, pp. 51-52]. Multiplication on the right (and on the left) by elements
of Γ maps ∆∗n into itself. We can show that Γ operates left transitively on the right
Γ-cosets (and right transitively on the left Γ-cosets). In fact, the map

Γ ×
{
Γα : α ∈ ∆∗n

}
−→

{
Γα : α ∈ ∆∗n

}
(γ,Γα) 7→ γ ◦ Γα = Γ(γα)

is an action of Γ over the set of right cosets of Γ in ∆∗n:

• if γ = 12 clearly 12 ◦ Γα = Γ(12α) = Γα;

• γ ◦ γ′ ◦ (Γα) = γ ◦ (Γ(γ′α)) = Γ(γ(γ′α)) = Γ((γγ′)α) = (γγ′) ◦ Γα.

Let α =
( a b

c d
)

an integral primitive matrix, i.e., an element of ∆∗n and let

L = [1, τ] = Z + τZ = { x + τy : x, y ∈ Z } ↔
{ ( x y

0 1
)
: x, y ∈ Z

}
be a lattice, then M = [aτ + b, cτ + d] is a sub-lattice. By the elementary divisor
theorem there exists a basis {ω1,ω2} of L and a basis {ω′1,ω

′
2} of M such thatω′1 = e1ω1

ω′2 = e2ω2
where e1, e2 ∈ Z and e1 | e2.

Since, by hypothesis, (a, b, c, d) = 1, necessarily e1 = 1, so there exist γ, γ′ ∈ L
such that

γαγ
′ =

(n 0
0 1

)
⇒ α = γ

−1
(n 0
0 1

)
γ
′−1

so we see that the decomposition ∆∗n = Γ
( n 0

0 1
)
Γ holds. This proves that Γ operates

transitively on the cosets.
To show the second part of the sentence, we need to find a simple set of rep-

resentatives for the left cosets of Γ in ∆∗n. Given α as above, we can always find
γ ∈ Γ such that

γα =

( a1 b1

0 d1

)
(namely, we can select relatively prime integers z,w such that za + wc = 0, and
integers x, y such that xw − zy = 1: then γ =

( x y
z w

)
satisfies this property). So we

can always assume that α is upper triangular: α =
( a b

0 d
)
.

Then, since (1 k
0 1

) (a b
0 d

)
=

(a b + kd
0 d

)
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a left coset always contains a representative with 0 ≤ b < d. Finally, matrices
α =

( a b
0 d

)
with 0 < a, 0 ≤ b < d and ad = n generate different left cosets, i.e. no

two of them lie in the same coset. �

This tells us exactly that from each element in ∆∗n we can find an element of
Sn, by taking a representative of the coset of Γ in ∆∗n, and viceversa, by taking, for
any element of Sn, a scalar multiple with coprime integers.

Then we consider the following useful lemma:

Lemma 4.32. [5, 5.2, p. 301]. Suppose that f is a holomorphic function on
the upper half plane which is invariant under the action of Γ by fractional linear
transformation and which is meromorphic at infinity. Then f is a polynomial
in the function j(z), with coefficients in the Z-module generated by the Fourier
coefficients of f .

Proof. Consider the q-expansion of the function f ,

f =
∑

cnqn,

so from the assumption we can assume that

f = c−mq−m + terms of higher degree.

Then f −c−m jm has the properties of the statement and a pole of order at most m−1
at infinity. Repeating this process we find a polynomial P in j with coefficients
in the module generated by all the cn’s over Z, namely, linear combinations of
the coefficients of f such that f − P( j) vanishes at infinity and is holomorphic on
the upper half plane. It follows that f − P( j) is identically zero, so f satisfies the
statement. �

Now, we are going to study the polynomial

Fn(X) =
∏

(X − j ◦ α) =
∑

m

smXm

where α runs over Sn (if we consider the definitions in (4.29)) or equivalently over
the representatives for the right cosets of ∆∗n (if we consider the situation described
in the observation (4.30)) and the function j ◦ α denotes the composition of the
function j with the fractional linear transformation defined by α, as defined above.
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The coefficients sm = sm(τ) are holomorphic functions on the upper half-plane
H. More precisely, sm is the m-th elementary symmetric function in the j ◦ α’s.
So, Fn(X) is a polynomial in the variable X whose coefficients are holomorphic
fuctions of the upper half plane, but there are several other properties, that we are
going to show.

Claim 1. [7, II.6, p. 144], [5, 5.3, p. 301]: The coefficients of Fn(X) are invariant
under the action of S L2(Z), namely,

sm(γτ) = sm(τ) for all γ ∈ S L2(Z) and all τ ∈ H.

Moreover, they are meromorphic at infinity and holomorphic on the upper half-
plane.

Proof. By definition, the coefficients of Fn(X) are elementary symmetric func-
tions of the j ◦ α. Let γ ∈ Γ, for every α ∈ Sn we have αγ ∈ Dn. Then, since
Sn � Γ\Dn, there exist a unique δα ∈ Γ such that δααγ ∈ Sn. Moreover, if
δααγ = δββγ for some δα, δβ ∈ Sn then

β = δ
−1
β
δααγγ

−1 = δ
−1
β
δαα

but then, by [7, I.9, p. 72], we can deduce that α = β. In other words, we have
proved that the function

Sn −→ Sn, α 7→ δααγ

is an injective map between two finite sets of the same cardinality, thus it is a
bijective function. Now we observe that{

j ◦ (αγ) : α ∈ Sn
}

=
{

j ◦ (δ−1
α δααγ) : α ∈ Sn

}
=

{
j ◦ δ−1

α ◦ (δααγ) : α ∈ Sn

}
=

{
j ◦ (δααγ) : α ∈ Sn

}
since j is Γ-invariant

=
{

j ◦ γ : α ∈ Sn
}

using the bijection Sn → Sn.

Using the equivalent notation, we are just saying that the right action of Γ

permutes the cosets Γα in ∆∗n. Hence, any symmetric function on the set { j◦γ : α ∈
Sn} will be invariant under the action τ 7→ γτ for γ ∈ Γ.

By applying this result to the functions sm(τ)’s we can conclude the first part
of the proof.
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To show the second part we observe that, since j is a holomorphic function on
the upper half plane, necessarily each j◦α is holomorphic too; the meromorphicity
comes from the explicit formula for α =

( a b
0 d

)
: j has Fourier expansion

j = q−1 +

∞∑
k=0

ckqk

so it has a pole in q = 0 of order 1. Then

j ◦ α = e−2πı aτ+b
d +

∞∑
k=0

cke2πık aτ+b
d

so in particular qn+1( j ◦ α)(τ) → 0 as q → 0. From the definition of the sm’s,
it follows that there exists N ∈ Z such that qN sm(τ) → 0 as q → 0: this means
exactly that each sm(τ) is meromorphic at infinity. �

Claim 2. [7, II.6, p. 144]. There is a polynomial fm(X) ∈ C[X] such that sm(τ) =

fm( j(τ)) for all τ ∈ H, namely,
sm ∈ C[ j].

Proof. From claim 1, sm is holomorphic on H, so meromorphic on H, and Γ-
invariant. In particular it is invariant with respect to the fractional linear transfor-
mation defined by the matrices T =

( 1 1
0 1

)
and S =

( 0 −1
1 0

)
i.e.

sm(τ + 1) = sm(τ), sm

(
−

1
τ

)
= sm(τ)

so sm is a weakly modular function of weight 0. Further, we have seen in claim 1
that each sm is also meromorphic at∞, so actually each sm is a modular function of
weight 0. Finally, the lemma [7, I.4.2, p. 35] says that, given f a modular function
of weight 0 then it is a rational function of j, that is, f ∈ C( j) and if, in addition, f
is also holomorphic on H, then f is a polynomial function of j, that is, f ∈ C[ j].
Using the lemma, it follows immediately that, since each sm is holomorphic on H,
it is a polynomial function of j, i.e. sm ∈ C[ j] for each m. �

Claim 3. [7, II.6, p. 145]. The Fourier expansion of sm has coefficients in Z.

Proof. To ease notation, we set ζ = e
2πı
n and Q = q

1
n . For any α =

( a b
0 d

)
∈ Sn we

have that ad = n and so

q ◦ α(τ) = e2πıα(τ) = e2πı aτ+b
d

a
a = e2πı (aτ+b)a

n

= e2πı τn a2
e2πı ab

n = Qa2
ζ

ab.
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Similarly, using the q-expansion of j(τ) we find that j ◦ α has a Q-expansion

j ◦ α(τ) = e−2πı aτ+b
d +

∞∑
k=0

cke2πık aτ+b
d = Q−a2

ζ
−ab +

∞∑
k=0

ckQa2k
ζ

abk

where ck ∈ Z[ζ] for all k. In particular the Fourier coefficients of j◦α lie in Z[ζ] so
the same holds for the Fourier coefficients of sm, for all m. Let σ ∈ Gal(Q(ζ)/Q),
we write ζσ = ζr(σ) for some integer r(σ) relatively prime to n. If we apply σ to the
Q-Fourier coefficients of j ◦ α we get

( j ◦ α)σ = Q−a2
ζ
−r(σ)ab +

∞∑
k=0

ckQa2k
ζ

r(σ)abk

then, comparing the series for j ◦ α and ( j ◦ α)σ we see that(
j ◦

(a b
0 d

))σ
= j ◦

(a r(σ)b
0 d

)
.

In general, the value of j ◦
( a b

0 d
)

only depends on b (mod d), since(1 k
0 1

) (a b
0 d

)
=

(a b + kd
0 d

)
and j is Γ-invariant. Further, if r is any integer coprime with n = ad, then the set
{rb : 0 ≤ b < d} is a complete set of residue classes modulo d. So, for any integer
r relatively prime to n{

j ◦
(a rb
0 d

)
:
(a b
0 d

)
∈ Sn

}
= { j ◦ α : α ∈ Sn } .

Applying this result with r = r(σ) it follows that

{ ( j ◦ α)σ : α ∈ Sn } = { j ◦ α : α ∈ Sn } .

Now consider the Q-Fourier coefficients of the sm(τ)’s: we know they lie in Z[ζ];
further, since sm(τ) is a symmetric polynomial in the functions { j ◦ α : α ∈ Sn}, its
Q-Fourier coefficients are fixed by any element in Gal(Q(ζ)/Q), so they lie in Q.
But then they lie in Q ∩ Z[ζ] = Z.

Finally, we note that, from claim 1, sm(τ + 1) = sm(τ), so sm is in fact repre-
sented by a Fourier series in q = Qn. This completes the proof of claim 3. �
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Claim 4. [7, II.6, p. 146]. It holds

sm(τ) ∈ Z[ j].

Proof. From claim 2 we know that sm ∈ C[ j], while from claim 3 we can deduce
that sm ∈ Z[[q, q−1]]. So we need to show that

C[ j] ∩ Z[[q, q−1]] = Z[ j].

Let f ( j) ∈ C[ j] ∩ Z[[q, q−1]] be a polynomial of degree d, f ( j) = a0 jd + a1 jd−1 +

· · · + ad with ai ∈ C. Substituting in the q-expansion of j gives

f =
a0

qd +
a1 + 744da0

qd−1 + . . .

and since f ∈ Z[[q, q−1]] necessarily a0 ∈ Z. Then

f − a0 jd = a1 jd−1 + · · · + ad ∈ C[ j] ∩ Z[[q, q−1]]

and we can repeat the same argument, that gives a1 ∈ Z. After a finite number of
steps we find that every coefficient of f is in Z. The converse is obvious. �

Then combining these four observations we have shown the following

Theorem 4.33. [7, II.6.3.a, p. 146]. There exists a polynomial Fn(Y, X) ∈ Z[Y, X]
so that ∏

α∈Sn

(X − j ◦ α) = Fn( j, X)

Moreover, some other properties hold.

Theorem 4.34. [5, 5.5, p. 302],[7, II.6.3, p. 146].

(a) Fn( j, X) is irreducible over C( j) and symmetric in X and j.

(b) Let β ∈ M2(Z) such that det(β) > 0. Then the function j ◦ β is integral over
the ring Z[ j].

(c) If n is not a perfect square, then the polynomial Hn(X) = Fn(X, X) is non-
constant and has leading coefficient ±1.
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Proof. (a) (See [3, 5.2, Theorem 3, p. 55]). The assertion about the irreducibil-
ity follows from the fact that Γ permutes the functions j ◦ α transitively and
acts as a group of automorphisms on the field C({ j ◦ α : α ∈ Sn}).

To show the symmetry we first observe that j(τ/n) is a root of Fn( j, X), since
the matrix

( 1 0
0 n

)
is an element of Sn, so by the definition of Fn( j, X) clearly

Fn( j(τ), j(τ/n)) = 0

identically. It follows that

Fn( j(nτ), j(τ)) = 0

identically as well, thus j(nτ) is a root of the polynomial Fn(X, j). On the
other hand also the matrix

( n 0
0 1

)
is in Sn, so similarly we see that j(nτ) is a

root of Fn( j, X). Since Fn( j, X) is irreducible and has a common root with
Fn(X, j), necessarily Fn( j, X) divides Fn(X, j). By Gauss’ Lemma we must
have

Fn(X, j) = g(X, j)Fn( j, X) ∈ Z[ j, X],

and hence
Fn(X, j) = g(X, j)g( j, X)Fn(X, j).

It follows that g(X, j) = ±1.

If we suppose that g(X, j) = −1 then Fn(X, j) = −Fn( j, X) that implies that
Fn( j, j) = −Fn( j, j) and so Fn( j, j) = 0, but this contradicts the fact that
Fn( j, X) is irreducible over Z[ j]. Thus g(X, j) = 1, so Fn( j, X) = Fn(X, j).

(b) (See [7, II.6.3.b, p. 146]). Let n = det(β), so clearly β ∈ Dn. As above, we
can find a matrix γ ∈ Γ such that γβ ∈ Sn The Γ-invariance of j says that
j◦β = j◦ (γβ), while the definition of Fn shows that X = j◦ (γβ) is a root of
Fn( j, X). Since Fn is monic by definition and has coefficients in Z[ j] from
the theorem (4.33), then j ◦ β is integral over Z[ j].

(c) (See [7, II.6.3.c, p. 146]). Let α =
( a b

0 d
)
∈ Sn. Using the Q-expansion of

j ◦ α described into the proof of claim 3, we see that the Q-expansion of
j − j ◦ α, using the same notations, is

j − j ◦ α =

( 1
Qn +

∞∑
k=0

ckQnk
)
−

( 1
ζabQa2 +

∞∑
k=0

ckζ
abkQa2k

)
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By assumption n = ad is not a square, so a , d. The leading terms cannot
cancel: this means that j − j ◦ α has a pole as Q → 0 and the coefficient of
the leading term is 1 if n > a2

−ζ−ab if n < a2

in both the cases a root of unity. It follows that Fn( j, j) has a pole as Q→ 0
and that the leading Q-coefficient is a root of unity; but its Q-expansion has
integer coefficients, so the leading coefficient is a root of unity in Z, hence
±1. Further, Fn( j, j) is actually a series in q = Qn: so we have proven that

Fn( j, j) = ±
1

qm + · · · ∈ q−mZ[[q]] for some m ≥ 1.

But we also know that Fn( j, j) ∈ Z[ j] and that j has a pole at q = 0, hence

Fn( j, j) = ± jm + · · · ∈ Z[ j].

This proves that Fn(X, X) is a non-constant polynomial with leading coeffi-
cient ±1.

�

The following lemma gives a basic fact about the polynomial Fn( j, X).

Lemma 4.35. [5, 5.6, p. 302]. If τ is an element of the upper half plane and E is
an elliptic curve corresponding to the lattice Z + τZ, then the roots of Fn( j(τ), X)
are precisely the j-invariants of elliptic curves E′ such that there exist a cyclic
isogeny E′ → E of degree n.

Proof. [3, 5.3, Theorem 5, p. 59]. Let E � C/L be an elliptic curve, where
L = [1, τ] = Z + τZ is the corresponding lattice. We say that M ⊂ L is a primitive
sublattice if, when we express a Z-basis for M in terms of Z-basis of L, namely
M = [aτ + b, cτ + d], then α =

( a b
c d

)
∈ ∆∗n is a primitive matrix. Moreover, from

the elementary divisor theorem, M is a primitive sublattice in L if and only if the
factor group L/M is cyclic.

Then let E′ � C/M be the elliptic curve associated to the sublattice M of L:
there exists an isogeny λ such that the following diagram is commutative:

C/M C/L

E′ E

φ

∼ ∼

λ
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where the vertical maps are the isomorphisms between the curves and the complex
tori, while φ is the canonical homomorphism induced by the inclusion M ⊂ L. We
observe that the kernel of φ is exactly the factor group L/M, so we can deduce that
primitive sublattices M of L correspond to the isogenies with cyclic kernel, whose
order is precisely det(α) or, equivalently, the index (L : M).

Then let M ⊂ L be a primitive sublattice: there exists M = [aτ + b, cτ + d]
where α =

( a b
c d

)
∈ ∆∗n is a primitive matrix. Consider the j-invariants of the

curves:

jE = j(τ) = j(L), jE′ = j(ατ) = j(M).

From the definition of the polynomial Fn( j, X) =
∏

α∈∆∗n
(X − j ◦ α), by evaluating

it on τ, we see directly that j(ατ) is one of its roots.
Viceversa, let j = j(E) = j(L), a root of the polynomial is of the form j ◦ α

with α ∈ ∆∗n. But to any primitive matrix corresponds a primitive sublattice M
of L, to which corresponds a cyclic isogeny of degree n, so there exists a cyclic
isogeny E′ → E of degree n, with E′ = C/M. �

Finally, using these results, we are able to prove Theorem (4.28) at the begin-
ning of this section.

Theorem 4.36. [7, II.6.3.1, p. 147]. Let E/C be an elliptic curve with complex
multiplication. Then j(E) is an algebraic integer.

Proof. Let R � End(E) be an order in the quadratic imaginary field K.

• We first consider the case R = RK , the ring of integers of K. Choose an
element ρ ∈ R such that n = |NK

Qρ| is not a perfect square. For example,

ρ =

 1 + ı if K = Q(ı)
√
−D if K = Q(

√
−D) with squarefree D ≥ 2.

Then we know, from (2.32.b), that the isogeny [ρ] : E −→ E has degree
n. Fix τ ∈ H with j(τ) = j(E), then the multiplication by ρ sends the
lattice Λ1 = [1, τ] to a sublattice Λ2 = [ρτ, ρ] = [aτ + b, cτ + d] for some
a, b, c, d ∈ Z and with ad − bc = n. In other words, the matrix α =

( a b
c d

)
is

an element ofDn. Then,

j(ατ) = j
(aτ + b
cτ + d

)
= j(τ) = j(E)
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and by definition j ◦ α is a root of the polynomial Fn( j, X): if we substitute
X = j ◦ α and evaluate in τ we get

0 = Fn( j(τ), j ◦ α(τ)) = Fn( j(E), j(E)) = Hn( j(E))

From the theorem (4.34.b), the polynomial Hn(X) has integer coefficients
and leading coefficient equal to ±1. This proves exactly that, in this first
case, j(E) is integral over Z.

• If R is an arbitrary order in K, let Γ = [ω1, ω2] be a lattice for E. We know,
from the theorem (1.64), that K = Q(ω1/ω2). So, replacing Γ with λΓ for a
suitable λ ∈ C× we may assume that Γ ⊂ RK . We also choose τ ∈ H such
that RK = [1, τ], then we can consider Γ as a sub-lattice of RK , so we can
write ω1 = aτ + b

ω2 = cτ + d
for some a, b, c, d ∈ Z.

Switching ω1 and ω2 if necessary, we may assume that n = ad − bc ≥ 1.
Since the matrix α =

( a b
c d

)
is an element of Dn, by the theorem (4.34.b), it

follows that j◦α is integral over the ring Z[ j] and the integrality is given by
the equation Fn( j, X) = 0. Evaluating it at τ gives that also j(ατ) is integral
over Z[ j(τ)]. But we computed that j(ατ) = j(E) and we already know that
j(τ) is integral over Z, since it is the j-invariant of an elliptic curve with
complex multiplication by RK . Therefore j(E) is integral over Z.

�
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