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Abstract (EN)
Hand gesture recognition is a topic widely discussed in literature, where several techniques

are analyzed both in terms of input signal types and algorithms. The main bottleneck of the

field is the generalization ability of the classifier, which becomes harder as the number of ges-

tures to classify increases. This project has two purposes: first, it aims to develop a reliable and

high-generalizability classifier, evaluating the difference in performances when using Dataglove

and sEMG signals; finally, it makes considerations regarding the difficulties and advantages of

developing a sEMG signal-based hand gesture recognition system, with the objective of pro-

viding indications for its improvement. To design the algorithms, data coming from a public

available dataset were considered; the information were referred to 40 healthy subjects (not

amputees), and for each of the 17 gestures considered, 6 repetitions were done. Finally, both

conventional machine learning and deep learning approaches were used, comparing their effi-

ciency. The results showed better performances for dataglove-based classifier, highlighting the

signal informative power, while the sEMG could not provide high generalization. Interestingly,

the latter signal gives better performances if it’s analyzed with classical machine learning ap-

proaches which allowed, performing feature selection, to underline both the most significative

features and the most informative channels. This study confirmed the intrinsic difficulties in

using the sEMG signal, but it could provide hints for the improvement of sEMG signal-based

hand gesture recognition systems, by reduction of computational cost and electrodes position

optimization.
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Abstract (IT)
Il riconoscimento dei gesti della mano è un argomento ampiamente discusso in letteratura, dove

diverse tecniche sono analizzate in termini di segnale di ingresso e di algoritmi impiegati. La

principale difficoltà in questo campo è l’abilità di generalizzazione del classificatore, che si

complica all’aumentare del numero di gesti da classificare. Questo lavoro ha due obiettivi:

in primo luogo si vuole sviluppare un classificatore affidabile a dalle alte capacità di general-

izzazione, valutando la differenza delle prestazioni tra l’utilizzo di un segnale sEMG e di un

guanto di dati; infine, fa considerazioni riguardanti le difficoltà e i vantaggi nello sviluppo di

un sistema di riconoscimento dei gesti della mano basato interamente su segnale sEMG, con

l’obiettivo di fornire indicazioni per un suo miglioramento. Per sviluppare gli algoritmi si sono

considerati i dati provenienti da un database pubblico; questi sono riferiti a 40 soggetti sani men-

tre eseguono 6 ripetizioni di 17 movimenti differenti. Infine, sono stati testati sia gli approcci

classici di machine learning, sia quelli più recenti di deep learning, confrontandone le perfor-

mances. I risultati hanno dimostrato migliori prestazioni per i classificatori basati sul guanto

di dati, evidenziandone il potere informativo, mentre l’sEMG non è riuscito a raggiungere

un’elevata generalizzazione. Quest’ultimo ha fornito migliori prestazioni quando analizzato

con approcci classici, che hanno permesso, grazie alla selezione delle features, di sottolineare

sia le features più significative, sia i canali più informativi. Questo studio ha quindi confermato

le difficoltà intrinseche nell’utilizzo di segnali sEMG, ma può fornire indicazioni per il miglio-

ramento di sistemi di riconoscimento di gesti della mano basati su segnali sEMG, riducendone

la complessità computazionale e ottimizzandone la posizione degli elettrodi.
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Chapter 1

Introduction

Hands are a fundamental tool in every day human-life, because they allow to perform a variety

of essential tasks, from simple grasping objects, passing through manual works, since commu-

nication. All these tasks involve a series of hand movements, called gestures. Hand gesture

recognition and classification was one of the firsts tasks considered in the scientific literature.

The evolution of materials, novel sensing techniques, miniaturization of embedded systems and

machine learning algorithms have allowed to gain important progresses in this field, improving

both the simplicity of application and its accuracy.

1.1 Applications

Hand gesture recognition has a wide-scale application; for sure, the most important could be

the following:

• Communication. Not all people are able to use the oral communication, due to health

conditions (for example muteness) or pathologies that compromise that ability. This is

the reason why sign languages were born. However, the portion of the population that is

able to use sign languages is limited, leading to difficulties in communicating and to the

necessity of the presence of a trained person that acts as an intermediate. Moreover, sign

languages are different in relation to the country where they are used. Thus, it is possible

to understand the impact that this application had in studying an automated hand gesture

classification: each gesture (also dynamic) could be associated to a word or even to a

sentence that a translator could display during the communication.

• Rehabilitation. This field could be actually divided into two big branches: the unassisted

training and the assisted training. Both of them analyze movements (of the hands in this
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case) to provide a biofeedback to the user and so to improve its mobility. In particular,

for the unassisted training, patients usually have moderate to high function; for them,

specific wearable sensors, that analyze the movements, classify it and give feedbacks

regarding the correctness of its execution, could be designed. On the other hand, assisted

training involves patients with low to moderate mobility and it requires the presence of a

robot that assists the movement itself, by the application of corrective forces. The system

works by detecting a signal that comes from the patient, processing it and then applying

the corrective force, specifically designed for the necessary gesture correction, both in

terms of amplitude and direction.

• Prosthetics Control. Researchers have demonstrated the opportunity for amputees to

regain their independence by the design of a mechanical and controllable prosthetic hand.

This is achievable thanks to the amount of signals (human and environmental) that can be

analyzed and associated to a specific hand movement (gesture), thus used to govern the

prosthetic. Because of its strong social impact, this can be considered as one of the most

powerful applications of hand gesture recognition.

1.2 Sensing Modalities

From an hardware point of view, there are several ways to detect the hand movements in virtue

of their intrinsic nature. When there is the willingness of moving an hand, the nervous system

delivers an electrical impulse to the muscles of interest. The signal is particularly addressed to

the Motor Units (MU), which are in this way activated; after that, they respond with an action

potential that causes the muscle fibers contraction. Thus, hand movements consist of electrical

signals, that can be measured either with superficial electrodes (resulting in the sEMG signal)

or with needle electrodes (more invasive and typically used for clinical purposes). Secondly,

when moving a hand, joint angles and position of the fingers or wrist in the space are changing

too; thus it is possible to sense the different gestures through mechanical sensors that are able to

retrieve a signal resulting from the hand/finger/wrist position (or their movement) in the space.

Moreover, acoustic/vibratory, optical or visual sensing methods could be used.

Each sensing modality is characterized by different levels of Sensitivity, Wearability and

Maturity:

• Sensitivity: Sensing modalities like sEMG, NIRS (optical sensing) or FMG (mechanical

sensing) measure directly the muscular contraction, capturing respectively the electrical

2



signal, the changing in blood flow and the muscular movement. Thus, they have the high-

est sensitivity and resolution. Regarding IMUs sensors, their sensitivity strictly depends

on the device set up.

• Wearability: In this case, optical sensing methods usually have the smallest size and can

easily be integrated into commercial devices; electrical sensing methods though, can be

made into wristband types, which is of course a comfortable configuration too. On the

contrary, IMUs or strain sensors (which can be made using resistive/conductive material

sensible to strain) are usually made with gloves, a more bulky set up. In the last position

for what concerns the wearability of the sensing system, we can find solutions based on

ultrasound sensors.

• Maturity: sEMG, IMUs, strain sensors are widely used in research and there is an high

availability of commercial devices. Other modalities like NIRS, are commonly used for

other type of task, so the amount of the available literature is limited.

1.3 Algorithms

Typically, hand gesture recognition algorithms can perform either a classification of hand poses

and/or trajectories, or regression of continuous parameters. There are two big families in which

these algorithms divide: the conventional machine learning techniques and the deep learning

techniques. In literature, there are several references for both approaches and many configura-

tions were tried leading to different results with several levels of reliability.

Briefly, machine learning approaches usually involve the necessity of extracting hand-crafted

features from the signal used as input, while instead deep learning methods offer an end-to-end

approach. In this case, the models automatically analyze the signal and look for intrinsic charac-

teristics, which may not be identified manually by the user, and try to automatically understand

the relationship between them and the output of the task (classification in this case). In both

cases, the classifier must be reliable and have to generalize well.

The generalization is the ability of a model to provide high performances not just with seen

data (consisting of information used for the training phase) but with unseen data too. In the

biomedical domain, this is a fundamental and crucial characteristic, because, in general, it is

required a model that, once trained, it results reliable for similar future purposes (e.g. new

subjects and future periods of time). Unfortunately, generalization is usually hard to address,

because biological data typically is characterized by a high level of variability, both inter-subject
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and intra-subject. Usually, in literature it happens that the model demonstrates high accuracy on

classifying training data, while its ability to recognize hand gestures on new, unseen (test) data is

drastically lower. Furthermore, addressing high generalization becomes harder as the number of

gestures to recognize increases. Indeed, having more gestures to distinguish means increasing

the difficulty of the task, which in statistical terms is referred as decreasing the chance level.

There are several ways to increase the generalization ability of the model, which is directly

related to the problem of overfitting. In particular, a model is overfitting if it fits too much well

the data that were given as input, learning the correlations that just those data have with the

outputs, without understanding the correct underlying relationships (i.e. physiological relation-

ship) that is found repeated over all the similar kind of data. In machine learning, there is a

strong problem that has to be taken into account whenever a model is trained, which is the bias

- variance tradeoff. The bias is the difference between the average prediction of the model and

the correct value. A model with high bias pays very little attention to the training data and over-

simplifies the model. The variance is the variability of model prediction for a given data point

or a value which provides information about the spread of the data. A model with high variance

pays a lot of attention to training data and does not generalize on unseen data. For this reason,

developing a model with high generalization requires having low variance, but if the variance

decreases, the bias increases.

Figure 1.1: Bias - Variance Trade-Off. The Total Error is given by the sum between the squared bias, the variance and the Irreducible Error.

Finding the trade-off, means reducing the Total Error.

Both sufficient generalization ability and limited bias can be achieved when the optimal bias-

variance trade-off is reached. There are several approaches that can be used:

• Considering a large training set in order to achieve an appreciable heterogeneity. Unfor-

tunately, it is still difficult to have large training set for this kind of task, due to the expen-

siveness in terms of time; however, there is now a growing number of publicly available

datasets with consistent number of subjects considered. Furthermore, the treated dataset

4



should be divided into a training set and test set, which increases the difficulty of having

sufficiently-large training set. Usually, the training set consists of 4
5 of the overall data,

considering either 4
5 of the movement repetitions of all the subjects or 4

5 of the subjects

themselves.

• Data augmentation. This approach is strictly related to the previous point. Data augmen-

tation consists in a set of techniques that aims to generate a larger and more heterogeneous

dataset, from the manipulation of the available data. In particular, similar informations

are artificially generated.

• Transfer Learning. When there are critical poor data conditions, transfer learning ap-

proaches can be used: these techniques allow to reuse pre-existing model that were trained

for similar tasks and adapting their structures for the new problem taken into account.

This could also drastically reduce the computational time required for the training phase.

• Features Selection. Proper of the traditional machine learning approaches, features se-

lection techniques are used to reduce the probability of overfitting, the complexity of the

model, the computational workload and to increase the model comprehensibility.

• Dropout, used in neural networks, to add a random component that reduces the proba-

bility of overfitting. It consists of random de-activation of the network neurons, with a

specified rate.

1.4 Hand gesture recognition using data gloves

As seen before, there are many approaches to perform hand gesture classification and one of

them is measuring hand position with data gloves. There are three types of data gloves that can

be distinguished for the type of sensors:

• Fiber-optic sensors: they can associate light absorption to a specific strain. They usually

provide very accurate measurements because of the strong correlation between the light

attenuation and the fiber contortion. The main disadvantage is their necessity of having a

light source, which increases the size and weight of the glove, thus its bulkiness.
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Figure 1.2: Fiber-optic sensor data glove. [1]

• Conductive strain sensors: they are based on the relationship between the strain exerted

on them and their electrical resistance (or capacitance) change in correspondence to a

joint angle movement. They are formed from conductive nanomaterials embedded on

flexible textile polymers. Generally these gloves provide accurate measures and they are

lightweight.

Figure 1.3: Resistive sensor data glove. [1]

• Inertial sensors: they track the position and orientation over the space of the hand joints,

thanks to the use of gyroscopes and accelerometers. They are typically used to record

dynamic gestures, but they are the least flexible and tend to make the glove too much

bulky.

Figure 1.4: Inertial sensor data glove. [1]

All the previous systems have lower computational cost than others like, as example, vision

data systems, which instead typically require high computational resources to be processed ac-

curately before and when using it. Moreover, data gloves allow a continuous recording of the

hand gesture and they can be constructed with cheap off-the-shelf components such as bend

sensors and a textile glove, which acts as a support structure. Finally, they can reduce signif-

icantly the subjectivity of the task, with higher results if gestures are performed with specific

protocols. Hand positions, in fact, have specific joint-angles, which can be influenced slightly

by the width of the hand and so by the position of the capacitive sensors around it.
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The production of datagloves started in 1977 by researchers in MIT (Massachusetts Institute

of Technology), and it evolved over time, till now, when the principal datagloves available

include the “Cyberglove”, which uses piezoresistive sensors, “5DT Data Glove”, with fiber-

optic sensors and “Didjiglove”, which has capacitive sensors.

1.4.1 Classical Machine Learning

Several techniques can be used to perform hand gesture recognition with data glove, exploit-

ing algorithms either from classical machine learning approaches or new deep learning ones.

For what concerns the conventional machine learning classifiers, the most common are the K-

Nearest Neighbors, the Support Vector Machine (SVM), the Decision Tree, the Artificial Neural

Network (ANN) and the Probabilistic Neural Network (PNN). All of them use a specific model

to understand the relationship between data and their classes. These techniques were the first

studied in the history, requiring the extraction and evaluation of hand crafted features from the

signal.

Interesting results were obtained from the work of Ibarguren et al. in 2010, which consid-

ered a multiclassifier for the classification of 18 gestures of the ASL alphabets using a 5DT Data

Glove. In particular, the gestures were classified using a combination of decision tree and k-nn

algorithms. First, it was built the decision tree using a clustering method based on Euclidean

distance. Then, a 1-nn classifier was used to classify letters at the lowest level nodes, leading to

a final 94.61% accuracy over seen data.

In the study conducted by Heumer et al. in 2007, a Cyberglove was used to implement

grasp recognition using 28 different classical machine learning algorithms and comparing their

performances over six classification scenarios. The whole classifiers were grouped into 5 cate-

gories:

• Rule sets: they use a set of logical rules. The maximum accuracy obtained was of 78.13%

and the minimum was 30.88%.

• Trees: they consist of pyramid of binary decisions. The maximum and minimum accu-

racy obtained were 83.44% and 31.06% respectively.

• Function approximators: they try to derive a function that relates the input data with

output data. The maximum and minimum accuracy obtained were 86.8% and 81.41%

respectively.
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• Lazy learners: they delay the classification of an input data until a request is received,

then the class is determined looking at the one of the nearest sample, considering a spe-

cific distance metric. They had the highest maximum accuracy of 87.61%.

• Probabilistic methods: they produce probability models of each class and then they

determine the probability of an input data to belong to them. The maximum accuracy

obtained was of 75.31% and the minimum was 61.02%.

1.4.2 Deep Learning

Recently, deep learning approaches were evaluated too. This approaches are interesting be-

cause they typically outperform classical machine learning ones, without the necessity neither

of signal processing nor extracting hand crafted features. However, these approaches have the

main bottleneck of the lack of understandability, which is the reason why they are usually called

black boxes: without specific approaches, it is difficult to understand why a specific result is

obtained and in general which physiological information are used to, in this case, classify a

certain gesture. The most common deep learning algorithms used are Convolutional Neural

Networks (CNN) and Recurrent Neural Network (RNN), also with its variant of Long Short

Term Memory (LSTM). An interesting study was the one of Ayodele et al., 2021, where they

implemented a simple CNN for grasp classification, using a piezoresistive textile data glove

knitted from a conductive yarn and an elastomeric yarn. Using windows of 600x5x1 (600 from

the sampling of 30 s of signals, 5 from the data glove channels), their CNN consisting of two

convolutional block (each of them with convolutional, RELU, max pooling and dropout layers)

and one fully connected block, outperformed the compared classical machine learning algo-

rithms as k-nn, Gaussian SVM and Decision Tree, with an average accuracy of 88.27%. This

study demonstrates the advantages of deep learning techniques compared to the conventional

machine learning ones: despite the simplicity of the network, it outperforms the most common

conventional classification algorithms in the same scenario.
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Figure 1.5: Ayodele et al., 2021’s CNN architecture. [3]

1.5 Hand gesture recognition using sEMG

The sEMG signal is a non-invasive measurement of the electrical signal coming from muscles

when they are activated to perform a specific movement. Briefly, a muscle is composed by a

series of Motor Units (MU), which deliver contractile action potentials along the muscle fiber

when they are excited by the nervous signal. During the muscle contraction, what happens

is that more than one MU could activate, thus the measured electrical signal is formed by the

superposition of more than oneMotor Unit Action Potentials and this is why it is common to call

the electromyography signal ”Superposed Motor Unit Action Potential”.

Figure 1.6: Motor Unit. [5]

The sEMG is a non-invasive measure because it is performed

with electrodes placed on the skin, on the contrary of the inva-

sive EMG, which uses needle electrodes that penetrate inside the

tissue. The number of superficial electrodes influences the type

of measure: low-density sEMG when sparse electrodes are used,

high-density sEMG when dozens of closely spaced electrodes

are used.

Since the sEMG is a neuromuscular measurement and con-

tains abundant and fundamental information about muscle con-

traction, it is widely used also for clinical purposes, trying to understand possible anomalies on

the functioning of the muscles. However, one of the main difficulties in analyzing properly the

sEMG, is overcoming the extreme variability of this signal, which is not just inter-subject (be-

tween different subjects), but also intra-subject (for the same subjects, between different days or

within the same day). This property further complicates the task of gesture classification based

on the EMG signal, independently from the approach used. A lot of researchers have tried and
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still try to implement algorithms that succeed in achieving sufficient accuracy and that can be

applied in every-day life, exploring both conventional machine learning and deep learning field.

Indeed, in the literature it is possible to find a wide-variety of studies.

(a) (b) (c)

Figure 1.7: (a) Schematic representation of the action potenial unit superposition due to the multiple recruitement of motor units. (b) Example

of superficial electrodes (NORAXON INC. USA). (c) Schematics of a fine wire electrode: two fine wires with un-isolated endings are located

with a steel cannula. System MEDELEC. [5]

1.5.1 Classical Machine Learning

As mentioned before, the classical machine learning approaches share the presence of a signi-

ficative signal processing phase, followed by the extraction of hand-crafted features; these are

then given as input to the mathematical model during the training procedure, such it could adapt

its parameters in order to find the correct relationship and dependence between the input data

and the output classes, thanks to the minimization of a well-established loss function.

Figure 1.8: Schematics of the conventional machine learning approaches.

Usually, once the raw sEMG signal is acquired, it is filtered to remove noise components,

using either a digital high-pass/band-pass filter or applying the wavelet transformation (WT), re-

constructing the signal without the noise information. Then, a signal segmentation is performed

using time-windows, such that within the windows are present all the encoded information that
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will be used as samples to train, validate and test the models. Here, the time-window length

is a crucial parameter to be set: larger windows mean more temporal information, but at the

same time cause a delay between the event to be detected and the related network output; on the

other hand, smaller windows are more adequate for real time applications but consider a limited

amount of information. In literature, typical window length values are within the range 30 ms

- 300 ms. Another choice that has to be made is choosing between overlapping windows and

adjacent sliding windows. At this point, feature extraction techniques are applied, mapping the

EMG into a feature set. These techniques extract features in different domains, such as time,

frequency, time-frequency, space and fractal.

• Time domain features. These are usually quick and easy to compute, such that their main

advantage is being low computational demanding than the others. Their disadvantages are

mostly related to their assumption of the signal being stationary, which is not true for the

sEMG, specially when dynamic gestures are performed. Here are reported some of the

most used:

– Integrated EMG . IEMG. It is related to the firing point and can be expressed as

IEMG =
N∑

i=1

|xi| (1.1)

where |xi| represents the EMG signal in a segment i and N denotes length of the

EMG signal.

– Mean Absolute Value - MAV. It is similar to the IEMG (Eq. 1.1) and it works better

for the prosthetic limb control. It is defined as

MAV =
1

N

N∑

i=1

|xi|. (1.2)

Two manipulations of it could also be used, as:

* MAV1, which assigns discrete weights for improving the robustness of theMAV.

It is expressed as

MAV 1 =
1

N

N∑

i=1

wi|xi|. (1.3)

wi =






1 if 0.25N ≤ i ≤ 0.75N

0.5 otherwise
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* MAV2, which assigns insteade continue weights. It is expressed as

MAV 2 =
1

N

N∑

i=1

wi|xi|. (1.4)

wi =






1 if 0.25N ≤ i ≤ 0.75N

4 i
N else if i < 0.25N

4 (i−N)
N otherwise

– Variance of EMG - VAR. It is a power index and because the mean value of EMG

signal is close to zero, the variance is defined as:

V AR =
1

N − 1

N∑

i=1

x2
i (1.5)

– 3rd, 4th and 5th temporal moments - TM3, TM4, TM5.

TM3 = | 1
N

N∑

i=1

x3
i | (1.6)

TM4 =
1

N

N∑

i=1

x4
i (1.7)

TM5 = | 1
N

N∑

i=1

x5
i | (1.8)

– Root Mean Square. It is modeled as amplitude modulated Gaussian random process

which relates to constant force and non-fatiguing contraction. Its definition is:

RMS =

√√√√ 1

N

N∑

i=1

x2
i (1.9)

– Log Detector - LOG. It provides an estimate of the muscle contraction force. It is

defined as:

LOG = e
1
N

∑N
i=1 log xi (1.10)

– Average amplitude change - AAC. It is a measure of the EMG complexity. It is

expressed as:

AAC =
1

N

N−1∑

i=1

|xi+1 − xi| (1.11)
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– Difference absolute standard deviation value - DASDV. It is similar to RMS feature

(eq. 1.9) because it represents a standard deviation value of the wavelength.

DASDV =

√√√√ 1

N − 1

N−1∑

i=1

(xi+1 − xi)2 (1.12)

– Zero Crossing - ZC. It allows to have a frequency information in the time domain.

Its definition is:

ZC =
N−1∑

i=1

[sign(xi × xi+1) ∩ |xi − xi+1| ≥ threshold] (1.13)

sign(x) =






1 if x ≥ threshold

0 otherwise

– Myopulse percentage rate- MYOP. It is an average value of myopulse output which

is defined as one when absolute value of the EMG signal exceeds a pre-defined

threshold value; it is calculated as:

MYOP =
1

N

N∑

i=1

[f(xi)] (1.14)

f(x) =






1 if x ≥ threshold

0 otherwise

– Willison amplitude - WAMP. It is another measure of frequency information. Its

definition is:

WAMP =
N−1∑

i=1

[f(|xi − xi+1|)] (1.15)

f(x) =






1 if x ≥ threshold

0 otherwise

– Slope sign change - SSC. It is another method for measuring frequency information.

It is defined as:

SSC =
N−1∑

i=2

[f [(xi − xi−1)× (xi − xi+1)]] (1.16)

f(x) =






1 if x ≥ threshold

0 otherwise
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The suitable value for the ZC, MYOP, WAMP and SSC features is normally chosen be-

tween 50 µV and 100 mV and it is dependent on setting of gain value of the instrument

and on level of background noise.

• Frequency domain features. Also called spectral domain features, they are mostly used

to study fatigue of the muscle and MUs recruitment. They are evaluated thanks to the

calculation of the power spectral density (PSD). Here follows the most common:

– Mean Frequency - MNF. It represents the average frequency of the signal, calculated

as:

MNF =

∑M
j=1 fjPj

∑M
j=1 Pj

(1.17)

where fj is a frequency of the spectrum at frequency bin j, Pj its correspondent

EMG power spectrum and M the length of the frequency bin.

– Median Frequency - MDF. It is a frequency at which the spectrum is divided into

two regions with equal amplitude.

MDF∑

j=1

Pj =
M∑

j=MDF

Pj =
1

2

M∑

j=1

Pj (1.18)

whereMDF stands for Median Frequency.

– Peak Frequency - PKF. It is defined as the frequency at which the maximum power

occurs, and it is given by:

PKF = max(Pj), j = 1, . . . ,M (1.19)

– Mean Power - MNP. It is an average power of the EMG spectrum, calculated as:

MNP =

∑M
j=1 Pj

M
(1.20)

– Total Power - TTP. Also referred to as Zero spectral moment, it is evaluated as:

TTP =
M∑

j=1

Pj (1.21)

– 1st, 2nd, 3rd Spectral Moments - SM1, SM2, SM3:

SM1 =
M∑

j=1

Pjfj (1.22)
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SM2 =
M∑

j=1

Pjf
2
j (1.23)

SM3 =
M∑

j=1

PjF
3
j (1.24)

– Frequency Ratio - FR. It is proposed to distinguish between contraction and relax-

ation of the muscle, defined as:

FR =

∑ULC
LLC Pj∑UHC
LHC Pj

(1.25)

whereULC andLLC are the upper and lower-cutoff frequency of the low frequency

band and UHC and LHC are the upper and lower-cutoff frequency of the high fre-

quency band, respectively. It is necessary to set a threshold which divides between

low frequencies and high frequencies, and there are two ways to do that:

(a) Through experiments.

(b) By using a value of MNF feature.

– Variance of central frequency - VCF. It can be defined using SM0 (is equal to TTP),

SM1, SM2 features (eq. 1.21, eq- 1.22, 1.23):

V CF =
SM2

SM0
− (

SM1

SM0
)2 (1.26)

• Time-Frequency domain features. These features are obtained from the application ei-

ther of the discrete wavelet transform (DWT) or the continuous wavelet transform (CWT).

Either directly their coefficients can be used, their average alternatively (Mean Of the

Absolute Coefficients), or their standard deviation (Standard Deviation Of the wavelet

Coefficients).

• Space-Domain Features. They try to evaluate the relationship between the channels

or the individuality of them. An example is the Scaled Mean Absolute Value (SMAV),

obtained scaling the MAV (eq. 1.2) of each window by the Mean MAV (MMAV) between

all the channels.

• Fractal-Domain Features. Computed using techniques as the Higuchi fractal decompo-

sition.

After having computed the features, the next step is to choose and train the classifier. In lit-

erature, a wide variety of classifiers are explored, but the most used are Support Vector Machine

(SVM) and Linear Discriminant Analysis (LDA) [12].
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1.5.2 Deep Learning

Deep learning techniques involve the use of deep neural networks, which differ from simply

neural networks, because of the higher structure complexity and the higher number of layers.

The architecture of a deep neural network is made of three levels of layers:

• Input layer: it accepts data either as raw signal, processed signal or hand-crafted features;

• Hidden layers: they can be of different type, as fully connected, convolutional or recur-

rent, in relation to how data are processed;

• Output layer: it ends the task, providing the predictions and evaluating their error.

Each layer is characterized by an activation function that finally transforms data just before they

enter the next layer. There are several activation functions, different for the modality of use and

the type of output they give; moreover, each layer is characterized by a set of weights, which

are the parameters that the network has to learn. During the training procedure, weights are

randomly initialized and then updated through the back propagation: a specific loss function

is evaluated and its loss value (representing the error of the classification) is back propagated

to update weights. The back propagation can happen in several ways, according to different

optimizer (Stochastic Gradien Descent, Momentum optimizer, ADAM optimizer. . . ).

The most common networks used for hand gesture recognition are Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN) and whenever there is the willingness

to perform hand gesture recognition using deep learning approaches, it must be taken into ac-

count the work of Atzori et. Al, 2016. The objective of their study was to develop a robust

classifier using a simple deep neural network, with the final purpose of move and control a

prosthetic hand. The results obtained showed that their architecture outperformed the classi-

cal classification methods. They in particular developed a CNN made of four blocks, each of

them having a convolutional layer followed by a non-linear activation function; the input of the

network consisted of pre-processed (subsampled and low pass filtered) signal windows of 150

ms, with all the channels considered. They compared its classification performances with RF,

SVM, k-NN, and LDA evaluating features as the Histogram, the Waveform Length, the RMS

and the Discrete Wavelet Transform. The models were tested among different datasets (totally,

40 gestures and 9 force patterns were considered) and for each of them, the average classifica-

tion accuracy of the convolutional network was comparable or slightly greater than the average

results obtained from classical classification methods.
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(a) (b)

Figure 1.9: (a) CNN Architecture of the work of Atzori et. Al, 2016. (b) Results comparison for each dataset. [7]

This study actually confirmed the power of new deep learning approaches, demonstrating

how it is possible to obtain comparable results compared to the conventional approaches using

very simple architecture.

1.6 Databases

The variety of studies that is possible to find in the literature is due to the recent launch of

several publicly available databases, which contain different kind of data recorded during the

execution of gestures from different subjects. The most famous are:

• NinaPro. It includes over 300 data acquisitions divided in 10 different databases, with

electromyography, kinematic, inertial, eye tracking, visual, clinical and neurocognitive

data. The subjects considered are both amputees and healthy.

• CapgMyo. It is a benchmark database of HD-sEMG recordings of hand gestures per-

formed by 23 healthy participants. To collect HD-sEMG data, they used a non-invasive

wearable device consisted of 8 acquisition modules, each of them having a matrix-type

(8x2) electrode array. The gestures performed are a subset of the one of the NinaPro DB.

• UCI database. UCI is a machine learning repository where different kind of databases

can be found.

• GRABMyo. It consists of forearm and wrist sEMG data collected from 43 healthy par-

ticipants while performing 16 hand and finger gestures.
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1.7 Objectives

In this work, data glove and sEMG will be analyzed independently to perform hand gesture

classification. The idea is to compare the two different signals in terms of ease of use and

presence of significant information directly related to the gesture. The data exploited came from

a publicly available dataset and both classical machine learning and deep learning techniques

were evaluated. Moreover, it was analyzed the potentiality of considering together the two

signals for the classification, to more precisely understand if that could integrate the loss of

information that there could be when just one of them is used. Thus, the purposes of this thesis

are two. First, it aims at developing a robust classifier to perform hand gesture recognition,

comparing the differences in using data glove and sEMG signal. Then, it tries to give clues

and hints for the implementation of a hand gesture recognition system based entirely on sEMG

signals. The work is structured by explaining the methods used, then showing the results and

finally presenting the discussion.
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Chapter 2

Methods

The considered data and the implemented classifiers are described in this section. For the de-

velopment of the code, both MATLAB and Python environment were used. The first was used

for the analysis of data:

• Subdivision in training set, validation set, test set;

• Signal windowing;

• Feature Extraction;

For the implementation of the classifiers, Python was used instead. In particular, it was used

the machine learning library TensorFlow, which has an ecosystem of tools that allow to easily

build and deploy ML powered applications.

2.1 NinaPro DB

The data used for this work come from the publicly available dataset NinaPro, in particular

from the database number 2. The dataset refers to a set of 40 healthy subjects, both female and

male, who performed 6 repetitions of gestures coming from three different exercises:

During the acquisition, the subjects were asked to repeat the movements with the right hand.

Each movement repetition lasted 5 seconds and was followed by 3 seconds of rest. Electromyo-

graphy, kinematic and inertial data were acquired, but for this study just the first two kinds were

considered.

1. Basic movements of the fingers and of the wrist.

2. Grasping and functional movements.
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3. Force patterns.

Figure 2.1: Photos of the hand movements. The first 17 gestures were considered in this study. [2, 14]

2.1.1 Kinematic Data

Hand kinematics was measured using a 22-sensor CyberGlove II dataglove (CyberGlove Sys-

tems LLC, www.cyberglovesystems.com). The data glove uses proprietary resistive bend-

sensing technology to transform hand and finger motions into real-time digital joint-angle data.

The device returns 22 8-bit values proportional to these angles for an average resolution of less

than one degree depending on the size of the subject’s hand.

The data provided were organized in a matrix form (MATLAB format), having the 22 chan-

nels of the data glove as columns and the time points of the acquisition as rows. The raw data

are declared to be proportional to the angles at the joints in the CyberGlove manual.

2.1.2 Electromyography Data

Themuscular activity was recorded using 12 TrignoWireless electrodes (Delsys, Inc, ww.delsys.com).

The sEMG signals were sampled at a rate of 2 kHz. Eight electrodes were equally spaced around

the forearm at the height of the radio-humeral joint; two electrodes on the main activity spots

of the flexor digitorum superficialis and of the extensor digitorum superficialis, and the last two

electrodes were also placed on the main activity spots of the biceps brachii and of the triceps

brachii. The main activity spots were identified by palpation.
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Figure 2.2: Schematics of the CyberGlove II. The marked points corresponds to the channel position over the hand. [2, 14]

Figure 2.3: Schematics of the Trigno Wireless disposition on the forearm and representation of the overall acquisition setup. [2, 14]

The data provided were organized in a matrix form (MATLAB format), having the 12 elec-

trodes as columns and the time points of the acquisition as rows.

2.1.3 Signal Processing

The publicly available data are not raw but processed through three steps:

1. Filtering: Since the Delsys electrodes are not shielded against power line interferences,

the sEMG signals were cleaned from 50 Hz (and harmonics) power-line interference us-

ing a Hampel filter.

2. Synchronization: The data streams were synchronized by up-sampling them to the high-
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est sampling frequency (2 kHz) using linear interpolation.

3. Relabelling: Since the movements performed by the subjects may not perfectly match

with the video stimuli proposed, the erroneous movement labels have been corrected by

applying a generalized likelihood ratio algorithm offline.

2.1.4 Training set, Validation Set, Test Set

Accordingly to what is usually done in the literature, the entire dataset was divided into three

subsets, representing the training set, the validation set and the test set.

The training set represents the dataset that the model has to use during the first phase of

training: for each sample is known its label, such that at the end the model has learned the

intrinsic relationships binding the input data and their labels. During this phase, a specific loss

function is defined with respect to the type of classifier used, which is directly related to how

much classification errors it does while classifying training data; the objective of this training

phase is adapting the model parameters to minimize that loss.

The test set is a smaller subset which is used during the final validation of the model that

has been trained. It consists of unseen data and it mimics real circumstances where the model

has to work well with data that were not used during the training phase. Good performances of

the classifier over this subset could mean that the model is generalizing well.

The validation set is the smallest subset which is used during the training phase too, but it

acts as a test set useful for the tuning of hyperparameters. By evaluating the performances of

the model over the validation set, it is possible to adjust its structure to achieve higher results.

After having decided the best model, this should be trained with the union of the validation and

training set, in order to let the model learn from the biggest amount of data possible.

Since the dataset consisted of 6 repetitions for each of the 17 gestures for each of the 40

subjects, 3/6 repetitions were considered as training set, 2/6 repetitions as test set and 1/6 repe-

titions as validation set. This was done accordingly to the gold standard and allowed to obtained

the usual and recommended proportion between training set ( 70%) and test set ( 30%).

2.2 Data glove

Using the data glove, several classifiers were implemented, exploring both the classical ma-

chine learning approaches and the newest techniques from the deep learning field. Input data

were organized in windows of 150 ms, according to the suggested lengths from the literature.
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Because of the sampling rate at 2 kHz, each window had a dimension of 300x22. Raw data,

coming from the CyberGlove II, was directly employed without any processing in order to test

the potential ability of deep learning approaches to extract autonomously useful information for

the classification. The neural networks that were tested are CNN, LSTM and ResNet. Due to

their high computational requirements, their parameters were empirically determined, so that

each network could have the best possible performances.

2.2.1 CNN - Convolutional Neural Network

The architecture tested has three convolutional blocks as illustrated in Fig. 2.4, each of them

with an increasing number of convolutional filters (32, 64, 128) and with dimension of 3x3, 3x3

and 2x2 respectively.

After the application of the convolutional filter, a non-linear activation function is applied

(ReLU). Then, to decrease the probability of overfitting, Batch Normalization is done, followed

by a Max Pooling layer (2x1) and a Dropout (rate of 0.3). The final block is a Fully Connected

Block, which first of all flattens data into an array of dimension 17x1, then it applies the Softmax

Function to perform the classification task.

The training phase consisted of 20 epochs, with a decreasing learning rate approach (through

the use of the validation set). The loss function was the categorical-cross entropy, typically

involved in non-binary classification problems. The ADAM optimizer was the one considered.

Figure 2.4: Data Glove CNN architecture

The CNN is one of the most common network in this field. Even if it was born for ad-

dressing imaging problems, it can be adapted to hand gesture recognition tasks by giving as

input ”images” of signal. These images correspond, in this case, to a 2D representation of

the signal, having the information coming from all the channels in the considered observation

window. Thanks to the application of convolutional filters, data of different channels and time

points are simultaneously analyzed and combined, trying to extract features coming from their

relationship. In terms of Python code, the network was created with the following lines.
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1 model = Sequential()

2 model.add(Conv2D(32, (3, 3), input_shape=(300, 22, 1)))

3 model.add(Activation(’relu’))

4 model.add(BatchNormalization(axis=1))

5 model.add(MaxPooling2D((2, 1)))

6 model.add(Dropout(0.3))

7 model.add(Conv2D(64, (3, 3)))

8 model.add(Activation(’relu’))

9 model.add(BatchNormalization(axis=1))

10 model.add(MaxPooling2D((2, 1)))

11 model.add(Dropout(0.4))

12 model.add(Conv2D(128, (2, 2)))

13 model.add(Activation(’relu’))

14 model.add(BatchNormalization(axis=1))

15 model.add(MaxPooling2D((2, 1)))

16 model.add(Flatten())

17 model.add(Dense(17, activation=’softmax’))

Listing 2.1: CNN glove code

Sequential, Conv2D, Activation, Batch Normalization, MaxPooling, Dropout and Flatten

are functions coming from the Keras framework of the TensorFlow library and they automati-

cally allow to create sequentially specific layers for the networks. In details:

• Conv2D implements a convolutional layer. The first input parameter corresponds to the

number of convolutional filters; then, their dimensions have to be specified. For the

first layer of the network, it is always required to give the shape of the input data. It

was necessary to re-adapt the signal window (300x22) in 3D matrix with dimensions

300x22x1.

• Activation applies the activation function. In this case, ReLU was chosen.

• BatchNormalization implements the batch normalization. The dimension along which it

operates should be stated using the keyword axis. In this case, 1 was that dimension,

meaning that each feature (channels could be thought as features) is normalized having a

zero mean and a standard deviation equal to 1.

• MaxPooling2D reduces the dimensionality of the input matrix by sliding a mask over it.

This operation consists in taking the maximum value of the input within the superposition

with the mask. Thanks to the ability of autonomously extracting features from the inputs,
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the data outing each network layer can be called feature maps. Usually, the pixels with

higher values are also the most important for the task. Max pooling allows to look for

the most important features along the matrix, downscaling it and removing for possible

redundancy. The only parameter required is the mask dimensionality.

• Flatten shrinks the dimensions of the 2D array into a 1D array.

• Dense implements a fully connected layer; the first input parameters corresponds to the

number of units, then the second parameter specifies the type of activation. For the last

layer of the network, it applies the Softmax activation, which gives as output the prediction

probability of each class. In this case, the total number of gestures analyzed were 17,

which had to coincide with the units of the final fully connected layer.

2.2.2 LSTM - Long Short Term Memory

LSTM is a particular implementation of a RNN, that allows to overcome problems like the

vanishing or exploding gradients. Moreover, this kind of RNN is capable of learning long-term

dependencies. It usually requires a consistent amount of time to be trained, so its architecture

should be very simple. Input data pass initially through an LSTM layer consisting of 350

units, then they undergo BatchNormalization. At the end, two fully connected layers allow to

flatten data into a final array of dimensionality 17x1. The number of epochs was still set to 20;

RmsProp optimizer was selected and it was used the decreasing learning rate strategy.

Figure 2.5: Data Glove LSTM architecture

Also the LSTM network accepts 2D data as input, but differently from the CNN, it analyses

individually each channel, trying to look and learn for temporal dependencies, which could

result as relevant peculiarities of a specific gesture. Below, it is possible to find the code used.

1 model = Sequential()

2 model.add(LSTM(350, return_sequences=True, input_shape = (300,22)))

3 model.add(BatchNormalization(axis=1))

4 model.add(Dense(100))

5 model.add(Activation(’relu’))
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6 model.add(Flatten())

7 model.add(Dense(17, activation = ’softmax’))

Listing 2.2: LSTM glove code

LSTM is a function that creates a LSTM layer. It considers in input: the number of units (350 in

this case), a boolean variable to select whether to return the last output in the output sequence

or the full sequence and, finally, the size of input data.

2.2.3 ResNet - Residual Network

Finally, the ResNet architecture was tested. It is a sort of CNN, with the presence of residual

blocks: they are characterized by the fact that they receive both the output and input of the

previous block as input. The final architecture proposed in this work is a variant of the known

ResNet18 and it consists of one convolutional block, having 64 3x3 convolutional filters, Batch

Normalization layer and MaxPooling layer, followed by three ResNet blocks and ending with

one Fully Connected layer. The first two ResNet blocks have 64 convolutional filters 3x3, Batch

Normalization, 64 convolutional filters 3x3 and the Add layer. The latest two are identical but

the convolutional filters are 128. The final FC layer has 17 units, equivalent to the final number

of gestures to be classified.

Figure 2.6: Data Glove ResNet architecture

For some kinds of tasks, these networks have significantly improved the performances of

the classical CNN. For this reason, there was the willingness of evaluating their performance

also for hand gesture classification tasks based on data glove. For the implementation of the

network, it was first of all necessary to define two classes:

• ResNetBlock, which implements a standard resnet block with its sequence of layers char-

acterized by a Convolutional Layer, a Batch Normalization layer, a ReLU activation,

another Convolutional Layer, a Batch Normalization layer, an Addittive Layer and a final

ReLU activation.
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1 import tensorflow as tf

2 class ResnetBlock(Model):

3 """

4 A standard resnet block.

5 """

6

7 def __init__(self, channels: int, down_sample=False):

8 """

9 channels: same as number of convolution kernels

10 """

11 super().__init__()

12

13 self.__channels = channels

14 self.__down_sample = down_sample

15 self.__strides = [2, 1] if down_sample else [1, 1]

16

17 KERNEL_SIZE = (3, 3)

18

19 self.conv_1 = Conv2D(self.__channels, strides=self.__strides

[0], kernel_size=KERNEL_SIZE, padding="same", kernel_initializer=

INIT_SCHEME)

20 self.bn_1 = BatchNormalization()

21 self.conv_2 = Conv2D(self.__channels, strides=self.__strides

[1], kernel_size=KERNEL_SIZE, padding="same", kernel_initializer=

INIT_SCHEME)

22 self.bn_2 = BatchNormalization()

23 self.merge = Add()

24

25 if self.__down_sample:

26 self.res_conv = Conv2D(self.__channels, strides=2,

kernel_size=(1, 1), kernel_initializer=INIT_SCHEME, padding="same")

27 self.res_bn = BatchNormalization()

28

29 def call(self, inputs):

30 res = inputs

31

32 x = self.conv_1(inputs)

33 x = self.bn_1(x)

34 x = tf.nn.relu(x)

35 x = self.conv_2(x)
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36 x = self.bn_2(x)

37

38 if self.__down_sample:

39 res = self.res_conv(res)

40 res = self.res_bn(res)

41

42 # if not perform down sample, then add a shortcut directly

43 x = self.merge([x, res])

44 out = tf.nn.relu(x)

45 return out

Listing 2.3: ResNet Block code

• ResNet18, which implements a modified version of the well-known ResNet18 (Fig. 15).

1 class ResNet18(Model):

2

3 def __init__(self, num_classes, **kwargs):

4 """

5 num_classes: number of classes in specific classification

task.

6 """

7 super().__init__(**kwargs)

8 self.conv_1 = Conv2D(64, (3, 3), strides=1,padding="same",

kernel_initializer="he_normal")

9 self.init_bn = BatchNormalization()

10 self.pool_2 = MaxPool2D(pool_size=(3, 3), strides=2, padding="

same")

11 self.res_1_1 = ResnetBlock(64)

12 self.res_1_2 = ResnetBlock(64)

13 self.dp = Dropout(0.2)

14 self.res_2_1 = ResnetBlock(128, down_sample=True)

15 self.res_2_2 = ResnetBlock(128)

16 self.avg_pool = GlobalAveragePooling2D()

17 self.flat = Flatten()

18 self.fc = Dense(num_classes, activation="softmax")

19

20 def call(self, inputs):

21 out = self.conv_1(inputs)

22 out = self.init_bn(out)

23 out = tf.nn.relu(out)

24 out = self.pool_2(out)
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25 for res_block in [self.res_1_1, self.res_1_2, self.dp, self.

res_2_1, self.res_2_2]:

26 out = res_block(out)

27 out = self.avg_pool(out)

28 out = self.flat(out)

29 out = self.fc(out)

30 return out

Listing 2.4: ResNet18 code

These classes were then used to build the classifier, as reported below:

1 model = ResNet18(17)

2 model.build(input_shape = (None,300,22,1))

Listing 2.5: classifier architecture code. In line {1} the class ResNet18 was called giving as input the number of final classes (the gestures) to

be classified. In line {2} instead the model was built giving as input the shape of input data.

2.2.4 Conventional classifiers

The networks previously described were compared with three classifiers belonging to the con-

ventional machine learning approaches. As described before, these approaches require hand-

crafted features. To keep the models as simple as possible, the Root Mean Square features were

extracted from each of the 22 channels, resulting in 22 features for each time window and thus

shrinking the input data in a 1D array (1x22). The new data were normalized and then given as

input to three classifiers: K-Nearest Neighbors, Decision Tree and Support Vector Machine.

• k-Nearest Neighbors: it is the simplest classifier in the machine learning field and it

does not use an explicit model. The only two parameters for this classifier are: the num-

ber of neighbors and the type of geometrical distance, which can be a Manhattan or an

Euclidean norm. To decide the optimal value for these two parameters, a hyperparam-

eter tuning was done, using a 5-fold Cross Validation (CV) procedure and iterating for

the four possibilities of the neighbors number (1,2,3,4) and for the two kind of distances.

To implement the K-NN classifier, a function KNeighborsClassifier is available from the

Sci-kit Learn. An example of code is the following.

1 from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier

2 neigh = KNeighborsClassifier(n_neighbors = 1, algorithm=’auto’, p = 1)

Listing 2.6: k-NN glove code
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n neighbors is the number of neighbors to be considered, algorithm is the type of algo-

rithm used to compute the nearest neighbors (’auto’ option will decide autonomously the

best one) and p is an integer number that stands for the distance that shall be considered

(1 Manhattan distance, 2 Euclidean distance).

• Decision Tree: this classifier is widely used in clinical practice because it reflects the pro-

cess of human decision making. Indeed, it makes splits to divide the overall set in subsets

that contain similar samples, each associated to the same label. The two parameters that

can be tuned in this case are the maximum depth of the tree (the more is the depth, the

more is the risk of overfitting) and the splitting criterion, that evaluates the node impu-

rity. Different approaches can be considered, more precisely the gini index or the entropy

criterion. The gini index uses the following formula:

G =
∑

k

P (k)[1− P (k)] (2.1)

where k represents the classes and P (k) is the ratio at which the kth class is present in

the node. The Entropy criterion instead uses the formula below:

E =
∑

k

P (k)[logP (k)] (2.2)

It is clear how in both cases, if in the node there is complete purity, the index is ex-

actly 0. Following the same approach of the k-nn classifier, the tuning was done. Code-

implementing speaking, from Sci-kit learn is available a function calledDecisionTreeClas-

sifier, which can be implemented as in the following code:

1 from sklearn.tree import DecisionTreeClassifier

2 clf = DecisionTreeClassifier(random_state=0, criterion = ’gini’,

max_depth = 30)

Listing 2.7: Decision Tree glove code

where random state is a variable for repeatability.

• Support Vector Machine: it is the most complex classifier and it works trying to find a

hyperplane that divides the samples belonging to different classes. The Support Vector

Machine (SVM) is by default a binary classifier but it can be adapted to perform multi-

class classification using a one-vs all approach: for each class, it creates two sets, one

having the samples of the considered class, the other having the samples belonging to

the remaining classes. The parameters that influence the performances of the model are

30



three. First, the kernel, which is the function that is exploited to build the hyperplane: it

can be linear, polynomial, sigmoidal or a radial basis function. Secondly, a regularization

parameter C defines how strongly the model fits the data and it influences the probability

of overfitting. Finally, another parameter γ comes when the radial basis function is used.

Then, if the most suitable kernel results as the polynomial, its degree should be tuned,

knowing that the higher the degree, the higher the risk of overfitting because of the in-

creased complexity of the model. For the code implementation, the function SVC from

Sci-kit learn framework was considered:

1 from sklearn.svm import SVC

2 from sklearn.pipeline import make_pipeline

3 svm = make_pipeline(SVC(C=0.1, kernel=’rbf’, gamma=0.1))

Listing 2.8: SVM glove code

Since SVMmay be computationally heavy, thus requiring a lot of time it was not used the

same approach for the parameters tuning. More precisely, the classifier, for each possible

combination of parameters, was trained over the same training set and tested over the

same validation set.

2.3 sEMG

In this section, an approach for performing a hand gesture recognition by using only sEMG

signals was considered.

The database used in this work provided noise-filtered sEMG data. The sEMG data pro-

cessing involved:

1. Considering non overlapping windows of 150 ms. This choice was made for the sake of

comparability with the performances of the glove networks;

2. Subdivision in training, validation and test set; this operation was made identically to the

one of data glove;

3. Amplitude normalization of the training, validation and test set, respectively to the peak

of the whole training set. The amplitude normalization is a technique commonly used in

literature and it aims to reduce the high-variability that characterizes the sEMG signal;

4. Evaluation and extraction for each window of dimension 300x12 (the sampling rate was

still 2 kHz) of the following hand-crafted features:
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(a) ZC (eq. 1.13);

(b) SSC (eq. 1.16);

(c) RMS (eq. 1.9);

(d) IEMG (eq. 1.1);

(e) MM2 (equivalent to the variance, eq. 1.5);

(f) MM3 (equivalent to the TM3, eq. 1.6);

(g) MM4 (equivalent to the TM4, eq. 1.7);

(h) MM5 (equivalent to the TM5, eq. 1.8);

(i) LOG (eq. 1.10);

(j) DASDV (eq. 1.12);;

(k) MAV1 (eq. 1.3);

(l) MAV2 (eq. 1.4);

(m) MYOP (eq. 1.14);

(n) AAC (eq. 1.11);

(o) WAMP (eq. 1.15);

(p) MNF (eq. 1.17);

(q) PKF (eq. 1.19);

(r) MNP (eq. 1.20);

(s) TTP (eq. 1.21);

(t) SM1 (eq. 1.22);

(u) SM2 (eq. 1.23);

(v) SM3 (eq. 1.24);

(w) FR (eq. 1.25);

(x) VCF (eq. 1.26);

Each feature was extracted separately for each channel. The data was then organized

in matrix of dimensions 23x12, the number of electrodes as columns and the number of

features as rows.

Again, both deep learning approaches and conventional machine learning approaches were

tested.
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2.3.1 CNN

The implementation of a CNN is justified because, with data organized in this way, the network

could possibly learn some interesting deep features, due to the relationships between channels

and hand-crafted features, connected with the gestures. Two variants were tested:

1. Using data organized as 1D array, having size (1x276). This was possible thanks to the

methods reshape of the numpy library; more in details, it works by concatenating the rows

along the column dimension.

In this configuration the architecture consisted of three blocks. In the first block, 32 filters

of dimensions 24x1 are applied , then neurons are activated with a non linear activation

function, the ReLU, which is typically used in convolutional neural networks. Finally, to

reduce the risk of overfitting, a Dropout layer is inserted, with a rate of 0.2. The second

convolutional block is identical, but at the beginning it has 64 filters of dimensions 48x1.

The last instead has just 128 filters (96x1) and the ReLU activation. Then, the network

shrinks the data in a 1D array thanks to a flatten layer and the final classification is made

from the final Dense layer, consisting of 17 units and using a softmax activation function.

Figure 2.7: CNN architecture with sEMG, 1st configuration

1 model = Sequential()

2 model.add(Conv2D(32, (24, 1), input_shape=(276,1,1)))

3 model.add(Activation(’relu’))

4 model.add(Dropout(0.2))

5 model.add(Conv2D(64, (48,1)))

6 model.add(Activation(’relu’))

7 model.add(Dropout(0.2))

8 model.add(Conv2D(128, (96,1)))

9 model.add(Activation(’relu’))

10 model.add(Flatten())
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11 model.add(Dense(17, activation=’softmax’))

Listing 2.9: CNN sEMG code (1st configuration)

In order to reduce the computational complexity, it was built a variation of this network to

deal just with time-domain features. This led to input of size (168,1,1) and the architecture

slightly changed. In particular the dimensions of the filters were: (12x1, 24x1, 48x1).

2. Using data organized as 2D matrix 23x12. In this second configuration, the network had

4 convolutional blocks with the same structure: first the convolution with filters is made,

then the ReLU activation function is applied and finally there is the Dropout layer. The

filters applied are in sequence: 32 filters 2x2, 64 filters 2x2, 128 filters 3x3, 256 filters

4x4. The 4th convolutional block has not the Dropout, but it is connected with a Dense

layer of 17 units.

Figure 2.8: CNN architecture with sEMG, 2nd configuration

1 model = Sequential()

2 model.add(Conv2D(32, (2, 2), input_shape=(23,12,1)))

3 model.add(Activation(’relu’))

4 model.add(Dropout(0.2))

5 model.add(Conv2D(64, (2,2)))

6 model.add(Activation(’relu’))

7 model.add(Dropout(0.2))

8 model.add(Conv2D(128, (3,3)))

9 model.add(Activation(’relu’))

10 model.add(Dropout(0.3))

11 model.add(Conv2D(256, (4,4)))

12 model.add(Activation(’relu’))

13 model.add(Flatten())

14 model.add(Dense(17, activation=’softmax’))

Listing 2.10: CNN sEMG code (2nd configuration)

In a second moment, accordingly to the previous configuration, only time-domain features

were considered. This required some modifications to the previous network: 2x2 filters
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were employed for all the convolutional blocks but the 2nd, in which a 3x3 dimension was

chosen instead.

In order to have a more reliable estimates of the network performances, a Cross Validation

(CV) procedure was done; such process consisted in dividing the overall training set in k folds

and has k steps. At each step, one fold was selected as validation set; the remaining k-1 folds

formed the training sets. After the training of the model, the accuracy over the training set and

validation set was determined and saved, such that at the end, a more robust estimate of the

model accuracy was obtained by averaging the training and validation accuracy of each stage.

This procedure was possible for sEMG data thanks to the limited computational requirements,

which instead were too high for glove data, thus preventing the CV execution.

The Scikit Learn library provides a machine learning tool to implement the Cross Validation,

called KFold: specifying the number of folds and the willingness of shuffling or not, it splits the

dataset into k consecutive folds. At each step of the procedure, one of them is used as validation

set and the remaining k-1 as training sets. Once the estimates of the performances are all

established, the network is trained again using the whole training set (including the validation

one).

1 from sklearn.model_selection import KFold

2 acc_per_fold = []

3 loss_per_fold = []

4

5 # Define the K-fold Cross Validator

6 kfold = KFold(n_splits=5, shuffle=True)

7

8 # K-fold Cross Validation model evaluation

9 fold_no = 1

10 for train, test in kfold.split(inputs, targets):

11

12 # Define the model architecture

13 model = Sequential()

14 model.add(Conv2D(32, (23, 1), input_shape=(276,1,1)))

15 model.add(Activation(’relu’))

16 model.add(Dropout(0.2))

17 model.add(Conv2D(64, (46,1)))

18 model.add(Activation(’relu’))

19 model.add(Dropout(0.2))

20 model.add(Conv2D(128, (92,1)))

21 model.add(Activation(’relu’))
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22 model.add(Flatten())

23 model.add(Dense(17, activation=’softmax’))

24

25 # Compile the model

26 model.compile(optimizer=’adam’,

27 loss=’categorical_crossentropy’,

28 metrics=[’accuracy’])

29

30

31

32 # Generate a print

33 print(’

------------------------------------------------------------------------

’)

34 print(f’Training for fold {fold_no} ...’)

35 history = model.fit(inputs[train], targets[train],

36 batch_size=36,

37 epochs=30,

38 verbose="auto")

39

40 # Generate generalization metrics

41 scores = model.evaluate(inputs[test], targets[test], verbose=0)

42 print(f’Score for fold {fold_no}: {model.metrics_names[0]} of {scores

[0]}; {model.metrics_names[1]} of {scores[1]*100}%’)

43 acc_per_fold.append(scores[1] * 100)

44 loss_per_fold.append(scores[0])

45

46 # Increase fold number

47 fold_no = fold_no + 1

Listing 2.11: code for the CV implementation for the specific example of the first CNN configuration; To use properly the Sci-kit learn tool

KFold it is necessary to build a for loop that iterates through the indices that defines at each step the training and validation set.

2.3.2 Random Forest

In order to make a comparison with the performances of classical machine learning approaches,

a Random Forest (RF) classifier was built. This choice is justified because of the limited com-

putational requirements and so computational time to train the network, which were instead

too high to implement efficiently KNN or SVM. Moreover, since Random Forest works by

implementing a consistent number of decision trees with an intrinsic randomness and then av-
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eraging their predictions, its results can be considered robust without the necessity of making

a Cross Validation procedure. Furthermore, RF comes with the possibility of evaluating the

importance of a feature in making the classification. The so-called feature importance is related

to the number of times the feature is considered to make the best split possible at each step.

This information could be used to select the features. To be trained, the classifier requires the

specification of few hyperparameters, like:

• Number of estimators: this is the actual number of decision trees that are built;

• Number of features: the number of features to be considered when looking for the best

split;

• Minimum number of samples per leaf: this is the minimum number of samples required

to be at a leaf node. It can be considered as a stopping criterion.

• Criterion: the criterion that has to be considered when the impurity of a node is evaluated.

In this work, a number of 300 estimators was used, in order to guarantee a robustness of the

network, and the number of features were not specified, thus using the default setting that de-

fines the square root of the total number of the calculate hand-crafted features as the number of

features parameter. Then, it was adopted a specific strategy to evaluate the optimal minimum

number of samples per leaf and the criterion, similarly to the one of the Support Vector Ma-

chine used for the analysis of data glove (see 2.2.4). In particular, using the training set and

validation set defined in the section 2.1.4, for each combination of the two parameters, it was

trained a Random Forest classifier using the first subset; then, to select the best combination,

the performances over the validation set were considered.

1 from sklearn.ensemble import RandomForestClassifier

2 rf = RandomForestClassifier(n_estimators = 100, min_samples_leaf = 2,

verbose = 1, criterion = ’gini’ )

Listing 2.12: RF sEMG code

Once the best hyperparameters were chosen, the feature selection procedure followed, in order

to understand which were the most significative features that the model has looked up to perform

the classification. Subsequently, it was taken advantage of this information to shrink the number

of features that the model has finally to consider, leading to a diminished computational cost

and so a reduced computational time. At the end, the classifier was trained over the complete

training set (including the validation set) and evaluated on the test set.
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For the development of the RF classifier, the function RandomForestClassifier was imported

from the sklearn framework. If not specified, the number of features considered at each step is

by default equal to the square root of the total number of features.

2.4 Data glove and sEMG: the fusion approach

The fusion is a technique widely used in literature for hand gesture classification: it consists in

giving in input to the classifier the combination of two or more kinds of signals, so that it could

have a more complete information to analyze. This technique has the intrinsic potentiality to

increase the generalization ability of the classifier, thus its classification performances. As an

example, in the study of Ceolini, et. Al, 2020 the group worked on optimizing a framework that

integrated two complementary systems: electromyography (EMG) signals from the muscles and

visual information. In the work of Colli-Alfaro et. Al, 2019, instead, a user-independent ges-

ture classification method based on a sensor fusion technique using surface electromyography

(EMG) and an inertial measurement unit (IMU) was presented.

These studies have suggested to investigate the performances achievable by combining data

glove and sEMG data in this work. The choice was justified because data glove have the ad-

vantage of being less user-dependent due to their lower variability: they give joint-angle mea-

surements, which are quite reproducible within a set of different subjects, as long as the sensors

are displaced correctly over the hand. On the other hand, sEMG signal contains neuromuscular

information that could be strongly related to the gesture.

As reference for the fusion development, the work of Tortora et. Al, 2020 was considered.

There, a fusion between EEG and EMG signals was done to decode gait activity. More pre-

cisely, the approach consisted in designing two completely separate and independent networks,

one working with EMG only, the other with EEG. Both of them had to perform classification,

independently one from the other; then, only at the end, the two classifications were merged

using a Bayesian Belief Fusion approach.

The Bayesian Belief Fusion is a method that looks at the uncertainty of the classifiers in

determining the most reliable one for a given gesture to be classified. More precisely, for each

class (gesture) a specific parameter called Belief is determined. This parameter can be inter-

preted as a measure of the assignment correctness. It is evaluated from priori and conditional

probability coming from the K classifiers involved:

Bel(ci) = P (ci)

∏K
k=1 P (ci|ek = cj)∏K

k=1 P (ci)
(2.3)
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Figure 2.9: Schematic representation of the hybrid human-machine interface proposed by Tortora et. Al. In purple, it is highlighted the

bayesian fusion. [19]

where P (ci) is the priori probability of class i and P (ci|ek = cj) is the probability that the true

class is i when the k − th classifier outputs class j. The conditioned probability is properly of

the k− th classifier; it reflects its reliability and it is evaluated from its confusion matrix. Given

the confusion matrix

CM =





nk
11 . . . nk

1j . . . nk
1M

. . . . . . . . . . . . . . .

nk
i1 . . . nk

ij . . . nk
iM

. . . . . . . . . . . . . . .

nk
M1 . . . nk

Mj . . . nk
MM





(2.4)

where nk
ij represents the number of samples belonging to the i− th class that were predicted as

the j − th class by the k− th classifier, the condition probability P (ci|ek = cj) is evaluated as:

P (ci|ek = cj) =
nk
ij∑M

i=1 n
k
ij

, i = 1, . . .M ; j = 1, . . . ,M (2.5)

Accordingly to the work of Tortora et. Al, 2020, the same prior probability for all the classes

was used.

In this thesis the Bayesian Belief Fusion was implemented by considering the best classifier

for glove data and the best classifier for sEMG data. After the training using the training set

alone, the confusion matrices were evaluated on the validation set. The bayesian technique

was finally applied for the predictions over the test set: for each predicted gesture, the method

evaluates the belief for each class and outputs the class with the maximum belief. Along with

the new (in some sense corrected) predictions, the performances of the method were evaluated

and compared with that obtained without fusion.

Technically speaking, the bayesian fusion method required the use of a pre-defined function

called confusion matrix from the Scikit-learn, which accepts in input the ground truth target
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values and the classifier estimate targets and it provides in output the confusion matrix. Using

this function, the confusion matrices of the two best classifiers obtained with sEMG and data

glove were evaluated on the validation set. The condition probabilities were then extracted from

the confusion matrices and for each sample of the test set the belief vector was determined. The

final prediction corresponds to the class that had the maximum belief value.

1 cond_prob1 = np.zeros(conf_matr1.shape)

2 cond_prob2 = np.zeros(conf_matr2.shape)

3 bel = np.zeros(17)

4 n_gest = 17

5 pred_correct = np.zeros(N)

6

7 for i in range(0,n_gest):

8 for g in range(0,n_gest):

9 cond_prob1[i,g] = conf_matr1[i,g]/sum(conf_matr1[:,g])

10

11

12 for i in range(0, n_gest):

13 for g in range(0, n_gest):

14 cond_prob2[i,g] = conf_matr2[i,g]/sum(conf_matr2[:,g])

15

16 bel = np.zeros(17)

17

18 for i in range(0, N):

19 p1 = pred_test1[i]

20 p2 = int(pred_test2[i])-1

21 for j in range(0, n_gest):

22 bel[j] = 1/17*cond_prob1[j, p1]*cond_prob2[j, p2]

23 index = np.where(bel == np.amax(bel))

24

25 pred_correct[i] = index[0][0]

26 bel = np.zeros(17)

27

28

29 print(classification_report(y_test_new,pred_correct))

Listing 2.13: Bayesian fusion implementation. ”cond prob1” and ”cond prob2” are the conditioned probability of the two independent

classifiers evaluated from their confusion matrices; ”pred test1” and ”pred test2” are their respective predictions over the test set. ”bel” is

the belief vector. It is possible to see how the corrected prediction coming from the fusion corresponds to the class with the maximum belief

value.
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Chapter 3

Results

In this chapter, the results will be presented: first, data glove based classifiers are analyzed, then

classifiers for sEMG data. At the purpose, the Sci-kit Learn framework provides the function

called classification report, which allows to investigate the most common classification metrics

as precision, recall, f1-score, accuracy and does also a macro average and weighted average of

the first three. Given the predicted - truth values grid:

Truth

Positive Negative

Predicted
Positive TP FP

Negative FN TN

• Precision is the fraction of correct classifications divided by the total number of classifi-

cations. It can be called positive predicted value and it is defined as

Precision(PPV ) =
TP

TP + FP
(3.1)

A model having high precision means that it succeeds in predicting a sample as positive.

• Recall, also known as sensitivity, is the rate of correct positive classifications among the

total number of positive outputs. It is evaluated by:

Recall(TPR) =
TP

TP + FN
(3.2)

A model with low recall is not able to find all the positive samples in the dataset.

• F1-score: it is a combination of precision and recall and takes into account the eventual

data imbalance. Indeed, the ideal configuration is achieving both high precision and
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recall. For this reason, it is defined as an harmonic mean between the two previous

metrics:

f1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(3.3)

An ideal model should have high f1-score, meaning that both Precision and Recall are

high.

• Accuracy. This is the simplest metric that can be taken into account, it refers to the cor-

rect number of classifications among all the others, but without taking into consideration

the possible data imbalance. It is computed by:

Accuracy =
TP + TN

TP + FP + FN + TN
(3.4)

Finally, the fusion outcome is presented.

3.1 Data glove

The following classifiers were developed and tested:

1. CNN, with three Convolutional blocks; the first block had 32 filters 3x3, a ReLU activa-

tion, a Batch Normalization and a MaxPooling 2x1 layer. The second was identical but

with 64 filters. The third had 128 filters 2x2. Finally, the network ended with a Dense

layer made of 17 units.

2. LSTM, with an LSTM layer of 350 units, a Batch Normalization layer, a Dense layer

with 100 units and finally with a Dense layer of 17 units.

3. ResNet, with a Convolutional Layer that applied 64 filters 3x3, a Batch Normalization

layer, a Max Pooling 3x3, two Resnet Blocks of 64 units, a Dropout, two other Resnet

Blocks with 128 units, a Global Average Pooling and finally a Dense layer with 17 units.

4. KNN.

5. Decision Tree.

6. SVM.
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3.1.1 CNN

In order to test this classifier, the number of epochs was set to 20. With this choice, the classifier

took more than 9 minutes to complete the training, at the end of which it reached an accuracy

over the training set of almost 88% and 82% over the validation set. It is interesting to analyze

the trends of these two values, which can be seen in Fig. 3.1. The accuracy trends suggest

that the network is not affected by overfitting: at the final epoch, the training and validation

accuracy values are quite close to each other. This statement can be confirmed by observing the

loss trends in Fig. 3.2: the loss is decreasing as the number of epochs increases, meaning that

the network is learning the relationship between training data and their labels, and again the

distance between the two final values is not indicating the presence of the overfitting problems.

Furthermore, as expected, the final training loss is lower than the validation one. The network

was then evaluated over the test set.

Performance values were evaluated for the considered network and reported in Tab. 3.1;

since the problem consisted in classifying among 17 different gestures but the metrics refer to a

binary problem, they were calculated using a one-vs-all approach: for each gesture, all the cor-

responding samples were considered as positive samples, while all the others were considered

as negative samples.

By analyzing the classification metrics, it is clear how the network had some difficulties in

classifying some gestures. The confusion matrix can be therefore evaluated in order to under-

stand which are the gestures that the network misclassifies and, more interestingly, which are

the classes of gestures that are causing the misunderstanding.

The same architecture was finally tested only on a subset of gestures, from number 1 to

number 8. In this case, the network performances increased thanks to the diminished chance

level. Indeed, the number of possible classes was decreased. As mentioned before, the classifier

had the same identical structure of the previous one, except for the final dense layer, that for

this task had only 8 units, one unit for each gesture. Obviously, this reduced classifier has less

parameters, going from more than 1 million to slightly less than 700 thousands. At the end of

the training phase, the final training and validation accuracy were respectively 96% and 93%.

The network was evaluated over the test set: the classification metrics are reported in Tab. 3.2

and the confusion matrix in Fig. 3.4.
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Figure 3.1: Accuracy trends of the validation and training set during the training epochs of the network.

Figure 3.2: Loss trends of the validation and training set during the training epochs of the network.

44



precision recall f1-score

G
es
tu
re

1 0.94 0.93 0.94

2 0.91 0.84 0.87

3 0.86 0.94 0.90

4 0.82 0.81 0.81

5 0.83 0.85 0.84

6 0.90 0.84 0.87

7 0.89 0.94 0.92

8 0.86 0.62 0.72

9 0.70 0.67 0.69

10 0.72 0.79 0.76

11 0.72 0.66 0.69

12 0.64 0.79 0.70

13 0.83 0.65 0.73

14 0.73 0.81 0.77

15 0.85 0.91 0.88

16 0.69 0.76 0.72

17 0.78 0.72 0.75

accuracy 0.80

macro average 0.80 0.80 0.80

weighted average 0.81 0.80 0.80

Table 3.1: Classification metrics for the CNN using data glove.

Figure 3.3: Confusion matrix of the CNN. Note that a threshold is applied: all the values lower than 0.1 are set as 0.
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precision recall f1-score

G
es
tu
re

1 0.95 0.95 0.94

2 0.93 0.89 0.91

3 0.91 0.92 0.92

4 0.86 0.79 0.82

5 0.83 0.92 0.87

6 0.87 0.89 0.88

7 0.92 0.93 0.92

8 0.91 0.88 0.89

accuracy 0.90

macro average 0.90 0.90 0.90

weighted average 0.90 0.90 0.90

Table 3.2: Classification metrics over the test set for the reduced set of gestures.

Figure 3.4: Confusion matrix for the reduced gesture set configuration with the CNN.
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3.1.2 LSTM

The LSTM network had more than one million parameters and it took more than 20 minutes

to be trained. As for the CNN, the LSTM is not affected by overfitting because of the unsub-

stantial difference between the training and validation accuracy, which reached 91% and 85%

respectively at the end of the training. This can be easily viewed from the accuracy and loss

trends over the training epochs, reported in Fig. 3.5.

Using the test set, the performances of the LSTM were evaluated by computing the classifi-

cation metrics described before (Tab. 3.3) and the confusion matrix (Fig. 3.6).

The reduced set of gestures was evaluated also with the LSTM network. As for the CNN, the

architecture was kept identical and it was modified only the final layer, which had in this case

8 units. The number of parameters shrunk to almost 800 thousands and the number of epochs

was so reduced to 15. The final training accuracy was 92%, while the validation accuracy was

89%. The network was then evaluated over the test set, and it produced the classification metrics

reported in the table Tab. 3.4. The confusion matrix is displayed in Fig. 3.7.

(a) (b)

Figure 3.5: (a) Accuracy trends of the LSTM with data glove. (b) Loss trends of the LSTM with data glove.
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precision recall f1-score

G
es
tu
re

1 0.95 0.96 0.96

2 0.93 0.89 0.91

3 0.91 0.94 0.93

4 0.85 0.80 0.83

5 0.83 0.91 0.87

6 0.93 0.87 0.90

7 0.93 0.94 0.93

8 0.81 0.79 0.80

9 0.73 0.75 0.74

10 0.77 0.79 0.78

11 0.71 0.70 0.70

12 0.77 0.73 0.75

13 0.77 0.74 0.76

14 0.81 0.81 0.81

15 0.89 0.93 0.91

16 0.70 0.75 0.73

17 0.76 0.73 0.74

accuracy 0.83

macro average 0.83 0.83 0.83

weighted average 0.83 0.83 0.83

Table 3.3: Classification metrics for the LSTM using data glove.

Figure 3.6: Confusion matrix of the LSTM over the test set. Note that a 0.1 threshold is applied: all the values below it were set to 0.
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precision recall f1-score

G
es
tu
re

1 0.93 0.94 0.93

2 0.88 0.92 0.90

3 0.93 0.91 0.92

4 0.85 0.79 0.82

5 0.88 0.82 0.85

6 0.81 0.82 0.81

7 0.86 0.93 0.89

8 0.91 0.88 0.89

accuracy 0.88

macro average 0.88 0.88 0.88

weighted average 0.88 0.88 0.88

Table 3.4: Caption

Figure 3.7: Confusion Matrix evaluated over the test set.
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3.1.3 ResNet

The ResNet is a modified version of the ResNet18. It had almost 600 thousands parameters,

thus a substantially lower number than the previous two network configurations. The number

of epochs was reduced to 15 and it took around 12 minutes to complete the training, at the end

of which the accuracy were 98% and 91% for the training and validation set respectively. These

results suggest how this classifier is not overfitting data too, as the accuracy and loss trends are

confirming in Fig. 3.8.

The performances over the test set were evaluated through the computation of the same

classification metrics. The results are shown in the Tab. 3.5. Even ResNet has some prob-

lems in well-identifying some gestures: the confusion matrix helps in clarifying the type of

misclassifications (Fig. 3.9).

Accordingly to what was done for the previous two networks, the ResNet was evaluated

with the reduced gestures set. The only layer that was modified was again the final dense layer,

which had 8 units. The number of parameters did not significantly change and the number

of epochs was kept equal to 15. The training procedure lasted slightly more than 6 minutes

and it allowed to reach a training accuracy of 99% and a validation accuracy of 96%. The

network performances were evaluated over the test set, and the classification metrics reported

in table Tab. 3.6 were obtained. The confusion matrix highlights which gestures the network is

confusing (Fig. 3.10).

(a) (b)

Figure 3.8: (a) Training and validation accuracy trends of the ResNet. (b) Training and validation loss trends of the ResNet
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precision recall f1-score

G
es
tu
re

1 0.98 0.96 0.97

2 0.94 0.93 0.93

3 0.94 0.90 0.94

4 0.88 0.75 0.85

5 0.84 0.89 0.87

6 0.92 0.85 0.91

7 0.93 0.91 0.93

8 0.87 0.82 0.84

9 0.79 0.64 0.79

10 0.82 0.84 0.83

11 0.81 0.72 0.79

12 0.75 0.78 0.80

13 0.82 0.85 0.82

14 0.84 0.83 0.85

15 0.93 0.94 0.93

16 0.84 0.69 0.80

17 0.79 0.82 0.84

accuracy 0.87

macro average 0.86 0.86 0.86

weighted average 0.87 0.87 0.87

Table 3.5: Classification metrics for the ResNet using data glove.

Figure 3.9: Confusion matrix of the ResNet. Note that a 0.1 threshold is applied: all the values below that number are set to 0.
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precision recall f1-score

G
es
tu
re

1 0.98 0.96 0.97

2 0.93 0.92 0.93

3 0.93 0.94 0.93

4 0.86 0.83 0.84

5 0.84 0.91 0.87

6 0.92 0.90 0.91

7 0.94 0.93 0.94

8 0.92 0.93 0.92

accuracy 0.92

macro average 0.91 0.92 0.91

weighted average 0.92 0.92 0.92

Table 3.6: Classification metrics for the ResNet using data glove and the reduced gestures set.

Figure 3.10: Caption
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3.1.4 Classical machine learning approaches

The previous networks were compared with three conventional classifiers: K Nearest Neigh-

bors (KNN), Decision Tree (DT) and Support Vector Machine (SVM). This investigation was

done in order to highlight the differences between deep learning and classical machine learning

approaches along with their potentiality and their ability to interpret and execute correctly the

task by the analysis of input data. A first difference refers to the kind of data provided in input

to conventional machine learning models. In the case of DL classifiers, row data were directly

provided in input as matrices having size: [samples x channels]. Classical ML approaches,

instead, take in input features, previously extracted from the raw data. For example, the Root

Mean Square (RMS) feature was extracted from each channel for the considered time window.

Therefore after this computation, input data were shrunk along the row dimension, being now a

vector with number of elements corresponding to the number of channels. The total number of

RMS features were 22: one for each channel.

In the following, the results obtained using these approaches are illustrated.

KNN

First of all, with the CV tuning procedure, a neighbors value of 1 and the Manhattan distance

resulted as the best tuned hyperparameters (see Tab. 3.7). Then, the classifier was trained using

the training set, over which it reached an accuracy of 100%. The classifier was evaluated over

the test set, on which it was 87% accurate. To be compliant with the deep learning analysis, the

same classification metrics were computed and reported in the Tab. 3.8.

k = 1 k = 2 k = 3 k= 4

Manhattan dist. 0.962 0.952 0.949 0.944

Euclidean dist. 0.959 0.946 0.944 0.937

Table 3.7: Average accuracy on the validation set after the CV procedure for each combination of distance and neighbors.

The performances of the classifier were finally assessed by the computation of the confusion

matrix over the test set. The confusion matrix has the true classes as rows and the predicted

classes as columns (Fig. 3.11a).

As previously done for deep learning approaches, the performances of the model were tested

also on a reduced gesture set, where only the first eight gestures were considered. In this case,

once trained on the training reduced gesture set, the model exhibited an accuracy of 92% on the

test set. The corresponding confusion matrix is reported in Fig. 3.11b.
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(a)

(b)

Figure 3.11: (a) Confusion matrix of the KNN classifier evaluated on the entire test set, using data glove. (b) Confusion matrix of the KNN

classifier trained and tested on the reduced gestures set, using data glove.
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precision recall f1-score
G
es
tu
re

1 0.98 0.97 0.97

2 0.95 0.91 0.93

3 0.92 0.93 0.92

4 0.88 0.83 0.86

5 0.85 0.93 0.89

6 0.93 0.91 0.92

7 0.93 0.91 0.92

8 0.86 0.83 0.84

9 0.83 0.76 0.79

10 0.79 0.85 0.82

11 0.81 0.80 0.81

12 0.81 0.85 0.83

13 0.80 0.83 0.81

14 0.83 0.87 0.85

15 0.93 0.93 0.93

16 0.86 0.82 0.84

17 0.84 0.92 0.88

accuracy 0.87

macro average 0.87 0.87 0.87

weighted average 0.88 0.87 0.87

Table 3.8: Classification metrics for the knn with data glove.
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Decision Tree

A CV-based hyperparameters tuning was performed, investigating the best combination be-

tween the maximum depth of the tree and the splitting criterion. As Tab. 3.9 shows, the pro-

cedure suggested that there is no substantial difference in adopting a maximum depth of 30 or

of 40. A maximum depth of 30 was chosen, which allowed to improve the computational cost.

Furthermore, the entropy criterion was selected as splitting criterion since it allowed to reach

slightly better performances.

10 20 30 40

gini index 0.530 0.791 0.828 0.827

entropy 0.572 0.829 0.834 0.835

Table 3.9: Average accuracy on the validation set after the CV procedure for each combination of maximum depth (columns) and splitting

criterion (rows).

The model was built by choosing these settings and then it was trained over the entire train-

ing set, thus obtaining 100% of accuracy over it. The accuracy over the test set was of the 67%.

Classification metrics were finally computed: precision, recall and f1-score were evaluated for

each gesture (Tab. 3.10). The confusion matrix, evaluated on the test set, is reported in (Fig.

3.12a).

The same model was evaluated on the diminished gestures set; the percentage of accuracy

is expected to be higher because of the simplified problem. Indeed, it reached an accuracy on

the test set of 81%. The resulting confusion matrix is reported in (Fig. 3.12b).
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precision recall f1-score
G
es
tu
re

1 0.88 0.83 0.85

2 0.85 0.83 0.84

3 0.81 0.82 0.82

4 0.66 0.69 0.68

5 0.67 0.66 0.67

6 0.75 0.78 0.77

7 0.86 0.81 0.83

8 0.57 0.56 0.56

9 0.53 0.47 0.50

10 0.60 0.59 0.59

11 0.52 0.50 0.51

12 0.51 0.58 0.54

13 0.60 0.62 0.61

14 0.63 0.62 0.62

15 0.75 0.77 0.72

16 0.54 0.54 0.54

17 0.59 0.67 0.63

accuracy 0.67

macro avg 0.66 0.67 0.67

weighted avg 0.68 0.67 0.67

Table 3.10: Classification metrics of the decision tree with data glove.
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(a)

(b)

Figure 3.12: (a) Confusion matrix of the DT classifier evaluated on the entire test set, using data glove. (b) Confusion matrix of the DT

classifier trained and tested on the reduced gestures set, using data glove.
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Support Vector Machine

For this classifier, the tuned hyperparameters were the type of kernel (linear, polynomial, radial

basis function or sigmoidal) and the regularization parameter C. Moreover, during the radial

basis function kernel evaluation, the gamma parameter was tuned too. The procedure was

slightly different this time, because of the computational complexity of the model training that

needed a considerable amount of time. For this reason, the CV procedure was avoided, and for

each hyperparameters combination, the model was trained on the same training set and tested

on the same validation set (referring to the section 2.1.4). Results suggested to use a radial

basis function, with the regularization parameter equal to 10 and a gamma value of 0.1 (see Tab.

3.11).

Thereafter, the model based on these optimal parameters were trained over the complete

training set, as done for the previous configurations, and tested over the test set. With a a 98%

of accuracy over the training set, it achieved an accuracy of 87% over the test set. For each

gesture, the classification metrics were finally evaluated (Tab. 3.12). The confusion matrix is

reported in Fig. 3.13a.

Even for this classifier the reduced gesture set was considered. The model accuracy on the

test set went up to 93%, and its confusion matrix is displayed in Fig. 3.13b.

linear

C = 0.01 0.529

C = 0.1 0.539

C = 1 0.539

C = 10 0.540

polynomial

C = 0.01 0.426

C = 0.1 0.577

C = 1 0.741

C = 10 0.829

sigmoid

C = 0.01 0.392

C = 0.1 0.281

C = 1 0.242

C = 10 0.236

γ = 0.001 0.01 0.1 1

rbf

C = 0.01 0.163 0.440 0.516 0.078

C = 0.1 0.454 0.531 0.698 0.530

C = 1 0.515 0.609 0.842 0.838

C = 10 0.555 0.723 0.890 0.844

Table 3.11: Average accuracy on the validation set after the CV procedure for each combination of regularization parameter C (rows) and γ

(columns).
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precision recall f1-score
G
es
tu
re

1 0.98 0.96 0.97

2 0.93 0.93 0.93

3 0.93 0.94 0.94

4 0.83 0.84 0.84

5 0.84 0.91 0.87

6 0.93 0.91 0.92

7 0.95 0.93 0.94

8 0.88 0.83 0.85

9 0.81 0.78 0.80

10 0.80 0.83 0.82

11 0.81 0.79 0.80

12 0.79 0.86 0.82

13 0.82 0.78 0.80

14 0.82 0.84 0.83

15 0.94 0.95 0.95

16 0.84 0.78 0.81

17 0.84 0.85 0.84

accuracy 0.87

macro avg 0.87 0.87 0.87

weighted avg 0.87 0.87 0.87

Table 3.12: Classification metrics of the svm with data glove.
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(a)

(b)

Figure 3.13: (a) Confusion matrix of the SVM classifier evaluated on the entire test set, using data glove. (b)Confusion matrix of the SVM

classifier trained and tested on the reduced gestures set, using data glove.
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3.2 sEMG

Hand gesture classification based entirely on sEMG was performed exploring both machine

learning approaches and deep learning approaches. As described in details in the methods

chapter, the analyzed models were the following:

• Convolutional Neural Network with two different configurations. In the first one, data

were organized in an array having elements corresponding to the whole features extracted

(one for each channel). Two architectures were explored. The first network architecture

had three convolutional blocks, with an increasing number of convolutional filters (32, 64,

128) and increasing dimensionality (23x1), (46x1), (92x1). This structure worked with

all the extracted features, belonging to the time and frequency domains. When only time

domain features were considered, instead, the architecture was identical in all its aspects

but the dimension of filters, which reduced to (13x1), (26x1) and (52x1).

In the second configuration, data were structured as 2D matrices. The architecture of the

network consisted of four convolutional blocks with a growing number of convolutional

filters (32, 64, 128, 256). When both time and frequency domains were used, the filters

had respectively the dimensions of (2x2), (2x2), (3x3) and (4x4); on the other hand, when

just time domain features were examined, they were, in order, (2x2), (3x3), (2x2) and

(2x2).

• Random Forest, using 300 estimators and working with data organized as an array.

3.2.1 CNN

For each of the previously mentioned configurations, the robustness of the network results was

assessed by performing a Cross Validation procedure. All the networks demonstrated to be

quite robust in relation to a slight change of the training set (Tab. 3.13a). Then, each model was

retrained using the entire training set and evaluated over the test set, with the computation of

classification metrics as precision, recall and f1-score and accuracy. Finally, the same network

architectures were tested on a reduced gestures set, as previously described for the data glove.

Indeed, the CV was done to assess the average accuracies of the network under this pruned

condition (Tab. 3.13b); both the classification metrics and the confusion matrix were evaluated

on the test set. Here below, the obtained results are presented.

• Time and frequency features - 1D. For what concerns the complete gestures set, with

30 epochs, it reached a final training accuracy of 75% spending less than 7 minutes.
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Accuracy All features - 1D Time features - 1D All features 2D Time features - 2D

Training

0.82 0.75 0.67 0.68

0.72 0.78 0.65 0.65

0.82 0.76 0.68 0.66

0.80 0.79 0.70 0.64

0.75 0.77 0.69 0.64

Average 0.78 0.77 0.68 0.65

Test

0.75 0.73 0.62 0.65

0.69 0.74 0.61 0.65

0.70 0.73 0.61 0.65

0.70 0.74 0.62 0.65

0.68 0.73 0.63 0.65

Average 0.69 0.73 0.62 0.65

(a)

Accuracy All features - 1D Time features - 1D All features 2D Time features - 2D

Training

0.88 0.85 0.74 0.72

0.85 0.78 0.76 0.72

0.87 0.83 0.76 0.74

0.86 0.83 0.72 0.72

0.85 0.84 0.77 0.73

Average 0.86 0.83 0.75 0.73

Test

0.75 0.81 0.68 0.73

0.75 0.80 0.70 0.72

0.76 0.80 0.70 0.74

0.76 0.80 0.70 0.73

0.74 0.81 0.70 0.73

Average 0.75 0.80 0.70 0.73

(b)

Table 3.13: k-th fold accuracy and average accuracy of the Cross Validation procedure for the k-th training set and k-th test set, (a) entire

gesture set and (b) reduced gesture set.
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The classification metrics can be analyzed in Tab. 3.14. The confusion matrix was also

evaluated and reported in Fig. 3.14.

Regarding the reduced gestures set, it took less than 4 minutes to complete the training

with an accuracy of 86%. The performances over the test set are summarized in Tab. 3.15

and the confusion matrix is showed in Fig. 3.15 .

• Only time features - 1D. Treating the complete gesture set, the network trained in less

than 5 minutes, and after 30 epochs it reached an accuracy of 79%. Classification metrics

and confusion matrix were evaluated in Tab. 3.16 and Fig. 3.16, respectively.

On the other hand, when analyzing the selected first 8 gestures, the network completed

the training after less than 3 minutes, with an accuracy of 84%. Classification metrics and

confusion matrix are reported in Tab. 3.17 and Fig. 3.17.

• Time and frequency features - 2D. In this case, when dealing with the complete gesture

set, the network took 6 minutes to complete the training, at the end of which it was

68% accurate over the training set. When analyzing the restricted gesture set instead,

the learning procedure spent slightly more than 3 minutes and it ended with a 73% of

accuracy.

In both cases, the performances of the networks were evaluated over the test set by the

computation of the classification metrics and the confusion matrix (Tab. 3.18, Fig. 3.18,

Tab. 3.19, Fig. 3.19).

• Only time features - 2D. This configuration spent less than 5 minutes to complete the

training through 30 epochs and with 67% training accuracy, when analysing the complete

gesture set. The training time diminished when the analysis focused only on the first 8

gestures; the accuracy augmented, because in less than 3 minutes it reached an accuracy

of 73%.

The classification metrics and the confusion matrix were then evaluated over the test set

(Tab. 3.20, Fig. 3.20, Tab. 3.21, Fig. 3.21).
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precision recall f1-score

G
es
tu
re

1 0.78 0.77 0.77

2 0.68 0.71 0.70

3 0.68 0.67 0.68

4 0.64 0.56 0.60

5 0.57 0.56 0.57

6 0.66 0.69 0.68

7 0.71 0.65 0.68

8 0.54 0.59 0.56

9 0.67 0.64 0.66

10 0.67 0.65 0.66

11 0.51 0.55 0.53

12 0.54 0.52 0.53

13 0.63 0.64 0.63

14 0.64 0.65 0.65

15 0.69 0.73 0.71

16 0.57 0.54 0.56

17 0.59 0.68 0.63

accuracy 0.64

macro avg 0.63 0.64 0.63

weighted avg 0.64 0.64 0.64

Table 3.14: Classification metrics for the CNN working with all the features, using the 1D configuration with the complete gestures set.

Figure 3.14: Confusion matrix for the CNN working with all the features, using the 1D configuration with the complete gestures set.
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precision recall f1-score

G
es
tu
re

1 0.83 0.78 0.81

2 0.71 0.70 0.70

3 0.71 0.70 0.70

4 0.70 0.60 0.64

5 0.59 0.66 0.62

6 0.70 0.72 0.71

7 0.71 0.75 0.73

8 0.65 0.69 0.67

accuracy 0.70

macro avg 0.70 0.70 0.70

weighted avg 0.71 0.70 0.70

Table 3.15: Classification metrics for the CNN working with all the features, using the 1D configuration with the reduced gestures set.

Figure 3.15: Confusion matrix for the CNN working with all the features, using the 1D configuration with the reduced gestures set.
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precision recall f1-score

G
es
tu
re

1 0.82 0.79 0.80

2 0.69 0.75 0.72

3 0.75 0.70 0.72

4 0.65 0.62 0.63

5 0.57 0.62 0.59

6 0.77 0.68 0.72

7 0.68 0.71 0.69

8 0.57 0.61 0.59

9 0.68 0.67 0.67

10 0.71 0.64 0.67

11 0.58 0.56 0.57

12 0.54 0.55 0.55

13 0.65 0.69 0.67

14 0.68 0.67 0.68

15 0.70 0.77 0.73

16 0.64 0.62 0.63

17 0.66 0.65 0.66

accuracy 0.67

macro avg 0.67 0.66 0.67

weighted avg 0.67 0.67 0.67

Table 3.16: Classification metrics for the CNN working with only the time features, using the 1D configuration with the complete gestures set.

Figure 3.16: Confusion matrix for the CNN working with only the time features, using the 1D configuration with the complete gestures set.
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precision recall f1-score

G
es
tu
re

1 0.82 0.85 0.84

2 0.77 0.70 0.74

3 0.71 0.74 0.73

4 0.74 0.61 0.67

5 0.60 0.73 0.66

6 0.74 0.76 0.75

7 0.75 0.74 0.75

8 0.71 0.69 0.70

accuracy 0.73

macro avg 0.73 0.73 0.73

weighted avg 0.74 0.73 0.73

Table 3.17: Classification metrics for the CNN working with only the time features, using the 1D configuration with the reduced gestures set.

Figure 3.17: Confusion matrix for the CNN working with only the time features, using the 1D configuration with the reduced gestures set.
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precision recall f1-score

G
es
tu
re

1 0.71 0.75 0.73

2 0.61 0.65 0.63

3 0.65 0.67 0.66

4 0.56 0.54 0.55

5 0.50 0.52 0.51

6 0.66 0.62 0.64

7 0.68 0.64 0.66

8 0.53 0.52 0.53

9 0.69 0.54 0.60

10 0.61 0.62 0.61

11 0.49 0.49 0.49

12 0.47 0.46 0.47

13 0.59 0.60 0.59

14 0.61 0.62 0.61

15 0.65 0.72 0.69

16 0.53 0.52 0.52

17 0.58 0.63 0.60

accuracy 0.60

macro avg 0.59 0.59 0.59

weighted avg 0.60 0.60 0.60

Table 3.18: Classification metrics for the CNN working with all the features, using the 2D configuration with the complete gestures set and.

Figure 3.18: Confusion matrix for the CNN working with all the features, using the 2D configuration with the complete gestures set.
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precision recall f1-score

G
es
tu
re

1 0.76 0.79 0.77

2 0.66 0.67 0.67

3 0.70 0.66 0.68

4 0.65 0.53 0.58

5 0.55 0.62 0.59

6 0.66 0.69 0.68

7 0.69 0.68 0.69

8 0.64 0.64 0.64

accuracy 0.67

macro avg 0.66 0.66 0.66

weighted avg 0.67 0.67 0.67

Table 3.19: Classification metrics for the CNN working with all the features, using the 2D configuration with the reduced gestures set.

Figure 3.19: Confusion matrix for the CNN working with all the features, using the 2D configuration with the reduced gestures set and.
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precision recall f1-score

G
es
tu
re

1 0.71 0.78 0.74

2 0.65 0.64 0.65

3 0.65 0.65 0.65

4 0.57 0.52 0.54

5 0.49 0.59 0.54

6 0.70 0.62 0.66

7 0.62 0.67 0.64

8 0.53 0.54 0.53

9 0.65 0.62 0.64

10 0.64 0.58 0.61

11 0.51 0.48 0.49

12 0.49 0.50 0.49

13 0.69 0.60 0.64

14 0.59 0.64 0.62

15 0.68 0.70 0.69

16 0.60 0.49 0.54

17 0.56 0.66 0.61

accuracy 0.61

macro avg 0.61 0.60 0.60

weighted avg 0.61 0.61 0.61

Table 3.20: Classification metrics for the CNN working with only time features, using the 2D configuration with the complete gestures set.

Figure 3.20: Confusion matrix for the CNN working with only time features, using the 2D configuration with the complete gestures set.
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precision recall f1-score

G
es
tu
re

1 0.80 0.79 0.80

2 0.68 0.67 0.67

3 0.68 0.71 0.69

4 0.73 0.54 0.62

5 0.58 0.67 0.63

6 0.72 0.72 0.72

7 0.67 0.72 0.70

8 0.68 0.69 0.68

accuracy 0.69

macro avg 0.69 0.69 0.69

weighted avg 0.70 0.69 0.69

Table 3.21: Classification metrics for the CNN working with only time features, using the 2D configuration with the reduced gestures set.

Figure 3.21: Confusion matrix for the CNN working with only time features, using the 2D configuration with the reduced gestures set.
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3.2.2 RF

The hyperparameters tuning led to the use of the entropy criterion and to consider 2 minimum

samples per leaf, as the results in Tab. 3.22 suggest.

min. samples x leaf gini crit entropy crit

2 0.68 0.69

8 0.64 0.65

12 0.62 0.63

Table 3.22: Validation accuracy for each combination of splitting criterion (columns) and minimum sample per leaf (rows).

Working with all the features, the accuracy of the model over the validation set was of

69%. The function RandomForestClassifier from the Sci-Kit learn tool, comes with an attribute

called feature importances that allowed to evaluate the homonym property; in Fig. 3.22 the

hand-crafted features are sorted based on their relative importance (the graph was divided in 4

pieces to allow a clearer visualization).

During the feature selection procedure, only features with a relative importance higher than

50-60% were considered. This led to choose up to 7 hand-crafted features (for each channel,

resulting in 84 features): RMS (eq. 1.9), IEMG (eq. 1.1), DASDV (eq. 1.12), MAV1 (eq. 1.3),

MAV2 (eq. 1.4), MM2 (eq. 1.5), AAC (eq. 1.11). Then, the RF was re-trained considering only

the selected features and the performances of the new classifier were evaluated on the validation

set. The validation accuracy increased up to 71%. The selected features importance on the new

RF is displayed in the Fig. 3.24.

The final RF model was then trained by using only the selected features and by merging

the training and validation set. A final accuracy of 100% was obtained over the training set

and of 71% on the test set. Moreover, performances were evaluated by the computation of the

classification metrics and the confusion matrix, using the test set (Tab. 3.23 and Fig. 3.23).

Accordingly to all the previous analysis, the performances of the same RF model were

assessed over a reduced gestures set. In this case, the feature selection procedure was repeated

for each subset of gestures (the first from number 1 to number 8, the second all the others): the

idea was to understand if distinct properties characterized the two different kinds of gestures,

so that they could be better identified by using different features.

Fig. 3.26 represents the relative features importance when working with the first gestures

subset. The features that appeared to be fundamental are: RMS (eq. 1.9), IEMG (eq. 1.1), the

MM2 (eq. 1.5), DASDV (eq. 1.12), MAV1 (eq. 1.3), and AAC (eq. 1.11) (Fig. 3.25).
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Figure 3.22: Feature importance for the RF classifier, working with all the features
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precision recall f1-score

G
es
tu
re

1 0.79 0.87 0.83

2 0.75 0.78 0.76

3 0.75 0.73 0.74

4 0.67 0.65 0.66

5 0.63 0.67 0.65

6 0.77 0.69 0.73

7 0.71 0.81 0.75

8 0.66 0.64 0.65

9 0.72 0.71 0.72

10 0.70 0.73 0.72

11 0.61 0.58 0.59

12 0.61 0.59 0.60

13 0.72 0.67 0.70

14 0.76 0.65 0.70

15 0.74 0.83 0.78

16 0.67 0.63 0.65

17 0.73 0.67 0.70

accuracy 0.71

macro avg 0.71 0.70 0.70

weighted avg 0.71 0.71 0.71

Table 3.23: Classification metrics of the final RF

Figure 3.23: Confusion Matrix of the final RF model
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Figure 3.24: Feature importance for the final RF model
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Selecting these 6 features for each channel, the total number of features shrunk from 276 to

72, leading to a reduced computational cost; the model was trained again and the validation

accuracy increased from 75% to 78% (in Fig. 3.27a it is possible to see the new features

importance). Finally, it was trained considering training and validation set merged. The test

accuracy was of the 77%. The performances were therefore evaluated on the test set through

the computation of the precision, recall and f1-score and of the confusion matrix (Tab. 3.24a,

Fig. 3.28a).

Working with the second subset of gestures, the most important features were: RMS (eq.

1.9), IEMG (eq. 1.1), MM2 (eq. 1.5), DASDV (eq. 1.12), TTP (eq. 1.21) and MNP (eq. 1.20)

(Fig. 3.26). Using these features (7x12), the new validation accuracy augmented from 68% to

71% and the new features importance was evaluated (Fig. 3.27b). The model was then trained

merging the validation and training set: the performances were assessed over the test set using

the classification metrics and the confusion matrix, which can be seen respectively in Tab. 3.24b

and Fig. 3.28b. The final test accuracy was of 70%.
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Figure 3.25: Relative importance features for the first gestures subset
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Figure 3.26: Relative importance features for the second gestures subset
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(a) (b)

Figure 3.27: Final features importance for the (a) first and (b) second gestures subsets.

83



precision recall f1-score

G
es
tu
re

1 0.83 0.89 0.86

2 0.79 0.77 0.78

3 0.77 0.74 0.75

4 0.74 0.68 0.71

5 0.68 0.73 0.71

6 0.81 0.73 0.77

7 0.75 0.82 0.78

8 0.75 0.72 0.73

accuracy 0.77

macro avg 0.76 0.76 0.76

weighted avg 0.77 0.77 0.77

(a)

precision recall f1-score

G
es
tu
re

9 0.74 0.73 0.74

10 0.72 0.75 0.73

11 0.63 0.62 0.63

12 0.62 0.65 0.63

13 0.72 0.69 0.71

14 0.74 0.68 0.70

15 0.75 0.88 0.81

16 0.69 0.63 0.66

17 0.73 0.68 0.71

accuracy 0.70

macro avg 0.70 0.70 0.70

weighted avg 0.70 0.70 0.70

(b)

Table 3.24: Classification metrics for the final RF with the first (a) and second (b) gestures subset.
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(a)

(b)

Figure 3.28: Confusion matrices for the final RF with the first (a) and second (b) gestures subset.
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3.3 The Bayesian Fusion

As explained in the chapter 2, the bayesian fusion was employed considering the best models

obtained for each of the studied signals. For what concerns the sEMG signal, there are no doubts

that the conventional machine learning approach with the RF resulted the best one. On the other

hand, working with glove, there were three models that outed to work similarly: the ResNet,

the K-NN and the SVM. From the analysis of the confusion matrices and classification matrix

of these classifers, it was decided to discard the ResNet from this kind of analysis. Indeed, it

had an average of 86% for each of precision, recall and f1-score versus the 87% of the others

two. Thereafter, since no substantial difference was found between the K-NN and SVM, both

of them were exploited to develop the fusion.

As described before, the fusion approach uses the model validation confusion matrices. This

techniques was implemented following two steps:

1. Evaluation of the confusion matrix over the validation set for both the models.

2. Networks training on the validation and training set merged and performances evaluation

over the test set.

To highlight the performances of the fusion approach, The results were represented by compar-

ing the average accuracy on the test set between the single signal models and the fusion one.

In Tab. ?? a comparison between the test accuracies when using the KNN is presented: KNN

(glove), RF (sEMG), KNN and RF fused (glove and sEMG).

On the other hand, in Tab. 3.25 it is possible to see a comparison between the test accuracies

when using the SVM: SVM (glove), RF (sEMG), SVM and RF fused (glove and sEMG).

The results underline how the fusion approach does not allow to increment the overall accu-

racy in relation to when only glove data are used. Since in Tab. 3.25 only the average accuracy

is displayed, it could be interesting to analyze the changes in the confusion matrices of the

models due to the fusion approach, thus revealing how the gestures are newly classified.

Glove sEMG Glove & sEMG

KNN RF KNN + RF

87% 71% 87%

(a)

Glove sEMG Glove & sEMG

SVM RF SVM + RF

87% 71% 87%

(b)

Table 3.25: Fusion results: (a) first configuration and (b) second configuration
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(a)

(b)

Figure 3.29: Differences between the confusion matrices of the fusion approach (KNN and RF) and (a) RF (sEMG only) (b) KNN (glove

only). In red are displayed worsening changes from the single signal approach to the fused signals one, in green are figured performances

improvements.
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(a)

(b)

Figure 3.30: Differences between the confusion matrices of the fusion approach (SVM and RF) and (a) RF (sEMG only) (b) SVM (glove

only. In red are displayed worsening changes from the single signal approach to the fused signals one, in green are figured performances

improvements.

88



Chapter 4

Discussion

Briefly, in this work the potentiality of data glove and sEMG signals were tested to address

hand gesture classification tasks, exploring the ability of both classical machine learning and

deep learning approaches. The results obtained among all the investigated configurations are

summarized in Tab. 4.1, when working with data glove, and in Tab. 4.2 when dealing with the

superficial electromyography.

Glove

Network Training Accuracy Test Accuracy

CNN 91% 80%

LSTM 92% 83%

RESNET 98% 87%

KNN 100% 87%

DT 100% 67%

SVM 98% 87%

Table 4.1: Summarized glove results

sEMG

Network Training Accuracy Test Accuracy

CNN - 1st configuration 75% 64%

CNN - 2nd configuration 79% 67%

CNN - 3rd configuration 68% 60%

CNN - 4th configuration 67% 61%

RF (final) 100% 71%

Table 4.2: Summarized sEMG results
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4.1 Data glove

Results suggest how the glove is more informative than the sEMG signal. DL approaches had

success in addressing the task, without the necessity to process the signal. In fact, raw signal

was directly given as input to the network just as it was measured, with the only requirement of

splitting the acquisition in observation windows of 150 ms.

Another interesting result is that, using deep learning approaches, the glove seems to have

a good generalization ability. This can be retrieved looking at the differences between the

training accuracy and the test accuracy, which are not drastically high. This means that the

networks are learning the true underlying relationship between the samples and their labels, and

that these dependencies repeat also in unseen data. This was an expected result because the

glove is characterized by a stronger ability in overcoming the problem of the high variability

in physiological signals; in fact, it measures joint angles which are quite reproducible among

different subjects, or at least their proportions.

1st exercise

1 2 3 4 5 6 7 8

(a)

2nd exercise

9 10 11 12 13

14 15 16 17

(b)

Table 4.3: Gestures map. [2, 14]

Among the tested DL networks, the ResNet resulted the best one because it reached an
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optimal compromise between the time spent to learn the data-labels dependencies (8 minutes

less than the LSTM) and also because of the final accuracy on the test set. It is interesting also

to analyze the classification metrics and the confusion matrix in order to understand which are

the gestures that have more probability to be misclassified than others.

Looking at the confusion matrix of the ResNet (Fig. 4.1), it is possible to identify three

groups of hand movements that are most of all confounded (using as reference the Tab. 4.3):

Figure 4.1: ResNet Confusion Matrix. The rows and columns gestures labels are decreased of 1 unit. The yellow squares are highlighting the

major confounding issues of the network. The yellow circles instead highlight the minor problems.

• Gestures 4 and 5: The gesture number 4 is confounded with the number 5. The difference

between them is the thumb position; indeed, in the gesture number 4 the thumb is flexed,

while in the other it is extended;

• Gesture 9 and 10: these two movements differ very little one from the other, because

they involve two opposites direction of the wrist rotation.

• Gestures 16 and 17: even in this case, the glove may have some difficulty in distinguish-

ing correctly these two gestures, because their changing is related only to the direction of

the movement.
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• Second subset of gestures: it seems like the network, in its overall behaviour, has more

difficulty in distinguishing the second subset of the gestures. The lower performances

could be due to the fact that it contains completely different kind of movements with

respect to the first subset; indeed, they represent wrist movement gestures.

Conventional machine learning techniques, as KNN and SVM, worked well too when deal-

ing with data glove. It is interesting to notice how their performances highlight the ease of use

of such signal. Indeed, it was extracted only one feature per channel (22), the RMS, in order

to make these classifiers work. The difference between the two type of accuracies were not

so high, meaning that it was achieved a substantial generalization ability. The only model that

should be discarded in such sense is the Decision Tree, which came up with a pretty strong

overfitting.

As described in the results chapter, there are no substantial differences between the re-

sults obtained using KNN and SVM. From the analysis of their confusion matrices (Fig. 3.11,

3.13), similar considerations to the previous can be made, even though the performances of this

conventional classifiers moderately increased for the second subset. Indeed, compared to the

ResNet performances, these classifiers have a little confounding component just between the

gestures number 12 and 13. The other, instead, had more significant components of misclassi-

fications (9-10, 10-11, 12-13).

In both cases, with conventional classifiers and with deep learning approaches, the glove

data resulted to be a signal that easily allows to build robust and reliable classifiers, without any

particular effort. On the other hand, using data glove generally implies higher expenses, not just

in terms of money but also in terms of computational cost, than when dealing with superficial

electromiography. Here, it can be underlined an important difference between machine learning

and deep learning approaches: the seconds typically requires more time to be trained, but once

the network parameters are determined, the time needed to perform predictions is drastically

lower.

Final considerations can be made regarding the outcomes obtained when the reduced ges-

tures set was tested (considering the first exercise only). From the results previously obtained,

it appeared that the first subset of gestures is easier to be classified. The expected results were

thus an increasing on the overall performances when the reduced subset was considered. In-

deed, it improved the performances reaching the 92% of test accuracy. Despite this increment,

the network had still some problem in distinguishing correctly between the gestuers number

4 and 5 (Fig. 4.2). Moreover, it appears that when the second exercise set is discarded, the
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network isolates better the gesture number 8.

Conventional machine learning gave the same overall outcomes. The performances of SVM

in particular increased slightly more than the others, because it reached an average accuracy of

93%.

Figure 4.2: Confusion Matrix of the ResNet when dealing with the first exercise hand positions only. The yellow square shows the major

difficulty of the network.

4.2 sEMG

From the results obtained by the handling of the sEMG, it is instead clear its weakness in terms

of signal explainability and repeatability for the same hand movement among different subjects,

or within the same. Indeed, the performances obtained in this case are not really high and the

classifiers generally have a significant difficulty in distinguishing correctly between the different

kind of gestures.

With respect to the abilities of data glove, the sEMG needed to be processed accurately to

become informative. In particular, DL techniques were built in order to look for relationships

between the features and the 12 measurement channels. This ability seemed to be restricted due

to the percentage of accuracy they reached, which got worse with the 2D configuration. Indeed,

input data organized as vectors allowed the networks to increase the performances. Moreover,

the performances slightly increased when only time domain features were used, suggesting
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how probably there is some redundancy among the whole extracted features. Since it is well-

known how working with too much features may be inappropriate and could alter (worsening)

the performances of the network, a RF approach was employed in order to easily evaluate

the features importance. This was useful to select a restricted number of features with which

the model could work, testing the eventual advantage of casting down the redundancy. This is

possible thanks to how the Random Forest works: it builds a specified number of Decision Trees

(300 in this case) and for each of them it considers randomly a target number of features. The

Decision Tree uses a top-down greedy approach, where at each step it builds the best possible

split by evaluating a specific feature and comparing it upon a defined threshold. The feature

importance is derived by looking at how many times a feature is taken into account (among all

the estimators) to perform splits and how strongly it decreases the node impurity after the split

itself. The feature importance evaluation is a robust and reliable process, because it is based on

a consistent number of estimators.

When the complete gesture set was evaluated, the most important features (with a relative

importance higher than 60%) where RMS, IEMG, DASDV, MAV1, MAV2 and AAC. Interest-

ingly, when the complete set is considered, the time domain features completely dominate upon

all the others. The accuracy increased from 69% to 71%, underlying how selecting features

allowed to shrink the redundancy and so to improve the performances. From the analysis of the

Random Forest classification metrics and confusion matrix Fig. 4.3, it is possible to understand

which are the gestures that most trouble the model:

• Gestures 4 e 5: these gestures were confounded with data glove too, underlining how

these are probably very similar, both from joint angles and neuromuscular points of view.

• Gestures 6 and 7: this issue was not present when dealing with data glove, meaning that

probably the muscular signal here is pretty similar for the two gestures. The difference

between these two gestures is in the extensions of the index finger on the gesture number

7.

• Gestures 9 and 10: The same problem characterized the network that worked with data

glove;

• Gestures 16 ad 17: the issue was present even working with data glove, but in this case

it seems emphasized.

For the classifier, it was harder to correctly distinguish the gestures of the second exercise,

because of the lower levels of accuracy that each class has with respect to the values of the first
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exercise gestures.

Figure 4.3: Random Forest confusion matrix. The yellow squares identify the major issues of the network.

At this point, it was decided to analyze separately the two subsets of gestures, investigating

which are the features that are mostly related to each of them. As discussed in the methods

chapter, the most important for the first subset resulted: RMS, IEMG, MM2, DASDV, MAV1

and the AAC; interestingly, these were all time-domain features. The final RF built with the

selected features gave as result the confusion matrix at Fig. 3.28a. The overall accuracy is

in this case of the 77%, which is greater than the all-gestures configuration. The augmented

performance is due both to the restricted range of classes and to how much a class is correctly

identified by the selected features. Even though the general performances increased, the model

has still some problems in distinguishing correctly between the couples of gestures 4-5 and 6-7,

exactly how it was when the entire gesture set was considered.

Another interesting consideration came up when the second subset of gestures was ana-

lyzed. The most important features were this time: RMS, IEMG, MM2, DASDV, TTP and

MNP. Differently, this time there are two frequency domain features among the most relevant

according to the results of the Random Forest. This outcome can be interpreted by thinking

at these kind of features as related to dynamic gestures and thus to the dynamic movements.

Indeed, as described in the introduction, frequency domain features are related to the muscle
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fatigue, which can be thought to be associated to the dynamic movement of the hand. When the

RF classifier was trained with the selected features to classify the second subset of gestures, it

did not reach a satisfying accuracy value. It was almost identical, even less than when all the

gestures were considered: this remarks how the second subset of gestures is more difficult to be

correctly classified. Analyzing the confusion matrix (reported in Fig. 4.4 ) it is possible to see

how the model is confounding a group of gestures (9-12).

Figure 4.4: Confusion matrix for the RF working with the second subset of gestures.

The hand-crafted features extracted were referred to each of the 12 channels used by the

scientists that have collected data for the NinaPro DB. When the features importance tool was

used, the RF looked at each feature of each channel separately. Indeed, looking at Fig. 3.22,

3.24, 3.26, each channel contributes in a different manner; notably, in each of the previous

figure the same pattern can be identified. It seems like the channels 8, 10, 11, 12 are on the top

of the ranking features list. Probably this result is due to the fact that these electrodes are the

best positioned among the others, in the sense that, for the gestures analyzed, they optimally

capture the signal. In Atzori et. Al it is explained how the electrodes are positioned: the number

11 and 12 were placed on the main activity spots of the biceps brachii and of the triceps brachii,

the 9 and 10 instead on the main activity spots of the flexor digitorum superficialis and of the

extensor digitorum superficialis. The number 8 was with the remaining around the forearm, at

the height of the radio-humeral joint, but unfortunately the precise position is not known.
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4.3 The Bayesian Fusion

The last element of the work was building and applying the Bayesian Fusion approach, trying

to exploit the best performances obtained from the two signals. The obtained results were

not satisfying; the approach worked from the sEMG point of view because it actually allowed

to increase its performances. On the other hand, it seemed like the fusion between the two

models behaved exactly like the glove model alone did. This was an expected result: due to

the low performances obtained by analysing the sEMG with RF and to the way in which the

Bayesian Fusion works, it looked like the fused model decided to rely mostly in the glove

model predictions. These considerations can be easily retrieved by looking at Fig. 3.29 and

3.30. In these figures, the differences between the confusion matrices of the Fusion and of

the two single-signal classifiers used are represented. The significant changes (>0.1) are only

present in the confusion matrix evaluated by the subtraction from the one of the Bayesian Fusion

and the one of the Random Forest (sEMG only). The other, did not have significant changes,

neither positive nor negative. This also confirm the strong similarity between the two classifiers

considered to make the Bayesian Fusion.

4.4 Conclusion and Future Improvements

In conclusion, this work underlines the ease of use of the data glove in the development of a

reliable and robust hand gestures classifier. Despite the high computational cost, it does not

require particular processing to extract relevant information aimed at the correct interpretation

of the hand movement. Firstly, deep learning approaches as the ResNet clearly succeed in

autonomously extract features of the signal; secondly, machine learning approaches were able

to provide accurate results by the computation of one feature per channel.

On the contrary, the results obtained confirmed the sEMG low ease of use. To obtain

marginal satisfying results, it was necessary to extract and compute hand-crafted features. Deep

Learning approaches could not outperform the conventional machine learning techniques, even

though the first were not affected by overfitting. Despite the higher test performances of the

conventional techniques, they were not able to generalize well because of the high difference

between the training accuracy and the validation accuracy. The analysis of the most impor-

tant features, allowed to do interesting considerations regarding not only the kind of features

that better represent the two subsets of gestures (referring to two different kind of exercises),

but even the channels that mostly contributed to the classifications. These information could
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eventually be used as starting points for the development of an improved sEMG hand gesture

recognition system.

Having obtained such low performances when dealing with only the sEMG, the bayesian

fusion approach was not expected to work and increase the overall performances. Indeed, they

did not significantly improve or change in relation to the one achieved using data glove only.

The fusion actually enhanced the behaviour of the sEMG classifier, but there would be no

advantage in using the technique under this conditions; indeed, since it would be sufficient to

use only data glove, it uselessly increases the cost of the system.

The future improvements that could be suggested at this point are mainly focused in aug-

menting the sEMG performances:

• Selecting differently the features: the intrinsic RF functionality of evaluating the fea-

ture importance allowed to select the ones that contribute more to determining the trees

splits. Having obtained an increased accuracy once reduced the features means that some

redundancy was discarded. The image of the features importance, highlights how there

were some channels that were distinctly more significative than others. In this work, a

subset of features were selected, without caring to the channels different impact; in future

works, the channels revelance can be considered. In this way it could be analyzed if there

is redundancy even among the channels; in fact, the information could be repetitive not

just in the way it is extracted but also in how it is measured.

• Evaluating new hand-crafted features: in this work, only time domain and frequency

domain features were computed and used. As discussed in the introduction, there are

more features that can be eventually used, exploring, as examples, the time-frequency

domain or the fractal domain.

• Different Pre-processing: sEMG signal windowing was performed in order to correctly

compare the performances with the classifiers that used data glove; in particular, non-

overlapping windows were considered. Introducing overlaps between adjacent windows

may allow to evaluate the hand-crafted features with a sort of continuity that can be more

representative of the gestures execution. This new data organization may permit to ex-

plore new deep learning networks also without extracting hand crafted features.

Moreover, for features like WAMP, MYOP, ZC, and SSC, a specific threshold was se-

lected (100 µV). Other thresholds could be tried.

• Different Fusion type: once the performances of the sEMG are increased, the Fusion
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approach could be tested again to see if the idea worked like it did in Tortora et. Al.

Then, more fusion approaches could be evaluated, like the Fuzzy template. This tech-

nique works by creating a template template for each class from the validation set, then

weighting the classifiers predictions based on the similarity with the class template.

99



Chapter 5

References

1. AYODELE, Emmanuel, et al. A review of deep learning approaches in glove-based ges-

ture classification. Machine Learning, Big Data, and IoT for Medical Informatics, 2021,

143-164.

2. ATZORI, Manfredo, et al. Electromyography data for non-invasive naturally-controlled

robotic hand prostheses. Scientific data, 2014, 1.1: 1-13.

3. AYODELE, Emmanuel, et al. Grasp classification with weft knit data glove using a

convolutional neural network. IEEE Sensors Journal, 2021, 21.9: 10824-10833.

4. XXU, Deyou. A neural network approach for hand gesture recognition in virtual reality

driving training system of SPG. In: 18th International Conference on Pattern Recognition

(ICPR’06). IEEE, 2006. p. 519-522.

5. KONRAD, Peter. The abc of emg. A practical introduction to kinesiological electromyo-

graphy, 2005, 1.2005: 30-5.

6. JIANG, Shuo, et al. Emerging wearable interfaces and algorithms for hand gesture recog-

nition: A survey. IEEE Reviews in Biomedical Engineering, 2021, 15: 85-102.

7. ATZORI, Manfredo; COGNOLATO, Matteo; MÜLLER, Henning. Deep learning with
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Appendix A

Deep Learning approaches

DL approaches are very recent techniques that offer an end-to-end approach in developing pre-

dictors or classifiers. Since they do not require the evaluation and extraction of hand-crafted

features, they typically suffer from a the lack of understandibility. However, there is a growing

interest into analyzing and using these approaches thanks to their ability to outperform, in some

cases, the classical machine learning techniques.

Deep neural networks work by autonomously looking for interesting dependencies or fea-

tures within the data during the training phase. This procedure consists in learning the weights

that characterize and define the layers (independently from their type), thus determining the ac-

tivation maps (or feature maps) of each layer from input data. The weights are trained thanks to

the back propagation, which is the main concept behind the neural networks training. The train-

ing procedure of a network is subdivided in epochs and it starts by randomly assigning weights

to each layer. Within an epoch, the training data are subdivided in data batches. For each batch,

the classification/regression is made and then it is compared with the true label/value through

the use of a specific loss function. There are several kinds of loss function, to be used differently

in relation to the kind of task to perform and the most common for classification are:

• Binary Cross Entropy. It is used if the network has to solve a binary problem:

L = −1

2

N∑

i=1

yi ∗ log(hatyi) + (1− yi) ∗ log(1− ŷi). (A.1)

yi is the label referred to the ith class, and can be 1 or 0. ŷi is the probability outed by the

classifier for the ith class.

• Categorical Cross Entropy. It is employed for multi-class classification problem:

L = −
N∑

i=1

yi ∗ log(p(ŷi)). (A.2)
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yi is the ground truth and ŷi is the score for the ith class outed by the network.

The evaluation of the loss is a measure to understand how much the network is making errors.

To upgrade the weights, what is exploited in particular is the evaluation of the gradient of the

loss, which is the vector of partial derivatives with respect to all coordinates of the weights:

∆WL(W ) = [
∂L

∂W1
,
∂L

∂W2
, ...,

∂L

∂Wm
]T (A.3)

If ∆WL(W ) = 0, it means that a local optimum minimum is reached, which is the situa-

tion wanted. In order to reach the optimal minimum, it is necessary to move in direction

−∆WL(W ). In particular, each time a batch of data is predicted, the weights are updated

following this formula:

W t+1 = W t − α∆WL(W ) (A.4)

where α is called learning rate and it determines how strongly should be the movement in

direction −∆WL(W ). When∆WL(W ) is evaluated over a batch of data, it is called Stochastic

Gradient Descent (g(t)).

There are several ways of updating weights:

• With momentum. The objective is to make the trajectory of the weights update more

stable, preventing loosing time in oscillations. It uses the momentum, which can be

interpreted as a force proportional to the velocity of the object but that acts in the opposite

direction.

W t+1 = W (t) + p(t+1) (A.5)

p(t+1) = µp(t)− αg(t) (A.6)

where: µ ∈ [0, 1] is the momentum hyperparameter and p(t) is the momentum.

• RMS propagation (RMSprop): it scales gradients dividing by a moving average Root

Mean Squared gradient (s(t)), aiming at slowing down learning in directions where the

gradient is higher and speeding up the process where the gradient is lower.

W (t+1) = w(t) − α
g(t)√

s(t)222345666
(A.7)

s(t) = βs(t−1) + (1− β)(g(t))2 (A.8)

where β ∈ [0, 1] is a moving-average decay factor.
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• Adaptive Gradient - ADAGRAD: it is similar to RMSprop, but it uses the cumulative

sum of squared gradients (c(t)).

W (t+1) = w(t) − α
g(t)√
c(t)

(A.9)

c(t) =
t∑

j=1

(g(j))2 (A.10)

• Momentum and RMsprop - ADAM: it combines momentum and RMsprop moving

averages.

W (t+1) = w(t) − α
p(t)√
s(t)

(A.11)

p(t+1) = β1p
(t) − (1− β1)g

(t) (A.12)

s(t) = β2s
(t−1) + (1− β2)(g

(t))2 (A.13)

A.1 Convolutional Neural Networks

The field in which CNNs were born is image analysis, which started from a simple classifi-

cation task and evolved till reaching computer vision. Convolutional Neural Networks have a

structure composed by several layers among which the most fequent are convolutional layers:

they allow to perform convolution (2D or 3D) between the image received as input and a deter-

mined number of filters, which have specific dimensions in terms of width and height (it could

have eventually depth dimension, for 3D convolution). Each convolutional layer is character-

ized also by the application of a non-linear activation function at the filters’ output, leading to

the so-called activation maps: it can be chosen the Rectified Linear Unit (ReLU), the Exponen-

tial Linear Unit (ELU), the Leaky ReLU or the Parameterized ReLU (PReLU). Each activation

function has its own characteristics: Before the activation maps enter the subsequent convolu-

tional block, they typically undergo a pooling layer, which is useful to reduce their dimensions

by keeping just the most useful information. Several alternatives are presents, differing in how

data are processed within a defined kernel (1D, 2D, 3D) that slides over the whole image:

• Max Pooling: it works by taking the maximum pixel value on an area defined by the

kernel.

• Average Pooling: it computes the average of the values within the area of the superposed

kernel.
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Name Function PRO CONS

ReLU f(x) = max(0, x) • No saturation for x > 0 • No activation for x < 0

• Not zero-centered

ELU






x x ≥ 0

α(ex − 1) x < 0
• No saturation for x > 0 • Not zero-centered

• No de-activation for x < 0

Leaky ReLU f(x) = max(0.01x, x)

PReLU f(x) = max(αx, x)

Table A.1: Non linear activation functions comparison.

Usually, at the end of the network there are fully connected layers which summarize the activa-

tion maps obtained by the final convolutional layer in a 1D vector, which is then converted into

a probabilistic distribution. This means that the final FC layer must have the same number of

units as the classes: in each unit, when a sample is given as input to the overall network, there

will be the probability of that sample to belong at the class corresponding to the unit position.

The formation of the final probabilities is possible thanks to the softmax activation function:

Figure A.1: Example of an usual CNN architecture. The Kernel is the filter (or more than one) that is convoluted with the image at each step.

f(x)i =
exi

∑K
j=1 e

xj
for i = 1, ..., K and x = (x1, ..., xk) ∈ Rk (A.14)

where x is the vector representing the final FC layer and K the number of its units (thus the

number of classes). It applies the standard exponential function to each element xi of the input

vector x and normalizes these values by dividing by the sum of all these exponentials; this
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normalization ensures that the sum of the components of the output vector σ(x) is 1, thus

allowing to interpret the final values as probabilities. The final prediction is made by seeing the

class that has the highest probability value.

A.1.1 CNN variants: the Residual Network (ResNet)

Through the years, some variants of the classical CNN were born, introducing modifications

that improved, year by year, the network performances over a worldwide images dataset: the

ImageNet. In Fig. A.2 the most relevant are represented along with their error rate. In 2015

Figure A.2: Errors rate of the CNN variants introduced during the years.

the so-called ResNet was introduced leading to a consistent improvement in the research. On

the contrary of the previous configurations that were seeing a reducing in performances after

increasing more than a certain number the number of layers, the Reset keep improving adding

more layer. Its architecture sees the presence of residual connections: the input and of one

layer could be used to compute the output of some layer after (Fig. A.3). This characteristic

allows in some sense to filter weights in the activation phase according to relevance. There exist

several variants of the ResNet: ResNet18, ResNet34, ResNet50, ResNet101, ResNet152; they

all change in the total number of layers and in filters’ shape, as represented, in order from left

to right, in Fig. A.4.
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Figure A.3: Plain net VS Residual net

Figure A.4: Comparison between the different type of networks. In order from left to right the architectures of the following are described:

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152

A.2 Recurrent Neural Networks

RNNs are the other big branch of deep networks that differs completely fromCNN, because they

works with sequence data. Their layers have loops inside them, which allow the information

to persist. One of the field in which Recurrent Neural Networks (RNN) is used is the text

processing: their ability is to look at meaningful connections and relationship between data over

time. To better understand the concept of ‘loops’, it is possible to imagine to unroll them: this

will result in a sequence of states, each of them characterized by an input vector an hidden state

vector (which summarize the state of the neuron) and an output vector; each state is associated

to a specific time point and what is crucial to see is the relationship between them: the output

of a state, is not influenced only by its corresponding input vector, but also from the precious

vector state.

These kind of networks offer a lot of flexibility because they can accept as input and give as

output different combination between single vector or multiple vectors, in relation to the task

that has to be addressed. The Fig. A.6 explains well the different configurations.

108



Figure A.5: Schematics and interpretation of a RNN. (a): the ”rolled” configuration. (b): the ”unrolled” version.

Figure A.6: Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in blue

and green vectors hold the RNN state. From left to right: (1) Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized

output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an image and outputs a sentence of words). (3) Sequence

input (e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment). (4) Sequence input and

sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French). (5) Synced sequence

input and output (e.g. video classification where each frame of the label has to be labeled). Notice that in every case are no pre-specified

constraints on the lengths sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

Taking the most simple configuration also called Vanilla RNN (one-to-one), it is interesting

to analyze how it works. As mentioned before, RNNs are characterized by a state, which is not

more than a function defined as:

ht = fw(ht−1, xt) (A.15)

where ht−1 is the previous state and xt is the current input. The function is recalled as fw

because it is defined by some weights (e.g. ht = tanh(Whhht−1 +Wxhht) ), which will change

during the network training. The state ht is needed to evaluate the output yt:

yt = Whyht (A.16)

where Why is the weight matrix that relates the state ht and the input xt with the output yt.

The training phase consist in initializing at the beginning the weight matrices randomly, then
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updating their values aiming at reducing the loss with the true labels; the process is possible

thanks to the back propagation of the error.

A.2.1 RNN variants: the LSTM

One of the main problems of RNNs is their improper ability to ’remember’ big amounts of

data; this usually brings to exploding or vanishing gradients (the back propagated error), thus

to unsuccessful results. Moreover, they lack in learning long-dependencies. To overcome this

problem, the LSTM (Long Short Term Memory) variant has been introduced; if in a standard

RNN the repeating module has a very simple structure, in LSTM it includes four modules: the

cell state and three gates, responsible for protecting and controlling the cell state. The gates are

made of sigmoid function and a pointwise multiplication operation and the regulate the way in

which information pass through the cell states.

(a)

(b)

Figure A.7: (a) Repeating module of a simple RNN. (b) Repeating module of the LSTM.

The gates are three and their functions are described in Tab. A.2.
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Gate Function Functionality

Forget gate ft = σ(Wf ∗ [ht−1, xt] + bf ) It decides what information have to be

thrown away from the cell state.

Medium gate (a) it = σ(Wi ∗ [ht−1, xt] + bi)

(b) Čt = tanh(WC∗[ht−1, xt]+

bC)

With two layers, it decides new things

to remember. The (a) is the input gate

layer, which, with a sigmoid function,

decides the values that have to be up-

dated; the (b) is the Tanh layer, that

creates a vector of new candidate val-

ues that could be added to the cell

state. At this point, the new cell state is

evaluated with Ct = ft ∗Ct−1+ it ∗ Čt.

Output gate (c) ot = σ(Wo ∗ [ht−1, xt] + bo)

(d) ht = ot ∗ tanh(Ct)

It decides which parts of the cell state

will be included in the output (c). It

finally update the hidden state ht (d).

Table A.2: Explanation of the three controlling gates.
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Appendix B

Conventional Machine Learning

approaches

Conventional machine learning approaches are all characterized by the necessity of processing

the signal and of evaluating hand-crafted features. Thus, given a number N of extracted fea-

tures, each samples is defined in a N−dimensionality feature space. Here are described the

underlying functioning of the types of classifier used in this work.

B.1 KNN

K-Nearest Neighbors is one of the most simple classifier of the classical machine learning ap-

proaches. It does not use a specific model, but it works with the concept of similarity between

samples. Given a number K, it looks at the classes of the K nearest neighbors for each analyzed

sample, and vote the most frequent one. Despite the absence of a model, two parameters can

influence the classifier performances:

• K: it is the number of neighbors to consider. Typically, lower values tend to increase the

probability of overfitting, while higher values increase the bias.

• Distance. Considering the K nearest neighbors implies looking at the samples that are

minimizing the distance with the one originally considered. The distance between two

samples x, y ∈ RN can be evaluated using different metrics:

– Euclidean distance:

de(x, y) =

√√√√
N∑

i=1

(xi − yi)2 (B.1)
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– Manhattan distance:

dm(x, y) =
N∑

i=1

|xi − yi| (B.2)

Figure B.1: KNN Schematics in a 2D feature space. The red star represents the analyzed sample.

B.2 Decision Tree

Decision Trees (DT) are classifiers typically appreciated in the biomedical domain because they

well-represent the human decision making. Starting from a set containing the whole data and

called root node, they perform subsequent splits with the objective of creating each time smaller

subsets with lower impurity. The final subsets are called leaf nodes.

When a split has to be made, the classifier take a feature and compare its value to a defined

threshold. The procedure is repeated for each feature and several thresholds are evaluated, until

the optimal splitting criterion is reached. More precisely, the best split is reached when the

change ∆ in impurity is maximized:

∆ = i(t)P − [pLi(t)L + pRi(t)R] (B.3)

where (i(t)P ) is the parent impurity and i(t)L, i(t)R are the children impurity, with pL and pR as

their splitting percentages. The impurity represents the similarity of the samples within a node,

and it can be computed using different measures, like the Training Error, the Gini index and the

Cross Entropy.

When a DT classifier is trained, the stopping criterion must be defined. It can be based on:
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Figure B.2: Schematics of Decision Tree. tl1, tl2, tl3, .. are the thresholds. x1, x2, x3, ... are the features. R1, R2, R3, ... are the final leaf

nodes.

• Minimum samples per leaf: minimum samples required in the future child node to

perform the split.

• Maximum depth.

• Minimum samples per split: minimum samples required in a node to perform a split.

One of the problem of the decision tree is that it easily overfits data. This is why a common

procedure is to perform pruning: exploiting the Cross Validation procedure, it evaluates the

performances of the classifier with decreasing depth. Typically, a pruned tree has an higher

predictive power, even if they are less accurate over the training set.

B.3 Support Vector Machine

Support Vector Machine (SVM) is a classifier that looks for an hyperlane that divides the sam-

ples in different regions of the space in relation of their class. It is originally defined for a binary

classification problem.

The idea of SVM is to optimally separate the data with an hyperplane by maximizing the

margine, which is the distance between the hyperplane itself and the clouds of data (of the

different classes). This hyperplane is defined by a set of weights w ∈ Rm and a bias parameter

b. Given (w, b), the predictions are made with the formula:

yi = sign(wTxi + b) (B.4)
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When data are separable, the following conditions can be satisfied:

yi ∗ (wTxi + b) > 0 ∀i (B.5)

If not, the model training consists on minimizing the Hinge Loss, defined as:

Lhinge(w, b) =
1

n

∑
max(0, 1− yi ∗ (wTxi + b)) (B.6)

To increase the generalization ability, a penalty on ||w|| is added; in this way, the overall cost

function is:

LSVM = Lhinge(w, b) + λ||w|| (B.7)

Figure B.3: Schematics of svm algorithm

When data are not linearly separable, an embedding function ψ is considered, such that:

ψ : χ → F (B.8)

χ is the domain set, and F = Rd is the feature space. Considering the embedding function ψ,

the loss function become:

1

n

∑
max(0, 1− yi ∗ (wTψ(xi))) + λ||w|| (B.9)

Since working with the embedding function could be too much complex, it is preferred to define

a kernel K, such that:

wTψ(xi)) =
∑

αiK(xi,x) (B.10)

There are several kernels:
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• Polynomial kernel:

K(x,x′) = (1 + 〈x,x′〉)k (B.11)

K is the degree of the polynomial.

• Gaussian kernel (or Radial Basis Function):

K(x,x′) = exp(− ||x− x′||2

2σ
) (B.12)

• Sigmoidal kernel:

K(x,x′) = tanh(xTx′ + a) (B.13)

In Fig. B.4 it is possible to see the differences in using the kernels previously presented.

Figure B.4: Schematics of the different kernel effects over the creation of the hyperplane. The two colors represent the two labels of the

samples.
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