
Università degli Studi di Padova

DIPARTIMENTO DI FISICA E ASTRONOMIA GALILEO GALILEI

Corso di Laurea magistrale in Astronomia

Master Thesis

Deep Convolutional Neural Networks in Astrophysics:
a case study for gas turbulence

Candidate:

Piero Trevisan
Supervisor:

Prof. Michela Mapelli

Co-Supervisors:

Dr. Mario Pasquato
Dr. Alessandro Ballone

Anno Accademico 2018-2019

A B S T R A C T

Machine learning has found many applications in astronomy, usually in the
automation of tedious tasks. We show here how can we use machine learn-
ing algorithm, in particular deep convolutional neural networks (CNNs), as
a tool of inference of physical information on a system. In particular, we
translate the question of what is the powerspectrum of turbulent gas to a
supervised regression problem that can be solved via deep learning. In or-
der to do so, we trained a CNN on the output of gas simulations made with
the hydrodynamic RAMSES. Then, we show the predictions on unseen gas.
We compared with the predictions made with a standard computer vision
library and show that the CNNs performs better. Finally, we discuss the
possibility and the limits of this new approach.

ii

C O N T E N T S

1 introduction 1

2 astrophysical background 3

2.1 Molecular clouds and star formation 3

2.2 Turbulence: quick overview 4

2.2.1 Kolmogorov’s Model 6

2.2.2 Burgers Turbulence 8

3 deep learning 11

3.1 Introduction to machine learning 11

3.1.1 The Task 11

3.1.2 The Performance measure 12

3.1.3 The experience 12

3.1.4 Training set 12

3.1.5 Test set 12

3.1.6 Validation set 12

3.2 Neural Networks 13

3.2.1 Perceptron 13

3.2.2 Architecture of Deep Neural Networks 14

3.2.3 Activation function 16

3.2.4 Architecture Design 17

3.3 Loss function and backward propagation 17

3.3.1 Linear Regression Model 18

3.3.2 Backward Propagation 18

3.3.3 Gradient descent 20

3.3.4 Optimizers 20

3.3.5 Other NNs parameters 23

3.4 Convolutional Neural Network 24

3.4.1 Convolution Operation 25

3.4.2 Convolution 26

3.4.3 Pooling layers 27

4 methods 29

4.1 Simulations 29

4.1.1 RAMSES 29

4.1.2 Initial conditions and physical setup 29

4.1.3 Refinement strategy 30

4.2 Neural Network Training 30

4.2.1 Preprocessing Data 30

4.2.2 Augmentor 33

4.2.3 Choice of the architecture 33

4.2.4 Optimizers and batch size impact 35

4.2.5 Training 35

4.3 A comparison baseline 36

5 results and discussion 39

5.1 Predictions on unseen simulations 39

5.2 Discussion and limits 39

5.2.1 Discussion 39

iii

iv contents

5.2.2 Limits 41

6 conclusions and future prospects 43

bibliography 45

1 I N T R O D U C T I O N

Machine Learning (ML) is becoming increasingly popular in astronomy: for
example in the characterization of exoplanets (e.g. Davies et al., 2015), the
characterization of variable stars (e.g. Armstrong et al., 2015) or studying
the cosmic ray propagation (e.g. Jóhannesson et al., 2016). In general, ML
can be applied in all sort of tasks where a machine would perform quickly,
and often better, than traditional methods in automating tasks on large
datasets from surveys. Especially Deep Learning (DL) recently, has been suc-
cessfully applied to astronomical problems using convolutional neural net-
works (Fukushima and Miyake, 1982, LeCun, Boser, et al., 1989, LeCun, Bot-
tou, et al., 1998), for example, for real/bogus separation (Cabrera-Vives et al.,
2016 2017), photometry computation for supernova classification(Kimura
et al., 2017), calculation of an image comparable to the difference image
(Sedaghat and Mahabal, 2017), gravitational wave detection (George et al.,
2017) and exoplanet detection (Shallue and Vanderburg, 2018). An interest-
ing, proactive approach with ML is taking form, e.g. in generating models
for recover features in astrophysical images (e.g. galaxies in Schawinski,
Zhang, et al., 2017), find black hole subsystems in globular clusters from
mock observations (e.g. Askar et al., 2018) or to generate artificial data to
test hypotheses for physical processes (e.g.in galaxy evolution Schawinski,
Turp, et al., 2018).
In this work, the last approach is taken. We want to show here the first
step to the process of inference of a physical parameter via DL. In particular,
reducing the problem of finding the powerspectrum of a turbulent gas to a
regression problem that we can solve with the training of a neural net. This
training is done on the output of gas simulations. We can, then, apply our
trained CNN to infere physical parameters on raw data.

Gas turbulence is interesting because spectroscopic observations of molec-
ular lines in molecular clouds (MCs) show that their linewidth is much
broader than the simple thermal linewidth. This effect is underdstood as the
role of turbulence inside molecular clouds. The perturbation of hydrostatic
equilibrium inside MCs can become gravitational unstable and eventually
form stars.

We present now the layout of the thesis: in the second chapter, we de-
scribe the astrophysical background of molecular clouds and the turbulence.
In the third chapter, we outline what is machine learning and describe in
details neural networks, with particular regard to deep convolutional neural
networks. In the fourth chapter, we present the gas simulations used and
the convolutional neural network used to retrieve the turbulence index. The
predictions of the CNN are shown in chapter five, followed by a discussion
on the limits of this approach. Finally, in the sixth chapter we draw our
conclusions.

1

2 A S T R O P H Y S I C A L
B A C KG R O U N D

In this chapter we describe the general properties of turbulent molecular
clouds (MCs) focusing on turbulence.

Stars form within MCs but our understanding of this fundamental pro-
cess remains hampered by the complexity of the physics that drives their
evolution. After a quick presentation of the general properties of MCs, we
emphasize the relevant importance of turbulence in these objects.

2.1 molecular clouds and star formation
There is no such thing as a predictive theory of star formation: given certain
initial conditions, e.g., the density and temperature distributions inside an
interstellar cloud, it is not possible to predict with certainty the star forma-
tion efficiency and the resulting initial mass function. Therefore, we rely
mostly on observations to answer these doubts. Observations give us this
picture: MCs are turbulent interstellar clouds almost entirely made of hy-
drogen with temperatures of 10− 100K, dimensions of ∼ 10pc and densities
of 10-100 molecules/cm3. These values allow the formation of molecular
hydrogen and a small quantity of other molecules, CO being among the
most abundant and often the most visible. The small fraction of the cloud
(about one percent) in the form of dust makes the MCs very opaque in the
visual spectrum so we rely on infrared and radio observations.
Despite MCs are made of molecular hydrogen, direct H2 observations are
difficult. Electronic transitions occur in the ultraviolet, to which the Earth’s
atmosphere is opaque. Molecular vibrational and rotational transitions are
faint because of their quadrupolar origin and the mid-infrared rotational
lines occur at wavelengths where Earth’s atmosphere is at best only partly
transparent. Therefore, we measure H2 indirectly from the carbon monox-
ide (CO), since there is a good correlation between the integrated intensity
of the J = 1→ 0 rotational transition line of CO and the H2 column density
intensity (e.g. Glover and Low, 2011 and references therein). Figure 1 shows
a map in this line for the Orion-Monoceros complex
The masses of MCs inferred from CO are of the order of 105M�. If the mass
of any cloud (or subclump) is larger than the Jeans mass:

Mjeans = 4× 104M�
(T

100K

)3/2(n

cm−3

)−1/2
, (1)

where n is the numerical molecular density of the cloud, this undergoes to
gravitational instabilities. For typical values of T and n in MCs, Mjeans

10
3-10

4 M�. Nearby supernovae explosions or collisions with other clouds
create perturbations that can trigger these instabilities. These perturbations
disturb the hydrostatic equilibrium, thus the MC start to collapse under its
self-gravity. The collapse happens on a free-fall timescale that depends on
the density of the gas (tff ∝ ρ−1/2). The density of a typical MC implies
a timescale of the order of ∼ 1 Myr. At this stage, the collapsing MC is
transparent to infrared radiation (far IR) and therefore the cooling is very

3

4 astrophysical background

Figure 1: Integrated map of line J1 → 0 CO line for the Orion-Monoceros complex.
All credits Wilson et al., 2005.

efficient. This is very important, since we can treat the gas in the cloud
as an isothermal gas at this stage. As the collapse advances, the gas den-
sity increases, therefore the Jeans mass decreases and the Jeans instability is
met on smaller regions, allowing local density peaks on smaller and smaller
scales to collapse, in a process called fragmentation. Turbulence has the
fundamental role of creating these local density perturbations and of "frag-
menting" the cloud into smaller and smaller subclouds, that finally collapse
into stars..

CO linewidths, from spectroscopic observations of MCs, are larger on
average than what we would expected ones from the thermal motions of a
gas at T ∼ 10− 100K. Larson (1981) found out the following relation between
the observed linewidth σ and the size of the cloud (or of its sub-clumps) L:

σ = 0.5

(
L

1.0pc

)0.5

km/s. (2)

Figure 2 shows this relation from the original paper by Larson.
This broadening of the lines is understood as the active role of turbulence

in MCs.
Star formation is far away to be solved, so it is interesting to further investi-
gate the properties of turbulence in molecular clouds.

2.2 turbulence: quick overview

The mean free path of gas particles in MCs is smaller than the size L of
the MC. Therefore, it is reasonable to approximate MCs as a fluid. The
dynamic of a fluid is described by the Navier Stokes equations. Under the

2.2 turbulence: quick overview 5

Figure 2: Three dimensional internal velocity dispersion σ against the size of the
cloud L (or its sub-clumps) for different MCs (Larson, 1981)

assumption of a non viscous fluid without external forces, the Navier Stokes
equations are reduced to the Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0, (3)

∂ρu
∂t

+∇ · (ρu⊗ u + P1) = 0, (4)

∂E

∂t
+∇ · [u (E+ P)] = 0, (5)

where ρ is the fluid density, u is the fluid velocity, P is the gas pressure and

E = ρε+
1

2
ρu · u (6)

is the total energy per unit volume, with ε being the internal energy. The Eu-
ler equations written in this form are called "conservative" Euler equations.
The previous system of equations can be solved, at least with numerical
methods, with the specification of an equation of state (EoS):

P = P(ρ, ε). (7)

Under the assumption of an ideal gas, whose EoS can be written as P =

(γ− 1)ρε, where γ is the fluid adiabatic index, the Euler equation can be
written in the form:

∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u = 0, (8)

∂u
∂t

+ u ·∇u +
1

ρ
∇P = 0, (9)

∂P

∂t
+ u · ∇P + γP∇ · u = 0. (10)

This is the so-called quasi-linear form of the Euler equation. This system
can be linearized, leading to the dispersion relation:

c2s =
γP

ρ
(11)

6 astrophysical background

of sound waves.

If we work with a non-ideal gas, physics is much more complex: Eq. 4,
when the fluid viscosity is considered, becomes:

∂ρu
∂t

+∇ · (ρu⊗ u + P1) = ∇ · (µD), (12)

where D is a tensor describing the deformation of the fluid, µ is the
dynamic viscosity coefficient. This coefficient can be expressed through the
viscous term:

νvisc =
µ

ρ
, (13)

The importance of this nonideal effect on the system can be estimated through
the viscous Reynolds number,

Re =
ULL

νvisc
, (14)

where UL and L are typical velocity and length scales respectively. For
Re � 1 viscosity can be ignored and the flow is likely to become turbulent.
But what is turbulence? Reynolds number can be seen as a description of
how fast the fluid is moving relative to how viscous it is: for small Reynolds
number we are in the so-called laminar regime, i.e., the fluid flows in par-
allel layers, with no disruption between the layers. As Re increases, the
viscous forces start to be negligible and the pattern of the fluid flows is char-
acterized by chaotic changes in pressure and velocity, becoming turbulent.
This can be used as an operative definition of turbulence. Turbulence causes
the formation of unstable eddies of many different length scales. These ed-
dies transfer energy to smaller scales which eventually become unstable too
and transfer their kinetic energy to even smaller scales. This process can be
described by the so-called Kolmogorov model.

2.2.1 Kolmogorov’s Model

A turbulent flow is composed by different eddies characterized by a scale l
and a velocity Ul. Kolmogorov (1941) noted that, for high Reynolds num-
ber, dissipation is unimportant, meaning that the large scale eddies must
transfer kinetic energy to smaller eddies since they are unstable. This pro-
cess goes on and on until we arrive at scales where Re ∼ 1 is reached and
dissipation becomes significant. Furthermore, a turbulent flow must be sus-
tained through a persistent source of energy in order to keep being turbu-
lent, since it is unstable and the energy is dissipated in the smallest scales.
This produces a distribution of kinetic energy over different scales. In order
to understand and quantitatively study a complex, multiscale phenomenon
we adopt a statistical approach. In a turbulent fluid the medium velocity
fluctuates in time and space so we need some simple assumptions. First we
assume that the turbulence is homogeneous. Second, we assume that the
turbulence is isotropic. This is true at least for the intermediate and small
scales as noted by Kolmogorov. The geometrical and directional informa-
tion on the large energy injection scale is lost going to smaller scales, so that
the statistics of the small scales has a universal character. Now, let v(x) be

2.2 turbulence: quick overview 7

the velocity at position x within some volume of interest V. Let’s define the
two-point autocorrelation function:

A(r) =
1

V

∫
V

v(x) · v(x + r)dx. (15)

Since we are working under the isotropic hypothesis, r = |r|, thus A(r) tells
us how similar or different the velocities are at points separated by some
distance r.

We then consider the Fourier transform of the velocity field:

ṽ(k) =
1

(2π)3/2

∫
v(x)e−ik·xdx. (16)

Then, we define the power spectrum as

Ψ(k) = |ṽ(k)|2. (17)

For isotropic turbulence, the power spectrum depends only on the magni-
tude of the wave number, k=|k|. It’s common practice to use the power per
unit radius in the k-space,

P(k) = 4πk2Ψ(k). (18)

P(k) from now on will be called energy power spectrum. Using the Parse-
val’s theorem, we have that:∫

P(k)dk =

∫
|ṽ(k)|2dk =

∫
v(x)2dx, (19)

i.e., the integral of the power spectral density over all wavenumbers is equal
to the integral of the square of the velocity over all space. Why is this
important? Because, for a flow with constant density the integral of the
power spectrum tells us how much kinetic energy per unit mass there is in
the flow. Moreover, thanks to the Wiener-Khinchin theorem we have:

Ψ(k) =
1

(2π)3/2

∫
A(r)e−ik·rdr. (20)

This is crucial: the power spectrum at a wavenumber k tells us what fraction
of the total power is in motions at that wavenumber, i.e., on the characteris-
tics length scale l. A power spectrum that peaks at low kmeans that most of
the turbulent power is in large-scale motions (small k means large l). Vicev-
ersa, a power spectrum that peaks at high k means that most of the power
is in small-scale motions.

Kolmogorov speculated that the statistics of a turbulent flow, described
through the energy power spectrum P(k), for k ranging between the smaller
scale, decided by νvisc and the energy dissipation ψ, and the larger scale L
of the system, are only determined by the scale k and ψ. The rate of energy
dissipation ψ (and also the rate of energy injection) has units of energy per
unit mass per unit time, so L2/T3. Instead, the energy power spectrum P(k)

has units of energy per unit mass per unit radius, so L3/T2, and is a function
only of k and ψ (at least for Re� 1), thus we can write P(k) = Ckαψβ with
C being a dimensionless constant. Using simple dimensional analysis we
have:

8 astrophysical background

L3

T2
∼ L−α

(
L2

T3

)β
L3 ∼ L−α+2β

T−2 ∼ T−3β

β =
2

3

α = 2β− 3 = −
5

3

Therefore, P(k) = Cψ2/3k−5/3. Numerous experiment on Earth confirm
this behaviour (see fig. 3). In general, if P(k) ∝ k−α, Ψ(k) ∝ k−α−2 there-
fore

Ψ(k) ∝ k−n. (21)

Hence, in the case of the Kolmogorov’s model, n equals to n = 11/3 = 3.6̄
From now on we will call n turbulence index. This dependency is valid only
in the so-called inertial range, i.e., at k between the dissipation range and the
large scales where there is the energy injection. Kolmogorov’s model is ideal
and describes only subsonic and uncompressible fluids. For compressible
fluids situation is more complex, like we will see in the next section.

2.2.2 Burgers Turbulence

In order to study dynamic of turbulent supersonic compressible flows we
rely on numerical simulations. E.g. Federrath et al. (2010), predict an energy
power spectrum closer to P(k) ∝ k−2 (see fig. 5) which is much steeper
than the Kolmogorov prediction and exactly equal to Burgers turbulence
(Burgers, 1948).

The latter consists of a network of discontinuities (shocks), which can
only form in supersonic flows. In fact, in molecular clouds we do not only
have Re � 1 but also Mach Number (ratio between velocity and cs) M
� 1for Re � 1. This means that, on large scales, the gas is moving at
supersonic velocities without any viscosity in ballistic fashion. These fast
moving volumes of fluid will overtake slower ones on smaller scales but at
these small scales viscosity becomes increasingly important (Re ∼ 1). The
viscosity eventually stops the fluid to move ballistically. This leads to the
formation of discontinuities (shocks). We model a shock as an Heavyside
function, whose power spectrum is proportional to k−2. In one dimension
this can be shown easily: the Fourier transform of v is:

ṽ(k) =
1√
2π

∫
v(x)e−ikxdx. (22)

The integral of term e−ikx vanish for all periods where v is constant and
is non-zero only in the period that includes the shock. During that period
the amplitude

∫
v(x)e−ikxdx is proportional to the length, i.e. 1/k. Thus

ṽ(k) ∝ 1/k. From equation 19, it follows that P(k) ∝ k−2 and Ψ(k) ∝ k−4.

As a final note it is interesting that we can link the energy power spectrum
to the dispersion velocity. The latter is well correlated with the sizes of MCs
(or its sub-clumps) through the Larson relation (see equation 2). This helps

2.2 turbulence: quick overview 9

Figure 3: Power spectrum for turbulence generated by an air jet as a function of the
wavenumber in logarithmic scale. The open and filled points show the ve-
locity power spectrum for the velocity components parallel and transverse
to the stream, respectively. Note the deviation from the inertial regime
(slope = -53) for small and large log(k). Champagne, 1978

.

Figure 4: Slices through the three-dimensional gas density for highly compressed
supersonic turbulence generated in two method: solenoidal driving (left
panel) and compressive driving (right panel). The gas simulation has a
resolution of 4096

3 cells. Reproduced from Christoph Federrath (2013).

10 astrophysical background

Figure 5: Power spectra P(v)/k−2 for solenoidal driving (top panel) and compres-
sive driving (bottom panel). Line styles shows the different resolutions.
The fit in the inertial range is reported on the bottom right part of each
panel: solenoidal driving yields P(v) ∝ k−1.96±0.04 and compressive driv-
ing yields P(v) ∝ k−1.99±0.03 (taken from Christoph Federrath, 2013).

to relate the observational properties of the MC (dispersion velocity) to the
turbulence in it. In general, if we suppose to have an energy power spectrum
in the form P(k) ∝ k−n, a volume of size L and a measure of its internal
velocity dispersion σ(L) within it, the total kinetic energy (per unit mass)
will be:

Ek ∼ σ(L)2, (23)

where we neglected factors of order unity. If we integrate over the modes
with size l < L, i.e. k > 2π/L, we can write Ek in terms of the energy power
spectrum:

Ek ∼

∫∞
2π/L

P(k)dk ∝ k−n+1 ∝ Ln−1. (24)

It follows from the previous equations that:

σ ∝ L(n−1)/2 (25)

Therefore for a Kolmogorov law, we are left with σ ∝ L1/3 and for Burgers
turbulence σ ∝ L1/2. Larson noted that the observed relation, for its group
of MCs, σ ∝ L0.38 is different from more recent observations (e.g. Heyer
Brunt, 2004) that found out the relation in equation 2. The dependance is
σ ∝ L1/2, i.e. favouring Burgers turbulence. This might be explained if the
observed motions in molecular clouds are actually due to subsonic or midly
supersonic turbulence in a warmer medium. The question is still open.

3 D E E P L E A R N I N G

In this chapter, after a brief introduction on what is ML, I describe Deep Neu-
ral Networks (DNNs) and especially the Convolutional Neural Networks
(CNNs).

3.1 introduction to machine learning

The fundamental idea behind machine learning is the building of algo-
rithms that "learn" a mathematical model of sample data, known as "training
data", in order to make predictions or decisions without being explicitly pro-
grammed to perform the task. In order to do so, we have a training set of
data, in which we know the relationship between input and output. Using
this data we build a prediction model (such as a neural network), which
will enable us to predict the outcome for new unseen objects (test set). This
approach is the supervised learning one: we have the "labels" in the training
set to drive the learning process. More formally (Mitchell et al., 1997): "A
computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E."

3.1.1 The Task

ML tasks are usually described in terms of how the algorithm should pro-
cess an example. The latter, in ML context, is a collection of features that
have been measured or are known (pixels of an image, age of a population
and so on). Since ML improved significantly with the number of examples,
we want a lot of them. We represent the i-th example as a vector x(i) where
each entry xj is the j − th feature. The most common tasks that can be
solved with machine learning are regression and classification (binary or
multiclass). But ML applications are uncountable (transcription, machine
translation, anomaly detection, sampling, imputation of missing values, de-
noising . . .).

regression: The task T in a regression problem is the prediction of a
numerical value given some input. Therefore, the ML algorithm is asked to
output a function f from Rn to some real value. A completely disinterested
example of regression is the prediction of the power spectrum index of a
turbulent gas.

classification: In this type of task, the algorithm has to find which of
k categories some input belongs to. In order to do so, the ML algorithm
is asked to produce a function f from Rn to some set 1, . . . , k. The input
defined by vector x is mapped to a category defined by some value y.

11

12 deep learning

3.1.2 The Performance measure

To measure the ability of our algorithm to perform said task T , we must use
some quantitative measure of its performance. This performance measure
P will be specific to the task T . For classification tasks, usually we measure
the accuracy of the model simply calculating the proportion of examples for
which the model produces the correct output. Vice versa, we can obtain the
proportion of examples for which the model produces an incorrect output.
In general, it’s not straightforward to choose a perfomance measure that cor-
responds well to the desired behaviour of the system. E.g. when performing
a regression task, should we penalize the system more if it frequently makes
medium-sized mistakes or if it rarely makes very large mistakes?

3.1.3 The experience

In the formal definition by Mitchell et al. the idea is that the machine learns
from some experience E. Based on what kind of experience the machine is
allowed to have during the learning process, we can categorize learning as
unsupervised or supervised. In almost all cases the learning algorithms are
allowed to experience an entire dataset containing examples with many fea-
tures. The difference is that in supervised learning the machine experiences
a dateset containing features, but for each example there is an associated
label. For example, our simulations have a label corresponding to the index
of the power spectrum Ψ (see section 2.2.1).

3.1.4 Training set

The simplest way to describe the dataset is with a matrix X ∈ Rn×m where
m is the number of examples and n the number of features. So that, Xij is
the j-th feature of the i-th example. Since not always, the examples have
the same dimensions (e.g. images with different widths and heights), we
describe the dataset as a set with m examples: x(1), . . . , x(m). In supervised
learning a dataset carries with it its vector of labels y, with y(i) providing
the label for example i.

3.1.5 Test set

Usually we are interested in how well the machine learning algorithm per-
forms on data that it has not seen before, since this determines how well
it will work when applied to the "real world". We therefore evaluate these
performance measures using a test set of data that is separate from the data
used for training the ML system. It is important that the ML algorithm
never sees this dataset during the training.

3.1.6 Validation set

A fraction of the dataset composed of examples coming from the same dis-
tribution as the training set, can be used to estimate the generalization error
of the ML algorithm, after the learning process has completed. It’s impor-
tant that the test examples are not used in any way to make choices about
the model, including its hyperparameters. For this reason, no example from
the test set can be used in the validation set. Therefore, we construct the

3.2 neural networks 13

validation set from the training set: we can split the training set in two set
and hold out one for testing the performance of our algorithm with a certain
choice of hyperparameters during the training itself. Commonly, one uses
about 80% of the training data for training and 20% for validation. One can
also divide the dataset in k distinct subsets, leaving k− 1 subsets for train-
ing and the left one as validation set. Then, we repeat this operation other
k− 1 times taking another subset as validation set. We estimate the error by
taking the average validation error across the k runs.

3.2 neural networks

Over the years, a lot of prediction models have been developed for different
tasks but the state-of-the-art algorithms in ML are Neural Networks (NNs).
The name derives from the fact that they were first developed as models
for the human brain (McCulloch and Pitts, 1943). Each connection, like the
synapses in a biological brain, can transmit a signal from one artificial neu-
ron to another. An artificial neuron that receives a signal can process it and
then signal additional artificial neurons connected to it. Such systems, espe-
cially in Deep (Feedforward) Neural Networks (DNNs), can decompose the
input into more and more complex features and identify trends that exist
across all the training data and classify unseen data.
More technically, a DNN defines a mapping y = fw(x) and learns the value
of the parameters w that result in the best approximation of some function
f∗. These DNN are called feedforward NNs because inputs flows through
the network f being evaluated from the inputs, through the inner layers
used to define f and finally to the output y. Typically, they are represented
by composing together different functions (layers) that create concretely a
network. In a vanilla feedforward DNN we have (L− 1) functions connected
in a chain: f(x) = f(L)(f(L−1)(. . . (f(2)(x)))). The f(l) function is called l-th
layer of the network, with the convention that l = L is the output layer and
l=1 correspond to the input layer (x). L is a natural number that gives the
depth of the model. The layers between the input layer and the output layer
are called hidden layers. The dimensionality of these hidden layers deter-
mines the width of the NN. Even if we can think the layer l as a function
f(l): Rp → Rq where p and q are the dimensions (widths) of the (l− 1)-th
and l-th layer respectively, we usually represent layer l as q units that act in
parallel with each one of them being a vector-to-scalar function. These units
are the artificial neurons of the network.

The simplest model of these fundamental units, that from now on we
refer to as artificial neurons or simply neurons, is the perceptron.

3.2.1 Perceptron

Perceptrons were proposed by Rosenblatt (1958), inspired by earlier work
by McCulloch and Pitts (1943) and successively analyzed and refined by
Minsky and Papert (1969).

The perceptron model, takes a vector x ∈ Rn and computes a linear com-
bination of its components xi:

z =

n∑
i=1

wixi = wTx, (26)

14 deep learning

Figure 6: Layout of the perceptron model as presented by Minsky and Papert (1969).
This scheme can be generalized with more than 3 features.

where wT =
[
w1, w2, . . . , wn

]
are called weights. The classical perceptron

then outputs y=1 if z > 0 and y = 0 otherwise. The weights can be learned
in order to implement linearly separable function (OR, AND, and similar
logical boolean function) but there is no solution for non-linearly separated
data (XOR function) as shown by Minsky and Papert, 1969. Artificial neu-
rons used today are slightly different from the original perceptron since we
apply some activation function g, which is usualnon-linear (see sec. 3.2.3)
like the sigmoid function. The output is no longer binary but a real value
(between 0 and 1 in the case of the sigmoid function) that can be interpreted
as a probability. The original perceptron was able only to answer yes/no
decision, instead the upgraded version gives us the probability of "yes". In
general, the output is a real number, depending on the choice of the activa-
tion function g and the task considered T , from 0 to 1, or from -1 to 1 or in
general some real number.

Feedforward DNNs, also called multilayer perceptrons (MLPs), stack lay-
ers of these neurons where each successive layer uses the output of the pre-
vious layer as input, In the next section, I describe in detail the functioning
of a feedforward DNN.

3.2.2 Architecture of Deep Neural Networks

In a DNN the output of certain neurons is connected to the input of other
neurons forming a weighted graph (fig. 7). The weights are modified dur-
ing the learning process driven by a process called backward propagation
(3.3.3).

In general, if we denote with the apex l the layer l-th with l ∈ [1, L],
where l=1 is the input layer and l=L the output layer, the activation of the
first neuron in the l-th layer will be:

al1 = g(zl1) = g(

p∑
i=0

w
(l−1)
1i a

(l−1)
i), (27)

where p is the width of the l-th layer, g is a non-linear function and zl1 =∑p
i=0w

(l−1)
1i a

(l−1)
i is the feature vector. We used the convention that a0 =

1 so that w0 · 1 is the bias unit. To get a better picture, let us describe
explicitly the first hidden layer (l=2) of fig. 7:

3.2 neural networks 15

Figure 7: Layout of a fully connected DNN with two hidden layers. Every single
hidden layer has four artificial neuron. The bias unit x0 is not shown.

a21 = g(z21) = g(w
1
10x0 +w

1
11x1 +w

1
12x2 +w

1
13x3)

a22 = g(z22) = g(w
1
20x0 +w

1
21x1 +w

1
22x2 +w

1
23x3)

a23 = g(z23) = g(w
1
30x0 +w

1
31x1 +w

1
32x2 +w

1
33x3)

a24 = g(z24) = g(w
1
40x0 +w

1
41x1 +w

1
42x2 +w

1
43x3).

More concisely, in vector notation the first hidden layer of activations can be
represented as

a2 =
[
a21, a

2
2, a

2
3, a

2
4

]T
= g(z2) = g(w1 · x), (28)

where
x =

[
x0, x1, x2, x3

]T
=
[
1, x1, x2, x3

]T is the input vector. Now, the activa-
tion of the first neuron of the third layer will be:

a31 = g(z31) = g(w
3 · a2) = g(w210a

2
0+w

2
11a

2
1+w

2
12a

2
2+w

2
13a

2
3+w

2
14a

2
4)

and so on for the others neurons. Note the addition of the bias unit a20 for
this layer. The output of this DNN and so its prediction will be:

hw(x) = a4 = g(z4) = g(w3 · a3) (29)

In general wl ∈ Rp×q where p is the dimension of the (l− 1)-th layer and
q the dimension of l-th layer.

Note that all features zl in the hidden layers are learned features, mean-
ing that a NN, instead of being constrained by the original input features,
can learn its own features to feed into the successive layers. Therefore, it is
essential to initialize all weights to small random values then then let the
w weights change through iterative gradient-based optimization algorithm
(see sec.3.3.3) letting the w weights change If we initialize all the weights
with the same value (or even worse zero) all the weights, every hidden unit
receives the same input, then all the the neurons of all the layers perform
the same calculation, giving the same output. If we don’t assign random
values, or at least different values, the NN can not learn. The study of

16 deep learning

the initialization of weights and its impact on the performance is still an
open. For example, in Keras, the deep learning library used in this thesis,
the default weights initializer is the Glorot uniform initializer, also called
Xavier uniform initializer (Glorot and Bengio, 2010). The Glorot uniform
initializer draws samples from a uniform distribution within [−l, l], where
l =

√
6/(p+ q) with p and q the number of input and output units of the

layer, respectively. In any case, if the weights have initially different values,
a NN has a lot of flexibility to learn whatever features it needs in order to
improve its performance P, usually minimizing some cost function J(w).

We kept hinting on this activation function. Let’s now explore different
activation functions.

3.2.3 Activation function

A hidden neuron computes an affine transformation z = WTx+b, and then
applies a nonlinear function g(z).

The function g is called activation function. It defines the output of a
neuron.

Nowadays, the most used activation function in the inner layers of DNNs
is the Rectifier (ReLU) function.

g(z) = z+ = max(0, z) (30)

Also, these units are easy to optimize because they are so similar to linear
units. The only difference between a linear unit and a ReLU unit is that a
ReLU unit outputs zero across half its domain. This makes the derivatives
through a rectified linear unit to remain large whenever the unit is active.
The gradients are not only large but also consistent. The derivative of the
rectifying operation is 1 wherever the unit is active. The second derivative
of the rectifying operation is defined almost everywhere and it is 0 wher-
ever it is defined. One drawback of ReLU units is that they cannot learn via
gradient-based methods on examples for which their activation is zero. Var-
ious generalizations of ReLU units guarantee that the gradients are nonzero
everywhere: when z < 0, g(z) = max(0, z) + α ·min(0, z). The most com-
mon is the leaky ReLU that fixes α = 0.01 (Maas et al., 2013). The ReLU unit
and its generalization works well on the principle that models are easier to
optimize if their behavior is closer to linear (I. Goodfellow et al., 2016). De-
spite ReLU units are a good default choice other types of hidden units are
available.

Prior to the introduction of ReLU, most NNs used the sigmoid function
(logistic function):

g(z) = σ(z) =
1

1+ e−z
, (31)

or the hyperbolic tangent:

g(z) = tanh(z). (32)

These functions where natural choices in binary classification, since they
can be easily used to predict the probability that a binary variable is 1. As
shown by Glorot, Bordes, et al. (2011), the ReLU outclasses the sigmoid in

3.3 loss function and backward propagation 17

the training of deeper NNs. Sigmoidal units, in fact, are strongly sensitive
to their input when z is near 0 and moreover they saturate across most of
their domain. This can slow down a lot the learning, and their use is not
recommended in the inner layers (at least in Feedforward DNNs).

Other possible choices are:

• Linear: One possibility is not to have an activation g at all. We can use
the identity function as the activation function. This can be useful in
the output of a NN (like in the NN trained in chapter4)

• Softplus: smooth version of the ReLU g(z) = log(1 + ez). Conter-
inuitively, Glorot, Bordes, et al. (2011) showed also that, despite its
differentiation problems, ReLU beats its smooth counterpart: the Soft-
plus is differentiable everywhere and saturate less, but empirically the
ReLU performs better.

• Softmax: units that represent a probability distribution over a discrete
variable with k possible values. These are the natural choice for multi-
ple classes classification, but in more advanced architecture that learn
to manipulate memory (Google Inception and GoogLeNet) they are
used in the inner layers to also avoid vanishing gradients (I. Goodfel-
low et al., 2016).

3.2.4 Architecture Design

We can design NNs as the one described in 3.2 simply by stacking neurons
layer after layer. In this case, the main considerations are the choice of the
depth of the NN L and the width of each layer. Usually, deeper models tend
to perform better I. J. Goodfellow et al., 2013 and with the use of far fewer
units per layer can generalize better to the test set but also tend to be harder
to optimize (I. Goodfellow et al., 2016). Therefore, the ideal NN architecture
for a task must be found via experimentation by monitoring the validation
set loss.

3.3 loss function and backward propaga-
tion

In supervised learning, we know the labels of our training data a priori;
this is used to quantify the robustness of our network for predicting seen
and unseen data. We want to measure the inconsistency between predicted
value ŷ and actual label y for all the examples in the dataset and find the
values of w that minimize this inconsistency but at the same time are able
to generalize to unseen data. This is represented as:

w∗ = argmin
w

J(w) + λ ·Φ(w)

= argmin
w

1

m

m∑
i=1

L(y(i), ŷ(i)) + λ ·Φ(w)

= argmin
w

1

m

m∑
i=1

L(y(i), hw(x(i))) + λ ·Φ(w),

(33)

18 deep learning

where Φ(w) is the regularization term, λ a regularization parameter, w the
parameter to be learned and J(w) the loss function. Leaving the regular-
ization term for now, the output of a DNN will be some hw(x) depending
on the final activation function and J(w) on how we want to measure the
performance P on the task. Usually, in regression problems the standard
performance measure is the mean squared error (MSE):

J(w) =
1

m

m∑
i=1

(
y(i) − ŷ(i)

)2
, (34)

where
(
y(i) − ŷ(i)

)
is named residual.

It can be shown that minimizing the MSE yields the same estimate of max-
imizing likelihood estimation with respect to w (I. Goodfellow et al., 2016.
This entails that the minimization of MSE has the same benefits of a maxi-
mum likelihood estimator: one of the most appealing is that as the number
of examples m→∞, the rate of convergence of a maximum likelihood esti-
mator increases and moreover the estimate of a parameter converges to the
true value of the parameter (under some conditions).

The regularization termΦ(w) is a term added to the loss function in order
to avoid overfitting. It is a modification to a ML algorithm that is intended
to improve the ability of the algorithm to generalize to new data while not
reducing its training error. Usually updates on the regularization term are
done checking the performance of the ML on the validation set during each
training step.

3.3.1 Linear Regression Model

The simplest ML algorithm we can think of is the linear regression model.
The task T , as the name implies, is to solve a regression problem. Given
a vector x as input we want to predict the value y ∈ R as its output. The
output of the model will be:

ŷ = wTx, (35)

where w ∈ Rn is the set of weights. As before, we included the bias in
w0 with x0 = 1. This problem can be easily resolved with a single neuron
without an activation function. In fact, the vector z of features is exactly
the input of the linear model and without applying an activation function.
So the ŷ = hw(x) = g(z) = z = wTx is the prediction for the value y. As
any ML algorithm we have to train on a same dataset X provided with a
vector of labels y then improve w improve w by reducing the performance
measure P, e.g., by minimizing the MSE. Even if the regression problem has
an analytical solution (the system of normal equations) we show here an
algorithm to improve the weights that can be generalized to more complex
NNs called backward propagation.

3.3.2 Backward Propagation

When we use a feedforward NN to accept x and produce an output ŷ, infor-
mation flows forward through the network in the so called forward propa-
gation. During the training, forward propagation goes on until it produces
an output from which we calculate the loss J(w). The backpropagation algo-
rithm (Rumelhart et al., 1986), or backward propagation or simply backprop,

3.3 loss function and backward propagation 19

allows the information of the cost function to flow backward through the
network in order to compute the gradient of J with regards to w. Backprop
computes the gradient ∇wJ(w), while another algorithm such as gradient
descent is used to perform learning using this gradient.

The backprop simply computes the chain rule of calculus with a specific
order of operations that is highly efficient. Suppose that x ∈ Rm, y ∈ Rn, g
maps Rm to Rn and f Rm to R. If z = f(g(x)), then

∇xz =

(
∂y
∂x

)T
∇yz, (36)

where ∂y
∂x is the n×m Jacobian matrix g. Since we usually work with tensors

of arbitary dimensions in DNN we have to extend this concept to tensors.
We can merely imagine to flatten each tensor into a vector before we run
back-propagation then reshaping the gradient back into a tensor.

The backprop algorithm applies recursively the chain rule: in a fully con-
nected MLP (like the one explained in section 3.2) this computation yields
the gradient on the activations a(k) for each layer k, starting from the output
layer and going backwards to the first hidden layer. From these gradients,
which can be interpreted as an indication of how each layer’s output should
change to reduce the loss, one can obtain the gradient on the parameters
of each layer. The gradients on weights can be immediately used as part
of a stochastic gradient descent or other optimization methods (see next
section). This can be generalized with some precautions to any NN. For a
simple example, in linear regression with two weights, the update rule will
be:

wj := wj − η
∂

∂wj
J(w1, w2), (37)

for j ∈ [1, 2] and η the learning rate.

Using the MSE as J(w) we get:

∂

∂wj
J(w0, w1) =

∂

∂wj
· 1
2m

m∑
i=1

(hw(x
(i)) − y(i))2

=
∂

∂wj

1

2m

m∑
i=1

(w0 +w1x
(i) − y(i))2

j = 0 :
∂

∂w0
J(w0, w1) =

∂

∂w0
J(w0, w1) =

1

m

m∑
i=1

(hw(x
(i)) − y(i))

j = 1 :
∂

∂w1
J(w0, w1) =

1

m

m∑
i=1

(hw(x
(i)) − y(i)) · x(i)

(38)

Now, it’s trivial to compute the update rule in 37. In linear regression J(w)

is always a convex function so it has always one global optima, therefore the
convergence is guaranteed. Instead, in typical NNs and also in our work,
the numbers of weights is ∼ 10

6−7 meaning a high nonlinearity that causes
complex and nonconvex loss functions. Therefore, iterative, gradient based
method are always implemented. We drop the notation with single weights
wi preferring to group all the gradients. Henceforth, we will indicate the
gradient of the loss function with respect to the weights as ∇wJ(w).

20 deep learning

3.3.3 Gradient descent

There are three variants of gradient descent, which differ in how much data
is chosen to compute the gradient of the cost function. Depending on the
amount of data, we make a trade-off between the accuracy of the parameter
update and the time it takes to perform an update.

batch gradient descent Batch gradient descent (BGD), computes the
gradient of the loss function with regard to the weights for the entire train-
ing dataset:

w := w − η · ∇wJ(w), (39)

where η is called learning rate which is a hyperparameter that has to be
tuned. BGD is very reliable but, as we need to compute all the gradients for
the whole dataset only to perform one update, BGD can be very slow. We
can upgrade BGD with the Scochastic Gradient Descent.

stochastic gradient descent Stochastic gradient descent (SGD) in con-
trast to BGD performs a parameter update for each training example x(i)

and label y(i):

w := w − η · ∇wJ(w; x(i); y(i)). (40)

BGD is slow since it performs redundant computations for large datasets,
as it recomputes gradients for similar examples before each parameter up-
date. Instead, SGD performs one update at a time. It’s also a lot faster
than BGD but fluctuate heavily (Ruder, 2016). This can be a pro if the pa-
rameters are set to a bad local minimum: BGD converges to this minimum
instead SGD can jump to a new and potentially better local minimum. The
evident downside is the difficulty to converge to an exact minimum due to
the continuous overshooting. However, Ruder (2016) has shown that when
we slowly decrease the learning rate, SGD shows the same convergence as
BGD, converging to a local or the global minimum for non-convex and con-
vex optimization respectively.

mini-batch gradient descent Mini-batch gradient descent performs an
update for every mini-batch of n (with n < m) training examples:

w := w − η · ∇wJ(w; x(i:i+n);y(i:i+n)). (41)

The advantage of this gradient descent is double: firstly, it reduces the
variance of the parameter updates, hence a more stable convergence. Sec-
ondly, usually deep learning libraries (keras in our case) have already im-
plemented highly optimized matrix optimizations that make computing the
gradient with regard to a mini-batch very efficient.

I’ll explain in the next subsection the different optimizers used for this
work.

3.3.4 Optimizers

Let’s see first momentum.

3.3 loss function and backward propagation 21

momentum Momentum is a method that helps accelerate the SGD in the
relevant direction (Qian, 1999) by adding a fraction γ of the update vector
of the past step to the current update vector:

vt = γvt−1 + η · ∇wJ(w) (42)

wt+1 := wt − vt. (43)

The idea is that as we go down towards the minimum the momentum in-
creases and so the the parameter updates. As a result, we gain faster con-
vergence and reduced oscillation. Let’s see now different optimizers that
expand the concept of momentum and simple gradient descent.

adagrad Adagrad (Duchi et al., 2011) is an algorithm for gradient-based
optimization that adapts the learning rate to the parameters, performing
smaller updates (i.e. low learning rates) for parameters associated with fre-
quently occurring features, and larger updates (i.e. high learning rates) for
parameters associated with infrequent features. We use different learning
rate for every parameter wi at every step t, so that the gradient gt at step t
will be:

gt,i = ∇wJ(wt,i). (44)

The SGD update for every parameter wi at each step t becomes:

wt+1,i = wt,i − η · gt,i. (45)

Adagrad corrects the update rule by the diagonal matrix made of the sum
of the squares of the gradients with regards to Wi up to the step t, i.e. :

wt+1,i = wt,i −
η√

Gt,ii + ε
· gt,i, (46)

where Gt ∈ Rd×d is the diagonal matrix where each diagonal element
Gt,ii is s the sum of the squares of the gradients with regards to wi and ε
is a smoothing term that avoids division by zero. It is now straightforward
to vectorize the implementation by performing the matrix vector product
between Gt and gt:

wt+1 = wt −
η√

Gt + ε
gt. (47)

One of Adagrad’s main benefits is that it eliminates the need to manually
tune the learning rate. Most implementations use a default value of 0.01

and leave it at that. Adagrad’s main weakness is its accumulation of the
squared gradients in the denominator: Since every added term is positive,
the accumulated sum keeps growing during training. This in turn causes
the learning rate to shrink and eventually become infinitesimally small, at
which point the algorithm is no longer able to acquire additional knowledge.
The following algorithms aim to resolve this flaw.

adadelta Adadelta (Zeiler, 2012) is an extension of Adagrad that seeks
to reduce its aggressive, monotonically decreasing learning rate. Instead of
accumulating all past squared gradients, Adadelta restricts the window of
accumulated past gradients to some fixed size W. Instead of inefficiently
storing W previous squared gradients, the sum of gradients is recursively

22 deep learning

defined as a decaying average of all past squared gradients. The running
average E[g2]t at step t then depends (as a fraction similarly to the Momen-
tum term) only on the previous average and the current gradient:

E[g2]t = γE[g
2]t−1 + (1− γ)g2t . (48)

We set γ to a similar value as the momentum term, around 0.9. Now, we
can rewrite our SGD update in terms of the parameter update vector ∆Wt:

∆wt = −η · gt,i
wt+1 := wt +∆wt.

The parameter update vector of Adagrad that we derived previously thus
takes the form:

∆wt = −
η√

Gt + ε
gt. (49)

We now simply replace the diagonal matrix Gt with the decaying average
over past squared gradients E[g2]t:

∆wt = −
η√

E[g2]t + ε
gt. (50)

As the denominator is just the root mean squared (RMS) error criterion of
the gradient, we can replace it with the criterion short-hand:

∆wt = −
η

RMS[g]t
gt. (51)

Zeiler (2012) note that the units in this update (as in SGD, Adagrad and
momentum) do not match. In order to fix this, we can define another expo-
nentially decaying average:

E[∆w2]t = γE[∆w
2]t−1 + (1− γ)∆w2t . (52)

The RMS of parameter updates is thus:

RMS[∆w]t =
√
E[∆w2]t + ε. (53)

Since RMS[∆w]t is unknown, we approximate it with the RMS of param-
eter updates until the previous step. Replacing the learning rate η in the
previous update rule RMS[∆w]t−1 finally yields the Adadelta update rule:

∆wt = −
RMS[∆w]t−1
RMS[g]t

gt

wt+1 = wt +∆wt

With Adadelta, we do not even need to set a default learning rate, as it has
been eliminated from the update rule.

rmsprop RMSprop is an unpublished, adaptive learning rate method pro-
posed by Geoff Hinton in Tieleman and G. Hinton, 2012. Both RMSprop and
Adadelta were developed in order to resolve Adagrad’s radically diminish-

3.3 loss function and backward propagation 23

ing learning rates. RMSprop in fact is identical to the first update vector of
Adadelta that we derived in the previous paragraph:

E[g2]t = 0.9E[g2]t−1 + 0.1g2t

wt+1 := wt −
η√

E[g2t + ε
gt.

RMSprop as well divides the learning rate by an exponentially decaying
average of squared gradients. Hinton in [Tieleman and G. Hinton, 2012]
suggests γ to be set to 0.9, while a good default value for the learning rate
η is 0.001.

adam Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) is
another method that computes adaptive learning rates for each parameter.
Like Adadelta and RMSprop, it stores an exponentially decaying average of
past squared gradients vt, but in addition Adam also keeps an exponentially
decaying average of past gradients mt, similar to momentum. Whereas mo-
mentum can be seen as a ball running down a slope, Adam behaves like a
heavy ball with friction, which thus prefers flat minima in the error surface.
We compute the decaying averages of past and past squared gradients mt
and vt respectively as follows:

mt = β1mt−1 + (1−β1)gt

vt = β2vt−1 + (1−β2)g
2
t ,

where mt and vt are estimates of the first momentum and the second mo-
mentym of the gradients respectively. The authors of Adam observe that,
since mt and vt are initialized as vectors of zeros, they are are biased to-
wards zero, especially during the initial steps, and especially when the de-
cay rates are small (i.e. β1 and β2 are close to 1). A way to counter these
biases is by computing bias-corrected first and second moment estimates:

m̂t =
mt

1−βt1

v̂t =
vt

1−βt2

They then use these to update the parameters just as we have seen in
Adadelta and RMSprop, which yields the Adam update rule:

wt+1 = wt −
η√
v̂t + ε

m̂t. (54)

The values proposed by the authors are 0.9 for β1, 0.999 for β2 and 10
−8 for

ε.
In the next chapter, we apply these various optimizers to our training set
and tested the impact on the performance of our neural network (see sec-
tion4.2.4).

3.3.5 Other NNs parameters

In the next chapters, we will refer sometimes to these words:

24 deep learning

epochs An epoch describes the number of times the algorithm sees the
entire dataset. So, each time the algorithm has seen all examples in the
dataset, an epoch has been completed. If the global minimum of the cost
function is not found, usually increasing the number of epochs (with the
right optimizer) can help minimizing the loss function.

batch size The number of training examples in one forward/backward
pass. The higher the batch size, the more memory space you’ll need. When
the batch size is equal to the number of examples in the training dataset we
have usual batch gradient descent.

dropout A regularization technique consisting in setting a random frac-
tion ε of neurons inactive during the training. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not
participate in back- propagation. So every time an input is presented, the
neural network samples a different architecture, but all these architectures
share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. In
fact, during the training the gradient received by each weight tells it how
it should change so the final loss function is reduced, given what all other
units are doing. In this way, units may change in a way that they fix up the
mistakes of the other units. This in turn leads to overfitting because these
co-adaptations do not generalize to unseen data. If we leave some units
dropped during the training a hidden unit, therefore, is forced to learn
more robust features since it cannot rely on other specific units to correct its
mistakes. (G. E. Hinton et al., 2012).

3.4 convolutional neural network
Modern Convolutional Neural Networks (LeCun, Boser, et al., 1989), or
CNNs are a specialized kind of NN for processing data that has a known
grid-like topology (arrays of pixels, time series data). In all aspect they
are very similar to ordinary NNs. They are composed of weights and biases,
each neuron takes some input, perform a dot product and follows optionally
with some non linearity. We can express the performance of our network
with a loss function on the last layer and all the tricks and statement made
for regular NNs still apply here. So why we use them? And why they work?

Since the winning of 2012 ImageNet competion by the Deep Convolu-
tional Neural Network AlexNet (Krizhevsky et al., 2012), CNNs have been
successfully applied to a larger variety of computer vision tasks, e.g. object
detection (Girshick et al., 2014), video classification (Karpathy et al., 2014),
object tracking (Wang and Yeung, 2013). It was a natural step to have also
the astrophysics community to make use of CNNs. They provide the best
ML algorithm in image processing.

Regular NNs usually receive as input a single vector and transform through
some series of hidden layers to an output (a number). These NNs are still
amazing, working with numbers, words and more generally input vector
with a "small" size. But these don’t scale well with images. Let’s make
some examples: the classical MNIST dataset is composed of 28x28 pixels
greyscale images. So a single fully-connected neuron in a first hidden layer
of a regular NN would have 28x28=784 weights. This is a small amount for
todays standard, but if we want to work (and we do) with bigger images,

3.4 convolutional neural network 25

maybe 3-channel RGB, a single neuron will have a huge amount of weights.
The simulations descripted in 4.1 are 512x512 pixels big. This would lead
to 262144 weights for a single neuron. And obviously we want more than
a single neuron, this will lead quickly to a huge number of parameter and
overfitting.

3.4.1 Convolution Operation

The convolution is usually denoted as:

s(t) = (x ∗w)(t)
∫
x(a)w(t− a)da, (55)

where w(a) is a weighting function and x(t) a function of some variable
t. In CNN terminology the first argument x is referred to as input and
the second one w as kernel or filter. The output s is referred sometimes as
feature map. In realistic application, we work with discretized data on a
computer so the t can take only integer values. Therefore, the convolution
operation becomes:

s(t) = (x ∗w)(t) =
∞∑

a=−∞ x(a)w(t− a). (56)

In ML applications, the input is a multidimensional array of data (e.g. a
set of images in RGB channels). Since each element of the input and ker-
nel must be stored separetely, we can assume that these functions are zero
everywhere but in the finite set of points for which we store the values.
In practice, we can implement the infinite summation as a sum over finite
number of array elements.

If the input is a 2D image (one channel) the convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j−n). (57)

Many Deep Learning libraries implement a related function called cross-
correlation:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j+n)K(m,n), (58)

calling it wrongly convolution.
The convolution operation applied to NNs uses three important ideas

that improve tremendously their performance: sparse interactions, parame-
ter sharing and equivariant representations (I. Goodfellow et al., 2016). Fur-
thermore, from a computational point-of-view convolution reduces the size
of the inputs to a workable size.

In the NNs described in section 3.2 every output unit interacts with every
input unit. CNNs, instead, have sparse interactions (also referred to sparse
weights). This is accomplished by making the kernel smaller than the in-
put. For example, in processing an image, the input image can be 256×256

pixels, but we can detect features such as edges with kernels of size 3×3.
It follows that to find meaningful features storing fewer parameters, which
both reduces the memory requirements of the model and improves its sta-
tistical efficiency. Moreover, computing the output of a convolutional layer
requires fewer operations: O(n× k) instead of O(n× n) runtime per exam-

26 deep learning

Figure 8: Effect of convolution with one kernel of size k = 3 on a 7×7 pixels image.
Note the size of the output is 5×5 pixels big.

ple in the matrix multiplication. Usually k is of several orders of magnitude
smaller than n, reducing the runtime drastically.

Furthermore, CNNs share parameter: when fixing the weights of the ker-
nel in a convolutional layer, each element in the weight matrix is used ex-
actly once when computing the ouptut of the layer. The parameter sharing
used by the convoltuion means that rather than finding and learning the
optimal set of weights for every location, the algorithm learns only one set.
At the same time, this does not affect the runtime of forward propagation
(still O(n× k))

3.4.2 Convolution

In practice, when we talk of convolution in a CNN, we mean many applica-
tions of the convolution operation in parallel. Since, one kernel can extract
only one kind of feature, we run multiple convolutions in the same layers
to extract many features at many locations. Additionally, we use "deep"
CNN: we stack convolutional layer after convolutional layer, meaning that
the input in the inner layers is not just a grid of real values (pixels of an
image). For example, working with images, we usually think of the input of
the convolution as a 3D tensor (width, lenght, channel) V with Vi,j,k giving
the value of the input unit within channel i at row j and column k. The ker-
nel tensor will be K with element ki,j,k,l giving the connection "strength"
between a unit in channel i of the output and a unit in channel j of the
input with an offset of k rows and l columns between the output unit and
the input unit. The output of the convolution will be a tensor Z:

Zi,j,k =
∑
l,m,n

Vl,j+m−1,k+n−1Ki,l,m,n.

The important result is that the result of a convolution of an image is a
new image with shrinked size (n− k+ 1)× (n− k+ 1) where k is the size
of the kernel and n the width of the input image. The depth, or number
of "channels", is equal to the number of convolutional kernels we decided
to use. If we want to reduce even more the computational cost, we may

3.4 convolutional neural network 27

want to skip the filter every s pixels of the input image. This downsampled
convolution function will be:

Zi,j,k = c(K,V, s)i,j,k =
∑
l,m,n

[
Vl,(j−1)×s+m,(k−1)×s+nKi,l,m,n

]
. (59)

We refer to s as the stride. Effectively, the stride reduces the size of the
output image to:

n− k

s
+ 1× n− k

s
+ 1.

Not only, any CNN implementation has the ability to implicitly pad the
input V to make it wider by adding p layers of constant pixels on the border
during the convolution. This is done because during the convolution the
outer pixels are considered fewer times than the central ones. With padding
p the size of the output image will be:

n+ 2p− k

s
+ 1× n+ 2p− k

s
+ 1. (60)

Padding let us control the kernel width and the size of the output inde-
pendently, without being forced to choose between shrinking the spatial
representation or using small kernels. In software implementation (Keras in
our work) we give as input also all the images in the batch, so that the input
is effectively a 4D tensor. For simplicity, we omitted the batch "axis" in the
previous description.

3.4.3 Pooling layers

It’s common practice to insert a pooling layer in between successive convo-
lutional layers in a CNN. Typically a layer of a CNN consist in the several
convolutions in parallel producing a set of linear activations, then each lin-
ear activation is run through a nonlinear function (typically a ReLU) then
we use a pooling function to modify the output even further. For example
the max pooling (Zhou and Chellappa, 1988) operation takes the maximum
value over a m×m neighbourhood. Like the convolutional layers, we can
fix a value s for stride and f for the filter size. Typical values are f = 2 and
s = 2, so that we are left out with an output image with exactly half the
size of the input image (fig. 9). This not only reduces the number of param-
eters but also progressively reduces the spatial size of the representation,
and hence reduce overfitting. Moreover, pooling helps to make the repre-
sentation approximately invariant to small translations of the input. This is
very important if we care more about whether some feature is present than
exactly where it is.

28 deep learning

Figure 9: Max pooling layer with stride 2 and filter size 2.

4 M E T H O D S

In this chapter we explain the gas simulations and the convolutional neural
network that make use of them for training. The simulations were carried
out with the hydrodynamic code RAMSES, instead the training and imple-
mentation of the CNN with the neural network library Keras.
In the first section we explain briefly the characteristics of the gas simula-
tion. In the second section we describe the preprocessing of the dataset, the
hyperparameter optimization and the training of the CNN.
The predictions of the CNN are discussed in the next chapter.

4.1 simulations
In the framework of my thesis, we decided not to simulate realistic MCs.
The main ingredient of the simulation is gas with a turbolent velocity field
without self-gravity. The simplicity of our simulations is needed for running
a lot of different simulation in a considerable amount of time. Furthermore,
as a proof-of-concept, the simplicity of the simulations is good to prove that
we can infere physics with DL. In future, self-gravity and other physical in-
gredients can be added.
To simulate the turbulent gas, we used RAMSES1 (Teyssier, 2002), an Adap-
tive Mesh Refinement code for self-gravitating magnetized fluid flows.

4.1.1 RAMSES

RAMSES was developed first to study large scale structure and galaxy for-
mation. It is written in Fortran 90 with extensive use of the MPI library. This
code is a grid-based hydro solver with adaptive mesh refinement. It is now
used for general purpose simulations in self-gravitating fluid dynamics.

4.1.2 Initial conditions and physical setup

Initially, the simulation box (side of size 10 pc) is completely filled with gas
with uniform density (6.77 ×10−22 g/cm3) corresponding to a total mass of
104M� in the box. The gas is at the same temperature T = 10K. We then
injected a divergence free (∇ · v = 0) turbulent, mildly supersonic (Mach
number M =

√
2) velocity field with different values of n from 3.0 to 4.5,

where n is the dependance of the power spectrum Ψ(k) on the scale k as
defined in equation 21.

Furthermore, Ek/Eth = (v/cs)
2 = 2, i.e. the gas is supersonic. Then,

we let the system evolve for 0.5 Myr with an isothermal EoS with γ = 1

(see eq 7), solving the Euler’s equation described in section 2.2 with a Lax-
Friedrichs Riemann Solver and no self-gravity. For each simulation, we take
snapshots of the density from three different perpendicular directions. An
example of these snapshot for n = 3.7650 can be seen in fig. 10 and 11.

1 https://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html

29

https://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html

30 methods

Table 1: Simulation parameters

Parameters Values

Mass (M�) 10
4

Box size (pc) 10

Density (g/cm3) 6.77 ×10−22
Temperature (K) 10

Sound speed (km/s) 0.1
Equation of State Isothermal

The black in the images corresponds to a columns density of 5×10−4g/cm2
and the white to a 3× 10−2g/cm2. Pixels intensity values are normalized to
1 in order to work with small values to speed up the training. The density
to pixel intensity transformation is linear, meaning that a pixel of intensity I
corresponds to a column density 5× 10−4 + I · (3× 10−2 − 5× 10−4)g/cm2.

4.1.3 Refinement strategy

RAMSES is an Adaptive Mesh Refinement (AMR) code. Mesh refinement
enables us to have more resolution on the regions that are more physically
meaningful while leaving the lowest resolution in the less important regions.
Therefore, we can have a good resolution saving computational resources
and time. We chose the refinement criteria based on gradients of the flow
variables q (pressure, density, Mach number . . .). Especially, for each cell i,
the gradient of the i− th variable q is computed using the 2 x dim neighbor-
ing cells. If this gradient, times the local mesh spacing, exceeds a fraction of
the central cell variable:

∇qi > (∇q)lmax = Cq
qi
∆xl

(61)

then the cell is refined (Teyssier, 2002). Cq is a free parameter. As refinement
criterion, we choose the velocity gradient with Cq = 1.35. We adopted
this fixed value for all simulations, after testing that this choice allowed to
resolve effectively the turbulence for all values of n with a high enough
number of cells. We set the minimum and maximum refinement levels as 5

and 8 respectively. This means that the spacial resolution of 1/(25) = 1/32 of
the box side (0.3 pc) for the least resolved cells and a resolution of 1/(28) =
1/256 of the box side (0.04 pc) for the most resolved ones.

4.2 neural network training
In section 3.4, we provided reasons why CNNs are one of the best ML
algorithm for image processing. Now, we want to build a CNN to predict
the power spectrum index n.

4.2.1 Preprocessing Data

The performance of a NN improves increasing the number m of examples.
Furthermore, a CNN has fewer parameters than a MLP but still of the order
of 106−7. If we don’t show enough examples, the model will inevitably
overfit the dataset. Since, running hydrodynamic simulations can be very

4.2 neural network training 31

Figure 10: Top, central and bottom panels show density snapshot for n = 3.7650

seen from 3 different direction (x, y, z axes respectively).

32 methods

Figure 11: Examples of a projected density map from a RAMSES simulation for n
equal to 3.6399 (top panel) and 4.4553 (bottom panel).

4.2 neural network training 33

time and computational expensive, we can augment m synthetically with
some minor transformations. Before the augmentation, we exploited the fact
that the gas simulations have periodic boundary conditions: the properties
on one side of the box are the same on the opposite side for each side of
the box. The gas on the side is interacting with the one on the opposite
side. This means that we can craft an image made with 4 copies of the same
simulation that has a bigger dimension (see 12). Cropping a portion of this
image with same size of the original simulation (1000×1000 pixels) yields a
"new" simulation, i.e. the gas structures have a different spatial orientation
from the original simulation.

4.2.2 Augmentor

To perform the data augmentation we used the python library Augmentor2.
Augmentor samples every time a different cropped section of the collage
large 1000X1000 pixels. Then we set a probability of 0.5 of horizontal re-
flections, 0.5 of vertical reflections, 0.5 of 90-degrees rotations on this crop
section. With this process we artificially enlarge our dataset from 240 (cor-
responding to 80 different indexes) images to 20000. The number combina-
tions of cropping plus reflections and rotations, guarantes that we do not
have two identical examples in our training dataset.

4.2.3 Choice of the architecture

We chose to work with a CNN for all the reasons stated in section 3.4.
To implent the CNN we used Keras, a NN library written in Python. It

runs on top of TensorFlow, an open-source software library developed by
Google. Keras allows use of distributed training of deep learning models
on clusters of GPUs.

Our CNN is composed by: two convolutional layers with 32 filters each
then a MaxPool layer followed by other two convolutional layers then an-
other MaxPool then a fully connected layer then the output. The convolu-
tional filters are 5×5 pixels big with "same" padding (that results in padding
the input such that the output has the same length as the original input).
The exact structure is as follows:

• Two 5× 5 convolutional layers with 32 filters and same padding result-
ing in a 128× 128× 32 output.

• A max pooling layer with 2× 2 filter size and stride 2, resulting in an
64× 64× 32) output.

• A dropout layer with 33% ratio of dropped units.

• Two 5× 5 convolutional layers with 64 filters and same padding result-
ing in a 64× 64× 64 output.

• A max pooling layer with 2× 2 filter size and stride 2, resulting in an
32× 32× 64) output.

• A dropout layer with 33% ratio of dropped units.

• A fully connected layer with 1024 neurons and ReLU activation.

• A single neuron with a linear activation with RSE loss as cost function.

34 methods

Figure 12: Example of a collage of the same simulation (n = 4.0189). Note that the
border of the collage can be see only with a careful analysis.

Table 2: CNN architecture: the filter size of the convolutional and max pooling lay-
ers is displayed also with the output of the layer. The final column corre-
spond to the number of parameters of that specific layer.

Layer name Filter size Output size Parameters

Convolution 5× 5 128× 128× 32 832

Convolution 5× 5 128× 128× 32 25632

MaxPool 2× 2 64× 64× 32
Convolution 5× 5 64× 64× 64 51264

Convolution 5× 5 64× 64× 64 102464

MaxPool 2× 2 32× 32× 64
Flatten 1× 1× 65536
Dense 1 1024 1× 1× 1024 67109888

Dense 2 1 1 1025

4.2 neural network training 35

Table 3: Impact of batch size and Optimizer on training and validation final loss
measured by MSE times 10

−2 (respectively left and right value in the brack-
ets)

Optimizers Batch size
32 64 128 256

AdaDelta [0.87 2.50] [1.40 0.70] [2.79 0.97] [6.03 6.07]
AdaGrad [2.23 18.6] [2.63 3.54] [9.20 70.7] [5.16 270.8]
RMSProp [1.13 2.24] [1.57 0.79] [3.28 3.61] [5.27 3.72]

Adam [0.48 0.58] [0.54 0.33] [0.72 0.60] [1.89 1.66]

We chose ReLU units, because CNN with ReLUs train several times faster
than their equivalents with tanh or sigmoid units (Krizhevsky et al., 2012).

The final number of parameters to be trained is 67,291,105. Note that
almost all of parameters are in the first fully connected layer. Optimization
on the width of this layer can lead to a faster training.

4.2.4 Optimizers and batch size impact

We trained our NN on the augmented dataset (see 4.2.2) with a NVIDIA
Titan V GPU. We used a validation split on the dataset of 0.2 meaning that
every epoch 1/5 of the training set is left for validation (4000 images). The
validation set is picked at random every epoch, in this way we are not intro-
ducing any bias on the validation indexes. For the training and validation
set split we used a built-in option of Keras for splitting the training set.
Before seeing its performance on the test set we compare four optimizers:
AdaDelta, AdaGrad, RMSprop and Adam (see section 3.3.4 for a complete
discussion). For each optimizers, we train the CNN for a 100 epochs with
different batch size (32, 64, 128, 256). The loss evolution is displayed in fig.
13. The differences are not extreme but we can notice how RMSProp and
AdaGrad underperform with respect to AdaDelta and Adam for almost all
batch size. As expected (I. Goodfellow et al., 2016), almost all optimizers
have a better performance with small batch size. This high accuracy is ob-
tained at the cost of computational speed since we have to compute more
gradients, (note that larger batch size implies fewer gradients but is more
"expensive" in terms of memory space). The final training and validation
losses are shown in table 3. Note also that the Adam optimizer is the most
robust to the batch size change, yielding comparable results with different
sizes.

Due to this preliminary test, we decided to utilize the Adam optimizer
with a batch size of 64 since it is a good trade-off between small loss and
reasonable computational speed.

4.2.5 Training

For the final training of our CNN, we trained it for 1000 epochs with a 0.2
validation split and using the mean squared error as loss function. The
evolution of the training and validation loss is shown in figure 14. The final
training and validation loss is 2.15 ×10−3 and 3.60×10−2.

2 https://github.com/mdbloice/Augmentor

https://github.com/mdbloice/Augmentor

36 methods

Figure 13: Comparison of the training loss evolution with different optimizers for
batch size of 32, 64, 128, 256 images (blue, orange, green and red line
respectively).

At this point of our work, the CNN never saw the test set composed
of 60 simulations corresponding to 20 different turbulence indexes. The
predictions on the test set are shown in the next chapter.

4.3 a comparison baseline
As a baseline for comparison for our results we used a linear model trained
on standard computer vision features known as Histograms of Oriented
Gradients [HOG; Freeman and Roth, 1994]. HOG is a feature descriptor
widely used in image processing for object detection (e.g. pedestrian de-
tection for self driving cars, face detection, etc...). This method divides an
image into rectangular cells and counts occurrences of intensity gradient
orientation along specified directions. The number of directions and cells
used determines the number of features produced, each feature being a nu-
meric value used as a descriptor of the image. We used the R language
implementation of HOG in the OpenImageR library with 5× 5 cells and 6
orientations, resulting in 150 features per image. On these features corre-
sponding to the training set images we trained a linear model to predict the
turbulence index. This model was then used to make predictions on the
features corresponding to the test set image. The predictions are shown in
the next chapter.

4.3 a comparison baseline 37

Figure 14: Evolution of the training loss (solid blue line) and the validation loss
(solid red line) for 1000 epochs. Note the more noisy nature of the vali-
dation loss. A big gap from the two lines means that the network is not
able to generalize its prediction on the validation data.

5 R E S U LT S A N D D I S C U S S I O N

The central challenge of our work and in general in any ML problem is
that our algorithm must perform well on new, unseen data. This ability
to perform well on previously unobserved inputs is called generalization.
In the first section, we show the predictions of the CNN described in the
previous chapter on unseen simulations and then compare its predictions
with the baseline prediction made with an HOG. We show that the CNN
outperforms the HOG.
In the second section, we discuss the limits of this method.

5.1 predictions on unseen simulations
We fed the CNN, described in section 4.2, 60 simulations made with the
same ingredients of the training simulations (see section 4.1) then we com-
pared the output with the prediction of the HOG on the same simulations.
The 60 images correspond to 20 simulations with different turbulence index
seen from three different perpendicular directions. On this set, we did not
perform any augmentation process (crop, flip, rotation). The predictions of
the CNN are shown in fig.15. The predictions of the HOG are shown in
fig.16. We chose as a performance measure the MSE: we obtained a MSE
of 0.029 for the CNN and 0.106 for the HOG. The performance of the CNN
is about one order of magnitude better than the HOG. It is interesting that
we did not perform a complete hyperparameter optimization, but we only
chose to experiment with the optimizers and the batch size. We can imagine
that a proper hyperparameter optimization can lead to even better results.

We see that points spread more towards bigger indexes. A reason could
be that simulations with bigger indexes have more big and sparse structures
(see bottom panel of figure 11). Convolutional filters of size 5× 5 maybe can
not extract the best features to acknowledge these structures. In any case,
large indexes (n>4) are not meaningful in MCs. The "hot" range is equal
and below the Burgers index, n = 4, where we can find the Kolmogorov
value, n = 3.66667.

5.2 discussion and limits

5.2.1 Discussion

The DL approach used in this thesis performs better than a linear model
trained on standard computer vision features. The features extracted with
the DL approach generalized better on unseen simulations. This confirms
the CNNs as powerful tool for image processing and feature extraction. But
more importantly, we can retrieve a physical parameter (the turbulence in-
dex) only from raw data without any data reduction. This opens a new
way to the very process of scientific inference. Usually, a theorist, in order
to make prediction from some physical theory, produces some quantitative

39

40 results and discussion

Figure 15: Prediction of the CNN on the 60 test images. Top panel: power spec-
trum indexes predicted from the CNN plotted versus the actual indexes
labeled as test indexes. Bottom panel: the residual are plotted versus the
test indexes. The vertical line at n = 3.6667 and n = 4.0 corresponds to
Kolmogorov and Burger index respectively.

Figure 16: Prediction of the HOG on the 60 test images. Top panel: power spec-
trum indexes predicted from the CNN plotted versus the actual indexes
labeled as test indexes. Bottom panel: the residual are plotted versus the
test indexes. The vertical line at n = 3.6667 and n = 4.0 corresponds to
Kolmogorov and Burger index respectively.

5.2 discussion and limits 41

model via calculation but more often with a simulation. To test the good-
ness of the model, we will be able to compare its predictions to the results of
experiments and observations. We showed here that the process of physical
inference on data, for the moment being only simulations output, can be
done with a ML algorithm, specifically a CNN trained on the output of gas
simulations. Nonetheless, this approach, for now, has some limitations.

5.2.2 Limits

unrealistic simulations: It is true that our gas simulations lack of
many physical ingredient, such as self-gravity, in order to be a realistic
model of MCs. We must stress out that this work is a proof of concept. Our
network can not produce reasonable predictions in the "real world". We do
not claim that the turbulence index predicted with this CNN on a real MC is
a reliable one. But in the next future, we can train a CNN with more realis-
tic simulations made with more physical ingredients and retrieve, in theory,
more parameters only from raw data. In any case, at the state-of-the-art it’s
not legitimate to train on simulations and use real observations as test set.
In the next future, we can train an autoencoder to quantify this "distance"
from realistic simulations or observations. An autoencoder (Ballard, 1987)
is a ML algorithm whose aim is to learn a representation (encoding) for a
dataset (simulations) by reducing its dimension then decoding the learnt
representation in order to produce an output as close as possible to the in-
put. If we train an autoencoder on our simulations and then feed a more
realistic simulations, the reconstruction error will be a measure on how far
away the training dataset is from for being realistic.

use of machine learning: NNs and in general models with more pa-
rameters than examples have the problem that tend to overfit, i.e.m to learn
too well the data on which they are trained. This can lead to a poor general-
ization on unseen inputs. Monitoring the validation error and/or adding a
regularization term (e.g.m dropout) usually takes care of this aspect. In any
case, we introduce a bias due to how the simulations are carried on (and in
general to the dataset used). But that is true for every method that relies
on simulations to make predictions. As a matter of fact, also predictions
of experiments are biased on how the experiment is made. As with any
scientific observation, there is possibility for confusion between real physi-
cal effects and deficiencies and biases in the training data and the network
architecture. Not only, prediction made from raw data via DL skip the data
reduction and cleaning process that can introduce a human bias. But predic-
tions on the output of simulations are of course different from predictions
on observations. Thus, the importance of the autoencoder.
More problems related in general of any ML algorithm and therefore also
with our CNN are the reproducibility of the results: can another scientist
find our results? Change in the software, in the GPU drivers and dataset can
lead to a different model with the same architecture. Also, weights are ini-
tialized randomly at the start of the training and the dropped hidden units
are chosen at random. This can lead to different results. A practical way
to address this problem is to run the network many times and use statistics
to evaluate the performance of the model. This can be difficult, due to the
very long training times of the bigger models. A simple alternative is to set
a seed for the generation of (pseudo)random numbers in the model. Usu-
ally, current time in milliseconds is used as seed, that ensure that different

42 results and discussion

Figure 17: Images that show example features of all eight layers on a network sim-
ilar to AlexNet (Krizhevsky et al., 2012). The complexity of the learned
features increases in higher-layers as they combine simpler features from
lower layers. Furthermore, a variation of patterns can be seen going
deeper, revealing that increasingly invariant, abstract representations are
learned. All credits to [Yosinski et al., 2015]

sequences of numbers are generated everytime the training start. Fixing a
seed takes away this unpredictability, thus making possible to replicate the
exact same training and obtaining the same result.

black box critic: DNNs extract the features they need in order to mini-
mize the loss function. This of course can lead to amazing performance but
at the same time, we do not really know what computations DNNs perform
in the hidden layers. Furthermore, DNN is a non-identifiable model, i.e.,
given a dataset and NN architecture, there can be two NNs with different
weights yielding the same result. This makes hard to understand the func-
tion we are trying to approximate with our model. Nonetheless, progresses
on visualize and understanding the learning process in the inner layers are
carried on. A way can be to visualizing and understand the activations and
layer weights in the inner layers (see figure 17).

6 C O N C L U S I O N S A N D F U T U R E
P R O S P E C T S

We have shown a proof-of-concept of reducing a scientific question (what is
the turbulence index of molecular clouds) to a supervised regression prob-
lem, which we tackled with deep learning. What singles out our work with
respect to other applications of machine learning to astronomy is the fact
that we trained our neural network models on the output of simulations.
This is a necessary step to bring the full power of machine learning tech-
niques to fruition in the astronomical field, where they are mostly confined
to the automation of tedious tasks on large datasets. Our works instead sets
the stage for automating the very process of scientific inference, by training
a neural network to recover physical parameters of interest directly from
(simulated) raw data.

Future improvements and developments could be: hyperparameter opti-
mization of the network in order to achieve better performance. We carried
out an optimization only on the optimizer and the batch size. A proper
hyperparameter optimization or even a change of architecture can lead us
to better performance. DL is in constant evolution: new architectures and
strategies in this field are found out almost everyday.

Secondly, training of a classifier on the two interesting turbulence indexes,
Kolmogorov and Burgers. More simulations can be carried out for these two
indexes, and a classifier can be trained to recover what kind of turbulence
there is simply from the simulations. This step is straightforward from our
results.

Finally and the most important, the training of an autoencoder on simula-
tions in order to quantify the error we are making using this neural network
on realistic simulation or observations: as discussed in the previous chapter
our prediction are not reliable prediction of turbulence in molecular clouds,
because they are trained on simple simulations that lack self-gravity in par-
ticular. How much our simulation differs from realistic simulation can be
investigated with an autoencoder trained on the set of simulation. If the
reconstruction error is small on a realistic simualation, the prediction made
with the neural network will not differ much from a neural network trained
with realistic simulations. This also can save a lot of computational time.

As a final remark, the approach shown here is a data-driven way to inves-
tigate a physical question (the turbulence of the gas). The advantage of this
approach is exactly its data-driven nature: the predictions made with the
neural network make no assumptions on the physics of the phenomenon.
The physical assumptions are in the making of the simulations but not in
the proper data inference.

43

B I B L I O G R A P H Y

Armstrong, DJ, J Kirk, KWF Lam, J McCormac, HP Osborn, J Spake, S
Walker, DJA Brown, MH Kristiansen, D Pollacco, et al.

2015 “K2 variable catalogue–II. Machine learning classification of vari-
able stars and eclipsing binaries in K2 fields 0–4,” Monthly Notices
of the Royal Astronomical Society, 456, 2, pp. 2260-2272.

Askar, Ammar, Abbas Askar, Mario Pasquato, and Mirek Giersz
2018 “Finding Black Holes with Black Boxes–Using Machine Learning

to Identify Globular Clusters with Black Hole Subsystems,” arXiv
preprint arXiv:1811.06473.

Ballard, Dana H
1987 “Modular Learning in Neural Networks.,” in AAAI, pp. 279-284.

Burgers, Johannes Martinus
1948 “A mathematical model illustrating the theory of turbulence,” in

Advances in applied mechanics, Elsevier, vol. 1, pp. 171-199.

Cabrera-Vives, Guillermo, Ignacio Reyes, Francisco Förster, Pablo A Estévez,
and Juan-Carlos Maureira

2016 “Supernovae detection by using convolutional neural networks,” in
Neural Networks (IJCNN), 2016 International Joint Conference on, IEEE,
pp. 251-258.

2017 “Deep-HiTS: Rotation invariant convolutional neural network for
transient detection,” The Astrophysical Journal, 836, 1, p. 97.

Champagne, Frank H
1978 “The fine-scale structure of the turbulent velocity field,” Journal of

Fluid Mechanics, 86, 1, pp. 67-108.

Davies, GR, V Silva Aguirre, TR Bedding, R Handberg, MN Lund, WJ Chap-
lin, D Huber, TR White, O Benomar, S Hekker, et al.

2015 “Oscillation frequencies for 35 Kepler solar-type planet-hosting stars
using Bayesian techniques and machine learning,” Monthly Notices
of the Royal Astronomical Society, 456, 2, pp. 2183-2195.

Duchi, John, Elad Hazan, and Yoram Singer
2011 “Adaptive subgradient methods for online learning and stochastic

optimization,” Journal of Machine Learning Research, 12, Jul, pp. 2121-
2159.

Federrath, C, J Roman-Duval, RS Klessen, W Schmidt, and M-M Mac Low
2010 “Comparing the statistics of interstellar turbulence in simulations

and observations-Solenoidal versus compressive turbulence forc-
ing,” Astronomy & Astrophysics, 512, A81.

Federrath, Christoph
2013 “On the universality of supersonic turbulence,” Monthly Notices of

the Royal Astronomical Society, 436, 2, pp. 1245-1257.

45

46 bibliography

Freeman, William T. and Michal Roth
1994 Orientation Histograms for Hand Gesture Recognition, tech. rep. TR94-

03, MERL - Mitsubishi Electric Research Laboratories, Cambridge,
MA 02139, http://www.merl.com/publications/TR94-03/.

Fukushima, Kunihiko and Sei Miyake
1982 “Neocognitron: A self-organizing neural network model for a mech-

anism of visual pattern recognition,” in Competition and cooperation
in neural nets, Springer, pp. 267-285.

George, Daniel, Hongyu Shen, and EA Huerta
2017 “Deep Transfer Learning: A new deep learning glitch classification

method for advanced LIGO,” arXiv preprint arXiv:1706.07446.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik
2014 “Rich feature hierarchies for accurate object detection and seman-

tic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580-587.

Glorot, Xavier and Yoshua Bengio
2010 “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio
2011 “Deep sparse rectifier neural networks,” in Proceedings of the four-

teenth international conference on artificial intelligence and statistics, pp. 315-
323.

Glover, SCO and M-M Mac Low
2011 “On the relationship between molecular hydrogen and carbon monox-

ide abundances in molecular clouds,” Monthly Notices of the Royal
Astronomical Society, 412, 1, pp. 337-350.

Goodfellow, Ian J, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay
Shet

2013 “Multi-digit number recognition from street view imagery using
deep convolutional neural networks,” arXiv preprint arXiv:1312.6082.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville
2016 Deep Learning, http://www.deeplearningbook.org, MIT Press.

Habart, Emilie, Malcolm Walmsley, Laurent Verstraete, Stephanie Cazaux,
Roberto Maiolino, Pierre Cox, Francois Boulanger, and Guillaume
Pineau Des Forêts

2005 “Molecular hydrogen,” in ISO Science Legacy, Springer, pp. 71-91.

Hinton, Geoffrey E, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov

2012 “Improving neural networks by preventing co-adaptation of fea-
ture detectors,” arXiv preprint arXiv:1207.0580.

Imara, Nia, Frank Bigiel, and Leo Blitz
2011 “Angular momentum in giant molecular clouds. II. M33,” The As-

trophysical Journal, 732, 2, p. 79.

http://www.merl.com/publications/TR94-03/
http://www.deeplearningbook.org

bibliography 47

Jóhannesson, G, R Ruiz de Austri, AC Vincent, IV Moskalenko, E Orlando,
TA Porter, AW Strong, R Trotta, F Feroz, P Graff, et al.

2016 “Bayesian analysis of cosmic ray propagation: Evidence against ho-
mogeneous diffusion,” The Astrophysical Journal, 824, 1, p. 16.

Karpathy, Andrej, George Toderici, Sanketh Shetty, Thomas Leung, Rahul
Sukthankar, and Li Fei-Fei

2014 “Large-scale video classification with convolutional neural networks,”
in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 1725-1732.

Kimura, Akisato, Ichiro Takahashi, Masaomi Tanaka, Naoki Yasuda, Naonori
Ueda, and Naoki Yoshida

2017 “Single-epoch supernova classification with deep convolutional neu-
ral networks,” arXiv preprint arXiv:1711.11526.

Kingma, Diederik P and Jimmy Ba
2014 “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980.

Kolmogorov, Andrey Nikolaevich
1941 “The local structure of turbulence in incompressible viscous fluid

for very large Reynolds numbers,” in Dokl. Akad. Nauk SSSR, 4,
vol. 30, pp. 299-303.

Kritsuk, Alexei G, Michael L Norman, Paolo Padoan, and Rick Wagner
2007 “The statistics of supersonic isothermal turbulence,” The Astrophys-

ical Journal, 665, 1, p. 416.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton
2012 “Imagenet classification with deep convolutional neural networks,”

in Advances in neural information processing systems, pp. 1097-1105.

Krumholz, Mark R
2015 “Notes on Star Formation,” arXiv preprint arXiv:1511.03457.

Larson, Richard B
1981 “Turbulence and star formation in molecular clouds,” Monthly No-

tices of the Royal Astronomical Society, 194, 4, pp. 809-826.

Lathuilière, Stéphane, Pablo Mesejo, Xavier Alameda-Pineda, and Radu Horaud
2018 “A Comprehensive Analysis of Deep Regression,” arXiv preprint

arXiv:1803.08450.

LeCun, Yann, Bernhard Boser, John S Denker, Donnie Henderson, Richard
E Howard, Wayne Hubbard, and Lawrence D Jackel

1989 “Backpropagation applied to handwritten zip code recognition,”
Neural computation, 1, 4, pp. 541-551.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner
1998 “Gradient-based learning applied to document recognition,” Pro-

ceedings of the IEEE, 86, 11, pp. 2278-2324.

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng
2013 “Rectifier nonlinearities improve neural network acoustic models,”

in Proc. icml, 1, vol. 30, p. 3.

McCulloch, Warren S and Walter Pitts
1943 “A logical calculus of the ideas immanent in nervous activity,” The

bulletin of mathematical biophysics, 5, 4, pp. 115-133.

48 bibliography

Minsky, Marvin and Seymour Papert
1969 Perceptron Expanded Edition.

Mitchell, Tom M et al.
1997 “Machine learning. 1997,” Burr Ridge, IL: McGraw Hill, 45, 37, pp. 870-

877.

Murray, N.
2011 “Star Formation Efficiencies and Lifetimes of Giant Molecular Clouds

in the Milky Way,” 729, 133 (Mar. 2011), p. 133, doi: 10.1088/0004-
637X/729/2/133, arXiv: 1007.3270.

Qian, Ning
1999 “On the momentum term in gradient descent learning algorithms,”

Neural networks, 12, 1, pp. 145-151.

R Core Team
n.d. R: A Language and Environment for Statistical Computing, R Founda-

tion for Statistical Computing, Vienna, Austria, https://www.R-
project.org.

Rosenblatt, Frank
1958 “The perceptron: a probabilistic model for information storage and

organization in the brain.” Psychological review, 65, 6, p. 386.

Ruder, Sebastian
2016 “An overview of gradient descent optimization algorithms,” arXiv

preprint arXiv:1609.04747.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams
1986 “Learning representations by back-propagating errors,” nature, 323,

6088, p. 533.

Schawinski, Kevin, M Dennis Turp, and Ce Zhang
2018 “Exploring galaxy evolution with generative models,” arXiv preprint

arXiv:1812.01114.

Schawinski, Kevin, Ce Zhang, Hantian Zhang, Lucas Fowler, and Gokula
Krishnan Santhanam

2017 “Generative adversarial networks recover features in astrophysical
images of galaxies beyond the deconvolution limit,” Monthly No-
tices of the Royal Astronomical Society: Letters, 467, 1, pp. L110-L114.

Schinnerer, Eva, Sharon E Meidt, Jérôme Pety, Annie Hughes, Dario Colombo,
Santiago Garcıa-Burillo, Karl F Schuster, Gaëlle Dumas, Clare L
Dobbs, Adam K Leroy, et al.

2013 “The PdBI arcsecond whirlpool survey (PAWS). I. A cloud-scale/multi-
wavelength view of the interstellar medium in a grand-design spi-
ral galaxy,” The Astrophysical Journal, 779, 1, p. 42.

Sedaghat, Nima and Ashish Mahabal
2017 “Effective Image Differencing with ConvNets for Real-time Tran-

sient Hunting,” arXiv preprint arXiv:1710.01422.

Shallue, Christopher J and Andrew Vanderburg
2018 “Identifying Exoplanets with Deep Learning: A Five-planet Reso-

nant Chain around Kepler-80 and an Eighth Planet around Kepler-
90,” The Astronomical Journal, 155, 2, p. 94.

https://doi.org/10.1088/0004-637X/729/2/133
https://doi.org/10.1088/0004-637X/729/2/133
http://arxiv.org/abs/1007.3270
https://www.R-project.org
https://www.R-project.org

bibliography 49

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich

2015 “Going deeper with convolutions,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 1-9.

Teyssier, R.
2002 “Cosmological hydrodynamics with adaptive mesh refinement. A

new high resolution code called RAMSES,” 385 (Apr. 2002), pp. 337-
364, doi: 10.1051/0004-6361:20011817, eprint: astro-ph/0111367.

Tieleman, Tijmen and Geoffrey Hinton
2012 “Lecture 6.5-rmsprop: Divide the gradient by a running average

of its recent magnitude,” COURSERA: Neural networks for machine
learning, 4, 2, pp. 26-31.

Wang, Naiyan and Dit-Yan Yeung
2013 “Learning a deep compact image representation for visual track-

ing,” in Advances in neural information processing systems, pp. 809-
817.

Wilson, BA, TM Dame, MRW Masheder, and P Thaddeus
2005 “A uniform CO survey of the molecular clouds in Orion and Mono-

ceros,” Astronomy & Astrophysics, 430, 2, pp. 523-539.

Yosinski, Jason, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson
2015 “Understanding neural networks through deep visualization,” arXiv

preprint arXiv:1506.06579.

Zeiler, Matthew D
2012 “ADADELTA: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701.

Zhou, Yi-Tong and Rama Chellappa
1988 “Computation of optical flow using a neural network,” in IEEE

International Conference on Neural Networks, vol. 1998, pp. 71-78.

https://doi.org/10.1051/0004-6361:20011817
astro-ph/0111367

A C K N O W L E D G E M E N T S

Vorrei ringraziare Michela Mapelli, per essere stata disponibile e sorridente
nonostante i mille impegni.
Grazie con tutto il cuore a Mario e Alessandro che sono stati sempre presenti
e gentilissimi. Mi avete accompagnato serenamente in questi mesi.
Grazie a mia sorella, a mio padre e Simba, ma sopratutto ringrazio i miei
amici più cari che sono stati vicini nell’ anno più buio della mia vita. Non
ce l’avrei mai fatta senza di voi. Ringrazio chi ora naviga, con me, nella
rinascita, in questo veliero. In particolare una certa bussola meravigliosa
che mi sta conducendo in un futuro con continui dolori alle guance. C’era
una presa da corrente vicino al letto comunque.

Ringrazio il pecorino romano per le best ricette, i narvali zenzerosi, il
master of caseifici che ha inventato il gorgonzola e lo staff di Iginio Massari
per le rapide risposte. Ma soprattutto l’aggettivo lapalissiano.

Saluto ora queste stanze, questo dipartimento che è stato non solo una
casa ma un mondo pieno di avventure. So che Alberto, essenzialmente,
sarà, là in alto, sempre a guardarmi (aglio a parte).

Hold your memory for a moment with a blind hand
Write some stories for tomorrow

From the bottle of amnesia
Find instructions, to salvation, to oblivion, supreme.

50

	Abstract
	Contents
	1 Introduction
	2 Astrophysical Background
	2.1 Molecular clouds and star formation
	2.2 Turbulence: quick overview
	2.2.1 Kolmogorov's Model
	2.2.2 Burgers Turbulence

	3 Deep learning
	3.1 Introduction to machine learning
	3.1.1 The Task
	3.1.2 The Performance measure
	3.1.3 The experience
	3.1.4 Training set
	3.1.5 Test set
	3.1.6 Validation set

	3.2 Neural Networks
	3.2.1 Perceptron
	3.2.2 Architecture of Deep Neural Networks
	3.2.3 Activation function
	3.2.4 Architecture Design

	3.3 Loss function and backward propagation
	3.3.1 Linear Regression Model
	3.3.2 Backward Propagation
	3.3.3 Gradient descent
	3.3.4 Optimizers
	3.3.5 Other NNs parameters

	3.4 Convolutional Neural Network
	3.4.1 Convolution Operation
	3.4.2 Convolution
	3.4.3 Pooling layers

	4 Methods
	4.1 Simulations
	4.1.1 RAMSES
	4.1.2 Initial conditions and physical setup
	4.1.3 Refinement strategy

	4.2 Neural Network Training
	4.2.1 Preprocessing Data
	4.2.2 Augmentor
	4.2.3 Choice of the architecture
	4.2.4 Optimizers and batch size impact
	4.2.5 Training

	4.3 A comparison baseline

	5 Results and discussion
	5.1 Predictions on unseen simulations
	5.2 Discussion and limits
	5.2.1 Discussion
	5.2.2 Limits

	6 Conclusions and Future Prospects
	Bibliography
	Acknowledgements

