

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN
ICT FOR INTERNET AND MULTIMEDIA

“ANALYSIS OF ROBUST INTERNET INSTANT MESSAGING
PROTOCOLS FOR CHAT APPLICATIONS”

Relatore: Prof. / Dott. ERSEGHE TOMASO

Laureando/a: VENKATA AVINASH JAKKAMPUDI

ANNO ACCADEMICO 2021 – 2022

Data di laurea 11/07/2022

1

Table of Contents Page

Introduction 11

Literature Part 12

Chapter 1 -- WebRTC 13

1.1 Introduction to WebRTC 14

1.2 Major Components in WebRTC 14

1.2.1 API: getUserMedia 14

1.2.2 API: RTCPeerConnection 14

1.2.3 API: RTCDataChannel 15

1.3 WebRTC in the Real World 15

1.3.1 Signaling 16

1.3.1.1 How does Signaling work 17

1.3.1.2 Technologies Available for signaling servers 18

1.3.2 ICE & STUN/TURN 18

1.4 Typical Architecture Topologies for WebRTC 19

1.4.1 Mesh Topology 20

1.4.2 MCU 20

1.4.3 Routing 21

1.5 Use Cases 22

1.6 Security Considerations 22

1.7 Why WebRTC is so important 22

Chapter 2 -- XMPP 23

2.1 Introduction to XMPP 24

2.2 History to XMPP 25

2.3 How XMPP works 26

2

2.4 Client Server architecture in XMPP 26

2.5 Anatomy of JID 28

2.6 Core protocol defined in RFC 6120 i.e., about Streams 28

2.7 XMPP Stanzas 29

2.7.1 Presence Stanza 29

2.7.2 Message Stanza 29

2.7.3 IQ Stanza 29

2.8 XMPP features 30

2.8.1 Asynchronous Protocol 30

2.8.2 Persistent Connection 30

2.8.3 Decentralization 30

2.9 Few Common Extensions in XEP series 30

2.9.1 XEP-0280 : Message Carbons 30

2.9.2 XEP-0310 : Message Archive Management (MAM) 30

2.9.3 XEP-0352 : Client State Indication (CSI) 31

2.9.4 XEP-0268 : Mobile Considerations 31

2.9.5 XEP-0198 31

2.10 Services built on top XMPP 31

Chapter 3 -- WebSockets 32

3.1 What is HTTP 33

3.2 Drawbacks in HTTP 34

3.3 What are WebSockets 34

3.3.1 WebSocket Architecture 34

3.3.2 Protocol Handshake 35

3.3.3 Relationship to TCP and HTTP from WebSockets 38

3

3.3.4 Security Considerations 38

3.3.5 Use Cases 39

3.3.5.1 Gaming Applications 39

3.3.5.2 Chat Applications 39

3.3.5.3 Live feed 39

3.3.6 Advantages of WebSockets 39

3.4 Introduction to STOMP 40

3.4.1 Latest version updates 41

3.4.2 Message brokers available for STOMP 42

3.4.3 Connecting clients to a broker 42

3.4.3.1 Connect 42

3.4.3.2 Disconnect 42

3.4.4 Sending message from clients to a broker 43

3.4.5 Subscribing clients to message from a broker 44

3.4.5.1 Subscribe 44

3.4.5.2 Message 45

3.4.5.3 Unsubscribe 45

3.4.6 Acknowledgement 45

3.4.6.1 Client message acknowledgement 45

3.4.6.2 Broker Commands Acknowledgement 46

3.4.7 Examples and Implementations of STOMP 47

Chapter 4 -- AMQP 48

4.1 Introduction to AMQP 49

4.2 How AMQP works 49

4.3 Consumer driven Messaging Approach 49

4

4.4 Message Broker 50

4.5 Overview of AMQP Protocol 51

4.5.1 Components of AMQP 51

4.5.1.1 Message Queues 51

4.5.1.2 Exchange and Exchange types 52

4.5.1.3 Binding 52

4.5.1.4 Message and Content 52

4.5.1.5 Connection 52

4.5.1.6 Channel 52

4.5.1.7 Virtual hosts 53

4.6 AMQP Architecture 53

4.6.1 Producers 53

4.6.2 Exchange 53

4.6.3 Routing Key 54

4.6.4 Consumers 54

4.6.5 Subscriptions 54

4.6.6 Publishing 55

4.6.6.1 Direct Exchange 56

4.6.6.2 Fanout Exchange 57

4.6.6.3 Topic Exchange 57

4.6.6.4 Header Exchange 58

4.7 Key Features of AMQP 59

4.7.1 Security 59

4.7.2 Reliability 59

4.7.3 Interoperability 60

5

Implementation Part 61

Chapter 5 – Introduction to Spring Boot 62

5.1 Spring Boot 63

5.2 Advantages of Spring Boot 63

5.3 Specifications of Spring Boot 64

5.4 Features of Spring Boot 64

5.4.1 Web Development 64

5.4.2 Spring Application 64

5.4.3 Application Events and Listeners 65

5.4.4 Admin Support 65

5.4.5 Externalized Configuration 65

5.4.6 Properties Files 65

5.4.7 YAML Support 66

5.4.8 Logging 66

5.4.9 Security 66

5.5 Spring Boot Annotation 66

5.5.1 @Configuration 66

5.5.2 @Enable Auto Configuration 67

5.5.3 @ComponentScan 67

5.5.4 @SpringBoot Application 67

5.6 Spring Boot Starters 67

5.6.1 Web Starter 68

5.6.2 Data JPA Starter 68

5.6.3 Mail Starter 69

5.6.4 Test Starter 69

6

5.7 Problems of Spring Boot 70

Chapter 6 – WebSocket in Spring Boot 71

6.1 Dependencies Required 72

6.2 Detail of application.properties files 73

6.2.1 Log Files 73

6.3 Project Structure 74

6.4 Main Method 74

6.5 WebSocket Config 75

6.6 Echoing Handler 76

6.7 Running the application 77

6.8 Results of the application 77

6.9 Log Files of the results 79

Chapter 7 – WebSockets with STOMP in Spring Boot 80

7.1 Dependencies Required 81

7.2 Details of application.properties file 82

7.3 Project Structure 82

7.4 Main Method of the Application 83

7.5 WebSocket Config 84

7.6 Chat Controller 85

7.7 Event Listener 86

7.8 Connecting and Subscribing the client 86

7.9 Sending message from JS client 87

7.10 Results of the chat application 87

7.10.1 Start the server 87

7.10.2 UI of the chat application 88

7

7.10.3 New User Notification 88

7.10.4 Communications in the group 89

7.10.5 Log files 90

7.10.6 Everyday log files 90

Chapter 8 – WebSockets with STOMP using RabbitMQ as Message Broker 91

8.1 WebSocket Config 92

8.2 Results of the application 93

8.2.1 Starting the server 93

8.2.2 Checking the server connection to RabbitMQ in RabbitMQ portal 93

8.2.3 New user 94

8.2.4 RabbitMQ Monitoring 94

8.3 POM.XML 96

Conclusion 97

Bibliography 98

8

List of Figures Page

Figure 1: API getUserMedia 14

Figure 2: RTCPeerConnection 15

Figure 3: RTCDataChannel 15

Figure 4: WebRTC in the Real World: Signaling 16

Figure 5: WebRTC in the Real World: Signaling with server 16

Figure 6: Signaling server 17

Figure 7: Signaling server 17

Figure 8: ICE and STUN/TURN 19

Figure 9: Peer to Peer Connection 19

Figure 10: Mesh Topology 20

Figure 11: MCU Topology 21

Figure 12: Routing 21

Figure 13: XMPP workflow 26

Figure 14: Client Server Architecture in XMPP 27

Figure 15: XMPP client server flow 27

Figure 16: HTTP workflow 33

Figure 17: WebSocket Architecture 35

Figure 18: WebSocket protocol switching 36

Figure 19: WebSocket Connection 37

Figure 20: Connecting clients to a broker 43

Figure 21: Sending messages from clients to a broker 44

Figure 22 : Subscribing clients to messages from a broker 44

Figure 23: Client messages acknowledgement 46

Figure 24: Broker commands acknowledgement 47

Figure 25: RabbitMQ implementing AMQP 50

Figure 26: Overview of AMQP Protocol 51

Figure 27: AMQP Architecture 53

Figure 28: Direct Exchange 56

Figure 29: Fanout Exchange 57

Figure 30: Topic Exchange 58

9

Figure 31: Header Exchange 59

Figure 32: Spring Boot framework 63

Figure 33: Main method example 65

Figure 34: Application Example 67

Figure 35: Web Starter dependency 68

Figure 36: data JPA and H2 dependencies 68

Figure 37: mail starter dependency 69

Figure 38: starter test dependency 69

Figure 39: Required dependencies 72

Figure 40: application.properties 73

Figure 41: Project structure 74

Figure 42: Main method 75

Figure 43: WebSocketConfig 75

Figure 44: Echoing Handler 76

Figure 45: Start of the application 77

Figure 46: Establishing the connection 77

Figure 47: Sending and Receiving json messages 78

Figure 48: Logging the messages 78

Figure 49: Log file 79

Figure 50: Everyday logs 79

Figure 51: Dependencies required 81

Figure 52: application.properties file 82

Figure 53: Project structure 82

Figure 54: Main method 83

Figure 55: WebSocketConfig 84

Figure 56: Chat controller 85

Figure 57: Event listener 86

Figure 58: Connecting and subscribing the JS client 86

Figure 59: Sending message from JS client 87

Figure 60: Start of the application 87

Figure 61: UI of localhost:8001 88

10

Figure 62: New User notification 88

Figure 63: Communications in the group 89

Figure 64: Log file 90

Figure 65: Everyday log files 90

Figure 66: WebSocketConfig 92

Figure 67: Start of the application and connection to RabbitMQ 93

Figure 68: Server connection to RabbitMQ 93

Figure 69: New user notification 94

Figure 70: New connection to RabbitMQ 94

Figure 71: Message Rate 94

Figure 72: Global Counts 95

Figure 73: Each User Queues 95

Figure 74: Download details JSON file 95

Figure 75: POM.xml 96

11

Introduction

Chat applications have become one of the most important parts of everyone's daily routine. Be it to chat
with colleagues, friends, family and also for the discussions among the companies or organizations, and
importantly for the clients to get several clarifications and also to raise their queries and issues during
the company's product usage.

In this research that has been done among several protocols that are useful for creating such chat
applications, there are two parts firstly the theoretical part which consists of the research of four top
protocols i.e., WebRTC, XMPP, WebSockets with STOMP, and AMQP.

WebRTC (Web Real-Time Communication) is a technology that enables Web applications and sites to
capture and optionally stream audio and/or video media, as well as to exchange arbitrary data between
browsers without requiring an intermediary.

XMPP, Short for Extensible Messaging and Presence Protocol, XMPP is an open standard that supports
near-real-time chat and instant messaging by governing the exchange of XML data over a network.

WebSockets, A WebSocket is a persistent connection between a client and server. WebSockets provide
a bidirectional, full-duplex communications channel that operates over HTTP through a single TCP/IP
socket connection.

AMQP is a message protocol that deals with publishers and consumers. The publishers produce the
messages, the consumers pick them up and process them. It's the job of the message broker (such as
RabbitMQ) to ensure that the messages from a publisher go to the right consumers.

Secondly, the implementation part, where chat applications have been developed with WebSockets with
having any protocol over it in Java using Spring Boot and WebSockets having STOMP over it and also
adding RabbitMQ as message broker for the application.

12

Literature Part

13

Chapter 1

WebRTC

14

1.1 Introduction to WebRTC
WebRTC is an open framework for the web that allows Real-Time communications within the

browser. It includes the fundamental building blocks for the high-quality communications on the

web such as network, audio, and video components used in voice and video chat applications.

WebRTC allows to build real-time communication applications for the browser.

How WebRTC different from other social apps such as skype, and face time is that WebRTC

provides those features without requiring users to install any additional plugins or software other

than the browser.

1.2 Major Components in WebRTC
The major components in WebRTC are JavaScript APIs. These components, when implemented

in the browser, can be accessed through JavaScript APIs, enabling developers to easily implement

their own RTC web app. WebRTC effort is being standardized on an API level at thew3c and at

the protocol level at the IETF and is supported by Google Mozilla and opera.

1.2.1 API: getUserMedia
getUserMedia enables your application to access users’ media devices. The user will see a prompt

asking for permissions and after granting them, the streams of such devices will be available to be

used from the code, Figure 1 is the sample code snippet for the above explanation.

Figure 1: API getUserMedia

1.2.2 API: RTCPeerConnection
From the figure 2 we can understand that, once we have the user’s local media streams, we create

an RTC build connection object to enable audio and video communication between peers.

Connection is made peer-to-peer using the SRTP protocol, this means that media goes straight to

15

the other browser without any storage in the middle and is encrypted in transit this enables security

by default.

Figure 2: RTCPeerConnection (Source: WebRTC.ventures)

1.2.3 API: RTCDataChannel
Audio and video are not the only content that the WebRTC is able to transmit we can also send

any kind of arbitrary data the possibilities of this include online video game chat and any kind of

application that requires the exchange of information in real-time.

Figure 3 illustrates the RTCDataChannel API

Figure 3: RTCDataChannel (Source: WebRTC.ventures)

1.3 WebRTC in the Real World
Peer to Peer(almost) and no servers involved but that is not completely true. They are some

components that require a server. They are:

• Signaling

• ICE & STUN/TURN
• Media servers

16

1.3.1 Signaling
Figure 4 is the depiction of how WebRTC works but it has a fault. It does not work the problem

is you cannot communicate with something you do not know. Both the peers need to know where

the other is defined. To establish a connection, signaling enters. A signaling server sits in the

middle of both the servers and allows them to exchange information about themselves, prior to

initiating the call. After that exchange, both peers know how to find each other and hence can

connect peer to peer. So, a signaling server is only required before the call.

Figure 4: WebRTC in the Real World: Signaling (Source: WebRTC.ventures)
As per the figure 5, the first step is that the browsers get access to users’ media devices using

getUserMedia API. After that, they exchange some information about themselves using a

signaling server, and then they can connect peer to peer.

Figure 5: WebRTC in the Real World: Signaling with server (Source: WebRTC.ventures)

Signaling is the process of coordinating communication through an exchange of messages, below

is the information contained in those messages

• Codecs

17

• Bandwidth

• Media types

• Ip Addresses

1.3.1.1 How does Signaling work
As shown in the figure 6, after getting user media and creating a WebRTC connection the browsers

create an offer that contains information about itself, such an offer is sent to the signaling server

to the other peer and it receives it and creates an answer, and that answer is returned to the first

peer through the signaling server. These messages are forwarded using the session description

protocol and contain all the information that we mentioned before. After both the peers have

exchanged the information, they are able to initiate the call.

Figure 6: Signaling server (Source: WebRTC.ventures)

Figure 7 shows another process that takes place in the signaling server is the exchange of ice

candidates. It works like the offer and answer mechanisms

Figure 7: Signaling server (Source: WebRTC.ventures)

Signaling is not part of WebRTC standard, so you can build it the way you want. There are even

18

some 3rd party commercial messaging platforms that provide that service (Eg: pusher, kaazing,

and PubNub).

1.3.1.2 Technologies Available for signaling servers
Some of the technologies you can use in setting up a signaling server are:

• WebSocket

• SIP

• XMPP/JINGLE

1.3.2 ICE & STUN/TURN
In the real-world peers are likely behind networks or restricting firewalls in such cases it is

impossible to make a direct connection at least not without the traversal strategy that is where the

ice framework and the STUN and TURN servers enter. WebRTC applications will use the ICE

framework to overcome the difficulties of real-world networking. To enable this, your application

must pass the ICE server and URLs to RTCPeerConnection.

ICE finds the most effective path to connect with peers. It tries all options available and chooses

the best option that works.

1. The first path is it tries to make a connection using the host address obtained from

adevice’s operating system.

2. If it does not work, the STUN server is used to get an external(public) network address.

3. If it also doesn’t work TURN servers are used to relay traffic if a direct (peer-to-peer)

connection fails.

Now we have the whole picture, as shown in figure 8, first, each client will get access to the user’s

media devices then an RTC paid connection is created and the signaling process begins such

process consists of two concurrent tasks first both peers will exchange the offer and answer

messages and also both peers will ask a STUN server for their external IP addresses and will be

sending those as ice candidates to the other peer if for some reason such connection is not possible

then a TURN server is used as a relay and that's the whole picture of how WebRTC work.

19

Figure 8: ICE and STUN/TURN (Source: WebRTC.ventures)

1.4 Typical Architecture Topologies for WebRTC
There are different architectures of WebRTC depending on the requirement.

Figure 9 is a simple approach for two users. It can get complicated when more users want to join.

Figure 9: Peer to Peer Connection(Source: WebRTC.ventures)

20

1.4.1 Mesh Topology
Figure 10 topology is called mesh and under this approach, each browser is responsible for

managing as many RTC build connections as users in the call. This brings a huge resource load

to each client and eventually as more users join the call will simply break.

Figure 10: Mesh Topology (Source: WebRTC.ventures)

1.4.2 MCU
Figure 11 shows the next topology is the mixer also known as MCU which stands for multi- point

conferencing unit. There is a server in the middle this is a media server and it's responsible for

receiving all the streams from all the users and sending them to the others and a single connection

here we don't have the problem of the previous approach users can join without having to worry

about breaking the session the only constraint here is the media cerebral capacity and MCU media

server is usually expensive.

21

Figure 11: MCU Topology (Source: WebRTC.ventures)

1.4.3 Routing
Figure 12 shows the other topology for multi-party calls is Routing also called a selective

forwarding unit. In this topology we have a media server that receives all the steams from the

users however instead of making all the processing in the server it simply routes the streams to

all the users this approach distributes the load between the server and the client this allows for the

server to be less expensive and at the same time offer a comparable performance to MCU.

Figure 12: Routing
(Source: WebRTC.ventures)

22

1.5 Use Cases
WebRTC is used in audio and video calls for peer-to-peer communication over the internet.

Many videos chat and meeting platforms like google meet, Microsoft teams, and Zoom use

WebRTC.

1.6 Security Considerations
Connection is made peer-to-peer using the SRTP (Secure Real-Time Protocol) protocol, this

means that media goes straight to the other browser without any storage in the middle and is

encrypted in transit this enables security by default. Every WebRTC component should be

encrypted and meet all the security standards and needs a secure origin like HTTPS. An

unencrypted WebRTC session is not allowed by IETF (Internet Engineering Task Force).

1.7 Why WebRTC is so important
The first reason is that it enables communication in the browser and right now there is no other

technology capable of doing such a thing at least not without having to install any additional software or

plugin.

The second reason is that it considers some of the most common issues in today's networking

picture which are NAT and firewall traversals.

The third reason is that most browsers already support it now.

23

Chapter 2

XMPP

24

2.1 Introduction to XMPP
XMPP stands for Extensible Messaging and Presence Protocol. XMPP is a network protocol to

exchange data between two network endpoints. It is a standard messaging protocol used to build

chat applications.

Extensible: XMPP uses XML (Extensible Markup Language) to exchange data between client and

server. It is an open communication protocol designed for instant messaging (IM), presence

information, near real-time messaging, and message-oriented middleware. XMPP is defined as a

free open-source protocol and designed to be extensible with new features so that anyone can build

their implementations. Hence it has been used for publish-subscribe systems, file transfer, and

communication in embedded Internet-of-Things networks. XML is a data format that has one

strength which is namespacing. Namespacing allows users to extend XMPP to do things it was not

originally designed to do.

Messaging: It sends one-to-one messages (group messages). Just like any other protocol, It

transfers data from client to server and vice-versa.

Presence: Can see the status of your contact's like away, busy, online, offline.

Protocol: XMPP is a protocol with a set of standards that allows systems to communicate with

each other.

XMPP Standards:

XMPP standardization is managed by the Internet Engineering Task Force (IETF), which maintains

the core protocol, the instant messaging subprotocol, the address format, and things ofthat nature.

Below are the XMPP standardizations managed by IETF

• RFC 6120: XMPP Core

• RFC 6121: XMPP IM

• RFC 7590: Use of TLS in XMPP

• RFC 7622: XMPP Address Format

25

The XMPP Standards Foundation (XSF) maintains all the extensions. XMPP stands for

Extensible Messaging and Presence Protocol, the extensible part is what XSF manages.

Below are the extensions managed by XSF

• XEP-0045: Multi-User Chat

• XEP-0198: Stream Management

• XEP-0367: Message Attaching

2.2 History to XMPP
In 1999 XMPP was created by the Jabber open-source community to provide an open alternative

to the closed instant messaging services, and it was known as Jabber then.

In 2002 the Jabber community starts turning its core protocol into an Internet Standard, IETF

forms the XMPP working group. They presented the Jabber protocol to Internet Engineering

Task Force (IETF). The jabber community submitted the core Jabber protocol to the Internet

Standards Process and the control over jabber protocol is taken over by the IETF.

In 2004, RFC 3920, RFC 3921, RFC 3922, RFC 3923 with the XMPP standards is approved.

RFC (Request for Comments) is a document published by the IETF to make design and

architecture; technical standards available for everyone.

In 2008 Cisco acquires Jabber, which is why the jabber name kind of fell out of favor.

In 2011 XMPP specifications, the RFCs are superseded by RFC 6120, RFC 6121, RFC 6122In

2014 WebSocket subprotocol RFC 7395 was created for connecting from web clients once

WebSockets became a thing.

In 2015 Address format was superseded by RFC 7622 and the XMPP standard foundation started

developing open XMPP extensions. There are a few other specifications like RFC 7590, which have

TLS (Transport Layer Security) updates. TLS has been updated to keep up with the security

requirements end-to-end kind of internationalization changes, but overall, the basic core XMPP

protocol has remained largely like what it was in the late 90s.

26

2.3 How XMPP works
XMPP works on a client-server architecture. In XMPP a message is sent to a server first and then

the server routes it to the correct client. From the figure 13, we can see that client and server are

exchanging data in XML format.

Figure 13: XMPP workflow

XMPP protocol uses XML streams to send data but not documents unlike a lot of chat protocols

we are not sending individually consumable documents. From the moment we connect to the

moment we disconnect we have one kind of continuous stream. By opening a tag (<) messages

can be sent, and it should have a closing tag (/>). But that will not break the integrity, it does not

have to wait for the whole document to be sent perfectly to send the data to the other end we can

just stream it.

2.4 Client Server architecture in XMPP
Communication among different XMPP servers creates a global communication network known

as a "federation". From the figure 14, C1 send data to client c2, C1 is connected to server S1, and

a Message is sent from C1 to S1. Whereas C2 is connected to Server 2, C1 and C2 are connected

to different servers, C1 sends messages to S1, and Server S1 forwards that message to Server 2

and further forwards it to C2 from Server 2.

27

Figure 14: Client Server Architecture in XMPP

So, we end up with this broad federated network like email. A federation allows communication

with a client on a different XMPP server effortlessly. So, we need an address format that supports

this sort of federated network. To route, each message to the correct client XMPP uses aunique

identifier called as jid. It stands for jabber id or jabber identifier. Figure 15 shows the XMPP client

server flow.

Figure 15: XMPP client server flow (Source:easyatm.com.tw/wiki/xmpp)

28

2.5 Anatomy of JID
The Anatomy of JID is pretty much like the email format, but here we have some extra part called

resource. The unique identifier has a specific format as user@domain.com/resource. The user

represents the username of the person, and the domain represents the domain of the client sending

the message. The resource represents the type of device from which the message is sent for

example mobile. This part is optional and is defined only when the client does not support every

device.

2.6 Core protocol defined in RFC 6120 i.e., about Streams
Using this unique identifier client always initiates that connection with the XMPP server. The

client ignores the TLS, and DNS for a second and sends an XML stream to the server. Once the

client is identified by the server and the connection is accepted, the server then opens an additional

XML stream, and this stream goes back to the client. This results in the stream of XML data bi-

directionally.

There are two streams input and an output stream, and these occur over a persistent TCP

connection.

As a security measure, streams are restarted when their state changes. For Example, if we are

going to upgrade from plain text to TLS or from uncompressed to compressed connection streams

are to be restarted from scratch throwing out all the states we had before and starting a new one

inside that new layer. This sort of security precaution is advantageous, as we have a sort of

stateful stream.

These streams are event-based and pipelined so this means that XMPP is an asynchronous protocol

as opposed to HTTP where HTTP is synchronous when we make a request there will be a

response. But in XMPP we might make any number of requests get a response back slowly. If we

make three requests, then we get responses back with some other requests interspersed and the

communication is entirely asynchronous.

29

2.7 XMPP Stanzas
As we start sending messages XMPP transmits all the little XML payloads between the client

and server which are used for basic communication are called Stanzas. Stanzas are sort of basic

primitive units of the XMPP stream. In XMPP stanzas are basically of 3 types and each stanza

has its own purpose. These are the presence, message, and IQ stanzas and these are the only

routable elements in XMPP.

2.7.1 Presence Stanza
The status of the other users can be known with the Presence stanza. Can see your contact's

online status like away, busy, online, offline can be known.

2.7.2 Message Stanza
Chat messages can be shared between the users using the Message stanza. Information can be sent

from one XMPP server to another XMPP seer without requiring a response. They are not just used

for chat messages but also where you only send a message to one address and there is no

acknowledgment. Any sort of server does not confirm that it was delivered or anything like that

you just send it you forget about it so they are kind of useful for anything that doesn't require a

response like chats, alerts, logging.

2.7.3 IQ Stanza
IQ stands for information query is the other type of stanzas they are also one-on-one you only send

them to a single recipient however unlike messages these are acknowledged by the recipient. The

recipient always sends back something that may be a message or iq saying we do not understand

the payload you just sent. so, this gives you the option that you do not get the response within a

certain amount of time you can retry because you know you are expecting a response. Each IQ

request stanza has an ID value that corresponds to the response stanza.

30

2.8 XMPP features

2.8.1 Asynchronous Protocol
XMPP streams are event-based and pipelined. This means XMPP is an asynchronous protocol,we

might make any number of requests, and we get responses back slowly. There is no immediate

response to every request we make.

2.8.2 Persistent Connection
The XMPP server and client have a persistent TCP connection, so once there is a request from

the client the connection remains open and persistent, and the exchange of data can be done

without re-establishing the connection for the other request. Since the connection is open and

persistent it has lower latency.

2.8.3 Decentralization
In XMPP the clients do not communicate with each other directly, there is a server in between.

Anyone can have their own XMPP server, there is no one main server. XMPP network architecture

is like email.

2.9 Few Common Extensions in XEP series
2.9.1 XEP-0280 : Message Carbons
It copies incoming messages to various resources like to the mobile, desktop and have a consistent

view from every device. In the same way it also copies all the outgoing messages toothers connected

devices to have consistent view from every device. It is going to be replacedMessage Archive

Management (MAM) though both these extensions are in use as of now.

2.9.2 XEP-0310 : Message Archive Management (MAM)
MAM is just a chat history; it stores outgoing messages on the server so that the new resources

can access history. Even if the client is offline for bit once they are online can catch up and receive

all the messages that were sent when they are offline. MAM can replace Message Carbons sooner.

31

2.9.3 XEP-0352 : Client State Indication (CSI)
Clients indicate when they become inactive or active with simple top-level elements. With

respective to the client’s status server does what is required with the data. When the client is offline

it does not send presence or typing notifications instead is start sending push notification.

2.9.4 XEP-0268 : Mobile Considerations
This extension attempts to save users battery by implementing CSI. This XEP allows to send or

receive as much as you can send at once but when it detects the data is already sent or received it

allows the modem to go back to sleep.

2.9.5 XEP-0198
Stream Management: Stream management lets you do the stream resumption; it allows very fast

reconnects. It also does stanza acknowledgements like tracking of data packets. It tracks the number

of packets that have been sent and resuming something which is missed is possible sincethere are

data packets tracking.

2.10 Services built on top XMPP
• Nintendo Switch notifications

• WhatsApp

• Zoom

• Cisco Jabber

• Google cloud Print

32

Chapter 3

Web Sockets

33

3.1 What is HTTP
HTTP is a protocol belonging to the application layer used to exchange data between client and

server. It is used to deliver contents videos, audio, images, etc. HTTP stands for Hypertext Transfer

Protocol, and it is a TCP/IP-based protocol. We can think of a protocol as a language or

mechanism for communication, HTTP is a way to communicate or exchange information

online,and the stuff we transfer here in HTTP is called hypertext and the language of this

hypertext is HTML.

As we can observe in the figure 16, The client sends an HTTP request, and the server returns an

HTTP response where clients can be browsers, programs, or devices and servers are computers on

the cloud.

Figure 16: HTTP workflow (Source: geeksforgeeks.org)

HTTP protocol exchanges any kind of data if both the client and server understand it.

Communication is done by requests and responses. A client sends an HTTP request to the server,

Server receives and processes the request and returns an HTTP response to the client. When the

request is sent, after DNS resolution and IP address are identified, a TCP connection is established

between the client and server. HTTP runs on a TCP connection and after making the request

transfer of the data packet is guaranteed. The client disconnects from the server, then when

response is the ready server will re-establish the connection and deliver the response. In HTTP we

have different methods to transfer information, the most common methods are GET, PUT, POST,

DELETE.

34

3.2 Drawbacks in HTTP
• HTTP is a unidirectional protocol, when there is a request from the client after getting the

response, the connection is closed.

• HTTP is a stateless protocol

• HTTP is slower because it requires transferring a lot of data in every single request as it
is a stateless protocol.

The main purpose of WebSockets is to provide bi-directional communication which is the major

drawback of HTTP.

3.3 What are WebSockets
Websockets allow asynchronous bidirectional and provide full-duplex communication between a

client and a server. Communication is done by requests and responses. A client sends an HTTP

request to the server, after DNS resolution and IP address are identified, a TCP connection is

established between the client and server.

3.3.1 WebSocket Architecture
As we can understand from figure 17, to establish a WebSocket connection the client should send

an HTTP request to upgrade the HTTP protocol to the WebSocket protocol and the server sends

the confirmation after the upgrade and the connection between the client and the server is open and

persistent. They keep exchanging the messages or frames over the connection until oneside decides

to close the connection.

35

Figure 17: WebSocket Architecture (Source: medium.com)

3.3.2 Protocol Handshake
To establish a WebSocket connection between client and server, the client sends a WebSocket

handshake request, for which the server returns a WebSocket handshake response. This handshake

is necessary to keep the connection open as a WebSocket connection and to make sure that both

client and server are speaking to the same protocol. When both the client and server have sent their

handshakes and if was successful, then an exchange of data can be done bi-directionally between

both.

The Websocket handshake from the client looks as follows:

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://example.com

Sec-WebSocket-Protocol: chat,

http://example.com/

36

Sec-WebSocket-Version: 13

To have a handshake with the server, the client sends an HTTP GET request to the WebSocket

path. It also sets headers like Connection: Upgrade, Upgrade: Websocket, Sec-WebSocket-Key:

<random_key>

Since the request sent to establish a WebSocket connection is HTTP itself, the single port can be

used by both HTTP clients talking to that server and WebSocket clients talking to that server. In

the end, the WebSocket client's handshake is an HTTP Upgrade request. In the handshake header

files can be sent in any order, the order in which these header files are received is not significant.

The first request that we make is an HTTP normal get request, the request is an HTTP 1.1 which

is going to establish a persistent connection between the two. There is an upgrade header in the

request which is a powerful thing. The server consumes the request, and it knows the client is

trying to upgrade this request to WebSocket and replies with the status code 101 which says

switching protocol. According to figure 18 the WebSocket endpoint is identified using the request

URI of the GET method.

Figure 18: WebSocket protocol switching

The client handshake request has a host header so that both the client and the server can verify that

they agree on which host is in use. To avoid unauthorized use the origin header is used. As the

server is informed about the origin header, if the request is from an unauthorized origin, it rejects

the connection by sending an appropriate HTTP error code.

To avoid other than WebSocket connections the server should send an acknowledgment to the

client that it received a handshake request. The server must send the response handshake to the

37

client to prove that handshake is received. The server must concatenate the Sec-WebSocket-Key

value from the client with Globally Unique Identifier (GUID). This value would be then returned

by the server in the Sec-WebSocket-Accept header field.

The response handshake from the server looks as follows:

HTTP/1.1 101 Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=Sec-

WebSocket-Protocol: chat

From the figure 19 the response handshake from the server is simpler than the request handshake

from the client. The response handshake has an HTTP status code 101. If the status code is anything

other than 101 indicates that the handshake is not completed. The Upgrade and Connection headers

complete the HTTP upgrade. If the Sec-WebSocket-Accept header value does not match the

expected value, or if the HTTP status code is not 101, the WebSocket connection will not be

established, and WebSocket messages/frames will not be sent.

Closing the handshake is much simpler than opening the handshake, either client or server can

close the connection.

Browser – WebSockets

Figure 19: WebSocket Connection (Source: geeksforgeeks.org)

To set up a connection from the browser, create a new WebSocket object with the host/path to

connect to and set up the server to accept WS requests on that path.

38

3.3.3 Relationship to TCP and HTTP from WebSockets
The WebSocket Protocol is an independent TCP-based protocol. The relation between WebSocket

and HTTP is that the initial request sent by the client is interpreted as an HTTPrequest.

Websocket URI’s

ws://www.google.com

wss://www.google.com

The URI is like HTTP:// and HTTPS://. Prefix ws:// indicates WebSocket connection and wss://

indicates Websocket secure connection.

Websockets feature an HTTP-compatible handshake, thus allowing HTTP servers to share their

default HTTP and HTTPS ports. Port 80 is used for regular WebSocket connections and port 443

is used for secured WebSocket connections in WebSocket Protocol.

3.3.4 Security Considerations
WebSocket protocol uses the Origin header to restrict which web pages can contact a WebSocket

server when the WebSocket Protocol is used from a web page. Data transfer over the WebSocket

protocol is done in plain text, like HTTP. Therefore, this data is vulnerable. It is better to use tokens

or similar protection mechanisms to authenticate the WebSocket connection when sensitive data is

being transferred over the WebSocket. Authenticate requests are made to the HTTP endpoint

/authenticate/token with the internal authentication token passed in the header of the request. A

temporary external authentication token is generated by the server, and it is stored in the

Authentication Cache, and it is returned to the client.

The client sends a handshake request with the external authentication token handshake endpoint

URL. The server validates the token with the authentication cache. The handshake is established

if the token is valid, and the HTTP request upgrades to the WebSocket connection. The client

isnow authenticated and can have bidirectional communication.

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

39

3.3.5 Use Cases
3.3.5.1 Gaming Applications
In Gaming applications data is continuously received from the server without refreshing the UI

and the effect is seen on the screen. The UI gets automatically affected without establishing a new

connection. So, WebSocket is widely used here.

3.3.5.2 Chat Applications
In chat applications, the WebSocket connection is established only once for exchange, publishing,

and broadcasting the message among the users. The same WebSocket connection is reused for

sending and receiving one-to-one messages.

3.3.5.3 Live feed
Websocket is widely used in live feed where data should be continuously published at the clientend

from the backend server. Since the connection is already established data is continuously pushed

into the WebSocket connection which is already established.

3.3.6 Advantages of WebSockets
The main advantage of WebSocket is it allows bi-directional communication/ full-duplex

communication between the client and server.

Websocket is a stateful protocol, it does not require transferring a lot of data in every single

request as the connection is persistent open till either client or server decides to close the

connection.

Websocket has low latency and hence it is faster than HTTP.

Websocket can be used where continuous data streaming is required. HTTP can be used when

the data fetching is only once.

40

3.4 Introduction to STOMP
STOMP is the Simple (or Streaming) Text Orientated Messaging Protocol.

STOMP is a simple interoperable protocol designed for asynchronous message passing between

clients via mediating servers. It defines a text-based wire-format for messages passed between these

clients and servers.

STOMP has been in active use for several years and is supported by many message brokers and

client libraries.

STOMP is a frame-based protocol, with frames modelled on HTTP. A frame consists of a

command, a set of optional headers and an optional body. STOMP is text based but also allows

for the transmission of binary messages. The default encoding for STOMP is UTF-8, but it

supports the specification of alternative encodings for message bodies.

A STOMP server is modelled as a set of destinations to which messages can be sent. The STOMP

protocol treats destinations as opaque string, and their syntax is server implementation specific.

Additionally, STOMP does not define what the delivery semantics of destinations should be. The

delivery, or “message exchange”, semantics of destinations can vary from server to server and

even from destination to destination. This allows servers to be creative with the semantics that

they can support with STOMP.

A STOMP client is a user-agent which can act in two (possibly simultaneous) modes:

• as a producer, sending messages to a destination on the server via a SEND frame

• as a consumer, sending a SUBSCRIBE frame for a given destination and receiving

messages from the server as MESSAGE frames.

41

3.4.1 Latest version updates
Latest version as per the date of this report is STOMP 1.2.

STOMP 1.2 is mostly backwards compatible with STOMP 1.1. There are only two incompatible

changes:

 it is now possible to end frame lines with carriage return plus line feed instead of only

line feed

 message acknowledgment has been simplified and now uses a dedicated header

Apart from these, STOMP 1.2 introduces no new features but focuses on clarifying some areas

of the specification such as:

 repeated frame header entries

 use of the content-length and content-type headers

 required support of the STOMP frame by servers

 connection lingering
 scope and uniqueness of subscription and transaction identifiers

 meaning of the RECEIPT frame about previous frames.

42

3.4.2 Message brokers available for STOMP
STOMP is a messaging protocol because clients can produce messages (send messages to a

broker destination) and consume them (subscribe to and receive messages from a broker

destination).

STOMP is an interoperable protocol because it can work with multiple message broker, and

clients written in many languages and platforms.

There are several brokers that can be used with STOMP, few of them are

ActiveMQ, RabbitMQ, HornetQ, OpenMQ, etc.

3.4.3 Connecting clients to a broker
3.4.3.1 Connect
From figure 20, we can understand that to connect to a broker, a client sends a CONNECT frame

with two mandatory headers:

• accept-version — the versions of the STOMP protocol the client supports

• host — the name of a virtual host that the client wishes to connect to

To accent the connection, the broker sends to the client a CONNECTED frame with themandatory

header:

• version — the version of the STOMP protocol the session will be using

3.4.3.2 Disconnect
From figure 20, we can understand that a client can disconnect from a broker at any time by closing

the socket, but there is no guarantee that the previously sent frames have been received bythe broker.

To disconnect properly, where the client is assured that all previous frames have been received by

the broker, the client must:

1. send a DISCONNECT frame with a receipt header

2. receive a RECEIPT frame

3. close the socket

43

Figure 20: Connecting clients to a broker (Source: medium.com)

3.4.4 Sending message from clients to a broker
From figure 21, we can understand that to send a message to a destination, a client sends a SEND

frame with the mandatory header:

 Destination — the destination to which the client wants to send

If the SEND frame has a body, it must include the content-length and content-type headers.

44

Figure 21: Sending messages from clients to a broker(Source: medium.com)

3.4.5 Subscribing clients to message from a broker
3.4.5.1 Subscribe
From figure 22, we can understand that to subscribe to a destination a client sends a SUBSCRIBE

frame with two mandatory headers:

• destination — the destination to which the client wants to subscribe
• id — the unique identifier of the subscription

Figure 22 : Subscribing clients to messages from a broker(Source: medium.com)

45

3.4.5.2 Message
To transmit messages from subscriptions to the client, the server sends a MESSAGE frame with three

mandatory headers:

• destination — the destination the message was sent to

• subscription — the identifier of the subscription that is receiving the message

• message-id — the unique identifier for that message

3.4.5.3 Unsubscribe
To remove an existing subscription, the client sends an UNSUBSCRIBE frame with the mandatory

header:

• id — the unique identifier of the subscription

3.4.6 Acknowledgement
To avoid lost or duplicated frames, if a client and a broker are parts of a distributed system, it is

necessary to use frames acknowledgment.

3.4.6.1 Client message acknowledgement
The SUBSCRIBE frame may contain the optional ack header that controls the message

acknowledgment mode: auto (by default), client, client individual.

When the acknowledgment mode is auto, then the client does not need to confirm the messages it

receives. The broker will assume the client has received the message as soon as it sends it to the

client.

When the acknowledgment mode is client, then the client must send the server confirmation forall

previous messages: they acknowledge not only the specified message but also all messages sent to

the subscription before this one.

When the acknowledgment mode is client-individual, then the client must send the server

confirmation for the specified message only as shown in figure 23.

46

Figure 23: Client messages acknowledgement(Source: medium.com)

The client uses an ACK frame to confirm the consumption of a message from a subscription using

the client or client-individual acknowledgment modes. The client uses a NACK frame to negate

the consumption of a message from a subscription. The ACK and NAK frames must include the id

header matching the ack header of the MESSAGE frame being acknowledged.

3.4.6.2 Broker Commands Acknowledgement
As we can see from the figure 24, a broker sends a RECEIPT frame to a client once the broker

has successfully processed a client frame that requests a receipt. The RECEIPT frame includes

the receipt-id header matching the receipt header of the command being acknowledged.

47

Figure 24: Broker commands acknowledgement (Source: medium.com)

3.4.7 Examples and Implementations of STOMP
In the implementation part good examples have been explained with implementations of STOMP

with default broker and RabbitMQ.

48

Chapter 4

AMQP

49

4.1 Introduction to AMQP
AMQP is an application layer protocol for Message Oriented Middleware. MOM allows the

exchange of messages between any distributed system irrespective of the technology used. AMQP

stands for advanced messaging queuing protocol. In AMQP exchange of messages between the

producer and consumer over TCP connections is done through the message brokers. AMQP

standardizes messages using producers, brokers, and consumers.

4.2 How AMQP works
AMQP protocol deals with the producers which produce the message and consumers who receive

the message. We have a producer, and a consumer, and there is exchange and queue in between.

The message broker consists of this exchange and queue. Message broker decouples the

communication between producers and consumers. The producer sends a message to the exchange

then depending on the type of exchange the message is directed to the queue. The producer sends

a message to the exchange, depending on the type of exchange the message will be sent to the queue

and then the queue further sends the message to the consumer. The message broker which contains

Exchange and queue will make sure that the message is received. We have multiple queues in the

complex application. Either producers or consumers can bind the messages with the queues and

make it available for the consumers. The queues can be either public or private and the messages

are kept buffering in the queues till the consumers consume it.

4.3 Consumer driven Messaging Approach
AMQP follows consumer driven messaging approach. In a traditional point to point

communication between producer and consumer, the producer will publish a message and it will

be sent to queue and producer should be aware of which queue is going to receive this message.

Here only one consumer will receive the messages, the queue acts as an end point to only one

consumer. In traditional publish subscribe approach the queue acts as an endpoint to any number

of consumers. These consumers can access the queues and search for their own copies. Some

unique messages are shared with only few consumers in a round-robin fashion. In AMQP any

kind of exchange of data is possible, data can be transferred between the producer and consumer

50

it will allow the consumers to search all the queues for their messages that are to be received.

AMQP allows different patterns to exchange data based on the exchange type.

4.4 Message Broker
Figure 25 explains that, when there is exchange of data between two applications messages are not

directly sent between producer and consumer. It is required that both the applications should

know each other, and they must be online at the same time. It becomes more complex when the

number of applications that share the information. But by using the message broker the message

producers do not need to know about the consumers. Using message broker between the producers

and consumers act as decoupling layer as the messages are not directly sent to the consumers. The

message producing applications does not need to know about the receiving applications as the

messages are sent to third party message broker. The messages broker provides exchange type and

queue, either consumers or producers create the queues and bind them to the exchange to direct

messages to the respective consumers. RabbitMQ is one message broker that widely implements

AMQP protocol.

Figure 25: RabbitMQ implementing AMQP(Source: rabbitmq.com)

51

4.5 Overview of AMQP Protocol
Figure 26 is the overview of AMQP protocol.

Figure 26: Overview of AMQP Protocol(Source: cloudamqp.com)

4.5.1 Components of AMQP
4.5.1.1 Message Queues
Messages are sent to queues by the exchange and these messages are kept buffered until consumers

receives it. Consumers can reject the messages or return the messages to the queues as the AMQP

is a full duplex communication protocol. A queue can be shared by one or more consumers.

Producers send the message to the exchange and bind it to the queue and make it available for the

consumers to consume it or it will just send messages to the exchange, and it is consumers

responsibility to create queues and bind the message to the queue. Temporary queue scan be

created for the private message exchange and the message queues can be deleted once the

application is disconnected.

52

4.5.1.2 Exchange and Exchange types
Exchange lies between producers and consumers, and it receives messages from the producers

along with the routing key. Once the message the message is received depending on the exchange

type message is directed to the respective queue.

4.5.1.3 Binding
Binding is a link to bind a queue to an exchange. While sending a message a routing key should

be sent along by the producer while publishing the message. The Exchange compares the two keys

depending on the type of the exchange. Each exchange type has a different kind of algorithm to

direct messages to the queues.

4.5.1.4 Message and Content
A message consists of information that must be exchanged with the other application. This

information is wrapped into a message so that it becomes transportable and exchanged over a TCP

connection. The message consists of the data to be exchanged, message headers and a routing key

which must be compared with the binding key at the exchange. All this helps the message to be

routed and delivered to the correct queue and consumed by the correct consumer.

4.5.1.5 Connection
Exchange of data in AMQP is done over the TCP connection.

4.5.1.6 Channel
When a TCP connection is established between two AMQP servers a virtual connection is

established called as channel through which exchange of information is done. One single

connection can have multiple channels in it as it is a multiplexed connection.

53

4.5.1.7 Virtual hosts
Virtual hosts are used to host multiple domains on a single server. It lets different domains to share

the resources like memory and CPU cores. It provides specific privileges to specific users to

access applications by setting user permissions.

4.6 AMQP Architecture
We can clearly understand from figure 27 that AMQP architecture mainly involves

Publishers/Producers, Exchange, Queues, and Subscribers/Consumers.

Figure 27: AMQP Architecture(Source: researchgate.net)

4.6.1 Producers
Publishers or Producers are the clients that create messages which are then given to brokers. The

process of sending messages by the Producers/Publishers to the exchange is called publishing.

4.6.2 Exchange
Publishers deliver messages to Exchange. These messages contain routing keys that are used by the

exchange module to route them. Queues created either by the consumers or by the publishers

54

are bind with exchange. When the exchange receives the message, depending on the type of

exchange it will send it to the selected queue.

4.6.3 Routing Key
The messages which are sent by the producer to the exchange contains routing key. The exchange

compares the binding and routing key depending on the type of exchange and the messages are

further directed to the queues and the consumers browse for the required messages in the queues.

It is responsibility of the producer to send a routing key when publishing a message.

4.6.4 Consumers
The concept of AMQP is producer emits messages to exchange and consumer receives messages

from the queue. Consumers creates queues and bind them to an exchange with a binding key.

4.6.5 Subscriptions
AMQP protocol uses a message broker as a decoupling layer between message producers and

consumers. The message brokers consist of exchange and queues. Consumers subscribe to the

exchange by creating queues and binding them to the exchange. There are many differences

between exchange and queue. Queues are basically used to queue the messages and are buffered

till the consumers receive it. Whereas an exchange sends messages to the queue when the

messages are published but not store them and if there is no queue available to store the message

the messages will be removed. Since the queues allows the messages to buffer the message

producer need not to be online or stay connected till the message is received by the consumer.

The message will be available in the queue even if the message producer is not connected.

55

4.6.6 Publishing
A publisher can send messages using different publishing strategies. The first way is that message

producing application will send a message to the application and the message consuming

application will create their own queues and subscribe to the exchange. We can use different

exchange types depending on how the message must be distributed. When there are no consumers

subscribed to the exchange, then the messages sent to the exchange are no longer available.

Exchange does not support storage of messages. If the messages must be stored even if there are

no message consuming applications, then we need to send the messages to the queues. Publishers

can directly send messages to the queues by creating queues and subscribing them to an exchange.

The messages sent to the exchange are directed to the queue depending on the exchange type and

consumers will receive them. When the published messages are to be stored on the broker even if

the consumers do not receive them, this type of publishing is used. Even this method allows

consumers to subscribe to the exchange and receive messages. We can publish messages only to a

one queue by binding this queue with an exchange using an exclusive binding key. This can be

done with direct exchange which is one of the exchange types. This does not let another queue to

bind with the exchange to receive those messages.

We can use fanout exchange or topic exchange to bind a queue with the exchange and to publish

message to the queue and these exchange type lets consuming applications to create queues and

bind with the exchange to receive the published messages.

Message Distribution to the queue depends on the exchange type. There are four different types

of Exchange: Fanout, Direct, Topic, Header.

56

4.6.6.1 Direct Exchange
Direct Exchange sends messages to the queues only when the binding key is the same as the

routing key. The routing key is added to the message by the producer while sending a

message to the producer to specify a routing key. The routing key and binding key must be

the same to send the message to the queue. The exchange sends messages only to the one

queue; hence it supports exclusive binding of queues with the exchange with the exclusive

binding key. It is like topic exchange where it allows partial match of message to transfer

the data but in direct exchange it is not possible.

From figure 28, order-create and order-create-log are the binding keys, when a message is

sent with the order-create routing key, the routing key and binding key are the same, so the

message is now sent to the order_create_queue. If there is no matching routing key to the

binding key, then that message will not be sent to any queue. If the routing key is matching

with more than one binding key, then the message will be broadcast to all the matching

queues. Since the direct exchange allows exclusive binding of queue with the exchange

there is only one recipient who receives these messages.

Figure 28: Direct Exchange(Source: medium.com)

57

4.6.6.2 Fanout Exchange
When the message is sent to the fanout exchange it simply ignores the routing key and sends

the messages to all the queues it knows about, and it ignores all the keys sent while the

message is published. It simply copies the message to all the queues that are bound to the

exchange. Fanout exchange is used when the same message must be sent and stored to one

or more queues, and it must be used in different ways. Figure 29 represents the Fanout

Exchange model.

Figure 29: Fanout Exchange(Source: medium.com)

4.6.6.3 Topic Exchange
As shown in Figure 30 topic exchange allows partial matches of the keys when the message

is published. The routing from the exchange to the queue can be done when the routing key

sent by the producer along with the message partially matches the binding pattern.

58

Figure 30: Topic Exchange(Source: medium.com)

All the routing keys which are sent along with the message should have words separated by

the delimiter(.). Messages are sent to different queues depending on the routing key and the

pattern.The pattern consists of * when the matching should be done only in the specific

locations. For example “order.*.*.electronics”, this pattern and the routing key should have

the same words at the same position. The first position of the routing key should be order

and the fourth position should be electronics. If the routing pattern consists of # at the end,

then the routing key should consist of all the words in the same order as in the pattern. The

routing key should be order.logs.customer to match with the routing pattern

“order.logs.customer.#” and then it sends messages to the respective queue.

4.6.6.4 Header Exchange
As shown in Figure 31, Header Exchange uses a message header instead of a routing key

and is the most powerful exchange type in AMQP. The routing keys are ignored in this

header exchange and the messages are sent to the queues using the header properties. A

message is sent to one or more queues depending on the header properties. The producer

sends a header with the message while publishing, if that header matches the header

properties the message is forwarded to the queue. Header matching can be done in two

ways

59

using ANY, ALL. Header properties are represented as key values in the binding like

{“x- match”,” any”} or {“x-match”,” all”} and x- match is added between exchange and

queue.

Figure 31: Header Exchange(Source: medium.com)

The message sent to the exchange should match with one of the headers linked with the queue

when the x-match value is any. If it matches, then the message is sent to the corresponding

queue. If the x-match value is all then the message sent to the exchange should have all the

headers linked with the queue. Only then the message is forwarded to the queue.

4.7 Key Features of AMQP

4.7.1 Security
AMQP supports authentication, authorization, LDAP, and TLS through RabbitMQ plugins.

4.7.2 Reliability
When the message is sent it confirms that the message is delivered to the message broker and

when it is processed successfully by the consumer.

60

4.7.3 Interoperability
In AMQP message is transferred as a stream of bytes so that any client can operate on it

irrespective of any language.

61

Implementation Part

62

Chapter 5

Introduction to Spring Boot

63

5.1 Spring Boot
Spring Boot is a project that is built on the top of the Spring Framework. It provides an easier

and faster way to set up, configure, and run both simple and web-based applications. Spring

boot is a tool that lets you create stand-alone, production grade spring-based applications

that you can just run because it needs minimal Spring configuration. It is a Spring module

that provides the RAD (Rapid Application Development) feature to the Spring Framework.

Spring is an application framework that lets you build enterprise java applications. It also

has programming and configurational model and provides infrastructure support. As shown

in the figure 32, SpringBoot is the combination of Spring Framework and embedded servers

without the xml configuration (deployment descriptor).

Figure 32: Spring Boot framework

5.2 Advantages of Spring Boot
• It creates standalone spring applications that lets program to run as a separate process.

• It has embedded HTTP servers like tomcat, jetty to test web applications easily.

We donot need to deploy WAR files.

• It provides starter dependencies to simplify maven configuration.

• It supports programming and configurational model that automatically configure

spring and third-party libraries.

• It provides production ready features such as metrics, health checks and

externalized configuration.

• There is no need for XML configuration, and it offers number of plugins.

• Since spring boot is build using spring framework dependency injection

64

approach is possible.

• It contains powerful database transaction management capabilities.

• It simplifies integration with other Java frameworks like JPA/Hibernate ORM, Struts, etc.

• It reduces the cost and development time of the application.

5.3 Specifications of Spring Boot
• Spring Boot provides an opinionated approach it makes certain decisions and

changes canbe made if required.

• It features convention over configuration concept

• It is a stand-alone application; the application is ready to run without the

requirement of external servers

• Avoids defining more Annotation Configuration

• Avoids writing lots of import statements

• Avoids XML Configuration.

5.4 Features of Spring Boot

5.4.1 Web Development

Spring boot is widely used for web application development because it has embedded

HTTP servers like tomcat, jetty to test web applications easily. We do not need to deploy

WAR files.Spring-boot-starter-web module can be used to start and run the application

quickly.

5.4.2 Spring Application

Figure 33 is an example code snippet of spring application. SpringApplication is a class

that provides a run method to bootstrap a spring application as a stand-alone

application from the main method.

65

Figure 33: Main method example

5.4.3 Application Events and Listeners

Spring Boot uses events to handle the variety of tasks. It allows us to create factories file that

isused to add listeners. We can refer it to using the ApplicationListener key. Event handling

in the ApplicationContext is provided through the ApplicationEvent class and

ApplicationListenerinterface. Hence, if a bean implements the ApplicationListener, then

every time an ApplicationEvent gets published to the ApplicationContext, that bean is

notified.

5.4.4 Admin Support

Spring Boot provides the facility to enable admin-related features for the application. It is

used to access and manage applications remotely. We can enable it in the Spring Boot

application by using spring.application.admin.enabled property.

5.4.5 Externalized Configuration

Spring Boot allows us to externalize our configuration so that we can work with the same

application in different environments. The application uses YAML files to externalize

configuration.

5.4.6 Properties Files

Spring Boot provides a rich set of Application Properties. So, we can use that in the

properties file of our project. The properties file is used to set properties like server-

port =8082 and many others. It helps to organize application properties.

66

5.4.7 YAML Support

It provides a convenient way of specifying the hierarchical configuration. It is a

superset of JSON. The SpringApplication class automatically supports YAML. It is an

alternative of properties file.

5.4.8 Logging

Spring Boot uses Common logging for all internal logging. Logging dependencies are

managed by default. We should not change logging dependencies if no customization is

needed.

5.4.9 Security

Spring Boot applications are spring bases web applications. So, it is secure by default with

basic authentication on all HTTP endpoints. A rich set of Endpoints is available to develop

a secure Spring Boot application.

5.5 Spring Boot Annotation
The three most frequently annotations used in Spring Boot are:

@Configuration

@EnableAutoConfiguration

@ComponentScan

5.5.1 @Configuration

When @Configuration annotation is used, it indicates that the class can be used as source of

bean definitions by the IoC container. The class may contain one or more @Bean methods

and can be processed by the Spring container to generate bean definitions and service requests

for those beans at runtime.

67

5.5.2 @Enable Auto Configuration

It is used for auto-configuring beans present in the classpath in Spring Boot applications.

5.5.3 @ComponentScan

This annotation is used to enables to scan spring components automatically to scan web

controller components and register them as beans.

5.5.4 @SpringBoot Application

This is the most important and core annotation of spring boot. As show in the figure 34, the

mainclass of the spring boot application is marked as @SpringBootApplication

Figure 34: Application Example

@SpringBootApplication annotation is the equivalent and recommended annotation over

@Configuration, @EnableAutoConfiguration @ComponentScan

5.6 Spring Boot Starters
By including correct Spring Boot Starters in the pom.xml file, spring boot will make sure

that all the required dependencies are there in the class path for the application to run

successfully.

Pom.xml file can be easily managed by using spring boot starters. It helps in developing

applications that are production-ready, tested, and supported dependency configurations. It

helps in decrease the overall configuration time for the project.

Below are the few most used starters in the spring boot application.

68

5.6.1 Web Starter

As shown in the figure 35, by adding web starter start up in the pom.xml will make sure that

all the dependencies required including REST for developing web application are added in

the classpath. It also adds the embedded tomcat server in the class path to run the HTTP web

application easily.

Figure 35: Web Starter dependency

5.6.2 Data JPA Starter

As shown in the figure 36, most of the spring boot applications require persistence

mechanisms hence spring boot starters come with Data JPA starter without the requirement

of external configuration. Data JPA starter supports H2, Derby and Hsqldb.

Figure 36: data JPA and H2 dependencies

69

5.6.3 Mail Starter

As shown in figure 37, in most applications there is a requirement to send emails from

the system. Spring Boot Mail starter provides an easy way to handle this feature by

hiding all complexities. We can enable email support by adding mail starter in our

application.

Figure 37: mail starter dependency

5.6.4 Test Starter

As shown in figure 38, Test Starter automatically adds the Junit, Mockito or Spring Test

libraries to the classpath to test the spring boot applications.

Figure 38: starter test dependency

Test Starter automatically adds the Junit, Mockito or Spring Test libraries to the classpath to

test the spring boot applications.

The other most used spring boot starters are:

• spring-boot-starter-security

• spring-boot-starter-web-services

• spring-boot-starter-integration

70

• spring-boot-starter-validation

• spring-boot-starter-actuator

5.7 Problems of Spring Boot
By using spring boot starters spring boot might use many dependencies that are not used in

the application. This increases the size of the application.

71

Chapter 6

WebSocket in Spring Boot

72

We need to follow few steps to do a sample implementation of WebSocket in spring boot, As

a sample example, which is good to understand the flow and the process of implementation

of WebSocket in Spring Boot, we are going to develop a small echo application.

This application at the end is going to have a WebSocket endpoint where a client can connect

and send some messages which will be sent back as response.

6.1 Dependencies Required
As we can see from the figure 39, we need to add three dependencies to develop an echoing

application with works with JSON message.

Figure 39: Required dependencies

The first dependency in the figure i.e., spring-boot-starter-websocket and the third dependency

i.e., JSON, are the dependencies which the developer should be added.

The second dependency i.e., spring-boot-starter-test is added by default to the pom.xml when

we create the spring boot project.

73

6.2 Detail of application.properties files
As we know that application.properties file is very important to run the application in

different environments.

As we can see from the figure 40, we are setting the properties such as the port that where

application should be running on and the properties that are required by the logs and logfiles.

Figure 40: application.properties

6.2.1 Log Files

Log Files are the files which has all the details about the running application. When the server

is up and running, there will be several requests and queues and lot of other things that will

be up and running, the log files are useful to understand all these things.

The most important thing where log files are most useful is when the errors has been occurred

and need to be resolved then log files make the developer’s life much easier, to identify the

exact point and the reason in some cases which is the cause of the error.

In this sample application, a new log file will be created each day. But this can be changed

according to the developer’s requirements.

74

6.3 Project Structure
We understand from the figure 41 that we need to create a config class file and a handler for

echoing. Here we have named our sample application as withoutstomp project.

Figure 41: Project structure

6.4 Main Method
As we know about the importance of main method in every java project which is also

discussed in the Introduction to Spring Boot chapter, here is the main method of our

application.

From the figure 42, we can understand that we are declaring a spring boot application

with its annotation. We are also starting the server with the port which is given with

server.port in the application.properties file i.e., 8001 in our current application.

75

Figure 42: Main method

6.5 WebSocket Config
The WebSocketConfig class file implements WebSocketConfigurer and has two annotations

@Configuration and @EnableWebSocket as shown in figure 43.

The registerWebSocketHandlers() method is the key to registering a message handler. By

overriding it, you’re given a WebSocketHandlerRegistry through which you can call

addHandler() to register a message handler.

Figure 43: WebSocketConfig

76

6.6 Echoing Handler
We have named our echoing handler class as ConversationHandlerWithoutStomp which

extendsTextWebSocketHandler, which exchanges text messages.

Also, whenever there is a request then we are also logging it to the logfile, initially the

programis checking whether the message that has been sent is a json or not.

String payload = message.getPayload();

From the below code shown in figure 44, if it is not a json message then an exception will be

thrown asking to check the message.

If the message is validated as a correct json message then,

session.sendMessage(); will be sending back the json message.

Figure 44: Echoing Handler

77

6.7 Running the application
We can see from the figure 45, that the application has been started on the port 8001.

Figure 45: Start of the application

6.8 Results of the application
As we can see from the figure 46, a connection has been established with the server of port

8001and with the handler /conversation/messages.

Figure 46: Establishing the connection

A message has been sent to the server, which is a json text message, we can also see in the

figure 47, that the message has also been echoed back to the same session

78

Figure 47: Sending and Receiving json messages

We can observe in the figure 48, that the message which is sent from the previous established

connection from the postman has also been logged in the terminal of the server which is up

and running.

Figure 48: Logging the messages

79

6.9 Log Files of the results
The figure 49 is the log file which has the details of the running server and requests received, etc

which includes the detailed information of everything i.e., most importantly the incoming and

outgoing messages, date and time, and the issues which are debugged if there occurs an

unencountered error.

Figure 49: Log file

The figure 50 has two log files which one of them has the date that the log file is created and

details of the server on that day, and the log file with no date is the log file of the current

day’s log file.

Figure 50: Everyday logs

80

Chapter 7
WebSocket with STOMP in Spring Boot

81

In this chapter, a chat application has been developed using WebSockets with STOMP in

SpringBoot. This helps us to get more clear idea about the STOMP implementation in

WebSockets using Spring Boot.

7.1 Dependencies Required
By looking at figure 51, we can understand the required dependencies for the implementation

of chat application.

Figure 51: Dependencies required

The most important dependencies are stomp-websocket and sockjs-client.

WebJars are client-side web libraries (e.g., jQuery & Bootstrap) packaged into JAR (Java Archive)

files.

Explicitly and easily manage the client-side dependencies in JVM-based web applications

Use JVM-based build tools (e.g., Maven, Gradle, sbt, ...) to download your client-side

dependencies

Transitive dependencies are automatically resolved and optionally loaded via RequireJS

82

7.2 Details of application.properties file
The application.properties shown in figure 52, are the same properties that we have used in

chapter – 6.

Figure 52: application.properties file

7.3 Project Structure
We can see from the figure 53, that a html, CSS, and js files have also been developed. This

is because the WebSockets with STOMP cannot be tested in postman. So, we have also

developed a client application.

Figure 53: Project structure

83

ChatMessage is the model of the message, ChatController is the controller which receives

andsends the message to appropriate people who have subscribed to the end point.

WebSocketEventListener is the event listener which gives the notification of a new person

who has subscribed to the endpoint.

In simple words, the output of the chat application can be imagined as a group chatting.

7.4 Main Method of the Application
The main method of this application shown in figure 54 is almost same as the chapter- 6’s

main method.

Figure 54: Main method

84

7.5 WebSocket Config
Here comes our one of the important parts of our application.

The configureMessageBroker() method implements the default method in WebSocket

Message Broker Configurer (WebSocketMessageBrokerConfigurer) to configure the

message broker. It starts by calling enableSimpleBroker() to enable a simple memory-based

message broker to carry the greeting messages back to the client on destinations prefixed

with

/topic. It also designates the /app prefix for messages that are bound for methods annotated

with @MessageMapping

The registerStompEndpoints() method registers the /ws endpoint, enabling SockJS fallback

options so that alternate transports can be used if WebSocket is not available. The SockJS

client will attempt to connect to /ws and use the best available transport (websocket, xhr-

streaming, xhr-polling, and so on). An example code snippet of WebSocketConfig is shown

in figure 55.

Figure 55: WebSocketConfig

85

7.6 Chat Controller
As we can see from the figure 56, there are two message mappings i.e., /chat.sendMessage and

/chat.addUser, and both message mappings are replying to the subscribers who are subscribed to

/topic/public.

Figure 56: Chat controller

Annotation Type MessageMapping. Annotation for mapping a Message onto a message-handling

method by matching the declared patterns to a destination extracted from the message.

Annotation that indicates a method's return value should be converted to a Message if necessary

and sent to the specified destination.

In a typical request/reply scenario, the incoming Message may convey the destination to use for

the reply. In that case, that destination should take precedence.

This annotation may be placed class-level in which case it is inherited by methods of the class.

86

7.7 Event Listener
The event listener which we can see in the figure 57, whenever the user is disconnected from

the session, then the other people who are subscribed will be notified.

Figure 57: Event listener

7.8 Connecting and Subscribing the client
Whenever there is a new client for connection, the stomp client makes the user to be

subscribed to /topic/public as shown in figure 58.

Figure 58: Connecting and subscribing the JS client

87

7.9 Sending message from JS client
From the figure 59, the json message is being sent to the end point of STOMP i.e.,

/app/chat.sendMessage.

Figure 59: Sending message from JS client

This is part of the stomp client which is developed in JavaScript. For the UI, we have used

HTML and CSS.

7.10 Results of the chat application

7.10.1 Start the server

As shown in figure 60 the application has started on the port 8001.

Figure 60: Start of the application

88

7.10.2 UI of the chat application

When the application is started successfully, then the UI of localhost:8001 is the figure

61.

Figure 61: UI of localhost:8001

7.10.3 New User Notification

Whenever new users join the group, then the existing connected users will be notified as

shown in the figure 62.

Figure 62: New User notification

89

7.10.4 Communications in the group

This is the sample discussion in the group which is shown in figure 63. We can see

the notifications of the new users who are joining and the users who are leaving the

group.

Figure 63: Communications in the group

90

7.10.5 Log files

This figure 64 is the sample log file which has the details of the server and the works that the

server has done for the application

Figure 64: Log file

7.10.6 Everyday log files

These are the sample everyday log files shown in figure 65, the log file with date is the log

file of that day and the log file which does not have date and having only the name is the

current day’s log file. But according to the developer’s requirements log files can also be

created for every hour.

Figure 65: Everyday log files

91

Chapter 8

WebSocket using STOMP with RabbitMQ as
Message Broker

92

RabbitMQ is a message broker that implements Advanced Message Queuing Protocol

(AMQP) which we have learnt about in the specific chapter of AMQP.

Here we are going to implement RabbitMQ as message broker for communications between

the clients.

In simple words, we will be replacing the simple broker that we have used in the

previous chapter with RabbitMQ. This helps us to understand the queues and

connection and a lot of things.

We are going to use the same project and code, but the main difference between the previous

chapter that is with the simple broker of stomp, and this is the configuration.

8.1 WebSocket Config
As we can see from the figure 66, the stomp broker has been enabled to port 61613, which is

the port of RabbitMQ for stomp.

Figure 66: WebSocketConfig

The credentials of the RabbitMQ that are being used are of guest.

93

8.2 Results of the application

8.2.1 Starting the server

The server has started, and it is connected to RabbitMQ, which we can see the log in the

figure 67, that the connection has been established.

Figure 67: Start of the application and connection to RabbitMQ

8.2.2 Checking the server connection to RabbitMQ in RabbitMQ portal
We can see in the figure 68, that a new connection which is a server of the application has

connected.

Figure 68: Server connection to RabbitMQ

94

8.2.3 New user

New user has been joined in the group as shown in figure 69, which means a new RabbitMQ

connection and should also been established.

Figure 69: New user notification

Here in the figure 70, we can see that when there is a new user joined in the group, a new

RabbitMQ connection is also established.

Figure 70: New connection to RabbitMQ

8.2.4 RabbitMQ Monitoring

The following are the few monitoring results of the RabbitMQ during the exchanging of

messages in the group among users.

RabbitMQ comes with a management UI and HTTP API which exposes a number of RabbitMQ

metrics for nodes, connections, queues, message rates as shown in figure 71 and so on. This is a

convenient option for development and in environments where external monitoring is difficult or

impossible to introduce.

Figure 71: Message Rate

95

As we can see from figure 72, Global counts in the management UI shows the total number of

connections to the RabbitMQ, total number of channels, total number of exchanges, total number

of queues, total number of consumers.

Figure 72: Global Counts

Each user when is connected to the server of the application to be a member of the chat application

group, specific queue will be created. In this case, we have two users joined in the group which

implies two queues to be generated as shown in the output figure 73.

Figure 73: Each User Queues

When the maintainers of the application or developers working for the application want to know

all the metrics and other details of the queues and their status etc. They can get them through the

end points provided by the documentation of the RabbitMQ or they can download through the

export definitions as shown in the figure 74 which will be a json file with the details.

Figure 74: Download details JSON file

96

8.3 POM.XML
Finally, as shown in figure 75, there are two important dependencies to be added to successfully

start the project.

Figure 75: POM.xml

97

Conclusion
Among the research that has been done and the implementations of few protocols, there are several

advantages of using different protocols based on the requirements of the chat applications.

WebRTC enables Web applications and sites to capture and optionally stream audio and/or video

media, as well as to exchange arbitrary data between browsers without requiring an intermediary.

XMPP is the Extensible Messaging and Presence Protocol, a set of open technologies for instant

messaging, presence, multi-party chat, voice and video calls, collaboration, lightweight

middleware, content syndication, and generalized routing of XML data.

The WebSocket API is an advanced technology that makes it possible to open a two-way

interactive communication session between the user's browser and a server. With this API, you

can send messages to a server and receive event-driven responses without having to poll the server

for a reply.

The Advanced Message Queuing Protocol (AMQP) is an open standard for passing business

messages between applications or organizations. It connects systems, feeds business processes

with the information they need and reliably transmits onward the instructions that achieve their

goals.

We have also developed and tested the chat applications in Java using Spring Boot with

WebSockets alone, having STOMP over WebSockets and also using RabbitMQ as message broker

while using STOMP over WebSockets.

We can clearly understand that whichever protocol is being used based on the requirements having

a broker (ex: RabbitMQ) really helps the applications a lot. As a message broker is an architectural

pattern for message validation, transformation, and routing. It mediates communication among

applications, minimizing the mutual awareness that applications should have of each other in order

to be able to exchange messages, effectively implementing decoupling.

98

Bibliography
Baeldung Contributers. (2022, April 29). Learn Spring Boot. Retrieved from baeldung.com:

https://www.baeldung.com/spring-boot

Cosette Cressler. (2021, July 20). Everything About XMPP - Extensible Messaging & Presence
Protocol. Retrieved from cometchat.com: https://www.cometchat.com/blog/xmpp-
extensible-messaging-presence-protocol

Cullen, J., Henrik, B., & Jan-Ivar, B. (2021, January 26). WebRTC 1.0: Real-Time
Communication Between Browsers. Retrieved from w3.org:
https://www.w3.org/TR/webrtc/

Dejan, S., Matija, H., & Sinisa, S. (2014). Performance evaluation of Websocket protocol for
implementation of full-duplex web streams. 2014 37th International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO). researchgate.

Enyinnaya, C. (2021, March 30). What are WebSockets. Retrieved from cometchat.com:
https://www.cometchat.com/tutorials/what-is-
websockets#:~:text=A%20WebSocket%20is%20a%20persistent,between%20a%20client
%20and%20server.

Esegece admin. (2020, May 16). WebSockets .NET. Retrieved from esegece.com:
https://www.esegece.com/websockets/main-components/net-components

I, F., & A, M. (2011, December). The WebSocket Protocol. Retrieved from rfc-editor.org:
https://www.rfc-editor.org/rfc/rfc6455.html

IETF Trust. (2011). The WebSocket Protocol. Retrieved from tools.ietf.org:
https://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-09.html

Implementing WebSocket Protocol in Go. (2017, May 07). Retrieved from hassansin.github.io:
https://hassansin.github.io/implementing-websocket-protocol-in-go

Jabber hot chilli. (2022). Jabber/XMPP. Retrieved from jabber.hot-chilli.net: https://jabber.hot-
chilli.net/

Java Dev Journal Contributers. (n.d.). Spring Boot Tutorials. Retrieved from
javadevjournal.com: https://www.javadevjournal.com/spring-boot/

Javatpoint Contributers. (n.d.). Spring Boot Tutorial. Retrieved from javatpoint.com:
https://www.javatpoint.com/spring-boot-tutorial

LEDBROOK, P. (2010, June 14). Understanding AMQP, the protocol used by RabbitMQ.
Retrieved from spring.io: https://spring.io/blog/2010/06/14/understanding-amqp-the-
protocol-used-by-rabbitmq

http://www.baeldung.com/spring-boot
http://www.baeldung.com/spring-boot
http://www.cometchat.com/blog/xmpp-
http://www.cometchat.com/blog/xmpp-
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.cometchat.com/tutorials/what-is-
http://www.cometchat.com/tutorials/what-is-
http://www.esegece.com/websockets/main-components/net-components
http://www.esegece.com/websockets/main-components/net-components
http://www.rfc-editor.org/rfc/rfc6455.html
http://www.rfc-editor.org/rfc/rfc6455.html
http://www.javadevjournal.com/spring-boot/
http://www.javadevjournal.com/spring-boot/
http://www.javatpoint.com/spring-boot-tutorial
http://www.javatpoint.com/spring-boot-tutorial

99

Liakh, A. (2020, November 08). WebSockets With Spring, Part 3: STOMP Over WebSocket.
Retrieved from medium.com: https://medium.com/swlh/websockets-with-spring-part-3-
stomp-over-websocket-3dab4a21f397

LX Pty Ltd. (2014, March 27). XMPP – an extensible messaging protocol for the IoT. Retrieved
from lx-group.com.au: https://lx-group.com.au/xmpp-extensible-messaging-protocol-iot/

M. Jones. (2009, September 14). Meet the Extensible Messaging and Presence Protocol
(XMPP). Retrieved from developer.ibm.com: https://developer.ibm.com/tutorials/x-
xmppintro/

MDN Contributers. (2022, June 03). The WebSocket API (WebSockets). Retrieved from
developer.mozilla.org: https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API

MDN Contributers. (2022, June 03). WebRTC API. Retrieved from developer.mozilla.org:
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API

OASIS Members. (n.d.). AMQP is the Internet Protocol for Business Messaging. Retrieved from
amqp.org: https://www.amqp.org/about/what

OpenDomain.org. (n.d.). An Overview of XMPP. Retrieved from xmpp.org:
https://xmpp.org/about/technology-overview/

Programmer Sought Contributers. (n.d.). Spring uses WebSocket and STOMP to realize the
message function. Retrieved from programmersought.com:
https://www.programmersought.com/article/34333859023/

RabbitMQ Community. (n.d.). Management Plugin. Retrieved from rabbitmq.com:
https://www.rabbitmq.com/management.html#:~:text=Management%20UI%20and%20E
xternal%20Monitoring%20Systems

Redhat Contributers. (n.d.). AMQP Exchange Types. Retrieved from access.redhat.com:
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_mrg/3/html/messaging_programming_reference/amqp_exchange_t
ypes

Reock, J. (2020, June 04). What is Apache ActiveMQ? Retrieved from openlogic.com:
https://www.openlogic.com/blog/what-apache-activemq

RF & Wireless Vendors and Resources. (n.d.). What is XMPP Protocol in IoT | XMPP Server |
XMPP Client. Retrieved from rfwireless-world.com: https://www.rfwireless-
world.com/IoT/XMPP-protocol.html

Stomp. (n.d.). Retrieved from stomp.github.io: https://stomp.github.io/

Stomp Protocol Specification, Version 1.0. (n.d.). Retrieved from stomp.github.io:
https://stomp.github.io/stomp-specification-1.0.html

http://www.amqp.org/about/what
http://www.programmersought.com/article/34333859023/
http://www.programmersought.com/article/34333859023/
http://www.rabbitmq.com/management.html#%3A%7E%3Atext%3DManagement%20UI%20and%20E
http://www.rabbitmq.com/management.html#%3A%7E%3Atext%3DManagement%20UI%20and%20E
http://www.openlogic.com/blog/what-apache-activemq
http://www.openlogic.com/blog/what-apache-activemq

100

STOMP Protocol Specification, Version 1.1. (n.d.). Retrieved from stomp.github.io:
https://stomp.github.io/stomp-specification-1.1.html

STOMP Protocol Specification, Version 1.2. (2012, October 22). Retrieved from
stomp.github.io: https://stomp.github.io/stomp-specification-1.2.html

The Developer Blog Contributers. (n.d.). Spring Boot Tutorial. Retrieved from
thedeveloperblog.com: https://thedeveloperblog.com/spring/spring-boot-tutorial

W3CShoool Contributers. (n.d.). Spring Boot Tutorial. Retrieved from w3schoool.com:
https://w3cschoool.com/spring-boot-tutorial

	DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
	“ANALYSIS OF ROBUST INTERNET INSTANT MESSAGING PROTOCOLS FOR CHAT APPLICATIONS”
	Laureando/a: VENKATA AVINASH JAKKAMPUDI
	Data di laurea 11/07/2022
	Table of Contents Page

	Introduction
	Chapter 1
	WebRTC
	1.1 Introduction to WebRTC
	1.2 Major Components in WebRTC
	1.2.1 API: getUserMedia
	1.2.2 API: RTCPeerConnection
	1.2.3 API: RTCDataChannel

	1.3 WebRTC in the Real World
	1.3.1 Signaling
	1.3.1.1 How does Signaling work
	1.3.1.2 Technologies Available for signaling servers
	1.3.2 ICE & STUN/TURN

	1.4 Typical Architecture Topologies for WebRTC
	1.4.1 Mesh Topology
	1.4.2 MCU
	1.4.3 Routing

	1.5 Use Cases
	1.6 Security Considerations
	1.7 Why WebRTC is so important

	Chapter 2
	XMPP
	2.1 Introduction to XMPP
	XMPP Standards:

	2.2 History to XMPP
	2.3 How XMPP works
	2.4 Client Server architecture in XMPP
	2.5 Anatomy of JID
	2.6 Core protocol defined in RFC 6120 i.e., about Streams
	2.7 XMPP Stanzas
	2.7.1 Presence Stanza
	2.7.2 Message Stanza
	2.7.3 IQ Stanza

	2.8 XMPP features
	2.8.1 Asynchronous Protocol
	2.8.2 Persistent Connection
	2.8.3 Decentralization

	2.9 Few Common Extensions in XEP series
	2.9.1 XEP-0280 : Message Carbons
	2.9.2 XEP-0310 : Message Archive Management (MAM)
	2.9.3 XEP-0352 : Client State Indication (CSI)
	2.9.4 XEP-0268 : Mobile Considerations
	2.9.5 XEP-0198

	2.10 Services built on top XMPP

	Chapter 3
	Web Sockets
	3.1 What is HTTP
	3.2 Drawbacks in HTTP
	3.3 What are WebSockets
	3.3.1 WebSocket Architecture
	3.3.2 Protocol Handshake
	Browser – WebSockets

	3.3.3 Relationship to TCP and HTTP from WebSockets
	3.3.4 Security Considerations
	3.3.5 Use Cases
	3.3.5.1 Gaming Applications
	3.3.5.2 Chat Applications
	3.3.5.3 Live feed
	3.3.6 Advantages of WebSockets

	3.4 Introduction to STOMP
	3.4.1 Latest version updates
	3.4.2 Message brokers available for STOMP
	3.4.3 Connecting clients to a broker
	3.4.3.1 Connect
	3.4.3.2 Disconnect
	3.4.4 Sending message from clients to a broker
	3.4.5 Subscribing clients to message from a broker
	3.4.5.1 Subscribe
	3.4.5.2 Message
	3.4.5.3 Unsubscribe
	3.4.6 Acknowledgement
	3.4.6.1 Client message acknowledgement
	3.4.6.2 Broker Commands Acknowledgement
	3.4.7 Examples and Implementations of STOMP

	Chapter 4
	AMQP
	4.1 Introduction to AMQP
	4.2 How AMQP works
	4.3 Consumer driven Messaging Approach
	4.4 Message Broker
	4.5 Overview of AMQP Protocol
	4.5.1 Components of AMQP
	4.5.1.1 Message Queues
	4.5.1.2 Exchange and Exchange types
	4.5.1.3 Binding
	4.5.1.4 Message and Content
	4.5.1.5 Connection
	4.5.1.6 Channel
	4.5.1.7 Virtual hosts

	4.6 AMQP Architecture
	4.6.1 Producers
	4.6.2 Exchange
	4.6.3 Routing Key
	4.6.4 Consumers
	4.6.5 Subscriptions
	4.6.6 Publishing
	4.6.6.1 Direct Exchange
	4.6.6.2 Fanout Exchange
	4.6.6.3 Topic Exchange
	4.6.6.4 Header Exchange

	4.7 Key Features of AMQP
	4.7.1 Security
	4.7.2 Reliability
	4.7.3 Interoperability

	Chapter 5
	Introduction to Spring Boot
	5.1 Spring Boot
	5.2 Advantages of Spring Boot
	5.3 Specifications of Spring Boot
	5.4 Features of Spring Boot
	5.4.1 Web Development
	5.4.2 Spring Application
	5.4.3 Application Events and Listeners
	5.4.4 Admin Support
	5.4.5 Externalized Configuration
	5.4.6 Properties Files
	5.4.7 YAML Support
	5.4.8 Logging
	5.4.9 Security

	5.5 Spring Boot Annotation
	5.5.1 @Configuration
	5.5.2 @Enable Auto Configuration
	5.5.3 @ComponentScan
	5.5.4 @SpringBoot Application

	5.6 Spring Boot Starters
	5.6.1 Web Starter
	5.6.2 Data JPA Starter
	5.6.3 Mail Starter
	5.6.4 Test Starter

	5.7 Problems of Spring Boot

	Chapter 6
	WebSocket in Spring Boot
	6.1 Dependencies Required
	6.2 Detail of application.properties files
	6.2.1 Log Files

	6.3 Project Structure
	6.4 Main Method
	6.5 WebSocket Config
	6.6 Echoing Handler
	6.7 Running the application
	6.8 Results of the application
	6.9 Log Files of the results

	Chapter 7
	WebSocket with STOMP in Spring Boot
	7.1 Dependencies Required
	7.2 Details of application.properties file
	7.3 Project Structure
	7.4 Main Method of the Application
	7.5 WebSocket Config
	7.6 Chat Controller
	7.7 Event Listener
	7.8 Connecting and Subscribing the client
	7.9 Sending message from JS client
	7.10 Results of the chat application
	7.10.1 Start the server
	7.10.2 UI of the chat application
	7.10.3 New User Notification
	7.10.4 Communications in the group
	7.10.5 Log files
	7.10.6 Everyday log files

	Chapter 8
	WebSocket using STOMP with RabbitMQ as Message Broker
	8.1 WebSocket Config
	8.2 Results of the application
	8.2.1 Starting the server
	8.2.3 New user
	8.2.4 RabbitMQ Monitoring

	8.3 POM.XML

	Conclusion

