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Abstract

This work deals with the study of conformal phased-array antennas, i.e.

antennas designed to adapt to changing surfaces. When such surfaces modify

their shape, the arrays placed on them deform as well, thus rising the issue

of maintaining the overall antenna’s radiation pattern.

The projection method is one of the possible solutions to this problem.

Here this technique is applied to different conformal arrays, and through

the comparison of the obtained results, advantages and drawbacks of this

approach are pointed out. In particular in this work new conformal arrays

were designed and studied through analytical investigation and numerical

modeling, thus allowing further insights on the projection method and

therefore providing an original contribution to this thesis.



Chapter 1

Introduction

Wireless systems have undergone huge developments in recent years,

finding widespread applications: cellular networks, aviation communications,

sensor networks, wearable devices, telemedicine are only some examples

of technologies that rely on wireless systems. And a lot of other future

applications will be based on them as well. For example the applications

related to smart cities and more in general to the internet-of-things (IoT):

vehicle-to-vehicle communications will improve safety and enable traffic

control, intelligent and communicating household appliances will give the

end-user the capability of monitoring and controlling their consumes, sensor

networks can monitor a wide range of parameters, wearable technologies and

telemedicine can improve people lifestyle [1].

These breakthrough applications are accompanied by stricter

requirements like for example those that are depicted in the design of

the 5G new standard for wireless communication 1 : diminished end-to-end

latency (from 30-50 ms to 1 ms), higher throughput (from 100Mbps to
1No official draft of the requirements exists at the moment for 5G, but various

telecommunications companies (e.g. samsung, huawei, ofcom) are outlining their own
[2].
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10Gbps), more connections per km2 (from 10K to 1000K) and technology

capable of functioning in high-mobility environments (e.g. high-speed

railways 500km/h) [3] [2].

New requirements demand new improvements of consolidated

technologies. Antennas are a good example of this process: they are

one of the building blocks of wireless communications, and recently they

have been the subject of novel scientific research that aims at providing

them with new features in order to face present and future challenges.

Antenna systems are demanded for higher directivity, higher gains, and

capability of functioning on changing surfaces in order to be placed for

example on wearable devices that adapt to body movement [4] [5] [6], or on

vibrating surfaces (for example on cars for vehicle-to-vehicle communication

purposes) [7].

Conformal antennas phased-arrays have been gaining increasing attention

by the scientific community as a feasible solution to this type of problems.

Infact this type of antenna is capable of adapting to changing surfaces: the

main challenge to face with this kind of phased-array consists in maintaining

their original radiation pattern even when the surfaces on which they are

placed, deform. In order to satisfy this requirement, various compensating

techniques can be adopted: simple, cheap and easy to implement solutions

exist and are subject of research, as well as more performing and complex

ones. The choice of the particular technique depends on the final system’s

requirements and on the inevitable tradeoff between performance and ease

of implementation.

In this work different configurations of conformal phased-arrays have been
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designed and analyzed; in particular the projection method was applied as a

pattern recovery technique and its improvements on the performance of the

different conformal antennas were studied and compared. Moreover, some

of the studied conformal arrays have been also prototyped and characterized

in collaboration with the North Dakota State University, Fargo, ND, USA,

with the goal of realizing a totally autonomous self-adapting system in the

future.

Now, in order to present the study carried on in this thesis, it is useful to

revise the work that has been done so far on conformal phased-arrays.

Previous Work

Antenna arrays, i.e. groups of several interconnected antennas arranged

following some pattern in space, are used in order to increase the gain and

directivity of a single element [8].

There are many possible geometrical configurations for the antenna

elements that constitute an array: from the simplest one-dimensional linear

array (Figure (1.1a), to various two- and three-dimensional configurations

(Figure (1.1b-c) rispectively).

In a phased-array, differently from a single antenna, it is not necessary

to vary the direction of the array in order to scan the radiation pattern, it is

sufficient to change the phase of the currents that excite the single elements

of the array. Thus an array has great advantages over a single antenna for

example, the narrow main beam of a parabolic reflector antenna is scanned

by slewing the entire structure, while arrays can be phase-scanned at the

speed of the control electronics, without moving the entire structure. In

addition it is possible to track multiple targets with an array. This is a great

advantage and the reason why phased-arrays have become so popular in the
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Figure 1.1: Different arrays: (a) linear, (b) planar, (c) non-planar.

aviation and military field, especially for radars.

The field of phased-array antennas was a very active area of research from

the Second World War to about 1975. During this period, much pioneering

work was done also for conformal arrays [9], i.e. an array designed to conform

or follow some prescribed shape [10]. However, electronically scanned,

phased array antennas did not find widespread use until the necessary means

for feeding and steering the array became available. Integrated circuit

(IC) technology including monolithic microwave integrated circuits (MMIC),

filled this gap, providing reliable low cost solutions, even for complex array

antennas.

An important factor was also the development of digital processors
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that can handle the enormously increased rate of information provided

by phased array systems. Digital processing techniques made phased

array antenna systems cost effective. This being true for phased arrays

in general, it also holds for conformal array antennas. However, in the

area of conformal arrays, electromagnetic models and design know-how

needed extra development: in the last 10 to 20 years, numerical techniques,

electromagnetic analysis methods, and the understanding of antennas on

curved surfaces have improved vastly [11], [12].

The origin of conformal arrays can be traced back at least to the 1930s

when a system of dipole elements arranged on a circle, thus forming a

circular array, was analyzed [13]. Later, in the 1950s, several pubblications

on the subject were presented (for example [14]). The circular array was

attractive because of its rotational symmetry and proper phasing can create

a directional beam that can be scanned 360 degrees. The applications were

in broadcasting communication and, later, navigation and direction finding.

A great deal of important conformal work was done at the U.S. Naval

Electronics Laboratory Center (NELC) in San Diego. The work included

development of both cylindrical and conical arrays as well as feeding system

[9]. An indication of a recent resurgence in the interest in conformal

antennas is the series of conformal antenna workshops, held in Europe every

second year, starting in 1999.

In recent years, thanks to the development in electronics, the interest

and studies on conformal arrays rose vastly. The main problem of an array

placed on a conformal surface (i.e. that changes shape) lies in the fact that

once the structure on which the antennas are placed, deforms, the radiation
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pattern of the array changes as well. This brings to a reduction in the

overall gain of the array, and in a diminished directivity of the system. In

order to solve this issue, one of the most popular solutions [15] [16] [17] is

based on the projection method [18]. This is a compensation technique that

consists basically in projecting the single elements of the deformed array onto

a reference plane, and then, through phase-tapering, in making the different

signals from the single elements arriving in-phase on the new reference plane.

In [19] the projection method is used to recover the radiation pattern of a

1x4 conformal array placed on a non-conducting singly-curved wedge-shaped

surface and on a non-conducting cylindrical-shaped surface. The various

geometrical configurations are analyzed analytically (via matlab), by

numerical simulation (via HFSS) and by measurement.

The first goal of this thesis is to retrace the results obtained in [19]

both analytically and numerically, but making use of a different simulation

software: CST Microwave Studio 2013.

Then the study and design of three novel conformal array antennas is

presented, providing an original contribution to this work.

Finally the obtained results are compared in order to gain further insights

on the projection method as a pattern recovery technique: its effectiveness

is underlined as well as its drawbacks and limitations.

The following chapters will be organized as follows. Chapter 2 revises the

most important theoretical concepts that have been used in this work, namely

those regarding antenna arrays and patch antennas. Chapter 3 describes the

model of the different conformal arrays studied in this work, focusing on

the use of the projection method in each specific configuration. Chapter 4
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presents the CST and matlab implementation of the system and the obtained

results from the simulations. Finally Chapter 5 summarizes the conclusions

of the work that has been done and the possible future implementations and

developments.



Chapter 2

Background

In this thesis different configurations of conformal phased-arrays were

designed and studied.

The various array configurations differ in the spatial distribution of

the single elements, but they are all built with the same antennas, i.e.

a rectangular microstrip patch resonating at 2.45GHz and fed by a 50Ω

microstrip line.

In order to understand the analysis presented in the following chapters,

it is first necessary to present some important theoretical concepts that were

used to develop this work. Therefore, the aim of this chapter is to summarize

the theory regarding the three building blocks of this thesis: phased arrays,

conformal phased arrays and patch antennas.

2.1 Phased Antenna-Arrays

The radiation pattern of most antennas is usually relatively wide and presents

low values of directivity and gain.

Many applications require antennas that can provide higher directivity
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and narrow radiation pattern; in order to do so, a possible solution alternative

to increasing the dimensions of a single antenna, consists in assembling

various radiating elements in an electrical and geometrical configuration.

Such a group of antennas is referred to as an antenna array [8].

A very popular choice is to build an array using identical antennas, as

it has been done in this work. It’s not a mandatory choice, but it is often

convenient, simpler and more practical, therefore we will concentrate on this

case.

The overall electric field radiated by the array is obtained by the vector

addition of the single fields of each antenna. This holds under the hypothesis

that there is no mutual coupling among the single antennas, or at least that

coupling can be neglected: usually this is not true and in general it depends

on the spatial distance among the elements.

In order to shape the overall pattern of the array, there are at least five

parameters that can be controlled in an array of identical elements [8]:

1. the geometrical configuration of the array (e.g. linear, circular,

spherical, etc.)

2. the relative displacement between consecutive elements;

3. the amplitude of the excitation signal of the individual elements;

4. the phase of the excitation signal of the individual elements;

5. the radiation pattern of the single elements;

The most simple array-configuration is obtained by placing the antennas

along a line at equally spaced intervals, in this way we get a linear array.

In this work, the initial undeformed array assumes this configuration,



CHAPTER 2. BACKGROUND 10

consequently the next section describes the most important features of this

type of array.

2.1.1 Two-Elements Linear Array

Let us consider a very simple array consisting of two infinitesimal dipoles

positioned horizontally along the z-axis as depicted in Figure(2.1a).

(a) Two dipoles array. (b) Farfield approximation.

Figure 2.1: Example of a linear two-element array [8].

Assuming no coupling between the two dipoles, the total electric field

radiated by the array is given by the sum of the electric fields radiated by

the two dipoles, and in the yz plane is given by:

Etot = E1 +E2 = âϑjη
kI0l

4π

{exp−j[kr1−(β/2)]

r1

cosϑ1 +
exp−j[kr2+(β/2)]

r2

cosϑ2

}
(2.1)

where âϑI0 is the spatial variation of the current that excites the dipole

and I0 is assumed to be constant, η is the wave impedance, l is the length of

the dipole, r1 and r2 are the distances of the two dipoles from the observation
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point, k is the wave vector, ϑ1 and ϑ2 are the angles between ri and the z−axis

and β is the phase difference between the currents that excite the two dipoles.

Assuming farfield observation we can make these simplifications (see

Figure(2.1b)):

ϑ1 ' ϑ2 ' ϑ , (2.2)

r1 ' r − d

2
cosϑ , r2 ' r +

d

2
cosϑ (2.3)

r1 ' r2 ' r (2.4)

where (2.3) is used when dealing with phase variations while (2.4) is used

with amplitude variations. Thus, equation (2.1) reduces to:

Etot = âϑjη
kI0l exp−jkr

4πr
cosϑ

{
2 cos

[1

2
(kd cosϑ+ β)

]}
(2.5)

So the total field of the array is the product between the field radiated by

a single element of the array positioned in the origin (i.e. the term before the

graph parenthesis in Eq.(2.5)) and a term that is known as the array factor :

AF = 2 cos
[1

2
(kd cosϑ+ β)

]
(2.6)

or in normalized form:

(AF )n = cos
[1

2
(kd cosϑ+ β)

]
(2.7)

The AF is a function of the spacing d between adjacent elements in the array

and the phase difference β in the excitations of the two elements.

It has been shown that the total radiated field by an array is given by

the product of the field of a single element, at a selected reference point
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(usually the origin), and the array factor of that array. This is referred to

as pattern multiplication for array of identical elements [8].

2.1.2 N-elements Uniform Linear Array

The method presented above can be generalized to the general case of a

uniform N -elments array.

Definition An array of identical and equally spaced elements all of identical

magnitude and each with a progressive phase, is referred to as a uniform

array.

Since pattern multiplication applies to this type of array, the total

radiated field is given by the sum of the fields radiated by the single elements,

or equivalently by the product of the AF and the field radiated by a single

element placed in the reference point (usually the origin).

In an identical manner as what have been done for the case of a

two-elements array, we can make farfield approximations similar to those

of Eq. (2.2)(2.3)(2.4) (see Figure(2.2)). In this way we can evaluate the AF

as:

AF = 1 + ej(kd cosϑ+β) + ej2(kd cosϑ+β) + · · ·+ ej(N−1)(kd cosϑ+β) =

=
N∑
n=1

ej(n−1)(kd cosϑ+β)

which can be written as:

AF =
N∑
n=1

ej(n−1)ψ , ψ = kd cosϑ+ β (2.8)
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Figure 2.2: Array of N elements and their phasors [8].

Therefore, since the total AF is a summation of exponentials, it can be

represented by phasors as depicted in Figure(2.2) and it can be also expressed

in an alternate compact and closed form. Multiplying both sides of (2.8) by

ejψ we get:

(AF )ejψ = ejψ + ej2ψ + · · ·+ ej(N−1)ψ + ejNψ (2.9)

and subtracting (2.8) this:

AF =
[ejNψ − 1

ejψ − 1

]
= ej[(N−1)/2]ψ

[ej(N/2)ψ − e−j(N/2)ψ

ej(1/2)ψ − e−j(1/2)ψ

]
= (2.10)

= ej[(N−1)/2]ψ

[
sin
(
N
2
ψ
)

sin
(

1
2
ψ
) ] (2.11)

If we choose the physical center of the array (e.g. the middle point of



CHAPTER 2. BACKGROUND 14

the line on which the antennas are placed in a linear array) as the reference

point, this expression reduces to:

AF =

[
sin
(
N
2
ψ
)

sin
(

1
2
ψ
) ] , ψ = kd cosϑ+ β (2.12)

From this expression this expression we can make some considerations:

• The maximum value of the AF is N . In fact, for ψ → 0, we can replace

the sine with its first-order Taylor approximation 1 , thus getting:

AF =

[
sin
(
N
2
ψ
)

sin
(

1
2
ψ
) ] ' N

2
ψ

1
2
ψ

= N (2.13)

this means that combining N antennas in an array can increase the

overall gain of a factor N .

• The maximum value for the AF is achieved when the argument of both

the numerator and the denominator goes to zero, that is when ψ = 0,

in correspondence of this value we can find the main lobe (principal

maximum) of the AF . Other maxima can be found for ψ = ±mπ and

in correspondence of these values we can find the grating lobes of the

AF (secondary maxima). In general a lobe (main or grating) can be

found when:
1The first-order approximation of the sine function for x → 0 is given by: sin(x) =

x+ o(x), where o(x) is any function f(x) such that limx→0
f(x)
x → 0.



CHAPTER 2. BACKGROUND 15

sin
(ψ

2

)
= 0 ⇒ ψ

2
= ±mπ ⇒ kd cosϑ+ β = ±mπ (2.14)

ϑm = cos−1
[ 1

kd

(
− β ± 2mπ

)]
(2.15)

m = 0, 1, 2, . . . (2.16)

For m = 0 we get the main lobe, while for the other values we get the

grating lobes.

• The AF assumes null values when the numerator of (2.13) is zero, i.e.

when:

sin
(N

2
ψ
)

= 0 ⇒ N

2
ψ = ±nπ ⇒ kd cosϑ+ β = ±nπ (2.17)

ϑn = cos−1
[ 1

kd

(
− β ± 2n

N
π
)]

(2.18)

n = 1, 2, . . . n 6= N, 2N, . . . (2.19)

Controlling the parameters of the array enables to set some features like

for example the main lobe’s direction, the number of grating lobes and the

positions of the nulls.

In many applications (and in this work too) it is desirable to have the

main lobe perpendicular to the array, i.e. in the ϑ = 90◦ direction (see

Figure(2.2)). In order to do so, Eq.(2.14) is set accordingly:

ψ
∣∣∣
ϑ=90◦

= kd cosϑ+ β
∣∣∣
ϑ=90◦

= β = 0 (2.20)

So this condition reduces to imposing the same phase on the exciting
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currents of all the elements of the array, no condition on the distance among

the elements is imposed.

Usually it is desirable not to have grating lobes. This condition is satisfied

imposing:

ψ
∣∣∣
β=0

= kd cosϑ 6= ±2nπ ∀ϑ ⇒ d cosϑ 6= ±2nπ
λ

2π
6= ±nλ n = 1, 2, . . .

(2.21)

So, since d cosϑ ≤ d, the condition under which no grating lobes exist

becomes d ≤ λ.

From this section it is clear that by changing the parameters of a

uniform array, such as the spacing and the phase difference between the

elements, some requirements can be satisfied: for example the direction of

the maximum and nulls’s positions can be set and the number of grating

lobes can be controlled.

The next section investigates the theory about the central topic of this

work: conformal arrays.

2.1.3 Conformal Arrays

In order to better understand this section that deals with the the deformation

of a linear array, it is useful to introduce a convenient mathematical

description for the three-dimensional characteristics of an N -elements linear

array.

Up to now the two-dimensional array factor has been considered. In

Figure(2.2) the N -elements array is positioned along the z-axis and the
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observation point is placed in the yz plane. However, it’s useful to get a

more general expression for the AF that comprises the case in which the

observation point is any point of space.

Figure 2.3: Spherical coordinate system for an N -elements linear array [20].

Let us consider again an N -elements linear array positioned along the

z-axis, but this time the observation point doesn’t lie in the yz plane, as

depicted in Figure(2.3). A spherical coordinate system is adopted: r is the

distance of the observation point from the origin, ϕ is the azimuthal angle

and ϑ is the elevation angle.

In this case the array factor is given by:

AF =
N∑
n=1

wne
jψn (2.22)

where wn = ane
jδn is the complex weight for element n and it comprises the

amplitude and phase of the n-th exciting current and ψn depends on which
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axis the array lays on:

ψn =


kxn cosϕ or kxn sinϑ x-axis

kyn sinϕ or kyn sinϑ y-axis

kzn cosϑ z-axis

(2.23)

Now if we consider a general planar array (Fig.(2.4)) with the elements

placed on one of the tree planes xy, xz or yz, the expression of the AF is

the same of (3.3), except for ψn that now becomes:

ψn =


k(xnu+ ynv) xy plane

k(xnu+ znw) xz plane

k(ynu+ znw) yz plane

(2.24)

where (xn, yn) is the location of element n, u = sinϑ cosϕ, v = sinϑ sinϕ

and w = cosϑ.

Figure 2.4: Planar array and associated coordinate system [20].

This work deals with conformal arrays, i.e. arrays placed on surfaces that

change shapes. So it’s important to introduce the expression for the AF in
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the case of a generic non-planar array like the one depicted in Figure(2.5).

Figure 2.5: Non-planar array and associated coordinate system [20].

In this case the array factor is given by:

AF =
N∑
n=1

ejk[xn(u−us)+yn(v−vs)+zn cosϑ] (2.25)

where u = sinϑ cosϕ, us = sinϑs cosϕs, v = sinϑ sinϕ, vs = sinϑs sinϕs

and ϑs and ϕs are again the elevation steering angle and the azimuth

steering angle respectively.

The Projection Method

All these considerations are essential in order to define a strategy to recover

the pattern of an array placed on a deformed surface, i.e. of a conformal

array. Infact the main characteristics of an array, like gain and directivity,

are affected from the deformation of the array. In [20] and also in this work

is shown that the performance of a bent array degrade: directivity is lower

and side lobes grow greater.

For the purpose of this work, we will focus on arrays placed on conformal

singly-curved surfaces. Two examples of this type of arrays are presented in
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Figure(2.6). Fig.(2.6a) depicts a linear array deformed on a wedge surface

bent of ϑb degrees with respect to the x-axis, while in Fig.(2.6b) a linear

array bent on an arc of circumference is depicted. These two types of

arrays have been studied in [19] and also in this work, therefore they will

be used as the examples to introduce the issues and solutions related to the

deformation of a linear array.

(a) Wedge surface deformation. (b) Arc surface deformation.

Figure 2.6: Examples of conformal array: bent on a wedge surface (2.6a) and
on an arc of circumference (2.6b) [19].

A strategy to mitigate the problems connected to the deformation of an

array has been introduced in [18] and it is known as the projection method.

According to this strategy, the main cause of performance degradation lays

in the fact that, since the elements of the array are misplaced with respect to

their original position, when the different signals reach the observation point,

their relative phase-difference isn’t the same of the original undeformed array:

in some points where the signals were supposed to interact constructively they

instead interact destructively, and vice versa.

Thus, the projection method consists basically in introducing a proper

phase-compensation in order to restore the original relative phase-difference

among the signals arriving at the observation point. Considering a linear
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array originally placed on the x-axis, like those of Figure(2.6), the basic

steps in order to introduce the compensating phase-shifts are the following:

1. Draw a new (imaginary) reference plane, orthogonal to the steering

direction of the original array;

2. Project the elements of the deformed array onto the new reference

plane, with the projection lines parallel to the original steering

direction;

3. For each element set the proper phase-shift compensation:

δn = −k(|xn| cosϕs + |zn| sinϕs) (2.26)

This equation represents the general form of the compensating

phase-shift, i.e. it includes the cases in which the main lobe is steered at

an angle different from 90◦ (non-broadside array) as studied in [21], [22] and

as represented in Figure(2.7).

(a) Wedge surface deformation. (b) Arc surface deformation.

Figure 2.7: Conformal arrays with non-broadside beam [19].

If we limit our attention to the case of broadside radiation (ϕs = 90◦ as

in Figure(2.6)), the required phase-shift δn for the n-th element simplifies to:
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δn = −k|zn| (2.27)

Moreover if the new reference plane doesn’t coincide with the x-axis, but

it is simply parallel to it and consists of the horizontal line that comprehend

the elements nearest to the x-axis (see Figure(2.6)), then we can write:

δn = −k|∆zn| = −k |zn − zref | =

kL(|n| − 1) sinϑb wedge

kr| sinϕn+1 − sinϕn| arc
(2.28)

where zref is the z-ordinate of the reference plane, L is the original

spacing between the elements of the linear array, r is the radius of the

shaping circumference, ϕn is the angle formed by the vector connecting the

n-th element to the origin with the x-axis and the elements are numbered

−N/2, . . . ,−1 from right to left in the second quadrant and 1, . . . , N/2 from

left to right in the first quadrant 2. The phase shift is introduced for all

the elements except for those lying on the new reference plane. Basically

L(|n|−1) sinϑb and r| sinϕn+1− sinϕn| are the distances of the n-th element

from the new reference plane when the array assumes respectively a wedge

form and an arc form.

There is one last topic to address regarding conformal arrays and pattern

recovery. In almost all the arrays, the element pattern peak is normal to the

surface of the antenna (this is the case of patch antennas for example), so

when the array is placed on a conformal surface and this surface deforms,

the peaks of the single elements become normal to the conformal surface.
2This holds for an even number of elements; if there is an odd number of elements the

central element (that is placed in correspondence of the origin) is numbered zero
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When the single elements are isotropic sources (they irradiate uniformly

in all the directions, as for example a dipole does) and the array is bent,

the total radiation is computed by the product of the AF and the radiation

pattern of a single element. The same is done when the single elements’s

radiation peak is normal to the antenna and the array is linear. But when the

element pattern peak is normal to the surface of the antenna and the array is

bent (Figure(2.8)), the computation of the total radiated field becomes more

complex and an additional term e(ϑ− ϑn) must be included in the AF :

AF =
N∑
n=1

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] (2.29)

where e(ϑ−ϑn) is the element pattern of element n having a peak at ϕ = 0◦.

So now the antenna pattern is not the product of a single element pattern

times an array factor. This must be taken into considerations and will be

useful in the next chapters.

Figure 2.8: Comparison of a conformal array with directional elements to
one with isotropic elements [20].

In this section some important features of antennas-arrays and conformal
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arrays were investigated. The next section describes instead some important

properties of the antennas used as the single elements in this work: patch

antennas.

2.2 Patch Antennas

The idea of a microstrip antenna can be traced back to 1953, even though

this type of antennas received considerable attention only years later starting

from the 1970s [23].

Microstrip antennas possess many desirable characteristics: they are

low-profile, conformable to planar and non-planar surfaces, simple and cheap

to manufacture (thanks to modern printed-circuit technology), compatible

with MMIC design (Monolithic Microwave Integrated Circuit), mechanically

robust when mounted on rigid surfaces, and, once the particular patch shape

and mode are selected, they are very versatile in terms of resonant frequency,

polarization, pattern and impedance.

For this reasons microstrip antennas are an appealing solution for many

applications subject to strict requirements regarding size, weight, cost,

performance, ease of installation and aerodynamic profile. For example:

spacecraft, aircraft, satellite and missile applications, but also commercial

ones such as mobile radio and wireless communications [8].

On the other side microstrip antennas show also disadvantages, the major

being their low efficiency, low power, high Q, poor scan performance, spurious

feed radiation and very narrow frequency bandwidth (typically a fraction of

a percent or at most a few percent). However there are various methods to

mitigate these drawbacks, even if this topic isn’t addressed in this work.
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2.2.1 Basic Characteristics

A microstrip antenna is a broadside radiator (i.e. it is designed in such a way

that its pattern maximum is normal to the patch) that consists of a very thin

metallic patch (t� λ0, with λ0 being the free-space wavelength) placed at a

small distance above a ground plane (h� λ0, usually 0.03λ0 ≤ h ≤ 0.05λ0),

as can be seen from Figure(4.1).

Figure 2.9: Microstrip antenna and coordinate system [8].

The patch and the ground plane are separated by a substrate that can

be of various materials, but typically its dielectric constant lies in the range

2.2 ≤ εr ≤ 12 [8].

A patch antenna is a broadside radiator, i.e. it is designed in order for its

pattern maximum to be normal to the patch. As it’s shown in Figure(2.10)

the radiating patch may be designed according to different shapes: the most

popular ones are square, rectangular and dipole because of their ease of
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analysis and fabrication. This chapter describes the characteristics only of

the rectangular one, since this is the shape that has been chosen to design

the single elements of all the array configurations analyzed in this work.

Figure 2.10: Some possible shapes for microstrip patch elements [8].

As far as the feeding technique of the patch is concerned, there are mainly

four configurations (depicted in Figure(2.11)): microstrip line, coaxial probe,

aperture coupling and proximity coupling.

In this work a microstrip line feed has been used: this configuration owes

its popularity to the ease of modeling and fabrication, and to the simplicity

of impedance matching: in order to do so, it is sufficient to control the inset

position.

Another popular configuration is the coaxial-line feed, where the inner

conductor is connected to the radiation patch, while the outer conductor

is attached to the ground plane. In both these configurations however,

as the substrate’s thickness increases, also the surface waves increase, thus

limiting the bandwidth; moreover due to asymmetries higher-order modes

are generated which produce cross-polarized radiation. Aperture-coupled

and proximity-coupled feed have been introduced to overcome some of these
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Figure 2.11: Different feeding techniques for a patch antenna [8].

problems.

In this work however, the adopted feeding technique is the microstrip-line,

so the following analysis involves just this configuration.
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2.2.2 The transmission line model

The analysis methods for microstrip antennas are manifold. The most

popular ones are the transmission-line, cavity and full-wave models. The

transmission-line is the simplest one: it provides good physical insight but

it’s less accurate and not very suitable to model coupling. The cavity model

is more accurate but also more complex; the full-wave model, that is based

primarily on integral equations, is very accurate and very versatile, but it’s

also much more complex and not very useful to gain physical insight.

Therefore the rectangular patch antenna is analyzed here through the

transmission-line model. According to this model, the patch antenna is

represented as an array of two radiating slots of width W and height h,

separated by a low-impedance transmission line of length L.

Fringing

The finite dimensions of the patch along the length and width cause the field

at the edges to undergo fringing, as it’s shown in Figure(2.11)(a). The entity

of the fringing phenomenum depends on the ratio L/h between the length

of the patch and th and the height of the substrate and on the ratio W/h

between the width of the patch and h. Since it is L/h� 1 andW/h� 1, the

effect of fringing is reduced, but not so much to be negligible and therefore

it must be taken into account since it affects the resonant frequency of the

antenna.

Figure(2.12)(b) shows a representation of typical electric field lines for

a microstrip line (Figure (2.12)(a)), that is a nonhomogeneous line of two

dielectrics (the substrate and air). As it can be seen from the figure, the

fact that W/h � 1 and εr � 1 cause the majority of the field lines to

concentrate in the substrate.
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Figure 2.12: Microstrip line (a), the effect of fringing on its electric field line
(b) and graphical representation of the effective dielectric constant [8].

It is useful now to introduce the effective dielectric constant εreff . This

is the dielectric constant of the fictitious uniform dielectric material that

surrounds the microstrip line in Figure(2.12)(c) so that the line has identical

electrical characteristics, in particular propagation constant, as the actual

line of Figure(2.12)(a).

The effective dielectric constant has some properties:

• For a line with air above the substrate it holds 1 < εreff < εr; for most

application where εr � 1, εreff assumes values near εr;

• It is a function of frequency: as the frequency of operation grows, the

electric field lines concentrates more and more in the substrate leading

to an effective dielectric constant that approaches the constant of the

dielectric;
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• For low frequencies εreff is almost constant and the initial value (also

called static value) of εreff is given by:

εreff =
εr + 1

2
+
εr − 1

2

[
1 + 12

h

W

]− 1
2

W/h� 1 (2.30)

Effective Length, Resonant Frequency and Effective Width

Due to the fringing effects, the patch of the microstrip antenna looks bigger

(electrically) than its physical dimensions. A graphical representation of this

effect is reported in Figure(2.13), from where it can be seen that the patch

length is increased of a factor 2∆L, where ∆L is a function of the ratio W/h

between the width of the patch and the height of the substrate and of the

effective dielectric constant εreff .

Figure 2.13: Physical and effective lengths of a rectangular microstrip patch
[8].

A popular and practical approximate expression for ∆L is given by [24]

that leads to an effective length of the patch Leff of:
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∆L = 0.142h
(εreff + 0.3)

(
W
h

+ 0.264
)

(εreff − 0.258)
(
W
h

+ 0.8
) (2.31)

Leff = L+ 2∆L (2.32)

Usually the resonant frequency for the microstrip antenna is a function

of its length and for the dominant TM010 mode (quasi-TEM) is given by:

fr,010 =
1

2L
√
εr
√
µ0ε0

=
c0

2L
√
εr

(2.33)

with c0 being the speed of light in free space. But taking into account

fringing effects, (2.33) becomes:

fr,010 =
1

2Leff
√
εreff
√
µ0ε0

=
c0

2Leff
√
εreff

(2.34)

Design

As reported in [8] a simple procedure to design a rectangular patch antenna

is the following.

The goal is to determine the width W and length L of the patch (see

Figure(4.1)) in order to match the desired resonant frequency fr, given the

substrate’s dielectric constant εr and height h.

The design procedure follows these steps:

1. First the width of the radiator is determined according to this practical

formula that leads to good efficiencies [25]:

W =
c0

2fr

√
2

εr + 1
(2.35)
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2 Then the effective dielectric constant is determined using (2.30)

3 Now given W and εreff , ∆L can be determined using (2.31)

4 Finally the actual length of the patch is given by:

L =
c0

2fr
√
εreff

− 2∆L (2.36)

As far as the input resistance is concerned, we limit our discussion stating

what is explained in detail in [8]: the resonant input resistance of the patch

can be changed by using an inset feed that is recessed at a distance y0 from

the bottom of the patch, as shown in Figure(2.14).

From Figure(2.14)(b) it can be seen how changing y0 allows matching

the patch antenna.

As stated before, patch antennas present many advantages but also some

drawbacks, among which poor scan performance and narrow bandwidth. In

order to overcome or at least mitigate some these two problems, multiple

microstrip antennas can be arranged in space and fed by precise input signals.

The following section will revise some of the most important theoretical

concepts regarding arrays.
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Figure 2.14: Recessed microstrip-line feed and variation of normalized input
resistance [8].



Chapter 3

The Conformal Arrays

In this work various designs of conformal arrays were studied. As described

in Chapter(2) a conformal array antenna consists of an array placed on a

conformal surface, i.e. a surface that changes shape; consequently also the

array changes shape. This can cause performance degradation: directivity

and gain decrease while side lobe levels increase.

As described in Section(1.1.3), one of the most popular techniques

adopted to mitigate the negative effects of array deformation is the projection

method [18]. This method consists in the introduction of a proper phase-shift

into the elements of the array in order to compensate for surface deformation.

This phase-shift depends on various parameters like the geometry of the

undeformed conformal array and its characteristics (direction of the main

lobe, main lobe width, number of grating lobes, etc.), the shape of the

deformation and the desired requirements for the deformed array. These

parameters are different for each array design.

This chapter presents the features of the array systems implemented

in this work: the requirements used for the design of the undeformed

original linear array, the analyzed shape-deformation geometries and the
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compensating phase-shifts for each of these geometries according to the

projection method.

3.1 Linear Array

The starting point for the analysis of all the conformal array designs is

an unbent linear array. This array consists of four or six patch antennas

distanced of λ/2, placed on the xy plane (i.e. the ground of the patches lies

in this plane) and aligned along the x-axis (Figure(3.1)). The distance among

consecutive elements is computed as the distance among the phase-centers

of the patch antennas.

The linear array made by four patch antennas is used as a reference for the

study of the wedge, circular and S surface deformations, while the linear

array made by six patches is used to study the Z deformation.

Figure 3.1: Model of the initial unbent 4-elements linear array.

The patch antenna that was used as the constituting element of the array

was designed to resonate at 2.45GHz, to have an input impedance of 50Ω and

such that its dominant mode is q-TEM (quasi-TEM) (See Chapter(4) for the

details of CST implementation). However, in order to apply the projection
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method, the relevant information about the array is just its geometry, i.e.

how the single elements are placed in space. Therefore, for this purpose, the

single patch antennas are modeled as isotropic point sources, i.e. as antennas

that irradiate homogeneously in every direction and whose dimensions in

space are negligible.

Actually, this isn’t the case for patch antennas since this type of antennas

is not isotropic but instead directive: it shows a maximum in the ϑ = 0◦

direction (dashed arrow in Figure(3.1)). This fact has consequences when

the array is deformed (as it will be shown in the next sections) since it

affects the analytical calculation of the AF , as explained in section(1.1.3)

and as shown by Eq.(1.29).

Nevertheless, when considering the original linear array, the information

about the anisotropy of the patch is irrelevant. Infact in this case, all

the patches have the same radiation pattern and this means that for the

computation of the array characteristics, we can use the simplified formula

for the AF (Eq.(1.12)):

AF =

[
sin
(
N
2
ψ
)

sin
(

1
2
ψ
) ] , ψ = kd cos

(π
2
− ϑ
)

+ β (3.1)

where the argument of the cosine is π
2
−ϑ and not ϑ as in Eq.(1.12), because

here a spherical coordinate system is adopted and so ϑ = 0◦ when the

observation point is on the z-axis (while in Section(1.1.2) ϑ was 0◦ when

the observation point was on the x-axis).

The chosen design, i.e. the distance between the elements set to λ/2 and

a desired maximum required at ϑ = 0◦, leads to a phase-shift β = 0 between

adjacent elements. Infact:
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ψ

2
=

1

2

(
kd cos

(π
2
− ϑ
)

+ β
)

=
1

2

(2π

λ
· λ

2
cos

π

2
+ β

)
=
β

2
= 0 (3.2)

Therefore for the initial linear array, the required phase-shift between the

elements is zero (when the array is deformed, this doesn’t hold anymore).

Moreover we can notice that, since the spacing between the elements is

λ/2 < λ, there are no grating lobes (see Section(1.1.2)).

In order to evaluate the performance of the deformed arrays, their gains

and directivities must be computed and compared with those of the original

undeformed array. In order to do so, the multiplication pattern is used (see

Chapter(2)) and the metrics for the linear array are evaluated: the total gain,

directivity and electric-field are computed multiplying those of a single patch

antenna by the AF given by:

AF =
N∑
n=1

wne
jψn (3.3)

where N = 4 or N = 6, wn = ane
jδn = aejδ is the complex weight for element

n and it comprises the amplitude and phase of the n-th exciting current 1

and ψn is given by:

ψn = kxn sinϑ (3.4)

where xn is the x-ordinate of the n-th element and ϑ is the scan angle of

the pattern.
1Since the array is uniform the amplitudes of the exciting currents are all equal, and

since the required phase-shift between consecutive elements is 0, all the currents have equal
phase components δ.
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The analytical pattern of the linear arrays (with four or six elements) is

used as a mean of comparison to evaluate the performance degradation of the

deformed arrays and the effectiveness of the projection method as a pattern

recovery technique.

3.2 Wedge Surface Deformation

When the surface on which the uniform array is placed, is bent of a concave

angle ϑb, the array stops being linear and, as it will be shown in the next

chapter, its performance deteriorate.

The first deformation-geometry that has been studied is represented in

Figure(3.2) and consists of a wedge-shaped surface bent of an angle ϑb. As

in the case of the linear array, the patch antennas are modeled as isotropic

point sources and are labeled increasingly with respect to their x-ordinate,

i.e. from left to right: A−2, A−1, A+1, A+2.

Figure 3.2: Wedge-shaped surface deformation of the original linear array.
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In order to recover the radiation pattern of the deformed array, the

projection method is applied. According to this, the first thing to do is

project the elements of the deformed array onto a new reference plane. This

is the plane perpendicular to the desired direction of maximum: in our case

ϑ = 0◦, therefore the new reference plane will be parallel to the xy-plane.

In particular, among the infinite planes with such characteristics, we choose

it to be the nearest one to the elements of the array, i.e. the plane that

comprises elements A±1 (dashed line in Fig.(3.2)).

The next step consists of computing the distance of the elements from

their projections, i.e. ∆zn in Fig.(3.2):

∆z−2 = ∆z+2 = ∆z2 = L sinϑb (3.5)

∆z−1 = ∆z+1 = 0 (3.6)

According to the projection method infact, the main cause of performance

degradation lies in the fact that when the signals from elements A±2 arrive

to the new reference plane, they are out-of-phase with respect to the signals

emitted by elements A±1. This leads to the introduction of a phase-shift ∆Φ

with the purpose of compensating the difference in the distances traveled

by the signals from A±2 to the new reference plane: ∆Φ2 = k ·∆z2 (and of

course ∆Φ1 = 0).

Analytically, after the introduction of the compensating phase-shift, the

overall corrected AF of the deformed array becomes:

AFcorrected = AFwedge · ej∆Φ (3.7)
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In order to evaluate the overall radiation pattern of the array, the AF

will be multiplied then for the radiation pattern of a single antenna.

Actually, as it was said in the previous section, this simplification applies

when the single elements of the array are isotropic point-sources, so it holds

for dipoles for examples, but not for patch antennas. Infact these antennas

are directive and so we cannot apply the pattern multiplication rule (see 1.1)

and simplify the overall radiation pattern as the product of the radiation of

a single antenna by the AF given by (1.25):

AF =
2∑

n=−2

ejk[xn(u−us)+yn(v−vs)+zn cosϑ] (3.8)

This is due to the fact that, in order to find the overall farfield of the array,

we must scan the single antennas’s pattern for each value of ϑ ∈ [−180◦, 180◦]:

if the antennas are isotropic, or even just parallel to the same plane, we

can take the radiation pattern of a single antenna, and multiply it for the

AF . While if the antennas’s pattern are not isotropic nor parallel to the

same plane, for each value of ϑ we must take the farfield of each antenna in

this direction, multiply it by the term that takes into account the antenna’s

position (i.e. the AF in the simplified case of isotropic point sources), and

finally sum all these terms together.

In order to illustrate this concept, in Fig.(3.2) the directions of the main

lobes of each patch antenna are represented as dashed arrows.

Therefore the correct formula that must be used for the computation of

the (uncorrected) analytical pattern is given by Eq(1.29):

AF =
2∑

n=−2

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] (3.9)

where e(ϑ) is the radiation pattern of antenna n having a peak at ϑ = ϑn
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and e(ϑ − ϑn) is the pattern of the same element having instead a peak at

ϑ = 0◦.

For simplicity’s sake we will refer to this formula as another version of

the AF , even if this is not precisely correct: this formula contains not only

the contribution of the AF , but also the one of the radiation pattern of the

single antenna e(ϑ− ϑn).

In the case of a wedge-shaped surface bent of ϑb degrees, we have that

the peak of the single patch antennas changes from ϑ = 0◦ when the array

is unbent, to ϑ−2 = ϑ−1 = −ϑb and ϑ+2 = ϑ+1 = ϑb when the array si bent

(see Fig.(3.2)). Thus the corrected analytical pattern of the array can be

computed as:

AF =
2∑

n=−2

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] · ej∆Φn (3.10)

3.2.1 Reversed Wedge Surface Deformation

The second geometry that has been studied in this work is a variant of the

wedge-shaped one described above: it is again wedge-shaped, but this time

reversed, i.e. it’s convex instead of concave as depicted in Figure(3.3).

The considerations made for the above-described geometry hold also for

the reversed-one with just some differences. In this case, the new reference

plane onto which the elements are projected is the one that comprises

elements A±2, so the elements that must be projected onto this plane are

elements A±1.

Therefore the roles of elements A±2 and A±1 are reversed. The phase-shift

required for the elements of this array are given by:
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Figure 3.3: Convex wedge-shaped surface deformation of the original array.

∆z−1 = ∆z+1 = ∆z1 = L sinϑb (3.11)

∆z−2 = ∆z+2 = 0 (3.12)

The formulas for the analytical pattern of the uncorrected and corrected

cases are the same as those of the previous arrays (Eq.(3.9)-(3.7)), but this

time with the new expressions for ∆zn.

Also in this case the directivity of the patch antennas must be taken into

account as shown in Figure(3.3) for the computation of the overall radiation

pattern: Eq.(3.9) applies but this time with ϑ−2 = ϑ−1 = ϑb and ϑ+2 =

ϑ+1 = −ϑb.
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3.3 Z surface deformation

Another type of surface deformation that has been studied is the Z one given

by the union of the concave and convex wedge deformations described in the

previous section. In this case the original undeformed linear array consists

of 6 patches distanced λ/2, instead of 4. This array is then doubly bent of

an angle ϑb, resulting in a Z deformation as depicted in Figure(3.4).

Figure 3.4: Z-shaped conformal array.

Also in this case the patch antennas are represented as

isotropic point sources and they are numbered from left to right as

A−3, A−2, A−1, A1, A2, A3.

Again, the projection method is applied in order to recover the radiation

pattern of the deformed array. First, the new reference plane is chosen to

be orthogonal to the main lobe direction, i.e. parallel to the xy-plane, and

comprising elements A−2, A−1, A3. Then elements A−3, A1, A2 are projected

onto the new reference plane and the distance between the elements and their

projection is computed as ∆z = ∆z−3 = ∆z1 = ∆z2 = L sinϑb (and of course

∆z is null for elements A−2, A−1, A3).
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At this point the compensating phase-shifts for the projected elements

can be computed as:

∆Φ = ∆Φ−3 = ∆Φ1 = ∆Φ2 = k∆z (3.13)

Also for this type of surface deformation the patch antennas don’t have all

the same radiation pattern since they are inclined of an angle ±ϑb. Therefore,

in order to compute the analytical overall (uncorrected) radiation pattern of

the array, this information must be taken into account and Eq.(3.9) must be

used:

AF =
3∑

n=−3

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ]

where again wn = ane
jδn = aejδ, e(ϑ) is the radiation pattern of antenna n

having a peak at ϑ = ϑn and e(ϑ − ϑn) is the pattern of the same element

having instead a peak at ϑ = 0◦.

In this case we have that: ϑ−3 = ϑ−2 = ϑ2 = ϑ3 = −ϑb while ϑ−1 = ϑ1 = ϑb.

Finally the corrected analytical pattern can be computed using Eq.(3.10):

AF =
3∑

n=−3

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] · ej∆Φn

3.4 Circular Surface Deformation

The other conformal array studied in this work, consists of a 4-elements

linear array bent on a concave arc of circumference of radius r, as depicted

in Figure(3.5).

Again the elements are modeled as isotropic point sources and they are
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numbered in an identical manner as in the previous case: from left to right

A−2, A−1, A+1, A+2.

Figure 3.5: Conformal array on a concave circular surface.

As in the previous cases, the projection method is adopted in order to

recover the radiation pattern of the deformed array.

Again first of all, the new reference plane is defined as the plane

orthogonal to the desired direction of maximum, i.e. as the plane parallel to

the xy plane, in particular, it is chosen to be the one that comprises elements

A±1.

Then elements A±2 are projected onto the new reference plane and their

distances from their projections are evaluated. In order to do so, the

coordinates of the elements are identified. Referring to Fig.(3.5), the angle

α is computed in radians as α = L
r

= λ/2
r
.

Consequently we can get β1 and β2 as: β2 = π−3α
2

and β1 = β2 + α.

Thus, the coordinates of the elements are given by:
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A−2 : (−r cos β2, 0,−(r − r sin β2)) (3.14)

A−1 : (−r cos β1, 0,−(r − r sin β1)) (3.15)

A+1 : (r cos β1, 0,−(r − r sin β1)) (3.16)

A+2 : (r cos β2, 0,−(r − r sin β2)) (3.17)

and this implies that: ∆z = ∆z2 = ∆z−2 = z±1 − z±2 = r(sin β1 − sin β2).

So the phase-shift that must be introduced in elements A±2 is given by

∆Φ = k∆z. Analogous considerations as those of the previous section hold

for the analytical computation of the AF : since the single elements are again

patch antennas and so directive antennas, the overall corrected pattern must

be computed using Eq.(3.10) as:

AF =
2∑

n=−2

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] · ej∆Φn

where again ϑn is the maximum direction of element n, that this time is equal

to:

ϑ−2 = −β2 , ϑ+2 = β2

ϑ−1 = −β1 , ϑ+1 = β1

3.4.1 Reversed Circular Deformation Surface

A variant of the circular surface deformation is the convex one, depicted in

Figure(3.6). For this type fo conformal arrays, similar considerations to the
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ones just exposed hold. The numbering and modeling of the single antennas

is the same, the reference plane is again parallel to the xy-plane but this time

it’s the one comprising elements A±2, so A±1 are the elements that have to be

projected onto the new reference plane and to which a correcting phase-shift

must be applied.

Figure 3.6: Conformal array on a convex circular surface.

Again, in order to apply the projection method, the distance between

elements A±1 and their projections must be evaluated. For this purpose,

first the coordinates of the elements must be computed:
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A−2 : (−r cos β2, 0, (r − r sin β2)) (3.18)

A−1 : (−r cos β1, 0, (r − r sin β1)) (3.19)

A+1 : (r cos β1, 0, (r − r sin β1)) (3.20)

A+2 : (r cos β2, 0, (r − r sin β2)) (3.21)

where angles α and β1,2 are the same as in the previous case. So the distance

of elements A±1 from the reference plane is ∆z = ∆z−2 = ∆z2 = z±2−z±1 =

r(sin β1−sin β2), and the required phase-shift is ∆Φ = ∆Φ−1 = ∆Φ1 = k·∆z.

As for the previous conformal geometries, the directivity of the patch

antennas must be taken into account when evaluating the overall corrected

analytical pattern of the array as:

AF =
2∑

n=−2

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] · ej∆Φn

where the directions of maximum for the elements of this conformal arrays

are given by:

ϑ−2 = β2 , ϑ+2 = −β2

ϑ−1 = β1 , ϑ+1 = −β1
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3.5 S surface deformation

The last conformal array that has been studied in this work consists of

a 4-elements linear array bent on an S-shaped surface as depicted in

Figure(3.8). In order to apply the projection method and therefore to derive

the compensating phase-shifts to be introduced in each array’s element, it is

useful to understand how this surface deformation has been obtained starting

from the uniform linear array described in Section(3.1).

As a first step, the linear array was bent on a surface that is the union

of the two arcs of circumference described in the previous section: the left

part of the array was bent following the convex arc of circumference, while

the second one was bent following the concave one as depicted in Fig.(3.7).

Figure 3.7: S-shaped unrotated conformal array.

The elements are numbered and modeled as in the previous cases

and their coordinates at this point of the bending process are given by

(3.14)-(3.15)-(3.21)-(3.20) for elements A−2, A−1, A1, A2 rispectively:
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A−2 : (x0
−2, 0, z

0
−2) = (−r cos β2, 0,−(r − r sin β2)) (3.22)

A−1 : (x0
−1, 0, z

0
−1) = (−r cos β1, 0,−(r − r sin β1)) (3.23)

A+1 : (x0
1, 0, z

0
1) = (r cos β1, 0, (r − r sin β1)) (3.24)

A+2 : (x0
2, 0, z

0
2) = (r cos β2, 0, (r − r sin β2)) (3.25)

where the values of the angles are again given by:

α =
L

r
β2 =

π − 3α

2
β1 = β2 + α (3.26)

After this, the obtained array was clock-wise rotated of an angle α, thus

obtaining the final configuration of the array (solid line in Fig.(3.8)).

Figure 3.8: S-shaped rotated conformal array.

Before applying the projection method to this configuration, it’s necessary

to derive the ultimate elements’s coordinates. In order to do so, we can define

the angles formed by the x-axis and the segment connecting the elements to
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the axis’s origin (see Fig.(3.8)):

δ2 = arctan

∣∣∣∣∣ z0
−2

x0
−2

∣∣∣∣∣ = arctan

∣∣∣∣∣z0
2

x0
2

∣∣∣∣∣ (3.27)

δ1 = arctan

∣∣∣∣∣ z0
−1

x0
−1

∣∣∣∣∣ = arctan

∣∣∣∣∣z0
1

x0
1

∣∣∣∣∣ (3.28)

and the length of the above-mentioned segments:

d2 =
√

(x0
−2)2 + (z0

−2)2 =
√

(x0
2)2 + (z0

2)2 (3.29)

d1 =
√

(x0
−1)2 + (z0

−1)2 =
√

(x0
1)2 + (z0

1)2 (3.30)

Thus, the elements’s coordinates become:

A−2 : (x−2, 0, z−2) = (−d2 cos(α− δ2), 0, d2 sin(|α− δ2|)) (3.31)

A−1 : (x−1, 0, z−1) = (−d1 cos(α− δ1), 0, d1 sin(|α− δ1|)) (3.32)

A+1 : (x1, 0, z1) = (d1 cos(α− δ1), 0,−d1 sin(|α− δ1|)) (3.33)

A+2 : (x2, 0, z2) = (d2 cos(α− δ2), 0,−d2 sin(|α− δ2|)) (3.34)

And in this way elements A−2, A−1 lie on a line parallel to the x-axis, as

well as elements A1, A2 lie on another line parallel to the x-axis.

The last information needed in order to apply the projection method is

the direction of maximum of each of the four patch antennas (dashed arrows

in Fig.(3.7)-(3.8)), so that their directivity can be taken into account in the

analytical evaluation of the overall radiation pattern. After the array is bent
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along the S surface but before it is rotated of α degrees, the direction of

maximum are given by:

ϑ0
−2 = ϑ0

2 = −β2 ϑ0
−1 = ϑ0

1 = −β1 (3.35)

while after the array is rotated of α degrees, they become:

ϑ−2 = ϑ2 = −β2 + α ϑ−1 = ϑ1 = −β1 + α (3.36)

At this point the projection method can be applied: the new reference

plane is parallel to the x-axis and it passes through elements A−2, A−1. The

distance of elements A1, A2 from this plane can be computed as: ∆z = ∆z1 =

∆z2 = z−1 − z1 = 2d1 sin(|α − δ1|). Therefore the compensating phase-shift

that must be introduced in elements A1, A2 is ∆Φ = k ·∆z, and the overall

corrected analytical radiation pattern is given again by Eq.(3.10):

AF =
2∑

n=−2

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] · ej∆Φn

where ϑn are given by (3.36).

At this point the models for all the conformal arrays studied in this work

have been presented. The next chapter describes the implementation of the

different systems in CST and MATLAB and presents the obtained numerical

results.



Chapter 4

Implementation and Results

The different conformal arrays described in Chapter(1) have been

implemented and studied with the support of two software programs: matlab

and “CST Microwave Studio”. Part of this project was also developed in

collaboration with the North Dakota State University of Fargo, North Dakota

(US) that realized the prototypes of some of the conformal arrays presented

in this work.

This chapter is devoted to the description of the matlab and CST

implementation of the various conformal arrays, and to the discussion of

the results obtained applying the projection method as a pattern-recovery

technique.

First of all, the single patch’s CST implementation is presented, then the

4-elements linear array is considered together with all the studied deformation

of this array: circular, circular reversed, S-shaped, wedge 30◦, wedge 30◦

reversed, wedge 45◦. Finally the 6-elements linear array is considered

together with its Z-shaped deformation.
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4.1 Single Patch Antenna

All the conformal arrays that have been studied in this work have been

designed using the same single-element antenna: a patch antenna resonating

at 2.45GHz and with an input impedance of 50 Ω. In order to correctly

implement the patch antenna using CST Microwave Studio, the design rules

presented in Chapter(1.2) were applied as a first step.

Referring to Figure(4.1), given the height of the substrate and the

substrate material, the width W and length L of the patch were determined

in such a way that the desired resonant frequency is matched by the patch.

Figure 4.1: Patch antenna representation with its characteristics dimensions.

The substrate is made of Arlon CLTE lossy that is characterized by a

relative dielectric constant εr = 2.94, a relative permeability µ = 1 and

a loss tangent tan δ = 0.0025. With this knowledge a first estimate of W

and L was possible: these values were then optimized in CST in order to

get a sufficiently low value for the reflection parameter S11 at the desired

frequency f = 2.45GHZ. Moreover the patch and the ground were modeled

as infinitely thin sheets in CST.

As far as W0 and y0 are concerned, they have been chosen in such a way

that the input impedance of the antenna is 50Ω and that the fundamental

mode that propagates is q-TEM.
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Table(4.1) reports the final values of the parameters depicted in Fig.(4.1).

Parameter Value [mm]
h 1.52
W 43.70
L 35.33
W0 4.1
y0 11

∆W 1.94

Table 4.1: Patch parameters values.

In order to simulate the patch antenna in CST, the frequency solver was

used and the simulation frequency range was chosen to be f ∈ [2.2, 2.7]GHz.

A discrete port with input impedance Z = 50Ω was used together with a

tetrahedral mesh and the enablement of the adaptive mesh refinement option

in order to get better accuracy.

Figure (4.2a) reports the 3-dimensional electric farfield of the antenna,

while Fig.(4.2b) reports the polar plot of the gain measured for ϕ = 0◦

and varying ϑ. It can be seen how the patch antenna is directive and in

particular that it shows a maximum for ϑ = 0◦ of 5.78 dB and that the

angular half-power width1 of the main lobe is 88◦.

Finally Figure(4.3) reports the patch’s S11 parameter: it’s evident how

the resonant frequency can be considered 2.45GHz.

4.2 Four-Elements Linear Array

In order to increase the directivity of the single patch, i.e. in to reduce the

angular width of the main lobe of Fig.(4.2b), four patch antennas were then

aligned along the x-axis in order to form a linear array. This is the array
1i.e. the angular main lobe beamwidth, that is defined as the angle between the

half-power points of the main lobe, i.e. the angle between the lightblue lines in Fig.(4.2b).
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(a) 3D Farfield of a patch.

(b) Farfield Gain of a patch.

Figure 4.2: Single patch’s radiation pattern: 3D farfield and polar gain.
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Figure 4.3: S11.
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that has been deformed according to various surface’s geometries, therefore

it is important to characterize it so that a comparison for the performance

of the conformal arrays is available.

As a first thing, the analytical pattern of the array’s electric field was

obtained in matlab exploiting the theoretical concepts exposed in Chapter(1):

the superposition of effects principle was used multiplying the radiation

pattern of the single patch antenna (red plot in Fig.(4.4)) with the AF . This

pattern was then compared with the one obtained through CST simulation

and a good match between these two can be noticed (green and black line

respectively in Fig.(4.4)) thus validating the CST model and showing that

the effects of mutual coupling among the antennas is in this case negligible:

infact the main difference between the theoretical matlab implementation and

the CST simulation of the array resides in the absence/presence of mutual

coupling among the elements respectively.
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Figure 4.4: Electric Field of a 4-elements linear array.

If the radiation pattern of the array is compared with the one of the single

patch antenna, it can be noticed that the gain is increased approximately of
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a factor of 4 (in linear scale), while the 3-dB main lobe width decreases

approximately of the same factor: from 88◦ to 24.6◦. This can be seen by

comparison of Figure(4.5), that represents the gain pattern for the linear

array, with Fig(4.2b).

Figure 4.5: Gain’s polar plot of the 4-elements linear array.

4.3 Circular Conformal Array

When the linear array is bent on a circular conformal surface (in this

particular case the radius of the surface is r = 10 cm), as represented in

Figure(4.6) the obtained radiation pattern is different from the one of the

linear array.

In matlab the theoretical pattern of the electric farfield was obtained

implementing Eq.(1.10):
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Figure 4.6: CST design of the circular conformal array.

AF =
2∑

n=−2

e(ϑ− ϑn)wne
jk[xn sinϑ cosϕ+yn sinϑ sinϕ+zn cosϑ] · ej∆Φn

where the meaning of all the terms is explained in Section(1.4) and where

the single element’s electric field e(ϑ − ϑn) is the electric field of the patch

antenna described above with a maximum in correspondence of 0◦ (red line

in Fig.(4.4)).

The CST implementation of the system is straightforward: starting from

a single patch antenna, this antenna was copied and moved in the four points

of the circular line described in Section(1.4) (see Fig.(1.5)); finally each patch

antenna was rotated in order to be tangent to the circular surface. All the

other settings (simulation frequency range, type of solver and mesh, etc.) are

identical to those of the previous cases (they are the same for all the studied

conformal arrays).

As it was explained in Chapter(1) when the array is bent its performance

degrades: the main lobe direction can change, main lobe gain decreases while

angular width increases. This is exactly what happens for this conformal
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array.

Figure 4.7: Gain’s polar plot of the circular array: uncorrected (left) and
corrected (right).

Fig(4.7) on the left represents the gain of the array when no

pattern-recovery technique is adopted: it can be seen how the main lobe

direction has changed from 0◦ to −28◦ and how the angular width is 108.2◦

that is much greater than the one of the linear array and even than the one of

the single patch. Moreover the gain in the main lobe direction is 5.15 dB that

is lower than both the one of the linear array and the single patch. Therefore

we can conclude that performance has degraded.

If the projection method is applied in order to recover the radiation

pattern of the array, i.e. if a proper phase-shift is introduced in the first
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and last elements (see Section(1.4)), the performance of the array improves.

The array’s gain after the introduction of the compensating phase-shift is

reported in the right-most part of Fig.(4.7): the main lobe direction moves

back to 0◦, the gain in this direction increases of more of more than a factor

2.5 (in linear scale) becoming 9.49 dB and approaching the 11.1 dB of the

linear array; moreover also the angular width of the main lobe decreases of a

factor higher than 3.5 passing from 108.2◦ to 29.6◦ almost reaching the 24.6◦

of the linear array.

Figure(4.8) shows also that there is good agreement between matlab

and CST simulations: the blue line is the analytical electric field obtained

by matlab simulation, while the black line is the E-field obtained by CST

simulation.
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(a) Uncorrected.
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Figure 4.8: Circular conformal array E-field: Analytical (blue), simulated
(black) and desired, i.e. linear array (red) patterns.

The two Figures(4.8) show the electric farfield with and without

compensating phase-shift, in comparison with the desired pattern of the
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linear array: applying the projection method the pattern is partially

recovered, especially in the main lobe direction, but from 90◦ to 180◦ the

pattern can’t be recovered in an equally effective way.

Figure(4.9) represents the synthesis of the study on this conformal array:

its CST-simulated uncorrected E-pattern, the corrected one and the desired

ideal one, i.e. that of the linear array.
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Figure 4.9: Circular array: CST-simulated E-field. Linear array (dashed
line), circular uncorrected (plain) and corrected (marked).

Therefore we can conclude that the projection method works fine as a

pattern recovery technique but it also shows some limitations: it enables

pattern recovery in the main lobe direction but its recovery capability

decreases as soon as directions distant from broadside are considered.

This fact can be regarded as the price to be paid for the tradeoff between

implementation simplicity and recovery capability: other more complex

pattern-recovery techniques could be used resulting in better improvements,

but at the expense of more complex control-systems.
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The prototype of this conformal array was realized and characterized by

researchers of the North Dakota State University, Fargo, ND, USA: Fig.(4.12)

reports the analytical results (obtained by HFSS simulations) together with

the measured ones. It can be seen how there is good correspondence between

the measurements and the analytical results; moreover it can be seen how

these results match the ones obtained in this work2.

Figure 4.10: Prototype.

Figure 4.11: Relative E-field.

Figure 4.12: Prototype and numerical results (analytical and measured) of
the circular conformal array obtained in [19] at the North Dakota State
University, Fargo, ND, USA.

4.3.1 Reversed Circular Conformal Array

Another conformal array that has been studied is the one obtained adapting

the linear array on a reversed circular surface as depicted in Fig.(4.13). This
2This fact can be seen comparing Figures(4.12) and (4.9) and considering that in the

first one ϑ is limited in the range [−90◦, 90◦] (instead of the full range [−180◦, 180◦] of
Fig.(4.9)) and that the E-field is depicted in a relative scale, i.e. the maximum is assumed
to be 0 dB (while in the other case the maximum is the farfield value of the electric field
expressed in dBV/m).
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Figure 4.13: CST design of the concave circular conformal array.

array is very similar to the one described above, therefore similar results

and considerations can be made for this configuration: the matlab and CST

implementation derive immediately from what was said about the previous

conformal array.

Also in this case, when the array is bent its performance downgrades.

Fig(4.14) on the left represents the gain of the array when no pattern-recovery

technique is adopted: it can be seen how the angular width is 108.6◦ that is

much greater than the one of the linear array and even than the one of the

single patch. Moreover the gain in the main lobe direction is 5.74 dB that is

lower than both the one of the linear array and the single patch.

These results are very similar to the previous case, even if in this case

things are slightly better since at least the main lobe direction remains at 0◦ 3.

Applying the projection method, i.e. introducing a proper phase-shift

in the two elements in the middle of the array (see Section(1.4)), the

performance of the array improves. The array’s gain after the introduction of

the compensating phase-shift is reported in the right-most part of Fig.(4.14):

the gain in the maximum direction doubles (in linear scale) becoming 8.88 dB

3Actually in the previous case, the maximum of 5.15 dB occured at −28◦ , but at 0◦

the gain was 5 dB, so there is no big difference between the gain value in the maximum
direction and at broadside.
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Figure 4.14: Polar plot of the array gain for the uncorrected (left) and
corrected (right) cases (rev. circular array).

and approaching the 11.1 dB of the linear array; moreover also the angular

width of the main lobe decreases of a factor 3 passing from 108.6◦ to 34.4◦.

The correcting capability of the projection method is slightly worse in

this case with respect to the previous one: the gain increases of a factor 2

instead of 2.5 and it reaches 8.88 dB instead of the 9.49 dB of the previous

case. Also the recovered angular width in this case is greater than in the

previous case (34.4◦ vs 29.6◦).

Appearently this discrepance isn’t justified, since the relative distances

among the projections of the array elements onto the x-axis are the same

in both cases (both lower than λ/2). But there is a difference between the
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two conformal arrays: in the previous case, each patch antenna radiated

with a maximum direction divergent from broadside, while in this case the

maxima of the antennas are converging towards broadside and therefore they

are pointing towards the other antennas’s radiating slots (i.e. towards the

antennas’s patches). This implies a higher degree of mutual coupling with

respect to the concave array as it can be seen inspecting the values of the

parameters S21, S32, S43 at 2.45GHz in the two cases:

Circular Array S21 [dB] S32 [dB] S43 [dB]
Concave -20 -24 -20
Convex -12 -14 -12

it’s evident how changing the conformal surface from concave to convex

implies an increase in these S parameters of almost 10 dB that denotes a

higher level of mutual coupling. As far as the convex array is concerned,

all these S parameter values are higher than −15 dB, so that mutual

coupling has an impact on the performance of the array and therefore also

on the performance of the projection method, thus explaining the different

effectiveness of this pattern recovery technique in the two cases.

Figure(4.15) shows that there is good agreement between matlab and

CST simulations also in this case. These figures show the electric farfield

with and without compensating phase-shift, in comparison with the desired

pattern of the linear array: applying the projection method, the pattern is

partially recovered, especially in the main lobe direction, but again from 90◦

to 180◦ the pattern can’t be recovered in an equally effective way.

Figure(4.16) represents the synthesis of the study on this conformal

array: its CST-simulated uncorrected E-pattern, the corrected one and the

desired ideal one, i.e. that of the linear array.
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(a) Uncorrected.
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Figure 4.15: Analytical (matlab) in blue, simulated (CST) in black and
desired (CST linear array) in red, E-field of the circular conformal array.
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Figure 4.16: Circular array: CST-simulated E-field. Linear array (dashed
line), circular uncorrected (plain) and corrected (marked).

Therefore we can conclude that the projection method works fine as a

pattern recovery technique but it also shows some limitations: it enables
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pattern recovery in the main lobe direction but its recovery capability

decreases as soon as directions distant from broadside are considered. Again

this is a consequence of the exisiting tradeoff for the projection method

between ease of implementation and effectiveness.

4.4 S-Shaped Conformal Array

Figure 4.17: CST design of the S-shaped conformal array.

The two previous conformal arrays were used to build another geometry

that comprises both the concave and convex circular arrays. In this case the

4-elements linear array is bent on a surface shaped as an S, as it’s represented

in Fig.(4.17) and described in detail in Section(1.5).

Fig(4.18) on the left represents the gain of the array when no

pattern-recovery technique is adopted: it can be seen how the main lobe

direction has changed from 0◦ to 9◦ and how the side lobe level has

consistently increased from −13.8 dB to −6 dB. The angular width and the

maximum gain are instead only slightly different from the ones of the linear

array: 25.8◦ vs 24.6◦ and 10.5 dB vs 11.1 dB.

The array’s gain after the introduction of the compensating phase-shift is
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Figure 4.18: Polar plot of the array gain for the uncorrected (left) and
corrected (right) cases (S shaped array).

reported in the right-most part of Fig.(4.18): the main lobe direction moves

back to 0◦, and the side-lobe level decreases to −11 dB.

Again there is good agreement between matlab and CST simulations

as it’s reported in Figure(4.19). The two Figures show the electric farfield

with and without compensating phase-shift, in comparison with the desired

pattern of the linear array: applying the projection method the pattern is

partially recovered, especially in the main lobe direction, but again from 90◦

to 180◦ the pattern can’t be recovered in an equally effective way.

In Figure(4.20) the CST-simulated uncorrected E-pattern, the corrected

one and the linear array’s one are represented.
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(a) Uncorrected.
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Figure 4.19: Analytical (matlab) in blue, simulated (CST) in black and
desired (CST linear array) in red, E-field of the S conformal array.
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Figure 4.20: S array: CST-simulated E-field. Linear array (dashed line),
uncorrected (plain) and corrected (marked).

Again the advantages and limitations of the projection method can be

observed. In this case, performance degradation is not as much emphasized

as in the previous cases: this can be explained observing that, among all the
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conformal arrays presented so far, this is the most similar one to the linear

array. Infact the patch antennas are only slightly rotated around their axis

and the required phase-shift is smaller than in the previous cases (79.5◦ vs

101.8◦).

4.5 Wedge Conformal Arrays

Another group of conformal arrays studied in this work comprises those

obtained bending the 4-elements linear array on a wedge surface. In

particular, three arrays of this type were studied and are represented in

Figure(4.21): a conformal array bent of an angle ϑb = 30◦, its reversed

version and another array bent of an angle ϑ = 45◦. The first and the last

one were also physically realized and characterized at the North Dakota State

University.

Figure 4.21: Different wedge conformal arrays.

Figures(4.22) report the gain patterns for the three arrays with and

without the compensating phase-shift introduced with the projection

method, while Table(4.2) contains the metrics and their respective values.
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(a) 30◦ Uncorr. (b) 30◦ Corr.

(c) 30◦ Rev. Uncorr. (d) 30◦ Rev. Corr.

(e) 45◦ Uncorr. (f) 45◦ Corr.

Figure 4.22: Gain polar plot for the wedge conformal arrays.
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From the figures and the table it can be easily seen that for all the three

cases the performance downgrades with respect to the linear array: the main

lobe magnitude decreases, the angular width and side lobe levels increases

and, for ϑ = 45◦ even the main lobe direction changes.

Poor performance are much more evident when ϑ = 45◦: the greater ϑ,

the more the conformal array is different from the linear one, i.e. the more

the patches’s main lobe direction points away from broadside. Moreover,

as ϑ increases from 0◦ to 90◦, the antenna become closer and closer, thus

enhancing the effects of mutual coupling. This is evident also when the

compensating phase-shift is introduced: it can effectively correct the main

lobe magnitude and direction together with its angular width, but it has no

effect on the side lobe level that, instead of decreasing, slightly increases.

When ϑ = 30◦ instead, the projection method is effective on all the

metrics of interest as it can be seen by Table(4.2); infact for both the concave

and convex array configurations all the metrics improve after the introduction

of the compensating phase-shift.

As far as these arrays are concerned, similar considerations to those made

for the concave and convex circular ones hold: in the concave array the

maxima of the antennas are pointing away from broadside, i.e. away from

the other elemets’s radiating slots, while in the convex configuration the

maxima of the antennas are pointing towards broadside, i.e. toward the

othere elements’s radiating slots. This fact comports a higher degree of

mutual coupling between adjacent elements as it can be seen from the higher

values of the parameters S21, S32, S43:

Circular Array S21 [dB] S32 [dB] S43 [dB]
Concave -15 -24 -15
Convex -14 -9 -14
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in this case the parameters S21 and S43 don’t change much, while S32 changes

dramatically increasing of 15 dB and becoming the highest of the three

parameter in the convex configuration, while it was the lowest in the concave

one.

This is intuitive if we consider that elements 2 and 3 (i.e. the central ones)

are those that are more influenced by this surface change (from concave to

convex): in the concave array their maxima were divergent with respect to

each other, while they were parallel with respect to elements 1 and 4; in the

convex array their maxima become convergent to each other while they keep

being parallel to those of elements 1 and 4.

Therefore it can be seen how the mutual coupling level is higher in

the convex configuration than in the concave one, thus bringing to slightly

different results as far as the pattern-recovery capability of the projection

method is concerned (see Table(4.2)).

Uncorrected Corrected
Metrics Linear 30◦ 30◦ Rev. 45◦ 30◦ 30◦ Rev. 45◦

Main Lobe Mag. [dB] 11.1 6.76 7.35 6.02 9.92 9.99 8.37
Main Lobe Dir. [deg] 0 0 0 -44 0 0 0
Angular Width [deg] 24.6 98.2 39.7 45.2 28.3 30.1 33.4
Side Lobe Level [dB] -13.8 -10.2 -2.8 -12.8 -12.8 -15.5 -8.9

Table 4.2: Metrics and correspondent values for the three wedge conformal
arrays.

Also in this case there is a good match between analytical (matlab) and

CST results as it is shown in Figure(4.23). Similar considerations to those

made for the circular conformal arrays hold: from Figures(4.23) it can be

seen how the action of the projection method is effective especially near the

main lobe, while for |ϑ| ∈ [90◦, 180◦] the recovered pattern is pretty different

from the desired one (i.e. the linear array pattern).
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Figure 4.23: Analytical (blue), simulated (black) and desired (red) E-field of
the wedge conformal arrays.
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(b) ϑ = 30◦ Reversed.
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(c) ϑ = 45◦.

Figure 4.24: Wedge arrays: CST-simulated E-field. Linear array (dashed
line), uncorrected (plain) and corrected (marked).
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It can be also noticed again how the better results are obtained for |ϑ| =

30◦, while when ϑ = 45◦ the recovered pattern is less similar to the linear

array’s one even around the main lobe direction ϑ = 0◦.

Figures(4.24) show more directly the improvement brought by the

introduction of the compensating phase-shift to each one of the wedge

conformal arrays. It can be remarked again how the projection method is

less effective far from boradside and for a higher angle ϑ.

(a) ϑ = 30◦. (b) ϑ = 45◦.

(c) Prototype.

Figure 4.25: Analytitcal and measured results in [19] and picture of the
prototype of a wedge array.

Finally, Figure(4.25) reports an image of the prototype of the conformal
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array attached to a nonconducting wedge together with the analytical and

measured results obtained for ϑ = 30◦ , 45◦ at the North Dakota State

University: these results agree with those obtained in this work4.

4.6 Z-Shaped Conformal Array

Figure 4.26: CST design of the Z conformal array.

The last conformal array that has been studied in this work derives from

a six-elements linear array bent along a Z-shaped surface, as represented in

Figure(4.26).

The CST and matlab implementation’s procedure is the same as in all

the previous cases. The main difference in this configuration is that the array

is formed by six antennas instead of four, and so all the comparisons and

cosiderations have to be made with respect to the original unbent 6-elements

linear array, whose polar gain pattern is represented in Figure(4.27). It can

be noticed that the main lobe magnitude of the linear array is now greater

than the one of the 4-elements array and almost six times the one of the

single patch antenna, as it was expected. Also the main lobe’s angular width

is lower in this case since the higher the number of elements of the linear
4It must be considered that in Fig.(4.25) ϑ is limited in the range [−90◦, 90◦] (instead

of the full range [−180◦, 180◦] of Fig.(4.24)) and that the E-field is depicted in a relative
scale.
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array, the higher the directivity.

Figure 4.27: Gain’s polar plot of the 6-elements linear array.

Figures(4.28) show the polar plot of the Z-shaped array without and

with phase-compensation. If no pattern-recovery technique is applied, the

characteristics of the array change:, the main lobe magnitude decreases, the

angular width increases, the side lobe level decreases to −7.4 dB and above

all, a grating lobe appears approximately in the direction ϑ = −35◦.

The main benefit of the projection method is the removal of the grating

lobe. As far as the other metrics are concerned, similar considerations to the

previous cases apply: the main lobe magnitude increases, the angular width

decreases as the side lobe level.

Moreover from Figures(4.29) it can be seen that even in this case there is a

good match between CST and matlab simulations.

Finally Fig.(4.30) represents the CST simulated uncompensated and

compensated E-field together with the linear array’s one: once more it can
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Figure 4.28: Polar plot of the array gain for the uncorrected (left) and
corrected (right) cases (Z array).

be remarked that the projection method is effective as a pattern recovery

technique especially around the main lobe’s direction. When ϑ approaches

angles wider than 90◦ the recovery-capability of the projection method is not

as effective as in the proximity of the main lobe. Again, this can be pointed

out as a limit of the projection method but, as it has been said several times,

this is a consequence of the tradeoff between ease of implementation and

performance. More complex and more accurate pattern recovery techniques

could be used, but at the expense of a more complex control system, that for

some applications is not feasible.
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Figure 4.29: Analytical (matlab) in blue, simulated (CST) in black and
desired (CST linear array) in red, E-field of the Z conformal array.
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Figure 4.30: Z array: CST-simulated E-field. Linear array (dashed line),
circular uncorrected (plain) and corrected (marked).



Chapter 5

Conclusion and Future Work

In this work various conformal arrays have been studied. Conformal arrays

change shape in time in order to adapt to surfaces whose shapes vary as well:

these arrays are designed in order to satisfy specific performance requirements

when their geometry is fixed, but also to match some of these features when

their shape changes.

The aim of this thesis was to analyze how the characteristics of these

arrays changed when the arrays deformed, and to compare these performance

with those obtained exploiting the projection method as a pattern recovery

technique.

All the analyzed array geometries were obtained as different deformations

of a linear array (composed by 4 or 6 elements). Some of these geometries

were studied also in other works (e.g. [19]), namely the concave circular array

and the ones placed on the two wedge surfaces bent of angles ϑ = 30◦ , 45◦;

the other conformal arrays instead (the convex circular and wedge ones and

the S and Z -shaped ones) are analyzed just in this work, providing an

original contribution to this thesis.

The results presented in Chapter(1) can be summarized as follows:
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1. The projection method provides a valid pattern recovery technique.

The introduction of a proper phase-shift allows surface deformation’s

compensation, thus improving array performance: the main lobe gain

increases and can be considered totally recovered as well as side lobe

levels and angular width decrease, and the maximum direction is

restored (if it had changed).

2. The correcting capability of the projection method depends on the

conformal surface characteristics: as it was shown analyzing the two

wedge-shaped conformal arrays bent of angles ϑ = 30◦ , 45◦, the more

the surface is deformed, i.e. the more it is different from the original

one, the less effective is the action of the projection method. This is

confirmed also by the analysis of more complex conformal arrays like

the Z-shaped one: as it was shown in the last section of Chapter(1),

the compensating phase-shift is less effective with respect to the other

(simpler) geometries.

3. The compensating phase-shifts are effective especially if performance

enhancement around the main beam is considered. This can be easily

explained considering that the projection method assumes that the

main cause of poor performance is to be found in the phase difference

among the signals, emitted by the array elements, when they reach

a farfield observation point in the main lobe direction of the array.

This explains the projection of the array elements onto the plane

perpendicular to the main lobe direction and therefore clarifies why

performance enhancement is more evident around this direction.

4. The more the mutual coupling is negligible, the more the projection

method is effective. This was shown comparing the concave and convex
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configurations of the wedge and circular array: in the convex arrays the

degree of mutual coupling among the elements is less negligible than

in the concave geometries and infact, even if theoretically the results

should be equal to those of the convex arrays, they aren’t. The convex

configurations show a less effective (even if just slightly) action of the

projection method.

Therefore the projection method can be considered a valid pattern

recovery technique, cheap and easy to implement (as it was shown in [19] since

it can be realized using just a flexible resistive sensor and a phase-shifter).

By the way, as stated above, it is also evident that this pattern recovery

technique has some drawbacks; this is a consequence of the unavoidable

tradeoff between implementation simplicity and performance enhancement.

The choice of this technique rather than more complex ones (e.g.

those that require extensive digital-signal-processing computations and RF

circuitry beyond phase- and amplitude- tapering devices) depends on the

application’s requirements: if low cost and ease of implementation are

priorities, then the projection method represents a good solution for pattern

recovery. These features are desirable for many applications, especially those

related to simple systems for which more complex control techniques are not

feasible (e.g. simple wearable devices).

Future Work

This thesis provides the basis for future developments, as for example

the physical implementation and characterization of the prototypes of the

original conformal geometries presented here (the convex circular and wedge

arrays, the S- and the Z- shaped ones).
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However the most interesting possible future development consists in the

study, design and prototyping of an autonomous self-adapting auto-corrective

system for conformal arrays that change shape in time. So far infact, the

compensating phase-shifts based on the projection method, were theoretically

calculated for this type of self-adapting conformal arrays, but they were

implemented just for static conformal arrays, i.e. arrays that change shape

from their original configuration to another specific one.

This is quite a great simplification, since in more realistic systems surface

deformation is a continuous phenomenum: when a wearable device is placed

on a moving body, its conformal array should be able to adapt to a constantly

changing surface (e.g. an arm or a leg of a walking person).

In order to do this, a more coprehensive theoretical study about conformal

arrays must be conducted: a general relation between surface deformations

and radiation pattern changes should be derived in order to develop new

pattern recovery techniques.

A more exhaustive theoretical approach would also enable to determine the

limits of self-adapting conformal antennas in terms of efficiency, maximum

surface deformation and maximum rate of deformation.
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