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Alla mia famiglia

Prediction is very difficult,
especially about the future.

Niels Bohr (attributed)
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Abstract

The increasing availability of smart devices that allow the user to instanta-
neously share contents in the Internet, leads to an ever growing amount of
data produced and consumed by end users. With the advent of new content
sharing social platforms, i.e., Facebook, Twitter, Instagram, Youtube, etc.,
telecommunications researchers are asked to find new techniques to satisfy
the content delivery requests in an efficient manner. In this work we address
the problem of designing an efficient algorithm that allows high quality real
time video streaming, from the source coding and scheduling perspectives.
We take into account some key quantities like frame correlation, channel
constraints and Quality of Service (QoS) metrics such as distortion and Peak
Signal-to-Noise Ratio (PSNR). We first formalize the problem in a mathe-
matical fashion and then propose a Markov-chain based solution that applies
to quantized values of the metrics involved in the framework, achieving good
performance while maintaining the complexity of the framework low. We
compare the simulation results for different scenarios and we conclude the
thesis by proposing a trade-off solution between performance and complexity.
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Sommario

La crescente diffusione di dispositivi mobili atti alla condivisione di contenuti
multimediali sul web, ha portato ad un importante incremento del traffico
dati. Con l’avvento di nuove piattaforme di condivisione come Facebook,
Twitter, Instagram, Youtube, ecc., il settore delle telecomunicazioni è alla
ricerca di nuove tecniche in grado di soddisfare efficientemente le richieste
degli utenti. In questo lavoro siamo alla ricerca di un algoritmo efficiente ca-
pace di garantire buone prestazioni nella trasmissione video in tempo reale,
agendo ai livelli di codifica e scheduling. Nel fare ciò, saranno tenuti in
considerazione parametri tecnici rilevanti come la correlazione tra immagini
del video, i vincoli di capacità imposti dal canale e metriche di valutazione
della Qualità del Servizio (dall’inglese Quality of Service QoS) come dis-
torsione e rapporto picco segnale-rumore (dall’inglese PSNR). Inizialmente
formalizzeremo il problema a livello matematico e in seguito proporremo una
soluzione semplificata basata sui processi Markoviani in grado di ottenere
buone prestazioni e complessità ridotte. Confronteremo i risultati per scenari
diversi e infine proporremo un compromesso tra prestazioni e complessità.
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Chapter 1

Introduction

"Big brother is watching you" [1] is the famous phrase reminded to people
living in the dystopic George Orwell’s novel, 1984, where one person was
able to observe everyone using cameras placed everywhere. Maybe in 1948,
when the novel was written, nobody could imagine that this fantastic world,
not many years later, will have been easily feasible. Obviously, at that time,
this was only product of fantasy, but let us pretend to be in that world and
raise a question: how can the Big Brother manage all data that come from
cameras in real-time? How should its coding and scheduling algorithms work?
Nowadays this situation is fairly practical, people are used to shoot videos
with their portable devices and upload them on their favourite social network,
thus generating huge quantities of data flowing through the Internet. In the
past years, mobile networks have seen an exponential increase in video traffic
which has grown till exceeding 50% of the total shared data [2], as shown in
Figure 1.1, and it seems to continue with the same trend or even faster. It
is estimated that the mobile network capacity will need to be increased 65
times to scale with the expected traffic, between 2013 and 2018.

Video Aware Wireless Networks (VAWN) [3] is a multy-year project that
supports our claims. Wireless networks must keep pace with these requests
by exploiting new technologies and algorithms that have to be designed to
fit the specific characteristics of the video stream in order to be able to
better deal with this huge amount of data. Current mobile networks face
issues when providing a reliable service to video streaming [4]. It requires a
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Figure 1.1: Cisco mobile traffic forecast.

steady flow of information and delivery of packets within a target deadline to
fulfill quality and delay contraints [5]. Wireless networks have to deal with a
multipath fading channel which is variable in time and must be shared among
multiple users that interfere with each other. Shadowing and pathloss might
further increase link variability leading to unfavorable conditions for video
streaming. The problem of finding a solution to send efficiently, i.e., with
an acceptable QoS, multiple video flows over a wireless channel in a scenario
where user requests grow exponentially is a challenging topic. In this work1

we focus our study on the real time upstreaming scenarios, where a mobile
user shoots a video clip from a camera, e.g., on his helmet when skiing, or
from the smartphone when traveling (as in Figure 1.2), and upstreams the
video to the Internet to share the content with friends on social networks,
e.g., Facebook, Twitter, and so on. The encoding rate to generate the video
frames and the scheduling policy for the transmission at the wireless interface
of the mobile device should be decided in order to guarantee a target expected
video quality at the consumer side. The complexity of making such decisions

1Part of this work was published in [6]
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increases when jointly taking into account the mobility of the source, the
dynamics of the scene and the channel variations. In this thesis, we consider
the inherent frame correlation of the video stream, due to the dynamics of
both source and scene, to properly select the encoding rate of the video
frames generated and the associated scheduling policy, under the constraint
of the time-varying channel conditions. We design and implement a Markov
Decision Process (MDP) model where the decisions on the encoding rate of
the video frames and on the scheduling policy are made with the goal of
minimizing the distortion of the video upstreamed to the Internet, and there
made available for public video consumption.

Figure 1.2: Reference scenario: mobile video upstreaming.

Mapping the mobility of the user and the dynamics of the scene to the
frame correlation information is challenging due to the independent and si-
multaneous effect of the two sources of mobility on the video frames, which
has not been yet jointly addressed. However, assuming to know the resulting
frame correlation, a predictive video encoder uses the information about the
correlation between consecutive frames to select the necessary video encoding
rate, say, within a given Group of Picture (GoP), to keep the video distor-
tion to a target level. Furthermore, the optimal choice of such rate has an
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impact on the packet scheduling scheme to be adopted and is constrained by
the channel state conditions and service requirements in terms of expected
provisioned quality. Thus, the purpose of this work is to design an MDP
model to foresee the encoding rate and scheduling policy at the video pro-
ducer side that minimizes the average long-term distortion of a sequence of
video frames, e.g., a GoP, given the frame correlation information and the
wireless channel conditions. The thesis is structured as follows:

• Chapter 2: a technical overview of mobile video streaming is provided
with focus on standard video encoding schemes and video quality met-
rics;

• Chapter 3: we discuss some prior work related to this thesis;

• Chapter 4: we formulate a mathematical model and provide an analyt-
ical solution;

• Chapter 5: we propose a Markov-based solution and report simulation
results;

• Chapter 6: we draw our conclusions and we discuss some future direc-
tions.



Chapter 2

Mobile video streaming

Video streaming is the traffic source that generates the largest amount of
data in the Internet [7]. Differently from audio and image signals that re-
quire hundreds of bytes, one second of Comité Consultatif International pour
la Radio (CCIR) 601 [8] video signal at a rate of 30 frames per second is about
20 Mbytes. Since videos can be seen as sequences of images in a temporal
coherent order, one approach to compression is to compress video frames like
images. However, there are limitations to this approach: human beings do
not perceive motion video in the same way they perceive still images. The mo-
tion in videos can mask coding artifacts that would be visible in images and,
therefore, compression techniques may exploit these features as advantages
to reduce the bitrate. Thanks to its network-friendly inclination, H.264 Ad-
vanced Video Coding (AVC) is the intended standar for high-definition video
coding over mobile networks and it is considered in this work. In particular
we consider real-time video upstreaming applications. The mobility of the
source with the dynamic of the shot scene are foundamental to estimate the
correlation between frames. In order to improve the efficiency of the coding
process, a study of the correlation model is required. The better the accuracy
of the correlation model, the more the insights we gain into the impact of
the correlation on the rate-to-quality behavior of videos.

7
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2.1 Video coding: H.264/AVC standard

H.264/AVC is the result of continuous enhancements of a series of video
standards. Formalized with the final draft in December of 2001 by the Joint
Video Team (JVT)1 and then approved in 2003 by ITU-T as Recommenda-
tion H.264 and by ISO/IEC as International Standard 14496–10 (MPEG-4
part10) AVC, it has evolved through the development of the ITU-T H.261,
H.262(MPEG-2), and H.263 video coding standards [9]. The standard is
designed for technical solutions including video-on-demand or multimedia
streaming services over wireless networks. The basic block diagram is re-
ported in Figure 2.2 [9].

Figure 2.1: A possible arrangement of a typical GoP structure.

The Video Coding Layer (VCL) [9] works dividing the frames into inter
and intra (I) pictures. The former are frames obtained using some predic-
tion on the neighbor frames, while the latter are coded independently of the
other frames. The inter pictures frames can be divided into two sets: the
predictive coded (P) and the bidirectional predictive coded (B). The inter pic-
tures are obtained by subtracting a motion-compensated prediction [7] from
the original source as described in Section 2.1.1; then the residuals are trans-
formed in into the frequency domain by a Discrete Cosine Transform (DCT).
The transform coefficients are, therefore, scanned, quantized and coded using
varible-length codes. Moreover, a local decoder is employed to reconstruct

1Video Coding Expert Group and Motion Video Expert Group joined together in De-
cember 2001 to form the Joint Video Team (JVT)
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Figure 2.2: Block diagram of the ITU-T H.264/AVC encoder.

the frame for use in future predictions. Intra pictures, instead, are coded
without reference to past pictures. Details differentiate H.264/AVC from its
predecessors. The decorrelation process includes motion-compensated pre-
diction and transformation of the prediction error for the inter frames, while,
for the intra frames, it includes intra prediction modes and transforms used
in this mode. The macroblock of the encoder, as aforementioned, is the same
used in the other standards. It consists of four 8 × 8 luminance blocks and
two chrominance blocks. Differently from previous standards, in H.264 it is
possible a further subdivision of the 8× 8 macroblock into 8× 4, 4× 8 and
4× 4 sub-macroblock like in Figure 2.3. These smaller blocks are useful for
tracking much finer details of the scene in the motion-compensated predic-
tion. Along with the 8× 8 partition, the macroblock can also be partitioned
into two 8 × 16 or 16 × 8 blocks. Field mode of the H.264 standard uses
16× 16 macroblocks.
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Figure 2.3: Macrobocks in standard H:264/AVC.

2.1.1 Motion Compensated Prediction

In order to predict the pixel values of a frame given the previous frame,
the coder has to take into account the motion of the objects in the image.
The approach that has worked best in practice is the block-based motion
compensation [7]. The frame being encoded is divided into blocks of size
M ×M and for each block we search for that one most closely matching the
encoding block. We measure the distance between two blocks as the sum
of the squared differences of the pixels in the two blocks. In the case it is
impossible to find a block in the image that is nearer to the encoding block
at least for a given threshold, the block is declared uncompensable and it is
encoded without prediction. On the other hand, if it is possible for a block
to find a valid matching, the block is encoded using a motion vector. The
motion vector is the relative location of the block to be used for prediction
obtained by subtracting the coordinates of the upper-left corner pixel of the
block being used for prediction. Therefore, a motion vector is a pointer to
the matching block of the previous frame. The H.264/AVC standard exploits
motion compensation using quarter-pixel accuracy. The reference image is
expanded interpolating twice between two adjacent pixels. This operation
results in a smoother residual. The prediction is done by searching among up
to 32 pictures to find the best matching. Different predictions are employed



2.1. VIDEO CODING: H.264/AVC STANDARD 11

according to the type of the frame [9].
Motion compensated prediction performs the scene dynamic part for the
correlation model considered in Chapter 4. The distance in terms of Mean
Squared Error (MSE) considers, infact, the intrinsic variability of the scene
that is reported in the coding of subsequent images.

Figure 2.4: Example of motion vector searching.

Figure 2.5: Motion compensation in coding procedure.
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2.1.2 Transform

The transform used in the coding procedure is a separable integer 4 × 4

DCT-like transform [7]. The transform matrix and its inverse are given by

H =


1 1 1 1

2 1 −1 2

1 −1 −1 1

1 2 2 −1

 H−1 =


1 1 1 1/2

1 1/2 −1 −1

1 −1/2 −1 1

1 −1 1 −1/2


As coefficients are integer, the implementation is simple and avoids error
accumulation in the transform procedure, while the small size of the blocks
allows a better representation of small stationary regions of the image.

2.1.3 Intra frame prediction

As most of the bits in video coding are expended in encoding I frames,
the standard looks for improving their compression in order to substantially
reduce the bitrate [7]. The H.264 standard contains several prediction modes.
For 4×4 block there are nine prediction modes that are reported in Figure 2.6.

Figure 2.6: Prediction modes for 4× 4 intra prediction.

The 16 samples that are labeled as a - p are predicted using prior decoded
samples in adjacent blocks labeled as A - Q. The samples on the boundaries
of the 4 × 4 block are copied into the block as indicated by the arrows [9].
For each mode number it is associated a corresponding arrow which shows
the direction of the prediction. For example, with mode 1, pixel I is used
to predict pixels a, b, c and d. Mode 2 is called DC mode and it is not
associated to an arrow: the average of the left and top boundary pixels is



2.2. REALTIME VIDEO STREAMING 13

used as the prediction for all 16 pixels. For blocks of different size, similar
modes are applied.

2.1.4 Quantization

The standard uses a uniform scalar quantizer for the transform coefficients
in H.264/AVC. The value of the parameter can be chosen among a set of 52
values and an increase of 1 means an increse of the quantization step size by
about 12%. Note that a change of the step size by 12% also means roughly a
reduction of 12% of bit rate. The quantized transform coefficients of a block
generally are scanned in a zig-zag fashion and transmitted using entropy
coding methods. Say Qstep the size of one of the 52 possible quantizers; the
step size doubles for every sixth Qstep. To make the transform simple, the
quantization incorporates scaling process [7].

2.1.5 Network Abstraction Layer (NAL)

The H.264/AVC standard is designed for use in a large variety of applications:
video-on-demand, multimedia streaming, data storage are only some of them,
while, every day, a lot of new applications enter the market. To address the
need for flexibility and customizability, the standard introduces the NAL
that formats the Video Coding Layer (VCL) representation of the video and
provides header information compatible with a variety of transport layers or
storage media. The NAL is thus designed to provide "network friendliness",
enabling simple and effective customization of the use of VCL for a broad
variety of systems. For more information we refer the interested reader to
[9].

2.2 Realtime video streaming

A typical video streaming session is composed of two phases: an initial buffer-
ing phase followed by a steady state phase [10]. During the buffering phase,
the end-to-end available bandwidth limits the transfer rate and, when a suf-
ficient amount of data is available in the receiver buffer, the player starts
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Figure 2.7: Live streaming structure.

the playback. Video playback does not wait for the buffering phase to end.
The average download rate in the steady state phase is, instead, slightly
larger than the video encoding rate. To evaluate the streaming performance,
we consider the ratio between the average download rate during the steady
state phase and the video encoding rate. Call it accumlation ratio. When
this value goes lower than one, the video playback is interrupted due to the
empty buffer, while, a value larger than one means that the amount of video
content in the player buffer increases during the steady state phase, improv-
ing the resilience to transient network congestion. In the steady state phase,
an average download rate is maintained by periodically transferring one block
of video content producing a kind of ON-OFF cycles. The buffering phase
ensures that the player has a sufficient amount of data to compensate for the
variance in the end-to-end available bandwidth during video playback. The
reduced transfer rate in the steady state phase ensures that the amount of
video content does not overwhelm the video player while keeping constant
the amount of buffered data during the buffering phase. The reduced data
transfer rate is important for mobile devices which may not be able to store
the entire video and the reduced load can increase the number of videos that
can be streamed in parallel. Whereas, usually, the downlink channel provides
better perfromance than that of the uplink channel, in the second case, the
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transmission setting has to be designed considering the lower available band-
width. A certain data compression technique is necessary in order to obtain
good results. This is the reason to adopt H.264/AVC and H.264 Scalable
Video Coding (SVC) [11].

2.2.1 Streaming protocols

Designing a network protocol that support video streaming should consider
a set of aspects [12][13], among which there is the transport protocol.

• UDP: this protocol send data into a flow of small packets. There is no
guarantee of delivery, but it is simple and efficient. Retransmission and
error correction techniques should be implemented by the application
layer;

• TCP: it is more complex than UDP to implement. It guarantees the
correct delivery of the data implementing mechanisms of timeouts and
retransmissions. However, when the protocol detects a loss, the stream
stalls and retransmits the data incrementing the delay. While this
aspect is tolerable in video-on-demand scenario, it is not acceptable in
realtime applications like video conferencing;

• RTSP: the Real-time Streaming Protocol was specifically designed to
stream media over networks. RTSP runs over a variety of transport
protocols;

• RTP and RTCP: similar to RSTP but they both run over UDP;

• Unicast: separate copies of the media stream are sent to each recipient.
It is not scalable;

• Multicast/Broadcast: it sends a single stream from the source to a
group of recipients (1-to-many networks). Some prior work on broad-
cast video streaming rate allocation can be found in [14] and [15];

• Peer-to-peer: protocols arrange for prerecorded streams to be sent
among computers. This prevents the server and its network connections
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from congestion. However, it raises technical, performance, security,
quality, and business issues.

2.2.2 Video quality metrics

Quality metrics able to fairly represent the video stream nature hardly char-
acterize the human video perception. However, some different approaches
were found: QoS metrics are related to the technical aspects of the net-
work [16], while QoE metrics are based on perceptual evaluation of the video
stream [17]. The main video quality metrics in use are: PSNR, MSE, Struc-
tural Similarity index (SSIM) and Mean Opinion Score (MOS). PSNR and
MSE are QoS-based video metrics whereas SSIM and MOS are an objective
and subjective representations of the QoE, respectively.

• PSNR: [18] is defined as the ratio between the maximum power of a
signal and the power of the noise that corrupts it. Because of the high
variance of the signals, usually, PSNR is expressed in decibel. It is
used for estimating the quality of the reconstruction of a lossy coding,
but it can be used also to evaluate the quality of a video frame given
its distorsion introduced by the channel through which it has been
transmitted. PSNR is a metric intended to be an approximation to
human perception of the signal. It is defined via the MSE. Given an
M ×N image I and its noisy approximation K, we have:

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

[I(i, j)−K(i, j)]2 (2.1)

PSNR = 10 · log10

(
MAX2

I

MSE

)
= 20 · log10

(
MAXI√
MSE

)
= 20 · log10(MAXI)− 10 · log10(MSE)

(2.2)

where MAXI is the maximum possible pixel value of the image.



2.2. REALTIME VIDEO STREAMING 17

Although high values of PSNR indicates high quality, sometimes it may
not be the case. For this reason other indices have been introduced.

• SSIM: [19] measures the structure similarity between two images. It
is designed to improve PSNR and MSE metrics which have proven
to be inconsistent with the human eye perception. Differently from
the aforementioned techniques, SSIM considers image degradation as
changes in the image structural information that is based on the strong
correlation between neighboring pixels. SSIM is computed between
serial windows of two images x and y of dimensions N ×N :

SSIM(x, y) =
2(µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.3)

where

– µx is the average of x;

– µy is the average of y;

– σx is the standard deviation of x;

– σy is the standard deviation of y;

– σxy is the covariance of x and y;

– c1 = (0.01L)2, c2 = (0.03L)2;

– L is the dynamic range of the pixel values;

This formula is computed only on the luminance component of the
images. Examples of SSIM-based resource allocation algorithms for
realtime streaming are given in [20].

• MOS: used for decades with the intent of formalizing in a mathemati-
cal way the user’s perception of the quality of the network. Historically
used for audio quality classification, it was computed by some people
listening in a quiet room to some audio signals and scoring according
to the quality they perceived. ITU-T recommendation P.800 [21] ex-
plains the environmental conditions needed for a good estimation of
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the MOS index for audio calls. Like most standards, the implementa-
tion is somewhat open to interpretation by the equipment or software
manufacturer. Moreover, due to technological progress of phone man-
ufacturers, a calculated MOS of 3.9 in a VoIP network may actually
sound better than the formerly subjective score of greater than 4.0.
The Mean Opinion Score for multimedia, i.e., audio, voice, video, pro-
vides a numerical indication of the quality perceived by the user after
compression and transmission. MOS is expressed as a single number
in the range from 1 to 5, where 1 is the lowest perceived video qual-
ity, and 5 is the highest perceived video quality measurement. MOS is
computed taking the average of the scores of a number of listeners that
experience the signal under study. In Table 2.1 we report the meaning
of the MOS values in terms of quality and impairment perceived by the
end users.

MOS Quality Impairment

5 Excellent Imperceptible

4 Good Perceptible but not annoying

3 Fair Slightly annoying

4 Poor Annoying

5 Bad Very annoying

Table 2.1: Mean opinion score MOS.
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Related work

Prior work is focused on the design of models which study the correlation
among images and the associated theoretical rate-distortion bounds, as in
[22]. In this work, we propose a correlation model for pixels belonging to
two consecutive frames as the product of a spatial and temporal factors.
However, the spatial correlation is computed based on the local texture of
a specific video, which makes the method infeasible in practice, in terms
of computational complexity, for user-generated content real-time applica-
tions and services. Strong temporal correlation models between adjacent
frames of video signals have been successfully exploited in standard video
compression algorithms, such as the MPEG [23] codec family and in par-
ticular the H.264/AVC [24] and SVC [11], which are block-oriented motion-
compensation-based video compression techniques. The tight relation be-
tween the dynamics of the source and the scene with the frame correlation
is still an open research item which needs to be modeled to best adapt in
real-time the video encoding process to the mobility pattern and preferences
of the video upstreaming producers.

Other related work mainly focuses on the design of MDPs to model the
scheduling of data packets over time-varying shared channels. For instance,
in [25], the authors model the one-user scheduling problem as an MDP and
derive from it the structural properties of the optimal solutions in order to
design online learning algorithms that preserve such properties and achieve
nearly optimal performance. The video encoding rate selection is not taken

19



20 CHAPTER 3. RELATED WORK

into account before the scheduling decisions since the study is limited to
the wireless scheduling transmission and does not consider the impact of
the mobility pattern of the user. The extension to the multi-user case [26]
takes into account the users’ heterogeneous video traffic characteristics, the
time-varying network conditions and the dynamic coupling among the users’
resource allocations across time, but the role played by the mobility of the
user and the dynamics of the scene in the system are not considered, nor is
the frame correlation information.

In [27], the authors propose a systematic solution to the problem of
scheduling delay-sensitive transmissions over time-varying wireless channels.
A dynamic scheduling scheme is designed as an MDP that explicitly considers
the users’ heterogeneous characteristics. Foresighted decisions are made to
schedule multiple data units with different priorities based on the users’ re-
quirements. An online learning algorithm is developed to capture the impact
of the current decision with scope limited to the packet scheduling problem.

In [28] the authors design two scheduling algorithms that optimize the
quality of scalably coded videos. The first scheduling scheme is derived from
an MDP and models the dynamics of the channel. Based on this, a near-
optimal scheduling policy is computed that minimizes the distortion of the
video. Upon the insights taken from this model, an online scheduling algo-
rithm is designed. This work, based on the dynamics of the channels and on
prioritized video queues to be scheduled, does not take into account the infor-
mation about the frame correlation of consecutive video frames to minimize
the video distortion already at the encoding phase.

Contrary to this related work, in this work we take into account the frame
correlation between consecutive video frames, for instance, due to the user
mobility or the dynamics of the scene, in the rate-distortion formulation,
and use this information to optimally select the video encoding rate and the
scheduling transmission policy under the constraint of the wireless channel
conditions. The optimal decision is made so as to minimize the impact of
the selected actions on the perceived video quality at the consumer side in
terms of average long-term distortion.



Chapter 4

Analytical study

In this chapter we perform the analytical study of the proposed delivery
system. The introduction of the use case scenario is followed by the model-
ing and the formalization of the problem. Finally, an analytical solution is
provided.

4.1 System description

In our delivery system we envision a mobile video source generating a se-
quence of video frames in real-time. This sequence is coded at the source
and transmitted via a wireless connection (either Wi-Fi or 3-4 G) in order to
be shared in the Internet (e.g., social networks), such that video consumers
can watch the real-time user-generated content.

We assume a dynamic user shooting or displaying a dynamic scene that
is characterized by a frame correlation model. The information provided
by the correlation model can be used by the encoding process to properly
set the encoding rate, which is defined in our system as the number of bits
used to encode the video frame. Highly correlated frames will require few
bits to be represented and played at the receiver (most of the information
is contained in the previous frame), whereas uncorrelated frames will need
high encoding rates to supply the lack of correlation with previous frames.
Moreover, the selection of the encoding rate has an impact on the scheduling
policy of the transmitter, since it has to best schedule its packets to cope with
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Figure 4.1: Framework overview.

the available channel conditions. We assume that a video frame contributes
in terms of perceived quality when the frame is fully received. Frames that
are partially transmitted are discarded and, hence, negatively impact the
perceived quality of the uploaded video.

We design a delivery framework for real-time mobile video upstreaming
which takes into account the video frame correlation to opportunistically
encode and transmit video frames on a per-GoP basis, whose sequence starts
with an I frame followed by P frames. The goal of the system is to select the
optimal encoding rate and the scheduling policy at the source to achieve a
target perceived distortion (or, viceversa, quality) of the video produced.

In Figure 4.1, our proposed framework comes to play right after the latest
video frame F1 has been encoded. We consider a first module which foresees
the evolution of the video flow in terms of correlation between video frames.
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The module computes the frame correlation ρ between the last video frame
F1 and the current frame to be encoded, F2, based on the mobility of the
camera (source), and on the changes of the video content due to the dynamics
of the scene. The outcome of this computation is fed into a second module,
the optimizer, which is in charge of making the decision on whether or not
to encode the video frame in this time instant, at which encoding rate R2

and how/when to schedule the frames queued at the transmitter, i.e., it
selects a scheduling policy πt. This module makes the decision based on a
rate vs. distortion mapping function, which takes into account the frame
correlation, and on the wireless channel conditions. That is, the encoding
rate of each video frame is selected with the goal of minimizing the overall
perceived distortion of the video, or viceversa, to enhance the overall delivered
quality, and to keep it steady through the variations of the wireless channel
conditions, Γt.

4.2 System model

We assume that the mobile user acquires a video frame in each time slot.
Thus, we assume that at the current time slot t the system acquires frame
Ft. Each video frame is correlated by a factor ρ(t) = ρ(Ft−1, Ft) with the
previous video frame acquired. Once the current video frame is acquired by
the camera, the encoding rate for such frame is selected based on the correla-
tion between consecutive frames and based on the target video distortion (or,
conversely, the target video quality) to be achieved by the system. Assuming
that the frame will be entirely transmitted, the distortion can be written as
a function of the encoding rate Rt and the frame correlation ρ(t):

Dt = f(Rt, ρ
(t)) (4.1)

Assuming that the video frame generation is a Gaussian process with
mean µ and variance σ2 and that the samples are uncorrelated, we find the
following analytical expression [29] for the rate-distortion function:

Dt = µ · σ2 · 2−2Rt (4.2)
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As a general rule, the distortion values computed with the above formula can
only be attained by increasing the coding block length. Nevertheless, even
at unit block lengths one can often find good quantizers which operate at
reasonable distances from the rate-distortion function.

When the frame correlation is non-zero, subsequent frames can be par-
tially represented by the initial frame of the sequence. Thus, given the cor-
relation information, the encoding rate of the video frames can be reduced.
In the case of maximum correlation, i.e., ρ(t) = 1, no encoding is necessary.
Conversely, when the correlation ρ(t) = 0, the encoder will have to use the
maximum rate to best represent the completely new video frame. Hence, we
modify Equation (4.2) as follows:

Dt = µ · (σ2
MAX −∆σ(ρ(t))) · 2−2Rt (4.3)

where σ2
MAX is the maximum variance of the encoding residual, that is ob-

tained without knowing the frame correlation, and ∆σ(ρ(t)) is a discount
factor on the variance, and thus on the distortion, due to the correlation
information as discussed above. The resulting variance, σ2

MAX − ∆σ(ρ(t)),
which is modeled so as to fulfill the condition of having an uncorrelated sig-
nal [29], can be used by a predictive encoding process to encode consecutive
video frames. From Equation (4.3), we note that the source can decide to
tune the encoding rate given the frame correlation as input to best meet
the target video distortion of the service and, at the same time, to meet the
channel capacity constraints.

As a general observation, the higher the frame correlation, the lower the
encoding rate required to achieve the same level of distortion, and vicev-
ersa. Existing rate control schemes incorporate spatio-temporal correlations
to improve the accuracy of rate-distortion models, by using statistical regress
analysis for dynamical model parameters update. Representative of this ap-
proach is the linear mean absolute difference model in [30], where model
parameters are updated by linear regression. Thus, we assume a linear ap-
proximation of the relation between frame correlation and video distortion
as follows:

Dt = µ · σ2
MAX(1− ρ(t)) · 2−2Rt (4.4)
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The extreme cases of Equation (4.4) are given by setting ρ(t) = 0, i.e., no
correlation information can be used in the encoding process and the distortion
function becomes as in Equation (4.2), while with ρ(t) = 1 neither video
encoding nor frame transmission is required. The latter case can be seen as
a static scenario (both source and scene are fixed), while the first case above
is the most dynamic scenario that will be considered.

4.3 Problem formulation

The general formulation of the problem provides a mathematical represen-
tation of the system. The model is developed considering a video frame Ft
generated at time t and a frame transmission deadline of N consecutive time
slots. A video frame that can not be transmitted within a deadline of N
slots from the instant in which it has been acquired will be discarded. The
set of video frames candidate for transmission at time t is Ct, each one with
its respective deadline counter. This last variable is assigned to every frame
in Ct and accounts for the available slots for transmission, for a given frame,
before expiring. Thus, in the following we indicate with Fi ∈ Ct the couple
frame-deadline counter. We assume that each frame is acquired at time TA(t)

and encoded with a given rate specified in the decision πt that we need to
compute for each time slot t. The decision πt is a vector of lenght |Ct| with
entries equal to the transmission rates scheduled for time slot t for all the
frames in the set Ct, which is given by Equation (4.5).

Ct : {l s.t. TA(l) ≤ t ≤ TA(l) +N − 1} (4.5)

Moreover, a mobile user experiences variable channel conditions defined by
the variable ht ∈ H and, therefore, a certain bandwidth B(ht) constraint.
The state st of the Markov chain is defined by the tuple (ρ

t
, ht, Ct, Rleft)

where Rleft is a vector containing the rate to be transmitted for the frames
in vector Ct, and ρt are the respective correlations. For example, if a given
frame i has been coded with rate 2R and transmitted with rate R, vector
Rleft will have the value R at index i. Moreover, for the frames that have been
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Figure 4.2: Example of possible encoding and scheduling decisions for N = 2.

acquired but not yet coded, the vector values will be temporarily undefined1.

The solution to the problem should provide the choice of πt for t within
a given prediction horizon T in order to maximize an expected total reward of
the frames. To do so, we introduce the action matrix Πt = [πt, πt+1, . . . , πt+T−1]

that considers the decisions for the entire time orizon T in which the opti-
mization is performed. Moreover, u(st, πt) is the reward achieved by taking
action πt at time t knowing that we were in state st. In order to give less
relevance to frames that are farther in the optimization range T than those
which are nearer to the actual time slot t, we introduce a discount factor γt+k

for the foresighted optimization. In this scenario, the problem formulation is
as follows:

max
Πt

E

{
T−1∑
k=0

γt+ku(st+k, πt+k)

}
(4.6)

s.t.
∑
i

πt+k,i ≤ B(ht+k) ∀k ∈ [0, T ] (4.7)

1Enqueued packets are not yet coded, thus their conding rate still has to be decided.
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Assuming in our model that the frame correlation ρ is known, the only ran-
dom variable that we have is the channel. Then, the expectation is done over
all possible channel values obtaining the expression in Equation (4.8).

E

{
T−1∑
k=0

γt+ku(st+k, πt+k)

}
=

γtu(st, πt) +
T−1∑
k=1

γt+k

 ∑
st+k:ht+k∈H

p(ht+k|ht+k−1)u(st+k, πt+k|πt+k−1)

 (4.8)

4.4 Analytical solution

Based on the general model of the previous section, we assume a simplified
scenario for the sake of tractability. We set γ = 12 and we leave as future
work the extension to other values of γ. We divide the channel conditions in
two cases: good channel and bad channel, ht ∈ {hg, hb}. With hg channel,
we are allowed to transmit at rate R while, with hb channel, only R/2 can
be sent. Moreover, in order to simplify the framework, we assume that when
a new frame is coded all the previous frames not already transmitted are
discarded. In this way, if we are in a given state st and we acquire a new
frame F , we can decide to either put it in a queue and continue to transmit
the current frame or encode the new frame neglecting all of the pending
frames, if any. In the latter case the distortion increases. Obviously this
framework provides a suboptimal solution as it may waste resources because
it does not transmit parts of different frames in the same time slot. For
instance, when the channel is good and the last part of the current frame is
only R/2, we miss the remaining available channel capacity. However, these
assumptions make it possible to design a framework which is tractable from
the analytical point of view. As in this model we want to maximize the
average total reward associated to the transitions, we foresee two actions:

1. we assign to each transition its associated reward, gained by the (even
partial) transmission of the frame. In case the frame is not completely

2With a finite time horizon T , the sum is always convergent.
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transmitted, once we delete the frame, we also delete the partial rewards
previously gained. In other words, if we transmit R bits of a given frame
i, encoded with a rate Ri = 2R along a good channel at a certain time
instant, then, with this transition we obtain an estimated reward of
Dmax
i − Di(R) where Dmax

i is the maximum distortion of the frame,
i.e., with ρ(i) = 0 and Ri = 0, and Di(x) is the distorion of the frame
i with transmission rate x. Moreover, if a second transition allows the
transmission of the remaining R part of the frame, it brings one more
improvement of Di(R)−Di(2R), for a total reward of Dmax

i −Di(R) +

Di(R)−Di(2R) = Dmax
i −Di(2R). Differently, if we are not able, in the

second transition, to complete the transmission and we decide to encode
a new frame, the reward relative to this decision is Di(R)−Di(0) with
a total reward of Dmax

i − Di(0) for that frame. However, we need to
distinguish the case when a frame is placed in the queue and its coding
procedure is forwarded from the case in which we encode a frame with
rate R = 0. In the former we get a reward of Dmax

i −Dmax
i = 0 while,

in the latter, a reward of Dmax
i −Di(0).

2. we can assign rewards to frames only once their transmissions are com-
pleted. When we decide, for example, to encode a certain frame with
rate Ri = 2R but the channel is, in order, bad for two slots and good
for one, we can transmit only R/2 for two time slots and R for the last
slot. Using this second method, the rewards associated with the three
transitions are, respectively, [0, 0, Dmax

i − Di(2R)], for a total reward
of Dmax

i − Di(2R). Also here, the case of coding with rate zero must
be treated differently from the case of enqueued frame. The first case
provides a reward of Dmax

i −Di(0), whereas the second is temporarily
undefined.

In this work we take the second approach in the list and we represent
in Figure 4.3 a simplified version of its use case. We impose that the initial
frame should be always encoded at a non-zero rate. Thus, from the initial
state we can choose rate R or 2R and, given that we are in good channel,
we transmit R bits of the actual frame. The next state can be one of the



4.4. ANALYTICAL SOLUTION 29

four successive states. Considering, for instance, the first state of the second
column reached with probability p and with the decision labeling the arrow,
the slot in which we receive frame F2 has bad channel and, thus, allows for
the transmission of only R/2 bits. From this state we have three choices
related to different coding decisions. We can select the encoding rate in the
set {0, R, 2R} and, according to the channel probabilities, we will have good
or bad channel. Making the choice of not encoding frame F2, we do not
need to send it and, thus, in the next slot, we are ready to code the new
received frame F3. This decision brings a partial reward of Dmax

2 − D2(0).
Otherwise, encoding F2 with rate R, will mean that in the next slot R/2 rate
is left out because of the bad channel condition. In this successive state, we
receive frame F3 that is appended in the queue Ct and we need to decide
whether to encode it or not. The reward for this decision is zero as we do
not terminate F2 transmission. Using, instead, 2R bits to encode F2, we
obtain similar conditions to the previous choice, but with 3R/2 bits left.
In the rightmost part of Figure 4.3 we show some total rewards weighted
with channel probabilities and related to their respective paths. Our optimal
solution consists in computing the total reward for all the possible paths and
taking that one with the highest reward. Once we know the optimal path,
we select its first transition as the next scheduling-coding action to be taken,
and we repeat the optimal prediction for the next time slot. Note that the
depth of the tree in Figure 4.3 is the length of the prediction window. The
size of the vector Ct, that contains, in a time-increasing order, the pending
frames for which the deadline is not yet reached, is at most N . When a
frame i is not transmitted within the deadline, that frame is dropped and
the transition in the Markov chain will count the distortion with a reward
of Dmax

i −Di(0). For each frame, the deadline counter decreases by one for
every time slot the frame is in queue or not completely transmitted. When
it reaches zero the frame is dropped.
The development of a complete framework is left for future work. We foresee
to adopt further assumptions in order to keep the complexity low for future
practical implementations.



30 CHAPTER 4. ANALYTICAL STUDY

{r1}

hG

{F1}

{-}

{r2}

hB

{F2}

{-}

{r2}

hG

{F2}

{-}

{r1,r2}

hB

{F1,F2}

{R,-}

{r1,r2}

hG

{F1,F2}

{R,-}

{r3}

hB

{F3}

{-}

{r2,r3}

hB

{F2,F3}

{R/2,-}

{r2,r3}

hG

{F2,F3}

{R/2,-}

{r2,r3}

hB

{F2,F3}

{3R/2,-}

{r2,r3}

hG

{F2,F3}

{3R/2,-}

{r3}

hB

{F3}

{-}

R1=2R,Rw=0

p

1-p

p

1-p

R1=R,Rw=D1_max-D1(R)

R2=0,Rw=D2_max-D2(0)

R2=R,Rw=0

R2=2R,Rw=0

p

p

p

1-p

1-p

1-p

Total reward:

p*(D2_max-D2(0))+p*(D1_max-D1(R))

Total reward:

(1-p)*(D2_max-D2(0))+p*(D1_max-D1(R))

Total reward:

p*0+p(D1_max-D1(R))

Total reward:

(1-p)*0+p*(D1_max-D1(R))

Total reward:

(1-p)*0+p*(D1_max-D1(R))

Total reward:

(1-p)*0+p*(D1_max-D1(R))

Figure 4.3: Analytical solution.



Chapter 5

Markov decision model

Starting from the general analysis in Chapter 4, we build a Markov model
according to a simplified but practical implementation of the framework.
We extend the framework by considering the scheduling of the frames to
be transmitted, thus we omit the requirement of ordered delivery as for the
analytical framework in Chapter 4. Moreover, we assume to know the channel
capacity for the entire prediction window and we inspect the impact of the
window size on the performance of the framework. We also analyze the
impact of the correlation by assessing the framework via simulations for a
set of scenarios. Then, we compare our solution obtained using quantized
values of the frame correlation information with respect to that using real
values of it.

5.1 Problem formulation

We consider a video frame generated at time t, say Ft, and a frame transmis-
sion deadline of two consecutive slots (N = 2), i.e., t and t+1. Hence, a frame
that cannot be transmitted within two time slots will be discarded, which
increases the video distortion. We call this encoder-decoder scheme “basic,”
where once the video frame is encoded, it must be completely received at the
decoder, otherwise the frame is dropped. Based on the correlation between
frames, we can assume that in case a frame is not received, the frame correla-
tion information can still be used to partially reconstruct the missing frame to
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keep the distortion low (similarly to common error concealment techniques).
Extension of this framework to a “scalable” encoder-decoder scheme [11] is
left for future work. In this case, a frame encoded at a certain rate contributes
to decrease the distortion at the receiver even if only partially received. The
more the bits received per frame, the lower the distortion.

As a first step towards a more general model for the study of joint
encoding-scheduling strategies, we consider the use case scenario depicted
in Figure 4.2. Each video frame is acquired at time TA(t) and encoded with
rate picked from the set {0, R, 2R}, with channel capacity fixed and set to R
(bits per slot). Based on the selected encoding rate, there are several scenar-
ios for the scheduling policy to be adopted for a sequence of 2 video frames.
Note that, based on the frame correlation between consecutive frames and
on the channel capacity, the encoding rate varies along with the acquisition
of the video frames, which significantly impacts the evolution of the video
scheduling strategy in the time domain. For instance, in the first row the
decision made by the system is to encode both frames F1 and F2 with rate
R, thus each frame will be encoded and sent in the corresponding acquisi-
tion slot. However, it may happen that the first frame, F1, contains more
information or is weakly correlated to the previous frame so that it requires
a higher rate in the encoding process to keep the distortion low. In this case
the frame will be encoded at rate 2R and consequently sent over two slots.
Hence, the system is dictated to generate frame F2 at rate R as in the second
row of the example or rate 0 as in the last row. The choice depends on the
frame correlation information, in fact the system might prefer not to encode
frame F2 in case of high correlation with the previous frame, thus making
room for the next video frame to be encoded (which is then prioritized), or
it can decide to encode frame F2 in case it foresees that this will improve the
performance independently of which encoding rate will be decided for F3.
Thus, the frame correlation is used to prioritize the video frame encoding
and scheduling decisions throughout the whole sequence of frames, e.g., a
GoP.

In our analysis we first assume a static channel, i.e., the channel capacity
is constant and thus known in advance. This assumption makes it possible
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to isolate the impact of the frame correlation on the system performance.
Once we identify the behavior of the system when the decisions are based
on the frame correlation information and the target video distortion to be
achieved, we add another degree of complexity to the problem by including
time-varying channel conditions into the problem formulation.

We define the distortion Dt of frame Ft as a function of its encoding rate,
i.e., Rt and of the frame correlation ρ(t) as in Equation (4.4). Once frame Ft
is encoded at rate Rt, it can be sent at time t with transmission rate R(1)

t ,
and at time t + 1 with rate R(2)

t , where Rt = R
(1)
t + R

(2)
t . Moreover, since

each frame can be sent within two slots with a given channel capacity Ct, it
holds that R(1)

t +R
(2)
t−1 ≤ Ct.

We note that the distortion is an additive metric which can be used over
a GoP to measure the overall distortion of the sequence of video frames pro-
duced [31][32]. As future work we will consider a QoE-based rate-distortion
function, thus we can map the distortion, i.e., the MSE, using Equation (2.2)
and then we map the PSNR to SSIM [33] or Video SSIM [34], which can be
assessed in terms of MOS [19].

The goal of our work is to select the encoding rate and transmission
policy, i.e., the tuple of possible actions π∗, that minimize the average long-
term distortion of a sequence of video frames, e.g., a GoP of time window of
T slots, as follows:

π∗ = arg min
π

1

T

t+T−1∑
τ=t

Dτ (Rτ , ρ
(τ)) (5.1)

under the channel capacity constraint Cτ .

5.2 Solving method

We solve our optimization problem via dynamic programming [35]. Given
the distribution of the frame correlation values as input, we compute the
optimal combination of video coding and transmission scheduling policy over
a sequence of video frames (GoP) which minimizes the average long-term
distortion of such video sequence. Once the distribution of ρ(t) is known,
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the problem becomes to find the path with the minimum value of distortion
in the corresponding Markov chain. Since we assume that each video frame
must be delivered within the deadline of two time slots, the states of the
MDP have to keep the information of the transmission rate, frame correlation
and distortion of up to 2 slots before. Our method predicts the optimal

Figure 5.1: Transition from state at time t to t+ 1.

policy based on the frame correlation information between video frames, the
current channel capacity and the target video distortion to be delivered. In
our framework each state of the chain includes five quantities. The first
component is the distortion of the second last frame, Dt−2, since it has been
already sent out and thus it can be computed. Then the state contains the
frame correlation between the last and second last frames, ρ(t−1), and the
frame correlation between the current and last frame, ρ(t), which are used in
slots t+ 1 and t+ 2 to compute Dt−1 and Dt, respectively. Furthermore, the
state contains the encoding rate of the video frame acquired in the previous
slot t− 1, Rt−1, and its transmission rate in the same slot, R(1)

t−1

Thus, the state of the system St at time t can be written as the following
tuple:

St = {Dt−2, ρ
(t−1), ρ(t), R

(1)
t−1, Rt−1} (5.2)

Among all possible combinations of those quantities, which represent the
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entire state space, a subset of them are feasible and build up our solution
space. In particular, the solution space is given by the states fulfilling the
condition that the transmission rate in the first available slot is not greater
than the encoding rate of a frame, R(1)

t ≤ Rt. The decision to be made
is given by πt = {Rt}, i.e., the encoding rate of frame Ft, Rt. In the static
channel scenario, thus Ct = C, the second part of the previous frame, R(2)

t−1, is
forced by the current state to assume the value of the remaining unsent part
of Rt−1, whereas the capacity constraint dictates that R(1)

t = C−R(2)
t−1. Once

the action is selected, Dt−1 can be computed and used in the following state.
At time t+1, the state of the system will be St+1 = {Dt−1, ρ

(t), ρ(t+1), R
(1)
t , Rt}

and the decision will be given by πt+1 = {Rt+1}, which makes it possible to
eventually compute Dt. Each transition in the chain, as shown in Figure 5.1,
is associated to decision πt. We build the chain considering only those tran-
sitions that guarantee lossless transmissions (basic encoder-decoder scheme
as aforementioned), i.e., R(1)

t +R
(2)
t = Rt, which implies R(1)

t ≤ Rt, and meet
the channel capacity constraint R(1)

t +R
(2)
t−1 ≤ C. Among all admissible paths

in the solution space of our MDP, we select the optimal transition that fulfills
Equation (5.1).

5.2.1 Dynamic channel case

We introduce in the optimization problem statement a Markov-based time-
varying channel quality, Γt, and the respective channel capacity as Ct =

C(Γt), which is the number of bits that can be reliably transmitted in slot t.
Note that the decision for the dynamic channel scenario is now given by the
tuple πt = {Rt, R

(1)
t , R

(2)
t−1}, with R

(2)
t−1 set to Rt−1 − R(1)

t−1 if Rt−1 − R(1)
t−1 ≤

Ct and to 0 otherwise. The state of the system contains also the channel
information compared to Equation (5.2):

St = {Dt−2, ρ
(t−1), ρ(t), R

(1)
t−1, Rt−1, C(Γt)} (5.3)

The information of the channel state adds a degree of complexity to the
problem, and will be evaluated in the simulation results once the impact of
the frame correlation on the system is separately assessed by using a static
channel.



36 CHAPTER 5. MARKOV DECISION MODEL

5.2.2 Setup

We implement in Matlab an MDP with a set of available encoding rates, i.e.,
{0, R, 2R}, and a set of channel capacity values, i.e., {0, 0.5R,R, 1.5R, 2R}.
The set of available transmit rates is the same as that of the encoding rates.
For the static channel scenario, we let the channel pick one fixed value for
the whole session, whereas in the channel dynamic scenario the channel ca-
pacity varies following a given distribution, but we reduce the set of possible
values to {0, R, 2R} due to the additional computational complexity. We
set µ = 1 and σ2

MAX = 200. To assess the impact of the frame correlation
on the performance of the system, we consider a set of ranges of slots that
can be foresighted, called prediction time window, that includes the values
{1, 2, 4}. A unit time window corresponds to the case of no prediction, i.e.,
the encoder generates the frame with rate set to the current channel capac-
ity. The frame correlation values are picked from the set {0, 0.3, 0.6, 1} using
different statistical distributions, as in Figure 5.2, where a correlation value
of 0 corresponds to the case of uncorrelated video frames, i.e., a very high
mobility scenario, whereas a correlation value of 1 refers to a static scenario
(perfectly correlated frames). In order to have some variability in the correla-
tion, distributions in Figure 5.2 are obtained by sampling uniform, gaussian
and exponential distributions with the following thresholds: thr0 = −∞,
thr1 = 0, thr2 = 0.15, thr3 = 0.45, thr4 = 0.8, thr5 = 1, thr6 = +∞.
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Figure 5.2: Different statistical frame correlation distributions.

Due to the heterogeneous intervals defined by those thresholds, the contin-
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uous uniform (0,1) distribution turns into a Gaussian sampled distribution,
the continuous gaussian (µ = 0.5, σ = 1) into a U-shaped distribution and
the continuous exponential (λ = 1) into a sampled exponential distribution.
The choice of defining small sets of values for all the metrics involved in the
framework is due to the complexity associated to the corresponding MDP.
Note that the scope of this work is to qualitatively assess the performance of
an MDP which jointly selects encoding rate and scheduling policy in real-time
based on the dynamics of the environment and on the channel conditions.

5.2.3 Discussion

First of all, in Figure 5.3, we isolate the impact of the frame correlation when
varying its statistical distribution and the available channel capacity. We pick
ρ in {0, 0.3, 0.6, 1} according to a discrete gaussian, exponential, or U-shaped
distribution (i.e., the extreme values 0 and 1 have higher probability of being
chosen) like in Figure 5.2, and measure the performance of the MDP in terms
of average distortion over a short-term horizon of 20 slots, e.g., a possible
GoP size. We implement the upper and lower bounds which correspond to
setting ρ to 0 and 1, i.e., the highly dynamic and static scenarios, respectively.
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Figure 5.3: Average distortion for exponential, U-shaped and gaussian dis-
tributions of ρ with upper and lower bounds.
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Another practical meaning of the upper bound is that it represents the
case in which the encoder is not aware of the frame correlation and the
decoder does not use this information to decode the frame. As expected, the
frame correlation is a useful information to keep the video distortion low,
and the gain slightly changes from one distribution of ρ to another. In fact,
what matters is the available channel capacity which dictates the degrees of
freedom of the system: the more constrained the channel capacity, the lower
the average distortion measured and the higher the gain compared to frame
correlation-agnostic encoder-decoder schemes.

In Figure 5.4 we show the impact of the prediction window size on the
system performance. A prediction window size of 2 achieves almost the
maximum gain of the system in the static scenario, and larger window sizes
perform exactly the same. The small gain achieved in terms of overall dis-
tortion is due to the limited range of options available in the system, but
still gives some insights into the problem of dimensioning the window size.
Specifically, the rather small set of available frame correlation values could
be extended to fully exploit the foresighted correlation, at the cost of a higher
computational complexity associated to the MDP.
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Figure 5.4: Impact of the prediction window size on the distortion.

In Figures 5.5 and 5.6 we report the number of paths computed by the
system when varying the prediction window size and the channel capacity,
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and the number of links of the optimal path when varying the channel ca-
pacity and the size of the simulation horizon, i.e., the number of available
states in the corresponding MDP. Note that the computational complexity
exponentially increases with the window size, as expected. For the static
channel scenario the performance achieved when using a prediction window
larger than one is not worth the associated complexity.
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Figure 5.5: Complexity of the MDP in terms of number of paths when varying
the prediction time window and the channel capacity.
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Figure 5.7: Dynamic channel scenario: impact of the prediction window
size on the distortion for a GoP of 20 and comparison with the full-search
algorithm.

In Figure 5.7 we show the impact of the prediction window size on the
distortion in a dynamic channel scenario. We pick ρ normally distributed, as
in Figure 5.2, in the set {0, 0.3, 0.6, 1} and model the channel conditions as
a random variable uniformly distributed in the set {0, R, 2R}. The results
are averaged over 100 runs. Opposite to the static channel scenario, the
joint foresighted information on frame correlation and channel conditions
makes it possible to reduce the distortion, for a GoP of size 20 (the length
of the simulated horizon), by at least half that obtained without prediction.
Moreover, a window size of 4 further reduces the distortion by up to ∼ 65%

compared to the no prediction case due to the fact that the encoding and
scheduling choices at time t have an impact on the next two following slots,
whereas a window size of 2 simply accounts for the very next slot impacted
by the action taken in the current slot. We compare the performance of our
framework with that of a full-search algorithm which computes the optimal
decisions for continuous values of ρ, whereas the MDP, which is solved via
dynamic programming, samples those values into the aforementioned set of
discrete values of ρ to find the optimal path. However, for the sake of com-
parison, the MDP computes the distortion based on the continuous values
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of ρ. We observe in Figure 5.7 that the larger the prediction window size,
the finer the estimation of the MDP, and the lower the cumulative distortion
over the GoP. Note that the gaps between the simulation results using the
MDP and the full-search algorithm are negligible on average, which confirms
the reasonable level of accuracy of the MDP.
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Chapter 6

Conclusions

In this work we formalized the problem of designing an efficient coding and
scheduling procedure for video streaming, assessed in terms of distortion
and delay, from a mathematical perspective and we proposed an analytical
solution using simplified conditions. From this model we designed a simu-
lation framework that computes the optimal encoding rate and scheduling
decisions based on the frame correlation via an MDP. The goal of the opti-
mization is to minimize the average long-term distortion of the video session
under the wireless channel constraints. Our simulation results show that a
simple delivery framework as the one we proposed, with limited frame cor-
relation and channel information, is beneficial at the encoder for real-time
applications as long as the complexity of the MDP can be kept at reasonable
levels. When considering dynamic channel scenarios, the larger the predic-
tion window size, the better the quality of the GoP delivered, but the worse
the complexity. As future work, we plan to pursue analytical evaluations
based on the proposed MDP framework in Chapter 4. Thus, we will imple-
ment the simplified proposed analytical solution considering different values
for the deadline and the prediction window, inspecting the system behavior.
Then, we foresee as future work the analysis of the trade-off between quality
delivered and computational complexity of this solution with respect to that
in Chapter 5. We will map the distortion of the GoP delivered to some QoE-
based metric for a range of practical settings. We further plan to investigate
the practical impact of the framework on upstreaming video services over
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wireless networks by taking into account realistic channel traces. Moreover,
we intend to accurately model the frame correlation information, that will
be properly integrated into a more complex extension of the rate-distortion
function, based on actual video encoding techniques, mobility of the users,
and dynamics of the scene.



Appendix A

Markov chains

A stochastic process {Xt} with the property that, for any t, given the value
of Xt, the successive values of Xs for s > t are independent of the values of
Xu for u < t, is a Markov process. The probability of any future behavior
of the process is not influenced by its past behavior, given the present state.
In the case of a process which takes values on a finite or countable space
and whose time is indexed, we have a discrete-time Markov process. In a
mathematical perspective the Markov property can be formalized as follows.

P [Xn+1 = j|X0 = i0, . . . , Xn = i] = P [Xn+1 = j|Xn = i] (A.1)

∀n and ∀i0, . . . , in−1, i, j. A Markov chain is, therefore, defined by a (possible
infinite) set of states linked by transition probabilities and refers to a sequence
of random variables of the Markov process. In general, these probabilities
are functions not only of the initial and final states, but also of the time
of the transition as well. In the case of transition probabilities independent
of the time variable, we say that the Markov chain has stationary transition
probabilities. The one-step transition probability is defined as the probability
that the chain is in state j at time n+ 1 given that it was in state i at time
n and is given in Equation (A.2).

P n,n+1
ij = P [Xn+1 = j|Xn = i] (A.2)

Most of the chains have stationary probabilities and, thus, we let P n,n+1
ij =

Pij ,∀n.
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Usually these transition probabilities are grouped in a matrix called transition
probabilities matrix P:

P =



P00 P01 P02 · · ·
P10 P11 P12 · · ·
P20 P21 P22 · · ·
...

...
...

Pi0 Pi1 Pi2 · · ·
...

...
...


As we are dealing with probabilities, we have that

Pij ≥ 0 ∀i, j = 0, 1, 2, . . . (A.3)

∞∑
j=0

Pij = 1 ∀i, j = 0, 1, 2, . . . (A.4)

Moreover it can be proven that a Markov chain is completely defined by its
transition matrix and initial state X0 [36]. In Figure A.1 we show an example
of a finite-state Markov chain with five states and with respective transition
probabilities.

s1
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s5

P_44

P_55
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P_53

P_32

P_23

P_14

Figure A.1: Example of Markov chain.
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Matlab code

In this appendix we report some parts of Matlab code used to implement the
algorithms described in the thesis.

B.1 Markov chain - static channel

% Piece o f Matlab code f o r b u i l d i n g the cha i n ;
% D = s e t o f a l l p o s s i b l e d i s t o r t i o n s ;
% rho_range = s e t o f a l l p o s s i b l e c o r r e l a t i o n s ;
% rate_range = s e t o f a l l p o s s i b l e encod ing r a t e s ;
% rate_range_tx = s e t o f a l l p o s s i b l e t r a n sm i s s i o n r a t e s ;

. . .

% Crea te a l l p o s s i b l e s t a t e s
f o r d=1: l e n g t h (D)

f o r rh =1: l e n g t h ( rho_range )
f o r r1 =1: l e n g t h ( rate_range_tx )

f o r r =1: l e n g t h ( ra te_range )
f o r rh_1=1: l e n g t h ( rho_range )

i f ( rate_range_tx ( r1 )<=rate_range ( r ) )
s t a t e s ( i ) .D=D(d ) ;
s t a t e s ( i ) . rho_k=rho_range ( rh ) ;
s t a t e s ( i ) . rho_k_1=rho_range ( rh_1 ) ;
s t a t e s ( i ) . R1_prev=rate_range_tx ( r1 ) ;
s t a t e s ( i ) . R_prev=rate_range ( r ) ;
i= i +1;

end
end

end
end

end
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end
s t a t e s=s t a t e s ( 1 , 1 : i −1);

% Crea te a l l p o s s i b l e t r a n s i t i o n s

j =1;
f o r r1 =1: l e n g t h ( rate_range )

f o r r2 =1: l e n g t h ( rate_range_tx )
f o r r3 =1: l e n g t h ( rate_range_tx )

i f ( ra te_range ( r1 )>=rate_range_tx ( r2 ) . . .
&& ( rate_range_tx ( r2 )+rate_range_tx ( r3 ) )<=C)

Pi ( j ) . R=rate_range ( r1 ) ;
Pi ( j ) . R1=rate_range_tx ( r2 ) ;
Pi ( j ) . R2_prev=rate_range_tx ( r3 ) ;
j=j +1;

end
end

end
end
Pi=Pi ( 1 , 1 : j −1);

% Determine f e a s i b l e t r a n s i t i o n s

f o r f rom_index=1: i−1
%d i s p ( from_index ) ;
from=s t a t e s ( from_index ) ;
f o r p i_index =1: j−1

p i=Pi ( p i_ index ) ;
i f ( p i . R2_prev==(from . R_prev−from . R1_prev ) . . .

&& p i . R1<=(C−from . R_prev+from . R1_prev ) )
f o r rho_k_current=rho_range

next_st .D=d i s t o r t i o n ( from . rho_k_1 , from . R_prev ) ;
next_st . rho_k=rho_k_current ;
next_st . rho_k_1=from . rho_k ;
next_st . R1_prev=p i . R1 ;
next_st . R_prev=p i .R ;
to_index=ge tS t a t e I n d e x ( next_st , s t a t e s ) ;
t ransMtx ( from_index , to_index )=1;
PiMtx ( from_index , to_index)=p i ;

end
end

end
end

Listing B.1: Markov chain - static channel
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B.2 Markov chain - fading channel

% Piece o f Matlab code f o r b u i l d i n g the cha i n ;
% D = s e t o f a l l p o s s i b l e d i s t o r t i o n s ;
% rho_range = s e t o f a l l p o s s i b l e c o r r e l a t i o n s ;
% rate_range = s e t o f a l l p o s s i b l e encod ing r a t e s ;
% rate_range_tx = s e t o f a l l p o s s i b l e t r a n sm i s s i o n r a t e s ;

. . .

% Crea te a l l p o s s i b l e s t a t e s
i =1;
f o r d=1: l e n g t h (D)

f o r rh =1: l e n g t h ( rho_range )
f o r r1 =1: l e n g t h ( rate_range_tx )

f o r r =1: l e n g t h ( ra te_range )
f o r rh_1=1: l e n g t h ( rho_range )

f o r C=1: l e n g t h ( C_range )
i f ( rate_range_tx ( r1 )<=rate_range ( r ) )

s t a t e s ( i )= s e t S t a t e (D(d ) , . . .
rho_range ( rh ) , . . .
rho_range ( rh_1 ) , . . .
rate_range_tx ( r1 ) , . . .
ra te_range ( r ) , C_range (C ) ) ;

i= i +1;
end

end
end

end
end

end
end
s t a t e s=s t a t e s ( 1 , 1 : i −1);

% Crea te a l l p o s s i b l e t r a n s i t i o n s
j =1;
f o r r1 =1: l e n g t h ( rate_range )

f o r r2 =1: l e n g t h ( rate_range_tx )
f o r r3 =1: l e n g t h ( rate_range_tx )

i f ( ra te_range ( r1 )>=rate_range_tx ( r2 ) )
Pi ( j ) . R=rate_range ( r1 ) ;
Pi ( j ) . R1=rate_range_tx ( r2 ) ;
Pi ( j ) . R2_prev=rate_range_tx ( r3 ) ;
j=j +1;

end
end

end
end
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Pi=Pi ( 1 , 1 : j −1);

% Determine f e a s i b l e t r a n s i t i o n s
f o r from_index=1: i−1

from=s t a t e s ( from_index ) ;
f o r p i_ index =1: j−1

p i=Pi ( p i_ index ) ;
i f ( p i . R2_prev<=from .C_k && p i . R1<=(from .C_k−p i . R2_prev ) )

f o r rho_k_current=rho_range
f o r c=C_range

i f ( p i . R2_prev~=(from . R_prev−from . R1_prev ) )
next_st=s e t S t a t e ( d i s t o r t i o n ( 0 , 0 ) , . . .

rho_k_current , from . rho_k , . . .
p i . R1 , p i . R , c ) ;

e l s e
next_st=s e t S t a t e ( d i s t o r t i o n ( . . .

from . rho_k_1 , . . .
from . R_prev ) , rho_k_current , . . .
from . rho_k , p i . R1 , p i . R , c ) ;

end
to_index=ge tS t a t e I n d e x ( next_st , s t a t e s ) ;
t ransMtx ( from_index , to_index )=1;
PiMtx ( from_index , to_index)=ge tP i I n d e x ( p i , P i ) ;

end
end

end
end

end

Listing B.2: Markov chain - fading channel
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B.3 Minimum distortion path

f u n c t i o n [ pi_opt , min_dist , pa ths ] = getMinDi s t ( cu r r_s ta t e , . . .
s t a t e s , transMtx , PiMtx , . . .
Pi , rho_input , C_input )

% pi_opt = minimum d i s t o r t i o n path ;
% min_dist = d i s t o r t i o n v a l u e wi th pi_opt ;
% paths = number o f d i f f e r e n t path e x p l o r e d .

cu r r_s ta t e_ index = ge tS t a t e I n d e x ( cu r r_s ta t e , s t a t e s ) ;
T_win = l e ng t h ( rho_input ) ;
n e x t_s ta t e s = f i n d ( t ransMtx ( cur r_sta te_index , : ) ) ;
pa ths =0;

% Determine next a dm i s s i b l e s t a t e s
j =0;
next_a l lowed=z e r o s (1 , l e n g t h ( nex t_s ta t e s ) ) ;
f o r i =1: l e n g t h ( nex t_s ta t e s )

next_index=nex t_s ta t e s ( i ) ;
nex t = s t a t e s ( next_index ) ;
i f ( nex t . rho_k == rho_input (1 ) && next .C_k==C_input ( 1 ) )

j=j +1;
next_a l lowed ( j )=next_index ;

end
end
next_a l lowed =next_a l lowed ( 1 : j ) ;

i f ( i s empty ( next_a l lowed ) )
min_dist =200;
pi_opt=getPiMtx ( 1 , 1 ) ;
d i s p ( ’ E r r o r : Unable to f i n d the next s t a t e . ’ ) ;
r e t u r n

end

pi_min_next=getPiMtx ( 1 , 1 ) ;
min=I n f ;
pi_opt=Pi (1 , PiMtx ( cur r_sta te_index , next_a l lowed ( 1 ) ) ) ;
next_opt=0;
pi_min=pi_opt ;
i f (T_win==1)

f o r next_index=next_a l lowed
p i=Pi (1 , PiMtx ( cur r_sta te_index , next_index ) ) ;
D_k_1 = s t a t e s ( next_index ) .D;
i f (D_k_1 < min )

min = D_k_1;
pi_opt = p i ;
next_opt=next_index ;
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e l s e i f (D_k_1==min )
i f ( ( c u r r_s t a t e . rho_k==1 && p i .R<pi_opt .R) | | . . .

( c u r r_s t a t e . rho_k~=1 && cu r r_s t a t e .C_k~=0 . . .
&& p i . R1>=pi_opt . R1 && p i .R>=pi_opt .R) | | . . .
( c u r r_s t a t e . rho_k~=1 && cu r r_s t a t e .C_k==0 . . .
&& p i .R<pi_opt .R) )
min = D_k_1;
pi_opt = p i ;
next_opt=next_index ;

end
end

end
min_dist=cu r r_s t a t e .D+s t a t e s ( next_opt ) .D;
paths=l e ng t h ( next_a l lowed ) ;

e l s e
f o r next_index=next_a l lowed

p i=Pi (1 , PiMtx ( cur r_sta te_index , next_index ) ) ;
[ pi_next , min_next , paths_next ]= getMinDi s t ( . . .

s t a t e s ( next_index ) , . . .
s t a t e s , transMtx , . . .
PiMtx , Pi , . . .
rho_input ( 1 , 2 : l e n g t h ( rho_input ) ) , . . .
C_input ( 1 , 2 : l e n g t h ( C_input ) ) ) ;

pa ths=paths+paths_next ;
i f ( min_next < min )

min=min_next ;
pi_min_next=pi_next ;
pi_min=p i ;

e l s e i f ( min_next==min )
i f ( ( c u r r_s t a t e . rho_k==1 && p i .R<pi_opt .R) | | . . .

( c u r r_s t a t e . rho_k~=1 && cu r r_s t a t e .C_k~=0 . . .
&& p i . R1>=pi_opt . R1 && p i .R>=pi_opt .R) | | . . .
( c u r r_s t a t e . rho_k~=1 && cu r r_s t a t e .C_k==0 . . .
&& p i .R<pi_opt .R) )
min=min_next ;
pi_min_next=pi_next ;
pi_min=p i ;

end
end

end
pi_opt=[pi_min , pi_min_next ] ;
min_dist=cu r r_s t a t e .D+min ;

end
end

Listing B.3: Recursive function for the minimum distortion
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