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Abstract

This work presents the integration of Machine Learning techniques in the
beta testing phase of Heartbot - Escape, a commercial video game, in order
to help the game designer in the identi�cation of the game parameters and
player characteristics that have the most in�uence on metrics such as enter-
tainment and di�culty. The game was analysed to de�ne the actual input
features and several classi�cation outputs, data collection was designed and
performed and data were then analysed. Random Forests and Support Vec-
tor Machines were used to predict the game sessions outputs and Recursive
Feature Elimination was applied to identify the features of most importance
for each output measure. Classi�ers trained on selected features were then
evaluated on a separate test set to obtain an unbiased quality assessment.
Selected features are shown to be meaningful for each classi�cation output.
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Chapter 1

Introduction

The video game and entertainment software industry has now grown to be
one of the biggest productive segments of the technological industry, with
grosses rivalling those of the �lm industry1. The producer ecosystem2 is
fragmented with at one end of the spectrum large studios, with hundreds of
developers and publishing budgets in the millions of dollars, and at the other
the independent developers, that have much lesser resources and mostly dis-
tribute their products single-handedly on the web3.
The abundance of cheaper video games determines a sharp competition for
visibility on the self-publishing channels, in the hope of either becoming a
viral phenomenon or being chosen by a dedicated niche of players.
Machine learning can help the video game designer by identifying and analysing
the most important game play elements of a product in order to in�uence
di�erent metrics of players' entertainment [1], in relation to di�erent demo-
graphic segments. The formalization of a classi�cation problem that links
the gameplay numeric settings to a players' appreciation questionnaire, fol-
lowed by a feature selection phase, can guide the game designer in the �ne
tuning and �nalization of the video game.
The data to be used in the process can be obtained during the beta testing
phase of the product, when the game mechanics are already established, but
tuning can still take place. Beta testing takes place before the actual release
and is primarily targeted to �nding bugs and retrieving an evaluation of the
product by actual users. Thanks to the self-publishing of most independent
titles, an increasing number of games are released while un�nished4, allowing
for an extensive collection of playing experiences before being �nalized.
This work will present and discuss the application of these concepts to the
beta test of the video game Heartbot - Escape by Synthetica Lab5, and in-

1http://www.gartner.com/newsroom/id/2614915
2http://www.gamasutra.com/
3http://store.steampowered.com/
4http://www.gamasutra.com/view/feature/197190/when_players_buy_your_game_before_.php
5http://www.syntheticalab.com/
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dependent game developed for the mobile market. Heartbot is a steampunk
stealth game with puzzle elements that primarily targets mid-core gamers,
a niche of more expert players that require a more re�ned and challenging
experiences than those usually o�ered by common mobile games.
The objective of this work is to identify the set of game parameters and
players characteristics that have the most in�uence on the evaluation of the
game's entertainment and di�culty; the game designer also requested the
evaluation of the control system and insights on the duration of the game
sessions.
Chapter 2 will contain a brief overview of the existing publications on related
arguments, discussing how they di�er from this work.
Heartbot - Escape, will be presented in chapter 3, describing its develop-
ment history and its gameplay elements. An explanation and discussion of
the features selected for the main analysis will follow.
Chapter 4 will introduce the Random Forest and Support Vector Machines
classi�ers, followed by a brief discussion of feature selection techniques using
the two classi�cation methods.
Chapter 5 will present the formalization of the classi�cation problems for
the game and the experiment design, discussing the data collected and the
strategies adopted in the analysis.
Chapter 6 contains the actual experiment results and their interpretation
from the game designer's point of view.
Chapter 7 draws the conclusions and the directions of future work.



Chapter 2

State of the Art

Games are an important part of human culture, having a central role in the
development of children into adults. As such, games have been analysed
from many di�erent points of views like sociology and psychology.
In recent times, the di�usion of video games and other entertainment soft-
ware has tied this particular segment of the games spectrum to the advance-
ment in computer science, across algorithm design, graphic techniques and
innovations in arti�cial intelligence.
Several books have been published about the analysis and breakdown of
classic games from a designer's point of view, with the intent of forming an
e�ective lexicon to further understand the subject. The ultimate goal is to
identify the crucial elements of a game that entertain the player and develop
design strategies to maximise their desired e�ects.
Classic books are [2] regarding the analysis of classic games and [3], [4] for a
detailed description of the game design process of modern computer games.
Another seminal article has been [5] on the more general topic of analysing
the mechanics that make activities entertaining, culminating in the concepts
of Challenge, Curiosity and Fantasy. The popular theory of Flow was pro-
posed in [6] and applied more speci�cally to computer games in [7].
In [8], the recurring elements in video games of di�erent genres are cate-
gorized and [9] discusses a compact descriptive model based on the triad
Mechanics, Dynamics and Aesthetics.
All these publications have however treated game design as a strictly artistic
process and, while successful in developing a formal language for research,
do not attempt to quantify the ingredients of the resulting games' entertain-
ment.
On the matter of �nding mathematical relationships between the game ele-
ments and the player satisfaction, many works have experimented the pos-
sible applications of arti�cial intelligence and machine learning techniques
under two main approaches, sometimes overlapping: online adaptation of
the game di�culty and procedural generation of game levels.
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In [10] and [11], Hunicke et al. delineate the requirements of Dynamic Dif-
�culy Adjustment systems for video games under the assumption of being
able to detect during a play session undesired mental states of the player,
for example to prevent frustration or excessive relaxation.
In [12], Andrade et al. implement a system for dynamic di�culty adjust-
ments of �ghting games that selects moves of non playable character with
the intent of neither being nor too di�cult nor too easy to be beaten by the
player, on the basis of the system's own learned experience. In [13] the au-
thors compare the balancing performances of algorithmically adapted enemy
behavious and of hand-tuned ones, �nding that the former provided more
balanced enemies.
Togelius et al. examine the procedural generation of tracks for a racing
game, using a model of the player's driving style to evolve circuits that will
result entertaining when tried by the real player [14], [15]. The player model
adopts a rather simplistic set of assumptions and the results, while good
from a mathematical perspective, have not been validated by an extensive
human testing.
Yannakakis et al. explore the e�ects of adaptation of non playable characters
behaviours in predator/prey games such as Pac Man1 in relation to di�erent
iterations of a quantitative interest metric, de�ned on emergent gameplay
features. In [16], [17] and [18] di�erent enemy behaviours using neural net-
works are evolved against computer controlled players to maximise an in-
terest index. In [19], [1] the approach is extended to an augmented-reality
game and applied to human players testing.
Pedersen and Yannakakis [20] analyse the e�ects of a conjunction of level
generation parameters and gameplay features in predicting di�erent evalua-
tions of a game session, such as fun, challenge and frustration, using In�nite
Mario Bros2 as a test bed. Neural networks are trained on the data, collected
by human players, and feature selection is performed to identify the most
important settings and gameplay characteristics.
This work expands the previous research on linking low level settings of the
game parameters to interest and di�culty metrics retrieved from actual hu-
man players. The main di�erence from previous works is the focus on the
ability of the game designer to tune the game in order to maximise enter-
tainment in relation to the players' characteristics. The classi�ers used will
be the Random Forest and Support Vector Machines, with feature selection
being applied to �nd the most relevant ones for each metric.

1http://en.wikipedia.org/wiki/Pac-Man
2https://github.com/c�ewis/In�nite-Mario-Bros



Chapter 3

Heartbot - Escape

This section will present the videogame HeartBot - Escape, which will be
the test subject of this work.
After a brief introduction to its genre and themes, the development process
will be detailed and a breakdown of its gameplay elements will follow. Fi-
nally, the collection of features and the set of classi�cation problems de�ned
on those will be discussed.

3.1 Introduction

Heartbot - Escape is a videogame released in March 2015 on the Windows
Phone Store, by Synthetica Lab, an Italian independent game developer.
The player is tasked with controlling the titular robot, which at the beginning
of the game su�ers from amnesia and �nds itself capable of feeling emotions
because of a human heart inside it.
By exploring the castle it �nds itself in, overcoming puzzles and other hostile
robots, it will �nd the truth behind its condition.
The game is a 3D stealth adventure with puzzle elements and adopts a
steam-punk visual style; its demographic target is the mid-core segment,
comprising players that require more aesthetically curated and challenging
games, which is currently an underserved niche on the mobile market. It is
a cross-platform application primarily developed for Windows Phone tablets
and smartphones.
The app is monetized as free-to-play with the possibility of paying hard
currency to unlock additional levels and aestethic goods.

3.2 Development

Heartbot has its roots in a prototype made during the 2013 Tallin Game-
Founder hackathon, a contest in which small teams of developers have a
short �xed time to develop a video game. The game won the �rst prize.
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The initial theme was to experiment with the concept of an emotional char-
acter: such a character presents to the player controlling it another layer of
mechanics to pro�t from (or di�culties to overcome) to beat the game.
The prototype featured a robot that could be scared by environment ele-
ments, such as falling objects; its reaction would disturb the control system,
making the robot sway from the direction chosen by the player.
The decision to evolve towards a stealth game was heavily in�uenced by the
initial fear mechanic, as it essentially determined a penalty for exposing the
robot to danger.
The game has been developed in the Unity1 engine, using the C# program-
ming language2. Unity is an industry standard engine used mainly by inde-
pendent game developers, thanks to its ease of use, large community, cross
platform development and competitive licensing options.
At the beginning of 2014 the project was resumed to be expanded in a full
game: in this phase the �rst draft of the game design document was written,
detailing the aesthetic style and the main gameplay elements. Following the
document, the core systems were implemented and the initial 3D assets were
contracted externally. The work presented in this paper started in June 2014
using the then available features.
In September 2014 the team decided to reimplement from scratch many core
systems, as they were found inadequate. In particular, the arti�cial intelli-
gence governing the enemies non-playable-character was switched from using
hard coded �nite state machines to using scripted behaviour trees [21]. Be-
cause of the lack of versatile tools for this paradigm, many e�orts have been
expended to implement a full featured behaviour editor integrated in the
Unity engine.
In late September 2014, a �rst public beta was held at the Arti�cial Intelli-
gence Lab of the Department of Information Engineering of the University
of Padua, using an Android build. Due to the heavy changes that were being
operated on the main code base, however, the beta version of the game used
levels and non playable characters from the previous implementation, render-
ing most of the data collected incompatible with future developments. The
beta version however proved that the data collection systems were e�ective
and its initial results were used to for a �rst tuning of the game parameters,
most notably regarding the robot's movement system.// In the same month,
the game was accepted in the Nokia Appcampus, a startup accelerator pro-
gram targeted to young mobile development �rms. The program o�ered an
initial investment in the developers' team, requiring the accepted applica-
tions to be released as Windows Phone Store exclusives, allowing for them
to be published on competing platforms after three months.
Development accelerated to meet the deadline for the Windows Phone Store

1http://unity3d.com/
2https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx
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Figure 3.1: Heartbot and the user interface; the higher button is the camera
switch and the one below is the dash button

approval, �xed for late December 2014; the author of this work actively par-
ticipated during the last days to �x bugs and �nalize some required features.
In the �rst half of December the last beta testing phase was started, using an
Android build of the updated implementation of the core systems; this ver-
sion was then frozen and the beta testing continued until March 2015, with
only minor bug �xes. The �rst data collection was done as a public event at
the Arti�cial Intelligence Lab of the Department of Information Engineering
of the University of Padua and subsequent collection batches were held as
sparse events.
The �nal version of Heartbot - Escape was released publicly on the Windows
Phone Store at the end of March 2015. The feedback of the beta testing data
was used in tuning the in-game tutorials and adjusting the robot's control
system, while subsequent results will be used for future releases.

3.3 Gameplay

This section will break down the main elements of the game, starting with
the control system; then there will be a description of the game environment
and the possible interactions with it.
The last is an overview of the enemies non-playable-characters.

3.3.1 Control System

The game requires the player to navigate a 3D environment without exposing
the character to danger, thus stressing the importance of careful exploration
and analysis of the surroundings.
The control system adopts a third person camera with the character's move-
ment relative to it; movement is restricted to the x-z plane.
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Using the touchscreen, the player can move the robot by tapping on any
point of the screen and dragging his or her �nger in the desired direction;
the resulting e�ect imitates the well-known control sticks found on the con-
sole gamepads.
Movement is implemented with an animation based approach: the speed is
implicitly de�ned by the translations and rotations that the artist applies in
the 3D animation editor. The advantage of this method is that the resulting
transitions between movement phases are smoother and programmatic con-
trol is still possible by scaling the individual animation speed; this solution,
however, requires careful tuning, as a transition between animations with an
excessive speed di�erence can be aesthetically unacceptable.
The player can also activate a short dash, by tapping a button on the bottom
right part of the screen. The dash is then deactivated for a brief time. When
Heartbot is dashing, collisions with static objects will trigger a noise that
propagates up to a small distance; this is represented by a red ring and will
alert enemies that are reached.
The camera follows the character and can not be explicitly controlled; it
has a �xed roll, its yaw is only changed in some predetermined environment
sections and it adjusts its height and pitch to evade obstacles on the line of
sight towards Heartbot. The player can rotate the camera by 180 degrees by
tapping a button in the bottom right of the screen.
When the robot feels scared, for example when spotting a close enemy or
hearing an unexpected noise, it will panic: the control system becomes un-
responsive and the robot moves away from the danger. This can be deadly
to the robot, as the uncontrolled movement could place it in a di�cult spot
to escape from, once an enemy has begun chase.

3.3.2 Environment

The game takes its �rst steps in the interiors of a �oating castle, built by a
scientist specialized in mechanical life forms. As the protagonist awakes, it is
contacted by a mysterious radio transmission that will guide it through the
castle's dangers lying; it appears that the transmission is from the scientist,
who �nds himself trapped by his own mechanical creations and needs to be
rescued by his most recent masterpiece.
Throughout the levels environments the player will �nd di�erent elements
to interact with.
The most important are doors: if closed, they prevent access to an area to
both Heartbot and its enemies, thus being crucial to both advance the explo-
ration of the castle and evade dangers. Closed doors can usually be opened
by collecting the appropriate key, which is then consumed when used. Other
doors can both be opened and closed by activating levers.
Levers are another main element of the levels, as their activation can signif-
icantly alter the environment.
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Other than the aforementioned switch of a door's state, some levers change
the position of objects blocking narrow passages or preventing reach of items
such as door keys. Some levels also feature chasms that can only be traversed
by standing on moving platforms; these are moved by the activation of levers.
Scattered through the rooms are also some large pipes that Hearbot can en-
ter: other than connecting to secluded area, these pipes hide the robot from
enemies chasing it.
Additionally, some areas host scripted events activated by the robot's prox-
imity. These can trigger the appearance of tutorial screens in the user inter-
face or activate the fall of items, whose noise may put the player in danger.
Another type of item that can be picked up is the top hat; some areas host a
small number of them and the scientist will ask the player to retrieve them
to help him after his rescue.

3.3.3 Enemies

In its wandering through the castle, Heartbot will encounter a number of
other hostile character that will try to capture it; the player is then required
to restart at the beginning of the area he or she was captured in. Each of
these enemies is a mechanical version of a di�erent animal, with its own
movement pattern and its unique way of contributing to the hunt of the
protagonist.
Heartbot has no mean of harming its enemies and during its roaming the
player will need to �nd cunning ways to evade them.

Fire�ies Hunter

These robotic insects behave like �ying patrolling units, roaming along a
prede�ned path and searching for intruders. At the end of their elongated

Figure 3.2: A �re�ies hunter in its patrol is moving towards Heartbot
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bodies, they host a beacon that projects a circle of light on the ground: the
hunters can detect foreign objects that enter this vision cone, thus transi-
tioning to a state of alarm.
When in this state, an hunter will stop its movement and call for the inter-
vention of a spider, described below, to dispose of the detected intruder.
Fire�ies hunters also react to sounds: when sensing an anomalous noise,
they will steer from their normal patrolling to inspect the source of the dis-
turbance. If no abnormality is found, they will return to their default duty
after a short while. This zealous behaviour can however be used as a weapon
against them, by luring them away from strategic passages and sneaking un-
detected.

Spider

The spiders are mechanical creatures that do not usually roam the castle's
rooms, preferring to stay dormant, attached to the ceilings. When a �re�ies
hunter detects an intruder, however, the nearest spider awakes and descends
on the �oor to give chase.
Spiders are fearsome hunters and can detect their prey's presence through
walls, keeping the pursuit up until either the capture is successful, or the
chased manage to hide inside one of larger pipes in the castle.
As soon as a spider reaches its target, it spits a web that traps the unfortunate
one and returns to the ceiling bringing the new trophy with itself.

Figure 3.3: A spider chasing Heartbot
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3.4 Feature Collection

The main target of this work is the identi�cation of the characteristics of
the game that have the most importance on the players' entertainment and
the game's perceived di�culty. The features describing a playthrough have
been broken down in three main groups:

• Controllable: these comprise the values that a game designer can
modify to tune the characteristics of the gameplay mechanics, such as
movement parameters of Heartbot and its enemies

• Player: these features represent a player as a set of demographic
informations and previous experiences in video games

• Emergent: this category contains features that derive from the ac-
tual interaction of the players with the game and re�ects their personal
approach to the system; events such as the number of times a lever is
activated or the collection of an item, together with temporal metrics,
form the bulk of emergent features

• Output: a collection of the players' evaluation of the game, such as
di�culty and interest

Level design is certainly a controllable element of the game, but has been
omitted from the model as there is no compact way of representing its char-
acteristics: Hearbot's environment and interactive elements are laid out by
hand, following more of an artistic rather than mechanical approach.
Another approach to level design recently rising in popularity is the proce-
dural generation of levels, adopting randomization and tuning parameters
to pilot placement algorithms, o�ering a great variety of areas, enemies and
even story lines. With this strategy it is straightforward to model a level
using the parameters of the algorithm as features.
As for emergent features, this work fully implemented their collection but
did not integrated them in the analysis. While previous works in the litera-
ture (see [20]) have shown the importance of such features in predicting the
player experience, they still are for the most part a consequence of the level
design. As this aspect of the game can not be modi�ed by the program in
an automatic manner, emergent features regarding interaction with enemies
and the environment are of little value to the analysis discussed here.
Only the playing session duration has been used as an output feature, as will
be explained later.

Controllable Features

For every controllable feature, a lower and upper bound were selected by the
game designer in order to maintain the balance of the gameplay mechanics.
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As it will be further clari�ed in the chapter about experiment design, the
beta version of the game generates randomized settings of the controllable
features to present each player with a di�erent game experience.

Identi�er Lower bound Upper bound

bot_snd_rad 8 10

bot_mov_spd 0.7 1.3

bot_dsh_spd 0.85 1.15

The �rst feature is Heartbot's sound radius and controls the maximal exten-
sion, in in-game units, of the noise generated by colliding with the environ-
ment during a dash; higher values will make Heartbot easier to be spotted
if not careful. Heartbot's movement speed and dash speed are coe�cients
used for scaling the relevant animation speeds; obviously higher values will
result in a faster robot.

Identi�er Lower bound Upper bound

fh_view_cone 0.49 1

fh_mov_spd 0.85 1.15

fh_mov_acc 0.7 1

The angle at the apex of a �re�ies hunter is controlled by the �rst parame-
ter, which sets the value in radians. Higher values determine larger detection
volumes and it is important to note that the graphical representation is up-
dated accordingly; the game mechanic regarding detection must respect a
contract of clarity with the player.
In a similar way to Heartbot, �re�ies hunters have a movement speed coe�-
cient; they however also have an acceleration coe�cient that in�uences the
transition between idle and moving state.

Identi�er Lower bound Upper bound

sp_mov_spd 0.85 1.15

sp_mov_acc 0.2 0.5

Spiders only allow for the control of their movement parameters, by select-
ing a movement speed coe�cient and an acceleration value, the latter used
during the transition from idle to moving.

Player Features

The following is a list of multiple-choice questions that inquire about the
relevant player's demographic and gaming experience informations.
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Identi�er Question Answers

plr_gender What gender are you? Male, Female

plr_age How old are you? 10 or less, fom 11 to 15,
from 16 to 22, from 23
to 28, 29 or older

plr_stealth_exp What's your expertise
in stealth games?

Newbie, Average, Ex-
pert

plr_mobile_exp How often do you play
with mobile games?

Never or Rarely, Usu-
ally, Often

plr_port_con_exp How often do you play
with portable console
games?

Never or Rarely, Usu-
ally, Often

plr_home_con_exp How often do you play
with home console
games?

Never or Rarely, Usu-
ally, Often

plr_pc_exp How often do you play
with pc games?

Never or Rarely, Usu-
ally, Often

plr_hb_runs How many times have
you played HeartBot?

None, 1, 2, 3 or more

Apart from obvious questions about gender and age, there is a question re-
garding the experience the player has with stealth video games, as Heartbot
is targeted to players with a consistent background in such games. The four
questions coming next ask about the gaming habits of the player, because
in the current state of the industry there are sharp di�erences between the
scope of games on the di�erent platforms.
Based on personal experience from Synthetica Lab mobile games are de-
signed for short play sessions, do not usually sport complex graphics and are
tailored to a more casual, less dedicated players.
Console games are by contrast very focused on the graphic experience, their
targets being players that can invest time in long play sessions and are will-
ing to confront themselves with di�cult challenges.
As for personal computers, they are usually a replacement of home consoles
for older demographic segments and as such their users share the same char-
acteristics. The main di�erence between computer games and console games
are the genres, with consoles having very few titles in the strategy genre and
computers having almost no �ghting games.
It is expected that players having a solid background in console or computer
gaming will �nd Heartbot being easier than those who only play mobile
games, with those experienced in stealth games further skewed towards per-
ceiving the game as being easy to beat.
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The last feature is used to identify players that have already completed the
Heartbot beta and can be used to check if the game is perceived di�erently
after being beaten.

Output Features

At the end of the gaming session, if either the game was abandoned or beaten,
the player is required to complete another multiple choice questionnaire eval-
uating their perception of the game.

Identi�er Question Answers

out_ctrl_reac Were the controls reac-
tive enough?

Yes, No

out_ctrl_acc Was the control scheme
easy to use?

Yes, No

out_diff Overall, was the game
di�cult?

Easy, Just right, Di�-
cult

out_int Overall, was the game
interesting?

Not interesting,
Scarcely interesting,
Interesting, Very inter-
esting

The �rst two questions are about the control system, which is a crucial com-
ponent of the game and requires careful tuning to accommodate di�erent
players expectations. The player is then asked an evaluation of the overall
di�culty level, with the possibility of a neutral answer, and an evaluation of
the interest the game raise.
The term interest has been chosen because it represents a positive evaluation
of the game as a whole, not being tied to a particular aspect such as aesthet-
ics or fun, and it has already been adopted in previous works in literature [18].

Game Duration

While the duration of a game session is actually an emergent feature, it is
however a crucial metric for mobile games, as they are usually played as
time �llers during commute or other short downtimes. Being able to predict
abnormally shorter or longer sessions can help the game designers in tuning
the game parameters for given time windows.
Session duration was collected, measured as the time in seconds between the
start of the game and the time of completion or leave; these values will then
be transformed in an ordinal categorical variable identifying the quartile they
fell in.
With Q1, Q2 and Q3 being the hinges of the quartiles distribution,



3.5. CONTENT OF THE BETA VERSION 17

Identi�er Values

time ≤ Q1, > Q1 and ≤ Q2,
> Q2 and ≤ Q3, > Q3

It is expected that this output feature will be correlated with the di�culty
metric, with shorter sessions being linked with lower di�culty evaluations
and longer ones being tied to harder game settings.

3.5 Content of the Beta Version

The version of Heartbot used for the data collection was modi�ed to accom-
modate the questionnaires, the randomization of the controllable features
and the enforcement of a rigid sequence of six playable levels. Results from
a game session are stored as text �les and sent to a server for future elabo-
ration.
The playable levels are the �rst ones from the full game and comprise four
tutorial areas and two levels with complete gameplay; a more detailed de-
scription is provided below.
In the �rst level, the player just takes the �rst steps as Heartbot and is pre-
sented with the doors and keys mechanics.
The second area introduces the safe pipes and a lever activating a moving
platform.
At the start of the third level, Heartbot unlocks the ability to dash and the
noise mechanics is explained by a falling object.
In order to beat the fourth level, the player has to elude the surveillance of
a �re�ies hunter guarding a narrow passage. The only solution is to use the
newly acquired dash to generate a noise and lure the hunter away from the
passage, rapidly sneaking toward the exit door.
The �fth area tasks the player with picking up three top hats scattered
though the level and to reach a key blocked inside a cage; this requires elud-
ing a �re�ies hunter patrolling a large part of the level and activating in the
correct order a series of levers.
The �nal level increases the di�culty by confronting the player with two �re-
�ies hunters, each moving in one of the two main areas the level is divided
in. The player will have to carefully plan their movement to collect a set of
top hats and the keys needed to advance.
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Chapter 4

Methods

4.1 Introduction

This section will present the problem of classi�cation and two solution strate-
gies: Random Forest and Support Vector Machines. Then It will brie�y
discuss the process of feature elimination and its application to the previous
algorithms.

4.2 Classi�cation Problems

Classi�cation is the problem of identifying to which of a set of categories or
classes a new observation belongs, on the basis of a training set of data in
which the category membership of each element is known.
Observations are in the form of numeric vectors x1, . . .xn, with a label yi
identifying to which output category the i-th observation belongs. The out-
put labels of a binary problem are often subject to y ∈ {−1,+1}.
The elements of each observation are called features or explanatory variables
and can take values from continuous intervals or discrete sets (either cate-
gorical or ordinal); let m be the number of such features for the problem at
hand.
The objective of a classi�cation problem is determining a function D(x) that
outputs the same label that an expert supervisor would assign to x.
A special case is the one of a linear separator: D(x) is a linear function of the
features, usually a hyperplane in the feature space. A problem that admits
a linear separator that never commits errors is said to be linearly separable.

4.3 Decision Trees

A Decision Tree [22] is a method of classi�cation where a tree is built with
the data from a training set data and new observations are classi�ed by a
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traversal of the tree.
The tree nodes are characterized as follow:

• internal nodes contain some kind of split function that, based on the
features of an observation, directs the traversal to one of the node's
children sub-trees

• leaf nodes contain the label of the output class, ending the traversal

The shape and size of the tree is determined by the split functions of the
internal nodes; a desirable property of a decision tree is to be of minimum
size, both for computational performance and for the Occam's Razor.
The problem of building such optimal tree is, however, NP-complete (see
[23]): the majority of the tree learning algorithms are thus greedy proce-
dures that construct the tree by recursively choosing a split amongst those
that maximize a performance index. Such algorithms are often followed by
a procedure to prune the resulting tree, both to reduce size and to prevent
over�tting.

The selection of the split function is a crucial component of the algorithm
and is usually based on a statistical score of the split informativeness.
Elementary split functions handle a single feature and can have di�erent
forms depending on its type, generally resulting in one or more hyperplanes
orthogonal to its axis in the feature space; let Aa be the attribute at hand

• if the feature is discrete with z outcomes, valid split functions are either

� Aa =? that operates a selection with two outcomes, hence the
node will have two children

� Aa ∈ Gi where G = {G1, . . . , Gg}, 2 ≤ g ≤ z is a partition of
the output values; the node will have g children and can describe
non-linear relations between the attribute and the output. The
partition for the test is usually determined by greedy strategies

• if the feature is numerical, Aa ≤ θ gives again a node with two children

Starting from the root and the entire training set S, the algorithm iteratively
checks if the node is trivially a leaf or needs to become an internal node; if
the cases in S belong to more than one output class, many di�erent split
functions are generated and evaluated to select the one that maximises some
kind of performance score.
Such performance index are usually based on statistical properties of S and
the candidate split function.
Most pruning strategies involve the removal of sub trees that, by statistical
estimates, have misclassi�cation rates higher than their siblings.
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The main advantages of Decision Trees over other classi�ers are that they
can handle data with both continuous and discrete features without the need
to transform them and that the resulting classi�er is easily understandable
by a human.
The main disadvantage is that much care must be taken in the pruning step
to maintain the accuracy in classi�cation.

4.4 Classi�cation and Regression Trees

Proposed by Breiman in [24], CARTs can be used for either classi�cation
and regression, depending if the output value is discrete or numeric. This
brief overview will be only about the classi�cation mechanisms.
The algorithm is a variant of the general greedy procedure that only gener-
ates binary split functions, using as performance index the information gain
of the split function computed with the Gini Impurity Index (see [25]).
Let S be the set of data to be split at the current node and RF (Ci, S) the
relative frequency of cases in S that have label Ci, i = 1, . . . , n. To estimate
the intrinsic information in S, the Gini Impurity index is used to estimate
the probability that a random element of S is misclassi�ed by only using the
label distribution of the cases in the set:

IGini(S) =

|S|∑
i=1

RF (Ci, S)(1−RF (Ci, S)) = 1−
|S|∑
i=1

RF (Ci, S)2

Let B be a candidate split function that splits S in subsets S1, . . . , St; the
information gain of such split is then:

G(B,S) = IGini(S)−
t∑
i=1

|Si|
|S|

IGini(Si)

This formulation, however, is biased toward split functions that generate
more partitions and should be adjusted by including an estimate of the in-
formation potential of the split partitions:

P (S,B) = −
t∑
i=1

|Si|
|S|

log(
|Si|
|S|

)

then the function to be maximised is G(S,B)/P (S,B).
The pruning technique is the minimal cost complexity pruning, based on

the assumption that the bias of a tree's resubstitution error linearly increases
with he number of leaf nodes.
Let R(T ) be the resubstitution error rate of a subtree T , α a parameter of
the estimate and L(T ) the number of T 's leaves; then the score assigned to
T is

Rα = R(T ) + αL(T )
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For any α, there exist only one T ∗α minimizing Rα and, although α can as-
sume an in�nity of values, the subtree candidates are a �nite set; let t be
the cardinality of this set.
Let T1 � T2 � · · · � Tt be the sequence of minimal subtrees obtained varying
α from 0 to ∞.
An important property of this sequence is that the trees are nested: Ti+1

is contained in Ti and an e�cient weakest-link algorithm can thus be con-
structed to generate the sequence.
This pruning step is used inside a 10-fold cross validation scheme to obtain
more sophisticated error estimates and determine smaller resulting subtrees,
at the cost of a substantial increase in computation time.
Also, the algorithm limits the chosen subtree to be the smallest subtree
whose estimated error rate di�ers for at most a single (estimated) standard
error from the estimated error rate of the optimal subtree.

4.5 Random Forest

Random Forest was originally an umbrella term introduced by Breiman in
[26] to describe an ensemble classi�er that builds a set of weak tree classi�ers
by introducing some randomness in their construction process; their outputs
are then combined according to a voting strategy to determine the classi�-
cation output.
Breiman's paper formalizes the concept and analyses di�erent techniques for
the construction of a Random Forest; most notably, he sketches the proofs
for important properties of Random Forest accuracy and ability to prevent
over�tting. The term has since become the name of a classi�er adopting
CARTs as classi�ers in conjunction speci�c randomization techniques.
The k-th classi�er hk in the forest has an associated random vector Θk, in-
dependent of other classi�ers' vectors, but with the same distribution; Θk

will be used to generate the classi�er according to some strategy of inputting
randomness, resulting in a function hk = h(X,Θk), with X the training set.
The shape and distribution of Θk depends on the speci�c strategies chosen
to build the Random Forest.
Let K be the number of trees and I(·) bet the indicator function; the de�ne

mg(X, Y ) =
1

K

K∑
k=1

I(hk(X) = Y )−max
j 6=Y

[
1

K

K∑
k=1

I(hk(X) = j)

]

as the margin function, measuring the extent to which the average number
of votes for the combination X, Y for the right class exceeds the average vote
for any other class.
The generalization error of the classi�er is then

PE∗ = PX,Y (mg(X, Y ) < 0)
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It can be shown that, for the Law of Large Numbers, as K grows then PE∗

converges to

PX,Y (PΘ(h(X,Θ) = Y )−max
j 6=Y

[PΘ(h(X,Θ) = j)] < 0)

This means that a Random Forest does not over�t, but produces a limiting
value for the generalization error.
Now de�ne the margin of a random forest as

mr(X, Y ) = PΘ(h(X,Θ) = Y )−max
j 6=Y

PΘ(h(X,Θ) = j)

and the strength as
s = EX,Y [mr(X, Y )]

Assuming s ≥ 0, Chebychev's inequality gives

PE∗ ≤
varX,Y (mr(X, Y ))

s2

By exploiting the fact that the random vectors Θ are independent and iden-
tically distributed, a more revealing bound on PE∗ can be obtained.
De�ning

ĵ(X, Y ) = arg max
j 6=Y

PΘ(h(X, Y ) = j)

rmg(Θ,X, Y ) = I(h(X, Y )− I(h(X,Θ) = ĵ(X, Y ))

Given Θ and Θ′, let ρ̄ be the mean value of the correlation between rmg(Θ,X, Y )
and rmg(Θ′,X, Y ): then it can be shown that

PE∗ ≤ ρ̄1− s2

s2

This result, although loose, reveal the dependence of PE∗ from the strength
of the classi�ers and the correlation between them. Such relation is then
used by Breiman to guide the choice of randomization strategies in de�ning
the �nal classi�er.

The most popular version of Random Forest uses two di�erent strategies
to produce unrelated trees: bagging and random feature selection.
Bagging consists in the creation, for the k-eme tree, of a bootstrap Tk with
replacement from the training set: the subset of observations selected by
the bootstrap is called in-bag set, the remaining constitute the out-of-bag
set. This partition determine that the k-eme tree, built on the in-bag-set,
bears no bias towards the items in its out-of-bag set; testing the classi�cation
error on the out-of-bag set gives a fair estimate of the "true" error rate of
the classi�er.
Random feature selection acts during the construction of the trees by limiting
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the choice of the split function of an internal node to those that use only a
random subset of size mtry (parameter to the Random Forest) of features.
The individual classi�ers are unpruned CARTs built according to the above
criteria.

4.6 Support Vector Machines

SVMs (Support Vector Machines) are supervised learning models that can
be used for both classi�cation and regression analysis. The basic formulation
builds a non-probabilistic binary linear classi�er, but extensions are available
for multi-class classi�ers and continuous regression; also, non-linear exten-
sions are provided.
First introduced in [27], SVMs are now a popular solution for classi�cation
problems: the algorithm works by determining a maximum-margin linear
classi�er in the feature space, exploiting a convenient formulation of the
problem.
In their basic version, SVMs produce a linear separator that maximizes its
margin from the observations (interpreted as points in the feature space).
The problem is formalized as a quadratic optimization:

min
w,b

‖w‖
2

yi(w · xi + b) ≥ 1 ∀i = 1, . . . , n

(4.1)

While solvable, this problem formulation can be translated in its dual form
by using a vector of Lagrangean multipliers ααα to make the constraints appear
inside the objective function:

min
w,b

max
ααα

‖w‖
2
−

n∑
i=1

αi [yi(w · xi + b)− 1] = min
w,b

max
ααα
L(w, b,ααα)

αi ≥ 0 ∀i = 1, . . . , n
(4.2)

By applying the property of the �rst minimization over w and b it is possible
to relate bounds on ααα to said elements:

∂L(w, b,ααα)

∂w
= 0⇔ w =

n∑
i=1

yiαixi

∂L(w, b,ααα)

∂b
= 0⇔ 0 =

n∑
i=1

yiαi
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and the problem becomes:

max
ααα

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiyiαjyj(xi · xj)

αi ≥ 0 ∀i = 1, . . . , n
n∑
i=1

yiαi = 0

(4.3)

of the parameters of the hyperplane, w need not be explicitly calculated, as
the decision function can use the equivalent

w · x =

n∑
i=1

yiαi(xi · x)

and
b = yk −w · xk for any αk 6= 0

The strong point of this problem formulation is that the training data ap-
pear only in dot products between themselves; this fact will be exploited
by the non-linear extension. Also, the ααα multipliers will be di�erent from 0
only for the observations that lie exactly on the margin of the hyperplane
(called Support Vectors), thus reducing the size of the computation needed
for building the hyperplane parameters.
To account for mislabeled training cases, the primal formulation can be mod-
i�ed to allow a vector of tolerances ξξξ in the bounds and penalizing such tol-
erances in the objective function by a controllable parameter C:

min
w,b

‖w‖
2

+ C
n∑
i=1

ξi

yi(w · xi + b) ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n

(4.4)

the dual formulation is then modi�ed as follows:

max
ααα

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiyiαjyj(xi · xj)

0 ≤ αi ≤ C ∀i = 1, . . . , n
n∑
i=1

yiαi = 0

(4.5)

b = yk(1− ξk)−w · xk for k = arg max
k

αk

The ξξξ tolerances allow for observation points to be inside the margin of the
separating hyperplane, thus giving them a α > 0 even if not Support Vectors.
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The formulae expressed above refer to an SVM for linearly separable data,
at most with some noisy observations; SVMs can be adapted to handle non-
linearly separable data by mapping them to a space with a higher number
of dimensions and searching for a linear separator in said new space.
Let ϕ(xi) be the mapping, in a higher dimensional space, of xi and let
K(xi,xj) = ϕ(xi) · ϕ(xj); by applying the formulae from the linear case to
the mappings of the data it results:

max
ααα

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiyiαjyjK(xi,xj)

αi ≥ 0 ∀i = 1, . . . , n
n∑
i=1

yiαi = 0

(4.6)

and

w · ϕ(x) =
n∑
i=1

yiαi(ϕ(xi) · ϕ(x)) =
n∑
i=1

yiαiK(xi,x)

This use of the classi�er is known as "kernel trick" and K is called a ker-
nel function: to be of practical use, a proper kernel function must satisfy
Mercer's condition: for any g(x) such that

∫
g2(x)dx is �nite,∫

K(x, z)g(x)g(z)dxdz ≥ 0

The condition guarantees the existence of a solution for the dual problem in
the SVM algorithm and makes the kernel function be continuous, symmetric
and have a positive de�nite Gram matrix.
Standard non linear kernel functions are:

• Gaussian radial basis function: K(xi,xj) = e−γ‖xi−xj‖2 for γ > 0

• Polynomial: K(xi,xj) = (γ(xi · xj) + c)d

• Sigmoid: K(xi,xj) = tanh(γ(xi · xj) + c)

Advantages of SVMs over other classi�ers are the small number of tuning
parameters (dependent on the kernel function adopted) and the computa-
tional e�ciency in solving the underlying quadratic optimization problem;
the resulting classi�er, however, does not lend itself to an easy interpre-
tation. Another disadvantage is that SVMs may underperform when the
training data have much di�erent domain ranges, requiring a standardiza-
tion preprocessing step.
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4.7 Feature Selection

Feature selection is the process of choosing the most relevant subset of dimen-
sions of the feature space to build a more compact classi�er. Its usefulness
stems from the reduction of training times and the possibility of removal of
redundant or irrelevant features from the original problem formulation, to
reduce the risk of over�tting the training data.
Di�erent feature selection methods have been studied in literature, such as in
[28], which describes three main strategies: wrappers, �lters and embedded
methods.
In wrapper methods, after an enumeration of all possible feature subsets,
each one is used to build a di�erent classi�er. This is then evaluated through
some performance score, such as classi�cation error on a hold out set. These
methods are computationally expensive and result are intractable when the
feature set are too large or the construction and testing of new classi�ers
take up excessive resources.
Filter methods involve a scoring of single features based on statistical proper-
ties of the training set, such as correlation of features with the output labels
or class distribution. Usually these methods are much faster to apply than
the wrappers, but since they are not tied to a speci�c predictive model, they
may result in lower performances. Filters have been used as a pre processing
step to reduce the feature space prior to the application of wrapper methods.
Embedded methods is an umbrella term for methods that perform feature
selection as a part of the model construction.These algorithms act iteratively
by building a classi�er and retrieving from its internal structure a ranking
of the features; selection takes place and based on the ranking, a new clas-
si�er is built until a performance threshold is reached. The computational
expenditure is thus in a middle ground between wrappers and �lters.
When a classi�cation problem has many features whose e�ects are partially
overlapping, �lter methods that examine correlation of single features with
the output label can not make use of their mutual importance. As a result,
the ranking produced by these methods are more suited to univariate clas-
si�cation and may not perform well for feature selection for a multivariate
classi�er.
For these problems, it is then crucial to �nd subsets of features whose com-
bined e�ect retain the most descriptive power. A common embedded ap-
proach, when a feature ranking is easily available, is to recursively build
smaller subsets F0 � F1 � · · · � Fr where F0 is the full feature set and
Fi+1 is obtained by removing the bottom ranked features from Fi. Feature
removal can take place both by removing a single feature and removing an
entire subset; the method is called Recursive Feature Elimination and was
proposed for SVMs in [29].
The assumption of this method is that a multivariate classi�er produces
rankings that promote entire subsets of features that "work well" together,
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while penalizing features that are both weak alone and in subsets.

4.7.1 Feature Ranking with Random Forest

The bagging mechanism of Random Forests can be exploited to retrieve un-
biased estimates of single trees performance indices from the evaluation of
the out-of-bag observations.
To observe the e�ect of a given feature on the classi�cation output, Breiman
proposes to randomly permutate that feature values in the training set and
to perform classi�cation of this new data; the results are then compared to
the original.
For feature ranking, two criteria are used: mean increase in classi�cation
error, called by Breiman Variable Importance, and total decrease of nodes'
Gini Impurity Index. In [30] feature selection with Random Forest is dis-
cussed and compared to other classi�ers on real and �ctitious data, proposing
Variable Importance as the better criteria for feature selection mechanisms
to be built upon.

4.7.2 Feature Ranking with SVMs

In the work about Recursive Feature Elimination, Guyon et al. propose the
use of a particular feature ranking derived from the internal parameters of a
Support Vector Machine.
For SVM the cost function being maximized is

J =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiyiαjyjK(xi,xj)

Let H be the matrix such that Hhk = yhykK(xh,xk); the cost function can
then be rewritten as minimization of

J =
1

2
αααTHααα−

n∑
i=1

αi

To compute the e�ect of the removal of feature i, introduce

DJ(−i) = J − J(−i) =
1

2
αααTHααα− 1

2
αααTH(−i)ααα

where H(−i) is the matrix H computed on observations whose feature i is
removed.
When DJ(−i) has a greater value, it means that the removal of feature i
determines an estimate of the cost function which is a better solution for the
minimization problem. The best candidate for removal is thus the feature i
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that minimizes DJ(−i). The recomputation of H is an expensive operation
for large datasets, but because the αj > 0 only for support vectors, only a
possibly much smaller subset of the data has to be taken into e�ect.
In the case of SMV with a linear kernel, the coe�cient for feature i in the
cost function can be computed explicitly with wi =

∑n
j=1 αjyj(xj)i where

(xj)i is the value of feature i for the observation xj .
Then J(−i) and DJ(−i) can be computed in closed form with

J(−i) =
n∑
h=1

αh −
1

2

n∑
h=1

n∑
j=1

αhyhαjyj [xh · xj − (xh)i(xj)i]

J(−i) = J − 1

2

n∑
h=1

n∑
j=1

αhyhαjyj(xh)i(xj)i

J(−i) = J − 1

2

n∑
h=1

αhyh(xh)i

n∑
j=1

αjyj(xj)i = J − 1

2
w2
i

DJ(−i) = J − J(−i) =
1

2
w2
i

Linear kernel SVMs thus allow for a computationally cheap retrieval of the
feature ranking.
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Chapter 5

Experiment Design

5.1 Introduction

This chapter will present the collected data and formulate the decision prob-
lems that will be the object of the analysis. Then it will describe the exper-
iment design and the actual analysis, divided in a preprocessing phase and
the application of the di�erent methods.

5.2 Collected Data

The data set consists of 49 game sessions, collected from December 11th 2014
to March 10th 2015 at di�erent public and private events, primarily involv-
ing players in the author's age group. The number of observations might not
be high enough to obtain good classi�cation results, but it provides su�cient
data to evaluate the application of the methodologies proposed.
At the start of each session, the game forces the player to answer a question-
naire with the questions detailed in the third chapter; for each controllable
feature, it generates a value from a uniform distribution between its lower
and upper bound.

5.2.1 Players Characteristics Breakdown

The following table represents the breakdown of the observations in the re-
spective classes; a detailed description follows.
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Identi�er Classes Breakdown Classes Identi�er

plr_gender 40, 9 Male, Female

plr_age 11, 35, 3 from 16 to 22, from 23
to 28, 29 or older

plr_stealth_exp 23, 19, 7 Newbie, Average, Ex-
pert

plr_mobile_exp 21, 21, 7 Never or Rarely, Usu-
ally, Often

plr_port_con_exp 27, 14, 8 Never or Rarely, Usu-
ally, Often

plr_home_con_exp 27, 16, 6 Never or Rarely, Usu-
ally, Often

plr_pc_exp 16, 11, 22 Never or Rarely, Usu-
ally, Often

plr_hb_runs 43, 3, 1, 2 None, 1, 2, 3 or more

Of the 49 sessions, 40 were from male players and only 9 from females; as for
players' age, 11 were "from 16 to 22", 35 were "from 23 to 28" and only 3
were "29 or older", thus lacking in the representation of younger age groups.
In regard to the experience level with stealth games, 23 players de�ned them-
selves as "Newbie", 19 as having "Average" experience and only 7 as being
"Expert".
The question about the expertise with mobile gaming sees 21 players playing
"Never or Rarely", 21 playing "Usually" and only 7 playing "Often". Simi-
lar results are collected for experience with portable consoles (27, 14, 8) and
home consoles (27, 16, 6). Conversely, experience with personal computers
is generally higher, with a breakdown of 16, 11 and 22 in the three classes.
These values identify a player population that is more oriented to playing
on the computer rather than on other devices; this however proves useful in
validating Heartbot's ability to entice mid core gamers.
As for having already played the game, 43 were playing Heartbot for the �rst
time, 3 had already tried the game once, 1 had played 2 times and 2 players
had completed the game three or more times.

5.2.2 Output Formalization and Breakdown

It was decided to formulate the actual classi�cation problems in a binary
form, as all the output taken in consideration were ordinal; the classi�ers
would then act as separators between "low" and "high" values for each out-
put category, with split values between adjacent classes.
The following table describes the breakdown of the output labels in the re-
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sulting decision problems and is followed by a more detailed description.

Identi�er Classes Breakdown Classes Identi�er

out_ctrl_reac 25, 24 Yes, No

out_ctrl_acc 34, 15 Yes, No

out_diff_1 15, 34 Easy, Just Right or Dif-
�cult

out_int_2 10, 39 Not Interesting or
Scarcely Interesting,
Interesting or Very
Interesting

out_int_3 39, 10 Not Interesting or
Scarcely Interesting
or Interesting, Very
Interesting

time_1 13, 36 ≤ Q1, > Q1

time_2 25, 24 ≤ Q2, > Q2

time_3 37, 12 ≤ Q3, > Q3

Regarding the distribution of the original values, 25 players evaluated the
controls as reactive enough, while 24 considered them unresponsive; 34 con-
sidered the control system as being accessible, while 15 considered it not
easy to use.
In the question about the game's di�culty, 15 players evaluated the game as
being "Easy", 32 as being "Just Right" di�cult and only 2 found the game
"Di�cult". Since so few players considered the game as being "Di�cult",
di�erentiating between that output class and the others would be of little or
no importance and thus only one problem is derived.
As for the interest evaluation, 4 players found the game to be "Not Inter-
esting", 6 graded it "Scarcely Interesting", 29 thought it was "Interesting"
and 10 answered "Very Interesting". Similarly to the discussion above, the
classes "Not Interesting" and "Scarcely Interesting" were combined and two
binary problems were de�ned, respectively di�erentiating between sessions
"Interesting" or more and between "Very Interesting" sessions.
Concerning the duration of the game sessions, they were divided on the basis
the quartile they fell in; the shortest game session lasted 350s and the longest
1237s, with the �rst quartile being Q1 =598s, the median Q2 =722s and the
third quartile Q3 =931s. These values prove that the game can be played in
short sessions, which is a desired property for mobile games.
Only problems out_ctrl_reac and time_2 feature an almost even distribu-
tion of the output labels, while the others are all imbalanced; this can result
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in the training of classi�ers that always return the majority label. The evalu-
ation of such classi�ers can not be simply reduced to the computation of their
accuracy, but must take into account the distribution of classes in assessing
the quality of the prediction. One such metric for binary classi�cation is the
Matthews Correlation Coe�cient.

5.3 Performance Measures

The most immediate measure that can be used to describe the quality of
a classi�er is the classi�cation accuracy, but when used for problems with
imbalanced classes it might lose descriptive power. In such problems, a
majority classi�er that always output the class with the most individuals
achieves accuracy as high as the percentage of observations in the majority
class, while being obviously an undesired result.

5.3.1 Matthews Correlation Coe�cient

The Matthews Correlation Coe�cient is a numerical measure of the quality
of a binary classi�cation, computed from the confusion matrix. It is regarded
as a more descriptive metric than the simple accuracy of the prediction, since
it measures the correlation between predicted and real labels and maintains
its usefulness in the case of imbalanced classes.
Given a confusion matrix

Real Labels

+1 -1

Predicted Labels
+1 TP (True Positives) FP (False Positives)

-1 FN (False Negatives) TN (True Negatives)

Matthews Correlation Coe�cient is computed as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The coe�cient takes values in {−1, 1} with MCC = 1 indicating a perfect
prediction, MCC = 0 pointing out a prediction no better than a random
one andMCC = −1 showing total disagreement between predicted and real
labels.
A majority classi�cation would result in a row composed of zeroes in the
confusion matrix, thus giving a Matthews Correlation Coe�cient of 0.
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5.4 Data Analysis

This section will present the approach taken for the application of Feature
Selection to the decision problems de�ned in the �rst section. At �rst, the
collected data has to be organized in a train set and a test set in order to
obtain unbiased results from the following analysis. Then, the actual feature
selection takes place and the results are evaluated on the training set, using
strati�ed cross validation, to determine the best feature set for each problem.
Finally, a classi�er is trained with the optimal features and evaluated on the
test set.

5.4.1 Data Preprocessing

In [31] Furlanello et al. discuss the e�ects of selection bias in the evaluation
of feature elimination methods and delineate the need of a careful prepro-
cessing of the data to remove such bias.
The crucial point is in splitting the available data in a train set and a test set:
the feature selection process shall only take place on the train data, using
them in any way, while the test data will only be used for a �nal evaluation
of the selected feature sets.
In this work, the original data was �rst partitioned in four groups, by the
player's gender and two age group (isolating the last age group by the oth-
ers); as only 3 players were in the older subset, this division resulted mainly
in a gender separation. Then a random sampling was operated to obtain a
train set of roughly one fourth of total data, favoring a bigger train test and
preserving the proportion of players in the groups; the remaining observa-
tions constitute the test set. The resulting train set counts 38 observations,
while the test set size is 11.
For each problem a strati�ed folding of the observations in the train set was
performed, to be used in the future steps of the analysis. Given c−1, c+1 the
count of respectively negative and positive labels in the train set, the number
of folds was chosen as min(10, c−1, c+1) and the observations were placed in
each fold with a random sampling that preserved the starting proportions.
In addition to the strati�ed foldings, for each problem 100 strati�ed boot-
straps with replacement were produced; again, the train set was split by the
output labels values and every bootstrap consisted of a random sampling
with replacement from each subset, thus preserving the labels distribution.
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Figure 5.1: Data preprocessing

5.4.2 Evaluation of Recursive Feature Elimination

In the previous chapter two families of classi�ers were presented: Random
Forests and Support Vector Machines. The general Recursive Feature Elim-
ination method was presented and for both classi�ers a method of feature
ranking was discussed.
Recursive Feature Elimination will be applied to Random Forests, SVM with
Linear Kernel and SVM with Radial (Gaussian radial basis) Kernel. As Ran-
dom Forests training depends on pseudo random number generation, the al-
gorithm will be repeated 100 times on the same train test and the resulting
features ranks will be averaged to obtain a �nal elimination order. Since
SVMs have a deterministic training algorithm, the elimination order will be
derived by a single run on the train set. Additionally, all three methods will
be applied to the bootstraps generated during the data preprocessing phase
and the resulting feature ranks averaged: it is expected that SVMs will ben-
e�t from this approach, while for Random Forest an increase in results noise
might appear, since the classi�er performs an internal bootstrap phase.
Thus, six di�erent feature elimination set ups are analysed:

• Random Forest RFE repeated 100 times

• single SVM with Linear Kernel RFE

• single SVM with Radial Kernel RFE

• Random Forest RFE repeated on 100 bootstraps

• SVM with Linear Kernel RFE repeated on 100 bootstraps

• SVM with Radial Kernel RFE repeated on 100 bootstraps

Once a de�nitive feature ranking is obtained, the performance of their iter-
ative removal is assessed with cross validation, using the folding created in
the preprocessing phase; for the single run of SVM, this step is super�uous
as results do not di�er from the initial feature elimination.
The metrics collected are the prediction accuracy, accuracy standard devia-
tion and the average Matthews Correlation Coe�cient. The results are then
analysed by inspection and for each method an optimal number of surviving



5.5. SOFTWARE TOOLS 37

Figure 5.2: Recursive Feature Elimination evaluation

features is selected, by choosing the peak in Matthews Correlation Coe�-
cient that requires the least number of features.
Finally, for each combination of problem and algorithm, a classi�er using
the optimal feature set is built on the train set and tested on the test set to
obtain unbiased performance metrics.

5.5 Software Tools

Data collection was integrated in the game, using the C# language and the
Unity game engine.
The analysis framework was implemented in the R programming language1,
using the packages randomForest2 and e10713 respectively for Random
Forests and Support Vector Machines.
With Random Forests, the number of trees was chosen as 1000 and the rest
of parameters were left with the default values.
For SVMs, parameter tuning took place with an extensive grid search using
the full train set, selecting for each kernel and problem pair the parameters
that maximized the average MCC from strati�ed cross validation.

1http://www.r-project.org/
2http://cran.r-project.org/web/packages/randomForest/index.html
3http://cran.r-project.org/web/packages/e1071/index.html
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Chapter 6

Experimental Results

6.1 Introduction

This chapter will present and discuss the results from the evaluation de-
scribed in the previous chapter. For each one of the problems previously
de�ned and for each classi�cation method, an optimal feature set will be
derived by inspection of the strati�ed cross validation on the train set. Then
the di�erent methods will be evaluated on the test set.
The plots will show the mean accuracy and its standard deviation in the
training phase against the increasing number of surviving features. The
mean MCC is shown as a dashed line, with its values scale to be �tted in
the images.
For each problem and classi�cation method, a table summarises the method's
optimal feature set and its performance on the train and test set. A discus-
sion of the results obtained follows.

6.2 Controls Reactivity

In the train set 20 sessions evaluated the controls as reactive, while 18 as
not reactive; in the test set there were 5 evaluations as reactive and 6 as not
reactive.
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Figure 6.1: Train performance of Random Forest on out_ctrl_reac; on the
left, RFE was repeated 100 times; on the right, RFE was repeated on 100
bootstraps of the train set

Figure 6.2: Train performance of SVM with linear kernel on out_ctrl_reac;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set
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Figure 6.3: Train performance of SVM with radial kernel on out_ctrl_reac;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.75 0.515 0.636 0.311 plr_stealth_exp,
bot_mov_spd, sp_mov_spd

Random Forest
on bootstraps

0.617 0.2 0.545 0.1 sp_mov_spd, sp_mov_acc,
bot_mov_spd

Single linear SVM 0.633 0.331 0.545 0.149 plr_stealth_exp,
plr_pc_exp, bot_mov_spd,
sp_mov_spd

Linear SVM on
bootstraps

0.65 0.331 0.545 0.149 plr_pc_exp, bot_mov_spd,
sp_mov_spd, plr_gender,
plr_stealth_exp,
plr_mobile_exp

Single radial SVM 0.817 0.631 0.545 0.149 sp_mov_spd, plr_gender,
fh_mov_acc, bot_mov_spd,
plr_stealth_exp

Radial SVM on
bootstraps

0.808 0.658 0.545 0.149 sp_mov_spd,
plr_stealth_exp,
plr_gender,
plr_mobile_exp,
fh_mov_acc,
plr_port_con_exp,
bot_mov_spd, plr_pc_exp

As the data are very balanced, MCC computed in the training phase closely
follows the accuracy values.
In the training phase, SVMs with radial kernel performed much better than
the other methods, closely followed by repeated Random Forest. The other
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methods showed signi�cantly lower performances, with Random Forest trained
on bootstraps as the worst.
Results on the test set showed that in this problem only the Random Forest
classi�er maintained its prediction performance, although with slightly lower
accuracy and MCC. SVMs with radial kernel performed on the test no better
than SVMs with linear kernel.
The most important features in predicting the controls reactivity evaluation
appear to be, in this order: the players' experience in stealth games, Heart-
bot's movement speed and the spiders' movement speed. The gender of the
player is selected by the SVMs with radial kernel and while missing by the
optimal feature set of repeated Random Foret, it is ranked fourth there.
Examining correlation between the output and these variables, no result was
signi�cant enough, as p-values were high; this suggests that the relationships
between these values were non linear.

6.3 Controls Accessibility

The train set counts 27 sessions where the controls were evaluated as being
easy to use and 11 contrary to that statement. The test set contained 7
evaluations as easy to use and 4 contrary.

Figure 6.4: Train performance of Random Forest on out_ctrl_acc; on the
left, RFE was repeated 100 times; on the right, RFE was repeated on 100
bootstraps of the train set
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Figure 6.5: Train performance of SVM with linear kernel on out_ctrl_acc;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Figure 6.6: Train performance of SVM with radial kernel on out_ctrl_acc;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set
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Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.722 0.178 0.636 0.134 bot_snd_rad,
plr_stealth_exp

Random Forest
on bootstraps

0.798 0.359 0.545 0.069 bot_snd_rad,
sp_mov_spd

Single linear SVM 0.755 0.278 0.545 -0.0386 plr_pc_exp,
plr_hb_runs,
plr_mobile_exp,
sp_mov_spd,
fh_view_cone,
plr_age,
plr_port_con_exp,
fh_mov_spd

Linear SVM on
bootstraps

0.755 0.278 0.545 -0.0386 plr_pc_exp, plr_age,
plr_mobile_exp,
sp_mov_spd,
sp_mov_acc,
fh_mov_spd,
plr_hb_runs,
fh_view_cone,
plr_port_con_exp

Single radial SVM 0.71 0 0.636 0 fh_mov_acc

Radial SVM on
bootstraps

0.672 0.0446 0.545 -0.0386 fh_mov_spd,
sp_mov_spd,
plr_age, plr_pc_exp,
fh_mov_acc,
sp_mov_acc,
plr_stealth_exp,
plr_gender,
plr_mobile_exp,
plr_port_con_exp

The train set shows a marked imbalance in the output classes and the MCC
reveals many instances of majority classi�cation.
It was unexpected to see SVMs with radial kernel giving such bad results;
Random Forests quickly decrease performance as features are added, while
SVMs with linear kernel show a peak in accuracy and MCC in the proximity
of their eighth feature.
The evaluation on the test set selects Random Forest as the more general-
izable method, as it is the only classi�er that maintains MCC sign. Also, it
is interesting to see the classi�er trained on the bootstraps obtaining better
test performance.
The features selected by the repeated Random Forest were the maximum
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radius of expansion of a collision noise and the players' experience in the
stealth games; the classi�er trained on the bootstraps selected the spiders'
movement speed as second feature.
The presence of the radius feature is surprising; however, as it regulates a
mechanic that the players had to exploit to advance in the game, it appears
as it contributed to their own evaluation in being able to use the control
scheme. The spiders' movement speed, similarly, can be interpreted in hav-
ing a punishing e�ect on players unable to e�ectively control Heartbot. As
for the experience in stealth games, it is to be related to the pacing of the
action: more expert players are able to predict the action rather than being
forced to react to it, thus being more at ease with the controls.
The game designer expected to see a prevalence in selection of feature re-
lated to the players' gaming experience; the two best classi�er in the training
phase obtained moderately good results by selecting a lot of said features.
However, examination of the correlation of the features with the output did
not reveal any statistically signi�cant relationship, though the data were in
agreement with general speculations from above.

6.4 Di�culty

As discussed in the previous chapter, only one decision problem was formu-
lated on the di�culty level, because the class "Di�cult" was heavily under
represented.
In the train set, 11 players graded the game as "Easy", while 27 evaluated
its di�culty level as "Just Right" or "Di�cult". In the test set the output
labels were respectively 4 and 7.

Figure 6.7: Train performance of Random Forest on out_diff_1; on the
left, RFE was repeated 100 times; on the right, RFE was repeated on 100
bootstraps of the train set



46 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.9: Train performance of SVM with radial kernel on out_diff_1;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Figure 6.8: Train performance of SVM with linear kernel on out_diff_1;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.777 0.408 0.727 0.386 fh_mov_spd,
plr_gender,
plr_pc_exp, plr_age

Random Forest
on bootstraps

0.635 0.159 0.727 0.386 fh_mov_spd
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Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Single linear SVM 0.763 0.352 0.636 0 plr_age, plr_gender,
fh_view_cone,
fh_mov_spd

Linear SVM on
bootstraps

0.738 0.319 0.636 0.134 plr_gender,
fh_view_cone,
bot_snd_rad,
fh_mov_spd,
plr_age, sp_mov_acc,
plr_hb_runs

Single radial SVM 0.723 0.35 0.455 -0.179 plr_pc_exp,
plr_mobile_exp,
bot_mov_spd,
bot_dsh_spd,
plr_stealth_exp,
sp_mov_acc,
fh_mov_acc,
plr_home_con_exp,
plr_age

Radial SVM on
bootstraps

0.715 0.2 0.636 0.214 plr_pc_exp,
bot_mov_spd,
plr_stealth_exp,
sp_mov_acc,
fh_mov_acc,
bot_dsh_spd,
plr_mobile_exp,
fh_mov_spd

The distribution of output labels in the train and test set is almost specular
to the previous problem.
Similar to the results before, Random Forests show a quick performance fall
as features are added after the �rst few; SVMs with linear kernel default
to a majority classi�er when supplied with too few features and SVMs with
radial kernel reach their peak performance near their eighth selected feature.
Random Forests results as the best classi�er on the train set in its repeated
version; SVMs with linear kernel use a similar number of features and have
comparable performance. SVMs with radial kernel require a larger number
of feature and do not provide signi�cant performance improvement.
On the test set, both Random Forests training methods obtain the same
evaluation, beating the SVMs trained with bootstraps. SVMs applied once
are slightly inferior to a majority classi�er, as evidenced by the MCC.
Almost all classi�ers with good performance selected the �re�ies hunter
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movement speed; the hunters are the main threat to be evaded and thus
determine the game's challenge. Other features frequently selected are the
players' gender and age; repeated Random Forest also selected the PC ex-
perience.
The game designers were surprised that the stealth experience was selected
only by SVMs with radial kernel, which also required many more features
than the other methods to behave properly. A similar consideration applies
to the �re�ies hunter view cone, that was expected to have the same im-
portance as the enemies' movement speed; an enemy, however, is only as
dangerous as the speed it can reach and its detection mechanism can be
evaded easily independently from its size once the player masters the ene-
mies' behaviour.
Examining correlation of the discussed variables, no statistically signi�cant
relationships were found, though the general speculations above were in
agreement with the data. The �re�ies hunters' view cone angle had sim-
ilar correlation results to those of the �re�ies hunters' movement speed.

6.5 Interest

As explained in the previous chapter, two binary problems were formulated
regarding the interest evaluation: the �rst discerns between positive interest
evaluations and negative ones; the second identi�es the game sessions that
were deemed as the most interesting.

6.5.1 Positive Interest Against Negative Interest

The train set contains 9 sessions where the game was evaluated as being
"Not Interesting" or "Scarcely Interesting", while 29 players found it to be
"Interesting" or "Very Interesting". As for the test set, the breakdown was
respectively of 1 and 10 observations.
The test set is so heavily imbalanced that the evaluation of the MCC on the
test will be mostly determined by the classi�er's ability to predict the �rst
class and as such results will be unpredictable.



6.5. INTEREST 49

Figure 6.10: Train performance of Random Forest on out_int_2; on the
left, RFE was repeated 100 times; on the right, RFE was repeated on 100
bootstraps of the train set

Figure 6.11: Train performance of SVM with linear kernel on out_int_2;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set
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Figure 6.12: Train performance of SVM with radial kernel on out_int_2;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.839 0.475 0.818 -0.1 bot_mov_spd,
plr_pc_exp,
plr_home_con_exp

Random Forest
on bootstraps

0.811 0.364 0.727 -0.149 bot_mov_spd,
plr_pc_exp

Single linear SVM 0.833 0.397 0.818 -0.1 fh_mov_spd,
plr_pc_exp,
plr_home_con_exp,
plr_mobile_exp,
bot_snd_rad,
plr_stealth_exp,
plr_hb_runs,
fh_view_cone,
bot_dsh_spd

Linear SVM on
bootstraps

0.789 0.185 0.909 0 plr_pc_exp,
plr_home_con_exp,
plr_mobile_exp,
fh_mov_spd,
plr_stealth_exp,
sp_mov_spd,
fh_mov_acc,
bot_mov_spd
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Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Single radial SVM 0.894 0.62 0.818 -0.1 bot_mov_spd,
plr_home_con_exp,
fh_mov_acc,
plr_pc_exp

Radial SVM on
bootstraps

0.839 0.472 0.818 -0.1 bot_mov_spd,
plr_pc_exp,
fh_mov_acc,
bot_snd_rad

Again, Random Forests rapidly decrease their performance after the �rst
few features and SVMs with linear kernel reach their peak at about eight
features. SVMs with radial kernel instead seem to follow the performance of
RandomForests.
On the train set, all classi�ers have good accuracy and MCC values, with
single SVM with radial kernel being the top achiever. Close contenders are
the single SVM with linear kernel and the repeated Random Forest.
Results on the test set are instead disheartening: at best, a majority classi-
�er is obtained and most of the classi�cation methods do not overcome that
threshold.
As for the most informative features, all the best methods selected a set con-
taining at least Heartbot's movement speed and the players' PC and home
console experience. The selection of the �re�ies hunter acceleration is sur-
prising, as it should be less important than features related to the di�culty
evaluation.
Initial interpretation hints at the protagonist's movement speed being pos-
itively correlated with the interest level, but no other guess could be made
with con�dence. While the data supported the claim, no statistically signif-
icant relationship was found.

6.5.2 Highest Level of Interest

In the train sets 31 players evaluated the game as being one of "Not Inter-
esting", "Scarcely Interesting" or "Interesting" and 7 found it "Very Inter-
esting"; in the test set the breakdown was respectively 8 and 3.
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Figure 6.13: Train performance of Random Forest on out_int_3; on the
left, RFE was repeated 100 times; on the right, RFE was repeated on 100
bootstraps of the train set

Figure 6.14: Train performance of SVM with linear kernel on out_int_3;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set
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Figure 6.15: Train performance of SVM with radial kernel on out_int_3;
on the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.843 0.408 0.636 0.0833 plr_gender,
fh_mov_spd

Random Forest
on bootstraps

0.871 0.373 0.727 0.241 fh_mov_spd,
bot_snd_rad,
plr_gender,
fh_mov_acc

Single linear SVM 0.948 0.714 0.818 0.516 plr_gender,
fh_mov_acc,
fh_mov_spd,
plr_stealth_exp

Linear SVM on
bootstraps

0.948 0.714 0.727 0.241 plr_gender,
bot_snd_rad,
fh_mov_spd,
plr_pc_exp,
fh_mov_acc,
plr_stealth_exp
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Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Single radial SVM 0.948 0.714 0.818 0.516 plr_stealth_exp,
fh_mov_acc,
fh_mov_spd,
plr_gender

Radial SVM on
bootstraps

0.9 0.543 0.727 0.241 fh_mov_spd,
plr_gender,
bot_snd_rad,
plr_stealth_exp

This is the problem that provided the best results, in term of the classi�ers'
performance on both train and test sets. Random Forests performs slightly
worse than the other methods and SVMs with linear kernel trained with
bootstraps require much more features than other classi�ers.
Test results identify both SVMs with linear and radial kernel as having the
highest performance in both accuracy and MCC.
The most important features for predicting the highest level of interest are:
the players' gender, their experience with stealth games and the �re�ies
hunter acceleration and movement speed.
Somewhat surprisingly for the game designer, there is a signi�cant positive
correlation between maximum interest and female players (coe�cient: 0.41
, p-value of Pearson's test: 0.003) and with the �re�ies hunters' movement
speed (coe�cient: 0.37 , p-value of Pearson's test: 0.009).
For most of the female players, Heartbot - Escape was a novel and fun
experience; as for the �re�ies movement speed, it appeared throughout the
beta test that slower enemies dictated a slower pace of the game, forcing the
players to wait the enemies' moves for long periods of time.

6.6 Session Duration

In the previous chapter, three problems were formulated regarding the session
duration: based on the quartiles (Q1, Q2, Q3) of the distribution, the �rst
problem decides if the duration will be less or greater than the �rst quartile
Q1, the second will decide against the median Q2 and the third will use the
third quartile Q3.

6.6.1 Lower Quartile

The train set was comprised of 11 sessions that were shorter than the �rst
quartile and 27 longer; in the test set, only 2 were shorter and 9 were longer.
As in the case of the �rst problem about the interest, the imbalance in the
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test set might determine unpredictability of the MCC values.

Figure 6.16: Train performance of Random Forest on time_1; on the left,
RFE was repeated 100 times; on the right, RFE was repeated on 100 boot-
straps of the train set

Figure 6.17: Train performance of SVM with linear kernel on time_1; on
the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set
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Figure 6.18: Train performance of SVM with radial kernel on time_1; on
the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.772 0.343 0.818 0.389 plr_stealth_exp,
sp_mov_acc,
plr_port_con_exp,
fh_mov_spd,
plr_home_con_exp

Random Forest
on bootstraps

0.69 0.05 0.364 -0.43 sp_mov_acc,
fh_mov_spd,
fh_mov_acc,
bot_mov_spd

Single linear SVM 0.722 0.352 0.545 -0.289 plr_pc_exp,
bot_mov_spd,
fh_view_cone,
plr_home_con_exp,
bot_snd_rad,
plr_hb_runs,
fh_mov_spd,
plr_stealth_exp,
plr_mobile_exp,
plr_port_con_exp

Linear SVM on
bootstraps

0.71 0.407 0.545 0.043 plr_home_con_exp,
plr_pc_exp,
bot_mov_spd,
plr_hb_runs,
bot_snd_rad,
fh_mov_acc,
fh_view_cone
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Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Single radial SVM 0.713 0.402 0.727 -0.149 plr_stealth_exp,
plr_port_con_exp,
bot_dsh_spd,
plr_pc_exp,
fh_mov_acc,
fh_mov_spd,
bot_snd_rad,
plr_home_con_exp,
bot_mov_spd,
sp_mov_spd,
plr_mobile_exp,
fh_view_cone,
plr_hb_runs

Radial SVM on
bootstraps

0.743 0.283 0.727 0.241 plr_home_con_exp,
plr_pc_exp,
bot_snd_rad,
bot_mov_spd,
fh_mov_acc,
plr_hb_runs,
fh_mov_spd,
sp_mov_spd

On the train set, repeated Random Forest achieves much better results than
Random Forest trained on bootstraps; SVMs, on the contrary, appear to
require much more features in their single version to achieve results compa-
rable with the versions trained on the bootstraps.
As for the results on the test set, repeated Random Forest is the top achiever,
consistently outperforming the other methods in both accuracy and MCC.
SVM with radial kernel trained on bootstraps and single SVM with linear
kernel follow, and SVM wih linear kernel trained on bootstraps is only barely
better than a majority classi�er. The other two methods show strong dis-
agreement between prediction and true labels.
Regarding the optimal features, every method seemed to select a di�erent
subset. The top performer uses the players' stealth experience, the spi-
ders' acceleration, the experience with portable consoles, the �re�ies hunters'
movement speed and the players' experience with home consoles. This last
feature appears also at the �rst place in SVMs trained with bootstraps and,
with lower rankings, in the subsets selected by single application of SVMs.
An interesting fact is that repeated Random Forest achieved the best results
using mostly features related to the players' gaming experience, while the
SVMs selected mostly game parameters. The relevant features also show
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little overlap with those selected in the di�culty level problem, with only
the �re�ies hunters' speed appearing in both.
Examining correlation of the above features with the output, no statistically
signi�cant relationship were found, though as expected, players experienced
with Heartbot were associated with shorter sessions.

6.6.2 Median

In the train set 18 sessions were shorter than the median and 20 were longer;
in the test set, in those categories there were respectively 7 and 4 sessions.

Figure 6.19: Train performance of Random Forest on time_2; on the left,
RFE was repeated 100 times; on the right, RFE was repeated on 100 boot-
straps of the train set

Figure 6.20: Train performance of SVM with linear kernel on time_2; on
the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set
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Figure 6.21: Train performance of SVM with radial kernel on time_2; on
the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.775 0.589 0.273 -0.449 sp_mov_acc,
fh_view_cone,
plr_hb_runs,
sp_mov_spd

Random Forest
on bootstraps

0.8 0.631 0.273 -0.449 sp_mov_acc,
fh_view_cone,
sp_mov_spd

Single linear SVM 0.683 0.381 0.364 -0.311 sp_mov_acc,
fh_view_cone,
plr_hb_runs

Linear SVM on
bootstraps

0.733 0.496 0.545 0.069 fh_view_cone,
sp_mov_acc,
plr_hb_runs,
plr_age, sp_mov_spd,
plr_gender

Single radial SVM 0.733 0.481 0.727 0.571 sp_mov_acc,
fh_mov_spd,
plr_home_con_exp,
plr_mobile_exp,
plr_age,
plr_port_con_exp,
fh_view_cone,
bot_dsh_spd,
plr_hb_runs

Radial SVM on
bootstraps

0.633 0.315 0.545 -0.0386 sp_mov_acc,
fh_mov_spd,
fh_view_cone,
plr_home_con_exp,
plr_age
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As in the �rst problem, the train set is very balanced in the distribution of
output labels and the MCC follows the classi�cation accuracy values.
All classi�ers obtain good results in the training phase, but only a few trans-
late well on the test: both Random Forests classi�ers show low accuracy and
MCC scores, together with single SVM with linear kernel. The single SVM
with radial kernel managed to obtain good performance with a large set of
selected features, but the remaining classi�ers were almost equivalent to a
random choice.
This is surprising, as most of the top ranked features of every method are
very similar: the spiders' movement acceleration shows strong importance,
together with the �re�ies hunters' view cone angle. The players' previous
experience with Heartbot is also chosen frequently.
Examining their correlation with the output, the spiders' acceleration shows
statistically signi�cant negative correlation with the sessions duration (coef-
�cient: -0.34 , p-value of Pearson's test: 0.017); the view cone angle and the
experience with Heartbot show respectively positive and negative correla-
tion, but the p-values are slightly above the statistical signi�cance threshold
(0.07 for view cone angle, 0.06 for the previous experience).
The results on the previous experience with Heartbot and the view cone
angle were expected, but the strong negative correlation of the spiders' ac-
celeration was surprising and will require further investigation.

6.6.3 Upper Quartile

The train set contains 28 sessions shorter than the third quartile and 10 that
lasted longer; in the test set the count was of 9 and 2 respectively. The same
discussion regarding the imbalance in the test set and the MCC evaluation
applies here.

Figure 6.22: Train performance of Random Forest on time_3; on the left,
RFE was repeated 100 times; on the right, RFE was repeated on 100 boot-
straps of the train set
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Figure 6.23: Train performance of SVM with linear kernel on time_3; on
the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set

Figure 6.24: Train performance of SVM with radial kernel on time_3; on
the left, RFE was applied once; on the right, RFE was repeated on 100
bootstraps of the train set
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Train Test

Classi�er Acc. MCC Acc. MCC Selected Features

Repeated Ran-
dom Forest

0.792 0.315 0.818 0 plr_port_con_exp,
bot_dsh_spd,
plr_pc_exp

Random Forest
on bootstraps

0.733 0.24 0.818 0 bot_dsh_spd,
sp_mov_acc

Single linear SVM 0.842 0.508 0.727 0.241 fh_view_cone,
plr_port_con_exp,
plr_pc_exp,
bot_snd_rad

Linear SVM on
bootstraps

0.85 0.524 0.818 0.389 plr_port_con_exp,
fh_view_cone,
plr_home_con_exp,
plr_pc_exp,
bot_snd_rad

Single radial SVM 0.892 0.658 0.727 0.241 plr_port_con_exp,
plr_pc_exp,
fh_view_cone

Radial SVM on
bootstraps

0.867 0.608 0.727 -0.149 fh_view_cone,
plr_port_con_exp,
sp_mov_spd,
plr_pc_exp,
sp_mov_acc

In the training phase, Random Forest show worse results than the other
methods; the top performances were achieved by the SVMs with radial ker-
nel and SVMs with linear kernel follow closely.
On the test set, SVMs with linear kernel managed to translate better their
train results; Random Forest methods instead behave no better than a ma-
jority classi�er.
Three features appear as the most relevant to the problem: the �re�ies
hunters' view cone angle and the players' experience with portable console
and PC games; these features are selected by all the well performing classi-
�ers.
The players' experience with the two gaming platforms correlates negatively,
almost signi�cantly, with the game sessions being longer (p-values of Pear-
son's test respectively 0.06 and 0.09); this is of course expected. In a similar
way, �re�ies hunters' view cone angle shows a positive correlation with the
output that is statistically signi�cant (coe�cient: 0.28 , p-value of Pearson's
test: 0.048).
This can be explained with the conjecture that inexperienced player do not
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correctly interpret the enemies' movement patterns and try to move danger-
ously near them; even though the view cone angle wasn't a strong predictor
for the di�culty, it makes the game unforgiving without incrementing the
perceived di�culty.
Surprisingly, none of the classi�ers included the players' stealth experience in
the selected features, as the game designer was expecting; examining its cor-
relation with longer sessions showed however an almost signi�cant negative
correlation (coe�cient: -0.27 , p-value of Pearson's test: 0.06).

6.7 Discussion

Results from the analysis are heavily in�uenced by the small size of the data
set and its imbalance; separation of the data set in train and test sets con-
tributed to the harsh training conditions for the classi�ers.
In almost all problems, classi�ers showed di�culty in translating good per-
formance in the training phase to good results on the test set; this might
reveal that over�tting of the small train set took place.
The performance of the best classi�ers on the respective problems, however,
were good in the sense that they were able to signi�cantly outperform a
majority classi�er, with MCC values on the test set mostly above 0 and
su�cient accuracy. Feature selection also proved e�ective in removing un-
necessary variables and increasing the classi�cation strength.
No single method proved to be the best in every situation: repeated Random
Forest showed strongly on the �rst, second, third and sixth problem; SVMs
with radial kernel, applied a single time, were the top achiever on the seventh
problem and together with SVM with linear kernel, on the �fth. SVMs with
linear kernel, applied once, yield the best results for the last problem.
The comparison also showed that training performing feature selection with
classi�ers trained on bootstraps did not always increase the robustness of
the results: in particular, Random Forest was most prone to decrease its
performance, as its internal bagging mechanism is essentially a repetition of
the bootstrapping process.
The di�erent problems were shown to have varying intrinsic di�culty: dis-
cerning the highest level of interest was the problem in which the classi�ers
obtained the best results, while predicting the controls accessibility was quite
di�cult and classi�ers behaved at most slightly better than a majority clas-
si�er on the test set.
The worst results were obtained in discerning a positive or negative evalua-
tion of the interest: all the classi�ers obtained good results on the train set,
but on the test set, no one of them managed to behave better than a random
guess.
The adoption of the MCC as the main metric of quality proved e�ective in
selecting the best classi�ers and feature subsets, as it revealed instances of
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majority classi�cation and gave hints that over�tting of the train data was
taking place.
The subsets of selected features were, for the most part, expected by the
game designer; in some cases, they exposed surprising relationships with the
outcomes, such as showing that female players were those more interested in
the game.
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Conclusions and Future Work

This work presented the integration of Machine Learning in the beta test of
Heartbot - Escape, a commercial video game, adopting feature selection to
identify the most important game parameters and player characteristics in
predicting players' evaluation of the game.
Random Forest and Support Vector Machines, with two di�erent training
methods, were adopted as the underlying classi�ers using strati�ed cross
validation on a train set and the resulting optimal feature sets were evalu-
ated on a separate test set.
Results of the di�erent classi�ers and training methods were discussed and
compared.
As it was shown, variation of classi�ers and training methods had very dif-
ferent performance on di�erent problems and no silver bullet was found.
Random Forests proved to be e�ective on half of the problems, but in some
instances Support Vector Machines managed to achieve better performances.
In many cases it was di�cult to translate a method's good results in the
training phase to comparable results on the test set; this might be due to
the scarcity of data collected and their heavy imbalance in the distribution
of the output classes.
Since the performances of the best classi�ers for each problem were very
di�erent between di�erent instances, it follows that some problems were in-
trinsically more di�cult to describe with the model used.
The proposed approach, however, proved to be e�ective in selecting mean-
ingful feature sets, as in the majority of the problems the classi�cation per-
formance overcome a trivial majority classi�er and in some cases, surprising
relationships between input and output were revealed.
The best results have been obtained in discerning game sessions evaluated as
being "Very Interesting", which was one of the most important requirements
from the game designer's point of view.
The main direction of future work is toward the retrieval of the optimal pa-
rameters values in order to obtain the desired output in the evaluation by the
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players. Possible approaches include the inspection of the numerical model
of the best classi�ers and the use of Bayesian Networks after appropriate
discretization of the data.
Additionally, it would be interesting to apply the methodology to more com-
plex games, with a larger set of input features possibly including procedural
generation of the environment.
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