
UNIVERSITY OF PADOVA

Department of Information Engineering
Master of Science in ICT for Internet and Multimedia Cybersystems

Master Thesis

Deep Networks and Random
Forests for Semantic Segmentation

on 3D Data

Advisor:
Dr. Stefano Ghidoni
Co-Advisor:
Matteo Terreran, M.Sc.

Candidate:
Elia Bonetto

Academic Year 2018 2019

To those who have made all this possible.
That always supported me.

Helped me.
And more importantly: endured me.

i

Draco Dormiens Nunquam Titillandus
J.K.R.

ii

Abstract

Object recognition and semantic segmentation have always been major topics in the
computer vision community. The focus of object recognition is to find objects in the
scene while semantic segmentation in general does not provide a simple bounding
box around the objects but rather, seeks a pixel-wise accuracy.

Historically this kind of processing has been performed on 2D data: the classical
3-channels (RGB) images, reaching in some cases astonishing results. On the other
hand the popularity of 3D-data elaboration has grown in the recent years thanks to
the advances in the processing power and the availability of lower priced sensors.

This work will focus on semantic segmentation over 3D data, firstly by the re-
search and the study of the state of the art, then by developing methods to trans-
fer features between FuseNet [1], a convolutional auto-encoder, and 3D Entangled
Forests (3DEF) [2]. We were able to obtain meaningful insights with regards to
the dataset and used learning models, pointing out a possible saturation of the
performance due to their combination. Moreover, we successfully demonstrated the
usefulness of transferring features and their usability in the field of semantic segmen-
tation thanks to an performance improvement obtained with one of our proposed
FuseNet networks modifications.

iii

Contents

Abstract iii

List of Figures vi

List of Tables vii

Listings ix

1 Summary 1

2 On 3D Semantic Segmentation 3
2.1 History . 3
2.2 Comparing 2D and 3D data . 5
2.3 3D Problems . 7
2.4 State of the Art . 9

2.4.1 Datasets for Semantic Segmentation 12
2.4.2 Metrics . 13

2.5 Our Contributions . 14

3 FuseNet 15
3.1 The Original Network . 15
3.2 The COROMA RGB-D Dataset . 21

3.2.1 Fine-Tuning . 22

4 3D Entangled Forests 24

5 From 3DEF to FuseNet 28
5.1 Input . 28

iv

5.1.1 The Data . 28
5.1.2 The Features . 28
5.1.3 Generated Features Set . 33

5.2 Proposed Networks . 34
5.2.1 Sparse Fusion . 34
5.2.2 Only Encoding . 38
5.2.3 A Parallel Autoencoder . 42
5.2.4 Direct Fusion . 46

5.3 Reducing the Size of the Networks . 50

6 From FuseNet to 3DEF 53
6.1 Input . 53

6.1.1 The Data . 53
6.1.2 The Features . 53

6.2 Training and Results . 55
6.2.1 13 Classes . 55
6.2.2 40 Classes . 57

6.3 Shorten Trees Depth . 62

7 Conclusions 64

References 66

v

List of Figures

2.1 Classification and Detection for a group of people 4
2.2 Classification, Detection and Segmentation 4
2.3 Different representation of the same image 7
2.4 Same scene in 2D, depth and pointcloud views 9
2.5 NYUv2’s depth comparison . 12

3.1 SegNet network . 16
3.2 Original FuseNet architecture . 16
3.3 A single Fusion block . 17
3.4 Sparse and Dense Fusion comparison 17

5.1 Camera Projection using the pin hole camera model 30
5.2 Examples of imported features from 3DEF to FuseNet 31
5.3 Embed 3DEF’ features in FuseNet with Sparse Fusion 35
5.4 Embed 3DEF’ features in FuseNet by Only Encoding them 38
5.5 Use of a Parallel Autoencoder to fuse 3DEF’ features in FuseNet . . . 42
5.6 Direct Fusion of 3DEF’ features in FuseNet 46

6.1 Features Importance for each depth level for the whole set of 40 trees,
13 classes trained with V4 features from FuseNet 63

vi

List of Tables

2.1 Sample confusion matrix: actual vs predicted class. 13

3.1 FuseNet trained over NYUv2, 13-classes mapping, general results . . 19
3.2 FuseNet trained over NYUv2, 13-classes mapping, classwise accuracy 19
3.3 FuseNet trained over NYUv2, 40-classes mapping, general results . . 19
3.4 FuseNet trained over NYUv2, 40-classes mapping, classwise accuracy 20
3.5 Training results of FuseNet over reduced COROMA dataset. 1000

epochs. 21
3.6 Fine Tuning of FuseNet over reduced COROMA dataset. In the

columns the reset depth, in the rows the allowed learnable param-
eters. Trained over elaborated depths. 22

4.1 Unary features and their dimension 26
4.2 Entangled coefficients and their description 27

5.1 Description and Dimension of our obtained 3DEF Entangled Features 33
5.2 Obtained features set with their shorter name and dimension 34
5.3 13-classes, Sparse Fusion network, general results 36
5.4 13-classes, Sparse Fusion network, classwise accuracy 36
5.5 40-classes, Sparse Fusion network, general results 36
5.6 40-classes, Sparse Fusion network, classwise accuracy 37
5.7 13-classes, Only Encoding network, general results 39
5.8 13-classes, Only Encoding network, classwise accuracy 39
5.9 40-classes, Only Encoding network, general results 40
5.10 40-classes, Only Encoding network, classwise accuracy 41
5.11 13-classes, Parallel AE network, general results 43
5.12 13-classes, Parallel AE network, classwise accuracy 43

vii

5.13 40-classes, Parallel AE network, general results 44
5.14 40-classes, Parallel AE network, classwise accuracy 45
5.15 13-classes, Direct Fusion network, general results 47
5.16 13-classes, Direct Fusion network, classwise accuracy 48
5.17 40-classes, Direct Fusion network, general results 48
5.18 40-classes, Direct Fusion network, classwise accuracy 49
5.19 Number of parameters (in M) for original and reduced networks. Sam-

ple epoch time in seconds using a NVIDIA® Tesla T4. 51
5.20 13-class, training with reduced networks, general results 52
5.21 40-class, training with reduced networks, general results 52

6.1 13-classes, depth elaborated, 3DEF trained with and without features
from FuseNet, general results . 56

6.2 13-classes, depth elaborated, 3DEF trained with and without features
from FuseNet, classwise accuracy . 56

6.3 13-classes, depth raw, 3DEF trained with and without features from
FuseNet, general results . 57

6.4 13-classes, raw depth, 3DEF trained with and without features from
FuseNet, classwise accuracy . 58

6.5 40-classes, elaborated depth, 3DEF trained with and without features
from FuseNet, general results . 58

6.6 40-classes, raw depth, 3DEF trained with and without features from
FuseNet, general results . 59

6.7 40-classes, elaborated depth, 3DEF trained with and without features
from FuseNet, classwise accuracy . 60

6.8 40-classes, raw depth, 3DEF trained with and without features from
FuseNet, classwise accuracy . 61

6.9 Forests trained with 40 trees at depth 8, 13-classes, general results . . 62

viii

Listings

5.1 Pointcloud Projection . 29
6.1 Final Block of FuseNet . 54

ix

Chapter 1

Summary

This work regarding 3D semantic segmentation has been developed during an intern-
ship at the Intelligent and Autonomous Systems Lab (IAS-Lab) at the University
of Padova under the supervision of Dr. Stefano Ghidoni, professor at the same Uni-
versity, and with the constant collaboration of the Ph.D. student Matteo Terreran.

The project consists in studying the state of the art in the field of semantic seg-
mentation and to transfer feature vectors between a convolutional neural network
and a random forest algorithm in order to increase their performance. More specifi-
cally, the work was to bring the deep features extracted by FuseNet, a convolutional
autoencoder, to 3D Entangled Forests (3DEF), and vice-versa, adapting what have
been done so far to our new requirements.

The final purpose of this work is to find out if useful information about 3D data,
that may be embedded within these features, can be used from the other considered
learning algorithm. This either to increase its performance or to lower the computa-
tional requirements necessary to achieve them and, even more hopefully, to achieve
both of these results together.

The remainder of this work is divided as follows: in Chapter 2 a deep study of the
literature is presented regarding mainly semantic segmentation, 3D-data challenges
and available learning methods and datasets to perform the desired task. This is
necessary to have the theoretical knowledge to perform the subsequent steps of the
work.

1

1 – Summary

In Chapters 3 and 4 there is a description of the two algorithms considered, re-
spectively FuseNet and 3DEF, with details about their strengths, weaknesses and
the peculiarities that will be useful to understand the work that have been per-
formed. Moreover, in Chapter 3 regarding FuseNet, there will be a description of
some experiments regarding training and finetuning made with an in-house available
dataset of an industrial site that helped to better understand the model.

The development phase and the obtained results are deeply described in Chap-
ters 5 and 6. Chapter 5 is about FuseNet and how information from 3DEF can be
brought inside this network, meanwhile Chapter 6 treats about how features from
FuseNet can be brought in 3DEF. All the challenges and solutions that I have found
are explained and explored in these two chapters.

Finally in Chapter 7 there are some considerations about the performed work
and possible future advances with regards to this problem and the obtained results.

2

Chapter 2

On 3D Semantic Segmentation

2.1 History

Vision is one of our core senses without which we could not easily interact with the
world that surrounds us. We use depth estimation and experience everyday to do
what seems to us basic things from driving to walk up the stairs. These may appear
to be simple tasks to us but, actually, they are a very articulated merging of acts
and sensing feelings that our brain manage to bring together to perform the job.
Computers are still far from reaching our level of comprehension and elaboration of
their surroundings especially on recognizing what there is around them. They can
see but they still do not fully understand.

The first step in image understanding is classification which regards what is
represented and what is inside the image as a general point of view. The core
concept is to know if the image may depict a given concept that can be for example
sunset, beach or if there is a group of people, in order to understand the scene that
is represented. [3]

A more difficult task than classification is the detection of distinct objects that
may be inside an image, that in the computer vision community has been a major
topic since years ago. [4] Understanding the content of an image and getting an
insight on where the objects are is clearly an important step toward image compre-
hension. Object detection consists in finding a bounding box around the target(s),
so to depict a (usually) rectangular shape that will contain them at its best, and

3

2 – On 3D Semantic Segmentation

it differs to image understanding in the way that here the scope is to know exactly
which and where each separate objects are and no longer only “concepts”. To have
a concrete example where classification may identify a group, detection will identify
every single face, as in Fig. 2.1.

(a) Classification (b) Detection

Figure 2.1: Classification and Detection for a group of people [37]

More recently this has evolved into semantic segmentation. This is a development
of the detection problem and is a further step from the classification one. In fact, it
regards the scanning of each point of the image and set a label about which object
is represented pixel by pixel so we can obtain, for example, what is depicted in
Fig. 2.2. [5]

Figure 2.2: Classification, Detection and Segmentation [38]

Here there are no bounding boxes or concepts but more “simply” separated areas
that will be detected in the image regarding each single target. The per-pixel basis
is important since it lets us to find exactly where the object is and the shape it has

4

2 – On 3D Semantic Segmentation

on our image even if partial occlusions happen. Occlusions and similarities between
colours and shapes are the main obstacles, that coupled with the per-pixel labelling
request make this problem very difficult.

All these techniques are related, since they descend one from the other, and
help in image evaluation and understanding. Moreover, they are linked to what
human beings can do every single moment of their lives in a blink of an eye to
understand their surroundings and interact with them without even noticing the
powerful process that is happening behind the scene.

Teaching to computers to do these tasks, especially semantic segmentation, can
bring them to have near-human capacities in the elaboration and understanding of
images: this would enable for example an automatic organization of our pictures
library by recognizing people or objects to filter them out. Furthermore, these
capabilities could be embedded in robots to enable interaction with the environment
obtaining more powerful obstacle avoidance or task execution as picking an object
from a table and placing it into a bin. Simply, we cannot pretend to have a robot
that grasps a glass if it cannot identify it and where it is located.

2.2 Comparing 2D and 3D data

Historically, the majority of the works that have been developed to perform the task
of semantic segmentation have been done over what we are used to see everyday: two
dimensional plain images. These are essentially 2D matrices where for each point we
have a single color, usually expressed by a triplet of values in the Red-Green-Blue
(RGB) space.

There are many techniques that may be used to perform semantic segmentation,
from clustering to edge detection or region growing. More recently machine and
deep learning techniques, thanks to their performances, are increasing in popularity
and have seen a rapid growth in the latest years. These have been applied to various
tasks within the computer vision field including for example classifications but also
in the semantic segmentation fields.

Deep learning essentially consists in a stack of layers, be them convolutional
or recurrent, activation functions, regularization and pooling modules organized in

5

2 – On 3D Semantic Segmentation

various ways that may generate different models. These models, in the latest years,
have become bigger and more complex leading to an increasing of the number of
parameters that have to be learned to perform the training of the networks mainly
thanks to the advances in the technology of recent GPUs. The increasing of the
model size corresponds to a proportional increase of the power and time consump-
tion that are necessary to perform the learning task: this is the cost to obtain,
in some cases, better overall performance like what happens with DAG-RNN that
achieves 91.6% as accuracy over CamVid [5], a dataset used in autonomous driving.

More recently a challenge is brought by the wish to use images that are no longer
mere 2D plain snapshot of the world but whole 3D representation that are rising in
popularity in the last few years. This is the way we, as humans, see every object:
we have depth acknowledgment from various sources other than stereo-vision like
motion cues or relative size, almost always related to previous experience and gained
knowledge. This kind of data has been available for a while now but did not have
a wide spread due to its acquisitions costs. Only after the introduction of low cost
devices, like the Kinect®, 3D representation reached a wide spread enabling more
research possibilities especially in indoor scenarios.

3D data is mainly available as a pointcloud structure so as an unorganized and
highly irregular structure consisting of triplet of coordinates, X,Y,Z, which have a
color value attached to them.

Another possibility is RGB-D where each 2D image is paired with a correspond-
ing depth map: a 2D structure in which each point contains the value of the depth
of the specific point of the RGB image. RGB-D structure in the literature can be
also referred as 2.5D since it is not “really” 3D: it represents the same data and it
is easy to go from this representation to the relative pointcloud (as we will see in
Chapter 5) but it is a couple of 2D images rather than a real 3D. As can be seen in
Fig. 2.3 the three representations are surely different and related together, in fact
to obtain a 2.5 dimension we couple the first two images and we can project these
in the 3D space obtaining the third one.

This kind of data is of interest nowadays because it has the depth information
embedded within it and, especially in robotics, that may be of use for some applica-
tions like robot grasping or environment interaction. The adoption of 3D data could

6

2 – On 3D Semantic Segmentation

(a) 2D (b) Depth map (c) 3D version

Figure 2.3: Different representation of the same image

narrow the gap between human and machine perception. Clearly, a plain 2D world
is much different from a real representation of the environment: for example, a com-
puter cannot know by its own that the mountains in the landscape are kilometers
away with respect to the car in the foreground, a thing that we grasp in less than a
second by watching a given scene. We, as humans, are using the sense, experience
and prediction of depth in all of our tasks; without that we would probably crash
against walls, doors, other people the most of our time. It is an important part of
our vision system and not a simple or obvious one: just think about babies that
crash against walls or things with their head all the time because they have not
experience about depth and dimensions and they still cannot elaborate correctly
the information that they receive. By doing elaboration of 3D images we want to
narrow this gap to enable new applications and improve overall capabilities.

2.3 3D Problems

Many problems are related to this kind of data and we have to learn how to treat this
new information. For example, in the case of the pointclouds, we cannot directly
use previously established methods since points are not ordered, they are sparse
and may be far away one from another. In fact, unlike 2D images where usually the
points are ordered, in pointclouds three points may be sorted and placed anywhere in
the space. With 2D by following a row-by-column rule when we have the maximum
number of columns and a coherent list of RGB values we can fully reconstruct the

7

2 – On 3D Semantic Segmentation

image; instead with 3D the only way to understand exactly where they are is to
know all the three components, X-Y-Z, of their location. With 3D we do not have
ordering so we can’t say for example “the fifth point on the second row” as we can
do with 2D images because with 3D we do not have bounds or other ways to tell
where the points will be located in the space.

This in some sense break the concept of nearness of the points since we no longer
have a pre-defined regular neighbour of the point where we can extract information:
in 2D images given a pixel we know for sure that it has three (if it is a corner),
five (if it is along a border) or eight adjacent neighbours and this is true for every
image. In 3D pointclouds not only we need to know where the point is but to find
neighbours we have to define also a distance with which we have to search them and,
moreover, we may or may not find these neighbours depending on the considered
cloud and specific point. As can be seen clearly in Fig. 2.4, the 2D, depth and
pointcloud representations are pretty different one from the other: if in the RGB
image two points may be near, pixel-by-pixel, this may not be the case once we take
in consideration the 3D reconstruction of the scene. Moreover, again in Fig. 2.4 we
can appreciate the occlusions and holes that occur when dealing with pointclouds,
their scatterings and unclear bounds along with the variable point of view from
which we can see them: if we imagine to change it clearly the 2D image will keep
its representation but what we see in the pointcloud change and we can loose sight
of some details.

What we have just seen are only some examples of problems that are introduced
by this kind of data and that inhibit us to adopt previously established methods
as they are with these new structures. Most of the algorithms and networks that
have been developed and used on the 2D data are based mainly on the regularity,
the order and the neighbours of the points. In 2D images there are not holes, point
of views or occlusions of any sort. Furthermore, with pointclouds, there are irreg-
ularities between one scene and another in the structure of the cloud: for example
capturing a wall or an open-space kitchen have clearly two different 3D captures.
Even more there are the noise embedded in the depth sensor and the slightly differ-
ent angle with which a scene may have been recorded that may produce a tiny but
significantly different cloud are obstacles to the adoption of 3D data.

Despite all these problems there are already works that points out the importance

8

2 – On 3D Semantic Segmentation

Figure 2.4: Same scene in 2D, depth and pointcloud views [39]

of this kind of data. In [6], by Tombari et al., it is demonstrated how full 3D
object recognition is more effective with respect to standard 2D methods. Thanks
to a framework that combines Kinect®’s data, reconstruction, segmentation and
recognition the authors were able to obtain stunning results. Even if the depth is
not directly measured but obtained thanks to the application of a learning algorithm
there are example of its usefulness: Tateno et al. in [7], by using a monocular camera
successfully use depth prediction, 3D reconstruction and semantic segmentation to
improve performances of their SLAM2.1 procedure. So, in our opinion, it is clear
that using 3D data is, and will be, an important and interesting field to study, to
improve and so where to focus our work.

2.4 State of the Art
For semantic segmentation over 3D data, which is what this thesis is about, the
works are mainly derived from deep convolutional networks and machine learning.
So far, in the literature, the majority of the methods apply 2D techniques to 3D
data by adapting the previous networks to elaborate depth maps. Another way to

2.1Simultaneous Localization And Mapping: the robot need to map the surrounding environment
and localize itself without previous knowledge.

9

2 – On 3D Semantic Segmentation

proceed is to regularize the pointcloud by the means of clustering or voxelization
techniques: these are two methods that allows to create groupings of points in the
3D space either in a regular fashion or not. More recently, a lot of research is being
done to try to use directly these data without resorting to previous techniques. The
main problem of working directly with 3D data is the computational expensiveness
of performing 3D convolutions and the sparsity of the points; moreover the whole
preprocessing phase eventually needed to voxelize or to select regions in the 3D space
is affected by the variability of the considered clouds and point of view. Most of these
methods that have been proposed over the years are as one may expect supervised
learning algorithms, that means that we have labeled samples over which we can
train our learning models, but weakly supervised methods also exists as shown in [8].

As an example of such adaptation of 2D methods, in [8], the authors use a small
variation of the widely popular VGG-16 [9] to process separately RGB and depth
maps combining this with object detection and Gaussian Process Classification.
Also FuseNet [1] works over RGB-D couples: it is an autoencoder-based network
that tries to fuse depth and color information taking inspiration and adapt the
popular SegNet [10] to achieve that.

In SegCloud [11] the authors voxelize the 3D Point cloud and process it thanks
to a 3D fully convolutional neural network. This is anyway an innovative work since,
differently to Dai et al. in ScanNet [12] that make the same prediction for all voxels
in the same column, they provide fine grained prediction for each point, without
enforcing assumptions.

Other works use manually crafted and extracted features from voxels, like colours
averages or surface normals like in [2, 13], distance from wall like in [14] or the
wide adopted ones described in [15] where the authors provide a way to encode
depth information in three different channels, creating what they call HHA features.
This was done to be able to use RGB-optimized networks directly over these three
channels derived from depth: disparity, height of the pixels and the angle between
normals and the gravity vector based on the estimated ground floor, respectively.

Of interests are also multi-view algorithms, like [16], enabled thanks to the fact
that we are considering a 3D space, that fuse together various segmentation to refine
the results. Pioneering works are also trying to to learn and take advantage of exist-
ing long-distance relations between points. An example of that are the works of Ye

10

2 – On 3D Semantic Segmentation

et al. that subdivide the cloud in regular boxes and uses Recurrent Neural Network
to process them making use of their “memory” characteristic taking inspiration from
natural language processing techniques.

A notable exception that process the cloud as a whole structure is PointNet [17]
where raw 3D data are processed. This network learns to extract keypoints that
represent the bounds of the objects and uses fully connected layers (Multi-layer per-
ceptrons), instead of convolutional ones, coupled with symmetric pooling to segment
the results. Its evolution, PointNet++ [18], that apply the same reasoning along-
side a SIFT-like procedure is a variation that try to capture local structures that
were limiting the capabilities of PointNet to captures neighborhood information and
features.

It can be seen from the brief report above in the latest years 3D data and seman-
tic segmentation are two fields of wide interests characterized by a deep study. This
is also because the segmentation has been used for example to improve robots nav-
igation within SLAM systems with visual odometry2.2 and semantic mapping [19,
5] or to allow a 3D reconstruction of the environment and bringing advancements
to research as in robot navigation or skeletal tracking. [19, 20, 21] Moreover, using
3D information may advance fields like human-robot collaboration, for example in
industrial environment, where shapes and sizes are of primary importance, or en-
abling interaction with the whole environment giving to the robot the possibility
not only to understand where the door is, thanks to segmentation, but to correctly
grasp its knot and open it thanks to the 3D information. Finally, thanks to 3D,
we can make use of 6-Degrees of Freedom (DoF) localization that, differently from
the usual 3-DoF, let us to fully localize and orient the objects in the space using
three angles for orientation and three translations values with respect to the three
axes X, Y and Z to characterize the object. Naturally, many more applications and
methods are available and here we tried to report the most important and notable
ones.

2.2Localization driven by visual information.

11

2 – On 3D Semantic Segmentation

2.4.1 Datasets for Semantic Segmentation

2.4.1.1 The NYU Depth Dataset V2

There are various datasets over which we can train and test our algorithms [22]. An
established testbed for the semantic segmentation on 3D data is the NYU Depth
Dataset V2 (NYUv2) [23] which consists of 1449 indoor images captured with a
Kinect® device and it is provided both with a 13- and 40-classes mappings [24, 25].
Both FuseNet and 3DEF have been tested against it and so we have a defined and
accepted baseline over which we can compare our results and so we will use NYUv2
in our work. This is an extensively used dataset probably because it is one of the
first that were available in the robotic community: it is widely adopted thanks to
its indoor nature but nonetheless it is relatively small with respect to other datasets
like SUNRGBD [26], that comprises RGB-D images from NYUv2, SUN3D [27] and
B3DO [28], or the new Matterport3D [29]. Notably, these are all RGB-D datasets
but given the camera parameters with a simple operation can be transformed in
full-3D ones: 3D datasets are still costly and difficult to obtain and also the lack of
learning models that can directly process them does not help their growth.

The NYUv2 dataset is available in various forms. It can be used either with its
RGB-D representation and, thanks to the known parameters of the camera, with
the correspond pointclouds. Moreover, one can either use as depth measurements
the raw values, extracted directly from the camera, or some processed ones: there
is a tool, made available by the dataset authors, that fills the holes and smooth the
depth readings generating a more continuous map as can be seen in Fig. 2.5. All
this data is available in a 640× 480 format.

(a) RGB image (b) Raw depth (c) Preprocessed depth

Figure 2.5: NYUv2’s depth comparison [23]

12

2 – On 3D Semantic Segmentation

2.4.2 Metrics

Finally, to evaluate semantic segmentation there are well established comparison
metrics. Given a binary-classification problem we can define a confusion matrix, as
in Tab. 2.1, to evaluate our algorithms. In this matrix we put in the diagonal the
number of correctly classified samples, while outside we have the number of wrongly
classified ones. We call True Positive (TP) an outcome where the model correctly
identify the positive class and True Negative (TN) an outcome where instead it
correctly identify the negative class. False Positive/Negative (FP, FN) are wrongly
predict outcomes where the model assign in the former case a positive class instead
of the negative one and in the latter it does the opposite. Naturally the sum of all
these values is the total number of samples.

Table 2.1: Sample confusion matrix: actual vs predicted class.

Pos Neg
Pos TP FN
Neg FP TN

Since semantic segmentation is, in general and in our case, a multi-class classifi-
cation problem we can expand Tab. 2.1 for K-classes, where each sample correspond
to a pixel, and is used to extract meaningful evaluation metrics. So for i ∈ {1...K}
we have:

• Global accuracy, or the overall accuracy of our model. This may be misleading
for a dataset where the number of samples for each class is not the same, or
an inbalanced dataset, since the most represented classes may bias the final
results because their weight is greater with respect to the other ones.

Global = 1
N

∑
i

TPi

• Per-class accuracy, or class precision, shows how accurate the classifier is for
each one of the classes:

Ai = TPi

TPi + FPi

• Mean accuracy, an average of per-class accuracy:

Mean = 1
K

∑
i

TPi

TPi + FPi

13

2 – On 3D Semantic Segmentation

• Intersection over Union, or the number of pixels common between the target
and prediction masks divided by the total number of pixels present across both
masks

IoU = 1
K

∑
i

TPi

TPi + FPi + FNi

These are widely accepted as comparison values in the literature even if there
is not a common guideline. Naturally, because of the misleading information given
by the global accuracy due to the inbalacing of the classes in the dataset, the other
three are in general more informative. We will use these established metrics to eval-
uate our learning models.

2.5 Our Contributions
This work will focus over FuseNet and 3D Entangled Forests (3DEF) used over the
NYUv2 dataset. The former is a convolutional autoencoder, working over 2.5D data,
exposing two encoding segments, one for the depth map and one for the RGB image,
and one decoder part. The latter is a learning method that, after a pre-processing
of the pointclouds, uses a forest of decision trees to obtain the sought result. With
FuseNet also a small study with COROMA, an industrial dataset acquired by our
laboratory, have been developed. We developed various FuseNet structure variation
that allow us to include information used by 3DEF in different ways, whereas with
3DEF we flawlessly incorporate features extracted in different point of the original
FuseNet architecture.

14

Chapter 3

FuseNet

3.1 The Original Network

The authors of FuseNet started from a Couprie’s work [24] where is pointed out the
fact that depth information, for classes that have similar location and appearance
may improve and reduce uncertainty of the segmentation for different objects that
have similar appearance information. Couprie also note that for objects that have
high variability in depth dimension was in any case better to use simple plain RGB:
they left the fusion of depth maps and RGB images as open problem. Hazirbas et
al. tackle exactly this problem by developing their FuseNet network.

As stated in Chapter 2, we face in this case a clear example of 2D methods
adapted to RGB-D data: FuseNet, in fact, is clearly inspired by SegNet [10], that
works with plain RGB images and has an encoder-decoder structure depicted in
Fig. 3.1: this is also stated in the original FuseNet paper by Hazirbas and his
colleagues.

A previous work tried to make use and integrate depth by using LSTM layers [30]
but this architecture is fairly complex and hence difficult and timely to train. With
FuseNet they tried to obtain a more simple and light model to obtain the same
result to merge RGB and depth information. In their work, among the other things,
the authors note that HHA features (briefly cited in Chapter 2) requires too much
computation and are less informative with respect to what RGB channels bring to
the learning procedure. Moreover, the authors demonstrate that this representation
does not hold more information with respect to the plain depth.

15

3 – FuseNet

Figure 3.1: SegNet network [10]

The proposed network has an encoder-decoder structure, depicted in Fig. 3.2,
with the aim of extracting and fusing features in the former side and expanding
them in the latter one. As can be seen from a rapid comparison between Fig. 3.2
and Fig. 3.1, the two architectures are almost the same, differing mainly in the
presence or absence of the dropout layers. This difference is resolved if we consider
Bayesian SegNet [31] that maintains the same structure but add the dropout layers.

Figure 3.2: Original FuseNet architecture [40]

The encoding side of FuseNet consist in two branches, one for the RGB image
and one for the corresponding depth map. The structure of each branch is directly

16

3 – FuseNet

derived from VGG-16. In FuseNet two main fusion techniques have been applied
for merging features extracted from the two different inputs: namely sparse and
dense fusion. Both consist in the sum of element-wise features coming from the two
branches, as in Fig. 3.3, but the former is performed before each pooling layer while
the latter is performed after each one of the CBR blocks as depicted in Fig. 3.4.
A CBR block is a common structure in convolutional neural networks and consists
in three layers: one convolutional (C), one batch normalization (B), that helps in
terms of performance and stability of the network, and one ReLU (R), which is the
activation function. In this way the authors are able to transfer the encoded depth
information and directly merge it with the RGB elaborated one, mixing them almost
since the beginning of the network. Both inputs are normalized in the range [0,255].

Figure 3.3: A single Fusion block [1]

Figure 3.4: Sparse and Dense Fusion comparison [1]

After the encoding the decoder part takes care of up-sampling the encoded infor-
mation to obtain the final segmentation in the original input resolution. It is made

17

3 – FuseNet

by mirroring the same structure of the encoder, where memorized unpooling is ap-
plied as clearly depicted in Fig. 3.1. The encoded information can be used directly
also with a simple classification structure made of fully connected and dropout layers
to obtain the scene type as depicted in Fig. 3.2.

Hazirbas et al. found out that their methods successfully improves over the cited
state-of-the-art methods, hence obtaining promising results by the fusion of RGB
and depth in their proposed architecture. Specifically, their sparse fusion technique
manage to obtain the best global and IoU scores whereas the deep fusion technique to
obtain the best mean accuracy overall, making sparse fusion their favourite choice
over the two possibilities. We will start from here for the experiments made in
Chapter 5 but we will use also directly this network in some preliminary experiments.

Our implementation is based on a public GitHub3.1 repository that is the official
PyTorch version. Inside it we have found the trained model over NYUv2 dataset
available to download: in this case the NYUv2 consists in RGB-D couples with
depth elaborated (or filled), resized to 320× 240, with a 40-classes mapping.

Apart from the original pretrained version we decided to train FuseNet also with
the 13-classes mapping of NYUv2. This was done mainly because 3DEF, as we
will see in Chapter 4, originally used this class mapping and so we were be able to
extract the correct features for the right version of the data. We tried also to use
raw depths and bigger images but we did not found valuable differences between
these versions and the original one either in terms of training times or result of the
main metrics. The results of these tests can be seen in tables 3.1 to 3.4.

Here we have a clear example of how an inbalanced dataset may affect the results:
the global accuracy of FuseNet trained over the smaller (320 × 240, Original) and
the bigger (640 × 480, Big) version of the dataset are near but the mean accuracy,
that weights each class, has a substantial difference. This aspect is even clearer
if we check classwise’s accuracy: the segmentation of classes of the bigger version
have usually a better accuracy with respect to the original one. Another important
finding is that filled depth performs better with respect to the raw one meaning that
filling depth holes for this dataset helps the classification. These considerations are
true both for the training over 40-classes and 13-classes mappings: what changes
between these two versions are the overall results where it is easy to notice that

3.1https://github.com/MehmetAygun/fusenet-pytorch

18

https://github.com/MehmetAygun/fusenet-pytorch

3 – FuseNet

a lower number of classes leads to better scores over all the metrics. Probably,
13 classes are easier to recognize than 40 because they are less crowded and more
defined overall.

Global acc. Mean acc. IoU
Original 76.40 66.93 54.74
Raw depth 75.95 67.03 54.46
Big dimension 76.89 68.57 55.98

Table 3.1: FuseNet trained over NYUv2, 13-classes mapping, general results

Original Raw depth Big dimension
Class0 73.57 74.25 69.62
Class1 56.37 54.99 62.98
Class2 69.16 71.47 71.56
Class3 68.54 68.50 68.02
Class4 71.50 69.43 79.33
Class5 96.92 96.21 97.58
Class6 58.28 60.40 56.51
Class7 70.88 72.36 68.59
Class8 59.19 50.30 52.64
Class9 91.87 90.59 90.88
Class10 68.75 71.06 72.80
Class11 48.55 52.13 58.14
Class12 36.52 39.68 42.74

Table 3.2: FuseNet trained over NYUv2, 13-classes mapping, classwise accuracy

Global acc. Mean acc. IoU
Original 68.76 46.42 35.48
Raw depth 64.50 38.87 28.83
Big dimension 67.55 46.73 35.01

Table 3.3: FuseNet trained over NYUv2, 40-classes mapping, general results

19

3 – FuseNet

Original Raw depth Big dimension
Class0 91.08 90.68 91.47
Class1 97.04 96.73 97.09
Class2 71.53 69.14 68.40
Class3 74.77 76.32 69.25
Class4 69.17 67.75 73.56
Class5 71.46 73.05 70.80
Class6 49.51 48.62 47.95
Class7 24.17 31.94 24.61
Class8 56.82 59.99 57.84
Class9 50.09 57.04 54.64
Class10 73.33 70.85 75.73
Class11 NaN 0.00 65.24
Class12 63.51 64.18 62.45
Class13 22.75 19.18 24.31
Class14 14.67 14.26 24.13
Class15 57.85 62.17 58.19
Class16 55.02 46.16 50.28
Class17 52.88 51.79 57.76
Class18 36.20 33.02 27.00
Class19 36.14 24.59 30.45
Class20 18.70 25.64 33.43
Class21 NaN 0.00 83.33
Class22 25.31 21.24 20.62
Class23 NaN 0.00 30.52
Class24 47.57 58.24 53.18
Class25 NaN 0.00 27.43
Class26 18.99 29.70 30.99
Class27 41.41 22.06 25.98
Class28 NaN 0.00 7.33
Class29 17.37 26.38 20.24
Class30 38.47 32.63 48.76
Class31 44.46 42.77 31.74
Class32 71.57 74.62 76.08
Class33 NaN 0.0 54.8
Class34 42.89 38.43 49.13
Class35 43.45 38.92 50.61
Class36 3.04 1.17 4.71
Class37 17.89 20.31 24.90
Class38 13.72 7.84 13.26
Class39 65.62 57.44 51.10

Table 3.4: FuseNet trained over NYUv2, 40-classes mapping, classwise accuracy

20

3 – FuseNet

3.2 The COROMA RGB-D Dataset

COROMA is a dataset available in our lab that is formed by scenes captured in
an industrial environment with a Kinect®. It is a dataset born within an European
project that aims to develop a cognitively enhanced robot that will execute multiple
tasks within metalworking and advanced material companies. We used this dataset
in its RGB-D version to initially test the capability of FuseNet to adapt to new
datasets, different from the ones it is trained on. Each RGB-D couple has size
960× 540 pixels. COROMA scenes consists of various possible industrial scenarios,
or areas, each of them consisting of a large number of captures of the scene from a
slightly different point of view and containing for example technical zones or pieces
of a boat.

For this tests we worked over a subsection of the whole COROMA, consisting in
one single area formed of 6549 RGB-D couples, since the scope was to get insight of
the network and use it a bit before doing the work with 3DEF. The split to obtain
train and test sets was made randomly with a 70%-30% ratio by taking only one
over ten images to avoid overfit over a single point of view of the considered scene.
Moreover, there are various possible mappings for COROMA, that originally comes
with 18-classes, and in this case we use a 13 one. Finally, in this case each RGB-D
couple is resized to 224 × 224 to speed up computation and normalized to [0,255].
We used the tool from NYUv2 to elaborate the depth maps since it is a common
procedure for each one of the datasets used with FuseNet. Also in this case, we
trained and compared the two version of COROMA with raw and elaborated depth
as for the NYUv2 dataset.

Global acc. Mean acc. IoU
Raw Depth 94.20 91.21 80.01
Elaborated Depth 93.70 89.54 78.36

Table 3.5: Training results of FuseNet over reduced COROMA dataset. 1000 epochs.

As depicted in Tab. 3.5 it is clear that, differently from the NYUv2 case, raw
depths works slightly better with respect to elaborated ones meaning that it is not
given that filling holes in the depth maps and elaborate them with such tool can be
helpful with the task of segmentation with FuseNet network.

21

3 – FuseNet

More complete test with COROMA and FuseNet will be done within a different
work.

3.2.1 Fine-Tuning

For the first problem we slightly modified the provided network to be able to load
the weights of FuseNet trained over NYUv2 with the 40-classes mapping and then
use them to learn to correctly classify the COROMA dataset. By doing so we are
performing fine-tuning to check whether we may be able to use a pretrained FuseNet
to correctly segment our new images with a different mapping.

To do so we have different ways of acting based on how much of the original
weights we keep and let to update. Indeed during the loading phase we can choose
programmatically which weights we can load from the pretrained FuseNet and how
much of them we can update to learn the new representation. In this sense we tried
various combinations based on these two factors as shown in Tab. 3.6. For the reset
of the weights we opted either for the whole last block, starting from the last unpool
layer, or only the last convolutional layer. Instead, for the learnable parameters,
we allowed to learn either the whole RGB-D decoder, only the last block starting
before the last unpool layer or only the last convolutional layer. We preferred not to
let the weights be updated in the encoder side since that one is where the network
learn the representation of the data. We wanted to understand how much of the
decoder side is meaningful to expand such representation to the original size. These
combinations allowed us to do various tests and to obtain meaningful insights. We
trained all these combinations for 150 epochs.

Reset −→ Last layer Last block
Learn ↓ Global acc. Mean acc. IoU Global acc. Mean acc. IoU
Last layer 8.11 10.65 1.43 — — —
Last block 68.02 28.91 22.16 8.51 8.68 2.02
Decoder 97.64 95.67 68.86 54.63 56.66 25.93

Table 3.6: Fine Tuning of FuseNet over reduced COROMA dataset. In the columns
the reset depth, in the rows the allowed learnable parameters. Trained over elabo-
rated depths.

22

3 – FuseNet

As shown in Tab. 3.6 we discovered that the less of the pretrained weights we
reset the better it is. The decoder needs to be free to learn and adapt its weights
to achieve good performance: blocking the update procedure up to the last layer
or block inhibits the possibility to obtain good results since it impede a correct
expansion of the encoded information. This means that the encoding side of the
network is important, since it learns a correct representation of the input data, but
of equal importance are the whole decoding side that is much more related to the
input dataset and the sought result. Finally, by comparing Tab. 3.5 and Tab. 3.6,
one may notice that in our particular scenario the best is the fine-tuned version.
Anyway all of these are only insights on how FuseNet work, we have clear in mind
that these results may be biased with overfitting and other problems due mainly to
the low variability in the used dataset.

23

Chapter 4

3D Entangled Forests

Differently from FuseNet, 3DEF do not work on RGB-D but with pointclouds. The
work of Wolf et al. [2] acknowledges the presence in the literature of various ap-
proaches that capture contextual and geometrical information of these structures
but its goal is also to obtain computation efficiency, that is still missing in most of
them, and to achieve this they make use of a random forests classifier.

The base structure of random forests are decision trees. Each tree works by
applying a binary test for each sample against each available feature and, after that,
a split of the dataset is made by considering the most informative one. A random
forests is nothing more than a collection of decision trees that operates as an ensem-
ble: using bagging of the data, so a random sample with replacement of the dataset,
and a random feature selection instead of consider every possible one ensure uncor-
relation between trees. This uncorrelation helps the final classification.

The computational efficiency is of particular interest, especially in robotics ap-
plications. In the latest years, thanks to the advancements of GPUs technology, we
were able to develop more accurate learning models by leveraging their computing
capabilities: this allowed the creation of networks with more and more parameters
but high computational power requirements and, as consequence, high energy con-
sumption. However, this is impractical in many real-world robotics applications and
scenarios where the amount of available energy is often limited: in these cases we
cannot think to embed a powerful GPU directly into a robot. In fact, mobile robots

24

4 – 3D Entangled Forests

and drones may need to move for example for long periods of time without the pos-
sibility of recharging the batteries, like in a open world environment or in disaster
zones where power may be missing and an internet connection to a datacenter may
not be reliable or even accessible at all. Power efficiency is then clearly an impor-
tant and needed to be examined field and since 3DEF are trained with CPUs are of
particular interest.

The proposed method works by applying a preprocessing of the pointcloud using
outlier and bilateral filters. Then the viewing angle is estimated and the cloud is
rotated accordingly to have a flat floor. After that voxelization is performed with
the help of Point Cloud Library4.1 (PCL) [32], applying a region growing algorithm,
and both Unary features and Entangled coefficients are calculated obtaining the
final clusters (or regions). Unary features are related to each single cluster while
Entangled ones describe relations that exists between all different couples of them.
These features are what is effectively used by the forest learning algorithm to per-
form the splits and hence the segmentation task.

Each cluster’s Unary feature vector is formed by 18 features that are formed
by fast to compute and simple coefficients, avoiding calculation of more articulated
ones like HOG4.2 [33] or textons [34]. As can be seen in Tab. 4.1 these are used to
grasp region-correlated factors: we have the mean angle and standard deviation of
the cluster’s surface normal and the mean and standard deviation of the color in the
LAB space. After that we consider both the minimum and maximum height of the
cluster with respect to the floor. Furthermore, for each cluster we have a bounding
box that contains it and we describe this with its dimensions (width, height and
depth), its area in the horizontal and vertical plane. Finally, for each bounding box,
by taking the ratios between width, height and depth, we obtain elongation and
thickness of such boxes. The binary test necessary for the decision trees learning
in this case is done thanks to a threshold: if the value of the feature is above that
threshold it evaluates to true and information gain is checked.

For Entangled coefficients the real problem consist in finding metrics that not

4.1www.pointclouds.org
4.2Histogram of Oriented Gradients

25

www.pointclouds.org

4 – 3D Entangled Forests

Feature Dimension
Normal angle and standard deviation (std) 2

Color(LAB) mean and std. 6
Height, min and max 2

Bounding box dimensions 3
Bounding box area 2

Elongation and thickness 3
Total 18

Table 4.1: Unary features and their dimension

only can capture relations between data points but they should do that in a repeat-
able way and across different scenes. Also, differently to the 2D case where this is
just related to pixel offsets, with pointclouds we have to remember that we are in
a projective space: this simplification is no longer effective since viewing angle may
change and areas that were informative in the first scene may not be so in the second
one. Wolf and his colleagues proposed a scheme to select close-by segments provid-
ing contextual information directly in the 3D space. Essentially for each couple of
regions they calculate these coefficients, depicted in Tab. 4.2, and craft the real En-
tangled Features through binary tests and constraints to be used inside the random
forest algorithm for each split. These features are related to common ancestors,
node descendants and other characteristic that are calculated starting from these
coefficients and each decision tree structure in real time during the learning phase.
This is why we brought coefficients that enabled these features and not directly the
features themselves that would have been impossible. For further details on how
these features are calculated we refer to [2].

The original algorithm is then evaluated over the 13-mapping version of NYUv2,
using raw depths and the original size, obtaining an overall improvement, with re-
spect to the considered comparison methods, both in class and global accuracy.
Moreover, the usefulness of the Entangled Features is demonstrated by a compar-
ison between training with only the Unary ones that can be found in the original
paper [2].

26

4 – 3D Entangled Forests

Coefficient Description
Cluster Distance Minimum distance between regions (cluster)

Point To Plane Distance Minimum distance between voxels of a region
and centroid of a different one

Inverse Point To Plane Distance Opposite of the previous

Horizontal and Vertical Distance Difference between horizontal and vertical
angles between regions

Table 4.2: Entangled coefficients and their description

The novelty, with respect to other approaches that use Random Forest or Con-
ditional Random Field, is the new concept of 3D Entangled Features which can
capture frequently combinations of classes, learn their 3D geometric configuration
in the scene and their contextual and spatial relations. Moreover, this is learned not
only for different classes but also within the same one. Finally, this method manage
to obtain near real-time performances but without the need of GPUs and of high
computational powers. Still, one of the drawbacks of this method, is that threshold
used for test, merging of the voxels and other parameters are totally set by-hand: the
forests lacks so of a general implementation. Parameters and thresholds to control
for example initial voxelization of the cloud can be set at the beginning but probably
needs tune if one wants to use a different dataset and there is not a given, always
working, setup. For example, as we will see in sections 5.1.2 and 6.1.2, we had to
disable the initial bilateral filtering and the outlier pruning in our elaborations.

27

Chapter 5

From 3DEF to FuseNet

5.1 Input

5.1.1 The Data

We will use FuseNet trained both over the 40- and the 13-classes mapping of NYUv2
dataset to do comparisons with both versions. As shown in tables 3.1 to 3.4, doing
training over raw depths or with the bigger input dimension (i.e. 640 × 480) does
not change the outcomes of this network in a meaningful way so we preferred to
keep the smaller images.

5.1.2 The Features

As first step we need to extract the features used by the 3DEF algorithm. Here lies
the first problem: the two learning methods works over two different version of the
same dataset and reasons over different structures.

If FuseNet uses RGB-D couples, reasoning with convolution over the whole im-
age, 3DEF essentially works over separated clusters trying to labelling them. More-
over, the number of clusters, their ordering and characteristics are not predictable
from one cloud and another. There may be clouds with hundreds of clusters and
clouds with only few dozens of them and, moreover, the floor may mostly belong to
cluster 1 in one cloud and to cluster 10 in another one.

28

5 – From 3DEF to FuseNet

The problem is how to project the pointclouds to obtain the same 2D shape
expected by FuseNet and create a point-by-point feature vector of fixed size.

The solution is a projection procedure. Thanks to the fact that any 3D structure
captured by a camera can be projected in a 2D space if the camera intrinsic param-
eters are known we developed a script that given a pointcloud in input return the
projected 2D RGB image in the camera plane. The geometrical reason behind that
is shown in Fig. 5.1, representing the pinhole camera model, and mathematically,
using homogeneous coordinates and up to a scale factor, it is

u

v

1

 =

fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

X

Y

Z

1

 (5.1)

p = A
[
R
∣∣∣ t]P (5.2)

Essentially any 3D point P = (X, Y, Z) can be projected in the corresponding
2D point p = (u, v) given that we know the intrinsic parameters of the camera, so
its focal length in the two directions (fx and fy) and its principal point (cx and cy).
Rototranslation matrix

[
R
∣∣∣ t] account for eventual needed transformations between

world and camera reference frames.
So, by using the known focals, centers and the estimated rototranslations (com-

puted by the 3DEF preprocessing algorithm), we can use Listing 5.1 that I have
developed to obtain the desired result. Finally, regarding projection, the original
algorithm to create the 3DEF’ features uses a bilateral filter to smooth the depth
information but we have to disable it since it would move the points Z values in an
unpredictable way ruining essentially the whole 2D projection procedure.
def project (points , angle):

official camera matrix given with NYUv2 dataset
camera = np. array ([

[5.1885790117450188 e+02 , 0, 3.2558244941119034 e+02] ,
[0, 5.1946961112127485 e+02 , 2.5373616633400465 e+02] ,
[0 ,0 ,1]] , np. float)

tvec = np. array ([0 ,0 ,0] , np. float)
rvec = np. array ([0 ,0 ,0] , np. float)

rotation of the camera , as applied in createeftraining_cluster
r = Quaternion (axis =[1 ,0 ,0] , angle = angle [0])

29

5 – From 3DEF to FuseNet

p = Quaternion (axis =[0 ,1 ,0] , angle = angle [1])
y = Quaternion (axis =[0 ,0 ,1] , angle = angle [2])
q = r*p*y
rvec = q. rotation_matrix

out = cv2. projectPoints (points , rvec.T, tvec , camera , None)

return out [0][: ,0]

Listing 5.1: Pointcloud Projection

P = (X, Y, Z)

z = f
Fc

zc

yc

xc

y

x

v

u

(u, v)

~u

~v

principal
point

optical
axis

Figure 5.1: Camera Projection using the pin hole camera model

Another problem is the dataset that we have to use to train 3DEF to extract
these features: the number of classes is irrelevant since the procedure to create the
clusters and their feature vector is independent from them. What can influence
these features are the depth (if filled or raw) and the dimension. By subsequent
experiments we find out that the best way to proceed is to use the original big
pointclouds to calculate the features, project them and then resize the obtained
2D matrices with a nearest neighborhood logic to avoid unwanted values changes

30

5 – From 3DEF to FuseNet

that would be obtained by using for example bilinear or other filters. Moreover, raw
depths measurements instead of elaborated ones could not be used because too much
points would have been lost: by having the same Z = 0 they would have the same
projection as can be clearly seen in Eq. (5.2). Even with elaborated depths there
are some missing points related to the use of the outlier filter but we noticed that
using the bigger input, once resized, we had less holes in our final feature matrix
with a reduction of about 25% of the missing points going from 4% to 3% of the
whole image. This problem can be avoided by not using such filter but we tried to
be as much as possible close to the initial implementation of 3DEF.

5.1.2.1 Unary Features

With Unary features the work was straightforward since for each cluster we have
a single feature vector. Since we know the clustering of the cloud and the feature
vector associated to each cluster we can obtain a 2D matrix where for each point
we have the corresponding feature vector thanks to the projection procedure. As
an example, a representation of two projected and manually selected features is
represented in Fig. 5.2: each pixel represent the value of such Unary feature in the
image. Regions are clearly recognizable even if they do not exactly correspond to
clusters since a given feature may have the same value for a multiple number of
them.

(a) Feature 12 (b) Feature 9

Figure 5.2: Examples of imported features from 3DEF to FuseNet

At this point we have a 2D matrix of the desired size where each “pixel” contains

31

5 – From 3DEF to FuseNet

a 18-dimension feature vector described in Tab. 4.1. Essentially we are projecting
the clusters obtained with the processing of the pointclouds, with their features
vectors, in the 2D dimension.

Finally, these features contains LAB values that are essentially a mapping of
RGB colors we also thought about reducing the size of this feature vector from 18
to 12 by pruning these values because we already have this information in the RGB
image.

5.1.2.2 Entangled Features

For the Entangled Features the thing is more difficult since these are calculated using
the coefficients summarized in Tab. 4.2. These features cannot be taken as they are
used in the random forests since neither using the binary tests, that are related to the
forest learning structure, nor emulating them directly in the convolutional network
are viable options: we have to use the “raw” coefficients. Furthermore, directly
use 2D-projected clusters as for the Unary scenario where we use this procedure to
obtain feature vectors for the RGB-D data can not work in this case. The power of a
convolutional network is to find hidden and steady relations in the data and extract
and use them to perform the given task: if fed with random, odd data the learning
power will be disrupted. Just imagine that each pixel of a 2D RGB image instead of
having always R as first component has a random channel: it would impossible to
tell what is the channel and how to correctly visualize the image. The cardinality
and ordering of clusters are not constant between pointclouds: it is straightforward
to understand that this would bring variable-sized feature vectors if we take this as
it is and cannot be directly used in a convolutional neural network.

Fortunately the Entangled Features are based on coefficients and these coeffi-
cients are expressed as distance values calculated between couples of clusters: given
what we have just seen about cardinality and ordering we have to tackle the problem
with a different point of view to be able to obtain something usable. The solution we
thought about was to emulate these values by using their base factor(s). Essentially,
as expressed in Tab. 5.1, for each coefficient we found its base components referring
to the current cluster or voxel. By doing so we obtained a base vector of length 8.
The cloud is projected in 2D as in the case of the Unary feature but for each point
we have both the coordinates of the centroid of the cluster and voxel to which it

32

5 – From 3DEF to FuseNet

belongs, its vertical angle and the normal to it.
Finally, since create all-clusters coupling is not feasible we also thought how

to partially obtain the original distances and we resort to calculate them within a
4-neighborhood widow. For a given pixel indeed we can define its 4-neighbors as
its adjacent pixels along the main directions and we can take the needed distances
by using the values obtained previously. In case of pixels located in the angle or
in the border of the image we set these differences at 0. By doing that we were
able to further increase the dimensionality of the feature vector to 24 as described
thoroughly in Tab. 5.1.

Feature Dimension Description

Base
Cluster (C) centroid 3 Coordinates of the cluster’s centroid
Voxel (V) centroid 3 Coordinates of the voxel’s centroid
Angles (A) 2 Vertical and horizontal angles

Advanced
CC difference 1×4 Clusters’ centroids distance
CV difference 1×4 Cluster’s and voxel’s centroids distance
A differences 2×4 Angles differences
TOTAL 24

Table 5.1: Description and Dimension of our obtained 3DEF Entangled Features

5.1.3 Generated Features Set

Summarizing, we used elaborated depths both for FuseNet RGB-D input and 3DEF.
We obtained also long and short versions of Unary and Entangled features and we
will mix them together to obtain our features sets that are described in Tab. 5.2.
These are the sets that we are going to use to try to improve FuseNet performances
by incorporating them in the learning procedure. Each of them is obtained thanks
to the procedures presented in Section 5.1.2.1 and Section 5.1.2.2. Combination of
Unary and Entangled sets are made by concatenation of their basic versions, always
with the Unary features placed in the first places.

These dataset will be used as input of the four variations of FuseNet that will
be described in the next sections and used to train the networks over both 13- and
40-classes mappings generating a mixture of possibilities. We will train each one of
the networks for 600 epochs.

33

5 – From 3DEF to FuseNet

Dataset Formed by Number of features
UN Unary 18
UNR Unary reduced 12
ENT Entagled (with 4-neighborhood differences) 24
ENTR Entangled reduced (only base values) 8
UN+ENT Unary and Entangled 42
UNR+ENT Unary reduced and Entangled 20

Table 5.2: Obtained features set with their shorter name and dimension

5.2 Proposed Networks

In the following sections we will present the FuseNet variations that we have thought
of to embed the features used by 3DEF within this learning method. Sparse Fusion,
Only Encoding and the Parallel Autoencoder variations are directly inspired by
FuseNet original network, meanwhile Direct Fusion consist in the direct merging of
such features.

5.2.1 Sparse Fusion

By following the same reasoning of FuseNet’s sparse fusion technique, we encoded
our feature vector with the same encoding structure and using the same methodology
of merging them. We weight RGB, depth and our features equally. We wanted to
try to test the same reasoning that FuseNet’s authors made for depth with our
extracted features as represented in the schematic of the proposed methodology can
be seen in Fig. 5.3. The final goal is surely to incorporate what we can obtain by
3DEF preprocessing and so we thought that to start replicating the same structure
could be of help.

In this case we can see that no meaningful improvements are brought by the
introduction with this methodology of the features sets. In most of the cases with
the 13-classes we can notice a very slight improvement in all metrics. Also for the
40-classes mapping we have a tiny improvement in mean accuracy and IoU but we
can notice an overall small loss in the global accuracy. Moreover, Entangled features
seems to negatively affect training with this network design since the performance
with ENT and ENTR features sets are the only ones that are worse with respect to

34

5 – From 3DEF to FuseNet

Figure 5.3: Embed 3DEF’ features in FuseNet with Sparse Fusion

the original ones. In general we can say that these features in combination with this
first FuseNet variation does not change things a lot in terms of performance. Finally,
by doing this variation we added 33% of parameters, as can be seen in Tab. 5.19,
going from 44.173M to around (depending on the considered feature set) 58.908 M,
resulting of around a 40% increasing also of per-epoch training times as depicted in
Tab. 5.19.

35

5 – From 3DEF to FuseNet

Global acc. Mean acc. IoU
UN 76.44 67.52 54.93
UNR 76.51 67.29 54.70
ENT 75.19 65.28 52.83
ENTR 74.84 64.91 52.27
UN+ENT 76.86 67.63 55.29
UNR+ENT 76.54 67.30 54.96
Original 76.40 66.93 54.74

Table 5.3: 13-classes, Sparse Fusion network, general results

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 73.57 77.36 78.95 78.52 78.08 76.00
Class1 55.36 54.77 48.65 52.03 55.37 54.65
Class2 72.84 70.84 74.00 71.26 71.75 71.52
Class3 71.87 70.29 69.00 67.93 71.62 70.21
Class4 78.38 75.75 76.00 73.65 74.92 74.25
Class5 97.17 97.03 97.36 96.86 97.26 97.20
Class6 56.07 57.99 50.90 53.51 57.43 60.34
Class7 72.59 70.12 73.36 73.62 71.72 71.60
Class8 54.74 53.17 48.49 51.36 56.63 57.13
Class9 90.67 91.30 91.90 91.08 91.14 91.50
Class10 66.30 70.45 61.88 59.61 67.90 66.25
Class11 50.18 48.87 47.02 44.28 49.91 48.15
Class12 38.05 36.79 31.17 30.08 35.51 36.14

Table 5.4: 13-classes, Sparse Fusion network, classwise accuracy

Global acc. Mean acc. IoU
UN 68.63 47.08 35.72
UNR 68.72 46.44 35.62
ENT 66.79 42.82 32.95
ENTR 67.26 43.49 33.12
UN+ENT 68.60 47.95 36.28
UNR+ENT 68.30 46.33 35.13
Original 68.76 46.42 35.48

Table 5.5: 40-classes, Sparse Fusion network, general results

36

5 – From 3DEF to FuseNet

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 91.57 92.27 91.87 91.18 91.04 91.25
Class1 96.64 96.89 96.69 96.04 96.77 96.85
Class2 68.65 70.20 69.44 70.89 69.93 70.33
Class3 76.60 76.05 74.68 78.22 77.47 76.07
Class4 69.63 73.88 75.06 72.66 72.89 74.05
Class5 70.11 72.93 71.41 69.67 70.96 76.28
Class6 49.51 52.60 49.91 48.90 52.29 48.47
Class7 23.40 23.21 14.86 20.23 25.61 29.60
Class8 55.75 57.28 45.33 48.59 58.20 48.91
Class9 53.74 53.86 45.40 43.57 54.99 46.28

Class10 71.89 69.58 66.60 68.51 71.74 69.77
Class11 NaN NaN NaN NaN NaN NaN
Class12 62.32 61.90 60.14 60.06 57.19 59.12
Class13 22.61 24.94 17.49 17.04 18.85 31.20
Class14 12.79 12.96 15.51 19.11 15.29 14.31
Class15 57.61 55.34 51.74 53.07 64.72 56.83
Class16 58.04 57.72 34.21 39.69 52.99 55.73
Class17 56.93 49.70 48.95 53.51 52.07 49.38
Class18 37.08 38.50 40.11 42.69 37.97 34.33
Class19 36.87 31.04 30.81 30.21 37.44 31.99
Class20 19.60 21.65 17.12 16.65 24.82 23.38
Class21 NaN NaN NaN NaN NaN NaN
Class22 20.46 13.94 12.69 18.62 23.05 23.89
Class23 NaN NaN NaN NaN NaN NaN
Class24 44.57 48.51 33.99 39.36 44.86 53.53
Class25 NaN NaN NaN NaN NaN NaN
Class26 28.07 24.32 27.94 22.36 32.61 25.96
Class27 39.25 32.51 32.87 36.84 50.62 35.34
Class28 NaN NaN NaN NaN NaN NaN
Class29 29.19 26.68 17.31 7.67 30.41 28.59
Class30 40.49 34.36 29.01 36.44 42.18 31.15
Class31 40.70 42.10 42.93 36.52 53.02 41.38
Class32 72.58 74.02 68.47 66.12 70.32 76.88
Class33 NaN NaN NaN NaN NaN NaN
Class34 43.39 45.44 43.41 43.49 44.88 47.56
Class35 46.00 45.57 39.13 40.73 43.35 37.65
Class36 4.86 2.47 1.34 2.51 1.91 0.85
Class37 22.49 22.31 15.58 14.49 18.63 14.67
Class38 14.17 13.63 13.41 10.09 10.98 12.62
Class39 63.24 60.61 60.46 63.01 60.41 61.17

Table 5.6: 40-classes, Sparse Fusion network, classwise accuracy

37

5 – From 3DEF to FuseNet

5.2.2 Only Encoding

Figure 5.4: Embed 3DEF’ features in FuseNet by Only Encoding them

Differently from the previous case here we adopted a slight variation where we
fuse only the final encoded vector to check whether a less invasive approach could
be beneficial. So we tried to encode features set by using the same structure of
the FuseNet’s encoding branch but instead of doing fusion of the obtained weights
before each pooling layer we do it only before the last one. Schematically this is
shown in Fig. 5.4, a diagram of our proposed network. As can be seen clearly also
from the picture the encoder structure is necessary to merge features since all three
dimensions of the merged matrices must be the same.

Opposite to the previous case, here the use of ENT and ENTR features sets does
not ruin the results either with respect to the 13-classes mapping and in all cases of
the 40-classes one except of the combination of it with ENT set. Apart from this

38

5 – From 3DEF to FuseNet

we cannot say that there are much differences between the two methods. They are
near in all the considered metrics and slight variations may also be linked to the
randomness of the deep learning procedure keeping in mind that with a inbalanced
dataset a big variation of a single class may be also meaningless since it depends on
the total number of sample of such class. Finally the number of learnable parameters
is the same of Sparse Fusion version since the fusion technique does not add weights
to learn but it is a simple mathematical procedure.

Global acc. Mean acc. IoU
UN 76.29 66.81 54.36
UNR 76.26 66.92 54.56
ENT 76.91 67.61 55.21
ENTR 76.85 67.59 55.14
UN+ENT 76.56 67.73 55.03
UNR+ENT 76.38 66.75 54.69
Original 76.40 66.93 54.74

Table 5.7: 13-classes, Only Encoding network, general results

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 75.37 73.50 77.84 73.87 77.75 73.75
Class1 52.70 52.86 54.51 56.06 53.76 54.31
Class2 70.18 75.68 71.10 71.50 73.22 71.99
Class3 71.96 69.38 71.18 71.16 69.86 73.63
Class4 75.51 74.07 74.45 74.00 75.86 76.57
Class5 96.75 97.11 97.05 97.08 96.87 96.83
Class6 58.45 55.81 57.11 58.84 57.44 57.21
Class7 72.29 71.57 76.35 76.24 72.32 73.33
Class8 50.85 50.23 49.91 55.10 55.84 49.61
Class9 91.26 92.62 92.01 91.79 91.43 91.08
Class10 69.03 66.11 68.02 66.45 67.21 66.73
Class11 48.88 51.06 53.05 48.95 50.26 47.25
Class12 35.27 40.00 36.36 37.68 38.71 35.49

Table 5.8: 13-classes, Only Encoding network, classwise accuracy

39

5 – From 3DEF to FuseNet

Global acc. Mean acc. IoU
UN 68.76 47.24 35.82
UNR 68.66 46.17 35.59
ENT 68.06 44.65 34.05
ENTR 69.12 47.38 36.20
UN+ENT 68.76 46.67 35.54
UNR+ENT 68.44 45.61 34.90
Original 68.76 46.42 35.48

Table 5.9: 40-classes, Only Encoding network, general results

40

5 – From 3DEF to FuseNet

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 91.65 92.18 92.86 91.53 91.75 91.75
Class1 96.92 96.97 96.66 96.58 96.67 96.73
Class2 70.10 70.00 67.61 71.82 71.80 72.28
Class3 77.97 73.43 76.60 80.92 76.45 74.66
Class4 69.76 68.97 72.57 72.86 69.89 73.21
Class5 73.40 73.91 75.38 72.34 74.80 71.15
Class6 52.22 51.57 58.69 50.98 52.67 48.71
Class7 27.13 29.73 23.97 26.29 25.15 28.73
Class8 58.71 55.80 56.10 57.26 53.96 56.82
Class9 51.09 57.63 45.60 59.74 56.29 57.54

Class10 71.12 70.35 69.21 69.72 70.22 70.47
Class11 NaN NaN NaN NaN NaN NaN
Class12 61.32 63.48 56.71 61.80 64.19 57.87
Class13 20.54 20.30 20.31 18.05 20.69 26.91
Class14 16.13 16.26 21.15 14.06 16.01 7.98
Class15 56.79 58.39 56.36 60.25 55.72 57.02
Class16 57.94 58.45 37.04 46.30 56.10 58.17
Class17 51.70 53.40 55.46 54.60 48.85 49.69
Class18 37.50 32.69 51.09 41.68 33.09 29.07
Class19 33.87 24.38 24.71 39.88 25.74 27.31
Class20 23.92 17.78 18.33 23.67 19.14 21.64
Class21 NaN NaN NaN NaN NaN NaN
Class22 22.51 13.72 17.04 21.44 21.08 18.64
Class23 NaN NaN NaN NaN NaN NaN
Class24 48.34 44.22 49.68 55.21 48.54 51.74
Class25 NaN NaN NaN NaN NaN NaN
Class26 25.19 27.06 24.14 22.23 28.80 25.43
Class27 37.96 41.20 21.94 32.72 37.56 26.97
Class28 NaN NaN NaN NaN NaN NaN
Class29 32.08 20.82 15.12 26.00 25.76 27.88
Class30 38.72 37.66 37.86 44.29 40.47 33.21
Class31 42.86 40.61 46.26 45.17 45.11 41.93
Class32 73.90 75.54 63.79 71.66 71.13 68.50
Class33 NaN NaN NaN NaN NaN NaN
Class34 42.84 46.47 42.74 47.80 45.18 45.53
Class35 43.65 43.27 39.74 38.61 47.95 42.22
Class36 2.24 0.54 1.90 1.31 1.19 0.80
Class37 18.47 15.80 13.79 21.93 18.24 15.89
Class38 17.03 14.91 7.23 10.80 14.55 12.91
Class39 60.56 62.34 60.49 61.28 62.18 61.43

Table 5.10: 40-classes, Only Encoding network, classwise accuracy

41

5 – From 3DEF to FuseNet

5.2.3 A Parallel Autoencoder

Figure 5.5: Use of a Parallel Autoencoder to fuse 3DEF’ features in FuseNet

As shown in Fig. 5.5, we tried to extract some meaningful information through
an encoding-decoding structure. The separation of the two branches allowed us to
elaborate feature sets and RGB-D separately and it is a direct variation of the Only
Encoding model: in this case in fact we have a decoder branch that further elaborate
information. Also in this case we took clearly inspiration from the original structure
of FuseNet by using the autoencoder method but we tried to merge the decoded
information near the end of the network to separate as much as possible what is
obtained from the RGB-D and from the 3DEF’ feature sets. As in FuseNet, the
encoder should help to compress information by keeping only the relevant one and
the decoder expand it in a usable way and the sparse fusion technique is used to
merge this brought information to the original FuseNet. A different processing of

42

5 – From 3DEF to FuseNet

the feature sets will presented in Section 5.2.4.
In this case we can see again that ENT and ENTR sets are not helping the final

scores but in all other cases, for both mapping, we can notice how this procedure
works in a better way in any case with respect to (almost) all the performance
metrics considered. The main drawback of this crafted network is the number of
parameters that is 66% more with respect to the original FuseNet making it the
biggest model considered.

Global acc. Mean acc. IoU
UN 76.50 67.02 54.74
UNR 76.72 67.99 55.41
ENT 76.16 67.31 54.06
ENTR 76.28 66.66 54.25
UN+ENT 76.77 67.75 55.27
UNR+ENT 76.65 67.66 55.01
Original 76.40 66.93 54.74

Table 5.11: 13-classes, Parallel AE network, general results

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 73.88 75.51 77.47 77.86 78.19 74.99
Class1 51.71 52.63 55.06 54.59 54.12 51.54
Class2 72.54 69.95 69.27 69.73 70.11 70.67
Class3 69.93 70.59 70.37 70.38 69.46 71.02
Class4 75.36 77.66 78.94 75.50 77.85 78.93
Class5 97.05 97.09 97.49 97.16 97.11 96.88
Class6 56.93 57.23 57.00 58.30 59.35 59.57
Class7 76.16 75.99 69.17 70.51 74.69 76.95
Class8 52.16 57.13 55.63 58.59 54.69 56.90
Class9 92.82 91.81 89.09 90.85 92.11 91.43
Class10 67.44 67.97 72.35 67.76 66.25 67.22
Class11 49.34 49.29 52.97 45.81 52.42 52.53
Class12 35.95 40.98 30.22 29.55 34.37 30.87

Table 5.12: 13-classes, Parallel AE network, classwise accuracy

43

5 – From 3DEF to FuseNet

Global acc. Mean acc. IoU
UN 69.02 46.27 36.10
UNR 68.94 47.36 36.38
ENT 67.35 42.88 33.24
ENTR 67.40 41.84 32.43
UN+ENT 68.77 47.06 35.89
UNR+ENT 68.63 46.51 35.55
Original 68.76 46.42 35.48

Table 5.13: 40-classes, Parallel AE network, general results

44

5 – From 3DEF to FuseNet

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 92.53 92.57 90.48 92.42 91.05 92.01
Class1 96.54 96.58 96.32 96.63 96.81 96.87
Class2 69.75 70.15 71.49 71.45 71.86 71.89
Class3 76.20 77.10 73.92 77.69 78.05 75.97
Class4 72.66 73.55 71.76 70.19 73.64 71.48
Class5 76.60 77.56 71.30 77.06 75.09 71.90
Class6 50.42 52.08 51.66 56.19 55.84 49.77
Class7 30.79 28.70 30.24 23.57 30.44 24.57
Class8 57.08 55.99 53.34 49.75 54.53 50.12
Class9 48.90 47.93 45.27 35.98 50.83 52.16

Class10 70.21 69.06 68.78 65.36 69.98 71.05
Class11 NaN NaN NaN NaN NaN NaN
Class12 62.64 60.48 57.70 56.09 61.92 64.84
Class13 22.48 28.03 19.73 19.65 20.82 27.95
Class14 15.66 14.41 12.17 15.32 14.22 20.38
Class15 58.10 61.59 61.63 54.29 62.11 59.01
Class16 54.16 55.03 40.62 35.31 53.60 54.48
Class17 46.78 54.12 45.40 45.32 53.08 54.60
Class18 30.16 34.78 32.01 35.76 31.32 38.95
Class19 26.51 30.54 38.84 24.39 31.96 28.54
Class20 19.94 23.61 14.13 19.16 23.76 16.35
Class21 NaN NaN NaN NaN NaN NaN
Class22 13.13 20.02 11.41 19.85 17.64 16.67
Class23 NaN NaN NaN NaN NaN NaN
Class24 42.55 52.31 44.98 29.82 53.64 47.48
Class25 NaN NaN NaN NaN NaN NaN
Class26 32.31 21.85 31.47 14.66 22.41 30.60
Class27 30.27 40.57 11.73 27.89 36.09 40.65
Class28 NaN NaN NaN NaN NaN NaN
Class29 30.54 29.17 26.20 16.55 32.91 31.79
Class30 43.72 33.27 27.98 25.66 38.82 33.96
Class31 35.60 41.65 36.03 37.45 41.06 36.15
Class32 69.61 72.35 52.68 62.75 74.84 70.91
Class33 NaN NaN NaN NaN NaN NaN
Class34 46.43 50.76 39.16 39.03 45.19 40.46
Class35 51.26 49.78 34.99 35.70 41.87 44.79
Class36 1.38 2.84 1.14 0.72 2.43 2.42
Class37 20.05 18.31 19.27 18.74 18.58 16.30
Class38 14.84 14.06 11.89 10.01 13.68 15.41
Class39 63.52 59.32 62.13 62.05 59.91 61.01

Table 5.14: 40-classes, Parallel AE network, classwise accuracy

45

5 – From 3DEF to FuseNet

5.2.4 Direct Fusion

Figure 5.6: Direct Fusion of 3DEF’ features in FuseNet

Lastly we tried also to directly incorporate features inside FuseNet without ap-
plying to them too much elaboration. Since we did not want to change the base
FuseNet RGB-D structure for now we avoided to concatenate them with the depth
maps. We instead opted to directly embed the 3DEF’ feature sets in the decoder
side where we could directly insert our 2D-projected vectors inside the network. We
tried various variations that comprises for example concatenation with the decoded
features of FuseNet or prior elaboration with various stacks of fully connected layers
and then merging the result with the extracted features. Almost all of them ruined
the performance of the segmentation probably because the size of the brought in-
formation was too big to be elaborated with small convolutional structures. In the
end we found out that with a small processing with a CBR layer a pooling and then

46

5 – From 3DEF to FuseNet

a sparse fusion of the obtained features, as shown with the schematic depicted in
Fig. 5.6, we managed to obtain a very small increase of the number of parameters
(less than 1%�) and still a slight improvement in the performances as demonstrated
in the following tables. This improvement, even if slight is comparable to what we
have seen so far with the other proposed networks and, also in this case, the use
of ENT and ENTR sets tend to go little worse with respect to the other sets if we
consider the whole set of metrics. Notnethenless, the difference is minimal and so,
as stated previously, the difference may be linked to the stochastic nature of the
deep learning methods.

Global acc. Mean acc. IoU
UN 76.61 67.59 54.94
UNR 76.61 67.58 54.99
ENT 76.17 67.26 54.14
ENTR 76.71 67.71 54.91
UN+ENT 76.92 68.21 55.49
UNR+ENT 76.46 67.52 54.79
Original 76.40 66.93 54.74

Table 5.15: 13-classes, Direct Fusion network, general results

47

5 – From 3DEF to FuseNet

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 76.34 78.24 85.09 78.03 76.22 72.65
Class1 54.06 51.71 49.70 53.63 55.25 56.05
Class2 70.96 69.21 68.93 68.59 72.28 72.05
Class3 69.61 69.10 71.47 72.23 70.21 69.51
Class4 75.81 75.72 74.49 78.33 74.83 74.40
Class5 97.08 97.14 96.35 97.10 97.20 96.69
Class6 59.29 55.98 60.89 55.79 60.59 59.34
Class7 72.99 75.72 71.15 74.64 74.22 71.22
Class8 52.76 51.83 53.35 55.67 53.69 53.82
Class9 91.56 92.63 90.96 90.70 90.91 90.89
Class10 69.93 68.51 64.38 71.34 70.87 70.22
Class11 52.25 53.56 47.74 46.62 53.63 55.82
Class12 36.04 39.12 39.86 37.62 36.83 35.15

Table 5.16: 13-classes, Direct Fusion network, classwise accuracy

Global acc. Mean acc. IoU
UN 68.72 46.86 35.86
UNR 68.94 46.69 35.88
ENT 68.13 44.71 34.71
ENTR 68.41 45.61 35.57
UN+ENT 69.00 47.64 36.62
UNR+ENT 69.09 46.99 36.07
Original 68.76 46.42 35.48

Table 5.17: 40-classes, Direct Fusion network, general results

48

5 – From 3DEF to FuseNet

UN UNR ENT ENTR UN+ENT UNR+ENT
Class0 91.45 91.53 92.37 92.15 91.84 91.28
Class1 96.55 96.57 96.80 96.22 97.03 96.88
Class2 70.85 72.47 71.21 69.17 71.23 70.60
Class3 76.65 76.32 77.48 77.24 76.86 76.88
Class4 69.17 72.17 71.48 70.51 72.65 72.38
Class5 75.70 73.96 73.72 72.44 72.92 73.15
Class6 54.39 51.60 52.47 50.55 55.04 51.86
Class7 25.15 27.35 23.11 24.23 27.25 26.68
Class8 54.98 47.11 51.84 55.25 55.77 60.23
Class9 50.19 58.05 46.47 40.65 55.30 49.93

Class10 73.01 70.48 66.21 71.79 70.45 69.88
Class11 NaN NaN NaN NaN NaN NaN
Class12 61.63 70.13 59.31 64.85 65.57 64.00
Class13 23.88 22.24 23.37 23.03 20.77 18.51
Class14 16.26 18.17 16.88 18.75 21.92 16.55
Class15 57.76 60.56 55.72 57.33 63.78 57.78
Class16 62.79 61.38 52.52 44.26 54.02 55.46
Class17 51.50 51.23 52.39 51.46 47.55 52.75
Class18 35.82 34.06 27.38 36.64 32.44 39.78
Class19 35.77 29.70 25.07 27.12 32.76 26.25
Class20 18.79 23.82 20.90 15.30 23.07 17.99
Class21 NaN NaN NaN NaN NaN NaN
Class22 19.94 17.78 17.11 18.84 13.21 20.23
Class23 NaN NaN NaN NaN NaN NaN
Class24 45.34 49.18 45.11 45.49 41.69 42.94
Class25 NaN NaN NaN NaN NaN NaN
Class26 23.68 21.44 23.93 34.15 20.82 24.36
Class27 35.49 35.45 27.34 39.36 40.48 43.50
Class28 NaN NaN NaN NaN NaN NaN
Class29 30.80 27.73 25.84 28.63 44.29 30.05
Class30 41.46 33.24 35.11 32.67 45.28 44.75
Class31 48.85 43.88 46.32 40.98 44.36 38.72
Class32 70.94 65.53 64.80 71.85 71.90 73.13
Class33 NaN NaN NaN NaN NaN NaN
Class34 46.15 47.43 43.32 39.79 46.46 44.39
Class35 31.08 39.29 38.30 42.89 47.93 44.27
Class36 1.74 2.21 1.16 1.19 1.00 2.16
Class37 18.64 20.99 18.11 20.57 21.55 21.70
Class38 15.77 12.83 15.64 11.00 12.78 13.68
Class39 61.10 61.62 61.39 64.44 59.93 65.00

Table 5.18: 40-classes, Direct Fusion network, classwise accuracy

49

5 – From 3DEF to FuseNet

5.3 Reducing the Size of the Networks

After these attempts that did not manage to obtain big improvements with respect
the original FuseNet version as last test we tried to reduce the networks size, and
hence the number of parameters of the architectures. We thought about this firstly
because we wanted to reduce the computational load of such a big network and
more notably to check if we in some way saturated the performance over the NYUv2
dataset. In fact, we can notice that the incorporated features effectively bring some
improvements: this is noticeable in most of the combinations networks-feature sets
apart for few exceptions. The thing is that this improvement is very small with
respect to what could be achieved since we are very far from 100% accuracy or IoU.
We then thought that by reducing the size of the original FuseNet network we would
ruin its performance but we may see the effectiveness of our features.

To achieve this we removed a series of layers both in encoder, and accordingly, in
the decoder side. The cut has to be made in the center of the structure specularly
because of the autoencoder structure. We experimented by slicing all the networks,
the original and the proposed ones, in three main points:

1. after the first dropout layer

2. after the third fusion layer

3. after the second dropout layer.

We will report only the results of the cut made after the first dropout layer since
the one made after the third fusion layer essentially behaves equally and the one
made after the second dropout layer does not have meaningful parameters reduction
and performance differences with respect to the original network.

As can be seen in Tab. 5.19, depicting the number of parameters before and after
the cut for a 40-classes mapping, we can see that we have a meaningful reduction
of them. As expected the accuracy obtained by the training procedure is lower
than the original ones: lower number of parameters implies a lower possibility to
correctly elaborate the data. What is not expected is that some combinations of
features and networks effectively bring up the classification score as can be seen in
tables 5.20 and 5.21. As foreseen the original version of FuseNet, reduced with this
cut, performs way worse with respect to the full network in both 13- and 40-classes

50

5 – From 3DEF to FuseNet

mappings: this drop is around 8-9 % in both cases for global accuracy, 12% for both
mean accuracy and IoU. Despite this we can see that by using our Sparse Fusion
and Only Encoding version of FuseNet with ENT feature set we manage to obtain
around 3% gain in all three metrics. Even if we consider single network model the
two features set with ENT perform in a better way with respect to the one with
only the UN. We link this behaviour not to the number of parameters but to the
incorporated information: if it were a mere reason of size of the network the Parallel
AE should be the best performing one.

Surely we did not achieve the performances of the original network but we man-
aged to reduce the number of parameters by 8 times and to demonstrate that the
extracted features are useful. This reduction implies a lower computational costs:
the reduced models present a reduction of around one-third of the per-epoch train-
ing time as shown in Tab. 5.19. Moreover, what seemed to be the worse choice of
such features, so the ENT ones, since in most of the cases they performed slightly
worse, in this case it is the best one overall. In our opinion these results points out
also the likely saturation of the performances for the NYUv2 dataset with FuseNet
and its variation and the usefulness of the brought 3DEF’ features.

Network Original Reduced
Param Epoch time Param Epoch time

Sparse Fusion 58.908 125 6.968 83
Only Encoding 58.908 125 6.968 83
Direct Fusion 44.224 104 5.269 70
Parallel AE 73.591 143 8.666 94
FuseNet 44.173 90 5.218 60

Table 5.19: Number of parameters (in M) for original and reduced networks. Sample
epoch time in seconds using a NVIDIA® Tesla T4.

51

5 – From 3DEF to FuseNet

Network Dataset Global acc. Mean acc. IoU

Sparse Fusion
UN 67.92 56.95 43.73
ENT 71.20 60.35 47.79
UN+ENT 67.83 56.66 43.59

Only Encoding
UN 67.77 56.52 43.46
ENT 70.11 58.42 46.12
ENT+UN 68.03 57.06 43.80

Parallel AE
UN 67.82 56.31 43.38
ENT 68.38 55.89 43.90
UN+ENT 68.10 57.11 43.87

Direct Fusion
UN 67.82 56.36 43.47
ENT 68.02 54.98 43.10
UN+ENT 67.76 56.62 43.43

FuseNet Reduced Original 68.01 56.50 43.70

Table 5.20: 13-class, training with reduced networks, general results

Network Dataset Global acc. Mean acc. IoU

Sparse Fusion
UN 58.73 32.11 23.02
ENT 62.28 36.84 26.51
UN+ENT 59.04 33.83 24.00

Only Encoding
UN 59.03 32.77 23.34
ENT 60.78 34.44 24.79
UN+ENT 59.05 33.13 23.71

Parallel AE
UN 58.95 32.68 23.30
ENT 59.68 33.59 23.82
UN+ENT 59.12 33.14 23.53

Direct Fusion
UN 59.02 32.71 23.40
ENT 59.52 32.91 23.44
UN+ENT 59.31 32.69 23.50

FuseNet Reduced Original 59.02 33.00 23.42

Table 5.21: 40-class, training with reduced networks, general results

52

Chapter 6

From FuseNet to 3DEF

6.1 Input

6.1.1 The Data

For 3DEF we will use again the NYUv2 dataset over 13- and 40-classes mappings,
with both elaborated and raw depths. A difference from the original algorithm is
that we had to disable both filters.

6.1.2 The Features

With 3DEF the reasoning is the opposite with respect to the previous case. Here we
will work with pointclouds, trying to incorporate features from RGB-D data. These
features comes from FuseNet trained over 13- and 40-classes NYUv2 depending on
which output we want from the forests.

The projection from 2D to 3D is pretty simple: we start with the 3DEF prepro-
cessing phase, we identify the clusters and, given the features maps from FuseNet,
for each of them we average the features that falls inside the cluster’s area. To max-
imize the number of points that we can use to do this average procedure we disabled
also the outlier filter as well as the bilateral one. In this way we are able to obtain
a single feature vector for each cluster. The main problem of this approach is that
we cannot take features at the end of the encoding part where FuseNet managed
to process and extract the useful information but we need to take them at the end
of the decoder. This is because we need a 1-to-1 mapping between each 2D and

53

6 – From FuseNet to 3DEF

3D points to be able to obtain a way to correctly map them in the final clusters.
Taking the feature vectors in the middle of FuseNet would make it impossible to
correctly remap them to the corresponding 3D point. Furthermore, activation win-
dows cannot be used: they are squared and so once mapped back to the originating
pixel a given patch would overlap between clusters. A single value would correspond
to multiple clusters without a way to discriminate between them. These problems
are inherited from the different type of input data and learning method: by using
RGB-D and pointcloud FuseNet and 3DEF reasons over different representation and
learning structures to obtain the same results but in many aspects these are not well
matched. The autoencoder structure works by encoding and elaborating informa-
tion to obtain a meaningful representation in the middle of the network just prior
to the decoder: because of that if one wants to extract features should work either
at the end or after the encoder section.

In the end, because of all these reasons, we chose the final section of FuseNet to
extract these features to be able to use this information inside 3DEF. We selected
four places located in the final part of the network to have exactly the wanted
size and be able to project them back in the 3D space. These, as depicted in
Listing 6.1 are comprised of a convolutional, batch normalization, ReLU and another
convolutional layers. We choose to put us after each one of these layers obtaining
feature vectors of length 64 in all but the last case where the feature vector has
the same length of the number of classes. The overall size of the output size is
width× height× num_features

self. CBR1_RGB_DEC = nn. Sequential (
nn. Conv2d (64 , 64, kernel_size =3, padding =1) ,
nn. BatchNorm2d (64 , momentum = batchNorm_momentum),
nn.ReLU () ,
nn. Conv2d (64 , num_labels , kernel_size =3, padding =1) ,
)

Listing 6.1: Final Block of FuseNet

To import these features inside the learning algorithm we saved them in a simple
csv format and adapted the initial code to accept and work by doing tests over them.
These tests were carried out simply by using the same technique with a threshold
value applied with Unary features, as explained before.

54

6 – From FuseNet to 3DEF

6.2 Training and Results

Here we present the results of the training both for raw and elaborated depth ver-
sions of NYUv2 alongside our features from FuseNet. These, as explained before,
are extracted in four different points and we number them from the leftmost one
(1) to the rightmost (4): so V1 will indicate the features extracted after the first
convolutional layer, V2 after the batch normalization, V3 after the ReLU layer and
finally V4 if they are extracted after the last convolutional. We will point out if
FuseNet is trained over raw depth with an optional r after the version of the ex-
traction point. For example V1r will indicate FuseNet trained with raw depths and
features extracted after the first convolutional layer.

During our tests we noticed that changing the size of the input do not change
the results in a notable way: therefore, we opted to use only the smaller size to test
the 3DEF. All forests have been trained with 40 trees and a max of 20-levels depth
with default threshold parameters. The features for each couple depth-mapping
have been extracted from FuseNet trained over the same dataset.

Firstly we compare all the extraction points in the case of 13-classes mapping
and after that we will consider the 40-classes case.

6.2.1 13 Classes

6.2.1.1 Depth Elaborated

In this case the depth of the NYUv2 dataset are elaborated, so with the holes
filled. It can be clearly seen in Tab. 6.1 in general adding features gives us slight
worse results in all the metrics. Some exceptions are linked to particular couples of
dataset/classes as can be seen in Tab. 6.2.

Probably these results are due to the fact that, as shown also as example in
Fig. 6.1, Entangled features still dominates the learning procedure. Deep features
are used during training but cannot push forward the accuracy of the segmentation.
The insertion of such features from FuseNet reduced the number split that has to
be made in 20th level, effectively speeding up computation, but with a slight cost of
overall accuracy. Sure is that there is an intrinsic random factor with this kind of
learning, maybe even more prominent with respect to deep learning methods, but
the considerations made won’t change.

55

6 – From FuseNet to 3DEF

Furthermore, we cannot notice any substantial difference between FuseNet trained
over raw or elaborated depth or between the various extraction point.

Global acc. Mean acc. IoU Tree depth
V1 55.23 47.87 61.04 20
V1r 55.67 48.82 61.8 20
V2 55.51 48.41 61.55 20
V2r 55.23 48.09 60.91 20
V3 55.59 48.33 61.15 20
V3r 54.75 47.99 60.48 20
V4 54.79 48.26 61.1 20
V4r 55.38 48.68 61.52 20
Original 55.77 48.95 62.18 20

Table 6.1: 13-classes, depth elaborated, 3DEF trained with and without features
from FuseNet, general results

Original V1 V1r V2 V2r V3 V3r V4 V4r
Class0 65.62 67.65 66.24 66.33 65.0 65.76 66.03 65.0 61.4
Class1 9.92 10.76 9.49 9.81 10.34 10.24 10.17 10.92 10.14
Class2 54.27 54.03 54.72 54.76 53.81 54.47 53.93 54.97 55.03
Class3 32.31 30.63 31.31 30.59 30.05 30.6 29.75 29.6 31.11
Class4 71.15 69.95 70.75 69.96 68.78 71.42 69.53 69.36 71.07
Class5 96.67 96.59 96.53 96.58 96.56 96.68 96.61 96.61 96.51
Class6 25.23 24.65 24.73 24.22 24.09 25.23 24.38 25.46 25.23
Class7 60.72 60.55 65.1 63.37 63.49 61.97 61.5 62.5 63.08
Class8 26.77 22.97 25.81 25.08 21.09 23.19 23.01 24.84 26.99
Class9 74.23 74.26 74.53 74.99 74.93 75.68 72.98 72.96 74.14
Class10 41.15 41.0 41.08 39.63 41.02 39.02 41.91 39.5 41.25
Class11 49.56 44.24 45.67 45.67 44.76 44.61 46.01 45.58 46.17
Class12 28.71 25.05 28.72 28.4 31.32 29.39 28.12 30.09 30.72

Table 6.2: 13-classes, depth elaborated, 3DEF trained with and without features
from FuseNet, classwise accuracy

56

6 – From FuseNet to 3DEF

6.2.1.2 Depth Raw

Here the forests are trained over raw depths, which is also the classical configuration
presented in the paper. By comparing tables 6.1 and 6.3 it is clear how this version
performs better with respect to the one with elaborated depths but the other consid-
erations do not change. We do not have improvements brought by the introduction
of new features from the FuseNet architecture.

Global acc. Mean acc. IoU Tree Depth
V1 59.96 50.75 68.99 20
V1r 59.7 50.33 68.8 20
V2 60.07 50.91 69.75 20
V2r 60.21 50.65 69.41 20
V3 59.84 50.53 69.14 20
V3r 60.26 50.79 69.75 20
V4 59.99 50.91 69.55 20
V4r 60.47 50.91 69.99 20
Original 60.32 51.28 70.06 20

Table 6.3: 13-classes, depth raw, 3DEF trained with and without features from
FuseNet, general results

6.2.2 40 Classes

In these cases the considerations are the same, even if in some particular combination
with 40 classes we perform worse with respect to the original version. In tables 6.5
to 6.8 there are detailed results. Overall this method, in agreement with FuseNet’s
results, perform worsen with the 40-classes version with respect to the 13-classes
one for the same reasons of inherited precision and crowdness of the classes in the
various images.

57

6 – From FuseNet to 3DEF

Original V1 V1r V2 V2r V3 V3r V4 V4r
Class0 67.43 68.46 67.36 68.2 67.17 66.57 67.06 66.17 65.6
Class1 12.91 12.56 12.3 12.67 12.91 12.98 12.83 12.36 12.86
Class2 58.67 54.68 55.09 55.15 55.26 55.07 56.33 56.36 59.62
Class3 32.63 32.78 36.35 33.33 32.58 32.97 34.01 34.06 36.06
Class4 82.78 82.14 81.96 82.26 77.89 81.75 82.03 83.62 79.88
Class5 98.29 98.17 98.21 98.18 98.21 98.21 98.25 98.27 98.17
Class6 26.61 25.58 26.76 26.64 26.13 26.48 26.59 26.94 27.13
Class7 56.37 60.27 53.51 57.11 61.26 56.53 57.93 59.45 59.52
Class8 49.29 46.07 42.79 46.84 45.72 46.5 48.06 41.02 46.8
Class9 82.18 81.92 80.62 81.85 82.51 81.81 81.96 81.96 81.88
Class10 27.0 26.02 26.98 26.66 27.57 27.97 28.44 25.8 25.63
Class11 50.03 46.37 47.06 48.25 47.64 45.43 46.05 49.1 45.75
Class12 22.39 24.74 25.35 24.71 23.6 24.61 20.72 26.77 22.95

Table 6.4: 13-classes, raw depth, 3DEF trained with and without features from
FuseNet, classwise accuracy

Global acc. Mean acc. IoU Tree Depth
V1 36.15 24.71 22.84 20
V1r 35.97 25.13 22.93 20
V2 35.68 25.41 23.37 20
V2r 36.71 25.51 23.48 20
V3 36.36 25.2 23.02 20
V3r 36.06 25.6 23.22 20
V4 36.86 26.47 24.61 20
V4r 36.55 26.0 23.85 20
Original 37.0 26.91 24.79 20

Table 6.5: 40-classes, elaborated depth, 3DEF trained with and without features
from FuseNet, general results

58

6 – From FuseNet to 3DEF

Global acc. Mean acc. IoU Tree Depth
V1 40.45 27.05 26.78 20
V1r 41.15 27.74 27.35 20
V2 40.07 27.85 26.95 20
V2r 40.38 27.2 26.97 20
V3 41.67 27.79 27.49 20
V3r 42.20 28.13 28.08 20
V4 40.69 27.38 27.14 20
V4r 40.92 28.63 28.11 20
Original 42.23 29.86 30.03 20

Table 6.6: 40-classes, raw depth, 3DEF trained with and without features from
FuseNet, general results

59

6 – From FuseNet to 3DEF

Original V1 V1r V2 V2r V3 V3r V4 V4r
Class0 47.42 49.26 47.31 45.47 49.44 49.65 49.04 47.48 47.67
Class1 83.69 84.9 86.31 81.95 83.8 81.88 83.61 83.48 82.73
Class2 27.37 13.52 16.84 23.42 19.61 26.11 16.5 23.3 24.0
Class3 44.24 43.97 40.8 43.73 45.44 40.82 40.32 45.4 47.08
Class4 25.95 27.62 27.46 27.98 28.01 26.44 29.03 26.29 27.05
Class5 30.53 33.29 34.6 32.63 33.01 30.86 30.79 32.65 31.7
Class6 5.99 6.44 8.48 7.59 6.59 5.34 6.45 9.04 5.95
Class7 18.77 20.29 21.33 22.89 26.44 17.67 18.92 24.5 22.28
Class8 40.85 38.03 42.8 39.71 37.96 36.36 39.04 41.46 38.72
Class9 28.47 20.99 24.02 21.81 21.55 20.91 20.62 25.44 22.43
Class10 29.02 29.74 30.31 29.7 27.05 29.97 28.38 29.76 32.02
Class11 68.16 68.15 65.9 67.7 68.41 69.31 69.09 67.87 67.66
Class12 19.31 13.5 17.79 16.01 17.33 17.96 15.59 18.22 19.17
Class13 13.09 12.73 10.1 9.99 10.48 6.89 9.97 12.34 9.22
Class14 3.08 3.14 2.61 3.58 3.7 4.41 3.73 3.58 4.58
Class15 19.1 21.31 17.8 16.98 22.56 17.52 22.64 19.53 19.2
Class16 24.98 29.21 19.72 22.74 19.81 21.71 25.09 28.47 20.63
Class17 36.67 32.33 32.36 30.98 34.32 34.07 33.37 34.63 31.27
Class18 20.8 9.88 7.43 11.77 7.48 11.0 6.99 13.36 9.56
Class19 49.39 47.36 35.55 50.5 42.37 47.37 47.24 44.03 47.55
Class20 3.07 1.07 0.83 1.62 2.33 0.27 0.51 1.94 1.53
Class21 74.9 75.3 71.9 75.33 74.24 73.29 75.46 72.68 74.34
Class22 7.84 4.74 2.42 6.39 5.1 3.51 5.58 6.69 7.45
Class23 8.07 2.2 0.4 3.76 5.81 3.62 2.34 7.5 4.72
Class24 46.22 29.9 38.44 33.41 35.39 38.81 44.07 33.44 33.06
Class25 36.89 32.32 33.63 31.33 29.07 32.89 31.71 30.81 30.57
Class26 4.27 3.36 1.98 2.04 5.1 2.73 1.53 1.81 2.77
Class27 10.07 12.57 18.78 7.1 18.21 17.16 9.66 8.41 17.85
Class28 2.94 3.17 2.25 2.69 4.56 3.41 2.86 5.19 3.55
Class29 8.58 8.4 39.55 38.71 10.06 23.8 38.64 32.52 29.01
Class30 7.84 5.26 3.75 7.02 6.33 6.8 6.02 6.41 7.44
Class31 57.77 60.33 56.13 46.82 62.83 48.91 54.77 52.08 57.35
Class32 59.29 53.9 59.51 55.66 59.47 60.95 52.87 63.88 56.5
Class33 34.77 29.75 22.59 29.04 31.31 28.68 31.64 31.54 28.79
Class34 30.99 27.63 25.48 27.55 25.39 26.05 28.22 22.21 26.36
Class35 38.64 27.51 32.98 36.14 31.14 35.93 34.32 41.28 43.48
Class36 4.41 1.55 1.56 1.4 5.54 1.89 3.66 5.66 2.39
Class37 0.18 0.5 0.08 0.14 0.09 0.13 0.23 0.06 0.05
Class38 1.75 1.55 2.25 2.33 2.08 1.72 2.47 2.17 1.28
Class39 1.17 1.9 1.0 0.62 1.03 1.06 1.23 1.72 1.03

Table 6.7: 40-classes, elaborated depth, 3DEF trained with and without features
from FuseNet, classwise accuracy

60

6 – From FuseNet to 3DEF

Original V1 V1r V2 V2r V3 V3r V4 V4r
Class0 50.29 50.02 53.85 51.23 51.69 53.33 54.85 51.79 49.4
Class1 91.23 91.63 89.9 89.81 91.12 91.47 91.62 91.19 92.67
Class2 42.35 33.11 28.34 24.69 29.78 34.28 32.39 30.47 33.36
Class3 51.81 55.37 51.78 52.1 51.76 51.46 55.59 46.85 49.99
Class4 29.98 27.63 29.88 25.26 26.88 22.79 24.7 28.67 25.03
Class5 28.56 23.91 25.07 27.97 23.08 26.61 27.54 25.74 28.36
Class6 18.42 16.69 20.5 10.21 10.0 24.93 18.02 11.41 20.61
Class7 43.8 39.43 43.19 37.61 32.88 45.44 44.7 45.56 39.86
Class8 20.31 17.2 22.17 16.88 18.77 20.58 16.92 21.29 22.87
Class9 27.2 21.22 21.78 22.64 22.44 21.9 21.85 23.1 23.15
Class10 31.19 29.52 29.63 31.22 30.68 30.34 30.27 31.63 29.11
Class11 70.15 71.47 72.22 73.52 74.54 72.2 72.99 74.3 71.88
Class12 17.72 17.33 21.04 20.83 23.83 18.23 21.77 20.65 23.15
Class13 17.46 10.32 10.8 12.83 11.66 11.18 12.75 12.53 10.89
Class14 3.1 3.21 3.02 4.21 3.6 4.9 3.83 4.99 5.35
Class15 24.53 20.19 20.66 16.04 17.85 20.94 19.61 19.96 24.25
Class16 22.56 23.56 18.67 28.16 26.32 32.54 22.16 25.58 29.17
Class17 49.52 43.29 38.84 43.09 42.2 41.7 45.69 49.05 46.79
Class18 29.05 20.97 20.12 23.46 28.38 26.49 19.38 25.31 17.91
Class19 37.14 32.1 32.08 43.37 39.65 30.2 37.0 33.36 37.85
Class20 4.83 2.81 2.18 2.79 1.26 3.14 2.7 2.9 1.48
Class21 83.14 85.88 86.04 84.87 86.26 83.31 93.56 83.01 84.43
Class22 10.86 7.8 6.73 6.49 7.65 6.59 6.89 8.45 6.59
Class23 6.97 1.67 1.57 2.14 1.04 0.44 2.81 4.61 1.8
Class24 31.43 33.79 30.2 30.98 32.67 27.57 34.82 30.26 29.01
Class25 21.79 25.43 28.38 24.26 22.83 28.14 21.6 17.65 27.61
Class26 3.67 2.35 2.3 1.61 5.58 1.96 2.13 1.62 0.86
Class27 21.14 16.29 26.61 32.98 13.67 20.73 30.15 21.1 26.21
Class28 9.33 6.21 3.36 4.76 6.4 6.03 3.16 5.44 4.96
Class29 18.24 1.05 22.56 10.29 13.35 1.33 0.55 0.99 15.6
Class30 10.8 6.37 5.91 8.59 5.31 6.41 6.26 6.75 7.17
Class31 59.86 54.94 54.97 65.25 53.77 56.58 66.1 60.99 61.56
Class32 70.08 67.75 65.38 61.76 56.66 64.19 58.86 60.35 65.32
Class33 45.07 42.43 39.92 41.16 41.43 46.12 42.2 38.37 40.98
Class34 38.19 28.57 28.29 33.9 36.16 27.72 28.51 32.41 35.71
Class35 42.75 46.68 44.36 40.43 39.04 41.63 42.61 38.04 43.14
Class36 6.16 1.73 5.05 3.86 5.47 5.2 6.63 5.96 8.95
Class37 0.3 0.13 0.3 0.27 0.2 0.45 0.12 0.15 0.08
Class38 1.67 0.97 1.05 1.67 1.29 1.46 1.5 1.71 1.12
Class39 1.74 0.87 0.96 0.85 0.92 1.09 0.64 1.02 1.14

Table 6.8: 40-classes, raw depth, 3DEF trained with and without features from
FuseNet, classwise accuracy

61

6 – From FuseNet to 3DEF

6.3 Shorten Trees Depth
Similar to what we have done with FuseNet we have thought about the possibility to
reduce the depth of the trees, making tests every 2 levels from depth 6 to depth 20.
This to check possible saturation of the performances for the method with respect
to the dataset and to check the effective utilization of the features.

As said previously we can notice that the brought features are effectively utilized
in the learning process as depicted in Fig. 6.1. Performances with forests trained
with less trees levels exhibit the same behaviour of the previously seen results even
if with expected lower scores: they are all near the same value as shown as example
for 13 classes with 40 trees at depth 8 in Tab. 6.9.

Global acc. Mean acc. IoU
Original 52.71 46.64 57.77
V1 51.5 45.38 56.29
V1r 53.02 46.7 57.71
V2 52.64 46.27 57.36
V2r 52.73 45.93 57.18
V3 52.07 45.48 56.2
V3r 51.19 45.92 56.0
V4 51.38 45.57 56.27
V4r 52.9 46.94 58.07

Table 6.9: Forests trained with 40 trees at depth 8, 13-classes, general results

In the end the only improvement that we noticed was a slight reduction of
the number of necessary split by using FuseNet’s features, not quantifiable due
to stochastic nature of the learning method. This is not enough to justify the ex-
traction and elaboration procedure necessary to embed these information inside the
3DEF.

62

6 – From FuseNet to 3DEF

Figure 6.1: Features Importance for each depth level for the whole set of 40 trees,
13 classes trained with V4 features from FuseNet

63

Chapter 7

Conclusions

In this work we deeply studied FuseNet and 3D Entangled Forests.
Firstly, to better understand the FuseNet architecture, we tried to do fine-tuning

and training of it with a subset of the COROMA dataset. By doing so we noticed
the importance, during fine tuning, of updating weights in the whole decoding part:
this suggest that encoded features absolutely need the decoding side of the network
to be used correctly in a segmentation problem.

Starting from this we firstly tried to bring 3DEF features inside FuseNet. To
do so we developed four different variations trying to elaborate these features and
to incorporate them inside the original network in different ways. Unfortunately,
this did not bring the desired results: we noticed that overall the performances were
comparable in most of the cases and in a few of them we a very slight improvement
was present.

After that we tried to squeeze the original network, obtaining a significant re-
duction of the number of trainable parameters and hence the power requirements
necessary to train the models. Here, differently from the previous case, the brought
information effectively helped to improve significantly the performance. This is ex-
plainable either because with the original network we reached the maximum achiev-
able with the NYUv2 dataset or because with the NYUv2 dataset per se better
results cannot be achieved. Either way we successfully demonstrated that the fea-
tures used by 3DEF are useful in addition to RGB-D data at least if used within
FuseNet. This work can be further developed by considering, for example, that fea-
tures have been taken as-is and so a normalization procedure may be effective. Also

64

7 – Conclusions

other combination of features, or different subsets of them may be interesting trial to
further test these methodologies. Furthermore, different fusion techniques may be
applied for example dense fusion as in [1] or even concatenation either of elaborated
features or of “raw” ones within the depth branch. Surely, taking the features used
by 3DEF within FuseNet demonstrated its possibilities within this work.

As for 3DEF the work did not bring the same results as the previous case: most
of the times the forests that used deep features extracted from FuseNet performed
worse than the original version. In this case we think that the main reasons could
be either the quality of the information, insufficient to bring notable results, or the
quantity. In our opinion bringing 64 features in a system that works with 23 can be
overwhelming and, in this sense, dimensionality reduction techniques like Principal
Component Analysis (PCA) may be taken into consideration. Furthermore, differ-
ent features extraction techniques may be applied for example not taking the simple
average over the cluster but apply some weight function or taking the average over
the voxels.

In all cases the training made with NYUv2 with 13 classes performs in a better
way with respect to the 40-classes mapping. As explained previously this is probably
linked to the fewer requirements and crowdness of the class segmentation: a fewer
number of classes is easier to learn.

To summarize, during this work, we demonstrated that using features extracted
from pointclouds and taking consideration of local and spatial characteristics of
the cloud and embed this information inside a deep learning method could be of
use. Indeed, by bringing 3DEF’ features within our models based on FuseNet we
managed, in general, to obtain an improvement of the original performance. This
is true especially for the combination of Entangled Features and the reduced Sparse
Fusion network that shown an improvement between 3 and 4% over all the three
considered metrics. To further advance this study, apart from what is introduced
above, in future works we will apply the same reasoning with different datasets, like
the S3DIS [35] or the SUNRGBD, and try with different deep learning methods like
PointNet++.

65

Bibliography

[1] Caner Hazirbas et al. “FuseNet: Incorporating Depth into Semantic Segmen-
tation via Fusion-Based CNN Architecture”. In: ACCV. 2016.

[2] Denis Fernando Wolf, Johann Prankl, and Markus Vincze. “Enhancing Se-
mantic Segmentation for Robotics: The Power of 3-D Entangled Forests”. In:
IEEE Robotics and Automation Letters 1 (2016), pp. 49–56.

[3] Dengsheng Lu and Qihao Weng. “A survey of image classification methods and
techniques for improving classification performance”. In: International journal
of Remote sensing 28.5 (2007), pp. 823–870.

[4] Ali Borji et al. “Salient object detection: A survey”. In: Computational Visual
Media (2014), pp. 1–34.

[5] Alberto Garcia-Garcia et al. A Review on Deep Learning Techniques Applied
to Semantic Segmentation. 2017. arXiv: 1704.06857 [cs.CV].

[6] Keisuke Tateno, Federico Tombari, and Nassir Navab. “When 2.5D is not
enough: Simultaneous reconstruction, segmentation and recognition on dense
SLAM”. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA) (2016), pp. 2295–2302.

[7] Keisuke Tateno et al. “CNN-SLAM: Real-Time Dense Monocular SLAM with
Learned Depth Prediction”. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017). doi: 10.1109/cvpr.2017.695. url:
http://dx.doi.org/10.1109/CVPR.2017.695.

[8] Li Sun, Cheng Zhao, and Rustam Stolkin. “Weakly-supervised DCNN for
RGB-D object recognition in real-world applications which lack large-scale
annotated training data”. In: arXiv preprint arXiv:1703.06370 (2017).

66

http://arxiv.org/abs/1704.06857
https://doi.org/10.1109/cvpr.2017.695
http://dx.doi.org/10.1109/CVPR.2017.695

BIBLIOGRAPHY

[9] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

[10] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation”. In: IEEE
transactions on pattern analysis and machine intelligence 39.12 (2017), pp. 2481–
2495.

[11] Lyne Tchapmi et al. “Segcloud: Semantic segmentation of 3d point clouds”. In:
2017 International Conference on 3D Vision (3DV). IEEE. 2017, pp. 537–547.

[12] Angela Dai et al. “Scannet: Richly-annotated 3d reconstructions of indoor
scenes”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2017, pp. 5828–5839.

[13] Albert Montillo et al. “Entangled decision forests and their application for
semantic segmentation of CT images”. In: Biennial International Conference
on Information Processing in Medical Imaging. Springer. 2011, pp. 184–196.

[14] Farzad Husain et al. “Combining semantic and geometric features for object
class segmentation of indoor scenes”. In: IEEE Robotics and Automation Let-
ters 2.1 (2016), pp. 49–55.

[15] Saurabh Gupta et al. “Learning rich features from RGB-D images for object
detection and segmentation”. In: European conference on computer vision.
Springer. 2014, pp. 345–360.

[16] Morris Antonello et al. “Multi-view 3D entangled forest for semantic segmen-
tation and mapping”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 1855–1862.

[17] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classifica-
tion and segmentation”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 652–660.

[18] Charles Ruizhongtai Qi et al. “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space”. In: Advances in neural information processing
systems. 2017, pp. 5099–5108.

[19] Ioannis Kostavelis and Antonios Gasteratos. “Semantic mapping for mobile
robotics tasks: A survey”. In: Robotics and Autonomous Systems 66 (2015),
pp. 86–103.

67

http://arxiv.org/abs/1409.1556

BIBLIOGRAPHY

[20] Zhengyou Zhang. “Microsoft kinect sensor and its effect”. In: IEEE multimedia
19.2 (2012), pp. 4–10.

[21] N Namitha et al. “Point cloud mapping measurements using kinect RGB-D
sensor and kinect fusion for visual odometry”. In: Procedia Computer Science
89 (2016), pp. 209–212.

[22] Michael Firman. “RGBD datasets: Past, present and future”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition workshops.
2016, pp. 19–31.

[23] Pushmeet Kohli Nathan Silberman Derek Hoiem and Rob Fergus. “Indoor
Segmentation and Support Inference from RGBD Images”. In: ECCV. 2012.

[24] Camille Couprie et al. “Indoor semantic segmentation using depth informa-
tion”. In: arXiv preprint arXiv:1301.3572 (2013).

[25] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. “Perceptual organization
and recognition of indoor scenes from RGB-D images”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2013, pp. 564–
571.

[26] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. “Sun rgb-d: A rgb-d
scene understanding benchmark suite”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 567–576.

[27] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. “Sun3d: A database
of big spaces reconstructed using sfm and object labels”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2013, pp. 1625–1632.

[28] Allison Janoch et al. “A category-level 3d object dataset: Putting the kinect
to work”. In: Consumer depth cameras for computer vision. Springer, 2013,
pp. 141–165.

[29] Angel Chang et al. “Matterport3d: Learning from rgb-d data in indoor envi-
ronments”. In: arXiv preprint arXiv:1709.06158 (2017).

[30] Wonmin Byeon et al. “Scene labeling with lstm recurrent neural networks”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2015, pp. 3547–3555.

68

BIBLIOGRAPHY

[31] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. “Bayesian SegNet:
Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for
Scene Understanding”. In: Procedings of the British Machine Vision Confer-
ence 2017 (2017). doi: 10.5244/c.31.57. url: http://dx.doi.org/10.
5244/c.31.57.

[32] Radu B Rusu and S Cousins. “Point cloud library (pcl)”. In: 2011 IEEE in-
ternational conference on robotics and automation. 2011, pp. 1–4.

[33] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human
detection”. In: 2005.

[34] Bela Julesz. “Textons, the elements of texture perception, and their interac-
tions”. In: Nature 290.5802 (1981), p. 91.

[35] Iro Armeni et al. “3d semantic parsing of large-scale indoor spaces”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 1534–1543.

[36] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning deconvolution
network for semantic segmentation”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1520–1528.

69

https://doi.org/10.5244/c.31.57
http://dx.doi.org/10.5244/c.31.57
http://dx.doi.org/10.5244/c.31.57

Websites

[37] Natalie Fletcher. Classification VS Detection VS Segmentation models: the
differences between them and when to use each. 2019. url: https://www.
clarifai.com/blog/classification-vs-detection-vs-segmentation-
models-the-differences-between-them-and-how-each-impact-your-
results.

[38] Piotr Dollar. Learning to Segment. 2019. url: https://research.fb.com/
blog/2016/08/learning-to-segment/.

[39] Kenneth Dasalla. EngD Research Project 03: Introduction of Depth Sensors.
2019. url: https://zubr.co/engd-research-project-03-introduction-
of-depth-reality-research-project-3/.

[40] Anil Sonmez. Implementation of FuseNet by Anil Sonmez. 2019. url: https:
//github.com/zanilzanzan/FuseNet_PyTorch.

70

https://www.clarifai.com/blog/classification-vs-detection-vs-segmentation-models-the-differences-between-them-and-how-each-impact-your-results
https://www.clarifai.com/blog/classification-vs-detection-vs-segmentation-models-the-differences-between-them-and-how-each-impact-your-results
https://www.clarifai.com/blog/classification-vs-detection-vs-segmentation-models-the-differences-between-them-and-how-each-impact-your-results
https://www.clarifai.com/blog/classification-vs-detection-vs-segmentation-models-the-differences-between-them-and-how-each-impact-your-results
https://research.fb.com/blog/2016/08/learning-to-segment/
https://research.fb.com/blog/2016/08/learning-to-segment/
https://zubr.co/engd-research-project-03-introduction-of-depth-reality-research-project-3/
https://zubr.co/engd-research-project-03-introduction-of-depth-reality-research-project-3/
https://github.com/zanilzanzan/FuseNet_PyTorch
https://github.com/zanilzanzan/FuseNet_PyTorch

	Abstract
	List of Figures
	List of Tables
	Listings
	Summary
	On 3D Semantic Segmentation
	History
	Comparing 2D and 3D data
	3D Problems
	State of the Art
	Datasets for Semantic Segmentation
	Metrics

	Our Contributions

	FuseNet
	The Original Network
	The COROMA RGB-D Dataset
	Fine-Tuning

	3D Entangled Forests
	From 3DEF to FuseNet
	Input
	The Data
	The Features
	Generated Features Set

	Proposed Networks
	Sparse Fusion
	Only Encoding
	A Parallel Autoencoder
	Direct Fusion

	Reducing the Size of the Networks

	From FuseNet to 3DEF
	Input
	The Data
	The Features

	Training and Results
	13 Classes
	40 Classes

	Shorten Trees Depth

	Conclusions
	References

