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Chapter 1

Abstract

Stars with initial mass Mi in the range 0.9M� ≤ Mi ≤ 6 − 9M� end their
lives as White Dwarfs (WDs) after the ejection of the upper layers through
stellar winds. The masses of the white dwarf and the Zero Age Main Sequence
(ZAMS) progenitor can be linked in the so-called Initial-Final Mass Relation
(IFMR), a fundamental tool in both stellar evolution analysis and galaxy
models. In fact, this semi-empirical law directly provides an estimate of
the mass loss during the stellar lifetime and its dependence on stellar mass
(figure 1.1 on the following page). Furthermore, the high-mass end of the
IFMR suggests an upper value for the initial mass of stars developing a
degenerate Carbon-Oxygen core: thus, it becomes a valid test to both the
Type Ia SuperNovae (SNe) rates, through the determination of the additional
amount of material a WD in a binary system has to accrete to reach the
Chandrasekhar limit for the carbon deflagration (Marigo (2013)), and the
Type II SNe rates, forcing the value of the critical mass which separates
this catastrophic explosion from the WD production (Kalirai, Hansen, et al.
(2008)).

The IFMR gives also an overall feedback to galaxy models: it can put
constraints on the chemical evolution through the amount of metal-enriched
gas brought back to the interstellar medium due to stellar winds (hence it
can also enhance the understanding of star formation efficiency); it represents
a primary input in the mass-to-light ratio of stellar population; it can be
useful to estimate the distance and the age of globular clusters interpreting
the luminosity function and modeling the cooling sequences of WDs (hence
also a technique for measuring the age of the Galactic halo). Finally, the
measurement of the fuel burnt during the thermal pulsing-asymptotic giant
branch phase can be used to find the energy output of the star during this
phase and thus the luminosity contribution of the asymptotic giant branch
star populations to the integrated galaxy light.
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Figure 1.1: Predicted and semi-empirical IFMRs from Marigo (2013).

The first attempt for a IFMR was done by Weidemann in 1977, who
discovered that the mass loss had been greatly understimated comparing the
theoretical models for the mass loss at that time available with the observed
masses of WDs in the Hyades and Pleiades. Subsequent works demonstrated
that a nearly linear correlation between Main Sequence (MS) progenitor
mass and WD mass occurs, so that higher-mass stars produce increasingly
more massive WDs. However, in the last ∼ 20 years the amount of data
has increased proving that the relation can’t be linear in the full mass range
(Cummings, Kalirai, Tremblay, and Ramirez-Ruiz (2015)) showing a shallower
slope at higher masses.

Although the empirical resources are increased, the scatter has become
significantly larger due to both an intrinsic effect, so that the stochastic nature
of the mass loss, and the uncertainties caused by theoretical models, such as
the stellar isochrones and the WD cooling sequences, which propagate the
systematic errors to the cluster’s age, metallicity (Z), amount of convective
overshooting, thickness of the WD H/He layers, chemical composition of
the degenerate core (Marigo (2013)). Thus, data from different groups of
research processed adopting different evolutionary models are affected by
relative systematic errors. However, a single valid model can’t be reached
since our understanding of some crucial processes, like the convection, is still
incomplete.

In this thesis we analyse the dependencies which play a significant role
in the IFMR in order to improve future models: the 2nd dredge up, the 3rd

dredge up, the mass loss and the metallicity. This can be done comparing
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the theoretical models with a uniform and wide set of semi-empirical data
which covers the almost entire initial mass and metallicity ranges. In the
chapter 2 we discuss the stellar evolution after the He-burning phase for stars
with 0.9M� ≤Mi ≤ 6− 9M�; in the chapter 3 we present the semi-empirical
data and IFMR; the description of the theoretical models involved in the
work and their agreement with the semi-empirical quantities are exposed in
the chapter 4; finally, the summary and the conclusions are resumed in the
chapter 5.
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Chapter 2

Stellar Evolution

Figure 2.1: Hertzsprung-Russell diagram of a 2M� and solar metallicity star. Fig-
ure from Herwig (2005).

In this chapter we briefly discuss the stellar evolution after the Helium
burning for stars with 0.9M� ≤ Mi ≤ 6 − 9M�. We split this mass range
into Mi ≤ 2M� and Mi ≥ 2M� for convenience: the first group includes the
low-mass stars, that ignite helium (He) in degenerate conditions (the He-flash)
during the RGB phase, while the second group contains the intermediate-
mass stars, which avoid He core degeneracy. We refer to Herwig (2005) for
the complete review of this phase. In figure 2.1 from Herwig (2005) the
main phases are exposed in a Hertzsprung-Russell diagram of a 2M� and
solar metallicity star, from the main sequence to the WD phase. In the
post-AGB section, wiggles in the track are caused by numerical convergence
difficulties. The blue track shows a born-again evolution of the same mass.
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The red and green stars mark the position of the central stars of planetary
nebulae. The number for each evolutionary phase indicates the logarithm of
the duration. Larger or smaller mass cases would have respectively smaller or
larger evolutionary timescales.

2.1 The AGB Phase

The Asymptotic Giant Branch (AGB) phase starts whith the exhaustion of
the He in the centre. The internal structure of the star now consists of an
inert electron-degenerate Carbon-Oxygen (CO) core, surrounded by (from the
center outwards) a He-burning shell, an inert thin He-rich shell, a H-burning
shell and a convective envelope.

2.1.1 The Early AGB phase and the second Dredge-
Up

Initially the He-burning shell is providing all the luminosity. Indeed, as
the core is contracting and releasing gravitational energy, the He burning
reaction rate increases, driving the expansion and the consequent cooling
of the envelope. The effective temperature decreases while the luminosity
increases (due to the larger radius): the star moves upwards and to the right
in the Hertzsprung-Russell Diagram, approaching the Hayashi line. The
H-burning shell is temporarily extinguished for stars with Mi ≥ 3 − 4M�
(Dominguez et al. (1999)) and the base of the convective envelope moves
inwards causing a mixing of material which has previously undergone H-
burning to the surface: the so-called 2nd dredge-up. Thus, products such as
4He and 14N appear at the surface. This process does not take place in lower
mass stars because the expansion induced by the He-shell is not sufficient
to cool the H-shell enough (Dominguez et al. (1999)). At the end of the
2nd dredge-up, the H-burning shell is restored. Now the star has two energy
sources.

2.1.2 The TP-AGB phase

The energy generation rate per unit time per unit mass for a given nuclear
reaction involving the i and j particles is εij ∝ T ν , where T is the temperature
and ν a constant. For the triple-α reaction the ν found is ∼ 40, while for the
H-burning it depends on the chain which dominates the He production: for
the proton-proton (PP) chain ν ' 4, for the CNO-cycle ν ' 18. At the end
of the early AGB phase, the energy sources are close together. Thus, due
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to the large gap which occurs between the different T dependencies for the
H-burning and the He-burning reactions, the structure becomes thermally
unstable, leading to a process termed thermal pulse cycle (TP). Initially
the H shell provides all the luminosity, until the instability takes place and
the energy generation rate of the He shell has a dramatic increase, pushing
outwards (by even a factor of 2 in radius) the H shell which disappears. The
He-burning shell drives a convective pocket in the He-rich inert intershell,
bringing the triple-α products upwards to the intershell region. This He-flash
phase lasts for ∼ 100 years, then the He shell dies down and the intershell
convective pocket disappears.

The 3rd Dredge-Up

As the opacity increases due to the lower T, the convective envelope penetrates
into deeper regions. For stars with Mi ≥ 2M�, the convective upper layers
and the region which previously was the convective intershell overlap, hence
the convection can reach material produced by the He-flash nucleosynthesis.
The process, called 3rd dredge-up (or TDU), succeeds in mixing material
enriched with 12C, 4He, 22Ne, 19F, 25Mg and other s-process elements to
the surface, leading to important nucleosynthesis (Iben and Truran (1978),
Cristallo, Straniero, Gallino, et al. (2009)).

The 3rd dredge-up is a fundamental process as it limits the growth of the
CO core subtracting material that would otherwise be used to accrete the
core. Thus its efficiency affects significantly the Initial-Final Mass Relation
and it will be discussed in the section 4.2.1 on page 31.

The TDU lasts ∼ 100 years, then the star contracts and the H-shell is
restored and provides all the luminosity for ∼ 10000 years. This phase is called
interpulse. During the entire cycle the surface luminosity remains almost
unchanged. Traditionally, the efficiency of the 3rd dredge-up is calculated
through the parameter:

λ =
∆Mdredge−up

∆Mc

(2.1)

where ∆Mdredge−up is the dredged-up mass and ∆Mc is the core mass
increment during the previous quiescent interpulse phase. A λ = 0 corresponds
to an absence of dredge-up, and a λ = 1 means that all the material that the
core accretes during the interpulse period is ejected after the dredge-up.
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The Hot Bottom Burning

The AGB phase is responsible for many of the nuclei found in the universe.
We can’t discuss here all the unique nucleosynthesis which takes place during
this phase, however, we must mention the Hot Bottom Burning (HBB). This
process affects stars with a core mass Mc > 0.8M� surrounded by an envelope
with a mass Menv > 2M� (Marigo (2013)), where the inner edge of the
convective envelope penetrates the upper edge of the H-burning shell. We
must stress that the minimum mass for the onset of the HBB is a function
of the metallicity: at lower Z a lower stellar mass is needed for the HBB
(Ventura and D’Antona (2005)). The temperature T is high enough for the
H-burning nuclear reactions, so the nucleosynthesis starts also at the bottom
of the envelope (Forestini and Charbonnel (1997)):

• As the 7Be is produced by the PP chain, it is transported upwards
to cooler regions before completing the nuclear reactions chain (PPII
or PPIII) which would otherwise destroy it. There, through the elec-
tron capture, it turns into 7Li. This process, termed Cameron-Fowler
Beryllium Transport Mechanism, leads to a temporary super-rich Li
phase.

• through the CNO cycle, the HBB converts the 12C into 13C and 14N,
increasing the 14N abundance in the surface and thus preventing the
formation of Carbon stars.

• The Ne−Na and the Mg−Al cycles can operate due to the suitable
conditions, producing 23Na through 22Ne (p, γ) 23Na and 26Al through
25Mg (p, γ) 26Al.

Furthermore, the HBB makes the observed luminosity brighter than
expected by the classical Mc−L relation (Bloecker and Schoenberner (1991)).
Even if the HBB is fundamental for the unique nucleosynthesis provided, in
this work we focus on the stellar mass during its lifetime, rather than on the
chemical evolution, thus we will discuss the IFMR dependencies on the 2nd

dredge-up, 3rd dredge-up, mass loss and metallicity.

2.2 The White Dwarf phase

The products of the AGB nucleosynthesis are released to the interstellar
medium through stellar winds. The mechanism driving the ejection of large
portion of mass is not completely understood, although some clues suggest
that an essential role is performed by the dust particles while the star is
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Figure 2.2: Predicted cooling curves for a CO white dwarf of 0.6M�.

ascending the AGB. In fact, during the TP-AGB phase, the pulsations induce
shock waves in the stellar atmosphere, bringing gas to larger radii. Thus the
density increases in the outer layers, where the temperature is significantly
lower. These conditions make the dust particles condensation possible. The
radiation coming out from the star is strong enough to easily accelerate these
particles, causing a net outgoing mass flux. Hence, once the star enters
the super-wind phase, the envelope is rapidly removed. When the mass of
the H-rich envelope becomes sufficiently small (about 10−2 − 10−3M�), the
outer layers shrink and the star leaves the AGB; thus, the mass loss directly
influences the TP-AGB phase itself: the more efficient is the process, the
shorter will be the phase. Since the H-burning shell is still active and the star
follows the Mc − L relation, the luminosity remains almost unchanged while
the effective temperature increases: the star draws an horizontal track on the
Hertzsprung-Russell Diagram. However, the stellar structure is stable during
this phase: the temperature increases because the removal of the outer gas
leaves the deeper and hotter layers exposed. When the T ≥ 30000K, a strong
UV flux destoys the dust grains in the circumstellar envelope, dissociating
the molecules and ionizing the gas. This phase is called planetary nebula.
Finally, when T ' 105K, the H-burning shell is extinguished. The remnant
is called white dwarf, a star within which the electron degeneracy allows a
stable structure even when it cools down.

Nuclear fusion no longer provides energy and the WD shines by radiating
thermal energy, cooling at almost constant radius due to the electron degene-
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racy and decreasing luminosity L. Observed WDs are found in a range around
∼ 0.6M�, which corresponds to a ≤ 2M� progenitor mass. Thus, the great
majority of the WDs are composed of C and O; those with M < 0.45M� are
He WDs produced from low-mass stars which remove their envelopes already
on the RGB phase; those with M > 1.2M� are ONe WDs, formed from stars
with sufficient mass to develop a degenerate ONe cores after C-burning. We
refer to Mestel (1952) for the thermal properties and the evolution of WDs.

In the interior of a WD the temperature gradient is small due to the very
low L and the high thermal conductivity caused by the degenerate electrons,
hence we can consider the temperature almost constant. However, the outer
layers are non-degenerate and thus the energy must be transported through
radiation according to the high opacity. Since the outer layers act to insulate
the degenerate interior from outer space, a significant temperature gradient
must exist. Assuming a transition point where the electron-degeneracy
pressure of the interior equals the ideal gas pressure of the electrons in the
outer layers, a Kramers opacity law k = k0ρT

−7/2 (where ρ is the density, T the
temperature and k0 a constant), pressure P and temperature T approaching
to zero at the surface, free bound absorption and the mean molecular weigth
per free electron µe = 2 in the envelope, the relation between the interior
temperature Tc on the one hand, the luminosity and the mass on the other
hand is:

Tc ≈ 7.7× 107K

(
L/L�

M/M�

)2/7

. (2.2)

The typical masses and luminosities areM ' 0.6M� and L < 10−2L�, thus
the WDs have temperature approximately Tc < 2×107K. A simple model for
the WDs cooling time tcool was derived in Mestel (1952) using this quantities.
Firstly, the only energy source available for the luminosity radiated away
comes from the thermal energy stored in the non-degenerate ions, since there
are no nuclear sources, no contraction and the internal energy of the electrons
which fill their lowest energy state up to the Fermi level cannot change.
Subsequently, assuming that non-degenerate ions behave as an ideal gas with
specific heat per unit mass cv = 3

2
R/µion with R = 8.31447× 107ergg−1K−1

the universal gas constant and µion mean atomic mass per ion, the relation
for a generic cooling time tcool becomes:

tcool ≈
1.05× 108yr

µion

(
L/L�

M/M�

)−5/7

. (2.3)

This approximate cooling law shows that more massive WDs evolve more
slowly, because more thermal energy is stored in their interior ions, while
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tcool is smaller for more luminous WDs. Moreover, increasing the µion at
constant total mass decreases the cooling time since fewer ions per unit mass
are available. For a CO white dwarf composed with the same amount of C
and O a µion ≈ 14 is found. However, this simple cooling law seems to be
unsuitable as it predicts cooling times larger than the age of the Universe
when L < 10−5L�. More recent models take into account the effects of
the non-degenerate envelope contraction, the Coulomb interactions and the
crystallization: as the WD cools, the ions settle into a lattice structure due to
the increased interactions, releasing heat. Thus cv >

3
2
R/µion and tcool results

larger. Subsequently, once the crystallization is almost complete, cv decreases
and cooling speeds up. The two models are shown in figure 2.2 on page 13
for a CO white dwarf of 0.6M�.
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Chapter 3

Semi-Empirical Initial Final
Mass Relation

The techniques to measure the masses of WDs are described in Kalirai, Hansen,
et al. (2008):

• dynamical mass can be calculated from the orbit in a binary system;

• gravitational redshift, if the radial velocity is known, through the Hα

Balmer Line;

• pulsation mode analysis for very hot WDs;

• fits to the mass-radius relation for WD with trigonometric paralaxes;

• fitting the Balmer lines of the spectrum to model atmospheres (Bergeron,
Saffer, and Liebert (1992)).

Concerning the latter method, we recommend Salaris et al. (2009) for the
full description: through the spectrum analysis the WD surface gravity g and
the effective temperature Teff can be derived; subsequently an interpolation
within a grid of theoretical WD models provides the final mass Mf and the
cooling age tcool of the WD. The cluster age tcluster is inferred fitting the turn-
off luminosity in the Color-Magnitude Diagram (CMD) with independent
theoretical isochrones. Subtracting the tcool to the tcluster gives the lifetime tMS

of the progenitor star from the Main Sequence to the top of the Asymptotic
Giant Branch. Finally, the progenitor mass Mi is obtained using the mass-
lifetime relationships from theoretical stellar evolution models. As said in
chapter 1 on page 5, theoretical models bring unavoidable systematic errors
in the estimate of tcluster, metallicity (Z), amount of convective overshooting,
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Figure 3.1: Semi-empirical IFMR from table 3.1 on page 21.

thickness of the WD H/He layers, chemical composition of the degenerate
core (Marigo (2013)).

In this thesis we use the observations and results provided by the prof.
Jason S. Kalirai (Space Telescope Science Institute, Baltimore, USA) and
prof. Jeffrey D. Cummings (Center for Astrophysical Sciences, John Hopkins
University, Baltimore, USA) with a wide set of papers from the year 2001 up
to nowadays (figure 3.1), in order to get the ranges for the age, the metallicity,
the initial and final masses as wider and more uniform as possible. Before the
description of the clusters analysed in this thesis, we want to stress that this
method leads as usual to unavoidable limits: first of all, during the years the
human knowledge has been improving, so the last results must be naturally
considered as more accurate; secondly, consistency is not yet fully achieved
since the isochrones used to determine tcluster should be computed according
to the evolutionary tracks adopted to infer Mi and all the cluster ages should
be determined with the same method (Salaris et al. (2009)); finally, the
solar metallicity is changed from Z� = 0.02, assumed at the time of the
first observations, to Z� = 0.0152. As a general rule, we give the priority to
the more recent results, to the tcluster derived with the PARSEC code (see
Bressan et al. (2012)) and we assume the solar metallicity as Z� = 0.0152.
Here below the clusters analysed and their characteristics are presented: age,
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metallicity, isochrones used for the tcluster and models for tcool for the WDs
which belong to that cluster. For more information we recommend to consult
the references.

• NGC2099: analysed in Kalirai, Richer, Reitzel, et al. (2005),Cum-
mings, Kalirai, Tremblay, and Ramirez-Ruiz (2015) and Cummings,
Kalirai, Tremblay, Ramirez-Ruiz, and Bergeron (2016). It has an age of
(520±50) Myr and [Fe/H] = 0.09 (Kalirai, Ventura, et al. (2001)). The
tcluster was calculated with the PARSEC code (Bressan et al. (2012)),
the tcool and the Mf with Fontaine, Brassard, and Bergeron (2001) for
lower mass WD (< 1.10M�) and with Althaus et al. (2007) for massive
WDs.

• NGC6791: analysed in Kalirai, Bergeron, et al. (2007) and Kalirai,
Hansen, et al. (2008). The age is 8.5 Gyr and [Fe/H] = 0.37 (and
corrected in Kalirai, Saul Davis, et al. (2009) in [Fe/H] = 0.40). tcluster
was calculated with VandenBerg, Bergbusch, and Dowler (2006), tcool
and Mf with Fontaine, Brassard, and Bergeron (2001). The initial
masses were calculated with Hurley, Pols, and Tout (2000).

• NGC6121: or M4, analysed in Kalirai, Saul Davis, et al. (2009). Age
of ∼ 12 Gyr (fixed for Milky Way globular cluster) and [Fe/H] = −1.10
(very low metallicity, useful to set a wide range for Z in this work). tcool
and Mf were calculated with Fontaine, Brassard, and Bergeron (2001);
the initial masses were fixed at Mi = (0.80± 0.05)M�.

• NGC6819: analysed in Kalirai, Hansen, et al. (2008) and Kalirai,
Marigo, and Tremblay (2014). The age of the cluster tcluster is 2.5 Gyr
and the metallicity [Fe/H] = 0.049 (Kalirai, Richer, Fahlman, et al.
(2001) and Kalirai, Hansen, et al. (2008)). The initial masses followed
from models by Bressan et al. (2012), the remnant masses and tcool
from Bergeron, Saffer, and Liebert (1992) corrected with Tremblay and
Bergeron (2009).

• NGC7789: analysed in Kalirai, Hansen, et al. (2008) and Kalirai,
Marigo, and Tremblay (2014). The age of the cluster tcluster is 1.4 Gyr
and the metallicity [Fe/H] = −0.035 (Kalirai, Richer, Fahlman, et al.
(2001) and Kalirai, Hansen, et al. (2008)). The initial masses followed
from models by Bressan et al. (2012), the remnant masses and tcool
from Bergeron, Saffer, and Liebert (1992) corrected with Tremblay and
Bergeron (2009).

19



• NGC2323: analysed in Cummings, Kalirai, Tremblay, and Ramirez-
Ruiz (2016). The age of (115± 20) Myr was found with the PARSEC
code (Bressan et al. (2012)). It has solar metallicity [Fe/H] = 0.00
(described in Kalirai, Fahlman, et al. (2003)). tcool and Mf were found
with Fontaine, Brassard, and Bergeron (2001) for lower mass WD
(< 1.10M�), with Althaus et al. (2007) for massive WDs. Mi determined
with Bressan et al. (2012).

• NGC2287: analysed in Cummings, Kalirai, Tremblay, and Ramirez-
Ruiz (2016). The age of (205± 30) My was found with the PARSEC
code (Bressan et al. (2012)). It has solar metallicity [Fe/H] = 0.00.
Mi determined with Bressan et al. (2012). tcool and Mf were found
with Fontaine, Brassard, and Bergeron (2001) for lower mass WD
(< 1.10M�), with Althaus et al. (2007) for massive WDs. Mi determined
with Bressan et al. (2012).

• NGC2516: analysed in Cummings, Kalirai, Tremblay, and Ramirez-
Ruiz (2016). The age of (150± 20) Myr was found with the PARSEC
code (Bressan et al. (2012)). It has metallicity [Fe/H] = 0.065. tcool
and Mf were found with Fontaine, Brassard, and Bergeron (2001) for
lower mass WD (< 1.10M�), with Althaus et al. (2007) for massive
WDs. Mi determined with Bressan et al. (2012).

• NGC3532: analysed in Cummings, Kalirai, Tremblay, and Ramirez-
Ruiz (2016) and Cummings, Kalirai, Tremblay, Ramirez-Ruiz, and
Bergeron (2016). It has an age of (320± 20) Myr and [Fe/H] = 0.09.
(Cummings, Kalirai, Tremblay, Ramirez-Ruiz, and Bergeron (2016)).
The tcluster was calculated with the PARSEC code (Bressan et al. (2012)),
the tcool and the Mf with Fontaine, Brassard, and Bergeron (2001) for
lower mass WD (< 1.10M�) and with Althaus et al. (2007) for massive
WDs. Mi determined with Bressan et al. (2012).

• PLEIADES: analysed in Cummings, Kalirai, Tremblay, and Ramirez-
Ruiz (2016) and Cummings, Kalirai, Tremblay, Ramirez-Ruiz, and
Bergeron (2016). For this cluster we use an age of (135 ± 15) Myr
and metallicity [Fe/H] = 0.01. The tcluster was calculated with the
PARSEC code (Bressan et al. (2012)), the tcool and theMf with Fontaine,
Brassard, and Bergeron (2001) for lower mass WD (< 1.10M�) and with
Althaus et al. (2007) for massive WDs. Mi determined with Bressan
et al. (2012).

• NGC2168: analysed in Cummings, Kalirai, Tremblay, and Ramirez-
Ruiz (2016). The age of (170±20) Myr was found with the PARSEC code
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(Bressan et al. (2012)). It has metallicity [Fe/H] = −0.143 (described in
Kalirai, Fahlman, et al. (2003)). tcool and Mf were found with Fontaine,
Brassard, and Bergeron (2001) for lower mass WD (< 1.10M�), with
Althaus et al. (2007) for massive WDs. Mi determined with Bressan
et al. (2012).

• SIRIUS B: this is the only case of the considered WDs which does not
belong to any cluster. It was included in Cummings, Kalirai, Tremblay,
and Ramirez-Ruiz (2016) with an age of (237.5± 12.5) Myr and solar
metallicity [Fe/H] = 0.00 (Liebert et al. (2005)). tcool was found with
Fontaine, Brassard, and Bergeron (2001). The initial mass Mi was
calculated through the PARSEC code (Bressan et al. (2012)).

• HYADES: analysed in Kalirai, Marigo, and Tremblay (2014). The age
is 625 Myr (Perryman et al. (1998)) and the metallicity [Fe/H] = +0.12.
Mi follows from Bressan et al. (2012), Mf and tcool from Bergeron, Saffer,
and Liebert (1992) corrected with Tremblay and Bergeron (2009).

• PRAESEPE: very similar to the Hyades cluster, it was analysed in
Kalirai, Marigo, and Tremblay (2014). The age is 625 Myr (Claver et al.
(2001)) and the metallicity [Fe/H] = +0.12. Mi follows from Bressan
et al. (2012), Mf and tcool from Bergeron, Saffer, and Liebert (1992)
corrected with Tremblay and Bergeron (2009).

In table 3.1 we expose the WDs belonging to the quoted clusters and their
characteristics: the name ID, the remnant mass Mf and the extrapolated
porgenitor mass, so that the mass of the star at the Zero Age Main Sequence
Mi.

Table 3.1: White Dwarfs (WDs) included in this thesis. For each WD the name
ID, the final mass Mf and the progenitor mass Mi are exposed.

CLUSTER [Fe/H] ID Mf Mi

[M�] [M�]

NGC2099 +0.09 WD1 0.48+0.09
−0.09 2.79+0.05

−0.06

WD3 0.760.13−0.13 2.92+0.16
−0.14

WD4 0.87+0.15
−0.15 3.36+0.76

−0.40

WD7 0.88+0.19
−0.19 3.26+0.78

−0.40

WD11 0.96+0.06
−0.06 2.86+0.07

−0.07

WD12 0.55+0.07
−0.07 3.30+0.30

−0.22

WD14 0.45+0.08
−0.08 3.31+0.26

−0.20

WD18 0.76+0.036
−0.036 3.00+0.03

−0.02

WD2 0.77+0.045
−0.045 3.09+0.04

−0.03

to be continued
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continued

CLUSTER [Fe/H] ID Mf Mi

[M�] [M�]

WD24 0.80+0.068
−0.068 3.32+0.15

−0.10

WD6 0.89+0.069
−0.069 3.96+0.66

−0.35

WD21 0.85+0.069
−0.069 3.72+0.39

−0.23

WD5 0.74+0.062
−0.062 3.30+0.13

−0.09

WD10 0.71+0.054
−0.054 3.15+0.07

−0.06

WD16 0.87+0.095
−0.095 3.78+0.72

−0.33

WD17 0.96+0.099
−0.099 4.05+1.54

−0.52

WD13 0.91+0.082
−0.082 3.42+0.24

−0.16

WD9 0.59+0.078
−0.078 3.25+0.16

−0.11

WD25 0.70+0.03
−0.03 2.95+0.10

−0.10

WD28 0.75+0.03
−0.03 3.07+0.13

−0.11

WD33 1.28+0.05
−0.05 3.58+0.62

−0.41

NGC6791 +0.37 WD7 0.53+0.02
−0.02 1.16+0.04

−0.41

NGC6121 −1.10 WD00 0.52+0.04
−0.04 0.80+0.05

−0.05

WD04 0.50+0.03
−0.03 0.80+0.05

−0.05

WD06 0.59+0.04
−0.04 0.80+0.05

−0.05

WD15 0.55+0.04
−0.04 0.80+0.05

−0.05

WD20 0.51+0.05
−0.05 0.80+0.05

−0.05

WD24 0.51+0.03
−0.03 0.80+0.05

−0.05

WD02 0.75+0.03
−0.03 0.80+0.05

−0.05

WD05 0.48+0.03
−0.03 0.80+0.05

−0.05

WD09 0.79+0.05
−0.05 0.80+0.05

−0.05

WD29 0.41+0.04
−0.04 0.80+0.05

−0.05

NGC6819 +0.049 WD6 0.56+0.02
−0.02 1.60+0.06

−0.05

WD7 0.59+0.02
−0.02 1.62+0.07

−0.05

NGC7789 −0.035 WD4 c 0.56+0.02
−0.02 2.08+0.08

−0.08

WD5 0.64+0.03
−0.03 2.02+0.07

−0.14

WD6c 0.72+0.03
−0.03 2.10+0.09

−0.09

WD8 0.66+0.04
−0.04 2.02+0.09

−0.11

NGC2323 0.00 WD10 1.068+0.045
−0.045 4.69+0.01

−0.01

WD11 1.075+0.032
−0.032 4.69+0.01

−0.01

NGC2287 0.00 WD2 0.909+0.028
−0.028 4.81+0.16

−0.12

WD4 1.065+0.027
−0.027 5.93+0.52

−0.38

WD5 0.901+0.028
−0.028 4.83+0.16

−0.12

NGC2516 +0.065 WD1 0.925+0.027
−0.027 5.19+0.14

−0.12

WD2 0.981+0.040
−0.040 4.88+0.13

−0.10

WD3 0.918+0.027
−0.027 5.31+0.19

−0.14

WD5 0.970+0.027
−0.027 5.12+0.13

−0.11

NGC3532 +0.09 WD1 0.950+0.026
−0.026 4.13+0.11

−0.09

to be continued
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continued

CLUSTER [Fe/H] ID Mf Mi

[M�] [M�]

WD5 0.804+0.028
−0.028 3.55+0.03

−0.03

WD9 0.752+0.026
−0.026 3.46+0.01

−0.01

WD1 0 0.838+0.027
−0.027 3.64+0.04

−0.04

J110659 0.922+0.031
−0.031 4.41+0.21

−0.17

J110658 0.945+0.029
−0.029 4.83+0.37

−0.26

J110758 0.990+0.028
−0.028 5.07+0.49

−0.34

J11035837 1.11+0.03
−0.03 5.40+1.36

−0.55

Pleiades +0.01 LB1497 1.046+0.028
−0.028 6.85+0.57

−0.41

GD50 1.26+0.02
−0.02 6.41+0.72

−0.41

PG0136 1.20+0.03
−0.03 5.78+0.48

−0.32

NGC2168 −0.143 LAWDS1 0.911+0.039
−0.039 4.48+0.09

−0.06

LAWDS2 0.940+0.061
−0.061 4.55+0.18

−0.12

LAWDS5 0.801+0.031
−0.031 4.28+0.01

−0.01

LAWDS6 0.731+0.029
−0.029 4.28+0.01

−0.01

LAWDS12 1.009+0.037
−0.037 4.69+0.13

−0.11

LAWDS14 0.988+0.038
−0.038 4.98+0.21

−0.17

LAWDS15 1.009+0.032
−0.032 5.16+0.22

−0.18

LAWDS22 0.807+0.035
−0.035 4.28+0.01

−0.01

LAWDS27 1.071+0.031
−0.031 5.49+0.35

−0.27

LAWDS29 0.984+0.034
−0.034 4.67+0.12

−0.10

LAWDS30 0.878+0.048
−0.048 4.65+0.16

−0.12

0.00 Sirius B 0.982+0.024
−0.024 4.69+0.15

−0.12

Hyades +0.12 0352069 0.80+0.03
−0.03 3.59+0.21

−0.15

0406169 0.85+0.03
−0.03 3.49+0.13

−0.10

0421162 0.70+0.03
−0.03 2.90+0.02

−0.02

0425168 0.71+0.03
−0.03 2.79+0.01

−0.01

0431126 0.69+0.03
−0.03 2.84+0.02

−0.02

0437138 0.74+0.06
−0.06 3.41+0.21

−0.15

0438108 0.73+0.03
−0.03 2.78+0.01

−0.01

0348339 0.80+0.03
−0.03 3.55+0.19

−0.14

HS0400 0.76+0.01
−0.01 3.49+0.03

−0.03

0625415 0.66+0.03
−0.03 2.97+0.03

−0.03

0637477 0.80+0.04
−0.04 3.59+0.26

−0.18

Praesepe +0.12 0833194 0.79+0.04
−0.04 3.41+0.16

−0.16

0836199 0.82+0.04
−0.04 3.59+0.18

−0.13

0837185 0.87+0.04
−0.04 3.66+0.21

−0.16

0837199 0.80+0.04
−0.04 3.13+0.06

−0.05

0840190 0.91+0.05
−0.05 3.97+0.40

−0.24

0840200 0.79+0.04
−0.04 3.39+0.12

−0.09

0843184 0.89+0.05
−0.05 3.77+0.27

−0.18
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As said before, although the information comes from one group of research,
the consistency can not yet be considered fully achieved. Therefore, to improve
our analysis we choose to use the semi-empirical data provided by the prof.
Jeffrey D. Cummings (private communication) who analysed the spectra of
the WDs in table 3.1 on page 21 with the same method.

This choice significantly enhances the validity of the analysis: in figure 3.2
we show the semi-empirical data from prof. Jeffrey D. Cummings. We
immediately note that the dispersion decreases considerably, above all at
Mi = 1M� and 3M� ≤Mi ≤ 5M�. An interesting sharp maximum occurs at
Mi = 2M� and a flattening takes place at Mi ' 4M�. To test the models in
the section 4.3 on page 47 we use the quantities provided by prof. Jeffrey D.
Cummings.

Figure 3.2: Semi-empirical data provided by the prof. Jeffrey D. Cummings (private
communication).
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Chapter 4

Predicted Initial-Final Mass
Relation

In this section we analyse the predicted dependencies of the IFMR and four
theoretical models for the stellar evolution, from the ZAMS to the post-AGB
phase. As said before, among various physical processes that can affect the
AGB evolution, the main factors that must be considered are the metallicity,
the 2nd dredge-up on the E-AGB, the 3rd dredge-up and the mass loss on
the TP-AGB. Even if it is difficult to disentangle the effects of each process
involved, we can derive some general trends.

4.1 The effect of the 2nd dredge-up on the E-

AGB

During the Early AGB (E-AGB) phase, the base of the convective envelope
moves inwards causing a mixing of H-burnt material to the surface (see
section 2.1.1 on page 10). This process, termed 2nd dredge-up, occurs only
for stars with Mi ≥ 3− 4M�. The effects of the 2nd dredge-up on the core
growth are exposed in figure 4.1 on the following page from Marigo (2013):
the left panel shows the predicted core mass as a function of the stellar initial
mass, according to different authors and metallicities, at the onset of the
E-AGB phase as if the 2nd dredge-up would never take place, while the right
panel shows the significant change in slope which occurs at 3M� if the 2nd

dredge-up is included. Hence, the change of slope observed in figure 3.2 on
the preceding page can be a hint of the occurrence of the 2nd dredge-up
during the E-AGB; thus, if true, the IFMR could provide a direct observation
of this effect.
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Figure 4.1: Effects of the 2nd dredge-up according to different authors. Circles
correspond to computation of the Padova stellar code (Bressan et al.
(2012)) for different metallicities. Figure from Marigo (2013).

4.2 Key processes on TP-AGB

In order to investigate the effects of the key processes that characterize the
TP-AGB phase, we rely on four different sets of stellar model, namely:

• The F.R.U.I.T.Y. database by Cristallo, Straniero, Piersanti, et al.
(2015), Cristallo, Piersanti, et al. (2011) and Cristallo, Straniero, Gallino,
et al. (2009), computed by means of the FRANEC Code (Chieffi,
Limongi, and Straniero (1998)). In this model solar distribution pre-
sented in Lodders (2003) and opacity by Lederer and Aringer (2009) are
adopted. The pre-AGB mass loss rate is calculated with the Reimers’
formula with an assumed ηR = 0.4, while the AGB mass loss rate is
empirically calibrated on the observed period-luminosity relation, a
procedure similar to Vassiliadis and Wood (1993). The free parameter
of the mixing length theory of convection is set to α = 2.15. It is impor-
tant to stress that no convective core overshoot is assumed during core
H-burning, while semi-convection is applied during core He-burning.

• The second model discussed is presented in A. I. Karakas (2010) and
references therein. The solar composition and the initial abundances
are taken from Anders and Grevesse (1989). They employ the mixing
length theory with α = 1.75. The mass loss rate is calculated both
with Vassiliadis and Wood (1993) and Reimers’ formula (for metallicity

26



Z = 0.02, ηR = 3.5). The opacity adopted depends significantly by the
atmosphere temperature: for high T they assume OPAL opacities from
Iglesias and Rogers (1996); for models from A. Karakas and Lattanzio
(2007) they use Bessell et al. (1989) corrected by Chiosi, Wood, and
Capitanio (1993); for low T Ferguson et al. (2005). No convective
overshoot is assumed.

• The third model is provided by Weiss and Ferguson (2009). It is
computed by the Garching Stellar Evolution Code (GARSTEC), and
it assumes a solar mixture from Seaton et al. (1992), a mixing length
theory parameter α = 1.75 and a treatment for the opacities structured
taking into account the temperature of the atmosphere: for high T they
use OPAL tables from Iglesias and Rogers (1996); for low T Ferguson
et al. (2005). For the C-enriched mixture they use Marigo (2002). The
mass loss rate adopted depends on the evolution phase: for the Red
Giant Branch phase (RGB) they develop the Reimers’ formula with a
ηR = 1 for MZAMS ≥ 1.7 and ηR = 0.4 for MZAMS ≤ 1.7; instead, for
the AGB phase they stress the effects of the composition adopting a
Wachter et al. (2002) for Carbon stars and van Loon et al. (2005) for
Oxygen ones. Finally, it is important to note that convective overshoot
is implemented in their treatment, according to Schwarzschild criterion
(f = 0.016 assumed).

• The last prescription is calculated with the COLIBRI codes from Marigo,
Bressan, et al. (2013), from the first thermal pulse up to the almost
complete ejection of the envelope. Stellar convection is described by
means of the classical mixing length theory. The mixing length lconv is
assumed to scale linearly with the pressure scale height, Hp, according
to setting the proportionality factor αMLT = 1.74, following their recent
calibration of the solar model (Bressan et al. (2012)). Overshoot is
applied to the borders of convective cores as well as at the base of
the convective envelope, and is described through the parameter Λ
which sets its extension in units of Hp. In the range of intermediate
stellar masses under consideration their default choice is Λc = 0.5 for
convective core overshoot (across the border) and Λe = 0.7 for envelope
overshoot.

The network of nuclear reaction rates includes the proton-proton chains,
the CNO tri-cycle, the Ne-Na and Mg-Al cycles, and the most important
α-capture reactions, together with few α-n reactions. In total they
consider 42 reactions rates (for the complete list and references see
table 1 in Marigo, Bressan, et al. (2013).
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The initial distribution of metals is assumed to follow a scaled-solar
pattern Caffau et al. (2011), which corresponds to a present-day Sun’s
metallicity Z� = 0.01524.

To compute the mass-loss rate they first adopt the prescriptions for
cold-chromospheric mass loss presented in Cranmer and Saar (2011)
and then, as the star enters the dust-driven wind regime, they adopt the
relation from Bloecker (1995) for M-type stars (with surface C/O< 1)
and the results from Mattsson, Wahlin, and Höfner (2010) based on
dynamical atmospheres for C-stars (with surface C/O> 1). These mass-
loss relations are found to give a good reproduction of AGB stars counts
in the Magellanic Clouds. In COLIBRI they account for the changes
in the surface chemical composition caused by the occurrence of the
third dredge-up and hot-bottom burning. As for the third dredge-up
they adopt a semi-numerical approach. The authors perform envelope
integrations at the stage of the post-flash luminosity peak to determine
if and when it is expected to take place according to a temperature
criterion.

The chemical composition of the pulse-driven convection zone is pre-
dicted by solving a nuclear network that includes the main α-capture
reactions. The efficiency λ of the third dredge-up as a function of
stellar mass and metalicity is computed with an analytic formalism
based on full stellar models (A. I. Karakas, Lattanzio, and Pols (2002)),
but imposing that λ ≤ 0.5 at any stellar mass. It includes adjustable
parameters which are suitably modified in order to reproduce basic
observables of AGB stars, such as carbon star luminosity functions,
M-C transition luminosities, surface C/O ratios (e.g. Marigo (2015),
Rosenfield et al. (2014) and Marigo and Girardi (2007).

The process of hot-bottom burning experienced by massive AGB stars
(with initial masses Mi ≥ 3−4M�, depending on metallicity and model
details) is consistently taken into account in terms of energetics and
nucleosynthesis. The nucleosynthesis of all species is coupled in time and
in space with a diffusive description of convection. A key characteristic
of the COLIBRI code is that the equation of state for ' 800 atomic and
molecular species, and the Rosseland mean of the gas opacities across
the atmosphere and the deep envelope are computed on-the-fly, ensuring
a full consistency with the changing abundances of all involved chemical
elements (Marigo and Aringer (2009)).
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Table 4.1: Predicted final masses provided by Cristallo, Straniero, Piersanti, et al.
(2015).

Mi Mf

0.02 0.014 0.010 0.008 0.003 0.001

1.30 0.6227 0.6341 0.6276 0.6326 0.6409 0.6437
1.50 0.6316 0.6324 0.6163 0.6375 0.6417 0.6482
2.00 0.6293 0.6322 0.6303 0.6354 0.6415 0.6611
2.50 0.6396 0.6410 0.6392 0.6399 0.6572 0.7024
3.00 0.6493 0.6571 0.6610 0.6736 0.7464 0.7921
4.00 0.7540 0.8054 0.8166 0.8300 0.8571 0.8717
5.00 0.8462 0.8682 0.8764 0.8776 0.9238 0.9394
6.00 0.9150 0.9409 0.9378 0.9553 1.020 1.044

Table 4.2: Predicted final masses provided by A. I. Karakas (2010).

Mi Mf

0.02 0.008 0.004 0.0001

1.00 0.564 0.654 0.611 -
1.25 0.574 0.600 0.634 0.664
1.50 0.593 0.626 0.616 -
1.75 0.615 0.636 0.631 0.664
1.90 0.630 0.640 0.639 -
2.00 0.639 - - 0.685
2.10 - 0.645 0.650 -
2.25 0.661 0.653 0.662 0.711
2.50 0.658 0.666 0.676 0.735
3.00 0.680 0.700 0.730 0.819
3.50 0.715 0.769 0.820 0.849
4.00 0.793 0.841 0.856 0.873
4.50 0.852 0.861 0.872 -
5.00 0.874 0.886 0.908 0.936
5.50 0.900 0.907 0.932 -
6.00 0.929 0.947 0.978 1.006
6.50 0.963 - - -
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Table 4.3: Predicted final masses provided by Weiss and Ferguson (2009).

Mi Mf

0.04 0.02 0.008 0.004 0.0005

1.0 0.510 0.508 0.531 0.531 0.537
1.2 0.521 0.524 0.531 0.536 0.550
1.5 0.531 0.539 0.537 0.537 0.578
1.6 0.536 0.538 0.537 0.536 0.578
1.8 0.537 0.524 0.526 0.493 0.564
2.0 0.552 0.543 0.528 0.528 0.599
2.6 0.587 0.560 0.576 0.653 0.734
3.0 0.628 0.617 0.686 0.746 0.772
4.0 0.751 0.783 0.816 0.818 0.829
5.0 0.829 0.850 0.879 0.898 -
6.0 0.908 0.937 0.993 1.047 -

Table 4.4: Predicted final masses provided by Marigo, Bressan, et al. (2013).

Mi Mf

0.02 0.014 0.008 0.004 0.001 0.0005

1.000 0.5396 0.5374 0.5374 0.5401 0.5458 0.5454
1.050 0.5475 0.5447 0.5445 0.5444 0.5486 0.5504
1.100 0.5559 0.5527 0.5494 0.5501 0.5558 0.5566
1.150 0.5649 0.5605 0.5560 0.5565 0.5606 0.5614
1.200 0.5748 0.5683 0.5642 0.5626 0.5647 0.5667
1.250 0.5825 0.5775 0.5724 0.5685 0.5710 0.5742
1.300 0.5904 0.5869 0.5803 0.5753 0.5786 0.5801
1.350 0.5978 0.5955 0.5877 0.5836 0.5842 0.5849
1.400 0.6054 0.6032 0.5951 0.5884 0.5917 0.5938
1.450 0.6126 0.6106 0.6014 0.5949 0.5941 0.5959
1.500 0.6197 0.6182 0.6096 0.5990 0.5948 0.6001
1.550 0.6268 0.6254 0.6144 0.6032 0.5973 0.6007
1.600 0.6322 0.6310 0.6181 0.6070 0.5955 0.5821
1.650 0.6378 0.6385 0.6232 0.6104 0.5857 0.5909
1.700 0.6433 0.6415 0.6250 0.6152 0.6034 0.6162
1.750 0.6502 0.6454 0.6298 0.6121 0.6115 0.6231
1.800 0.6554 0.6498 0.6315 0.6202 0.6218 0.6312
1.850 0.6616 0.6489 0.6369 0.6253 0.6420 0.6446
1.900 0.6681 0.6524 0.6401 0.6338 0.6515 0.6578
1.950 0.6732 0.6548 0.6441 0.6379 0.6654 0.6676
2.000 0.6753 0.6584 0.6478 0.6443 0.6688 0.6813
2.050 0.6789 0.6589 0.6524 0.6529 0.6836 0.6901
2.100 0.6796 0.6641 0.6548 0.6579 0.6914 0.7004
2.150 0.6818 0.6655 0.6605 0.6628 0.7002 0.7128

to be continued
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continued

Mi Mf

0.02 0.014 0.008 0.004 0.001 0.0005

2.200 0.6834 0.6680 0.6665 0.6703 0.7107 0.7213
2.250 0.6857 0.6751 0.6675 0.6771 0.7208 0.7325
2.300 0.6879 0.6759 0.6745 0.6857 0.7318 0.7396
2.400 0.6931 0.6838 0.6875 0.7009 0.7500 0.7634
2.600 0.7079 0.7054 0.7113 0.7353 0.7861 0.7973
2.800 0.7266 0.7280 0.7384 0.7740 0.8138 0.8205
3.000 0.7487 0.7517 0.7681 0.8037 0.8298 0.8377
3.200 0.7734 0.7779 0.7985 0.8215 0.8457 0.8504
3.400 0.7928 0.8029 0.8197 0.8382 0.8619 0.8649
3.600 0.8143 0.8215 0.8351 0.8520 0.8766 0.8778
3.800 0.8274 0.8357 0.8507 0.8683 0.8892 0.8917
4.000 0.8422 0.8501 0.8679 0.8845 0.9068 0.9065
4.200 0.8555 0.8656 0.8817 0.8986 0.9186 0.9224
4.400 0.8731 0.8814 0.8968 0.9137 0.9371 0.9394
4.800 0.9007 0.9081 0.9235 0.9466 0.9787 0.9841
5.000 0.9119 0.9219 0.9395 0.9682 1.0051 1.0102
5.200 0.9249 0.9370 0.9585 0.9923 - -
5.400 0.9402 0.9527 0.9817 1.0145 - -
5.600 0.9561 0.9723 1.0044 - - -
5.800 0.9772 0.9940 - - - -
6.000 1.0002 1.0222 - - - -

4.2.1 Dependence on the 3rd dredge-up

As explained in 2.1.2 on page 10, during a thermal pulse an intershell con-
vective region develops, mixing the intershell material with the products of
the He-burning. Meanwhile, the outer envelope is still convective due to the
preceding expansion phase. Subsequently, the He-shell dies down, driving
with its energy release an expansion which leads to a deeper penetration of
the convective outer envelope. It is important to note that the intershell con-
vective zone only occurs during the pulse. Thus, for stars with Minitial ≥ 2M�
the convective layers and the extinct intershell convective zone overlap. This
process leads to a partially mixing of He-burnt material to the surface, called
the 3rd dredge-up, which has two important consequences:

• it contributes to stellar nucleosynthesis;

• it limits the growth of the Carbon-Oxygen core.

In this thesis we focus only on the second consequence. As said in
section 2.1.2 on page 10, the efficiency of the 3rd dredge-up is calculated
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(a) (b)

Figure 4.2: Figure (a): predicted core mass growth during the TP-AGB phase for
a Mi = 4M� and Z = 0.014 star. The red line shows the core growth
if λ = 0, the black line correspond to λ 6= 0. From Marigo, Bressan,
et al. (2013). Figure (b): dependence of the predicted IFMR from the
efficiency of the third dredge-up (from Marigo (2013)).

through the λ parameter (formula 2.1 on page 11). A λ = 0 corresponds to
an absence of dredge-up, and a λ = 1 means that all the material that the
core accretes during the interpulse period is brought away after the dredge-up.
In figure 4.2 (left panel) the predicted effects of the 3rd dredge-up on the
core mass growth during the TP-AGB phase are exposed for a Mi = 4M�
and Z = 0.014 star (model from Marigo, Bressan, et al. (2013)). We can
note the saw-tooth trend for the λ 6= 0 line (black line) due to the occurence
of the dredge-up events. Furthermore, as exposed in Marigo (2013), by
assuming no dredge-up the intermediate mass stars would be able to reach
the Chandrasekhar limit and explode as SN I1/2 (figure 4.2, right panel).
However, the semi-empirical IFMR indicates that stars with Mi ' 5− 7M�
produce WD with final mass Mf ' 1M�.

The λ value is still affected by large uncertainties due to the lack of a
complete convection theory. Actually, to estimate and put constraints on
the λ parameter the observed data must be used. It follows that its value
changes significantly using different models. We stress this trend analysing
the sup-solar metallicity Z = 0.02 in figure 4.3 on the next page for two
models: according to Cristallo, Straniero, Piersanti, et al. (2015), the efficiency
increases up to ' 0.6 which occurs at Mi = 3M�, then it decreases to ' 0.3
at Mi = 6M�; instead, according to A. I. Karakas (2010) the 3rd dredge-up at
this metallicity takes place only for star with Mi > 2M�, but the efficiency is
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Figure 4.3: λmax dependence on the initial mass Mi according to Cristallo,
Straniero, Piersanti, et al. (2015) (green line) and to A. I. Karakas
(2010) (red line) for Z = 0.02.

significantly larger, reaching λ = 0.99 at Mi = 4.50M�. Hence, the remnant
mass will practically coincide with the core mass after the 2nd dredge-up.

We expose the values of the efficiency and the dredged-up mass ∆Mdredge−up
for sup-solar metallicity Z = 0.02 in tables 4.6 on page 40, 4.8 on page 41
and 4.9 on page 41.

The core growth during the AGB phase is exposed in figure 4.4 on the
next page. All the proceedings show an initial increasing trend up to the
peak, followed by a decrease and finally a plateau: according to Cristallo,
Straniero, Piersanti, et al. (2015) (blue line) the peak of ' 0.12M� is at
Mi = 2.5M�; for Weiss and Ferguson (2009) (yellow line) the maximum value
of 0.065M� occurs for Mi = 2M�; A. I. Karakas (2010) (red line) predict
a peak of 0.124M� at Mi = 2.5M�; according to Marigo, Bressan, et al.
(2013) (green line), the slope is so steep that the peak of 0.18M� occurs at
Mi ' 2M� and the plateau (3.6M� ≤Mi ≤ 4.8M�) is followed by a further
decrease.

The fundamental effects of the 3rd dredge-up and the core mass growth are
also displayed in figure 4.5 on page 35. The dashed lines represent the final
mass as if the 3rd dredge-up would never occur. It is interesting to note that
according to Cristallo, Straniero, Piersanti, et al. (2015) the 3rd dredge-up
occurs immediately, while according to A. I. Karakas (2010) and Marigo,
Bressan, et al. (2013) it takes place only for Mi ≥ 2− 2.2M�. The predicted
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Figure 4.4: Core mass growth according to the models analysed: Cristallo,
Straniero, Piersanti, et al. (2015) (blue line), A. I. Karakas (2010)
(red line), Weiss and Ferguson (2009) (yellow line) and Marigo, Bressan,
et al. (2013) (green line) for metallicity Z=0.02.

trends for the core mass at the first thermal pulse Mc,1TP are quite similar,
showing a minimum at 2M� (Weiss and Ferguson (2009) and Marigo, Bressan,
et al. (2013)) if the convective overshooting is assumed, at 2.5M� (Cristallo,
Straniero, Piersanti, et al. (2015) and A. I. Karakas (2010)) if it is not. This
minimum, which corresponds to the maximum value of the core growth in
figure 4.4, reflects the transition from stars that ignite He in a degenerate
way, which trigger the He-burning when the core has mass ∼ 0.45M�, to stars
that avoid the degeneracy, which start He-burning with a ∼ 0.35M� core
mass: indeed, during the core contraction in the H-burning shell phase, for
Mi ≤ 2− 2.5M� stars the energy released is stolen by the electrons in order
to fill their lowest energy state up to the Fermi level, hence the temperature
increases more slowly and the core can accrete more material. This minimum
lasts until the first thermal pulse and then, during the TP-AGB phase, it
disappears.

Finally, to mathematically quantify the percentage of material that un-
dergoes mixing process instead of accrete the core we introduce the rate:

∑N
i,p=1 ∆Mdredge−up,i

Mf −Mc,1TP +
∑N

i,p=1 ∆Mdredge−up,i
(4.1)
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(a) (b)

(c) (d)

Figure 4.5: Figure (a): IFMR predicted by Cristallo, Straniero, Piersanti, et al.
(2015) for Z = 0.02. Figure (b): IFMR predicted by A. I. Karakas
(2010) for Z = 0.02. Figure (c): IFMR predicted by Weiss and Ferguson
(2009) for Z = 0.02. Figure (d): IFMR predicted by Marigo, Bressan,
et al. (2013) for Z = 0.02.
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for the initial mass Mi. The term
∑N

i,p=1 ∆Mdredge−up,i is the sum of the N
thermal pulses which take place during the TP-AGB phase (where N number
depending on Mi). The results are exposed in table 4.5. According to the
values proposed for λ, the material subtracted to the core mass growth has
a peak of about 41% at Mi = 3M� for Cristallo, Straniero, Piersanti, et al.
(2015), 83% at Mi = 5.50M� for A. I. Karakas (2010), 47% at Mi = 4.60M�
for Marigo, Bressan, et al. (2013)

Table 4.5: Material subtracted to the core mass growth calculated with the for-
mula 4.1 on page 34 for Z = 0.02

Author Mi Material subtracted to the
[M�] core mass growth (%)

Cristallo et al. (2015) 1.3 0.0
1.5 5.5
2 24.5

2.5 35.2
3 40.7
4 25.5
5 17.0
6 14.4

Karakas et al. (2010) 1.0 0.00
1.25 0.00
1.50 0.00
1.75 0.00
1.90 0.00
2.00 0.00
2.25 3.78
2.50 16.81
3.00 43.25
3.50 67.63
4.00 74.54
4.50 81.45
5.00 80.66
5.50 83.28
6.00 80.59
6.50 80.23

Marigo et al. (2013) 2.00 3.67
2.05 6.12
2.10 11.59
2.15 13.38
2.20 16.86
2.25 19.51
2.30 21.98
2.40 26.82

to be continued
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continued

Author Mi Material subtracted to the
[M�] core mass growth (%)

2.60 33.86
2.80 37.52
3.00 39.25
3.20 39.20
3.40 45.09
3.60 45.15
3.80 45.97
4.00 45.76
4.20 46.51
4.40 46.35
4.60 47.13
4.80 46.85
5.00 46.53
5.20 46.10
5.40 45.76
5.60 46.12
5.80 45.59
6.00 43.78

4.2.2 Dependence on mass loss

As explained in section 2.2 on page 12, the mass loss drives the TP-AGB
phase itself: the more efficient is the process, the shorter will be the phase.
Therefore, a shorter phase limits the growth of the core. It is important to
stress that, even if the majority of the mass loss takes place during the AGB
and the planetary nebula phases, the ejection of material occurs also during
the Red Giant Branch phase. Although the process is not well understood, it
seems to be sensitive to stellar metallicity (Kalirai, Bergeron, et al. (2007)).

Over the years, many functions were proposed to describe this complicated
process, such as the Reimers’ formula (1975), Vassiliadis and Wood (1993)
and more recently Wachter et al. (2002) and van Loon et al. (2005). In
tables 4.6 on page 40, 4.7 on page 40, 4.8 on page 41 and 4.9 on page 41 the
mass loss functions used by each model are shown.

The influence of stellar winds in driving the core mass growth was deeply
investigated by Kalirai, Marigo, and Tremblay (2014). In this thesis we
assume the conclusions of the latter paper, of which we report the main
results for Z = 0.02. They compared five predicted models:

• The classical Reimers’ formula (1975): although it is inadeguated to
describe the mass loss rate during the TP-AGB phase, it is still an
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Figure 4.6: The Reimers’ law (orange curves); Marigo’s prescription (red curves);
Vassiliadis and Wood (blue curves); Blöcker (magenta curves); van Loon
(green curves).The left panel shows the effects of varyng the λ efficiency
(the hatched region). In the right panel the improved parameters allow
a better agreement between empirical data and predicted proceedings.
Figure from Kalirai, Marigo, and Tremblay (2014)

important reference for the metallicity dependence and, as seen in this
thesis, for the pre-AGB evolution.

• Formulas from Vassiliadis and Wood (1993): calibrated on observed
mass loss rates - pulsation periods relation of the variabile AGB stars.

• The Blöcker’s law: characterized by a steep luminosity dependence.
The authors assumed a Reimers’ formula with ηR = 0.2 firstly, then
the Blöcker’s one keeping the same efficiency parameter ηB = 0.2, as
suggested in the original paper Bloecker (1995).

• van Loon et al. (2005): derived from spectroscopic and photometric
observations of dust-enshrouded giants in the Large Magellanic Cloud
(LMC). The authors adopted the Reimers’ law with ηR = 0.2 and then,
when the pulsation period became longer than 300 days, the van Loon’s
one.

• Their own prescription, taken from the paper Marigo, Bressan, et al.
(2013).

For each mass loss proceeding, the authors applied two values for the
3rd dredge-up efficiency λ = 1 and λ = 0. The results are exposed in
figure 4.6 from Kalirai, Marigo, and Tremblay (2014). Then, through observed
constraints, they rejected unsuitable trends for the mass loss efficiency.

They inferred that:
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• the width of the area enclosed between the absence of dredge-up and
the λ = 1 value was inversely proportional to the average efficiency of
the mass loss (left panel of figure 4.6 on the facing page).

• although the Vassiliadis and Wood (1993) and the Marigo, Bressan,
et al. (2013) were calibrated through different quantities (respectively
pulsation periods for the first; radii, masses and effective temperatures
for the second), they both fit with the observed data.

• Due to the predominant role of the stellar winds, the Bloecker (1995)
relation understimated the mass increment. Even assuming no dredge-
up, the mass loss was too strong to explain the empirical trend. The van
Loon et al. (2005) met a similar fate. On the other hand, the Reimers’
law overstimated the core growth (left panel).

• The high efficiency of the Blöcker was driven by the luminosity increase
(Ṁ ∝ L4.2), instead van Loon was controlled by a steep dependence
from the effective temperature (Ṁ ∝ T−6.3

eff ).

• The agreement between observed constraints and predicted trends could
be satisfied for almost all the models assuming different parameters:
ηR = 2.0 for the Reimers; ηB = 0.05 in the Blöcker’s; ηvL = 0.4
multiplicative factor included in the val Loon’s; delayed super-wind in
the Vassiliadis & Wood prescription. The results obtained are shown in
the right panel of the figure 4.6 on the preceding page. Comparing the
right with the left panel, while the delayed super-wind allowed a slightly
better agreement for Mi ≥ 3M� for the Vassiliadis & Wood, all the
other prescriptions (except for Marigo, Bressan, et al. (2013)) suffered
a substantial readjustment. These new proceedings shared a peak at
Mi ' 2M� and declining wings at both lower and higher masses.

• The comparison of different proceedings could shed light on which
process must be definitely considered as the most influent in TP-AGB
stellar models. It was clear that, even if the λ efficiency could not be
considered as negligible, assuming different mass loss functions caused
larger variations.
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Table 4.6: Results from Cristallo, Straniero, Piersanti, et al. (2015) analysed for
Z = 0.02. Minitial and Mfinal are respectively the ZAMS mass and
the final core mass. Mc,1TP is the core mass at the First Thermal

Pulse; M3rddu
c,min is the core mass at the onset of the 3rd dredge-up; λmax

is the maximum value for the efficiency of the 3rd dredge-up. Finally,
∆Mdredge−up is the mass which undergoes dredge-up.

MASS LOSS Minitial Mc,1TP M3rddu
c,min λmax ∆Mdredge−up Mfinal

[M�] [M�] [M�]

Reimers (1975) 1.3 0.5345 - 0.0000 0.000000 0.6227
1.5 0.5363 0.5609 0.2077 0.005578 0.6316

Vassiliadis & 2.0 0.5382 0.5530 0.4430 0.029633 0.6293
Wood (1993) 2.5 0.5169 0.5267 0.5211 0.066701 0.6396

3.0 0.5454 0.5588 0.6014 0.071359 0.6493
4.0 0.7220 0.7246 0.4603 0.010973 0.7540
5.0 0.8264 0.8279 0.3656 0.004057 0.8462
6.0 0.8934 0.8945 0.3297 0.003648 0.9150

Table 4.7: Results from Weiss and Ferguson (2009) analysed for Z = 0.02. Minitial

and Mfinal are respectively the ZAMS mass and the final core mass.

Mc,1TP is the core mass at the First Thermal Pulse; M3rddu
c,min is the core

mass at the onset of the 3rd dredge-up.

MASS LOSS Minitial Mc,1TP M3rddu
c,min Mfinal

[M�] [M�] [M�]

Reimers (1975) 1.0 0.501 0.508 0.508
1.2 0.509 - 0.524

van Loon et al.(2005) 1.5 0.511 0.526 0.539
1.6 0.508 0.522 0.538

Wachter et al.(2002) 1.8 0.496 0.503 0.524
2.0 0.478 0.484 0.543
2.6 0.518 0.533 0.560
3.0 0.596 0.596 0.617
4.0 0.765 0.766 0.783
5.0 0.830 0.831 0.850
6.0 0.928 0.928 0.937

40



Table 4.8: Results from A. I. Karakas (2010) analysed for Z = 0.02. Minitial and
Mfinal are respectively the ZAMS mass and the final core mass. Mc,1TP

is the core mass at the First Thermal Pulse; λmax is the maximum value
for the efficiency of the 3rd dredge-up; ∆Mdredge−up is the mass which
undergoes dredge-up.

MASS LOSS Minitial Mc,1TP λmax ∆Mdredge−up Mfinal

[M�] [M�]

Reimers (1975) 1.00 0.544 0.00 0.00000 0.564
1.25 0.553 0.00 0.00000 0.574

Vassiliadis & 1.50 0.558 0.00 0.00000 0.593
Wood (1993) 1.75 0.561 0.00 0.00000 0.615

1.90 0.561 0.00 0.00000 0.630
2.00 0.553 0.00 0.00000 0.639
2.25 0.541 0.24 0.00472 0.661
2.50 0.534 0.56 0.02506 0.658
3.00 0.576 0.78 0.07928 0.680
3.50 0.667 0.86 0.10029 0.715
4.00 0.774 0.98 0.05564 0.793
4.50 0.840 0.99 0.05269 0.852
5.00 0.862 0.96 0.05005 0.874
5.50 0.885 0.96 0.07470 0.900
6.00 0.915 0.96 0.05813 0.929
6.50 0.951 0.94 0.04870 0.963

Table 4.9: Results from Marigo, Bressan, et al. (2013) analysed for Z = 0.02.
Minitial and Mfinal are respectively the ZAMS mass and the final core

mass. Mc,1TP is the core mass at the First Thermal Pulse; M3rddu
c,min is the

core mass at the onset of the 3rd dredge-up; ∆Mdredge−up is the mass
which undergoes dredge-up.

MASS LOSS Minitial Mc,1TP M3rddu
c,min ∆Mdredge−up Mfinal

[M�] [M�] [M�]

Cranmer & Saar (2011) 1.00 0.5184 - 0.00000 0.5396
1.20 0.5263 - 0.00000 0.5748

Blöcker (1995) 1.40 0.5285 - 0.00000 0.6054
1.60 0.5278 - 0.00000 0.6322

Mattsson et al. (2010) 1.80 0.5128 - 0.00000 0.6554
1.90 0.5004 - 0.00000 0.6681
2.00 0.5038 0.5981 0.00653 0.6753
2.05 0.5005 0.5948 0.01164 0.6789
2.10 0.5121 0.5915 0.02197 0.6796
2.15 0.5123 0.5893 0.02619 0.6818

to be continued
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continued

MASS LOSS Minitial Mc,1TP M3rddu
c,min ∆Mdredge−up Mfinal

[M�] [M�] [M�]

2.20 0.5187 0.5838 0.03341 0.6834
2.25 0.5208 0.5821 0.03996 0.6857
2.30 0.5256 0.5818 0.04573 0.6879
2.40 0.5352 0.5851 0.05786 0.6931
2.60 0.5668 0.5950 0.07222 0.7079
2.80 0.5974 0.6121 0.07758 0.7266
3.00 0.6388 0.6441 0.07100 0.7487
3.20 0.6805 0.6825 0.05990 0.7734
3.40 0.7242 0.7242 0.05634 0.7928
3.60 0.7524 0.7524 0.05095 0.8143
3.80 0.7629 0.7629 0.05487 0.8274
4.00 0.7755 0.7755 0.05627 0.8422
4.20 0.7868 0.7868 0.05973 0.8555
4.40 0.8043 0.8043 0.05944 0.8731
4.60 0.8135 0.8135 0.06311 0.8843
4.80 0.8329 0.8329 0.05977 0.9007
5.00 0.8470 0.8470 0.05649 0.9119
5.20 0.8663 0.8663 0.05012 0.9249
5.40 0.8892 0.8892 0.04304 0.9402
5.60 0.9117 0.9117 0.03801 0.9561
5.80 0.9393 0.9393 0.03176 0.9772
6.00 0.9667 0.9667 0.02609 1.0002

4.2.3 Dependence on Metallicity

Almost all the physical processes involved in the stellar evolution are influenced
by the metallicity, hence the dependence on this quantity is the overall result
of the dependence of each single process. The general thought is that a
lower metallicity corresponds to a higher core mass after the Main Sequence.
Unfortunately, the post MS mass loss dependence on Z can not count on
a robust theory, but it is thought that at lower metallicity the stellar wind
becomes less efficient, hence the TP-AGB phase lasts longer and the core can
accrete more material. An important result was gained in the paper Kalirai,
Saul Davis, et al. (2009), discussed in the paragraph 5.2 within. In this paper
the authors exploited the comparison between metal-poor (M4 or NGC6121,
[Fe/H] = −1.10) and metal-rich (NGC6791, [Fe/H] = +0.40) clusters. They
found that at super-solar Z the mass loss was strongly influenced by the
metallicity (Kalirai, Bergeron, et al. (2007)), following the expected anti-
correlation between Z and core growth; while over the range extending from
metal-poor to solar metallicity the mass loss was nearly independent from the
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Z. Furthermore, according to A. I. Karakas, Lattanzio, and Pols (2002) the
value of the 3rd dredge-up efficiency increases at each thermal pulse during
the TP-AGB phase, reaching a maximum λmax which typically increases with
the stellar mass and decreases at larger metallicity. We analyse the metallicity
dependence showing the tracks predicted by each model for different Z in
figure 4.7 on page 45:

• The expected anti-correlation between Z and the remnant mass is
confirmed according to Cristallo, Straniero, Piersanti, et al. (2015) (top
left-hand side panel) for Mi ≥ 3M�; at lower masses the suggested
IFMR is quite similar for Z = 0.01 (blue curve), Z = 0.014 (black
curve) and Z = 0.02 (yellow curve); the Z = 0.001 (red) curve respects
at every range of mass the expected proceeding.

• Weiss and Ferguson (2009) (top right panel) predict that for initial
masses Mi < 2.6M� the Z = 0.04 (green line), Z = 0.02 (yellow line),
Z = 0.008 (black line) and Z = 0.004 (blue line) curves are nearly
similar, except for the Z = 0.004 which presents a drop at Mi = 1.8M�.
It is interesting that a similar drop occurs for Z = 0.0005 (red line) at
the same initial mass. For larger masses the IFMR follows the expected
prediction for all the metallicities considered.

• A. I. Karakas (2010) (bottom left panel) suggests that for 1.5M� ≤
Mi ≤ 2.5M� the Z = 0.02 (yellow line),Z = 0.008 (black line) and
Z = 0.004 (blue line) curves are quite similar. In the range Mi ≥ 2.5M�,
for a fixed initial mass a lower Z corresponds to a higher final mass.
It is interesting to note that the Z = 0.008 track shows a hollow at
Mi = 1.25M�.

• According to Marigo, Bressan, et al. (2013) (bottom right panel) the
Z = 0.001 (blue) and Z = 0.0005 (red) tracks nearly coincide, both
showing a steep slope and a slight hollow at Mi ' 1.6M�. The Z = 0.004
(cyan) track follows a similar proceeding, reaching lower final masses.
The Z = 0.02 (magenta), Z = 0.014 (green) and Z = 0.008 (yellow)
tracks are quite similar up to Mi ' 1.5M�. It is interesting to note that
in the range 1.5M� < Mi ≤ 2.6M� for a fixed Mi a lower metallicity
corresponds to a lower remnant mass, while the trend is inverted for
Mi ≥ 2.6M�, where the anti-correlation between Z and the final mass
is confirmed for all the metallicities considered.

Subsequently, for the chosen Z = 0.008, Z = 0.004 (Z = 0.003 for Cristallo,
Straniero, Piersanti, et al. (2015)) and Z = 0.02 metallicities we compare the
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models (blue curve for Cristallo, Straniero, Piersanti, et al. (2015), yellow
curve for Weiss and Ferguson (2009), red curve for A. I. Karakas (2010), green
curve for Marigo, Bressan, et al. (2013)) in figure 4.8. Firstly, for Z = 0.008
(the upper left graphic), the IFMRs provided by Cristallo, Straniero, Piersanti,
et al. (2015) and A. I. Karakas (2010) are in good agreement for Mi ≥ 1.5M�;
Weiss and Ferguson (2009) predict a constant IFMR with lower remnant mass
for the range 1M� ≤Mi < 3M�, then an increasing trend in agreement with
Cristallo, Straniero, Piersanti, et al. (2015) and A. I. Karakas (2010) and
finally a larger core for Mi = 6M�; Marigo, Bressan, et al. (2013) suggest a
steep slope for the IFMR which starts from Mf = 0.4828M� at Mi = 0.5M�
and it ends with a final mass of about 1M� for Mi = 5.6M�.

Considering Z = 0.004 (for Cristallo, Straniero, Piersanti, et al. (2015)
we use Z = 0.003) in the upper right graphic, we note that the agreement
between A. I. Karakas (2010) and Cristallo, Straniero, Piersanti, et al. (2015)
is even stronger up to Mi = 5M�; the track provided by Weiss and Ferguson
(2009) is still significantly lower for 1M� ≤ Mi ≤ 2M�, showing a drop at
Mi = 1.8M�, before it connects with the other models as for Z = 0.008;
Marigo, Bressan, et al. (2013) predict a steeper slope for the proceeding, which
starts from Mf = 0.4884 at Mi = 0.505M� and it reachs Mf = 1.0145M�
at Mi = 5.4M�. Considering the sup-solar metallicity Z = 0.02, exposed
in the bottom panel, Cristallo, Straniero, Piersanti, et al. (2015) suggest a
nearly constant IFMR up to Mi = 3M� followed by an increasing trend;
the track taken from A. I. Karakas (2010) is similar to that of Cristallo,
Straniero, Piersanti, et al. (2015) for Mi ≥ 2M�, but the remnant mass
predicted is larger; Weiss and Ferguson (2009) assume a weaker core growth
for 1M� ≤ Mi < 3M� with shallower drop which occurs at Mi = 1.8M�;
according to Marigo, Bressan, et al. (2013) the IFMR shows a steep slope up
to Mi = 2M�, then a plateau in the range 2M� ≤Mi ≤ 2.4M� and finally a
further increasing trend.
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(a) (b)

(c) (d)

Figure 4.7: IFMR according to Cristallo, Straniero, Piersanti, et al. (2015) (figure
(a)), Weiss and Ferguson (2009) (figure (b)), A. I. Karakas (2010) (figure
(c)), Marigo, Bressan, et al. (2013) (figure (d)).
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(a) Z = 0.008. (b) Z = 0.004.

(c) Z = 0.02.

Figure 4.8: Predicted models for Z = 0.008 (figure (a)), Z = 0.004 (figure (b)) and
Z = 0.02 (figure (c)).
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4.3 Testing Models

We can finally compare the predicted to the semi-empirical (exposed in table
3.1) IFMRs to put some constraints on the TP-AGB phase. In figure 4.9 on
the next page we show the results using the Z = 0.02 models. The solid lines
represent the predicted remnant mass, while the dashed lines show the final
masses as if the 3rd dredge-up would never occur (see the section 4.2.1). We
immediately observe that Cristallo, Straniero, Piersanti, et al. (2015),Weiss
and Ferguson (2009) and A. I. Karakas (2010) understimate the core growth
for Mi ≥ 3M�. For lower masses Mi ≤ 3M�, Weiss and Ferguson (2009)
and Cristallo, Straniero, Piersanti, et al. (2015) predict a nearly constant
IFMR instead of the steep increasing trend observed. Furthermore, no author
includes the flattening observed at Mi = 4M�. The IFMR proposed by
Marigo, Bressan, et al. (2013) fits the semi-empirical data up to about 3M�,
but for larger initial masses this model understimates the remnant masses
too. It is interesting to note that assuming a small value for the 3rd dredge-up
efficiency λ (the dashed lines) in models for Mi ≥ 2M� stars can improve
significantly the agreement with the semi-empirical IFMR.

In figure 4.10 on the following page we compare the semi-empirical IFMR
with models provided by Cristallo, Straniero, Piersanti, et al. (2015) (cyan
line) and Marigo, Bressan, et al. (2013) (green line) for Z = 0.014, since
a lower metallicity is thought to correspond to higher remnant masses, as
explained in section 4.2.3 on page 42. For Cristallo, Straniero, Piersanti, et al.
(2015) the core growth is still too weak for Mi ≥ 3M�, and the trend at lower
masses seems to be unsuitable. The model provided by Marigo, Bressan, et al.
(2013) slightly improves for Mi ≥ 3M�; however, according to the correlation
between Z and Mf assumed for 1.5M� < Mi ≤ 2.6M� (see figure 4.7 on
page 45), the trend gets worse and it can’t fit the semi-empirical IFMR.

Finally we want to stress that even if we focused only on the 3rd dredge-up
varying the λ parameter to improve the agreement between semi-empirical
and predicted IFMRs, the model proposed by A. I. Karakas (2010) couldn’t
match even considering a weak stellar wind: indeed, since the core does not
increase due to the large λ assumed, the effects of the stellar wind and the
3rd dredge-up are disentagled.
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Figure 4.9: Predicted IFMRs applied to the semi-empirical IFMR (table 3.1 on
page 21).

Figure 4.10: Predicted IFMRs provided by Cristallo, Straniero, Piersanti, et al.
(2015) (cyan line) and Marigo, Bressan, et al. (2013) (green line)
applied to the semi-empirical IFMR (table 3.1 on page 21).
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Chapter 5

Summary and Conclusions

The IFMR for low- and intermediate-mass stars (0.9M� ≤Mi ≤ 6− 9M�) is
a fundamental tool for both stellar evolution analysis and galaxy models: it
gives an upper value for the initial mass of stars developing a CO core, thus it
becomes a test for Type Ia (Marigo (2013)) and Type II (Kalirai, Hansen, et al.
(2008)) Supernovae rates; it puts constraints to the amount of metal-enriched
gas ejected to the interstellar medium; it can be used to determine the age and
distance of globular cluster interpreting the luminosity function and modeling
the cooling sequence of the WDs; it provides an estimate of the luminosity
contribution of the TP-AGB star population to the integrated galaxy light.

In the last years the relation has been improving due to the step forward
made by both theoretical models and observations; however, the use of
theoretical models brings unavoidable systematic errors (see Salaris et al.
(2009)) to the cluster’s age, metallicity, amount of convective overshooting,
thickness of the WD H/He layers, chemical composition of the degenerate
core (Marigo (2013)) which make the scatter in the relation larger.

Thus, the semi-empirical IFMR (figure 3.2 on page 24) shows a mono-
tonically increasing trend, with a supposed local maximum at Mi = 2M�
and a flattening at Mi ' 4M�. The stellar evolution theory suggests the
transition from low-mass, which develop an electron degenerate He-core after
H-burning phase, to intermediate-mass stars, which avoid the He-flash, at
2M�. Moreover, the Mi = 2M� marks the minimum mass to experience the
3rd dredge-up at Z = 0.02. Instead, the flattening at ∼ 4M� can be a hint of
the occurence of the 2nd dredge-up during the Early-AGB phase. If true, the
IFMR could provide a direct observation of this event. Hence, these masses
must be further investigated to infer their respectively influences in the core
growth.

In this thesis we focus on three main factors that affect the AGB phase
and their supposed effects: the 3rd dredge-up, which prevents the core growth
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subtracting material that would otherwise accrete the core; the mass loss,
which drives the duration of the AGB phase itself; the metallicity, which
controls the efficiency of each process involved in the AGB phase. To infer
the role of each process in the core growth, we test at different metallicities
Z four theoretical predicted IFMRs provided by different authors: Cristallo,
Straniero, Piersanti, et al. (2015),Weiss and Ferguson (2009), A. I. Karakas
(2010) and Marigo, Bressan, et al. (2013).

The IFMR dependence on the 3rd dredge-up is measured through the
efficiency λ (formula 2.1 on page 11): a larger λ value makes the core mass
growth less efficient (figures 4.4 on page 34 and 4.5 on page 35).

The mass loss limits the duration of the AGB phase because a stronger
stellar wind makes the phase shorter and thus the core has less time to
increase. In this thesis we assume the results inferred by Kalirai, Marigo, and
Tremblay (2014), in particular the primary role played by the mass loss in
the core growth: indeed, even if the λ efficiency could not be considered as
negligible, assuming different mass loss functions causes larger variations.

Finally, for a fixed initial mass a lower metallicity corresponds to higher
final mass. This trend is generally confirmed for all the models used (figure 4.7
on page 45).

Subsequently we compare the semi-empirical data provided by prof. Jeffrey
D. Cummings (private communication) with models at Z = 0.02 (figure 4.9
on page 48) and Z = 0.014 (figure 4.10 on page 48), showing a qualitative
agreement in the trend for A. I. Karakas (2010) and Marigo, Bressan, et
al. (2013), but significant differences in the quantitative predictions: all
the models understimate the remnant mass for Mi ≥ 3M� and only the
prescription provided by Marigo, Bressan, et al. (2013) for Z = 0.02 fits
the semi-empirical data for Mi ≤ 3M�. However, the comparison provides
important hints towards a lower efficiency of the 3rd dredge-up in massive AGB
stars than in standard calculations at both Z = 0.02 and Z = 0.014: indeed,
λ ∼ 1, as predicted by A. I. Karakas (2010), seems to be unsuitable. This
may have critical implications for the chemical yields produced by massive
stars undergoing Hot Bottom Burning, so that the CNO, Ne−Na and Mg−Al
cycles (Forestini and Charbonnel (1997)), and s-process nucleosynthesis.
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