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Introduction

Existence of phase transition for the level-set percolation for the discrete
Gaussian free field on Z? (DGFF) is a problem that received much attention
in the past year, in particular it was studied in the 80’s by J. Bricmont, J.L.
Lebowitz and C. Maes (see [3]). They showed that in three dimension the
DGFTF has a nontrivial percolation behavior: sites on which ¢, > h percolate
if and only if h < h, with 0 < h, < co. Moreover, they generalized the lower
bound for h, in any dimension d > 3, i.e. h.(d) > 0, but they were not able
to extend the proof of existence of a non trivial transition for any d > 4.
Recently P.-F. Rodriguez and A.-S. Sznitman (see [L1]) proved that h.(d)
is finite for all d > 3 as a corollary of a more general result concerning
the stretched exponential decay of the connectivity function when h > h,.,
where h.. is a second critical parameter that satisfied A4 > hy. In this
thesis we tried to get acquainted with some of the techniques developed
in the domain, notably to control the large excursions of these fields and
to understand the entropic repulsion phenomena, and to comprehend the
results on level set percolation in dimension three and larger. In particular,
the main goal is to present the two works of Bricmont, Lebowitz and Maes
and of Rodriguez and Sznitman. Finally, in the last two chapters we also
present a new and original (but incomplete) generalization of the proof (due
to J. Bricmont, J.L. Lebowitz and C. Maes ) of the existence of a non trivial
phase transition to any d > 3.



Introduzione

L’esistenza di una transione di fase per gli insiemi di livello del Gaussian
Free Field discreto in Z¢ (DGFF) & un problema che ha ricevuto molta at-
tenzione negli anni passati, in particolar modo & stato studiato intorno agli
anni ’80 da J. Bricmont, J.L. Lebowitz and C. Maes (vedi [3]). In questo
articolo dimostrarono che il DGFF in dimensione 3 presenta una transizione
di fase non triviale: i siti nei quali ¢, > h percolano se e solo se h < h,
per 0 < h, < oo. Inoltre generalizzarono il bound inferiore per h, in ogni
dimensione d > 3, cio¢ hy(d) > 0, ma non furono in grado di estendere la
dimostrazione per I’esistenza di una transizione di fase non triviale ad ogni
d > 4. Recentemente P.-F. Rodriguez e A.-S. Sznitman (vedi [11]) hanno
dimostrato che h,(d) ¢ finito per ogni dimonsione d > 3 come corollario di
un risultato piu generale riguardante il semi-decadimento esponenziale della
funzione di connettivita quando h > h,,, dove h., € un secondo parametro
che soddisfa h.x > hy. In questa tesi I’autore ha cercato di prendere famil-
iarita con alcune tecniche sviluppate in questo dominio, in particolar modo
a controllare le grandi escursioni di questi campi, capire il fenomeno di re-
pulsione entropica e comprendere i risultati riguardanti la percolazione per
insiemi di livello in dimensione tre o maggiore. In particolare ’obbiettivo
principale & quello di presentare i due lavori di Bricmont, Lebowitz e Maes e
di Rodriguez e Sznitman. Infine, negli ultimi due capitoli, presenteremo una
nuova ed originale (ma incompleta) generalizzazione della dimostrazione (di
Bricmont, Lebowitz e Maes) dell’ esistenza di una transizione di fase ad ogni
d > 3.
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Notation

We introduce some notation to be used in the sequel. First of all we ex-
plain our convection regarding constant: we denote by ¢, ¢/, ... positive con-
stants (different constants could have the same name). Numbered constants
co,C1, - - . are defined at the place they first occur within the text and remain
fixed from then on until the end of the section. In chapters (I [3] [, constants
will implicitly depend on the dimension d. Throughout the entire paper, de-
pendence of constants on additional parameters will appear in notation. On
72, we respectively denote by |-| and ||~ the Euclidean and /*°-norms. We
denote by i ~ j the couple of vertices ¢ and j such that |i — j| = 1. More-
over, for any z € Z% and r > 0, we let B(z,r) = {y € Z% |y — x|oo < 7} and
S(z,7) = {y € Z% |y — |00 = r} stand for the £>°-ball and the £>-sphere of
radius r centered at x. Given K and U subsets of Z¢, K¢ = Z%\ K stands for
the complement of K in Z¢, |K| for the cardinality of K, K CC Z% means
that |K| < oo, and d(K,U) = inf{|z — y|so;x € K,y € U} denotes the
¢>-distance between K and U. If K = {z}, we simply write d(z,U). More-
over, we define the inner boundary of K to be the set 'K = {x € K;3y €
K¢ |v —y| = 1}, and the outer boundary of K as 0K = §'(K¢). We also
introduce the diameter of any subset K C Z¢, diam(K), as its £>*°—diameter,
i.e. diam(K)= sup{|z — y|o; z,y € K}. Throughout the paper, vectors are
taken to be row vectors, and a small ¢ indicates transposition. The inner
product between z and y in R? is usually denoted by z -y and sometimes
we will write for a vector (¢;)ien, A C 7%, simply tx.

For the symmetric simple random walk X = (Xj)ren on Z%, which at
each time step jumps to any one of its 2d nearest-neighbours with probability
ﬁ, we denote by P; the distribution of the walk starting at i € Z%, and with
E; the corresponding expectation. That is, we have P;(Xo = i) = 1, and
Pi(Xny1 = k|Xn = j) = 1/2d - Loy = P(j, k), for all k,j € Z%. Given
U C 74, we further denote the entrance time in U by 7y = inf{n >0: X,, €
U} and the hitting time in U by 7y = inf{n > 1: X,, € U}.

Given two functions f, g : Z¢ — R, we write f(z) ~ g(z), as |z| — oo, if
they are asymptotic, i.e. if limp, o f(2)/g(7) =1
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Chapter 1

The DGFF

In this chapter we introduce the model studied in this paper, that is, the
Lattice Gaussian Free Field or Discrete Gaussian Free Field (DGFF), also
known as Harmonic Crystal.

1.1 The costruction of the model

We begin by defining the configuration space in finite and infinite volume as
Oy =RA and Q= de,

where A CC Z?. The measurable structure on 2 (risp. ) is the o-algebra
Fa (risp. F) generated by the cylinder sets, that is, the sets of the form
{w € Qp :w; € A, for every i € I}, with I a finite subset of A (risp. Zd)
and A; an open subset of R.

Given a configuration w €  we call the random variables y;(w) = w;, i €
72, the spin or height at i. We consider the Hamiltonian (i.e. the energy
associated to a given configuration w € §2,) defined byr'_-]

2
Hapm(@) = 2 3 (i) @) + 0 ), wen,
{i,j1€€} €A

(1.1)
where § > 0 is the inverse temperature, m > 0 is the mas and 55{ =
{{i,7} N A #0:i~ j}. Once we have a Hamiltonian and a configuration
n € 0, we define the corresponding Gibbs distribution for the DGFF in A
with boundary condition 7, at inverse temperature § > 0 and mass m > 0,

!The constants 3/4d and m?/2 will be very convinient later on.

2The terminology ”mass” is inherited from quantum field theory, where the corre-
sponding quadratic term in the Lagrangian indeed give rise to the mass of the associated
particles.

11



12 CHAPTER 1. THE DGFF
as the probability measure MTA g.m O (€2, F) defined by

exp (=H} 5.m(w))

n
Z\ Bm

HA g (dw) = A (dw), (1.2)

wherd?]
N (dw) = Hdwi H O, (dw;), (1.3)
ieA i€AC

and ZX 8.m is a renormalization constant called partition function, that is of
course (after some easy computation to show that is finite)

ZX,,B,m = /exp (_BHXﬂ,m(w)))\K(dw) < oo. (1.4)

Remark 1.1.1. We immediately observe that the scaling property of the
Gibbs measure imply that one of the parameter, 8 or m, plays an ir-
relevant role when studying the DGFF. Indeed, the change of variables
W'y = BY2w;, i € A, leads to

—IA /
ZY g =B"MN2ZY (1.5)
where m’ = 37Y2m and n/ = /2, and, similarly,
Nz,g,m(') = M7\71,m/(')- (1.6)

This shows that there is no loss of generality in assuming that 8 = 1. In
particular our interest is on the massless model, that is when m = 0.

1.2 Some heuristic interpretations

We now give some heuristic interpretations of the DGFF.

First of all note that from the definition of the energy in only spins
located at nearest-neighbours vertices of Z% interact. A second important
remark is to note that from definition we know that our measure gives
higher weight to the configurations that have low energy. So to have a low
energy we want both terms in to be small, in particular

e for the first term to be small we need that all (¢; — ¢;)? (that could
be viewed as a sort of gradient) are small, and so that every vertex
has a value similar to the neighbour vertices, namely the interaction
favours agreement of neighbouring spins;

*Obviously dw; denotes the Lebesgue measure. Note that the term [],.,c 0y, (dw:)
fixes the boundary condition equal to 7.
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e for the second term to be small we need that all (¢;)? are small, and
so that all vertex has a value close to zero, that is, the spins favour
localization near zero.

One possible interpretation of this model is as follows. In d = 1, the
spin at vertex ¢ € A, w; € R, we can interpret as the height of a random line
above the z-axis. The behaviour of the model in large volumes is therefore
intimately related to the fluctuations of the line away from the x—axis.
Similarly, in d = 2, w; can be interpreted as the height of a surface above
the (x,y)—plane (see for an example the figure in the first page).

The model comes from the Quantum Field Theory. It is the basic model
on top of which more interesting field theories are constructed. Indeed a lot
of other model are constructed as pertubation of the DGFF, so it is a sort
of building block.

Recently, the reason to study this model is that the continuum GFF is
a sort of rescaling of the DGFF as the mesh of the lattice goes to zero. The
GFF plays a very important role in relation of critical properties of critical
systems, especially in dimension 2 (for example, we recall the remarkable
works due to the two Fields medal Wendelin Werner and Stanislav Smirnov).

Finally, the DGFF could also be interpreted as a model which describes
the small fluctuations of the positions of atoms of a crystal. That’s why the
DGFF is also called the Harmonic Crystal.

1.3 The random walk rappresentation for the mass-
less model

When we look at the density distribution in (1.2)) we immediately note an
affinity with the Gaussian distribution. The goal of this section is to rewrite
the measure p} | o(dw) = p (dw) in the canonical form

1
(2m) A2 /et Gy

where u = (u;)ien, with u; = E} [¢;], is the |A]-dimensional mean vector and
Ga(i,7) = Cov (i, ;) is the|A| x |A| covariance matrix.

Before locking at this representation we need some preliminary notions
on harmonic functions.

exp{—(x—u)-GXl(a:—u)}, (1.7)

1.3.1 Harmonic functions and the Discrete Green Identities

Given a collection f = (f;);cze of real numbers, we define, for each pair
{i,j} € Eya, the discrete gradient

(Vf)ij=f; — fis (1.8)
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and, for all i € Z%, the discrete Laplacian

d
S @Di= [ B = h= 5 S = 53 Y (P i, (19)
J~i J~i 7j=1

where (V2f)iive, = (five; — fi) + (fice; — fi) = fite; — 2fi + fize;- The
last term resembles the usual definition of the Laplacian of a function on
R?, but the first expression is a more natural way to think of the Laplacian,
the difference between the mean value of f over the neighbours of i and the
value off at i.

We have the following discrete analogues of the classical Green identities.

Lemma 1.3.1 (Discrete Green Identities). Let A cC Z%. Then, for all

collections of real numbers f = (fi)icza, 9 = (9i)iczd,

> (VHi(Veii ==Y g(ANi+ > (Vi (1.10)

{z’,j}eg,b\ €A €N, JEN i~
and
> {fi(Ag)i - gi(Af)i} = > {fi(Ag)ij - gj(Af)ij}~ (1.11)
= iEN GEA jimj
Proof. See, for example, [7], Lemma 8.7. O

We can write the action of the Laplacian on f = (f;);czq, as:

(Af)i = Z(Vf)zg = Z Vijfjs (1.12)
g~ jez
where
—2d if i =j,
Vij = 1 ifin~y, (1.13)

0 otherwise.
Moreover we introduce the restriction of A to A, defined by
Apx = (Aij)ijen- (1.14)
Note that f-Ang =3 icp fi(Arg)i = 225 jen filijg; = 9-Anf and (Anf) =
2jenDijfj-
Returning to the density of the DGFF and remembering that A CC Z¢,
f = (fi)ieza, fi =m; for all i ¢ A, we have, applying (1.10) with f =g

Yoo fP= Y (VhE=-) fANi+ Y iV

{i,j}re&l {i,jre&l tEA 1€NJEN i
== filArf)i—=2 > fifj+Ba,
ieA i€N,jEA i~
=[-Aaf=2 > fifj+Ba,
i€EN,GEN g

(1.15)
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where in the last inequality we used that (Af); = (Arf)i +2 ;¢4 fj, for all
i€ Aand fi(Vf)ij = f7— fifi =nf — fifj foralli € A,j ¢ A,i ~ j, and By
is a boundary term. One can then introduce u = (u;);cz4, to be determined
later, depending on 7 and A, and playing the role of the mean of f.

Our aim is to rewrite in the form —(f —u) - Ax(f — w), up to
boundary terms. We can, in particular, include in Bj any expression that
depends only on the values of u. We have

(f—uw) - Ap(f—u) = f-Axf —2f - Apu+u-Apu
= f-AAf =2 fi(Axu); + By

1EA
=f-AAf=2) fiAu)i+2> " Y fiuj+ By
icA i€EA j¢A,j~i

(1.16)

Comparing the two expressions for f - Aj f in (1.16)) and (1.15)), we deduce
that

Yo (1) = —(f—w-Aa(f—w) =2 fi(Au)i+2 Y fi(uj—f;)+Ba.
{i.7}ee] €A Zﬁzf}\
Viad]

(1.17)

A look at the second term in this last display indicates exactly the restric-

tions one should impose on u in order for —(f — u) - Ax(f — u) to be the

one and only contribution to the Hamiltonian (up to boundary terms). To

cancel the non-trivial terms that depend on the values of f inside A, we

need to ensure that:
e 7 is harmonic in A, that is
(Au); =0, for all i € A; (1.18)
e u coincides with f (hence with 7) outside A, that is
u; = 1, for all i ¢ A. (1.19)

We have thus proved

Lemma 1.3.2. Assume that u = (u;);cza solves the Dirichlet problem in A
with boundary condition 7 :

(Au)z =0, 1€ A,
{ P (1.20)
then
> (fi—£:)?=—(f —u)- Ax(f —u) + Ba. (1.21)

{i,j}re&}
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Existence of a solution to the Dirichlet problem will be proved later.
Uniqueness can be verified easily.

Let us consider the massless Hamiltonian ’HX’LO = M}, expressed in
terms of the variables ¢ = (¢;);cz4¢, which are assumed to satisfy ¢; = n;
for all i ¢ A. We apply Lemma with f = ¢, assuming for the moment
that one can find a solution u to the Dirichlet problem (in A, with boundary
condition 7). Since it does not alter the Gibbs distribution, the constant B
in (|1.21]) can always be subtracted from the Hamiltonian. We get

1 1
HY ==(p—u) (——=A —u). 1.22
§ =50 —1) (-5 —w) (1.22)
Our next tasks are, first, to invert the matrix —%A A, in order to obtain an
explicit expression for the covariance matrix, and, second, to find an explicit
expression for the solution u to the Dirichlet problem.

1.3.2 The random walk representation

We begin by writing

1
— —AjpN=1,—-P 1.2
5 = Ia = P, (1.23)

where Ix = (6)ijen and Py = (P(7,7))i jen With elements
P(i,j) = 2q i~ (1.24)
T 0 otherwise. ’
We immediately recognise that the numbers (P(i,j)); jezs are the transi-
tion probabilities of the symmetric simple random walk X = (Xj)ren on
7%, which at each time step jumps to any one of its 2d nearest-neighbours
with probability %, as explained in the introduction. We denote by P; the
distribution of the walk starting at i € Z%. That is, we have P;(Xo = 1) = 1,
and Pi(X,11 = k|X,, = j) = P(j, k) for all k, j € Z%.
The next lemma shows that the matrix Iy — P, is invertible, and provides
a probabilistic interpretation for its inverse:

Lemma 1.3.3. The matrix Iy — Py is invertible. Moreover, its inverse
G = (In — Pp)7t is given by Gy = (Ga(i, 7)) jen, the Green function in A
of the simple random walk on Z%, defined by

TA(:71

Ga(i,j) = Ez[ > ]l{xn:j}]. (1.25)

n=0

The Green function Gy (i,7) represents the average number of visits at
j made by a walk started at i, before it leaves A.
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Proof. First of all, observe that (below, P™ denotes the nth power of a
matrix P)

(In — PA)(Ip + Py + P+ + PY) = (I — PY). (1.26)
Rewriting
PR(i,j)= > Paliyi1)Pa(i1,dg) - -+ Pa(ip-1,§) =
U1yl 1 EA (127)

= Pi(Xy = j,mpc > k) < Pi(Tpc > k),

and using the classical bound on the probability that the walk exits a finite

region in a finite time P; (TAC > k) < e~ we can take the limit n — oo in
(1.26]) obtaining
(1= P)( D PE) = I, (1:28)
k>0
that is,
Gy=(Iy— Py ' =) Pf, (1.29)

k>0

since by symmetry we have also that (G)(Ix — Py) = I. Finally

Tac—1
SRR =Y P(Xe=jmae > K) =Bi| Y Agx—p], (130)

k>0 k>0 n=0
gives the desired expression for G (1, j). O

Let us now prove the existence of a solution to the Dirichlet problem,
also expressed in terms of the simple random walk. Let X, . denote the
position of the walk at the time of first exit from A.

Lemma 1.3.4. The solution to the Dirichlet problem in s given by
the function uw = (u;);cza defined by

w; = E; [nXTAC}, for alli e 74, (1.31)

Proof. When j ¢ A, Pj(tpc = 0) = 1 and, thus, u; = Ej [UXTAC] =

E; [nXU] = nj. When ¢ € A, by conditioning on the first step of the walk
and using the Markov’s property,

. ) 1
u; = E; [UXTAC} => E [UXTAC | X1 ZJ]Pz‘(X1 =j) = ﬁzuju (1.32)

j~i Vi)

which implies (Au); = 0. O
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We finally have the desired representation.

Theorem 1.3.5. Under u}, ¢ = (pi)iea is Gaussian, with mean u =
(wi)ien defined by

w; = E [an], for all i € A, (1.33)

and positive definite covariance matrix Gy = (Ga(1,7)) jer, given by the

Green function
Tae—1

Ga(i,j) = E[ > ]l{xn:j}]. (1.34)

n=0

The reader should note the remarkable fact that the distribution of ¢ =
(¢i)ien under p} depends on the boundary condition 7 only through its
mean; the covariance matrix is only sensitive to the choice of A.

1.4 The infinite volume extension

In this section, we will present the problem of existence of infinite-volume
Gibbs measures for the massless DGFF.

In order to do that we need to introduce the notion of Gibbs state and
we will do that in the particular case of the DGFF measurd’]

Definition 1.4.1. Let f: Q = RZ" 5 R be a function. We say that f is
local if exists A CC Z¢ such that f(w) = f(w') as soon as w; = w! for all
1 € A. The smallest such set A is called the support of f and it is denoted

by supp(f).

Definition 1.4.2. A state is a map f — (f) acting on a local function
f: Q — R satisfying the following three properties:

2. if f > 0 then (f) > 0;
3. forall A e R, (f+ Ag) = (f) + \g).

Definition 1.4.3. Let (A),>1be a sequence of finite set such that increase to
Z%, then the sequence p1} is said to converge to the state (-), if B} [f] = (f)
for all f local functions. Then the state (-) is called a Gibbs state.

4The notion of Gibbs state could be developed in a very more general framework but we
prefer to chose a simpler presentation of this notion since the dissertation of this argument
is not the goal of this paper.
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Remark 1.4.4. This notion is really natural from a mathematical point of
view. The reason is that as soon as you have a functional with the properties
of Definition you can prove that there exists an underlying probability
measure p such that (f) = [ fdp and then the notion of convergence given
in Definition it is just the notion of weak convergence of the sequence

fy, to p.

Definition 1.4.5. We characterize the space of infinite-volume Gibbs mea-
sures by

G = {1 € Mi(Q)|u(A|Fae)(w) = pR(A) for all A CC Z% and all A € F},
where we denote by M;(2) the set of probability measures on €.

Of course in the particular case of the DGFF, since we are dealing with
sequences of Gaussian measures, any limit point of “Xn is in any case a Gaus-
sian measure and this convergence takes place if and only if both covariance
and mean converge (to finite limits). We note, by a standard monotone
argument and remembering that the random walk on Z? is transient if and
only if d > 3, that

. .. < +oo ifd> 3,
i G (1d) = B[ S tp] = { ST R4ZT L, 0

n—oo — +OO
n>0

This has the following consequence:

Theorem 1.4.6. When d =1 or d = 2, the massless Gaussian Free Field
has no infinite-volume Gibbs measures.

When d > 3, transience of the symmetric simple random walk implies
that the limit in (1.35]) is finite. This will allow us to construct infinite-
volume Gibbs measures. We say that n = (7;);cz¢ is harmonic (in Z%) if
(An); = 0 for all i € Z.

Theorem 1.4.7. In dimensions d > 3, the massless Gaussian Free Field
possesses infinitely many infinite-volume Gibbs measures. More precisely,
given any harmonic function n on Z%, there exists a Gaussian Gibbs measure
w with mean n and covariance matrix given by the Green function

G(i,j) = Ei{zﬂ{xn:ﬂ] (1.36)

n>0

The proof of the last theorem is the topic of the next section.
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1.5 The Gibbs-Markov property.

From now till the end we tacitly suppose that d > 3. In this section we want
to show that every Gaussian Gibbs measure u', given by Theorem
satisfies the Gibbs-Markov property, that is, for all A cC Z¢, and for all
AecF,

1" (A|Fac)(w) = pX(4), for p’-almost all w. (1.37)

For that, we will verify that the field ¢ = (¢;);cz¢ with mean E7[p;] = n;
and covariance
Cov'(pip;) = G(i,j), (1.38)

when conditioned on Fyc, remains Gaussian (Lemma below) and that,
for all tx,

En[eitA-cpA‘fAc](w) _ eitA~aA(w)—%tA~GAtA’ (1.39)
where a;(w) = Ej[wx, ] is the solution of the Dirichlet problem in A with
boundary condition w.

Remark 1.5.1. We want to remark the difference between the probability
measure P (with the associated expectation E) and P (with the associated
expectation F): the first acts on the random field ¢ as just defined, the
second acts on the simple random walk on Z¢ as defined in the initial section
about notation.

Lemma 1.5.2. Let ¢ be the Gaussian field construct below. Let, for all
1€ A,
a;j(w) = E"p;| Facl(w). (1.40)

Then, p"-a.s., ai(w) = Ej[wx, .|. In particular, each a;(w) is a finite linear
combination of the variables ¢; and (a;);eza is a Gaussian field.

Proof. When i € A, we use the following characterization of the conditional
expectation: up to equivalence, E"[p;|Fac| is the unique Fpc—measurable
random variable 1 for which

E"[(pi —4)p;] =0, for all j € A°. (1.41)

We verify that this condition is indeed satisfied when ¢ = Ej[wx, .|. By

([L39),
E" [(%’ - E; [@XT,\C])%} = E"[pip;] - E" [Ei[SOXTAC]%} =
=G(i,j) +nim; — E” [Ei[SOXTAC]SOj] :
Using again (1.38),

E” |:Ez [@XTAC]%} = k%;A Eorpi|Pi(Xrye = k) = E; [E” [ox,, @jﬂ i

= Ei[G(Xr\e,5)] + Ei [EU[SOXW]E”[W]]
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On the one hand, since ¢ € A and j € A°, any trajectory of the random walk
that contributes to G(7,j) must intersect JA at least once, so the Markov
property gives

G(i,5) = B[ Y Lixmp| = 22 P(Knwe = K)G (k) = BiG(Xr e )],
h>0 koA
(1.43)

On the other hand, since ¢ has mean n and 7 is solution of the Dirichlet
problem in A with boundary condition 1, we have

E; [E" lex, . JE [@j]} = Ei[nx,,.nj] = Eilnx, . nj = ninj- (1.44)

This shows that a;(w) = Ej[wx, .|. In particular, the latter is a linear com-
bination of the w;s :

a;(w) = Z wpP(Xre = k), (1.45)
keoA
which implies that also (a;);cza is a Gaussian field. O

Corollary 1.5.3. Under u"!, the random vector (v; — a;)ien 1s independent
of Fhe.

Proof. We know that the variables ¢; —a;, ¢ € A, and ¢;, j € A° form a
Gaussian field. Therefore, a classical result implies that (¢; — a;);ea, which
is centered, is independent of Fje if and only if each pair ¢; — a; (i € A)
and ¢; (j € A°) is uncorrelated. But this follows from (L.41)). O

Let ap = (a;)ien- By Corollary and since a, is Fac-measurable,

E"[eitA'SDA\}"Ac] — gita-angn [eitA'(SDA—U«A)“FAC] — gita-angn [eitA‘(SDA—aA)].
(1.46)
We know that the variables p; —a;, i € A, form a Gaussian vector under u".
Since it is centered, we need only to compute its covariance. For ¢,j € A,
write

(i — ai)(pj — aj) = wipj — (wi — ai)aj — (p; — aj)a; — aja;.  (1.47)

Using Corollary again, we see that E"[(p; — a;)a;] = 0 and E"[(¢; —
aj)a;] = 0 (since a; and a; are Fpc-measurable). Therefore

Cov" ((pi — i), (¢ — a;)) = Epip;] — E"asa;] = G(i, j) + ninj — E"aza;].
(1.48)
Proceeding as in (|1.42)

E"aia;] = Ei [G(XTAC,X;AC)} + Eij [E" [ox, JE [ox, H, (1.49)

AC
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where X and X’ are two independent symmetric random walks, starting
respectively at i and j, P;; denotes their joint distribution, and 7). is the
first exit time of X’ from A. As was done earlier,

Ei; [E" [ox., JE [ox, ]] = Eij[nx..ix, | = Eilnx,, ) Ej[nx.,.] = nin.

TAaC AC
(1.50)
Let us then define the modified Green function

Kalin) = Ei| Y. Lix,op| = Glig) = GaGi). (151)

nZTAC

Observe that K (7,j) = Ka(j,4) since G and G are both symmetric; more-
over, K (i,7) = G(i,7) if i € A°. We can thus write

By G(Xnpe, XUy )| = klz;APi(XW = k) Pj(X,,. = 1)G(k,1)
‘e

= Z Pj(XTAc = Z)KA(ZJ)

leOA

= > Pj(Xre =1)Ka(l,1) (1.52)
leON

=3 Pj(Xr. =1)G(l,1)
leOA

= Ka(j,9) = G(i,j) — Ga(i, ).

We have thus shown Cov’((p; — a;), (¢j — a;)) = Ga(i,j), which implies
that

BV [0 #h| Fpe] = eftaaremstaGata, (1.53)

This shows that, under p"(-|Fac), pa is Gaussian with distribution given by
pA (+). We have therefore ((1.39).

Remark 1.5.4. All the computations done in this section can be generalized
conditioning on the o-algebra Fy, for } # A CC Z?. In this case we obtain
the following version of Lemma [1.5.2

Lemma 1.5.5. Let ¢ be the Gaussian field construct at the beginning of this
section. Let, for all i € A°,

ui(w) == E"p;| Fal(w). (1.54)
Then, p-a.s., ui(w) = Ejlwx, ,7a < oc]. In particular, each u;(w) is a

finite linear combination of the variables ¢j, (u;);cza is a Gaussian field,
and (i — w;)iee is independent from Fy.
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We now define, for U C Z%, the probability measure pir(-) on RZ? of the
Gaussian field with mean E};[¢;] = n; and covariance equal to the Green
function Gy (+,-) killed outside U, that is

Covi)lpi, 5] = Gui,j) = Y Po(Xn = y,n < Tyy) (1.55)

n>0

where Ty = inf{n > 0,X,, ¢ U} is the exit time from U. We have the
following

Lemma 1.5.6. Let ) # K cC Z%, U = A°. Every Gaussian Gibbs measure
u, given by Theorem|1.4.7, satisfies the ”exterior Gibbs-Markov property”,
that is, for all A CC Z%, and for all A € F,

p"(A|Fa) (w) = pg(A),  for p"-almost all w. (1.56)

Proof. See [11], Lemma 1.2 and Remark 1.3 O
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Chapter 2

Some useful general tools

In this and in the following chapter we present some important general tools
that we are going to use in the sequel. In this first chapter we present some
useful general probability tools.

2.1 Extended version for non-negative increasing
functions of the Markov’s inequality

We state an easy but important generalization of the classical Markov’s
equality.

Theorem 2.1.1. Let X be any random variable, and f a non-negative in-
creasing function. Then, supposing that E[f(X)] < oo,

P(X > ¢) < E[f(X)]f(e). (2.1)

Proof. Since X > ¢ if and only if f(X) > f(e) then the basic Markov
inequality gives the result. O

2.2 BTIS-inequality

The BTIS-inequality, is a result bounding the probability of a deviation of
the uniform norm of a centred Gaussian stochastic process above its ex-
pected value. The inequality has been described (in [I]) as “the single most
important tool in the study of Gaussian processes.” We now present this
important tool.

Consider a Gaussian random variable X ~ N(0,02). The following two
important bounds hold for every v > 0 and become sharp very quickly as x
grows:

e 2w /77 (2.2)

g 0-3 1,2 2
_ —zu‘/o
e 2 <PX>u) <
( 2mu \/27ru3> < B )=

2mu

25
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In particular the upper bound follows from the observation that
—+o00 1 2

e 207 da <
u  V2mo?

P(X >u) =
(2.3)

o0 =2
</ ! ge_ﬁdac: ( g )6_5“2/"2.
w  V2mo?u 2mu

For the lower bound, make the substitution z — u + y/u to note that

uty/u

Bl | o2 1 TO0 T g2
PX>u:/ 6_?dx:/ —d
( ) u  V2mo? V2ro? Jo U Y
u2
_ e 202 /+Ooe_(y2/u2+2y)/202dy
uV2mro? Jo
u? w2
> [l (1 2 Yy =2 (o2 %)
—uv2ma?Jo 2u?0? N uz/)’

(2.4)

where the inequality is given by the fact that e™* > 1 — z for all z > 0. One
immediate consequence of ([2.2)) is that

. _9 _
uh_)rgou InP(X >u) = 5,7

(2.5)

Now we state a classical result related to (2.5)), but for the supremum of
a general centered Gaussian process (X;)ier. Assume that (Xy)ier is a.s.
bounded, then

1
lim w21 IP’( X, > ):——, 2.6
M P K> ) =50 20
where
o2 = sup E[X?]. (2.7)
teT

An immediate consequence of (2.6]) is that for all € > 0 and u large enough,

P( sup Xy > u) < etk (2.8)

Since € > 0 is arbitrary, comparing with , we reach the rather
surprising conclusion that the supremum of a centered, bounded Gaussian
process behaves much like a single Gaussian variable with a suitable chosen
variance.

Now we want to see from where comes. In fact, and its conse-
quences are all special cases of a ”nonasymptotic” result due independently,

and with very different proofs, to Borell (B) and Tsirelson, Ibraginov and
Sudakov (TIS).
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Theorem 2.2.1 (BTIS-inequality). Let (X;)ier be a centered Gaussian pro-
cess, a.s. bounded on T. Write | X|| = || X||; = sup;er X¢. Then

E[| X1]] < oo,
and for all u > 0,
B(JIX ]~ EIX]] > u) < ™/ (2.9)

Before looking at the proof, we take a moment to look at an immediate
and trivial consequence of (2.9)), that is, for all u > E(||X|),

P(|X|| > u) < e~ ElXIN?/20% (2.10)

so that (2.6) and (2.8]) follows from the BTIS-inequality.
We now turn to the proof of the BTIS-inequality. There are essentially
three quite different ways to tackle this proof:

e The Borell’s original proof [2] relied on isoperimetric inequalities;
e The proof of Tsirelson, Ibragimov, Sudakov [15] relied on Ito’s formula;

e The proof reported in the collection of exercises [5] (although it root
is much older).

We choose, as in [I], the third and more direct route. The first step in this
route involves the following two lemmas.

Lemma 2.2.2. Let X and Y be independent k-dimesional vectors of cen-
tered, unit-variance, independent, Gaussian variables. If f,g : R¥ — R are
bounded C? function then

1
Cov(f(X),g9(X)) = /0 E[Vf(X)-Vg(aX +V1—a?Y)|do,  (2.11)

where Vf(X) = (%f(l’))i:l,...,k'

Proof. Tt suffices to prove the lemma with f(z) = ¢/**) and g(z) = (5%
with s,t,z € R*. Standard approximation arguments (which is where the
requirement that f is C? appears) will do the rest. Write

- 1
o(t) = E[e’™)] = exp{it - 0 — St} = elt’/2, (2.12)
since X is a k-dimesional vectors of centered, unit-variance, independent,
Gaussian variables. It is then trivial that
Cov(f(X),g(X)) = E[e"*el)] — B/ OR[e )]

= B[/ (490 — B[R] = ot + 5) — o(t)p(s),
(2.13)
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where the second line follows from the fact that X and Y are independent
with the same distribution. On the other hand, computing the integral in

2.11), using -2~ f(z) = it;e!®) | gives
BT, using 2 "

1
/ E[Vf(X) Vg(aX +V1— oﬂY)}da
0

1 d
:/ E[Zthjei(t-x)isjei(s-(aXJr\/lfaQY))}da
0 =1

Jj=

1 d 2.14
_ _/ Z SjtjE [ei((t+as)~a:)]E[ei(s~(\/1—o¢2Y))]da ( )
0o =
1
_ _/ (s - t)elltP2aklls+s)/2 e,
0
= —o(s)p(t) (1 —e”") = (s + 1) — (s)p(t),
which is all that we need. O

Lemma 2.2.3. Let X be a k-dimensional vector of centered, unit-variance,
independent, Gaussian variables. If h : R¥ — R is C? with Lipschitz con-
stant 1 and if E[h(X)] = 0, then for all t > 0,

B[] < /2. (2.15)

Proof. Let Y be an independent copy of X and « a uniform random variable
on [0,1]. Define the pair (X, Z,) via

(X, Za) = (X,aX + /1 - a2Y) (2.16)

Take h as in the statement of the lemma, ¢ > 0 fixed and define g = e*.

Applying and using Ve = te!"Vh, gives
1
E[h(X)e™™)] = E[n(X)g(X)] :/ E[Vg(X) - Vh(Za)]da
0

= t/l E[VA(X) - VA(Za)e"™]da
0

S {E [eth(X)] 7
(2.17)

where we used the Cauchy-Schwarz inequality and the Lipschitz property of
h. Let u be the function defined by

e'lt) = E[eX)], (2.18)
then derivating in the both sides
E[h(X)e"™)] = o/ (t)e ®), (2.19)
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so that from the preceding inequality, «'(¢) < t. Since u(0) = 0 it follows
that u(t) < t?/2 and we are done. O

The following lemma gives the crucial step toward proving the BTIS
inequality.

Lemma 2.2.4. Let X be a k-dimensional vector of centered, unit-variance,
independent, Gaussian variables. If h : R¥ — R has Lipschitz constant o,
then for all u > 0,

]P’(h(X) ~E[R(X)] > u) < o3/, (2.20)

Proof. By considering h(z) = h(z)/o it suffices to prove the result for o = 1.
Assume for the moment that h € C2. Then, for every t,u > 0,

h(X)—E[h(X)]>u

< e R [et(h(x)—E[h(X)])] (2.21)

< e%tQ—tu

— )

the last inequality following from . Taking the optimal choice of t = u
gives for h € C2.

To remove the C? assumption, take a sequence of C? approximations to
f each one of which has Lipschitz coefficient no grater than o (we recall that
if a function f has Lipschitz constant o the regularized function ®.(f)(x)
has Lipschitz constant smaller than o) and apply Fatou’s inequality. This
complete the proof. O

We now have all we need to prove Theorem [2.2.1]

Proof of Theorem [2.2.1. There will be two stages to the proof. Firstly, we
shall establish Theorem 2.2.1] for finite 7. We than lift the result from finite
to general T

Thus, let T be finite, so that we can write it as {1,2,...,k}. In this case
we can replace sup by max, which has Lipshitz constant 1. Let C' the k x k
covariance matrix of X on the finite set 7', with components ¢; ; = E[X;X}]
so that

2 2
OT = max ¢ = max E[X7]. (2.22)

Let W a vector of independent, standard Gaussian variables, and A such
that A*A = C. Thus X < AW and max; X; 4 max; (AW );, where 2 indicates
equivalence in distribution. Consider the function h(x) = max;(Az);, which
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is trivially C?. Then
| max(Az); — max(Ay)i| = | max(e; Az) — max(e; Ay)|
(2 (2 (2 (2
< max|e; Az — y)| (2.23)
< max|e;Al - o -y,
7

where, as usual, e; is the vector with 1 in position ¢ and zeros elsewhere.
The first inequality above is elementary, and the second is Cauchy—Schwarz.
But
le;Al? = et Al Ae; = elCe; = i, (2.24)
so that
|mlax(Ax)i — miax(Ay)i| <orl|lr—y| (2.25)

In view of the equivalence in law of max; X; and max;(AW); and Lemma
this establishes the theorem for finite 7.

We now turn to lifting the result from finite to general T'. For each n > 0,
let T), be a finite subset of T such that T,, C T,,+1 and T, increases to a
dense subset of T. By separability,

sup X; == sup Xy, (2.26)
teT, teT

and since the convergence is monotone, we also have that

IP’( sup Xy > u) — IP’(supXt > u) and IE[ sup Xt} — E[supXt]
teT, teT teT, teT
(2.27)

Since a%n — a% < oo (again monotonically), we would be enough to prove
general version of the BTIS-inequality from the finite-T" version if only we
knew that the term, E[sup,cr X;], were definitely finite, as claimed in the
statement of the theorem. Thus if we show that the assumed a.s. finiteness
of || X|| implies also the finiteness of its mean, we shall have a complete proof
to both parts of the theorem.

We proceed by contradiction. Thus, assume E[||X||] = oo, and chose
ug > 0 such that

1
e~ U/oF < = and P[supXt < uo} > § (2.28)
4 teT 4

Now chose n > 1 such that E[|| X||, ] > 2ug, which is possible since E[[| X ||, | —
E[||X|l;] = oo. The BTIS-inequality on the finite space T}, then gives

1
L2 207807 > 90787k > B(| | Xy, — B[IXg, ]| > wo)

> P(E[ XI5, ] = X1l > wo) = B( 11Xy < uo) >
(

This provides the required contradiction, and so we are done. O

IR

29)



Chapter 3

Some useful tools for the
DGFF

From now till the end of this paper our object of study is the Discrete Gaus-
sian Free Field (DGFF) on Z¢, with the canonical law P on Q = R%* such
that under [P, the canonical field ¢ = (¢;),cz¢ is a centered Gaussian field
with covariance E[p,p,] = G(z,y), for all z,y € Z%, where G(,-) denotes
the Green function of simple random walk on Z? as defined in . Again,
we will use the same notation for the probabilities P and P as explained in

Remark [I.5.11

3.1 Maximum for the Lattice Gaussian Free Field

We now state a very useful bound for the expectation of the maximum of
the DGFF in a fixed bounded subset of Z.

Proposition 3.1.1. Let ) # K cC Z% then there exists a constant ¢ > 0

such that
E[m}z{xxg@] < cy/log |K]. (3.1)

Proof. In order to bound E[maxy ¢], we write, using Fubini’s theorem in
the third relation,

“+00
E[m}gxcp] < E[m[z(xxwﬂ :E[/o ]l{ygmaxmﬁ}dy]

+o00
= / E{ﬂ{yﬁmaxx w*]*} dy

0

+oo
= /0 IP’(y < ml?xgoJr)dy

+o0 n

§A+/A P(m}zgxap >y>dy,

31
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for arbitrary A > 0. Now using the following claim (that we will prove at
the end)

+ < —u?/2G(0)
P(m}z{xxg@ > y) < |Kle (3.3)

and inserying it into (3.2) yields, for arbitrary A > 0,
+o0 2 2
E[m[z(a,x ] <A +/ |K|e /2600 dy < A+ ¢|K|-eA7/260) (3.4)
A

We select A such that e=4*/2¢(0) = |K|~! (i.e. A= (2G(0)log|K|)'/?), by
which means (3.4) readily implies that

E[m}z{mxcp] < cy/log | K], for all § # K cc 7%, (3.5)

We now prove the claim (3.3). Recalling that E[p?] = G(z,7) = G(0)
for all 2 € Z¢, using (in the third relation) the translation invariance of the
probability P, we can easily obtain the following bound

P(Hl]gw* > y) = P[ U {ed > y}} <Y Plef >y = |K|Plpo > yl.
rzeK TeK
(3.6)
Introducing an auxiliary variable ¢ ~ N(0,1) and recalling that the parti-
tion function Fiy(, ,2)() = Fi,1) (%), we have

[KIP(0 > y) = [ K| (4 > G(0)/2y). (3.7)

Using the extended version for non-negative increasing functions of the
Markov’s inequality (see section [2.1)) with f(a) = e, we have

P(¢ > a) < P(|| > a) < mine ME[e*] = min e AN/2 — g—a?/2 (3.8)
A>0 A>0

since the minimum is attained at A = a. Applying (3.8)) to the last term of
(13.7) we obtain

2
KP() > G(0)2y) < [K| e~/200), (3.9)
Summarizing (3.6)),(3.7) and (3.9) we finally obtain

+ < —u2/2G(0)
P(m}z{xxgp > y) <|K|e . (3.10)
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3.2 Asymptotics for the Green function

We state here one important and very well known result regarding the be-
haviour of the Green function defined in (|1.36]).
First of all we recall that, due to translation invariance, G(z,y) = G(z —

y,0) = G(z — y).

Lemma 3.2.1. Ifd > 3, as |z| — oo, there exists a constant c(d) > 0 such
that
G(x) ~ c(d)|z]|*~% (3.11)

Proof. See [9], Theorem 1.5.4. O

3.3 Potential theory

In this section we will introduce some very useful aspects of potential theory.
The main reference for this topic is Chapter 2 §2 of [9)].
Given K CC Z%, we define the escape probability ex : K — [0,1] by

ex(z) = Pp[Tk = 0], =€ K. (3.12)
We also define the capacity of K as

cap(K) = Z ex(z). (3.13)

zeK

It immediately follows from the two definitions above that the capacity is a
monotone and subadditive set function (see [9], Prop 2.2.1 for a proof), in

particular
cap(K) < cap(K’),  forall K c K' cc Z% (3.14)
cap(K) + cap(K') > cap(K U K') + cap(K N K'), for all K, K' cc 72
(3.15)

Further the probability to enter in K may be expressed in terms of e (x)
(see [13], Theorem 25.1, for a derivation) as

Pu(ti < 00) = > G(z,y) - ex(y), (3.16)
yeK

where G(-,-) denotes the Green function defined in ([1.36). Moreover, the
following bounds on P, (Tx < 00), € Z% holds (c.f (1.9) of [14])

ZyeK G(:E, y) ZyEK G(ZL’, y)

supcrc ( Xyen G(,9)) infeer (Yyen Gy))
(3.17)

< Pyt < 00) <
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Finally from (3.16)) and (3.17)), togheter with classical bounds on the Green
function (see Lemma (3.2.1))) for |z| — oo, we obtain

sup (Z G(z,y)) > ca|pl({K) > Zlglf( ( Z G(z,y)). (3.18)

2€K yeK yeK

A trivial consequence of the last inequalities, together with classical bounds
on the Green function (c.f. Lemma [3.2.1)), is the following useful bound for
the capacity of a box:

cap(B(0,L)) < cL472, for all L > 1. (3.19)

3.4 Recurrent and transient sets: The Wiener’s
Test

We say that a set A C Z¢ is recurrent if Py(X) € A for infinitely many k) =
1, transient otherwise. We now state a very important criterion to determine
whether a subset A C Z¢ is either recurrent or transient for a symmetric
simple random walk on Z<.

Theorem 3.4.1 (Wiener’s Test). Suppose A C Z%, (d > 3) and let
Ap={z€ A; 2" <|z]oo < 2L (3.20)

Then A is a recurrent set if and only if

T[A] = i capAn) _ (3.21)

n(d—2
ovard on(d—2)

Proof. See [9], Theorem 2.2.5. O

We finally remark (See [9], p.57) that the function

fa(z) = Py(14 < 00), (3.22)

is harmonic for z € A° and fa(x) = 1, for all z € A. Moreover, if A is finite
then
lim fa(x)=0. (3.23)

|z|—o0

3.5 Notation for the DGFF

We now turn to the Gaussian free field on Z¢ using the notation defined at
the beginning of this section.

Given any subset K C Z%, we frequently write ¢ to denote the family
(¢z)eck. For arbitrary a € R and K cC Z¢, we also use the shorthand
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{¢) > a} for the event {min{p,;x € K} > a} and similarly {p, < a}
instead of {max{y,;;x € K} < a}. Next, we introduce certain crossing
events for the Gaussian free field. To this end, we first consider the space
Q = {0, 1}Zd endowed with its canonical o-algebra and define, for arbitrary
disjoint subsets K, K’ C Z¢, the event (subset of )

{K +— K'} = {there exists an open path (i.e. along which the

. . . (3.24)
configuration has value 1) conneting K and K'}.
For any level h € R, we introduced the (random) subset of Z¢
EZh ={zeZ%¢, > h}, (3.25)

and we write ¢ for the measurable map from Q = RZ’ into = {0,1}%*
which send

weE N r— (]l{tpz(w)zh})xeld S Q, (3.26)
and define -
(K & K'Y = (o) 1{K +— K'}) (3.27)

(a measurable subset of RZ* endowed with its canonical o-algebra F), which
is the event that K and K’ are connected by a (nearest-neighbour) path in

Egh. Note that {K 2k g } is an increasing event upon introducing on RZ?
the natural partial order (i.e. f < f' when f, < f’, for all z € Z%).

3.6 Density and uniqueness for the infinite cluster

In this section we want to investigate the properties of the infinite cluster.
In particular we will state two very important results due to C.M. Newman
and L.S. Schulman (see [10]) and R.M. Burton and M. Keane (see [4]), that
can be summarized in the folliwing statement:

”If an infinite cluster exists, then it is unique and have positive density
with probability one”.

All the results stated in this section hold for site percolation models
in the d-dimensional cubic lattice with nearest-neighbor bonds and so, for
this section, our notation is not refered to the notation for the DGFF. The
models we consider may be defined by a lattice of (site percolation) random
variables, {Xy; k € Zd}, where each X}, either takes the value 1 (correspond-
ing to site k occupied) or the value 0 (corresponding to site k not occupied).
Such a model may equivalent be defined by the joint distribution P of { X}
which is a probability measure on the configuration space,

Q:{O,l}Zd:{w:(wk:kGZd):eachwk:Oorl}
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(with the standard definition of measurable sets); we assume (without loss
of generality) that (€2, P) is the underlying space with Xj(w) = wg.

For any j € Z® we consider the shift operator T; which acts either on
configuration w € €, or on events (i.e., measurable sets) W C 2, or on
measures P on €2, or else on random variables X on ) according to the
following rules:

(Tjw)k = Wiy TW = {Tjw : w € W},

(T]P)(V[;) = [F’(T,jW), (T]X)(w) — X(T,jw), (3.28)

For each k € Z% and n = 0 or 1 we consider the measure P} on Q =

{0, 1}Zd\{k}, defined so that for U C Q,

PU x {wr = n})
P({wp =n})

P} is the conditional distribution of {X;; j # k} conditioned on Xj, = 1.

Finally, throughout this section, we assume the following two hypotheses on

P, or equivalently on {X}} :

PI(U) = (3.29)

1. P is translation invariant; i.e., for any j € Z¢, ;P =P.

2. P has the finite energy property; i.e., for any k € Z, Pg and IP’/,lC are
equivalent measures; i.e., if U C Q, n = 0 or 1, and P} (U) # 0 then
P, "(U) # 0.

Remark 3.6.1. In the original article of C.M. Newman and L.S. Schulman, it
is required a third hypothesis, that is, P is translation ergodic; i.e., if j # 0
and W is an event such that T;W = W, then P(W) = 0 or 1. Thanks to the
ergodic decomposition theorem we can omit this third hypothesis, as done
in the article of R.M. Burton and M. Keane.

Similarly to the definition given in for the DGFF, we say that i is
connected to j if {i «+— j}. Moreover, we define C(j), the cluster belonging
to j, as C(j) = {i : i is connected to j}; note that C(j) # 0 if j is not
occupied. A set C' C Z? is called cluster if C = C(j) for some j and is
called infinite cluster if in addition |C| = co. The percolation probability is
p =P(|C(K)| = co) (which is independent of j). We define for any F' C Z¢

its lower density, D(F') and upper density D(F') as

e ENV =i 1 |F NV,
D(F) = hnﬂ_l)gf —a D(F) = hgl—fo%p e (3.30)
where
Vi={ze€Z% —n/2<z;<n/2, i€{l,....d}} (3.31)

is the cubic box of size lenght n in Z9. F is said to have a density D(F) if

D(F) = D(F). We denote by H the set of all cluster C' and define
HOZ{CEH; ‘C|:OO}, Ny = |H0|, (332)
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Fy={j e Z%j e C for some C € Hy}, (3.33)

Hj is the set of infinite clusters, Ny the number of infinite clusters, and Fj
the union of infinite clusters.
We are know ready to state the two main result of this section.

Theorem 3.6.2 (Newman and Schulman). Ezactly one of the following
three event has probability 1:

1. Ny =0;
2. Ny = 1;
3. N():OO.

If Ny #0 (P-a.s.), then p > 0 and D(Fy) = p (P-a.s.).

Theorem 3.6.3 (Burton and Keane). P(Ny = o0) = 0.
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Chapter 4

The two main results

4.1 Purpose of the thesis

We are interested in the event that the origin lies in an infinite cluster of E%h,

which we denote by {0 PN oo} (we also denote by C*(0) = {i : i PN 0},
the cluster containing the origin), and ask for which values of h this event
occurs with positive probability. Since

n(h) =P(0 2 00) (4.1)
is decreasing in h, it is sensible to define the critical point for level-set
percolation as

hi(d) = inf{h € R; n(h) = 0} € [—00, ] (4.2)
(with the convection inf ) = 0o0). A non-trivial phase transition is then said

to occur if h, is finite. In the next two sections we will present the proofs
of the following two results:

o h.(d) >0 for all d > 3 and h.(3) < oo, proved by J. Bricmont, J.L.
Lebowitz and C. Maes (BLM), see [3;

e h,(d) < oo for all d > 3 proved by P.-F. Rodriguez and A.-S. Sznitman
(RS), see [11].

Finally in chapter [5| we present a new and original (but incomplete) gener-
alization of the BLM proof of the existence of a phase transition for d = 3
to any d > 3, that gives the same result due to Sznitman-Rodriguez with
completely different arguments.

4.2 The proof of J. Bricmont, J.L. Lebowitz and
C. Maes

In all this section we fix d = 3. See remark [£.2.4] to understand where the
proof fails for d > 4.

39
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4.2.1 Definitions and notation

We start this section by introducing some definition and notation. Let V

and A be cubes centered around the origin, that is sets of the type [—«, oz]d,

for some a € N. In particular we suppose that |V| > |A|. Remember that
C"(0) denote the (random) cluster containing the origin and define the event

ol = {QDEQ: ch(omaiv;é@}. (4.3)
Let Sy be the following collection of subsets of V'
Sy = {KQV:OGK, K is connected, Kﬂaiv#@}. (4.4)
Define for a paricular K € Sy the event
E%:{goeﬁiwah,VajeKand gpz<h,Vw€8vK}, (4.5)
where Oy K = 0K NV.

Note that the family Sy is a collection of the possible shapes for the
infinite cluster C”(0) inside V (see Figure .
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Figure 4.1: In this example we fix a level A > 0 and we paint in black the
sites over the level h. Moreover we highlight the sets V, A, K € Sy and
Oy K. Note that C"(0)NV D K.
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4.2.2 The technical lemmas

We are now ready to state the four technical lemmas that we need to prove
our statement.

Lemma 4.2.1. Let C"} be the event defined in . Then

1. C"} 1s the disjoint union of the events E?(, i.e.,

cy = || Bk (4.6)
KeSy

and if K, K' € Sy and K # K', then E% N E%, = ().
2. P(Ch) > n(h) for all V and P(E%) > 0 for all K € Sy, all finite V.

Proof. We start proving that C. = Urkes, B If C"(0) intersects the inner

boundary of V, that is C*(0) N 'V # 0, then the intersection of C"(0) with
V contains a set K € Sy and E?( occours (see Figure [4.1). Note that it is
not always true that there exist a set K € Sy such that C*(0)NV = K
since C"(0) NV could not be connected. On the other side, if Ef,‘( occours
for some K € Sy then K is a subset of C"(0) and C% occours. The events
E" are disjoint by definition. Part (2) is obvious. O

Lemma 4.2.2. The function x — E[p,|E%] is a harmonic function outside
K =K UOJK.

Proof. For all K cC Z¢, applying Lemma we have, for all z € Z¢\ K,
Elpe| Frl(w) = Exlwx, 77 < oo], P-as., (4.7)

where Fr = 0(pg; « € K). Obviously E?( € F and in particular we have
Elg.|E%] = E[Ex[ox., || EK]- (4.8)

Using the Markov property and the fact that, if 2 € K° and y ~ z then
y ¢ K, we have

i S Elexe =30 Y (X = R

Yy~ Yy~ keOK
= > o) P(Xi=y)Py(Xre =k)  (49)
k€OK  y~a
= Z kLo (Xrye = k) = EI[SDXTK]-
kedK

This implies that the function  — E[p,|E%] is a harmonic function outside
K = K UOK. O
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Lemma 4.2.3. For some 0 < u <1 and for all A, we can take V =V (A)
large enough so that
1
o Z fr(x) > u, for all K € Sy and for all x € A, (4.10)
rEA

where fr(x) is defined in (3.22).

Proof. In this proof we use the same notation used for the Winer’s test
(see 3.4.1)). The proof of this test implies that, as a set A grows (in the
sense of inclusion) such that T[A] — oo, then the function fa(z) — 1.
Therefore, since the set A is a fixed and bounded region in Z3, it is sufficient
to show that T[K] can be made arbitrary large for all K € Sy and V large
enough. One has thus to verify condition for an arbitrary infinite
connected set A in d = 3. We will do this in two steps: first we reduce
the volume of A and then we show that no set A is worse than a straight
line. By the monotonicity property (3.14), T[A] > T[a] where a C A is
obtained by keeping (in a nonunique but arbitrary fashion) for each i =
0,1,2... only one point in the intersection of A with the i-th shell= {y :
y is on the boundary of the cube of size 2i}. The volume |a,| = 2", and by
(13.18))

Cap(ay) > 2" /M, (4.11)

where
M, = gé%f( Z G(a:,y)). (4.12)
YyEan
Fix x € ay,. Then order x € a,, y # x, according to their distance from x.
The k—th point in that order is at a distance at least k from z. Thus, using

Lemma (3.2.1)), we get
2" 4
M, <c- kg_l Z <d n. (4.13)

Combining the inequalities (4.11)-(4.13]) we thus get that T[A] > ¢- > 1/n,

hence the desired divergence. O

Remark 4.2.4. We underline that in the last proof there is the key point
where the reasoning fails for d > 4. The main reason the result is restricted
to d = 3 is that they use, in the previous lemma, the fact that T[A] = oo for
any infinite, connected set A. This fails in d = 4, as can be seen explicitly
by considering the set A equal to a lattice axis.

Lemma 4.2.5. For h < oo large enough there is a constant ¢ > 0 such that
for all V,, large enough

Elpz|FK] > ¢, for all x € 0K, all K € Sy,,. (4.14)
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Proof. This lemma is proved in [3], Lemma 3, p. 1264. We are not able to
follow the last part of the proof where the Ruelle’s superstability estimate
is applied. O

4.2.3 Conclusion of the proof of the Theorem

Lemma says that E[¢,|E%| is a harmonic function in Z?\ K. Lemma
says that this function is larger than a strictly positive constant ¢ for
all z € K, for h large enough, and zero at infinity. Hence, by the principle
of domination for harmonic functions

E[pz|Ef] > ¢ fr(z), forall z ez (4.15)

For d = 3 we can apply Lemma and combine it with (4.15)): there is
a constant fi > 0 such that for all A, we can choose V' = V(A) large enough

such that

ZE 0| EV] > @ for all K € Sy. (4.16)
zEA

By Lemma denoting Sp = D" 7 @q,

E[(Sa)’] 2 E[(Sa)*1cp] = > E[(SA)Le,] = Y E[(SA)’|Ex|PlEK]

[A]

KeSy KeSy
(4.17)
and by the Schwartz inequality,
> > E [SalEx]*PlEK] > > @|APPIEK], (4.18)

KESV KESV
where we used (4.16]) for the last inequality. Now, by Lemma again,
= @?[APPICY] > @PA[Pn(h). (4.19)

Since this chain of inequalities holds for all A and ]E[((l / |A\)SA)2] — 0,
for A — Z3, we obtain that n(h) = 0. This completes the proof.

4.3 The proof of P.-F. Rodriguez and A.-S. Sznit-
man

The RS proof is based on two key ingredients:
e The ”"Renormalization scheme” (see section ;

e A "recursive bounds” for the probabilities of some specifics events (see
Proposition [4.3.7]).
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Before analysing the two key ingredients we state two technical results
for the conditional distribution of the DGFF.

Lemmayelds a choice of regular conditional distributions for (¢z),cz4
conditioned on the variables (¢)zen. Namely, P-almost surely,

P((¢r)seza € - [Fa) = P((Pr + tz)reza € - ), (4.20)

where u, = E,[lwyx, , 77 < o0, z € Z, P does not act on (Uz)geza, and

TA?
(Pz) ez is a centered Gaussian field under P, with @, = 0, i—almost surely
for z € A.

The explicit form of the conditional distribution in readily yields
the following result, which can be viewed as a consequence of the FKG-

inequality for the free field (see for example [8], Appendix B.1.).

Lemma 4.3.1. Leta € R, ) # K CC Z%, and assume A € F (the canonical
o-algebra on RZ? ) is an increasing event. Then

P[Algx = a] < P[Alp), > o, (4.21)

where the left-hand side is defined by the version of the conditional expecta-
tion in .

Intuitively, augmenting the field can only favour the occurence of A, an
increasing event.

Proof. See [11], Lemma 1.4. O

4.3.1 Renormalization scheme

The main goal of this section is to present the renormalization scheme. This
technique is one of the main ingredients of the proof of theorem [£.3.4) and it
is similar to the one developed by Sznitman and Sidoravicius in the context
of random interlacements, see [14] and [I2]. This scheme will be used to
derive recursive estimates for the probability of certain crossing events and
the resulting bounds constitute the main tool for the proof. We begin by
defining on the lattice Z¢ a sequence of length scales

L, =1yLo, for n >0, (4.22)

where Ly > 1 and [y > 100 are both assumed to be integers and will be
specified below. Hence, Ly represents the finest scale and Ly < Lo < ...
correspond to increasingly coarse scales. We further introduce renormalized
lattices

L, = L,Z¢ c Z¢, n>0, (4.23)

and note that Ly D L, for all 0 < k < n. To each x € LL,, we attach the
boxes
By, = By(Ly), forn >0, x € L,, (4.24)
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where we define B, (L) = z + ([0, L) NZ)?, the box of side length L attached
to x, for any € Z% and L > 1 (not to be confused with B(z, L)), c.f.
Figure below (note that By, ; is closed just on the left-hand side in every
direction). Moreover, we let

By = U Bny, n>0, z €Ly, (4.25)
yeLn5d(Bn,y7Bn,z)§1

so that {B, ;2 € L,} defines a partition of Z? into boxes of side length
L, for all n > 0, and En,x;x € L,, is simply the union of B, , and its
x-neighbouring boxes at level n. Furthermore, for n > 1 and z € L,,, B,
is the disjoint union of the (¢ boxes {Bn-14;y € Bz NLy_1} at level n —1
it contains. We also introduce the indexing sets

Z, = {n} x Ly, n >0, (4.26)
and given (n,z) € Z,,, n > 1, we consider the sets of labels

Hi(n,z) = {(n—1,y) € Zy—1; Bn-14 C Bny and B,_1, N By, . # 0},

Ho(n,z) ={(n—1,y) € Ln_1; Bh—1yN{z € 7.2 d(z,Bng) = | Ln/2]|} # 0}.
(4.27)

Note that for any two indices (n — 1,y;) € Hi(n,x), i = 1,2, we have
Bp-1y, N Bp_1y, = 0 and By,_14, U By_1y, C Bp,. Finally, given z €
Lyp,n > 0, we introduce A, ., a family of subsets T of |Jy<x<,, Zr (soon to
be thought as a binary trees) defined as -

Ap gz = {'TC U Ti; T NI, = (n,z) and every (k,y) € T NIk, 0 <k <mn,
k=0
has two “descendants” (k — 1, y;(k,y)) € Hi(k,y), i = 1,2,
such that

TrZii= U (= Lunlka), (= Lunba)} )
(k,y)eTNIy
(4.28)

Hence, any 7 € A, ; can naturally be identified as a binary tree having root
(n,z) € Z, and depth n. Since [H1(n,z)| = c1lo? " and [Ha(n, )| = c2lp??,
the following bound on the cardinality of A, is easily obtained,

|An,a:| < (Clod—l)Q(clod—1)22 L. (Clod—l)Q" — (Cl02(d—1))2(2"—1) < (COZOQ(d—l))TL’
(4.29)
where cg > 1 is a suitable constant.
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Lattice L,,_1

*******************************

Hi(n, )

[~ Ha(n,z)

Figure 4.2: Renormalization scheme with n =2, Lo =1, [y = 10.

4.3.2 Crossing events

We now consider the lattice Gaussian free field ¢ = () cz¢ defined in
chapter [1) and introduce the crossing events

Al = {Bn, &5 0By}, forn>0, z €L, (4.30)

Three properties of the events Ai’w will play a crucial role in what follows.
Denoting by o(py; y € Enx) the o-algebra on RZ* generated by the random
variables ¢,y € B, ;, we have

Al € o(ey; Y € Bua), (4.31a)
AZ”,E is increasing (in ) (see the discussion below (3.27)), (4.31b)
Al DAY forall bl € R with h < B, (4.31c)

Indeed, the property 1) that Afw decreases with h follows since EZ" C
E=M for all h < b/ by definition, c.f. (3.25).
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4.3.3 The structure of the proof

In this section we give all the P.-F. Rodriguez and A.-S. Sznitman’s ideas
to show that
hs(d) < o0, for all d > 3. (4.32)

To prove (4.32)) it enough to construct an explicit level A with 0 < h < 0o
such that

P(B(0,L) PN S(0,L)) decays in L, as L — oc. (4.33)

Actually, the Eroof of P.-F. Rodriguez and A.-S. Sznitman will even show

that P[B(0, L) S (0, L)] has stretched exponential decay which implies a
(seemingly) stronger result. A second critical parameter is defined

het(d) = inf{h € R; for some a >0, lim L°P[B(0, L) < $(0,L)] = 0},
— 00

(4.34)
and the following stronger statement is proved:

hold) < 0o,  for all d > 3. (4.35)

For the sake of clarity we investigate later the relevance of this second crit-
ical parameter (see Remark and we now directly prove that h.(d) <
oo, for all d > 3.

As stated before, it is enough to prove and to understand why this
implies that h.(d) < oo, for all d > 3. To this second end we note that for
every h € R, given L > 2Lg, there exists n > 0 such that 2L, < L < 2L,
and

n(h) =P(0 & 0) (sl) P(B(0,L) L0 2L)) (2

(2) o~
< ]P>< U {Bna &8 aZBn,x})

2€Ln:Bp,2NS(0,L)7#0

(4.36)

We now comment on the two inequality, helping out with some picture
extracted from a simulation of the renormalization scheme that we realized
during the master thesis.

1. Consider a realization of the event {0 =Ly oo}, ie. a path in EZ"
connecting 0 to oo, then this path must also connect the box B(0, L)
to the sphere S(0,2L), c.f. Figure (Step 1) below;

2. consider a realization of the event {B(0, L) =L S(0,2L)}, i.e. a path
in E%h connecting B(0, L) to S(0,2L), then this path must also cross
the box B, ; for some « € Ly, : B;, ;N S(0, L) # () and so must connect
the box B, ; to the boundary 8’?,1@ of its IL,,—neighbourhoods, c.f.

Figure (Step 2) below.
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>h >h

Step 1: n(h) = P[0 <= oo] < P[B(0, L) <= S(0,2L)]

L > 2Ly is given.

We chose n > 0 such that 2L,, < L < L4
‘We highlight:

— Bnt1,0

| e Bni10

K | e S(0,L)
R —
e 5(0,2L)

L //- Path connecting 0 to co

Step 2:
>h 2h 5B
P[B(0,L) <= S(0,2L)] < P[U, v, 5, .ns(0,1)201 Bre &5 0By}

We highlight in gray the family of boxes

| {Bua: Buan S0, L) # 0}

In particular we construct the box B,

Corresponding tree 7 :

B (with its LL,-complementary E,I_J,)
- i crossed by the path connecting 0 to co.

Step 3: P[A] ;] < [Anl SUPTEA, .« P[A’H

‘We now zoom inside By, ;.
‘We highlight in darker grey the families

[——e Hi(n,z)
| e Ha(n,x)

- /
™

In particular we construct the boxes By, 1y, (z) and Bp_1 y,(z)
crossed by the path connecting 0 to co.

S

0
0
0
0
0
v
0
0
0
0
0
€

Step 4:

— Repeting 2" — 2 times step 3 we finally construct the family
T — {Bo,y : (0,y) € TN} of 2" boxes of side lenght 3Lg each.

Figure 4.3: In this simulation we fix L = 882, n =2, Ly =1, [y = 10.
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Since the number of sets contributing to the union on the right-hand
side of (4.36) is bounded by ¢l we obtain

n(h) < czgflp(Bn,w JEL ai’én,x) - clg’l]P’(AZ’x), (4.37)

where the second term is well-defined (i.e independent of x € L,,) by transla-
tion invariance. Now we provide a lemma which separates the combinatorial
complexity of the number of crossings in AZ@ from probabilistic estimates,

using A, ; as introduced in (4.2§)).
Lemma 4.3.2. (n >0, (n,z) € Z,,h € R)
IP)(AZJ) <|Apgz| sup (A’%—), where Al = ﬂ Ag’y. (4.38)
TEhns (0,9)€TNTo

Proof. We use induction on n to show that

A< | Af (4.39)

for all (n,z) € Z,, from which immediately follows. When n = 0,
is trivial. Assume it holds for all (n—1,y) € Z,—1. For any (n,z) € I,
a path in Egh starting in B, ; and ending in 8iBn727 must first cross the box
By—1,, for some (n—1,y1) € Hi(n,z), and subsequently B, ,, for some
(n—1,y2) € Ha(n,z) before reaching 8i§n7x, c.f. Figure (Step 3) below.

Thus,
AZ7I g U Azi]ﬂyl N A’Z*lny
(Tl - 17%) € Hz(nwr)
1=1,2

Upon applying the induction hypothesis to Afhl,yl and AZ?LW separately,

the claim (4.39)) follows. O

Before proceeding, we remark that the event A%, with h € R and T €
Ay, for some (n,z) € Z,,n > 0, defined in depends on 2™ boxes
of side 3Lg each, c.f. Figure (Step 4) below, the first 2"~ ! contained in
H1(n,z) and the remaining 2" ! contained in Hz(n, z). Moreover, it follows
from that for any two levels h,h' € R,

Ab D Abrl, whenever h < K/, (4.40)
thus, upon introducing

pn(h) = sup ]P’(AL}), for (n,z) € Z,,n >0, (4.41)
TeEA &
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which is well-defined (i.e independent of = € LL,,) by translation invariance,
we obtain

pn(h) > pn(h'), whenever h < k. (4.42)
Returning to (4.37)), using (4.38]) and (4.41)), we obtain
@35)
W0 S el Al sup BAH TR N (). (143
EAn,z

It remains to explicitly construct an increasing but bounded sequence
(hn)n>0, with finite limit hoo, such that p,(h,) decreases faster than

n n
(colo®D)2" since [Ana| < (colo®@D)2". This result appears in Theo-
rem where we show that such a sequence (hy,)n>0 exists and pp(hy) <

(260@ *1))*271. With this result at hand we can conclude the proof. We
set h = heo and using (4.42), we obtain
_ @ n
n(h) < clgfllAmﬂpn(hn) < col3712_2 . (4.44)

We finally set p = log2/logly, whence 2" = [y"** = (L,/Lo)". Then, by
adjusting ¢, ¢/, (4.44) readily implies

nh) <c-e €. forall L>1, (4.45)
for suitable ¢,¢/ > 0 and 0 < p < 1. It follows that h > h, which completes

the proof.

Remark 4.3.3. Note that lb also implies that h > A, and 5o ha(d) < 0o,
for all d > 3. An important open question is whether h, equals h,, or not.

In case the two differ, the decay of IP’(O JE S(0, L)) as L — oo, for h > hy,
exhibits a sharp transition. Indeed, first note that by definition of h,, for all

h> he, P(0 5 S(0,1)) — 0, as L — 00. If . > hs, then by definition of
h**;

for h € (h«, hyi) and any o > 0, lim sup L4~ P(0 PN S(0,L)) = oo.

"%O (4.46)
Hence P(O 2k S(0, L)) decays to zero with L, but with an at most poly-
nomial decay for h € (hy,h). However, for h > hy., P(0 LN 5(0,L))

has a stretched exponential decay in L, since IP’(O P 3:) < IP’(B(O, L) e

E19) y
S(0,2L)) < c(h)e="MIe” whenever 2L < |7|o < 2(L + 1). Recently A.

Drewitz and P.-F. Rodriguez (see [0]) show that
hy(d) ~ hy(d), as d — 0o (4.47)

(we write f(z) ~ g(z) as z — a if limz,, f(x)/g(x) = 1). It is at present
an unresolved question whether both critical parameters are actually equal
(in any dimension).
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4.3.4 The main Theorem

We now state the aforementioned key result to complete the proof. Most of
the smarter ideas are presented in Proposition [4.3.5| where Rodriguez and
Sznitman are able to control the interactions between some crossing events.

Theorem 4.3.4. There exist an increasing but bounded sequence (hy)n>0,
with finite limit hoo, such that

Pn(hn) < (2clo?@1) 2", for allm > 0. (4.48)

First of all we derive a "recursive bounds” for the probabilities p, (hy,),
c.f. (4.41)) below, along a suitable increasing sequence (hy,)n>0-

Proposition 4.3.5 (Ly > 1,lp > 100). There exist positive constants c;
and cy such that, defining

1/2
M(n, Lo) = CQ(log(Q”(3L0)d)) , (4.49)
then,given any positive sequence (By)n>0 satisfying
Bn > (log2)'/% + M(n, Lo), for allm >0, (4.50)

and any increasing, real-valued sequence (hy)n>0 satisfying

hpy1 > hy + Clﬁn(Qlo_(d_2))"+1, for allm > 0, (4.51)

one has ,
Prs1(Bns1) < pp(hn)? + 3~ Bn=M (L))", (4.52)

Remark 4.3.6. Note that the key-parameter 3, controls the size of the in-
terval hy41 — hy, in a suitable way that the factor e~ (Bn=M(n,L0))* i 1}
can be small enough.

Before proceeding with the proof of the proposition, we recall again that
the event A’%, with h € R and 7 € A, , for some (n,z) € Z,,n > 0, defined
in depends on 2" boxes of side 3Lg each, c.f. Figure (Step 4),
the first 2"~ contained in H;(n,z) and the remaining 2"~! contained in
Ha(n,x). In particular if we define the union of these boxes as

Kr= |J Boy, (4.53)
(0,y)eTNZo

immediately follows from the definition of A}71— that
Al ca(p,;y € Kr). (4.54)

We are now ready to prove the proposition.
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Proof. We let n > 0, consider some m = (n + 1,z) € Z,4+1 and some tree
T € Ay. We decompose

T = {m} N 7:z,yl(m) N 7:z,yg(m)v (4'55)
where (n,y;(m)), i = 1,2 are the two descendants of m in T and
Togstm) = {(k,2) € T+ By. € Bpymy}, fori=1,2, (4.56)

that is 7y, ,(m)) is the (sub-)tree consisting of all descendants of (n,y;(m))
in 7 (in particular it is the left (i=1) or the right (i=2) (sub-)tree in Figure
[4.3). Thus the union in (4.55) is over disjoint sets. Note in particular that
Tryi(m) € Any,(m)- By construction (see Figure , the subsets K7, \om
(c En,yi(m)), for i = 1,2, satisfy K7, . UKz, . = (). For sake of
clarity, and since m and 7 will be fixed throughout the proof, we abbreviate

n,y;(m) =

K;, fori=1,2. (4.57)

In order to estimate the probability of the event A% = A% N A% ,h eR,
we introduce a parameter o« > 0 (that will control the size of the interval
hp+1 — hy, to dominate the interactions) and write

h h h h h
IP(AT) :IF’(ATl ﬂATQﬂ{HIl?IXSDSOZ}> —HP’(AT1 ﬂATQﬂ{H[l?,lX§0>Oé}>
_ h h
_IE[]IA?1 Limaxy, p<a} -IE[]IA%WKJ] —|—]P’(AT1 NAz N {H}g}(gp >

SE[]IA}% ~]1{maXK1¢§a}-P[A%‘QOK1]] —l—]P’(HIl(axcp>a>,
1 1
(4.58)

where maxg, ¢ = max{p,; z € K;} and the second line follows because

A% N { maxg, ¢ < o} is measurable with respect to o(¢k, ), c.f. (4.54).
We now split the proof in two steps to provide the following two bounds:

Bound 1: On the event { maxg, ¢ < a}, there exist a parameter v(a) such
that . 1
P[A% o), ] <P(ALT) (Pley,, > —a)) (4.59)

Proof of Bound 1. Using 1' and 1’ applied to Ahz, and with a slight

abuse of notation, we find
]ID[A%L-2 lor, ] = INP’[A}%2 ((gbx + ux)meKQ)], P-almost surely, (4.60)

where u, = Ep[ox Ti, < 00]. On the event {maxKl p < a}, we have,

for all x € Ko,

T ’

Uy = Z Oy Py (XTK1 =y, T, < oo) < - Py(1r, < o00) =my(a) (4.61)
yeKq

a})
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which is deterministic and linear in «. Moreover, we can bound m,(«a) as

follows. By virtute of ( -, 2w (Tr, < 00) < cap(K1) - supyek, 9(7,y) for
all x € Ks. Since K; consists of 2™ disjoint boxes of side length 3L, c.f.

(4.57) and ( -, its capacity can be bounded, using (3.15)) and -, as
cap(K1) < ¢2"L37?. By Lemma [3.2.1 and (4. 22[) and the observation that

|z —y| > Lpia whenever x € Ky and y € K», it follows that

me(e) < ¢1(2G(0) 2 o 2ngy DA %

which defines the constant ¢; from (4.51)), and the factor (2G(0))~/2 is kept
for later convenience.
Returning to the conditional probability IP’[AS‘-2 ]goKl], we first observe

for v € Ky, (4.62)

that, on the event {maxK1 p < a}, and for any x € Ks, the inequality
Do + Uy > h implies

(4.61) (4.62)

gﬁx—mm(a)Zh—uz—mm(a)’h—2mm( ) > h—n. (4.63)

Hence, on the event {maxK1 p < a},

[160) -~ -
]P)[A% "PKl] P[A% ((Soz + u:c)xeKz)]
= P[A%((gﬁm + m$(a))x€K2)] - P[Ah 7‘¢K1 = _O‘]a
where the last equality follows by (4.20)), nothing that, on the event {<p| K =
—a}, we have u;, = my(—a) = —my(«a for all z € K, c.f. - Applylng

Lemma to the right-hand side of ([4.64), we immediately obtain that,
on the event {mauxK1 p<af,

(4.64)

P[A o] < P(A7 oy, > —a) SP(ATY) (Blp), > —a)) . (4.65)
[

Bound 2:

2
1 —(—=e——M(n,L
IP’(maxgp > a) < min{, e ( oo M 0)) } (4.66)
K1 2
Proof of Bound 2. By virtue of the BTIS-inequality (see section , for

arbitrary ) # K CC Z%, we have

a — E|lmax 2
]P’(m}a(mxcp>a>§exp{—( Q[G(O)K(p]) }, ifa>IE[mI&(Lxgp],

(4.67)

and by Proposition we know that

E[m}z{xx o] < ey/log |K]. (4.68)
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In the relevant case K = K; with |K1| = 2"(3Lo)¢, we thus obtain

IE[H}{aX(p]§CQ(QG(O)log(2"(3L0)d))l/2 2G(0) - M(n,Lo)  (4.69)

where the first inequality defines the constant cs from (4.49). We now require

a/\/2G(0) > \/log2 + M(n, L) (4.70)

where the factor log 2 is kept for later convenience, thus (4.67) applies and
yields

2
1 —(—=2—-M(n,L
P(n}(axg0>a) gmin{2, e (ot~ (m0) } (4.71)
1
. a—E[maxr,; ¢] a _
since /260 > 7360 M(n, Lo) > /log 2. O

We now insert (4.59)) into (4.58]), noting that, since ¢ has the same law as
—p, we have P(¢), > —a) =1—P(ming, ¢ < —a) =1-P(maxg, ¢ > a),
to get

N 1

P(A}) <P(l)-P(4h7) - (1- P(max g > o)) +P(n}%w >a).
(4.72)

Using that (1—z)7! < 142z forall 0 < z < 1/2 (with x = P(maxg, ¢ > a)),

we finally obtain, for all « satisfying (4.70) and A’ > h,

P(AY) < P(A}) <P(Af) - P(4%7) +3-P(maxe > a)
K (4.73)

. 2
.»I., P(AL) 4 3 (8-M(n,Lo)) ’

where we have set § = a/+/2G(0). The claim now readily follows
upon tacking suprema over all 7 € A,41, on both side of , letting
Bn = B, hyp == h —~ € R (h was arbitrary), h,+1 = I/, so that requiring
hn+1 = h' > hy, + 7, by virtute of (4.62)), is nothing but ([£.51). Noting that
for B, = B, we precisely recover . This concludes the proof of
Proposition .35 O

We now propagate the estimate (4.52)) inductively. To this end, we first
define, for all n > 0,

Bn = (l0g2)"/% + M(n, Lo) + 2 D/2 (12 + K}/?), (4.74)

where Ky > 0 is a certain parameter to be specified below (it will allow us
to start the induction). Note in particular that condition holds for
this choice of (5,,)n>0. In the next proposition, we inductively derive bounds
for py(hy),n > 0, given any sequence (hy)n>0 satisfying the assumptions of
Proposition provided the induction can be initiated.
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Proposition 4.3.7. Assume hg € R and Ko > 3(1 — e~ ')~ =: B are such
that
po(ho) < e 5, (4.75)

and let the sequence (hy)n>0 satisfy with (Bn)n>0 as defined in .
Then,
Pn(hn) < e_(KO_B)2n, for all n > 0. (4.76)

The strategy of the proof is to define a sequence (K,)n>0 such that
K, > Ko — B for all n > 0 and p,(hy,) < e 572" for all n > 0. This allows
us to immediately conclude the proof.

Proof. We define a sequence (K, ),>0 inductively by

K1 =Ky, —log (1 +eK"(32%“1)efT(nH)(B"*M("’LO))Q)), for all n >0

(4.77)
with 3, give by . Note that the factor 32 """ =2 """V (Ba=M(n,Lo))?
is the 21 —th root of the remainder term on the right-hand side of
(i.e. 36*(5n*M("»L0))2). Note also that K,, < Ky for all n > 0 since K, is
decreasing. Moreover, we have

o K, > Ky— Bforalln>0.
This is clear for n=0.

When n > 1, first note that by the definition of K,,, for all n > 1,

n—1
Kn=Ko— Y log (1 + e (32 2 M (B =M (m,Lo>)2)>.

m=0

(4.78)

Moreover
(Bm — M (m, Lo))? = ((log 2)1/2 4 20m+D/2(p1/2 4 Ké/2))2

> log 2+ 2™ (m!/2 + KY/?)2 > 9mH (m + K),
(4.79)

for all m > 0, which, inserted into (4.78]), yields

o
K, > Ky — Z log (1 + o Km (32*(m+1)6_27<m+1)(2m+1(m+KO)))>

m=0

)
N ()
m=0

>Ko—-3Y e™=Ky—3(1—e!)' =Ko B,
m=0

(4.80)
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where we have used K,, < K( and log(1l + z) < z for all z > 0 in the
last inequality.

o pu(hn) < e Kn2" for all n > 0.
We show the result by induction on n.
The inequality holds for n = 0 by assumption .
Assume now it holds for some n. By condition , we find

(h) + 3¢~ (Bn—M(n,Lo))?

Prt1(hnt1) < pn
< (e~ ) + 3¢ (Bn— M(n,Lo))?
2n+1
< [ (14 fng2 " 27 (B M, L0)2)]
e_K +12n+1
(4.81)
This concludes the proof of the proposition. ]

We will now prove the main theorem (Theorem [4.3.4) of this section
using Proposition [.3.7]

Proof (of Theorem . We select K appearing in Proposition as
follow:

Ky = log(ZCol?](d_l)) +B (see (4.29)) for the definition of ¢p). (4.82)
Moreover we will solely consider sequences (hy,)n>0 with
ho >0, hpsr —hy =c1Bn(205TP)" T foralln >0,  (4.83)

so that condition (4.51)) is satisfied. We recall that 3, is given by (4.74])),

which now reads

Bn = (log 2)"/*+¢5(log(2" (3Le)")) /242012 (1 /2 4 (log (2col2 V) + B)1/2)

(4.84)
where we have substituted M (n, Ly) from and K, from (4.82). Note
that Lg,lgp and hg are the only parameters which remain to be selected.
We observe that the sequence defined in has a finite limit ho =
limy,_, 0 hy, for every choice of Lg,lp and hg. Indeed, 5, as given by
satisfies 3, < c(Lo,lp)2"** for all n > 0, hence

hoo = ho+c1 3 Bul(2ly ) < ho + ¢/ (Lo, lo) D (4l ) < oo,
n=0 n=0

(4.85)
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since we assumed [y > 100. We set
Ly =10, lp = 100, (4.86)

and now show with Proposition that there exists hg > 0 sufficiently
large such that

pn(hn) < (2c0lp?@1)=2", for all n > 0. (4.87)

To this end, we note that pg(hg) defined in (4.41)

po(ho) = P(Boz—0 <— 0" Boz—0)

2
(ho — E[maxEO o cp]) (4.88)
§P<£i50¢2h0) SeXp{ - 2G(0) :

where the last inequality holds when hg > ¢ (e.g using Proposition to
bound E[maxB B ]) thanks to BTIS-inequality (see 1j In particu-

lar, since Ky in is completely determined by the choices (4.86), we see
that po(ho) <e KO for all hg > ¢, i.e. condition - holds for sufficiently
large hg. by Proposition setting hg = ¢, we obtain

n
pu(h) < e WomB2 BB (9, 20-Dy=2"  p >0, (4.89)

This result concludes the proof. ]
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Chapter 5

A generalization of the BLM
proof

In both two article [3] and [I1] it is remarked that the BLM proof can’t be
easily gereralized to all d > 3 since, in d > 4, a infinite connected set may
not be recurrent for the simple random walk on Z¢. In this chapter we try
to prove that this is not an issue, since, an infinite cluster over a level h,
if it exists than it has positive density by Newman and Schulman theorem,
and in particular, using the well-known Wiener’s test, it is recurrent for the
simple random walk on Z<.

5.1 Finite energy property for the DGFF

The first step is to prove that Theorem holds for the level-sets percola-
tion for the DGFF. We consider the measurable map ¢" from Q = RZ" into
Q = {o, 1}Zd as defined in and the associated pushforward measure
P .= ¢"(P) on Q = {0, I}Zd. We need to show that

1. P" is translation invariant;
2. P" has the finite energy property:

The first property is a trivial consequence of the translation-invariance prop-
erty of P. For the second property (that is claimed without proof in [I1],
Remark 1.6) we give a proof in the following lemma.

Lemma 5.1.1. The probability measure P" for the DGFF has the finite
enerqy property.

Proof. We need to check that for all z € Z% and n = 0 or 1, if U c Q, and

P (U x {Iip,>m = n}) # 0 then PM(U x {Lip,>n = 1 —n}) # 0. From
the translation invariance of the DGFF, it is sufficient to show that for all

59
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U C Q,, setting U = (¢")~1(U), holds:
P(U x {@o > h})#0 ifand only if P(U x {@g < h})#0.  (5.1)

Suppose that P(U x {¢p > h}) > 0. Since the measure P is tight (for example
for the Ulam’s theorem), then there exist L > 0 such that

P({Uﬂ {os€h—L,h+L];|z| = 1}} x {0 € [h,h+L]}> >0. (5.2)

Denoting Ui == {¢, € [h — L,h + L];|z| = 1} € Floezdjz=13 = F1 and
using the local Markov property of the DGFF, we obtain

P({U NUL} x {po € [h,h + L]}> = ]E[E[]l{UﬁUlL}x{cpoe[h,h—i-L]}|f1]]

= E[]lUlL -E[1y|Fi] 'E[]l{woe[h,h+L]}|f1H-
(5.3)

Under U{, there exists a constant £, > 0 such that

E[LipoeinnroplFi] < er-Elligep-rmylFi], as. (54)
Indeed, using standard results for conditional Gaussian vectors, E[po|F1] is
a linear combination of the random variables ¢, for € Z% such that |z| = 1,
denoted by Y = erzd;m:l Azpz, and more generally, denoting by ¢, ,2 ()

the density of a Gaussian random variable with mean p and variance o2, we

have
E[Lgpoeinntrpy | F1] :/R]l[h,h—o—L](x)QY,aQ(x)dxa (5.5)

where 02 = E[(pg — Y)?]. Finally, noting that under U, Y € [2d(h —
L),2d(h — L)], the bound in ([5.4]) follows from ([5.5)).
Summing up and repeating the same computation as in (5.3)), we obtain
0<P({UNULY x {po € h+11}) <er-P({UNUE} x {wo € (A= L,1)})
< EL-IP’(U X {po < h})
(5.6)
Since the other implication is similar, this concludes the proof. ]

Now, setting p" = P(JC"(0)] = oo) and noting that p" > 0 for all
h < h(d), we have the following result

Proposition 5.1.2. For all h < hy(d), conditioning on the event {0 PN
oo},

D(CM0)) =p", a.s.. (5.7)
In particular, conditioning on the event {0 PN oo}, D(C’h(O)) > 0 almost
surely.

We are now ready to give our new proof of the existence of a phase
transition for the level-set percolation for the DGFF on Z¢, for all d > 3.
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5.2 The setup

We start this section by introducing some definition and notation. Let
Vn, n € N be a collection of boxes as defined in equation . We denote
by A == V,,, for some m € N, a smaller box such that |V,,| > |A|. Remember
that C”(0) denote the (random) cluster containing the origin and define the
events

ct,={peq:c"0)noV, £0}, forallheRandneN. (5.8)
Let S"}n be the following collection of subsets of V,,, for all n € N,

S(}n = {K CV, :0€ K, K is connected and K N9V, # (); and

b IKNV,
,02<‘ m|

h
" <2p", VmeNst. n/2<m<n }

(5.9)
Note that the family S‘}}n is a collection of the possible shapes for the con-

nected component of the infinite cluster C"(0) inside V;, (see Figure .
Define for a paricular K € S‘}}n the event

E}L(:{cpEQ:cpxzh,VxEKand %<h,vxeavnl{}, (5.10)

where 0y, K = 0K NV,

Since in many of the following lemmas the parameter h € R will be
fixed, we will omit the appendix A on the sets, families and events previously
defined, unless absolutely necessary. Moreover, from now till the end, we

suppose by contradiction that, for any level h, the event {0 2k oo} occours
with positive probability, i.e., hy(d) = co.

5.3 The technical lemmas

Before state and prove the four technical lemmas, we note that (from Propo-

sition [5.1.2)) we have
im (€@ O Va] _

>h
Jim. - p, fora.a. ¢ € {0+ oo} (5.11)
Since (2, F,P) is a finite measure space, from the Egorov’s theorem we know

that for all § > 0, there exists a measurable subset Q5 € F, Qs C {0 P oo},
such that

P({0 2 oo} \ ©5) <6 and the limit ((5.11)) is uniform on Qs, i.e.,

i sup 1€Vl _
n—00 90695 n

(5.12)

p‘:O.
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Figure 5.1: In this example we fix a level h € R and we paint in black the
sites over the level h. Moreover we highlight the sets V,,, A, C(0)NV,, and
dv, K. Note that K = C(C(0)(¢), Vy,).

In particular, there exists ng = ng(d) € N such that for all n > ny we

have
b _1CONR) NVl
2 nd
We claim that the bound holds also for the connected component in
C(0)(¢) N V,, containing 0, denoted by C(C(0)(¢),Vy). The proof of this
claim still open for the moment.

< 2p, for all ¢ € Q5. (5.13)

Remark 5.3.1. We are considering the connected component C(C(0)(y), V»)
instead of the whole set C'(0)(¢) NV}, in order to obtain a disjoint union in
the left hand side of equation ([5.14]).

We can now state the first technical lemma.
Lemma 5.3.2. Let Cy;, be the event defined in @ Then for all m > 2ny,

1. Cy, N Qs is contained in the disjoint union of the events Fy, i.e.,

Cy, NQs C |_| Frk. (5.14)
KESVn

and if K, K' € Sy, and K # K', then Ex N Exr = ().

2. P(Cy, NQs) > P({0 <5 00} N Q) and P(Ex) > 0 for all K € Sy, .
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Proof. Fix n > 2ny. We start by proving that Cy, N Qs C |—|K€Sv E?( If
¢ € Cy, N Qs then C(0)(p) intersects the inner boundary of V,,, that is
CM(0) N OV, # 0. Setting K := C(C(0)(¢), V;) then K € Sy, since

e KCV, 0€ K, K is connected and K N 8'V,, # 0;

e From the claim below relation (5.13)) and the fact that n > 2ng we
have

D

KNV,
<7| m’<

i 2p, forallme Nst. n/2<m<n. (5.15)
m

In particular Ex occurs. The events E are disjoint by definition. Part (2)
is obvious. ]

We now show the key point of our proof, namely, the fact that a set with
positive density is recurrent for a symmetric random walk in Z.

Lemma 5.3.3. For some 0 < u <1 and for all A, we can take V;, = V,,(A)
large enough so that

|i| Z () > u, for all K € Sy, and for all x € A, (5.16)

TzEA

where fr(x) is defined in (3.22)).

Proof. First of all we show that a set A C Z? satisfying

ANV,

5 " , for all m € N, (5.17)

is recurrent. In order to prove this result we applay Theorem [3.4.1| and we
show that T'[A] = +o0, where T[A] is defined in (3.21).
From (5.17)) we have, for all [ > 1,

A = |AN{y € Z% 2" < |yloc < 2"} = |AN Virpa| — [AN Via |
> g(2l+2)d B 2p(21+1)d — ). 2(l+1)d(2d—1 > p- 21d’
(5.18)

Similarly, using the other bound in ([5.17]), we can find the following estimate

|4y < p2F (24t _o71y < el forall | > 1. (5.19)
Now using estimate (3.18) and (/5.18]) we obtain
p- 2ld
cap(A4;) > for all > 1, (5.20)

M;



64 CHAPTER 5. A GENERALIZATION OF THE BLM PROOF

where M) = sup,¢ 4, (ZyeAl G(z, y)) Note that, using the classical bounds
on the Green function (see Theorem [3.2.1]), we obtain

C/

M, <
gy ([ — 2lo0 + 1)&2

ZGA[

), for all [ > 1. (5.21)
YyEA
and taking, for each [ > 1, a box Vi ;) such that |Vi;| > |A4;], we have

/

d c
sup ( — ) < ———, foralll >1,
2 7 E) = 2 e
L(1)

(5.22)
since, fixed an element z € A;, we can easily construct an injective corre-
spondence I'; between A; and V7,;) such that at each element y € A;, assign
an element I';(y) € Vi), with the property that |y — 2| > [T1(y)]co-

By there exists an odd number L(l) and a constant ¢ > 0 such
that L(I) < ¢- 2" and |Vp)| > |A|. In particular, noting that

‘{y € VL; |y|oo = n}‘ = "/2n+1| - |V2n—1‘
=2n+1)4—2n-1)%<c-n®t foralln>1,

(5.23)

and using the bound and , we obtain

o &2! i1 o &2l o
M, <c +¢ n:1mgc+c nz:lngc-Q , foralll>1. (5.24)
Finally from and we conclude
cap(4;) > ¢- 2142, foralll > 1, (5.25)
and so -

T[A] > ) c=oo. (5.26)

I=1
Now from the proof of the Wiener’s test (see Theorem we know that,
for all A and 0 < u < 1, exists N = N(u,A) > 0 such that if a set A C Z¢
satisfies T[A] > N, then fa(x) > u, for all z € A.
Finally fixing u, for all A, from the divergence of , we can imme-
diately conclude that there exists V,,(A) large enough such that

T[K] > N, for all K € Sy, (5.27)
and so
fr(x) > u, for all K € Sy, and for all z € A. (5.28)
In particular
fr(x) > u, for all K € Sy, and for all z € A. (5.29)

O
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The following lemma gives us an important lower bound for the function
E[p:|Fk] for all x € OK.

Lemma 5.3.4. For h < oo large enough there is a constant ¢ > 0 such that
for all Vi, large enough

Elpz|Ex] > ¢, for all x € OK, all K € Sy, . (5.30)

Proof. This lemma is proved in [3], Lemma 3, p. 1264. We are not able to
follow the last part of the proof where the Ruelle’s superstability estimate
is applied. ]

The following lemma generalizes the previous lower bound for the func-
tion E[p,|Ek], for all z € Z4. The proof of this lemma is based on the result
stated in Lemma [L5.2

Lemma 5.3.5. For h < oo large enough there exists a positive constant
¢ > 0 such that for all V,, large enough

Elpz|Ex] > ¢+ fz(x) forallz €78, all K € Sy,, (5.31)
where K = K UOK.
Proof. For all K cC Z¢, applying Lemma we have, for all z € Z¢\ K,

Elps | Fz)(w) = Ew[WXTKaTT( < 0], P-as., (5.32)

where Fz = o(py; x € K). Obviously, for all K € Sy,, Ex € F and in
particular we have

Elgs| Ex] = E[Es[px, _, T < o0]|Ex], for all z € Z4\ K, (5.33)

Fixed h < oo large enough, for all V,, large enough, applying Lemma [5.3.4
we obtain,

Elpz|Ex] = E[E:[px. T < ]| EKk]
=E[ Y Pu(X,. =k 75 < )¢kl Ex]

hEOK (5.34)
= Y Elpp|Ex|Pe(Xr =k, 75 < 00)
keoK
>c- frg(x), for all z € 24\ K,
and in particular, we can conclude that for all V,, large enough,
Els|Ex] > ¢+ fz(x) for all z € Z%, all K € Sy,,. (5.35)

O
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5.4 The conclusion of the proof

We are now ready to conclude the proof.

Proof. Lemma says that for h < oo large enough there exists a positive
constant ¢ > 0 such that for all V,, large enough

Elpz|Ex] > ¢+ fz(x) for all z € Z%, all K € Sy, . (5.36)

Combining Lemma with ([5.36)): there is a costant 4 > 0 such that for
all A, we can choose V,, = V,,(A) large enough such that

Tl ZE ©z|Ex] > for all K € Sy,,. (5.37)
zeA

By Lemma denoting Sy = > . ¥ and U, = |_|K€SV Ex, we have

E((Sa)?] ZE[(Sa)1,] = Y E[(Sa)’1e.] = Y E[(SA)’|Ex]|P[EK]

KGSVn KESVn
(5.38)
and by the Cauchy-Schwartz inequality
> Y E [SalEx)*P[Ex] > > @?APPIEK], (5.39)

KGSVn KESVn

where we used (5.37)) for the last inequality. Now, by Lemma again, in
particular using that Cv, N Qs C | |xcg, E} and P(Cy, NQs) > P({0 i
oo} N Q(g), we obtain

@2 APP(Cy, N Q) > @2 APP({0 <5 oo} N Q). (5.40)

Since this chain of inequalities holds for all A and E [((1 /I1A])S A)Q} — 0, for

A 1 Z¢, we obtain that P({0 P 00} N€s) = 0. Finally taking the limit for

6 — 0, we get P({0 P 00}) =0, for all > h.
This completes the proof. O



Chapter 6

Open problems

We summarize in this final chapter the two open problems that appear in
our new proof. We tried to be as independent as possible from the previous
chapter with the notation in order to be accessible to lay readers.

Let (¢z),ez¢ be a Discrete Gaussian Free Field on Z¢ and V,, be a box
of size n € N centered in the origin 0.

Problem 1.We claim that the connected component containing 0 in
the cluster C(0)(y) inside Vj,, denoted by C(C(0)(¢), Vi), satisfies for some
p>0,

p _ 1C(C(0)(¢), Va)l

- <

2 nd
for all configurations ¢ contained in an arbitrary large subset of the config-
urations such that the origin 0 lies in the infinite cluster over level h. See
the claim below equation for a more precise statement.

We belive that using an ”ergodic argument” the result could be prove.

Problem 2. This is the main problem in our proof. We would like to
use a result stated in [3, Lemma 3, p. 1264] but we are not able to follow the
last part of the proof where the Ruelle’s superstability estimate is applied.
The result is intuitive but it seems to be extremely technical to prove. We
give a statement: for a box V,, we define

< 2p,

Sy, = {K CV,:0e K, K is connected, K N o', 7&(0}

Lemma. For h < oo large enough there is a constant ¢ > 0 such that for

all boxes V,, large enough
E[(pcg Yz > h,Vo € K and p, < h,Vz € 0y, K| > c, for all x € 0K,

al K € Sy,

where Oy, K = 0K NV,

Intuitively the result states that the field on the external boundary of a
cluster over level A is in mean strictly positive if h is big enough.

67
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