
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Dipartimento di Matematica “Tullio Levi-Civita”

Master Degree in Physics

Final Dissertation

Dubrovin’s approach to the FPU Problem

Thesis supervisor Candidate

Prof. Antonio Ponno Giuseppe Orsatti

Academic Year 2018/2019





Mathematics is the part of physics where experiments are cheap.
- Vladimir Igorevic Arnol’d



0.0

ii



Acknowledgments

I thank Prof. Ponno not only for the help and support he gave me during the thesis work, but also for
introducing me, together with Prof. Benettin, to the interesting and beautiful world of Mathematical
Physics.

I thank my Mum, my Dad, my sister, my grandparents and all my family for believing in me and for
being always present and supportive when needed.

I wanna also thank thank Marco, my sister’s husband, for having corrected the grammar of the thesis
just in time for the deadline.

I would like to thank all my friends. The college mates for having lived good times together during
those five years. Matteo, Martino and Filippo for having been good friends. The Scout leaders of the
group PD 6 for making me grow in spirit and responsibility.

And I thank Luca, Sara and above all Martina, “la fanciulla del Maldura”, for having been with me
always, during the joyful times but also during the darkest moments. We supported each other during
all those years and we will continue to do so.
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Chapter 1

Introduction

The integrable systems, e.g the Harmonic oscillator, the Toda Lattice or the two body Keplerian
problem, are a special kind of models, generally rich of properties and sometimes simple to solve.

Unfortunately, these kind of systems are rare, and most of the times we encounter perturbations of
these models, which could have completely different behaviours. Indeed, if in the two body Kleperian
problem we add a third mass, smaller then the mass of the two planets of the original system (e.g
an asteroid), the system components’ motion becomes more complex compared to the original one,
giving also rise to chaotic motions. This problem is known as the three body problem and it’s simpler
than the solar system, which have 9 planets plus all other kinds of celestial bodies.

The perturbations of integrable systems, in particular Hamiltonian ones, were originally studied by
Poincaré and Birckoff in the end of 19th century and then developed during all the 20th century, thanks
to the important contributions of Kolmogorov, Arnold, Moser (KAM Theorem) and Nekhoroshev
(Nekhoroshev estimates).

In the study of perturbed Hamiltonian systems, the following theorem (given by Poincaré) is quite
relevant [6]:
Theorem 1.0.1. Given the Hamiltonian:

H(I, ϕ) = H0(I) + εH1(I, ϕ) + . . . (1.1)

with I ∈ D ⊂ Rn and ϕ ∈ Tn. Suppose that H0 is non degenerate in D and that the Ponicarè set B1

is dense in D, then the Hamiltonian (1.1) has no formal integral of this form

F = F0(I) + εF1(I, ϕ) + . . . (1.2)

independent to H, with infinite differentiable function Fn : D × Tn → R.

In other words: non degenerate, integrable Hamiltonian systems under generic perturbations loose all
the first integrals in the analytic class.

This means that, if we consider degenerate Hamiltonians or particular perturbations of the systems,
it is possible to find extension of first integrals from the unperturbed to the perturbed systems (e.g.
see [22]).

Along these lines, methods to extend solutions and first integrals of the unperturbed system have been
developed, both for finite Hamiltonian systems and Hamiltonian PDEs.

1the set of all I ∈ D such that exist n− 1 l.i. vector k ∈ Zn s.t.:

1. < ks, ω(I) >= 0 with 1 ≤ s ≤ n− 1

2. Hks(I) 6= 0

where Hks(I) is the Fourier coefficient of the perturbation H1(I, ϕ)
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Chapter 1. Introduction 1.0

In recent years, Dubrovin and his co-workers developed new techniques to extend solutions and first
integrals of perturbed Hamiltonian of hyperbolic PDEs. The theory, described in [2] and [3], is based
on a generic system of first order PDE

ut = A(u)ux +B2(u,ux,uxx) +B3(u,ux,uxx,uxxx) + . . . (1.3)

with
u = (u1(x, t), . . . , un(x, t))T

an unknown vector function. We suppose that the entries of the matrix A(u) are smooth on some
domain D ⊂ Rn and the characteristic roots λ1(u), . . . , λn(u) will be assumed to be pairwise dinstict

det(A(u)− λ · I) = 0, λi(u) 6= λj(u) for i 6= j, ∀u ∈ D. (1.4)

The terms B2, . . . , Bk, . . . of (1.3) are polynomials of the jet coordinates

ux = (u1
x, . . . , u

n
x)T , uxx = (u1

xx, . . . , u
n
xx)T , . . .

graded homogeneus of the degree 2, 3, . . . , k, . . .

deg Bk(u,ux, . . . ,u
(k)) = k

deg
∂mui

∂xm
= m, m > 0, deg ui = 0, i = 1, . . . , n.

(1.5)

The coefficients of these polynomials are smooth functions on the same domain D.

The system (1.3) can be considered as perturbation of the first order quasilinear system

ut = A(u)ux (1.6)

when considering slowly varying solutions. Let be the natural small parameter

h =
1

L
(1.7)

where L is the spatial length where u(x) change by 1., we estimate the derivatives as

ux ∼ h, uxx ∼ h2, . . . ,u(k) ∼ hk, . . . . (1.8)

It is convenient to introduce slow variables by rescaling

x→ hx, t→ ht. (1.9)

The system (1.3) becomes

ut = A(u)ux + hB2(u,ux,uxx) + h2B3(u,ux,uxx,uxxx) + . . . . (1.10)

The theory says that there is a way to extend the solutions from the unperturbed system to the
perturbed one, and that near the critical point called gradient catastrophe, i.e. the point where the
derivatives of the solution to the unperturbed equation tend to infinity, the solutions do not depend
on the kind of perturbation, but it is given by a certain special solution of Painlevé equations.

After this theory was introduced, Dubrovin, in the article [1] and [4], applied these techniques also to
perturbed Hamiltonian PDEs2. He used these mathematical tools to extend both solutions and first
integrals from the unperturbed system to the perturbed one. By doing so, he developed a perturbative
approach to the study of the integrability which can be used for:

1. finding obstructions to the integrability;

2. classification of integrable PDEs.

The aim of the thesis is to apply this new tools to a particular system: the Fermi-Pasta-Ulam problem
(of FPU problem). In particular, we want to find out if there are some conditions to extend first
integrals to a fixed order, or there is an obstruction to the integrability.

2a summary of the main results and theorems of [1] and [4], which we will use in the next chapters, is presented in
the appendix A.
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Chapter 2

The Fermi-Pasta-Ulam Problem

One of the most important integrable systems is the harmonic oscillator, because it is a model that
we encounter in many physical systems. An example of this is the pendulum.

The motion of a pendulum with unitary length is described by ODE{
θ̇ = v

v̇ = −g sin θ
=⇒ θ̈ = −g sin θ θ ∈ [0, 2π]. (2.1)

Considering only a small oscillation of the angle (θ � π/18), we can approximate at the first order
the sine of the angle, and the equation becomes

θ̈ = −g sin θ ≈ −gθ (2.2)

which is exactly the ODE of the harmonic oscillator with frequency
√
g.

Another example is a toy model, which is very important for the solid state physics because it gives
us good explanation to some phenomena that we observe in crystals: a 1-D chain of particle that
interacts pairwise with a Lennard-Jones potential

φL−J(xn+1 − xn) =

[(
σ

(xn+1 − xn)

)12

−
(

σ

(xn+1 − xn)

)6
]
. (2.3)

We focus only in the small oscillation around the equilibrium point x∗, so the potential in this ap-
proximation becomes

φL−J(xn+1 − xn) = −φ0 +
1

2
φ′′(x∗)(xn+1 − xn)2 + O((xn+1 − xn)3) (2.4)

which is the harmonic potential.

This system and its generalisation in three dimension explain us many important features of the solid
state physics (the form in first approximation of the band structure of the phonons, the thermal
conductivity, . . . ).

As said before, however, these are only approximate systems and corrections at further order are
important for the physics of the systems (The asynchrony of the period of the pendulum for big θ is
explained considering all the ODE (2.1), while the thermal dilatation of solids is explained by taking
into consideration also the anharmonic terms of the expansion (2.4) [23]).

It is thus important to study perturbations of the harmonic oscillator.

A particular example of these systems that we want take into account is the Fermi-Pasta-Ulam prob-
lem [8].
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Chapter 2. The Fermi-Pasta-Ulam Problem 2.1

2.1 The system

In 1954, Enrico Fermi, John Pasta and Stanislav Ulam took advantage of the computer MANIAC I
to run some computer simulations, with the aim of studying a particular system, i.e. a chain of N
particle that interact pairwise with potential

φ(qn+1 − qn) =
(qn+1 − qn)2

2
+ α

(qn+1 − qn)3

3
(2.5)

where α is a constant coefficient in R and with fixed end points.

The equations for the motion of the system are

q̈n = (qn+1 + qn−1 − 2qn) + α[(qn+1 − qn)2 − (qn − qn−1)2] (2.6)

for n = 1, . . . , N .

The solution of the linear problem (α = 0) is a periodic vibration of the string, and this gives us the
opportunity to decompose the motion in normal modes

Qk(t) =
N∑
n=1

qn(t) sin(
nkπ

N
) with k = 1, . . . , N

and the energy of the k-th mode is

Ek =
1

2
Q̇k

2
+ 2Qk sin2(

kπ

2N
)

Fermi, Pasta and Ulam believed that the presence of nonlinear terms changes the form of the solutions
of the linear problem, giving rise to more complicated shapes of the strings. In particular, they expected
that, starting with one or few mode excited, the energy would start to redistribute in all the modes,
so that the system would reach the equipartition of energy fairly quickly.

Thus, once all the energy had been assigned to the first mode, they started the numerical computation
of the qn for a small number of particle (N = 64) and then, after few hundred of cycles, calculated
the mode Qk and the energy Ek. The outputs of the simulation were surprising.

They saw that, during all the computational time (30,000 computation cycles), the system’s energy
was exchanged only between the first 4/5 modes, while the higher modes weren’t excited. Moreover,
by observing the energy spectrum of each mode, they found out that the energy of these excited modes
presented a periodic behaviour along the time. This suggested that, for not a long time1, the system
had an underlining integrable dynamics.

This result astonished them, because it was completely in contradiction to the expectations on the
behaviour of the system.

Ten years later, mathematicians started to study, both analytically and numerically, this problem. In
particular, thanks to the new results and theorems from the study of perturbed Hamiltonian systems
(one of the most important is the KAM theorem), they try to answer to some of the questions that
this system blows up. Why there is such integrable behaviour?, How long take the system to reach
equipartition?, How the time of integrability depends on the variable of the system?, . . . . In particular,
we can consider three important results that revolutionized the approach to the problem:

• Zabusky and Kruskal [9] related the periodic behaviour of the modes to the solitonic solutions
of the Korteweg-De Vires equation (or KdV)

ut + uux + δ2uxxx = 0;

1In fact, from other numerical simulations performed by computers much more powerful then the MANIAC I, we found
that the system reaches equipartition of energy after a very long time, if α is small. In particular, the thermalization
times depends on many parameters (the parameter α, the number of particle N, the specific energy ε, . . . ) [17] [18]
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2.2 Chapter 2. The Fermi-Pasta-Ulam Problem

• Izrailev and Chirikov [10] found chaotic motions of the system in the limit of strong non-linearity;

• Ferguson, Flaschka and McLaughlin [11], by numerical simulation, connected the FPU problem
to the Toda lattice, which is a nonlinear integrable system.

This problem, called FPU problem (formely FPU paradox ), was the first example of non linear system
and these results suggest that these kind of models must be studied more carefully, because the motion
and the properties of these systems can be counter-intuitive.

Many other nonlinear chains similar to the FPU problem has become object of study, defining a new
family of models called FPU models. In particular, we now consider an Hamiltonian

H(q, p) =
∑(

p2
n

2
+ φ(rn)

)
where rn := qn+1 − qn,

with potential

φ(r) =
r2

2
+ α

r3

3
+ β

r4

4
+ γ

r5

5
+ . . . (2.7)

we call:

• FPU α-model if α 6= 0;

• FPU β-model if α = 0 and β 6= 0;

• FPU γ-model if α = β = 0 and γ 6= 0;
...

• In general, we call FPU gd-model if the potential is

φ(r) =
r2

2
+ gd

rd

d
+ gd+1

rd+1

d+ 1
+ . . .

where gd 6= 0 and d ≥ 3.

2.2 Connection between the FPU and the Toda lattice

As previously stated, the FPU system was developed as a perturbation of a chain of particle that
interact with a linear potential, but further studies showed other important properties. In particular,
in 1982 (almost thirty years after the original FPU article) Ferguson, Flaschka and McLaughlin [11],
by numerical simulations, connected the FPU system to another nonlinear system: the Toda Lattice.

This system, presented by Toda [12] in 1967, consisted in a chain of particle that interact pairwise
with an exponential potential:

φToda(qn+1 − qn) =
eλ(qn+1−qn) − λ(qn+1 − qn)− 1

λ2
. (2.8)

We expand φToda in Taylor series for small oscillation

φToda(qn+1 − qn) =

+∞∑
n=0

λn−2

n!
(qn+1 − qn)n − (qn+1 − qn)

λ
− 1

λ2
=

+∞∑
n=2

λn−2

n!
(qn+1 − qn)n =

=
(qn+1 − qn)2

2
+
λ

6
(qn+1 − qn)3 +

λ2

24
(qn+1 − qn)4 + . . .

and, defining α := λ/2, we find the same potential (2.7)

φToda(qn+1− qn) =
(qn+1 − qn)2

2
+
α

3
(qn+1− qn)3 +

βToda
4

(qn+1− qn)4 +
γToda

5
(qn+1− qn)5 + . . . (2.9)

5



Chapter 2. The Fermi-Pasta-Ulam Problem 2.2

where the parameters βToda, γToda, . . . , depends on the choice of α

βToda =
2

3
α2, γToda =

α3

3
, . . . . (2.10)

This means that, in the limit of small oscillation, the Toda lattice is tangent at the first order to the
FPU system.

However, the most important properties of the Toda lattice are:

1. that the system is integrable (suggested throught to a numerical simulation by Ford, Stoddard
and Turner in 1973 [16] and then proved analytically in two different articles of Henon and
Flachka in the 1974 [14] [15]);

2. that the equations of motion admits also solitonic solutions [13].

Thus, what Ferguson, Flaschka and McLaughlin showed in their article is that the FPU system is a
perturbation of the Toda lattice (a nonlinear integrable system) and not of the harmonic oscillator.
In addition to this, in recent years, other simulations pointed out this connection between these two
systems using different methods (comparing the spectrum of energies during the time [20], evaluating
the Lyapunov’s exponent [21], etc...), giving much more credits to this hypothesis.
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Chapter 3

Dubrovin’s theorem and its extension

After the explanation of the FPU system, we want to focus on a more generic system of the same
family: a 1-D chain of particles which interact pairwise and with periodic boundary condition

H(q, p) =
∑
n∈ZN

(
p2
n

2
+ φ(qn+1 − qn)

)
(3.1)

where N is the number of particles, ZN := Z/(NZ) and φ(qn+1 − qn) is a generalized potential, i.e.
φ′′′(qn+1 − qn) 6= 0 ∀ qn.

This Hamiltonian gives us the following equations of motion

q̇n =
∂H(qn, pn)

∂pn
= pn;

ṗn = −∂H(qn, pn)

∂qn
= φ′(qn+1 − qn)− φ′(qn − qn−1).

(3.2)

In the article [1], Dubrovin used this system as an example for the application of his theory and, while
he was studying the continuum limit of the problem (N →∞), he found this theorem1:
Theorem 3.0.1. Consider the FPU Hamiltonian (3.1).

In the continuum limit, the system admits an extension of the first integrals of the unperturbed system
at the second order if the potential has this form:

φ(r) = kecr + ar + b (3.3)

where a, b, c, k are real constants.

In particular, when φ(r) coincides with the Toda potential (2.8)

φToda(r) =
e2αr − 2αr − 1

4α2
(3.4)

the system becomes integrable.

This gives us a strong evidence on the connection between these kind of nonlinear systems and the
Toda lattice.

We want to find generalization of this result by entering a general potential in the first order of
perturbation.

In particular, we want to see whether the result is valid for all the kind of perturbations or if there
are some obstructions to the integrability of the system.

1The Dubrovin’s proof of this theorem is given in the appendix B.
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Chapter 3. Dubrovin’s theorem and its extension 3.1

3.1 Change of coordinates

In his article [1], Dubrovin used a Miura-type transformation to adjust the deformation of the Poisson
bracket. Another way to proceed is to start with a different kind of coordinates, already seen in [7],
which help us with the discussion of the problem.

We consider the generating function:

F (q, p) :=
∑
n∈ZN

sn(qn − qn+1) (3.5)

so that we obtain the following canonical transformation
pn :=

∂F

∂qn
= sn − sn−1

rn := − ∂F
∂sn

= qn+1 − qn
. (3.6)

With this new coordinates, the Hamiltonian (3.1) becomes

K(r, s) =
∑
n∈ZN

[
(sn − sn−1)2

2
+ φ(rn)

]
. (3.7)

Here is to notice that the variables rn defined in (3.6) play the role of the new momenta, with conjugate
coordinates sn.

With the new coordinates, also the equations of motion (3.2) change in relation to the transfor-
mation (3.6) but since we apply a canonical transformation, the canonical Poisson tensor J2 stays
invariant (

ṡn
ṙn

)
= J2∇K(r, s) =

(
0 1
−1 0

)
∇K(r, s)

this means that the structure of the equations of motion has not changed:

ṡn =
∂K(r, s)

∂rn
= φ′(rn)

ṙn = −∂K(r, s)

∂sn
= (sn+1 − 2sn + sn−1).

(3.8)

Now, we push the system in the continuum limit and see how the solutions of (3.8) can be represented.

We define the parameter h := 1/N and interpolate the coordinates sn and rn with two smooth and
analytic functions

rn(t) = R(x, τ)

sn(t) =
S(x, τ)

h

(3.9)

where x := hn and τ := ht.

We study the behaviour of the functions R(x, τ) and S(x, τ) for h small (h� 1).

The equations of motion (3.8) become:

Rτ (x, τ) =
S(x+ h, τ)− 2S(x, τ) + S(x− h, τ)

h2
= ∆hS(x, τ)

Sτ (x, τ) = φ′(R).
(3.10)

8



3.2 Chapter 3. Dubrovin’s theorem and its extension

In (3.10), we define the operator ∆h as

∆hf(x) :=
f(x+ h)− 2f(x) + f(x− h)

h2
. (3.11)

We are interested in the limit of h small, so we expand in Taylor series both the functions f(x + h)
and f(x− h) respect h

f(x± h) = f(x)± hf ′(x) +
h2

2
f ′′(x)± h3

6
f ′′′(x) +

h4

24
f IV (x)± . . . .

Substituting the series in (3.11), the operator becomes:

∆hf(x) =
1

h2

(
h2f ′′(x) +

h4

12
f IV (x) + . . .

)
=

(
∂2
x +

h2

12
∂4
x + . . .

)
f(x).

(3.12)

Therefore, the Hamilton’s equations (3.10) in the limit of h small can be rewritten in this way:

Rτ = ∆hS =

(
Sxx +

h2

12
S4x + . . .

)
Sτ = φ′(R).

(3.13)

The equations of motion (3.13) are related to the Hamiltonian

K[S,R] =

∫ (
φ(R)− 1

2
S∆hS

)
dx =

∫ (
φ(R)− S

2
Sxx −

h2

24
SS4x

)
dx+ O(h4). (3.14)

We can simplify the system by applying another change in coordinates. Let us define a new function

Ξ(R,S) : (S,R)→ (V,R) (3.15)

where
V (x, τ) = Sx(x, τ) (3.16)

while the function R(x, τ) stays the same.

Ξ(R,S) is not a canonical transformation, so the Poisson tensor is transformed by the Jacobian DΞ:

J∗2 = (DΞ)J2(DΞ)T =

(
∂x 0
0 1

)(
0 1
−1 0

)(
−∂x 0

0 1

)
=

(
0 ∂x
∂x 0

)
(3.17)

and the structure of the Hamilton’s equations (3.13) change

Vτ = ∂xφ
′(R) = φ′′(R)Rx

Rτ =

(
Vx +

h2

12
Vxxx + . . .

)
= ∂xLhV

(3.18)

where we define a new operator Lh

Lh := 1 +
h2

12
∂2
x + . . . . (3.19)

The Hamiltonian related to the new equations of motions is:

K[V,R] =

∫ (
1

2
V LhV + φ(R)

)
dx =

∫ (
V 2

2
+ φ(R)− h2

24
V 2
x

)
dx+ O(h4). (3.20)

In the limit of h→ 0, (3.18) reduce to a nonlinear wave equations

Rτ = Vx

Vτ = ∂xφ
′(R).

9



Chapter 3. Dubrovin’s theorem and its extension 3.2

3.2 Extension of the Dubrovin’s Theorem

After introducing the new coordinates, we can easily find a generalization of the result, given by the
Theorem 3.0.1, for more general perturbation.

We add a potential ψ1(R) in the first order of perturbation, and see if there are some limitations on
form that must have such that the new system admits an extension of the first integrals.

The Hamiltonian (3.20) can be rewritten as:

K[V,R] =

∫ [(
V 2

2
+ φ(R)

)
+ h2

(
ψ1(R)− V 2

x

24

)]
dx+ O(h4)

= K0[V,R] + h2K2[V,R] + O(h4).

(3.21)

Be J0[V,R] =
∫
j0(V,R)dx a first integral of K0[V,R], we are looking for conditions of some functional:

J2[V,R] =

∫
j2(R, V,Rx, Vx, Rxx, Vxx)dx

where j2(R, V,Rx, Vx, Rxx, Vxx) is an homogeneous polynomial of grade 2 in the jets coordinates
(Rx, Vx, Rxx, Vxx), such that we can define the extended functional

J = J0 + h2J2 + O(h4) (3.22)

as the perturbed first integral of K at the second order

{J,K} = O(h4). (3.23)

The Poisson bracket, in the coordinates (V,R), is defined as:

{F,G} :=

∫
(∇L2FJ∗2∇L2G)dx =

=

∫ [δF
δR

∂x
δG

δV
+
δF

δV
∂x
δG

δR

] (3.24)

where∇L2 is the L2 gradient, i.e. a vector with components the functional derivatives respectR and V .

In the order to find the conditions on J2, and eventually the system we have considered, we take
advantage of a result of the following lemma
Lemma 3.2.1. Be F [u] =

∫
f(u)dx a functional. F [u] = const ∀u iff

Euf = 0

where Eu is the Euler-Lagrange operator

Eu = ∂u − ∂x∂ux + ∂2
x∂uxx + . . .

Proof.
F [u] = const ∀u ⇐⇒ δF [u] = 0 ∀u

we know that

δF [u] =

∫
Euf(u)δudx

this means that

δF [u] = 0 ∀u ⇐⇒
∫
Euf(u)δudx = 0 ∀u, δu

So we have that:
δF [u] = 0 ⇐⇒ Euf = 0

10



3.2 Chapter 3. Dubrovin’s theorem and its extension

From this lemma, we obtain the useful corollary:
Corollary 3.2.2. Two local functional F =

∫
fdx and G =

∫
gdx commute with respect to the Poisson

bracket (3.24) iff

EV

(
δF

δR
∂x
δG

δV
+
δF

δV
∂x
δG

δR

)
= 0

ER

(
δF

δR
∂x
δG

δV
+
δF

δV
∂x
δG

δR

)
= 0.

Let us proceed with the calculation of the Poisson bracket (3.23).

Applying the linearity of the Poisson bracket, we obtain

{J ;K} = {J0,K0}+ h2({J2,K0}+ {J0,K2}) = O(h4). (3.25)

We know that {J0,K0} = 0, so we need to see if the term {J2,K0}+ {J0,K2} is null.

The density of J2[V,R], up to a total x-derivative, can be written in this form:

j2 =
1

2
(a(V,R)R2

x + 2b(V,R)RxVx + c(V,R)V 2
x ) + p(V,R)Rx + q(V,R)Vx + d(V,R).

Thus, the remaining terms of the Poisson bracket (3.23) give us the following functional:

{J,K} =h2

∫
dx
[j0R

12
Vxxx +

1

2
(cR − 2bv)V

3
x +

φ′′(R)

2
(aV − 2bR)R3

x+

− 1

2
(aR + 2cRφ

′′(R))R2
xVx −

1

2
(cV φ

′′(R) + 2aV )RxV
2
x +

− aRxxVx − bVxxVx − bφ′′(R)RxxRx − cφ′′(R)VxxRx+

+ (qR − pV )V 2
x + φ′′(R)(pV − qR)R2

x

+ dRVx + (dvφ
′′(R) + j0V ψ

′′
1(R))Rx

]
+ O(h4).

(3.26)

Denoted I the integrand of (3.26), we apply the Corollary 3.2.2 so that our problem changes in the
check of the equations:

EV I = 0, ERI = 0. (3.27)

In particular, we must check if each coefficients of the jets coordinates vanishes.

The terms of third grade (Rxxx, Vxxx, RxxVx, . . . ) give us the conditions on the coefficients a, b and c:

a =

(
c+

j0V V
12

)
φ′′(R); c = −j0V V R

6

φ′′(R)

φ′′′(R)
− j0V V

12
;

b = −j03V
6

φ′′(R)2

φ′′′(R)
; bV = cR +

j0RV V
12

=

(
a

φ′′(R)

)
R

;

bR =

(
cV −

j03V
12

)
φ′′(R); cV V φ

′′(R) = cRR +
j02V 2R

6
.

(3.28)

Let us consider the fourth equation of (3.28). We obtain explicitly a(V,R) combining the first and
the second equations of (3.28)

a = −j0V V R
6

φ′′(R)2

φ′′′(R)
⇒ a

φ′′(R)
= −j0V V R

6

φ′′(R)

φ′′′(R)

11



Chapter 3. Dubrovin’s theorem and its extension 3.2

and then we substitute this result in the fourth equation

bV =

(
a

φ′′(R)

)
R

j04V
6

φ′′(R)2

φ′′′(R)
=
j02V 2R

6

φ′′(R)

φ′′′(R)
+
j0V V R

6

[
(φ′′′(R))2 − φ′′(R)φIV (R)

(φ′′′(R))2

]
.

We know that j0 is the density of the first integral of K0, so it must satisfy the condition (proved in
the Appendix A)

j0RR = φ′′(R)j0V V . (3.29)

Therefore, we can rewrite the lhs of the previews equation as

j04V
6

φ′′(R)2

φ′′′(R)
=
∂2
V (j0V V φ

′′(R))

6

φ′′(R)

φ′′′(R)
=
j02V 2R

6

φ′′(R)

φ′′′(R)

and the fourth equation of (3.28) reduces to

j0V V R
6

[
(φ′′′(R))2 − φ′′(R)φIV (R)

(φ′′′(R))2

]
= 0.

In the end, we obtain a condition on the potential φ(R)

(φ′′′(R))2 − φ′′(R)φIV (R)

(φ′′′(R))2
= 0

and this is valid only if the numerator is null

(φ′′′(R))2 = φ′′(R)φIV (R). (3.30)

Now, we need to solve the ODE (3.30): dividing the equation by φ′′′(R)φ′′(R) yields

φ′′′(R)

φ′′(R)
=
φIV (R)

φ′′′(R)
. (3.31)

We can recognise this equation as the condition of equivalence between the logarithmic derivative of
φ′′(R) with the logarithmic derivative of φ′′′(R):

∂R[ln(φ′′′(R))] = ∂R[ln(φ′′(R))]

⇓
φ′′′(R) = c̃φ′′(R)

and we obtain an easier ODE to solve. Considering also the condition φ′′′(R) 6= 0 ∀R, the solution of
this equation is:

φ(R) = kec̃R + ãR+ b̃ (3.32)

for some constants ã, b̃, c̃, k.

This is exactly the same potential (3.3) that we found in the Theorem 3.0.1, so it is proved also for
the new coordinates.

It is easy to show that the last two equations of (3.28) are identities. We start with

cV V φ
′′(R) = cRR +

j02V 2R

6
. (3.33)

12



3.2 Chapter 3. Dubrovin’s theorem and its extension

Because we know the form of c(R, V ), we calculate the second derivative respect R:

cRR = ∂2
R

(
−j0V V R

6

φ′′(R)

φ′′′(R)
− j0V V

12

)
=

= ∂R

−j02V 2R

6

φ′′(R)

φ′′′(R)
− j0V V R

6

(
(φ′′′(R))2 − φ′′(R)φIV (R)

(φ′′′(R))2

)
︸ ︷︷ ︸

=0

− j02V 2R

12
=

= ∂R

(
−j04V

6

φ′′(R)2

φ′′′(R)

)
− j04V

12
φ′′(R) = for the condition (3.29)

= −j04V R
6

φ′′(R)2

φ′′′(R)
− j04V

6
φ′′(R)

1 +
(φ′′′(R))2 − φ′′(R)φIV (R)

(φ′′′(R))2︸ ︷︷ ︸
=0

− j04V
12

φ′′(R) =

= −j04V R
6

φ′′(R)2

φ′′′(R)
− j04V

12
φ′′(R)− j02V 2R

6
=

= ∂2
V

(
−j0V V R

6

φ′′(R)

φ′′′(R)
− j0V V

12

)
φ′′(R)− j02V 2R

6
=

= cV V φ
′′(R)− j02V 2R

6
.

Now let us see the last equation

bR =

(
cV −

j03V
12

)
φ′′(R). (3.34)

We know the form of b(R, V ), so we calculate explicitly bR:

bR = ∂R

(
−j03V

6

φ′′(R)2

φ′′′(R)

)
=

= −j03V R
6

φ′′(R)2

φ′′′(R)
− j03V

6
φ′′(R)

1 +
(φ′′′(R))2 − φ′′(R)φIV (R)

(φ′′′(R))2︸ ︷︷ ︸
=0

 =

=

(
−j03V R

6

φ′′(R)

φ′′′(R)
− j03V

6

)
φ′′(R) =

(
cV −

j03V
12

)
φ′′(R).

Let us continue the check of the coefficients and pass to the quadratic and linear terms related to the
jets coordinates.

From the quadratic terms (Rxx, V
2
x , . . . ) in the equations (3.27), we obtain the only condition

pV = qR. (3.35)

This means that p(V,R) and q(V,R) must be the component of the gradient of a function ν

p(V,R) = νR(V,R) q(V,R) = νV (V,R)

and, if we substitute these formulas in j2, we find that:

j2 = · · ·+ νR(V,R)Rx + νV (V,R)Vx + d(V,R) = · · ·+ (∂xν(V,R)) + d(V,R).

The linear part respect Vx and Rx of j2 is a total derivative of ν(V,R), so we can ignore it because
the integral of this part vanishes.

13



Chapter 3. Dubrovin’s theorem and its extension 3.3

Now we need to see the linear terms (Rx, Vx). Always from the equations (3.27), we find that d(R, V )
must satisfy the following PDE:

dRR = φ′′(R)dV V + ψ′′1(R)j0V V . (3.36)

This is an equation with two unknown functions, ψ1(R) and d(V,R). We need to see case by case for
which form of ψ1(R) exist a function d(V,R) such that this equation is satisfied.

In the trivial case ψ′′1(R) = 0, i.e ψ1(R) = mR + q with m, q constants, the eq (3.36) becomes (3.29),
thus d(V,R) must be a density of the first integral of the unperturbed system.

3.3 Case of Harmonic Oscillator

We saw that, in the hypothesis φ′′′(R) 6= 0 ∀R, it has a solution a family of exponential potential. In
particular, a subfamily of this potentials are the Toda potentials.

If we weaken also this hypothesis (considering also potential with φ′′′(R) = 0 ∀R), we obtain a new
trivial solution for the equation (3.30): the harmonic oscillator

φ(R) = ω
R2

2
. (3.37)

But, if we substitute (3.37) in the results (3.28), the denominators become null and the functions
a(R, V ), b(R, V ) and c(R, V ) blows up to infinity. So, we need to take some steps back and restart
from the Poisson brackets (3.26).

{J,K} = {J0,K0}︸ ︷︷ ︸
=0

+h2({J2,K0}+ {J0,K2}) =

= h2

∫ [(
δJ0

δR
∂x
δK2

δV
+
δJ0

δV
∂x
δK2

δR

)
+

(
δJ2

δR
∂x
δK0

δV
+
δJ2

δV
∂x
δK0

δR

)]
dx =

substituting at φ(R) with (3.37), we find

=h2

∫
dx

{
j0R
12

Vxxx − bVxxVx − ωbRxxRx − aRxxVx − ωcVxxRx+

− (ωcR − 2aV )

2
V 2
xRx −

(aR + 2ωcR)

2
R2
xVx+

+
(cR − 2bV )

2
V 3
x +

ω

2
(aV − 2bR)R3

x + (qR − pV )V 2
x + ω(pV − qR)R2

x

+ dRVx + (dV ω + j0V ψ
′′
1(R))Rx

}
+ O(h4)

and, as we noticed before, we apply the Corollary 3.2.2 and check the equations

ERI = 0, EV I = 0. (3.38)

From the linear component in the jets coordinates of the equations (3.38) we find

dRR = ωdV V + ψ′′1(R)j0V V (3.39)

while the quadratic components give us the same result we have found before.

We must now focus on the other components. From the componentsRxxx, VxxVx, RxxVx, RxxRx and V 2
xRx

of EV I = 0 we find respectively the following conditions

a = ωc+
j0RR
12

; bV = cR +
j0RV V

12
=
aR
ω

;

bR = ωcV −
j0RRV

12
; ωcV V − cRR =

j02R2V

6
;

j03R = 0 (or j0RV V = 0 from the (3.29))

14



3.3 Chapter 3. Dubrovin’s theorem and its extension

while from the components VxxVx, RxxVx, RxxRx and R2
xVx of ERI = 0 we find respectively

aV = bR; aV = ωcV =⇒ j0RRV = 0; (from the result of the component Rxxx of EV I = 0)

bV = cR −
j0RV V

12
= cR (from the result of the component RxxRx);

cRR − ωcV V =
j02R2V

6
= 0 (from the result of the component RxxRx).

All the other components of ERI = 0 and EV I = 0 are identically null.

We found some conditions on the unperturbed first integral and we try to solve them. Let us start
from j03R = 0:

j03R = 0 =⇒ j0(R, V ) =
ϕ(V )

2
R2 + χ(V )R+ %(V ) (3.40)

and we find the form of the functions ϕ(V ), χ(V ) and %(V ) considering also the other conditions
(also (3.29))

j0RRV = 0 =⇒ ϕ′(V ) = 0 =⇒ ϕ(V ) = cost. = γ;

j0RV V = 0 =⇒ χ′′(V ) = 0 =⇒ χ(V ) = αV + β :

j0RR = ωj0V V =⇒ γ = ω%′′(V ) =⇒ %(V ) =
γ

2ω
V 2 + δV + λ.

Thus, combining all the results, the unperturbed first integral must have this form

J0[R, V ] =

∫
j0(R, V )dx =

∫ {
γ

ω

(
V 2

2
+
ω

2
R2

)
+ αV R+ βR+ δV + λ

}
dx (3.41)

with γ, α, β, δ and λ arbitrary constants.

We recognise some terms in J0[R, V ], in particular:

1. the first term is the unperturbed Hamiltonian, which is by definition a first integral;

2. the second term
∫
V Rdx =

∫
SxRdx is connected with the translation symmetry2 of the unper-

turbed system, so it is a first integral;

3. the third term
∫
Rdx is the total “momentum” of the systems, so it’s a first integral too;

4. the fourth term
∫
V dx is connected to the length of the system, and for the periodic boundary

condition this quantity must stay constant.

So J0[R, V ] is a linear combination of first integrals of the unperturbed system. This means that
the unperturbed first integrals must depend on the choise of the potential, and the constrains on the
j0(R, V ), which we found before, are simply identities.

In the end, we find that it is possible to extend a first integral at the first order of h2 also in the case
of φ(R) = ωR2/2, and the functions a(R, V ), b(R, V ) and c(R, V ) are given by this equations:

a = ωc+
j0RR
12

, bV = cR, bR = ωcV (3.42)

while the equation (3.39) becomes

dRR = ωdV V + γψ′′1(R). (3.43)

2Consider the transformation f(S,R) = (S(x + s), R(x + s)), we want to find the Hamiltonian that generates this
transformation, so we calculate

∂f

∂s

∣∣∣∣
s=0

= (Sx, Rx) =

(
δHf
δR

)
.

Integrating this equations, we find

Hf [S,R] =

∫
SxRdx

15
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Chapter 4

Application for the FPU Problem

In this chapter, we want to apply the techniques and mathematical tools of the previous chapters for
the principal object of our thesis: The actual FPU problem.

4.1 Continuum limit of FPU

Let us consider the Hamiltonian (3.1) with potential (2.7). We saw that, if we apply the canonical
transformation (3.6), the Hamiltonian becomes (3.7)

KFPU (s, r) =
∑
n∈ZN

[
(sn − sn−1)2

2
+ φ(rn)

]
(4.1)

and the equations of motion (3.2) become the equations (3.8)

ṡn =
∂K(s, r)

∂rn
= φ′(rn)

ṙn = −∂K(s, r)

∂sn
= (sn+1 − 2sn + sn−1).

(4.2)

We know that all the FPU systems are tangent at the first order to the Toda lattice (βToda = 2
3α

2),
therefore we can write (3.7) as

KFPU (s, r) = KToda(s, r) +
∑
n∈ZN

(
∆β

r4
n

4
+ ∆γ

r5
n

5
+ . . .

)
(4.3)

with

∆β = (β − βToda), ∆γ = (γ − γToda), . . .

and

KToda(s, r) =
∑
n∈ZN

[
(sn+1 − sn)2

2
+
e2αrn − 2αrn − 1

4α2

]
. (4.4)

We now consider the continuum limit (N →∞) of the FPU system, and look for smooth and analytic
solutions. Let T = R/Z be the real unit torus. We define

h :=
1

N
(we have already defined this pertibative coefficient), ε :=

E

N
(4.5)

where E is the energy of the system (ε is called specific energy).
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Chapter 4. Application for the FPU Problem 4.1

We repeat the same strategy we use before, but in this case using another perturbative parameter.
So, we suppose that a pair of interpolating smooth and analytic functions

(S,R) : R× T→ R2 : (τ, x)→ (S(τ, x), R(τ, x))

exist, so the solution of (3.8) at time t ∈ R is given by{
sn(t) = (

√
ε/h)S(τ, x)|τ=ht;x=hn

rn(t) =
√
εR(τ, x)|τ=ht;x=hn

(n ∈ ZN ) . (4.6)

They are similar to the ones (3.9) we used in the previous chapter. The only difference here is that
they are re-scaled by a factor

√
ε.

Inserting the functions (4.6) into (3.8), and removing the restriction on the continuum space variable
x, we obtain this system of partial differential equationsSτ =

1√
ε
φ′(
√
εR)

Rτ = ∆hS

(4.7)

defined on the torus T. The operator ∆h is the same operator (3.11) that we have defined before.

This equations of motion are related to the following Hamiltonian

KFPU [S,R] =

∫
dx

[
1

ε
φ(
√
εR)− 1

2
S∆hS

]
. (4.8)

It is more convenient to work with the coordinates (V,R), so we apply the change of coordinates (3.16).
In this way the Hamiltonian becomes

KFPU [V,R] =

∫
dx

(
1

2
V LhV + φ̃(R)

)
(4.9)

where Lh is the same operator (3.19) defined before and the potential φ̃(R) is:

φ̃(R) :=
1

ε
φ(
√
εR) =

R2

2
+
√
εα
R3

3
+ εβ

R4

4
+ . . . . (4.10)

The next step is to see the potential (4.10) as a perturbation of the Toda Potential. So we want to
rewrite (4.10) as

φ̃(R) =
1

ε
φToda(

√
εR) + ε∆β

R4

4
+ ε3/2∆γ

R5

5
+ · · · =

=
1

ε
φToda(

√
εR) + ψ1(R) + ψ2(R) + . . .

(4.11)

and the Hamiltonian (4.9) can be rewritten as

KFPU [V,R] =

∫
dx
[(V 2

2
+

1

ε
φToda(

√
εR)

)
+

(
ψ1(R)− h2

24
V 2
x

)
+

(
ψ2(R) +

h4

720
V 2
xx

)
+ . . .

]
.

(4.12)

However, we need to connect the potentials ψ1(R), ψ2(R), . . . to the perturbed pieces

ε∆β
R4

4
, ε3/2∆γ

R5

5
, . . . (4.13)

18



4.1 Chapter 4. Application for the FPU Problem

of the FPU potential (4.11). A way to solve this problem is to compare the grade of ψ1(R), ψ2(R)
and so on, in relation to the perturbed terms of (4.12), and see what part of the FPU potential (4.11)
they correspond.

We use a Cauchy estimate of the functions. For fixed τ∗, We define a strip in the complex plane
Ωσ := {x ∈ C : |Im(x)| ≤ σ} and

v := max
Ωσ
{|V (x, τ∗)|, |R(x, τ∗)|}. (4.14)

Using the Cauchy integral formula, we can estimate the functions V and R, and their derivative, as

V ≤ v, Vx ≤
v

σ
, Vxx ≤

v

σ2
, . . . , V (n) ≤ v

σn
.

To be consistent, each part of the perturbation terms at a fixed order must have the same estimate,
and this means that the perturbed potentials must be

ψ1(R) ≤ h2

σ2
v2, ψ2(R) ≤ h4

σ4
v2, ψ3(R) ≤ h6

σ6
v2, . . .

and in general:

ψn(R) ≤ h2n

σ2n
v2. (4.15)

Now, we compare these estimates with the perturbation terms of (4.11). We consider the first hypotesis
ψ1(R) =ε∆β

R4

4

ψ2(R) =ε3/2∆γ
R5

5
...

(4.16)

and, using the estimates obtained from the formula (4.15), we find

ε∆β
R4

4
≤ h2

σ2
v2 ⇒ σ ≤ h√

ε

ε3/2∆γ
R5

5
≤ h4

σ4
v2 ⇒ σ ≤ h

ε3/8

....

Basing on these results, we can see how this hypothesis is impossible for two reasons:

1. the estimate of σ at the first order is different from the estimate at the second order;

2. we find that σ ≤ h√
ε

at the first order, but we know that, from the estimates of the non linear

terms of the KdV equation [19], σ must be

σ ≤ h

ε1/4
. (4.17)

Thus, we need to consider another hypothesis on the relations between the potentials ψn(R) and the
perturbed parts of the potental (4.11). The simplest alternative to the hypothesis (4.16) is to start
the perturbation at the second order, so that the potentials ψn(R) are

ψ1(R) =0

ψ2(R) =ε∆β
R4

4

ψ3(R) =ε3/2∆γ
R5

5
...

(4.18)
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We repeat the same procedure for this hypothesis and we see that

ε∆β
R4

4
≤ h4

σ4
v2 ⇒ σ ≤ h

ε1/4

ε3/2∆γ
R5

5
≤ h6

σ6
v2 ⇒ σ ≤ h

ε1/4
.

In this case, the estimate of σ, both for the first and the second order, is equal to the estimate (4.17)
that we have see before. But we must verify that the estimate of σ is the same for each order n. Let
us consider the general form of the hypothesis (4.18)

ψn(R) =


0 if n = 1

εn/2∆gn
Rn+2

n+ 2
if n ≥ 2

(4.19)

where ∆gn = (gn − gnToda).

From the the formula (4.15), we know the generic estimates of ψn(R) and we find

ψn(R) = εn/2∆gn
Rn+2

n+ 2
≤ h2n

σ2n
v2

⇓

σ ≤ h

ε1/4
.

Thus, the estimate of σ stay constant for each order of perturbation. This means that the hypothe-
sis (4.18) is correct and we can rewrite the FPU Hamiltonian (4.12) as

KFPU [V,R] =

∫
dx
[(V 2

2
+

1

ε
φToda(

√
εR)

)
− h2

24
V 2
x

+

(
ε∆β

R4

4
+

h4

720
V 2
xx

)
+ . . .

]
.

(4.20)

4.2 Extensions of first integrals

We now apply the Dubrovin’s techniques to find perturbed first integrals of the FPU chain from
extensions of the first integrals of the Toda Lattice. We start with the second order. We truncate the
Hamiltonian (4.20) up to the second order

KFPU [V,R] =

∫
dx

[(
V 2

2
+

1

ε
φToda(

√
εR)

)
− h2

24
V 2
x

]
+ O(h4) (4.21)

which is the same of (3.21) with ψ1(R) = 0, so we already know the solutions for the density
j2(V,R, Vx, Rx)

j2(V,R, Vx, Rx) =
a

2
R2
x + bRxVx +

c

2
V 2
x =

= −j0V V R
12

eRR2
x −

j03V
6
eRRxVx −

j0V V R
12

V 2
x −

j0V V
24

V 2
x

(4.22)

where we considered 1
εφToda(

√
εR) = eR −R− 11.

1In fact, if we calculate 1
ε
φToda(

√
εR), we find

1

ε
φToda(

√
εR) =

e2α
√
εR − 2α

√
εR− 1

4α2ε

and choosing 2α
√
ε = 1, we obtain 1

ε
φToda(

√
εR) = eR −R− 1

20



4.2 Chapter 4. Application for the FPU Problem

We now proceed with the fourth order

KFPU [V,R] =

∫
dx
[(V 2

2
+

1

ε
φToda(

√
εR)

)
− h2

24
V 2
x

+

(
ε∆β

R4

4
+

h4

720
V 2
xx

)]
+ O(h6).

(4.23)

We want to find the coefficients of the density j4(V,R, Vx, Rx, Vxx, Rxx), which is a polynomial function
on the jet coordinates of order fourth and has the following form:

j4(V,R, Vx, Rx, Vxx, Rxx) = α̃R2
xx + β̃RxxVxx + γ̃V 2

x + δ̃RxxV
2
x + ε̃VxxR

2
x+

+ µ̃R4
x + ν̃R3

xVx + ρ̃R2
xV

2
x + λ̃RxV

3
x + ω̃V 4

x +

+
η

2
R2
x + ξRxVx +

ζ

2
V 2
x + σ;

(4.24)

where α̃, β̃, γ̃, δ̃, ε̃, µ̃, ν̃, ρ̃, λ̃, ω̃, η, ξ, ζ and σ are functions of R and V , so that the extended first integral

J [V,R] = J0[V,R] + h2J2[V,R] + h4J4[V,R] =

=

∫
dx
[
j0(V,R) + h2j2(V,R, Vx, Rx) + h4j4(V,R, Vx, Rx, Vxx, Rxx)

]
.

(4.25)

commutes with the Hamiltonian (4.20)

{J,KFPU} = O(h6).

We calculate explicitly, thanks to the software Mathematica, the Poisson bracket of J [V,R] with (4.20)

{J,KFPU} =h4[{J0, H4}+ {J2, H2}+ {J4, H0}] =

=h4

∫
dx

{
j0R
360

V5x + (β̃Vx + 2γ̃Rxφ
′′
Toda)V4x + (2α̃Vx + β̃φ′′TodaRx)R4x −

a

12
VxxxRxx+

− b

12
VxxxVxx +

(
4γ̃Rφ

′′
Toda −

aR
24

)
VxxxR

2
x +

(
4γ̃V φ

′′
Toda + 2β̃R − 2ε̃− aV

12

)
VxxxRxVx+

+
(

2δ̃ + 2β̃V +
cR
24
− bV

12

)
VxxxV

2
x + 4α̃VRxxxV

2
x + (2β̃V φ

′′
Toda − 2δ̃φ′′Toda + 4α̃R)RxxxRxVx+

+ (2ε̃φ′′Toda + 2β̃Rφ
′′
Toda)RxxxR

2
x + (2α̃V + 2β̃R − 2ε̃)VxxRxxVx+

+ φ′′Toda(2β̃V + 2γ̃R − 2δ̃)VxxRxxRx + (5δ̃V + β̃V V − 3ν̃)VxxV
3
x +

+ (4γ̃RV φ
′′
Toda + β̃RR − ε̃R − 3λ̃− 6ν̃φ′′Toda)VxxR

2
xVx+

+ (2γ̃V V φ
′′
Toda + 4δ̃R + 2β̃RV − 4ρ̃− 12ω̃φ′′Toda − 2ε̃V )VxxR

2
xVx+

+ 2φ′′Toda(γ̃RR + ε̃V − ρ̃)VxxR
3
x + φ′′Toda(β̃RR + 5ε̃R − 3λ̃)RxxR

3
x+

+ (2δ̃R + 2α̃V V − 2ρ̃)RxxV
3
x + (2δ̃ + γ̃R + β̃V )V 2

xxVx + 3γ̃V φ
′′
TodaV

2
xxRx+

+ φ′′Toda(2ε̃+ α̃V + β̃R)R2
xxRx + 3α̃RR

2
xxVx+

+ (β̃V V φ
′′
Toda − δ̃V φ′′Toda − 3ν̃ − 6λ̃+ 4α̃RV )RxxRxV

2
x +

+ (4ε̃V φ
′′
Toda + 2β̃RV φ

′′
Toda − 2δ̃Rφ

′′
Toda − 4ρ̃φ′′Toda + 4α̃RR − 12µ̃)RxxR

2
xVx+

+ (δ̃V V − ν̃V + ω̃R)V 5
x + (2δ̃RV − 2ρ̃V − 3ω̃V φ

′′
Toda)V

4
xRx+
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+ (δ̃RR − 3λ̃V − 2ν̃V φ
′′
Toda − ρ̃R − 4ω̃Rφ

′′
Toda)V

3
xR

2
x+

+ (ε̃V V φ
′′
Toda − 3ν̃Rφ

′′
Toda − ρ̃Rφ′′Toda − 2λ̃R − 4µ̃V )V 2

xR
3
x+

+ (2ε̃RV φ
′′
Toda − 2ρ̃Rφ

′′
Toda − 3µ̃R)VxR

4
x + (µ̃V φ

′′
Toda − λ̃Rφ′′Toda + ε̃RRφ

′′
Toda)R

5
x+

+
φ′′Toda

2
(ηV − 2ξR)R3

x −
1

2
(ηR + 2ζRφ

′′
Toda)R

2
xVx −

1

2
(ζV φ

′′
Toda + 2ηV )RxV

2
x +

+
1

2
(ζR − 2ξV )V 3

x − ξφ′′TodaRxxRx − ξVxxVx − ζφ′′TodaVxxRx+

− ηRxxVx + σRVx + (σV φ
′′
Toda + 3j0V ∆βR2)Rx

}
+ O(h6). (4.26)

To see if (4.26) is null at the fourth order, we apply the Corollary 3.2.2 and see if

δ

δR
{J,HFPU} = ERI = 0,

δ

δV
{J,HFPU} = EV I = 0 (4.27)

where I is the integrand of (4.26).

We compute the Euler-Lagrange operators using the software Mathematica and we check term by
term for which conditions on the coefficients the equation (4.27) are satisfied.

From the terms of fifth grade, we find that both ERI = 0 and EV I = 0 give us these coefficients:

α̃ =
j04V
120

e2R − j0V V R
720

eR; β̃ =
j03V R

60
eR +

j03V
120

eR;

γ̃ =
j04V
120

eR +
j0V V R
180

+
j0V V
720

; ε̃ =
j03V R

72
eR +

j03V
120

eR; δ̃ = −j04V
180

eR +
j0V V R
1440

;

µ̃ =
j0V V R
2160

eR − j04V
360

e2R − 17

4320
j04V Re

2R − j06V
864

e3R;

ρ̃ = − 7

1440
j04V e

R − j04V R
160

eR − j06V
144

e2R; ν̃ = −j03V R
1440

− j05V
144

eR − j05V R
216

eR;

λ̃ =
j03V R
540

eR − 14

2160
j05V e

2R − j05V R
216

e2R;

ω̃ = − j04V
5760

− j04V R
1080

− j06V
864

eR.

(4.28)

This result coincides with the Toda hierarchy at the fourth order [24].

We proceed with the computation of lower terms of ERI = 0 and EV I = 0. Starting from ERI = 0,
we find:

Vxxx : ζeR − η = 0⇒ η = ζeR

VxxVx : −ξR + 2ζV e
R − ηV = 0⇒ ξR = ζV e

R = ηV

RxxRx : ξRe
R − ηV eR − ξeR = 0⇒ ξ = 0

This means that ηV = 0⇒ η = f(R)⇒ ζ = f(R)e−R ⇒ ζV = 0

RxxVx : 2ζRe
R − ηR = 0⇒ ζRe

R − ζeR = 0

ζR = ζ

V 3
x : ζRR + ζV V e

R = 0⇒ ζRR = 0

but ζRR = ∂R(ζR) = ζR = ζ = 0. This means that ξ = η = ζ = 0

Vx : σRR = σV V e
R + 3j0V V ∆βR2
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while all the other equations are identically null. From EV I = 0 we find the same results:

Rxxx : η − ζeR = 0⇒ η = ζeR

VxxVx : ξV = ζR

VxxRx : −ζV eR + 2ηV − ξR = 0⇒ ξR = ζV e
R = ηv

RxxRx : −ξV eR + 2ηR − ζReR − 3ζeR = 0⇒ ζeR = 0

This means that η = 0 and ξR = ξV = 0

Rx : σRR = σV V e
R + 3j0V V ∆βR2

while all the other equations are identically null.

Therefore, the density j4(V,R, Vx, Rx, Vxx, Rxx) becomes

j4(V,R, Vx, Rx, Vxx, Rxx) = α̃R2
xx + β̃RxxVxx + γ̃V 2

x + δ̃RxxV
2
x + ε̃VxxR

2
x+

+ µ̃R4
x + ν̃R3

xVx + ρ̃R2
xV

2
x + λ̃RxV

3
x + ω̃V 4

x + σ

where the coefficients α̃, β̃, γ̃, δ̃, ε̃, µ̃, ν̃, ρ̃, λ̃, ω̃ are given by the Toda hierarchy (4.28) and σ must satisfy
this PDE

σRR = σV V e
R + 3j0V V ∆βR2. (4.29)

4.3 Solutions of the principal PDEs

We now focus on the most important PDEs that we considered before: the equation (3.29) with
φ(R) = φToda(R) and the equation (4.29) on the extension of this integral

j0RR = eRj0V V

σRR = σV V e
R + 3j0V V ∆βR2.

(4.30)

The first equation describes the first integrals of the continuum dispersionless (h→ 0) Toda Lattice.

We know that the density of the Hamiltonian KToda[R, V ] is a solution of the equation, so the generic
j0 must satisfy the following properties:

• there is no periodicity in V or R;

• j0 is a polynomial function of V and eR.

The first integrals that satisfy these two conditions and the equation (3.29) are the continuum limit
of the Henon’s integrals [14], which are the first integrals of the discrete Toda Lattice.

j
(2)
0 =

V 2

2
+ eR;

j
(3)
0 =

V 3

6
+ V eR;

j
(4)
0 =

V 4

6
+ 2V 2eR + e2R;

j
(5)
0 =

V 5

30
+

2

3
V 3eR + V e2R;

...

(4.31)

For a generic order, we write these first integrals as:

j
(2n)
0 =

n∑
l=0

C lnV
2(n−l)elR

j
(2n+1)
0 =

n∑
l=0

Bl
nV

2(n−l)+1elR
for n ≥ 1 (4.32)
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where the two coefficients C ln and Bl
n are given by the formulas:

C ln =


∏n
m=l+1m

2

[2(n− l)]!
if l = 0; . . . ;n− 1

1 if l = n

Bl
n =


∏n
m=l+1m

2

[2(n− l) + 1]!
if l = 0; . . . ;n− 1

1 if l = n

(4.33)

Now, we can study the second equation of (4.30). The solution of this equation is composed by two
functions

σ = σ0 + σp (4.34)

where σ0 is a solution of the homogeneous PDE

σ0RR = eRσ0V V ,

i.e an Henon’s integral, and σp is a particular solution of all the PDE

σpRR = eRσpRR + 3∆βj0V V R
2.

Before we try to solve (4.29) for particular solution, we need to choose a j
(n)
0 to extend. We start with

a trivial first integral: j
(2)
0 , i.e. the density of the unperturbed Hamiltonian.

j
(2)
0 =

V 2

2
+ eR =⇒ σpRR = eRσpRR + 3∆βR2.

Because the extension of the unperturbed Hamiltonian is given by the perturbed Hamiltonian (4.20)
itself, σp is equal to the perturbed potential ψ2(R)

σp = ψ2(R) =
∆β

4
R4. (4.35)

We analyse now the first nontrivial first integral: j
(3)
0 .

j
(3)
0 =

V 3

6
+ V eR =⇒ σpRR = eRσpV V + 3∆βV R2.

In this case, we find another simple solution σp:

σp =
∆β

4
V R4. (4.36)

The solutions of (4.29) become more complex when we proceed with the other first integrals. In fact,

for higher grade n, inside j
(n)
0V V

there are terms in eR, V eR, . . . .

For example, if we take the equation (4.29) for j
(4)
0 we find

σRR = eRσV V + 3∆β(2V 2 + 4eR)R2. (4.37)

Considering the form of the other two solutions (4.35) and (4.36), we suppose that a generic solution
σp of (4.29) exists and has the following form

σp = ∆β
[
R4Pn(V, eR) +R3Pm(V, eR) +R2Pi(V, e

R) +RPj(V, e
R) + Pk(V, e

R)
]

(4.38)

where Py(V ; eR) is a non homogeneous polynomial of maximum grade y in V and eR.
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We try this ansatz for the PDE (4.37). To simplify the notations, we define X := eR. 2

Let’s calculate the double derivative of (4.38) respect R and V

σpRR = ∆β∂2
R

[
R4Pn(V ;X) +R3Pm(V ;X) +R2Pi(V ;X) +RPj(V ;X) + Pk(V ;X)

]
=

= ∆β∂R

[
R4PnXX +R3(4Pn + PmXX) +R2(3Pm + PiXX)+

+R(2Pi + PjXX) + Pj + PkXX
]

=

= ∆β
[
R4(PnXXX

2 + PnXX) +R3(8Pn + PmXXX
2 + PmXX)+

+R2(12Pn + 6PmxX + PiXXX
2 + PiXX)+

+R(6Pm + 4PiXX + PjXXX
2 + PjXX)+

+ 2Pi + 2PjXX + PkXXX
2 + PkXX

]
(4.39)

σpV V = ∆β
[
R4PnV V +R3PmV V +R2PiV V +RPjV V + PkV V

]
. (4.40)

We substitute (4.39) and (4.40) in the PDE (4.37) and, comparing the powers of R, we find that the
polynomials Pn, Pm, Pi, Pj , Pk must satisfy the following PDEs:

R4 =⇒ ∂2
RPn = eR∂2

V Pn

R3 =⇒ 8∂RPn + ∂2
RPm = eR∂2

V Pm

R2 =⇒ 12Pn + 6∂RPm∂
2
RPi = eR∂2

V Pi + 3(2V 2 + 4eR)

R =⇒ 6Pm + 4∂RPi + ∂2
RPj = eR∂2

V Pj

hom =⇒ 2Pi + 2∂RPj + ∂2
RPk = eR∂2

V Pk.

(4.41)

Thus, we move the problem from solving the PDE (4.37) to solving the system of five PDEs (4.41),
knowing that Pn, Pm, Pi, Pj , Pk are polynomials.

From the grading of the non homogeneous terms of the PDE (4.37), we understand that the solu-
tion (4.38) must be a non homogeneus polynomial of sixth grade. So, we can fix the maximum grade
of the polynomials Py

n = 2, m = 3, i = 4, j = 5 and k = 6.

We now solve, step by step, the system (4.41).

The first equation of (4.41) says that P2(V,X) must be a first integral of degree 2, so this means it
coincides with the density of the Hamiltonian KToda[R, V ]

P2(V,X) = j
(2)
0 (V,X) =

V 2

2
+X. (4.42)

From this result, we can solve the second equation for P3(V,X)

8∂RP2 + ∂2
RP3 = eR∂2

V P3

⇓
8X + ∂2

RP3 = eR∂2
V P3.

(4.43)

2this means that the derivatives with respect to R become:

∂Rf(X) = fXX

∂2
Rf(X) = fXXX

2 + fXX

...
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The solution of the PDE (4.43) is given, as we saw before, by a solution of the homogeneous PDE, i.e.

the Henon’s integral j
(3)
0 , and by a particular solution of all the PDE:

P3(V,X) = 8V 2 or P3(V ;X) = −8X (4.44)

and we can write P3 as

P3(V,X) = aj
(3)
0 + 8(αV 2 − βX) (4.45)

where a, α and β are constants.

To find some restriction on a, α and β, we apply this solution to the PDE (4.43)

8X − 8βX = 8αX

⇓
α = 1− β
⇓

P3(V,X) = aj
(3)
0 + 8[(1− β)V 2 − βX].

We proceed with the third equation of (4.41)

12P2 + 6∂RP3 + ∂2
RP4 = eR∂2

V P4 + 6V 2 + 12eR

⇓
6aV X − 48βX + ∂2

RP4 = eR∂2
V P4

(4.46)

In this case too, the solution is composed by an Henon’s integral and a particular solution of (4.46):

P4(V,X) = bj
(4)
0 + aV 3 + 48βX (4.47)

with b as a simple constant.

We continue to solve of the systems of PDEs focusing on the fourth equation

6P3 + 4∂RP4+∂2
RP5 = eR∂2

V P5

⇓

6aj
(3)
0 + 48[(1− β)V 2 − βX] + 4bj

(4)
0R

+ 192βX + ∂2
RP5 = eR∂2

V P5

(4.48)

since there are not polynomial solutions of this equation that give us pure terms in V, we find that

a = 0 β = 1

⇓
P3(V,X) = −8X P4(V ;X) = bj4

0 + 48X

and the PDE (4.48) becomes

144X + 8b(V 2X +X2)∂2
RP5 = eR∂2

V P5. (4.49)

A solution of the PDE (4.49) is

P5(V,X) = cj
(5)
0 + b

(
2

3
V 4 − 2X2

)
− 144X (4.50)

with c an arbitrary constant.
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We now need to solve the last equation

2P4 + 2∂RP5 + ∂2
RP6 = eR∂2

V P6

⇓

2bj
(4)
0 + 96X + 2cj

(5)
0R
− 8bX2 − 288X + ∂2

RP6 = eR∂2
V P6.

(4.51)

As explained before, there cannot be any power of V in the equation, and this means that also b = 0
and the polynomials P4(V ;X) and P5(V ;X) become

P4(V,X) = 48X P5(V ;X) = cj
(5)
0 − 144X.

Having things in mind, we rewrite the PDE (4.51) as

−192X +
4

3
cV 3X + 4cV X2∂2

RP6 = eR∂2
V P6. (4.52)

The P6(V,X) that satisfies the equation (4.52) is given by:

P6(V,X) = 192X + c

(
V 5

15
− V X2

)
(4.53)

(we didn’t consider the term j6
0 because σp is define up to a first integral).

We are able to summarize the results: we found out that we can extend at the fourth order for the
first two nontrivial first integrals j

(3)
0 and j

(4)
0 of the Toda lattice to the FPU system

j(3)(V,X) =j
(3)
0 (V,X)− h2

2

(
X

6
RxVx +

V

12
V 2
x

)
+ h4

(
X

120
VxxRxx +

V

720
V 2
xx+

+
X

120
VxxR

2
x +

∆β

4
R4V

)
+ O(h6)

(4.54)

j(4)(V,X) =j
(4)
0 (V,X)− h2

3

[
X2R2

x + V XRxVx +

(
3X +

V 2

4

)
V 2
x

]
+

+ h4

[
X2

36
R2
xx +

V X

30
RxxVxx +

(
V 2

360
+

11

180
X

)
+

− 7

360
XRxxV

2
x +

V X

30
VxxR

2
x −

X2

180
R4
x+

− 7

360
XR2

xV
2
x −

V 4
x

1440
+ σ̃(V ;X)

]
+ O(h6),

(4.55)

where σ̃(V,X) has the form (4.38)

σ̃(V,X) = ∆β
[
R4P2(V,X) +R3P3(V,X) +R2P4(V,X) +RP5(V,X) + P6(V,X)

]
(4.56)

and the polynomials P2, P3, P4, P5, P6 are solutions of the system of PDEs (4.41)

P2(V,X) =
V 2

2
+X; P3(V,X) = −8X; P4(V,X) = 48X;

P5(V,X) = cj
(5)
0 (V,X)− 144X; P6(V,X) = 192X + c

(
V 5

15
− V X2

)
.

We noticed that no condition was found on the constant c, so it remains a free parameter. This derives
by the fact that the homogeneous PDE solutions are defined up to a multiplicative constant, therefore
it is carried through all the calculations.
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The same idea applied to the extension of j
(3)
0 and j

(4)
0 can be applied to all the other first inte-

gral (4.31). Indeed, we conjecture that exist an extension at the fourth order for the FPU of the first

integral j
(n)
0 , with form (4.38), where the polynomials Pn−2, Pn−1, Pn, Pn+1, Pn+2 satisfy the following

system of PDEs: 

∂2
RPn−2 = eR∂2

V Pn−2

8∂RPn−2 + ∂2
RPn−1 = eR∂2

V Pn−1

12Pn−2 + 6∂RPn−1 + ∂2
RPn = eR∂2

V Pn + 3j
(n)
0V V

6Pn−1 + 4∂RPn + ∂2
RPn+1 = eR∂2

V Pn+1

2Pn + 2∂RPn+1 + ∂2
RPn+2 = eR∂2

V Pn+2

(4.57)
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Conclusion

At the end of this analysis, we have found that it is possible to extend at the fourth order two no trivial

first integrals of the Toda lattice j
(3)
0 and j

(4)
0 for the FPU system, in particular we have observed that

the solution of this problem follows a particular scheme. We conjecture that this scheme is valid also
for the other first integrals of the Toda lattice.

This conjecture will be demonstrated in future works.

The importance of this result is given by two consequences:

1. if we try to find the same result using the method of normal forms, we find out that it is
impossible to get the normal form of the FPU system from the Toda lattice, while with this
method we find it is possible to construct a perturbative approach for the FPU starting from
Toda;

2. from the extension of the first integral, we can obtain also an esteme of the time where the
motion of the FPU is similar to the motion of the Toda.

There are other open questions still to study. For example, it should be examine whether the procedure
ends here or continue also for the sixth order and further; for which ψ1(R) the equation (3.39) admits
a solution; or what happen in FPU systems with dimension greater then 1.

We have choosen not to proceed for further orders because the amount of calculus considerably in-
creases for each order and the working time for this thesis was limited.
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Appendix A

Theory of Nonlinear Wave Equations
and Hamiltonian Perturbations

This appendix is a summary of the theory of nonlinear wave equations, focusing on the first integrals
of the equations, and the main results of the articles [1] and [4].

We will consider Nonlinear PDEs of this form:

utt − ∂2
xφ
′(u) = 0 (A.1)

for a given smooth function φ(u). It’s easy to see that (A.1) is linear if φ(u) is quadratic respect u,
but in general we assume that

φ′′′(u) 6= 0 ∀u.

The equation (A.1) is important because it arises in the study of dispersionless limit of various PDEs
of higher order. In fact, some example of these kinds of PDEs are:

1. The dispersionless limit of the Boussinesq equation (φ(u) = −u3

6 )

utt + (uux)x = 0

2. The long-wave limit of the Toda equations (φ(u) = eu)

utt = ∂2
xe
u

We can write the equation (A.1) in Hamiltonian form

ut = vx = ∂x
δH

δv(x)

vt = ∂xφ
′(u) = ∂x

δH

δu(x)

(A.2)

with Hamiltonian

H[u, v] =

∫ [v2

2
+ φ(u)

]
dx. (A.3)

As we can see from the equation of motions (A.2), we choose the functions u(x) and v(x) so that the
Poisson bracket is

J∗2 =

(
0 ∂x
∂x 0

)
.
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Thus, the associated Poisson bracket of two local functionals

F =

∫
f(u, v, ux, vx, . . . )dx G =

∫
g(u, v, ux, vx, . . . )dx

is given by the following formula:

{F,G} :=

∫
(∇L2FJ∗2∇L2G)dx =

=

∫ [δF
δu
∂x
δG

δv
+
δF

δv
∂x
δG

δu

]
dx.

(A.4)

In particular, the Poisson bracket of the dependent variables u(x), v(x) is

{u(x), v(x)} = δ′(x− y). (A.5)

A.1 First integrals of nonlinear wave equation

We now study the first integrals of the general nonlinear wave equation (A.1).

Given a functional

J [u, v] =

∫
j(u, v, ux, vx, . . . )dx, (A.6)

it is a first integral of the Hamiltonian (A.3) if they commute with respect to the Poisson bracket (A.4).

We know that the densities of the local functionals are considered up to a total x-derivative, this
means that the Poisson bracket (A.4) vanishes iff the integrand is a total x-derivative.

With this in mind, we want to find some kinds of conditions that the first integrals of the Hamilto-
nian (A.3) must satisfy.
Lemma A.1.1. Consider the functional

J [u, v] =

∫
j(u, v)dx.

This functional commutes with the Hamiltonian (A.3) of the nonlinear wave equation iff the function
j(u, v) satisfies the PDE

juu = φ′′(u)jvv (A.7)

Proof. The Poisson bracket (A.4) of J [u, v] and H[u, v] reads

{J,H} =

∫ (
δJ

δu
∂x
δH

δv
+
δJ

δv
∂x
δH

δu

)
dx =

∫
[juvx + jvφ

′′(u)ux]dx.

This Poisson bracket is null if the integrand is a total x-derivative, which means that there must exist
a function g(u, v) s.t.:

∂ug = jvφ
′′(u) ∂vg = ju.

We can apply the Schwarz’s theorem

∂v(∂ug) = ∂u(∂vg)

⇓
jvvφ

′′(u) = juu.

That is the equation (A.7).
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Therefore, all the solutions of the PDE (A.7) are associated to the densities of the first integrals of
the nonlinear wave equation (A.1). We can prove that all the functional of the same form of J [u, v]
commute pairwise, i.e. the Lie algebra of the symmetries is commutative.
Lemma A.1.2. Consider two functionals

F [u, v] =

∫
f(u, v)dx G[u, v] =

∫
g(u, v)dx.

F and G commute with respect to the Poisson bracket iff f(u, v) and g(u, v) are solutions of the linear
PDE (A.7).

Proof. Let us calculate the Poisson bracket

{F,G} =

∫
(fu∂xgv + fv∂xgu) dx =

∫
[(fuguv + fvguu)ux + (fugvv + fvguv)vx]dx. (A.8)

From the previous statement, this Poisson bracket must be null if the integrand is a total x-derivative,
so there must exist a density h(u, v) so that:

hu = fuguv + fvguu hv = fugvv + fvguv. (A.9)

From the Schwarz’s theorem, we impose that the mixed derivative are symmetric

∂v(hu) = ∂u(hv).

Substituting to hu and hv the results (A.9), the previous equation become

fvvguu = fuugvv

This equation has a result iff both f(u, v) and g(u, v) are two independent solution of (A.7). In fact:

fvvguu = fuuφ
′′(u)guu = fuugvv

A.2 Perturbation of nonlinear wave equation and deformation of
the first integrals

We will focus on the perturbation of Hamiltonians. In particular, we will present results and techniques
to extend first integrals and solutions of the system. These results, discovered by Dubrovin in [1] and
developed in [4], are valid in general, i.e for u ∈M where M is an n-dimensional manifold. Also, the
notations like f(u(x); ux(x); . . . ; u(k)(x)) are used for differential polynomials

f(u(x); ux(x); . . . ; u(k)(x)) ∈ C∞[ux(x); . . . ; u(k)(x)] u ∈M,

i.e. they are polynomial functions on the jet bundle Jk(M). The degrees of these differential polyno-
mials are given by this rule

deg uix = 1, deg uixx = 2, . . . ; i = 1, . . . , n.

Given a system of the first order quasi-linear PDEs

ut = A(u)ux, u = (u1(x, t), . . . , un(x, t)) (A.10)

admitting a Hamiltonian description

ut = {u, H0}0, H0 =

∫
h0(u)dx (A.11)

with respect to a Poisson bracket of hydrodynamic type, defined by Dubrovin and Novinkov in [16],
written as

{ui(x), uj(y)}0 = ηijδ′(x− y), ηij = ηji = cost, det(ηij) 6= 0. (A.12)
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Definition 1. We say that a system of this form

ut = A(u)ux + hB2(u,ux,uxx) + h2B3(u,ux,uxx,uxxx) + . . . (A.13)

with h as our perturbative parameter; it is an Hamiltonian deformation of (A.10) if it can be repre-
sented with an Hamiltonian form

ut = {u(x), H} (A.14)

where H is a perturbed Hamiltonian

H = H0 + hH1 + h2H2 + . . .

Hk =

∫
hk(u,ux, . . . ,u

(k))dx, k ≥ 1

deg hk(u,ux, . . . ,u
(k)) = k

(A.15)

and the Poisson bracket becomes

{ui(x), uj(y)} = {ui(x), uj(y)}0 + h{ui(x), uj(y)}1 + h2{ui(x), uj(y)}2 + . . .

{ui(x), uj(y)}k =
k+1∑
s=0

Aijks(u,ux, . . . ,u
(s))δ(k−s+1)(x− y), k ≥ 1

deg Aijks(u,ux, . . . ,u
(s)) = s.

(A.16)

This kind of Poisson bracket is called perturbed Poisson bracket.

We can redefine the Poisson bracket (A.16) such that the delta-function symbol can be spelled out.
Be Πij a matrix of linear differential operator depending on h

Πij := Πij
0 + hΠij

1 + h2Πij
2 + . . .

Πij
0 := ηij∂x,

Πij
k :=

k+1∑
s=0

Aijks(u,ux, . . . ,u
(s))∂(k−s+1)

x , k ≥ 1.

(A.17)

So, the Poisson bracket becomes

{ui(x), uj(y)} = Πijδ(x− y) (A.18)

and the perturbed Hamiltonian system reads

uit = Πij δH

δuj(x)
=
∑
m≥0

hm
∑

k+l=m

Πij
k

δHl

δuj(x)
. (A.19)

From this definition, we can find an expression for the perturbative terms of (A.13) in the case of
Hamiltonian deformation:

Bi
m(u,ux, . . . ,u

(m+1)) =
∑

k+l=m

Πij
k

δHl

δuj(x)
, m ≥ 0, i = 1, . . . , n.

An important property of this class of Hamiltonian deformations is that it is invariant with respect
to Miura-type transformation of the dependent variables

u 7→ ũ = u +
∑
k≥1

hkFk(u,ux, . . . ,u
(k)), degFk(u,ux, . . . ,u

(k)) = k. (A.20)

34



A.2 Chapter A. Theory of Nonlinear Wave Equations and Hamiltonian Perturbations

The transformation of the Hamiltonian is defined by the direct substitution, while the Poisson bracket
is transformed by the rule

{ũi(x), ũj(x)} = Π̃ijδ(x− y)

Π̃ij = LipΠ
pqL†

j

q

(A.21)

where L and L† are respectively the Jacobian of the transformation and its adjoint:

Lik =
∑
s

∂ũi

∂uk,(s)
∂sx, L†ik =

∑
s

(−∂x)s
∂ũi

∂uk,(s)
. (A.22)

We said that two Hamiltonian deformations of the quasi-linear system (A.10) are equivalent if they
are related by a transformation (A.20). In particular, the Hamitonian deformation is called trivial if
it is equivalent to the unperturbed system (A.10).

A.2.1 Extension of first integrals

Once defined the Hamiltonian deformation of (A.10), we are interested in knowing what happen to
the first integrals of the unperturbed system. In particular, we want see if it is possible to extend
them to perturbative system under a fixed order of h.

We consider the Hamiltonian (A.3); so we return in dimension 2, and his perturbation

Hpert = H0 + hH1 + h2H2 + . . .

Hk =

∫
hk(u,ux, . . . ,u

(k))dx, deghk(u,ux, . . . ,u
(k)) = k, k ≥ 0

h0 =
v2

2
+ φ(u).

(A.23)

Be j0(u, v) a solution to the linear PDE (A.7) and J0 define as

J0 =

∫
j0(u, v)dx, (A.24)

we know that J0 commute with the unperturbed Hamiltonian.

The goal is to construct a deformation of J0

J = J0 + hJ1 + h2J2 + . . .

Jk =

∫
jk(u,ux, . . . ,u

(k))dx, deg jk(u,ux, . . . ,u
(k)) = k, k ≥ 0

(A.25)

so that

{J,Hpert} = 0.

Definition 2. We say that:

1. The perturbed system Hpert is called N-integrable if there exist a linear differential operator

DN = D[0] + hD[1] + h2D[2] + · · ·+ hND[N ]

D[0] := id, D[k] :=
∑

b
[k]
i1,...,im(k)

(u,ux, . . . ,u
(k))

∂m(k)

∂ui1 . . . ∂uim(k)

deg b
[k]
i1,...,im(k)

(u,ux, . . . ,u
(k)) = k, k ≥ 1

(A.26)
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called D-operator, such that for any f(u, v) and g(u, v) solutions to the equation (A.7) we have

JfN =

∫
DNf(u, v)dx+ O(hN+1) JgN =

∫
DNg(u, v)dx+ O(hN+1) (A.27)

satisfy
{JfN , J

g
N} = O(hN+1). (A.28)

Moreover, we require that

Hpert =

∫
DNh0dx+ O(hN+1) (A.29)

so the Hamiltonian satisfy also
{Hpert, J

f
N} = O(hN+1) (A.30)

for any solution f(u, v) to the equation (A.7).

2. The system Hpert is called integrable if it’s N-integrable for any N ≥ 0.

In the formula (A.26) m(k) is a positive integer depending on k. It can be noticed that

m(k) =

⌊
3k

2

⌋
(A.31)

The summation is taken over all the indices i1, . . . , im(k) from 1 to 2.

Starting from the above definition, we develop a “perturbative” approach to the study of integrability
that can be used for:

• finding obstructions to integrability;

• classification of integrable PDEs.
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Dubrovin’s proof

Here we will show the proof of the Theorem 3.0.1 presented in [1].

Given the Hamiltonian (3.1), the equations of motion are:

q̇n = pn

ṗn = φ′(qn+1 − qn)− φ′(qn − qn−1).
(B.1)

Defined the parameter h = 1/N , we interpolate the distance and the momentum with two smooth
analytic functions

w(x, τ) = qn(t)− qn−1(t)

v(x, τ) = pn(t)
(B.2)

(where x = hn and τ = ht).

After the interpolation, the Poisson bracket of the system in these coordinates becomes:

{w(x), v(y)} =
1

h
[δ(x− y)− δ(x− y − h)] =

= δ′(x− y)− h

2
δ′′(x− y) +

h2

6
δ′′′(x− y) + · · · =

=
1

h
(1− Λ−1)δ(x− y)

(B.3)

where Λ± is the shift operator, defined as:

Λ±f(x) := e±h∂xf(x) =
∑
j≥0

(±h)j∂jx
j!

f(x) = f(x± h).

Now, to return to a simpler structure of the Poisson bracket, we apply a Miura-type transformation:

u =
h∂x

1− Λ−1
w. (B.4)

So the Poisson bracket return to the form

{u(x), v(y)} =
h∂x

1− Λ−1
{w(x), v(y)} = δ′(x− y) (B.5)

and the equations of motion become:

ut = vx

vt = h−1
[
φ′(w(x+ h))− φ′(w(x))

]
=

= ∂xφ
′(u) +

h2

24

[
2φ′′(u)uxxx + 4φ′′′(u)uxuxx + φIV (u)u3

x

]
+ O(h4).

(B.6)
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The Hamiltonian related to the equations of motion (B.6) is

Hpert[u, v] =

∫ [v2

2
+ φ(u)− h2

24
φ′′(u)uxx

]
dx+ O(h4) (B.7)

and can be considered as a perturbation of the Hamiltonian

H0[u, v] =

∫ [v2

2
+ φ(u)

]
dx. (B.8)

B.1 Proof of the Theorem

We want now to extend the first integral of the unperturbed system

F [u, v] =

∫
fdx, {F,Hpert} = O(h3) (B.9)

where
f = f0 + hf1(u, v, ux, vx) + h2f2(u, v, ux, vx, uxx, vxx)

and f0 is the density of a first integral of H0.

We calculate the Poisson bracket

{F,Hpert} =

∫ [δF
δu
∂x
δHpert

δv
+
δF

δv
∂x
δHpert

δu

]
dx

and see if the condition (B.9) is valid.

However, in order to proceed correctly, we must start with first order perturbation

{F,Hpert} = O(h2).

The first correction must be linear in ux, vx. Adding a total x-derivative, one can reduce to the study
of first perturbation extensions of the form

f1 = p(u, v)vx

We compute the brackets:

{F,Hpert} = h

∫
pu[v2

x − φ′′(u)u2
x]dx+ O(h2).

We see that the integrand is never a total derivative unless pu = 0, i.e p = p(v). This means that f1

is a total x-derivative, so we do not consider this term of the extended integral.

We consider the second order terms. Up to a total x-derivative, they can be written as:

f2 =
1

2
(a(u, v)u2

x + 2b(u, v)uxvx + c(u, v)v2
x).

We compute the Poisson brackets and find:

{F,Hpert} = h2

∫ {f0v

12
φ′′uxxx +

[(f0v

6
φ′′′ − bφ′′

)
ux − avx

]
uxx − (cφ′′ux + bvx)vxx+

+
1

24
(f0vφ

IV + 12φ′′av − 24φ′′bu)u3
x −

1

2
(au + 2φ′′cu)u2

xvx+

−1

2
(2av + φ′′cv)uxv

2
x +

1

2
(cu − 2bv)v

3
x

}
dx+ O(h4).

(B.10)
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Denote with I the integrand of (B.10), we apply the Corollary 3.2.2 and calculate:

EuI = 0, EvI = 0.

From the equation EvI = 0 we find the following conditions:

a = (c− f0vv

12
)φ′′(u); cu = bv;

c = −f0uvv

6

φ′′(u)

φ′′′(u)
; cvφ

′′(u)− bu −
f03v

6
φ′′(u) = 0;

(B.11)

while, from the equation EuI = 0 we find the same conditions plus a new one

bφ′′′(u)− buφ′′(u) + cvφ
′′2(u) = 0 (B.12)

Combining (B.12) with the fourth equation of (B.11), we find also

b = −f03v

6

(φ′′(u))2

φ′′′(u)
.

From the second equation of (B.11), we find that the coefficients c and b are the partial derivatives,
respectively for v(x) and u(x), of a function λ(u, v).

c = λv, b = λu.

Equating the mixed derivatives
(λu)v = (λv)u

we obtain a condition on the potential φ(u)

(φ′′′(u))2 − φ′′(u)φIV (u)

6(φ′′′(u))2
f0uvv = 0

and this is valid only if the numerator is null

(φ′′′(u))2 = φ′′(u)φIV (u).

This is the same equation (3.30) we have found before, and the solution is

φ(u) = kec̃u + ãu+ b̃

for some constants ã, b̃, c̃, k.

Thus, the Theorem 3.0.1 is proved.
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Appendix C

Derivation of the coefficients Cl
n and Bl

n

In this appendix we will explain how we reach the result (4.32). In particular, we will explain why the
coefficients must be (4.33).

We start from the Henon’s integrals with grade even. The generic form of an homogeneous polynomial
in V and eR of grade 2n is

j
(2n)
0 (V ; eR) = y0V

2n + y1V
2(n−1)eR + y2V

2(n−2)e2R + · · ·+ yne
nR. (C.1)

We substitute this polynomial (C.1) in the equation (3.29), with φ(R) the Toda potential

j
(2n)
0RR

= eRj
(2n)
0V V

. (C.2)

Let us calculate explicitly the double derivative with respect to R and V

j
(2n)
0RR

=y1V
2(n−1)eR + 4y2V

2(n−2)e2R + · · ·+ n2yne
nR;

j
(2n)
0V V

=(2n)(2n− 1)y0V
2(n−1) + (2n− 2)(2n− 3)y1V

2(n−1)eR

+ (2n− 4)(2n− 5)y2V
2(n−2)e2R + · · ·+ 2yn−1e

(n−1)R;

(C.3)

and substitute these on (C.2)

y1V
2(n−1)eR + · · ·+ n2yne

nR = (2n)(2n− 1)y0V
2(n−1)eR + · · ·+ 2yn−1e

nR (C.4)

Comparing term by term both the l.h.s and the r.h.s of (C.4), we find that y0, y1, . . . , yn must satisfy
this system of n− 1 equation in n unknown variables:



y1 = 2n(2n− 1)y0

4y4 = (2n− 2)(2n− 3)y1

...

n2yn = 2yn−1

=⇒



y0 =
y1

2n(2n− 1)

y1 =
4y2

(2n− 2)(2n− 3)

...

yn−1 =
n2

2
yn

. (C.5)

Therefore, by applying the last equation in the second-last equation and so on until we reach the first
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n C.0

one, we rewrite all the coefficients y0, . . . , yn−1 as a constant multiplied by yn

y0 =
(
∏n
m=1m

2)

2n!
yn

y1 =
(
∏n
m=2m

2)

[2(n− 1)]!
yn

y2 =
(
∏n
m=3m

2)

[2(n− 2)]!
yn

...

yn−1 =
n2

2
yn

. (C.6)

Using these coefficients, the first integral j2n
0 becomes

j2n
0 (V ; eR) = yn

(
(
∏n
m=1m

2)

2n!
V 2n +

(
∏n
m=2m

2)

[2(n− 1)]!
V 2(n−1)eR + · · ·+ n2

2
V 2e(n−1)R + enR

)
= ynj̃

2n
0 .

(C.7)

Since each first integral is defined up to a multiplicative constant, j̃
(2n)
0 is a first integral as well.

Therefore, we have that the first integral becomes

j̃
(2n)
0 (V ; eR) =

n∑
l=0

ylV
2(n−l)elR, (C.8)

where the coefficients yl are define by the formula

yl :=


∏n
m=l+1m

2

[2(n− l)]!
if l = 0; . . . ;n− 1

1 if l = n

= C ln. (C.9)

We move on and consider the Henon’s integrals with grade odd. The generic form of an homogeneous
polynomial in V and eR of grade 2n+ 1 is

j
(2n+1)
0 (V ; eR) = z0V

2n+1 + z1V
2n−1eR + z2V

2n−3e2R + · · ·+ znV e
nR. (C.10)

We repeat the same procedure and it is easy to see that, in this case, the general Henon’s integral of
grade 2n+ 1 is

j
(2n+1)
0 (V ; eR) =

n∑
l=0

zlV
2(n−l)+1elR, (C.11)

where the coefficients zl are given by the formula

zl :=


∏n
m=l+1m

2

[2(n− l) + 1]!
if l = 0; . . . ;n− 1

1 if l = n

= Bl
n. (C.12)
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