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Chapter 1

Introduction

Massive gauge theories are an essential topic in Quantum Field Theory, on which we
base our theoretical comprehension of Electroweak interactions. This comprehension is con-
cretely embodied in the Standard Model (SM) theory, which recently received a fundamental
experimental confirmation with the discovery of the Higgs particle at the LHC. The SM,
following the general scheme of massive gauge theories, is based on a local symmetry group
(SU(2)L × U(1)Y ), which gets spontaneously broken by the Vacuum Expectation Value
(VEV) acquired by some scalar field (the Higgs doublet), which transforms in a non-trivial
representation of the gauge group. The spontaneous symmetry breaking produces a mass
m for some of the gauge fields, leading to a model with spin-one massive force carriers. In
the SM those are the W± and Z weak bosons, with m ∼ 100 GeV.

The SM theory has been extensively probed experimentally in the E � m and E ' m
energy range. The E � m range is instead essentially unexplored, with the LHC having
started probing TeV-scale Electroweak process only very recently and with low statistics.
Progress in this direction will come from the continuation of the LHC experimental program,
and from future colliders. These futures experimental prospects motivate theoretical studies
on the behaviour of massive gauge theories at high energy, a topic which presents a number of
delicate and interesting aspects, whose complete theoretical comprehension is still missing.
This thesis deals with some of those aspects, with a twofold aim. First, we review the
intricate literature on high energy massive gauge theories trying to clarify and to improve
it in some aspects. Second, we concretely verify the general results for a specific process,
which we study at the next to leading order in the loop expansion.

Concretely, two massive gauge theories high energy theorems have been considered: the
Equivalence Theorem and the theory of Sudakov double logs of IR nature. The Equivalence
Theorem is an extremely useful (and well-known) result, according to which scattering am-
plitudes involving 0-helicity massive vector bosons in the external legs can be equivalently
computed at high energy, by replacing the gauge boson with the corresponding Goldstone
boson. What is much less known is that the theorem can be generalized to an exact re-
formulation (at all orders in m/E) of the habitual amplitude calculation strategy. This is
the so-called “Equivalent Gauge”, which we concretely apply at one loop, verifying its va-
lidity in a very non-trivial manner. The double logs of Sudakov type are another interesting
aspects of massive gauge theories and there are several reasons why studying their effects
on high energy processes. In the first place these corrections, of the form α log2 (E2/m2)
(where α = g2/(4π) is the perturbative expansion parameter), are the largest corrections
to Born amplitudes and are sizeable for TeV scale processes. Second, since they originate
from the exchange of soft and collinear gauge bosons, these infrared corrections are some-
how universal, depending only on the known “low energy” SM and not on the high energy
dynamics which might contain new physics. Being able to deal with those effects within the
SM will thus allow us to extract and isolate new physics effects at high energy. There are,
moreover, remarkable and peculiar properties which concerns these double logs in the case
of massive gauge theories, that make their treatment different from the QCD and QED ones.
In particular, gauge bosons cannot become infinitely soft because of their finite mass, hence
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8 1. Introduction

any gauge boson emission is experimentally observable in line of principle. Correspond-
ingly, also fully exclusive (i.e. without the emissions of addition particles) processes become
observable in the case massive gauge theories. This does not bring a conceptual problem,
since the infrared divergences in the loops are regulated by the finite gauge fields mass, but
it poses a practical problem: at high energy terms like α log2 (E2/m2) make perturbation
theory breakdown and resummation mandatory. Suitable techniques, therefore, need to be
developed. Another characteristic aspect concerns the fact that, in massive gauge theories,
the gauge symmetry breakdown obliges us to consider processes that are not averaged over
the “Electroweak” color of the initial states of the reaction. For instance at lepton colliders
only electrons and positrons collide, while averaging over color would imply considering also
neutrino-initiated process. As we will see, color averaging (guaranteed by the confinement
hypothesis in QCD) is precisely what makes double logs coming from virtual emissions can-
cel against those coming from real emissions, in inclusive QCD observables. Therefore in
the Electroweak SM it is impossible to define observables free of these large double logs so
that dealing with them is of fundamental importance.

This thesis is organized as follows. In chapter 2, after a brief general review on massive
gauge theories, we introduce, in section 2.3, the model we employ for the explicit calcula-
tions presented in this work. Then, in sect. 2.4, we present the Equivalence Theorem and
the Equivalent Gauge. Chapter 3 deals with the resummation of double logs of Sudakov
type. First, in sects. 3.1 and 3.2, we review the general method of the infrared evolution
equation to take account double logs, coming from loop integration. Then, in section 3.3,
we show that these approaches are also applicable in the case of massive gauge theories. In
section 3.4.1 we extend our approach to include double logs coming from phase space inte-
gration of real soft gauge bosons, reproducing existing result with an original methodology.
In chapter 4, we focus on a specific process and we perform the full Next to Leading Order
(NLO) computation in order to compare it, at double log level, with the result predicted in
the previous chapter. Finally, in sect. 4.4, we repeat the calculation within the formalism of
the Equivalent Gauge and find perfect agreement. Ours is the first one-loop calculation to
be performed in the Equivalent Gauge, and the first time that the validity of the approach
has been verified at one loop level. Finally, in chapter 5, we report our conclusions.



Chapter 2

Massive gauge theories

2.1 Spontaneus symmetry breaking
This section provides a concise introduction to the concept of spontaneus symmetry

breaking. We will first consider the case of a field theory with a global symmetry group,
next we switch to the case of a local symmetry. The discussion is performed at classical
level, quantization will be described in sect. 2.2.

2.1.1 Global symmetries
Let us consider, for definiteness, the specific model built of N real scalar fields φi(x),

with Lagrangian

L = 1
2∂µΦT∂µΦ + 1

2µ
2ΦTΦ− λ

4
(
ΦTΦ

)2
, (2.1)

where ΦT is defined as the vector (φ1, . . . , φN ) and λ, µ are real and positive parameters.
The Lagrangian of eq. (2.1) is manifestly invariant under the N -dimensional orthogonal
group O(N) as we can prove by acting on Φ as

Φ→ RΦ , (2.2)

where R are representation of O(N) group’s element and obviously RTR = 1.
The ground state corresponds to the configurations ΦT

0 ≡
(
φ0

1, . . . , φ
0
N

)
which minimize

the potential energy and so it must be a solution of

∂V

∂φi

∣∣∣∣
Φ≡Φ0

= µ2φi0 + λφi0ΦT
0 Φ0 = 0 =⇒ |Φ2

0| = v ≡
√
µ2

λ
, (2.3)

where v is called vacuum expectation value (VEV) of φ. We can notice that the previous
condition determines the length of the vector Φ0 to be non vanishing. Hence the VEV
points along a definite direction, breaking the continuous group of eq. (2.2). Let us choose
the minimum

ΦT
0 ≡ (0, . . . , v) , (2.4)

and define a new set of fields

ΦT (x) =
(
π1(x), . . . , πN−1, v + σ(x)

)
≡
(
πT , v + σ

)
. (2.5)

The Lagrangian becomes

L = 1
2∂µπ

T ∂µπ + 1
2
(
∂µσ

2)2 − 1
2(2µ2)σ2 −

√
λµσ3 −

√
λµπTπσ − λ

4σ
4 − λ

2π
Tπσ2 − λ

4
(
πTπ

)2
.

(2.6)
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10 2. Massive gauge theories

As we can see, the σ field has mass, while the N −1 “π” fields remain massless. At the same
time we can note that the symmetry group, from O(N) is broken to O(N−1), corresponding
to rotation that leave the VEV in eq. (2.3) invariant.

This appearance of massless particles as a consequences of spontaneous symmetry break-
ing procedure is a general result known as the Goldstone theorem. We give a short proof of
it below.

Let us consider a model with N real scalar fields Φ and a generic Lagrangian

L(Φ, ∂µΦ) ≡ 1
2∂µΦT∂µΦ− V (Φ) (2.7)

Let Φ0 be a constant field which minimize the potential V (Φ), so that

∂

∂φi
V (Φ)

∣∣∣∣
Φ=Φ0

= 0 . (2.8)

Since Φ0 is a configuration of minimum, we can expand the potential V (Φ) around it,
obtaining

V (Φ) = V (Φ0) + 1
2 (φi − φi,0) (φj − φj,0)M2

ij + . . . , (2.9)

where M2
ij is the symmetric matrix which give mass to particles

M2
ij ≡

∂∂V (Φ)
∂φi∂φj

∣∣∣∣
Φ=Φ0

, (2.10)

and by definition it is not negative-defined. Now let us suppose the Lagrangian of eq. (2.7)
to be invariant under a continuous transformation with the relative infinitesimal form

Φ→ Φ + λ∆(Φ) , (2.11)

where ∆(Φ) is some function of the field Φ and λ is an infinitesimal parameter. The
invariance of the Lagrangian imply that

V (Φ) = V (Φ + λ∆(Φ)) , (2.12)

and so

∆i(Φ) ∂

∂φi
V (Φ) = 0 . (2.13)

Differentiating the previous equation we get(
∂∆i

∂φj

)
Φ0

(
∂V

∂φi

)
Φ0

+ ∆i(Φ0)M2
ij = 0 . (2.14)

The first term of the previous equation, vanish if Φ0 is a minimum, therefore we have that
the second term must be zero. This condition is exactly the Goldstone theorem: if the
transformation leaves the vacuum unchanged, then ∆(Φ0) = 0 and the eq. (2.14) is trivially
satisfied. Otherwise, ∆i(Φ) is a null vector of M2, corresponding to a massless particle.
The Goldstone theorem, therefore, can be stated: for each linear symmetry generator which
is broken by the vacuum there exists a massless particle.

2.1.2 The Higgs mechanism
As a first example of a gauge theory with SSB, let us consider a complex scalar field φ ,

coupled to an electromagnetic (Abelian) field

L = −1
4F

µνFµν + |Dµφ|2 − V (φ) , (2.15)
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where Dµ = ∂µ + ieAµ. This Lagrangian is invariant under a local U(1) transformation

φ(x)→ eiλ(x)φ(x) , Aµ → Aµ −
1
e
∂µλ(x) . (2.16)

Let us choose, now, the potential

V (φ) = −µ2|φ|2 + λ

2 (|φ|2)2 . (2.17)

Analogously to the case discussed before (of a global symmetry), when the field φ acquires a
vacuum expectation value the U(1) symmetry will be broken. The minimum of the potential
occurs at

〈φ〉 = v =
√
µ2

λ
. (2.18)

Expanding the Lagrangian around the vacuum state and decomposing φ as

φ(x) = v + 1√
2

(h(x) + iπ(x)) , (2.19)

the potential V (φ) becomes

V (φ) = − 1
2λµ

4 + 1
22µ2h2 + . . . , (2.20)

We can see, in light of the Goldstone theorem discussed before, that along with the broken
generator of the symmetry group, a massless scalar field (a Goldstone boson) is present. If
we look at the kinetic term, we find

|Dµφ|2 = 1
2(∂µh)2 + 1

2(∂µπ)2 +
√

2eφ0Aµ∂
µπ + e2φ2

0AµA
µ + . . . , (2.21)

which contains, on top of the ordinary kinematic terms, a kinetic mixing between the photon
and the Goldstone and a photon mass term. We will see in the next section how to quantize
this Lagrangian and to read out the physical spectrum of the theory. However we can already
anticipate the result by noticing that by performing a gauge transformation, it is possible
to set the Goldstone π to zero, going to the so called “Unitary gauge”. In this gauge it is
easy to read the particle content, which contain no massless Goldstone particle, a massive
“Higgs” scalar h with mass mh =

√
2µ and a massive “photon” with m2

A = 2e2v2 from the
last term in the previous equation.

2.2 Non-Abelian gauge theories quantised
We now turn to non-Abelian gauge theories and their covariant quantization. We focus

on the pure Yang-Mills theory, without additional particles, for most of the section. Extra
matter (fermion, scalar) fields do not change the discussion in any way, hence they will be
omitted until section 2.3, where additional scalar fields will be included.

The Yang-Mills Lagrangian reads

LYM = −1
4

∫
d4x

∑
a

Fµν,aF aµν , (2.22)

where

Fµν ≡ Fµν,aT a = ∂µAν − ∂νAµ − i [Aµ, Aν ] , (2.23)

and

Aµ(x) ≡ AaµT a . (2.24)
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The T a matrices are the Hermitian generators of the gauge group algebra and they obey to
the commutation relation [

T a, T b
]

= ifabcT c .

The indexes run from 1 to the dimensionality of the group, corresponding to the existence,
in eq. (2.24), of one Aaµ gauge field for each generator. Under a gauge transformation
U(Λ) = exp (igΛ), with Λ(x) = Λa(x)T a, the gauge field transforms as

Aµ → (AΛ)µ = UAµU
† − iU

(
∂µU

†) . (2.25)

It is easy to check that the field strength in eq. (2.23) transforms as F → UFU†, and
therefore the Lagrangian in eq. (2.22) is invariant under gauge transformations.

The quantization of the theory is best illustrated in the path integral formalism. Physical
quantities in gauge theories are gauge-invariant correlators of the form

〈O[A]〉 =
∫
DAO[A]

(
i
∫
d4xLYM

)∫
DA

(
i
∫
d4xLYM

) , (2.26)

where O[AΛ] = O[A] However being the Lagrangian of eq. (2.22) invariant under the local
transformation in eq. (2.25) there exist a direction in the field space where the integrand is
costant, and the path integral in eq. (2.26) diverges. The Faddeev-Popov approach to the
quantization of gauge theory allows to deal with this issue. We proceed by introducing a set
of gauge fixing conditions of the form

fa [A] (x) = 0 . (2.27)

This is obtained by multiplying the path integral of eq. (2.26) by the following identity,

1 =
∫ ∏

a

dΛa(x)δ (fa [AΛ] (x)− Ωa(x)) det
[
δfa [AΛ(x)]
δΛb(y)

]
, (2.28)

where AΛ is the gauge field A transformed by a parameters Λ, as in eq.(2.25), whose in-
finitesimal version is

(AΛ)aµ = Aaµ + 1
g
DµΛa . (2.29)

Here Dµ is the canonical covariant derivative, defined as

(DµΛ)a = ∂µΛa + gfabcAbµΛc . (2.30)

We note that if the gauge fixing fa is linear, then δfa(AΛ)/δΛ is independent of Λ. The
field Ωa(x) in eq. (2.28) is an auxiliary field over which we will integrate over.

After some manipulation, by exploiting the gauge invariance of LYM and O, it is possible
to find that the functional integral in eq. (2.26) can be written as follows∫
DAO[A]ei

∫
d4xLYM (x) =

(∫
DΛ
)∫

DAO[A]δ(fa[A]− Ωa)eiS[A] det
[
δf (AΛ)
δΛ

]
Λ=0

.

(2.31)

The (infinite) volume of the local gauge group is now factorized and it drops out from
eq. (2.26). The determinant on the RHS of the previous equation is the so-called Faddeev
Popov determinant and it can be expressed as a functional integral over a new set of scalar
anticommuting fields (the ghost and antighost fields) belonging to the adjoint representation,
as

det
[
δfa [AΛ]
δΛb

]
Λ=0

=
∫
Dω(x)Dω̄(x)ei

∫
d4xLGH , (2.32)
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where

LGH =
∫
d4xω̄a(x)δfa (AΛ(x))

δΛb ωb(x) . (2.33)

Finally, we notice that eq. (2.26) is by construction independent of Ωa(x). Hence, up to an
irrelevant multiplicative factor we can integrate over Ωa(x), weighting the integrand with
the Gaussian factor exp

(
− 1

2ξ
∑
a (Ωa)2

)
.

In summary we conclude that the gauge invariant correlators of the original theory, such
as in eq. (2.30), are equal to those computed with a new Lagrangian which can be written
as

LF = LYM + LGH + LGF , LGF = − 1
2ξ (fa)2 (2.34)

For instance the standard Lorentz gauge choice F a = ∂µAaµ gives

LGH = −ω̄a∂µDµω
a , LGF = − 1

2ξ (∂µAµa)2
. (2.35)

It is convenient to further rewrite the the theory by introducing the so-called Nakanishi
Lautrup auxiliary field, with the Lagrangian defined as

LB = 1
2ξB

aBa +Bafa(A) . (2.36)

This is trivially equivalent to eq. (2.34) because the B field, which has polynomial action,
it can be easily integrate out. In summary our full Lagrangian is now

LYM = −1
4

∫
d4x

∑
a

[F a,µνFa,µν ] + 1
2ξ (Ba)2 +Ba∂µAaµ + ω̄a (−∂µDµ)ωb . (2.37)

A very important property of this Lagrangian is its invariance under a certain global
symmetry, the so called BRST symmetry. Indeed, consider an infinitesimal anticommuting
parameter ε and define the following variations.

δAaµ = εDac
µ ω

c δωc = −1
2gεf

abcωbωc , (2.38)

δω̄a = εBa , δBa = 0 .

It is easy to check by direct computation that L is invariant. Another important property
of BRST transformation is that, they are “nilpotent”, i.e. it squares to zero. Namely, let
Qφ be the BRST transformation for the field φ (in this case φ =

{
Aaµ, ω

a, ω̄a, Ba
}
)

Q2φ = 0 . (2.39)

Now, consider the Hilbert space H of our states. Since the operator Q is nilpotent and it
commutes with the Hamiltonian of the theory (i.e. the BRST charge is conserved), then Q
divides H into three subspace. Let H1 be the subspace of the states with are not annihilated
by Q. Let H2 be the subspace of the states of the form |φ2〉 = Q |φ1〉 and finally H0 the
space of the states Q |φ0〉 = 0. H0 and H2 are the so-called spaces of close and exact states
respectively. Without entering in details (see for instance Ref. [18]) it comes out that the
physical Hilbert space is the cohomology of the operator Q, i.e. poorly speaking, the state
which are close ma non exact under the BRST charge operator. So that, in particular, we
have

Q |Phy〉 = 0 , but |Phy〉 6= Q |φ〉 , (2.40)

where |Phy〉 is a generic physical state.
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2.2.1 The Rξ gauges
In order to to illustrate the problem of massive gauge theories quantization in a simple

context, let us discuss the Abelian gauge theory of eq. (2.15). By parametrizing the scalar
field as in eq. (2.19), the Lagrangian reads

L = −1
4(Fµν)2 + 1

2 (∂µh− eAµπ)2 + 1
2 (∂µπ + eAµ(v + h))2 − V (φ) . (2.41)

In spite of the spontaneous breaking the Lagrangian continues to be invariant under the
local gauge group in eq. (2.16). When expressed in terms of the fields π and σ, the local
symmetry, at infinitesimal level, acts as

h(x)→ h(x)− λ(x)π(x) , π(x)→ π(x) + λ(x)
(√

2v + h(x)
)
. (2.42)

In order quantize the theory, therefore, we need to follow the method of Faddeev Popov
described previously. A particularly convenient choice of the gauge fixing, in this case, is
the so-called Rξ functional

f [A] = ∂µA
µ −mAξπ . (2.43)

With this choice, the ghost Lagrangian is

LGH = ∂µω̄∂µω −m2
Aξω̄ω −

m2
A

v
ξω̄ωh , (2.44)

and the gauge-fixing term is

LGF = − 1
2ξ f [A]2 = − 1

2ξ (∂µAµ)2 − 1
2ξm

2
Aπ

2 +mA∂µA
µπ . (2.45)

The great virtue of the Rξ choice can be appreciated if we compute the quadratic Lagrangian
for the gauge boson and the Goldstone fields. We obtain

Lquad = −1
2∂µAν∂νAµ + 1

2

(
1− 1

ξ

)
(∂µAµ)2 + 1

2m
2
A (Aµ)2 + 1

2 (∂µπ)2 − 1
2ξm

2
Aπ

2 ,

(2.46)

where mA = ev and the original A-π kinetic mixing from the gauge fixing cancels the one
that was present in the original Lagrangian. This makes particularly easy to read out the
particles content of the theory. Therefore, the single-particle states are given by one spin
one gauge bosons |Aλ〉 (where h is the helicity) with mass mA, two massive scalars |h〉 and
|π〉 with masses squared m2

h and ξm2
A, and the ghost/ antighost |ω〉/ |ω̄〉. Furthermore, the

spectrum contains a scalar particle with zero ghost number which correspond to the scalar
polarization of the A field. It can be found that the BRST cohomology is compost of only
the Higgs |h〉 and the triplet|Aλ〉.

2.3 The Higgs-Kibble model
The model we will employ in this thesis to illustrate and to verify the high-energy prop-

erties of massive gauge theories is the so-called SU(2) Higgs-Kibble model, extended to
include a massive scalar field which is a singlet of the SU(2) gauge group. This scalar has
no influence in the discussions of this chapter but it will be used later on in chapter 4 for
an explicit calculations. The Higgs-Kibble model is essentially the Standard Model without
fermions and U(1)Y hypercharge. Namely it is an SU(2) gauge theory with one scalar Higgs
doublet which takes a VEV, breaking completely the gauge group. Following the convention
of Ref. [28], the Lagrangian is

LHK ≡ −
1
2Tr [WµνW

µν ] + Tr
[
(DµH)†DµH

]
− λ

4

{
Tr
[
H†H

]
− ṽ2

2

}2

(2.47)
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where the fields are defined as

H ≡ v + h

2 12 + i

2σ
aπa Wµ ≡ 1

2σ
aWµ

a (2.48)

in term of the three Pauli matrices σa. The ordinary Higgs doublet field has been represented,
here, as a pseudo-real matrixH, because this makes more evident the invariance of the theory
under the custodial group described below. The canonical representation of H as a doublet
is

H = 1
2

(
h+ iπ3 + v iπ1 + π2
iπ1 − π2 h− iπ3 + v

)
≡ 1√

2

(
h1 −h†2
h2 h†1

)
. (2.49)

The Higgs matrix decomposes in four real scalar fields, the physical Higgs h and the three
Goldstone bosons πa. For the sake of completeness, we report also the definition of the field
strength Wµν of the gauge connection Wµ and of the covariant derivative of the Higgs H

Wµν ≡ ∂µWν − ∂νWµ − ig [Wµ,Wν ] , DµH ≡ ∂µH− igWµH . (2.50)

In order to include the heavy scalar S in our model, we add to the Lagrangian

Ls = 1
2∂µS∂

µS − 1
2m

2
sS

2 − 1
2λsTr[H

†H]S2 − λ

4!S
4 .

The scalar S is coupled only to the Higgs doublet H, its interaction vertexes are displayed
in fig. (2.2).

On top of the SU(2) gauge symmetry, the Lagrangian L0 ≡ LHK + LS is also invariant
under the custodial group SO(3)c and this is manifest by the matrix representation of
the fields. In particular, the gauge group and the custodial group transformations are,
respectively

H(x) −→ Ω(x)H(x) , H −→ γHγ† ,
Wµ −→ γWµγ

† ,

Unlike the gauge group, the custodial one is not broken by the Higgs VEV and we will be
careful to preserve this symmetry when fixing the gauge, since we are going to make use of
this symmetry later on. Following the Fadeev-Popov method, described in the previous sec-
tion, we introduce the ghost and anti-ghost custodial triplets (ωa and ω̄a) and the canonical
t’Hooft Feynman Rξ gauge-fixing functional

fa ≡ ∂µWµ
a + m̃ξπa

For the moment we do not specify the gauge fixing parameters, otherwise, later on we will
work in the specific gauge ξ = 1 and m̃ = mW . In order to obtain the ghost Lagrangian
Lgh, we take the gauge variation of fa as in eq. (2.33), with respect to gauge parameter ωa,
obtaining

LGH ≡ −ω̄aδωafa = −ω̄a∂µ
(
∂µωa + gεabcWµ

b ωc
)
− 1

2gm̃ξω̄a
[
(v + h)ωa + εabcπbωc

]
.

(2.51)

In order to make the BRST symmetry manifest, we also introduce the so-called Nakanishi-
Lautrup auxiliar fields Ba and so our full Lagrangian becomes

L = L0 + ξ

2B
aBa +Bafa + Lgh (2.52)

The Lagrangian (2.52) is invariant by the BRST variation s(Φ) of Table 2.1.
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Figure 2.1: BRST transformation for the Higgs-Kibble model

s(W a
µ ) =

[
iQ,W a

µ

]
= ∂µω

a + gεabcWµ,bωc
s(πa) = [iQ, πa] = g

2 (v + h)ωa + g
2 ε
abcπbωc

s(h) = [iQ, h] = − g2ωaπ
a

s(Ba) = [iQ,Ba] = 0
s(ω̄a) = {ω̄a} = Ba

s(ωa) = {iQ, ωa} = − 1
2gεabcω

bωc

Figure 2.2: Feynman rules for the heavy scalar S

h

S

S

p1 p2

p3

h/π3/± S

h/π3/∓ S

p1

p2

p4

p3

2.4 The Equivalent Gauge
The Equivalent Gauge is a generalization of the Equivalence Theorem, which we present

following Ref [29]. First of all, let us start by defining the propagators among bare field, as

iGĪJ̄(p) =
∫
d4xeipx

〈
ΦĪ(x)Φ†

J̄
(0)
〉
,

where Φ = {W,π, , h, ω, ω̄, S} denotes the whole set of bare fields of the theory. The inverse
of G can be expressed as the sum of bare Feynman propagator ∆ and of 1PI vacuum
polarization amplitude Π

G−1 = ∆−1 + Π .

Thanks to the symmetries of the Lagrangian it is possible to parametrize G−1 in terms of
few scalar form factors (as done in [28]). The result is trivial for the propagators of the
Higgs h(G−1

h ), of the scalar S (G−1
S ) and for the one of the ghost fermions G−1

F

G−1
h/S(p2) = p2 −M2

h/S + Πh/S(p2) ,

(
G−1
F (p2)

)a
b

= δab

ω ω̄( )
0 m̃2ξ − p2 + Πωω̄(p2) ω

m̃2ξ − p2 + Πωω̄(p2) 0 ω̄
.

Notice that the ghost propagator is proportional to δab because of custodial symmetry.
The result is less straightforward for the propagators of the remaining bosonic particles

(π, W ) (we will call it GB). Omitting the custodial group indexes, since the propagators
are diagonal in them, we have

G−1
B = P⊥A(p2) + PiV ji P

†
j , (2.53)
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where

P⊥ =
(
ηµν − pµpν

p2 0
0 0

)
, P1 =

(
−ipµp

0

)
, P2 =

(
0
1

)
, (2.54)

and

A(p2) =
W π( )

m2 − p2 + ΠT
WW 0 W

0 0 π
, (2.55)

V (p2) =

W π( )
B(p2)− p2

ξ p
(
C(p2)− m̃

)
W

p
(
C(p2)− m̃

)
p2F (p2)− ξm̃2 π

, (2.56)

with

B(p2) = m2 + ΠL
WW (p2) , C(p2) = m+ ΠWπ(p2) , p2F (p2) = p2 + Πππ(p2) . (2.57)

The three form factors F , B and C are not independent as it is simple to prove thanks to
one the Slavnonv-Taylors identity derived in Ref. [28]. Namely

〈fa(x)fb(y)〉 = −iξδabδ4(x− y)⇒ B(p2)F (p2) = C2(p2) .

We can thus express the propagators GB as

GWW
µν (p) =

−i
(
ηµν − pµpν

p2

)
A (p2) + i

pµpν
p2

ξF
(
m̃2ξ − Fp2)

(Fp2 − Cm̃ξ)2 ,

GWπ
µ (p) = −pµ

ξF (C − m̃)
(Fp2 − Cm̃ξ)2 ,

GπWµ (p) = pµ
ξF (C − m̃)

(Fp2 − Cm̃ξ)2 ,

Gππ(p) = i
Fp2 − ξC2

(Fp2 − Cm̃ξ)2 .

(2.58)

In order to introduce the Equivalent Gauge slightly more general identities are needed,
proven in full generality in refs. [15, 16, 29]. We present here a partial derivation, by noticing
that, since the physical states of the theory are in the cohomology of the BRS operator, we
have

〈Phy|
{
iQ, ¯ωa(x)

}
|Phy′〉 = 〈Phy|fa(x)|Phy′〉 = 0 , (2.59)

where we made use of the BRS transformation in table 2.1. Going to momentum space, we
find

−ipµ 〈Phy|Wµ(p)|Phy′〉+ m̃ξ 〈Phy|π(p)|Phy′〉 = 0 . (2.60)

If we express the matrix element in terms of amputated amplitude

〈Phy |Wµ(p)|Phy′〉 = GWW
µν (p)A [W ν(p)] +GWπ

µ (p)A[π(p)] ,
〈Phy|π(p)|Phy′〉 = Gππ(p)A[π(p)] +GπWµ (p)A [Wµ(p)] ,

and we use eq. (2.58), we obtain

−FξpνA [W ν(p)] + iCξA[π(p)] = 0 ,
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which finally gives us

pνA [W ν(p)] = i
C
(
p2)

F (p2)A[π(p)] = i
B
(
p2)

C (p2)A[π(p)] = i
m2 + ΠL

WW

(
p2)

m+ ΠWπ (p2) A[π(p)] . (2.61)

Let us consider a generic process with longitudinally-polarized (zero helicity) external
bosons. The amplitudes reads

M =
√
ZW ε

µ
0 (p)A [Wµ(p)] , (2.62)

where ZW is the residue at pole of the transverse W propagator, and

εµ0 (p) = 1
mW

{
|p|, Ep
|p|

p
}
. (2.63)

By noticing that ε0 ∼ p/mW for Ep >> mW , we immediately realize that it is convenient
to use eq. (2.58) in order to rewrite the amplitude as

√
ZW

(
εµ0 (p)− pµ

mW
+ pµ

mW

)
A [Wµ(p)] =

√
ZW (εµLA[Wµ(p)] + επA[π(p)]) (2.64)

where

επ = −i B(m2
W )

mWC(m2
W ) and εµL ≡ ε

µ
0 −

pµ

mW
= −mW

Ep + |p|

{
1,− p
|p|

}
. (2.65)

The result is that we can change the Feynman rule for an external longitudinal gauge
bosons as follows

εµ0 −→ εµL + επ , (2.66)

obtaining an exactly identical amplitude. This reformulation of the theory, dubbed “Equiv-
alent Gauge” in Ref. [28], has an obvious advantage in the high energy regime. Namely, it
makes use of polarization vector εL which does not grow with the energy. Therefore naive
power-counting [28] straightforwardly holds at the level of individual Feynman diagrams.
Indeed εµL not only doesn’t grow with the energy, but it decreases as εµL ∼ mW /E. At the
leading order to the mw

E expansion, we can thus neglect the gauge diagrams and substitute
the external longitudinal vectors with the Goldstones, as dictated by the ordinary Equiva-
lence Theorem. Higher orders in mW /E can be systematically included. It should be noted
that the one above is only a partial derivation of the result of refs. [15, 16, 29]. We, indeed,
established it only for a single longitudinal boson, while it hold for an arbitrary number
of external longitudinal particles. We will not give the complete proof here, but we will
verify the result explicitly, at one-loop order, for a process where two longitudinal bosons
are involved.



Chapter 3

Soft-Collinear double-logs

The largest corrections to Born amplitudes at high energy are double logarithmic con-
tributions of the form

(
α log2

(
E2

m2

))n
, with m being some charateristic mass scale of the

theory and E � m the typical energy of the reaction [23]. Such corrections originate from
soft and collinear gauge bosons coupled to external particle. They are also called mass
singularities1, since in massless gauge theories such as QED and QCD soft and collinear
emissions formally produce infinities. Clearly, those infinities are unphysical and they can-
cel in physically observable cross-sections. The point is that infinitely soft photons or gluons
unavoidably escape detection, hence the only final states which is worth considering are the
“inclusive” ones, that allow for extra soft particles emissions. These extra “real” emissions
are also singular, when integrated over the soft-collinear region of the emission phase-space,
and their divergence cancels exactly the virtual singularities that are present in the loop
corrections to the scattering amplitudes [3, 17, 20].

The situation in slightly different for massive gauge theories such as the SM. First of all,
fully exclusive final states, with no extra soft emissions, become observables. This does not
bring a conceptual problem because the divergences are regulated by the finite mass of the
gauge fields such that all cross-section, including the fully exclusive ones, are now calculable
in line of principle. In practice it does pose a problem, in that those calculations cannot
be carried on at fixed order in perturbation theory for large E, where α log2 E2

m2 > 1. Re-
summation techniques have to be developed, as discussed below in this chapter. The second
important aspect is that in massive gauge theories, we cannot, unlike in QED and QCD,
define “sufficiently inclusive” cross-sections such as to cancel the double log enhancement
of the radiative corrections. Therefore, we cannot define observables that can be reliable
computed at a fixed order in perturbation theory. Double logs resummation is thus im-
portant at order one in any massive theory reaction, including fully inclusive processes [7].
This surprising result, namely the fact that double logs do not cancel not even in inclusive
cross-sections, is due to the fact (see [6]) that the initial states of the scattering are not
averaged under the massive gauge theory (EW) color. This is possible only because the
gauge symmetry, unlike in QED and QCD, is spontaneously broken.

The previous discussion shows that IR effects, and double logs in particular, are extremely
important in massive gauge theories. In the rest of this chapter we will review the treatment
of those effects. In section 3.1 we present the original Sudakov form factor calculation for
QED [24] in a form which is suited to be generalized to non-Abelian gauge theories. Then we
turn to the non-Abelian case showing how to compute exclusive and inclusive cross-section,
respectively in sect. 3.2 and sect. 3.4. Finally, in section 3.3, we show how to generalize
this results to the case of massivw gauge theories.

1To be more preise this sefinition refers also to single log, we are not going to investigate.

19
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3.1 Sudakov form factor in QED
Let us consider the high energy behaviour for an electron elastic scattering from an

external field, at a fixed angle i.e. t ≡ −2p1 · p2 ≡ −E2, for E � me,me being the electron
mass. It is possible to identify the diagrams giving rise to leading virtual double logs as
the ones in which a soft and almost collinear photon is exchanged between the two on-shell
fermions. In particular, let us consider the first-order correction (in α = e2/(4π)) to the
tree-level amplitudeMB = iū(p2)γµu(p1)Aextµ , described by the following diagram

M1L =

p1 p2
k

= iū(p2)Γµ1Lu(p1)Aextµ ,

where Aext is the external field and

Γµ1L = − ie2

(2π)4

∫
d4k

γν
(
/p2 + /k +me

)
γµ
(
/p1 − /k +me

)
γν

((p2 + k)2 −m2
e + iε) ((p1 − k)2 −m2

e + iε) (k2 + iε) . (3.1)

The important region of the integration is the one in which k is soft and almost collinear
to p1 and p2, therefore in eq. (3.1) we can neglect factors /k in the numerator and k2 in the
denominator. Using the Dirac equation

(
/p−me

)
u(p) = 0, we get

Γµ1L ' −2i e2

(2π)4E
2γµI (3.2)

where we have defined

I ≡
∫

d4k

(2k · p1 + iε) (2k · p2 + iε) (k2 + iε) . (3.3)

In order to deal with this integral, it is convenient to switch to the so-called Sudakov
parametrization

k = up1 + vp2 + k⊥ , (3.4)

where k⊥ is a four-vector orthogonal to p1 and p2. Without loosing of generality, we can turn
into a coordinate system in which p1, p2 plane correspond to t, z and k⊥ to y, z coordinates.
Therefore, k⊥ is purely space-like and we get k2

⊥ ≡ −k2
⊥. In these coordinates the soft and

collinear region is

k2
⊥ � min {|Eu|, |Ev|} , |u|, |v| � 1 . (3.5)

In this region we have

2k · p1 = 2um2
e + E2v , 2k · p2 = 2vm2

e + E2u , (3.6)
k2 = um2

e + vm2
e + E2uv + k2

⊥ ∼ E2uv − k2
⊥ . (3.7)

Furthermore, switching to polar coordinates in the k⊥ plane, we have

d4k = E2

4 dθdk2
⊥dudv = E2π

2 dk2
⊥dudv . (3.8)
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Notice that the integral I is manifestly IR divergent. We thus introduce an infrared
cut-off2 µ on the modulo of the transverse momentum, i.e. we perform the integration only
in the region k2

⊥ ≥ µ2. With this cut-off the integral reads

I(µ2) =
∫

d4k

(2k · p1 + iε) (2k · p2 + iε) (k2 + iε)θ
(
k2
⊥ − µ2)

= π
E2

2

∫
dk2
⊥dudv

(2um2
e + vE2 + iε) (2vm2

e + uE2 + iε) (+E2uv − k2
⊥ + iε)θ

(
k2
⊥ − µ2) .

(3.9)

We can use the relation
i

E2uv − k2
⊥ + iε

= P i

E2uv − k2
⊥

+ πδ
(
E2uv − k2

⊥
)
, (3.10)

and retain only the δ-function, which restrict the integral near the mass-shell of the photon
selecting, in such a way, the region of integration giving the biggest contribution. We obtain

I(µ2) ' −iπ2E2
∫ 1

0
du

∫ 1

0

dv

(2um2
e + vE2) (2vm2

e + uE2)θ
(
uv − µ2

E2

)
, (3.11)

where we used the constraint uv > 0 implied by the δ-function, together with the fact that
the integral is even under (u, v) → −(u, v), to write I as twice the integral for u, v ≥ 0. It
should be noticed that the upper bound on the u, v variables is arbitrary at this point, since
we already made approximations in the integral which rely on |u|, |v| � 1 as in eq. (3.5).
The choice of the upper bound is irrelevant since the region u, v ∼ 0 gives the dominant
(double log-enhanced) contribution to the integral.

In order to perform the integration, we switch to a new coordinate system {u, v} → {τ, λ}
such that

u = eλ
√
τ , 0 ≤ τ ≤ 1 , (3.12)

v = e−λ
√
τ ,

1
2 log τ ≤ λ ≤ −1

2 log τ . (3.13)

Therefore I becomes

I ' −iE2π2
∫ 1

0
dτ

∫ − 1
2 log τ

+ 1
2 log τ

dy
1

4m4
e + E4 + 4m2

eE
2 cosh(2y)θ(τ −

µ2

E2 )

= − iπ2

E2

∫ 1

µ2
E2

dτ arctanh
(

2m2
e − E2

E2 + 2m2
e

tanh(y)
)∣∣∣∣∣

y=− 1
2 log τ

y=+ 1
2 log τ

. (3.14)

After some algebra

I ' − iπ
2

E2

∫ 1

µ2
E2

dτ

τ
log
(

2m2
e + E2τ

E2 + 2m2
eτ

)
. (3.15)

The integral above can be performed in terms of dilog functions. Simple approximations,
depending on the relative magnitude of µ2 and m2

e, are

I ' iπ2

E2 R

[
E2

m2
e

,
m2
e

µ2

]
, (3.16)

where we have defined

R

[
E2

m2
e

,
m2
e

µ2

]
≡

(
1
2 log2 E2

m2
e

+ log E2

m2
e

log m2
e

µ2 for µ2 � m2
e � E2

1
2 log2 E2

µ2 for m2
e � µ2 � E2

)
(3.17)

2An alternative approach would be to introduce a fictitious photon mass.
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Figure 3.1: Diagram giving rise to double-logs loop correction to the electron elastic scat-
tering process

p1 p2
k

Coming back to eq. (3.1), we have obtained that the first double log correction to the
Born amplitudeMB factorizes as

M1L|DL =MB ×
(
− α

2πR
[
E2

m2
e

,
m2
e

µ2

])
, (3.18)

where R was computed (see eq. (3.18)) in both regimes µ2 � m2
e and µ2 � m2

e. For the
generalization to non Abelian gauge theories and to the SM, µ2 � m2

e is the regime of
interest. We will thus focus on the latter in what follows.

The one loop correction in eq. (3.18) diverges when the unphysical regularization param-
eter µ is taken to vanish. This signals the breakdown of perturbation theory and the need
of all order resummation. With this purpose, we follow the scheme of the infrared evolution
equation described in Ref. [12]. Let M(µ2) be the amplitude for our process at all orders
in perturbation theory and with a cut-off µ on the transverse momentum of all the virtual
photons running in the loops. Now, let us imagine starting from an amplitude with a cut
off µ2 and to try to compute the one with a slightly larger cut-off squared µ2 + δµ2, where
δµ2 > 0 is an infinitesimal variation. We have,

M(µ2)−M(µ2 + δµ2) = −δµ2 ∂M(µ2)
∂µ2 . (3.19)

The differences betweenM(µ2) andM(µ2 + δµ2) is given by the loop integrals performed
in the narrow region k2

⊥ ∈
[
µ2, µ2 + δµ2], where k⊥ is the modulo of the virtual photons

transverse momenta. At the linear order in δµ2, this integral is the sum of the integrals
over the strips for each loop momentum. Among those, it is not hard to see that the
dominant contribution comes from virtual photons exchanged from two external lines, as in
fig. 3.1 The intuitive reason why this happens is that three propagators go on shell (the two
fermionic plus the photon one) when the virtual photon momentum goes to zero. Hence
the IR enhancement is expected to be more significant then for the other diagrams where
a smaller number of propagators go on-shell. The dominance of this kind of diagrams was
rigorously established in Ref. [17].
Therefore, we have

−δµ2 δM
(
µ2)

δµ2 ' −i e2

(2π)4

∫
k⊥∈[µ2,µ2+δµ2]

d4k

(2k · p1 + iε) (2k · p2 + iε) (k2 + iε)M(µ2)

' δµ2 α

2π

∂R
[
s
m2 ,

m2

µ2

]
∂µ2 M(µ2) , (3.20)

where we exploited the previous calculation of I(µ2) in eq. (3.16). From eq. (3.20) it follows
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Figure 3.2: Real emissions giving rise to double log correction to the e− elastic scattering
cross section

k

the infrared evolution equation

∂M(µ2)
∂ log(µ2) = K(µ2)M(µ2) where K(µ2) = − α

2π

∂R
[
s
m2 ,

m2

µ2

]
∂ log(µ2) . (3.21)

We can solve the evolution equation above, provided a suitable boundary condition is given.
This is identified by noticing that if µ2 was of order E2, no log enhancement would be
encountered and the process would be calculable in perturbation theory. In particular the
Born amplitude would be a valid approximation, so that we could employ the boundary
conditionM(µ2 = E2) =MB . Solving eq. (3.21) we obtain the resummed expression

M =MB exp
(
− α

2πR
[
s

m2 ,
m2

µ2

])
. (3.22)

To conclude our discussion on the QED Sudakov form factor we need to include the
emission of an arbitrary number of soft-photons, below a given threshold. This is essential
in order to obtain a physically observable process, because soft photons cannot be detected,
as previously argued. In particular we allow the radiation of an arbitrary number of real
photons with transverse momentum3 k2

⊥ < E′2. The real emission cross-section diverges in
the region k⊥ → 0 of the phase space integral and so we regularize this divergence with the
lower cutoff k2

⊥ > µ2. The same cutoff is also employed to regularize the loop integrals as
in the previous calculation.

We are, thus, looking for inclusive cross-section σ(E′2;µ2) and in order to find it we need
an infrared evolution equation for real emissions (similar to eq. (3.21) for virtual emissions).
We suppose, therefore, to increase the threshold E′ by an infinitesimal quantities E′2 →
E′2 + δE′2, consequently we have that

σ(E′2 + δE′2, µ2)− σ(E′2, µ2) = δE′2
∂σ(E′2, µ2)

∂E′2
. (3.23)

The differences between σ(E′2 + δE′2, µ2) and σ(E′2, µ2)is now given by the phase space
integration k2

⊥ ∈
[
E′2, E′2 + δE′2

]
, where k2

⊥ is the modulo squared of the transverse four
momenta of the real photons emitted. The leading contribution, in this case, comes from
the emission of a soft particle from an external line (see fig. 3.2). The intuitive reason
is analogue to the previous one: when the photon momentum goes to zero the fermion
propagators together with the phase space factor go to infinity in this kind of diagrams.
Therefore, it is straightforward to find

δE′2
∂σ(E′2, µ2)

∂E′2
' dσ(E′2, µ2)×

∫
k2
⊥∈[E′2,E′2+δE′2]

dwk . (3.24)

3In the first derivation of Abrikosov in [1], the author used as a threshold a maximum energy of non
detection instead of a cut-off on the transverse momentum.
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where the integral over phase space is∫
k2
⊥∈[E′2,E′2+δE′2]

dwk = e2

2

∫
k2
⊥∈[E′2,E′2+δE′2]

d3k

(2ωk)(2π)3
2p1 · p2

(p1 · k)(p2 · k) (3.25)

= e2

2(2π)3

∫
k2
⊥∈[E′2,E′2+δE′2]

d4k

(p1 · k)(p2 · k)δ(k
2) .

Noticing that this last integral is proportional to dI/dµ2

∂σ(E′2, µ2)
∂ log(E′2) = K ′(E′2)σ(E′2, µ2) , (3.26)

where, now, the kernel is

K ′(E′2) = −2K(E′2) . (3.27)

Eq. (3.26) has to be solved with the appropriate choice of the boundary condition. In
particular we use that when E′2 = µ2 the phase space for the extra particles emission closes
and no extra particles can be produced. Therefore σ(E′2, µ2) has to match with the exclusive
cross-section, with not extra emissions

σ(E′2 = µ2, µ2) = σexc(µ2) = σB × exp
(
−α
π
R

[
E2

m2 ,
m2

µ2

])
, (3.28)

where σexc(µ2) is obtained squaring eq. (3.39). Finally, we find

σ(E′2,��µ
2) = σB exp

(
−α
π
R

[
E2

m2
e

,
m2
e

µ2

])
= σB exp

(
− α

2π log2
(
E2

E′2

))
. (3.29)

In this last formula, we can see that the dependence on the unphysical IR cut-off µ cancels.
This is a consequences of the Bloch-Nordsieck theorem [3]: QED observables are safe from IR
divergences. Furthermore, we see that for E′ ∼ E, i.e. for a “fully inclusive” cross-section,
the Sudakov log cancels and σ is well approximated by the perturbative (Born) result.

3.2 Virtual emissions in non-Abelian gauge theories
In this section we present the approach of Ref. [12] on how to compute Sudakov effects

for massless simple gauge theories. The extension to non-simple groups is straightforward
and needs not to be discussed here. It is non trivial, instead to generalize the derivation
to massive gauge theories. We will analyze this case later on in the specific example of the
Higgs-Kibble model.

Let us consider the scattering amplitude for a process with n-external legs and let us
suppose to be in the simple kinematical configuration, where all the invariants si,j ≡ 2pi·pj ∼
E2 are large (i.e., E is big in comparison to the masses mi of the external particles) and
of the same order. Since our aim is to compute the leading double log correction, which
comes out from the radiative corrections to the process, we first have to identify the class of
diagrams causing this kind of contributions. If we work in the Lorentz gauge, where all the
propagators have the same pole structure of the scalar ones, part of the solution has been
provided by the analysis of scalar integrals made by Kinoshita in Ref. [17]: large double-
logs come only from the exchange of a soft and almost collinear virtual particle between two
hard external legs4. An intuitive justification of this result was given in the previous section.
Among these diagrams it turns out that only those where the soft-collinear virtual particle is
a gauge boson actually produce double log. We momentarily accept this statement without
proof until the next section where we will verify it in the more general setup of spontaneously
broken theories.

4We remind the reader that with soft we mean that the four-momentum k of the virtual particle is such
that Ek � E, and with almost collinear we mean that if k = up1 + vp2 + k⊥ then k2

⊥ � E2.
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Figure 3.3: Example of diagram giving rise to virtual double logs correction
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k⊥

Let us consider the amplitude of the process,Mα
(
P, µ2), where P indicates the set of

the momenta P ≡ {pi} , i = 1, . . . , n, and α ≡ {αi} is the color index of each particle. The
color index αi runs from 1 to di, where di is the dimensionality of the representation of the
particle “i”. As in the case of QED previously discussed, a cutoff k2

⊥ > µ2 is understood in
the loop integrals. In order to write down the IR evolution equation in this case, we start
by considering one extra vector bosons insertion on one of the external legs. If the extra
boson is soft, this gives

g
ε∗(k) · pi
k · pi

(T a(i))αα′M
α′(P, µ2) , (3.30)

where the sum over α′ (i.e., on each of the αi index), is understood. In the previous
expression, ε(k) is the polarization vector of the emitted boson and “a” its gauge index (in the
adjoint representation). The gauge coupling of the theory is denoted as “g”. The generator
T a(i) acts on the α tensorial indexes and it is given by (T a(i))αα ≡ δα1

α′1
· · · (T a)αiα′

i
· · · δαnα′n .

Notice that the form of eq. (3.30) is independent of the nature (fermions, gauge bosons or
scalar) of the external particle “i” to which the soft bosons are attached. This result is
dubbed as non-Abelian generalization of the “Gribov Theorem“ in Ref. [12], and it can be
readily established by direct calculation.

Let us now consider an infinitesimal variation of the cut-off µ, it correspond obviously
to

Mα
(
P, µ2)−Mα

(
P, µ2 + δµ2) = −δµ2 ∂M

α
B

(
P, µ2)

∂µ2 . (3.31)

This variation is given, as we argued before, to the exchange of soft and collinear gauge
bosons between external legs (as in fig. 3.3), with the loop integral performed in the re-
gion k2

⊥ ∈
[
µ2, µ2 + δµ2]. Using eq. (3.30) for two external legs and summing over the

polarization of the intermediate virtual boson we have

− δµ2 ∂M
α
(
P, µ2)

∂µ2 =

− i

2
g2

(2π)4

n∑
j,l=1,j 6=l

∫
k2
⊥∈[µ2,µ2+δµ2]

d4k

k2 + iε

pj · pl
(k · pj) (k · pl)

(T a(j)T a(l))αα′M
α′
(
P, µ2) .

(3.32)

We now have to make use of the invariance of the amplitude Mα(P, µ2) under a global
gauge group transformation i.e.

δMα(P, µ2) = 0 =⇒
∑

i=1,...,n
(T a(i))αα′Mα′ = 0 , (3.33)
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and that
∑
a T

a(i)T a(i) = −Ci,with Ci the Casimir of the particle “i”. Using the result of
the previous section in eq. (3.32), we get

∂Mα (P;µ)
∂ log(µ2) = K

(
µ2)Mα

(
P;µ2) , (3.34)

where

K(µ2) ≡ −1
2

n∑
i=1

∂Wi(E2, µ2)
∂ log(µ2) , and Wi(E2, µ2) ≡ g2

8π2CiR

[
E2

m2
i

,
m2
i

µ2

]
. (3.35)

Now, integrating eq. (3.34) with the boundary condition

Mα
(
P;µ2 = E2) =Mα (P) , (3.36)

whereMB is the Born amplitude, we conclude that

Mα (P;µ) =Mα (P) exp
(
−1

2

n∑
i=1

Wi(E2, µ2)
)
. (3.37)

Since it will be useful later on, we introduce a matrix

Bαα′(E2, µ2) ≡ −
n∑
i=1

Wi(E2, µ2)
(
δα1
α′1
· · · δαNα′

N

)
(3.38)

and we rewrite equation above as

Mα (P;µ) = exp
(
B(E2, µ2)

)α
α′
Mα′ (P) . (3.39)

We will now briefly show how to extend this formalism of the IR evolution equation
to resum virtual double logs for an hard process with an additional real soft emission, as
derived in Ref. [12]. In particular, we consider the amplitude Mα,a

l (P, p⊥) of the hard
process Mα(P) together with the radiation of a soft gauge boson from the hard external
leg “l”. Let p⊥ the modulo of the transverse momentum of the soft boson relative to the
external leg and be a its the color index. According to eq. (3.30), we have that

Mα,a
(
P, p;µ2) = g

ε∗(p) · pl
p · pl

(T a(l))αα′M
α′
(
P;µ2) . (3.40)

Depending the value of the cut off µ2, with respect two E2 and p2
⊥, we can identify to cases

to discuss:

A) E2 > µ2 > p2
⊥,

B) E2 > p2
⊥ > µ2.

Let us start from the simpler case (A). In computing the infinitesimal variation as in
eq. (3.32) we can note that the loop integration of a soft virtual particles starting from
the soft real external leg (with momentum p) will give subleading contribution. Therefore
the result is the same of eq. (3.37)

Mα,a
(
P, p;µ2)

A
=Mα,a

(
P, p;µ2)× exp

(
−1

2

n∑
i=1

Wi(E2, µ2)
)
. (3.41)

The case (B) is more involved. The idea is to find two evolution equations, for generic cutoff
µ′2, depending on whether µ′2 > p2

⊥ (A) or µ′2 < p2
⊥ (B) and to evolve separately in the

two region. Then, to impose the following matching conditions

Mα,a
(
P, p;µ′2 = E2)

A
=Mα,a (P, p) , Mα,a

(
P, p;µ′2 = p2

⊥
)
A

=Mα,a
(
P, p;µ′2 = p2

⊥
)
B
.

(3.42)
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Without entering in details, the only difference in computing eq. (3.32) in the region (B) is
that the kernel of the equation K(µ′2) is now

K(µ′2)B ≡ −
1
2

n∑
i=1

∂
(
Wi(p2

⊥, µ
′2) +WA(p2

⊥, µ
′2)
)

∂ log(µ′2) , (3.43)

where WA(p2
⊥, µ

′2) is the extra factor relative to the soft boson, and contains the Casimir
of the adjoint representation CA. The kernel (B) is instead the same of the case (A). The
final result is

Mα,a
(
P, p;µ2) =Mα,a

(
P, p;µ2)× exp

(
−1

2

n∑
l=1

Wl(E2, µ2)− 1
2WA(p2

⊥, µ
2)
)
. (3.44)

3.3 Exclusive cross-section in massive gauge theories
The cross-section for exclusive processes, obtained by squaring the amplitude with only

hard external legs, are unphysical in massless gauge theories. Indeed they depend on the
unphysical IR regulator µ, as we saw in the previous section. Exclusive process becomes
instead observables physical in the massive case, where the scale µ physically corresponds to
the vector bosons mass m. An heuristic approach for computing them, adopted in [12], is to
assume that for E � m the massive theory amplitudes approach those of the corresponding
massless theory. Hence it should be sufficient to substitute µ2 = m2

W in eq. (3.39). Clearly
the relevant massless amplitude should be considered, which duly correspond to the massive
one under consideration. The only subtlety in this identification is related with the longitu-
dinal polarized (i.e. helicity equal to zero) external vector bosons. The latter correspond to
scalar Goldstone in the massless theory theory, rather than to gauge boson. In particular
this implies that the Casimir factor to be employed in eq. (3.39) is not the one in the adjoint,
for longitudinal external legs, but the one of the representation where the Goldstone live.
In the SM, and in the Higgs Kibble model, this is the doublet of SU(2).

The heuristic approach described above turns out to be correct. The aim of this section
is to put it on firmer grounds, by studying the soft-collinear virtual emissions that occur in
the massive theory, and proving that at double log level they approach the massless theory
ones for E � m. The analysis will be perfomed for simplicity in the HK model of sect. 2.3.
We work in the Feynman-’t Hooft gauge (ξ = 1, m̃ = mW ), where all propagators have the
same structure of the scalar ones and we apply once again the result of Ref. [17]. According
to it the class of diagrams that produce double logs is the one in which a virtual soft and
almost collinear particle is exchanged between two external on-shell particles i.e. diagrams
of the type in the left panel of fig. 3.4. In order to compute them, we start from evaluating
the insertion of a single soft particle “φs” on an external leg “φ” as in the right panel of the
figure. Notice that the φs emission turns φ into a particle φ′ of different type or of different
color.5. The Feynman amplitude for the insertion is, in general,

εφ(p)iΓφφsφ
′
(p,−q, q − p)εφsGφ

′φ′(p− q)A [φ′(p− q)] . (3.45)

Now, we have to take the limit in which φs(q) is soft and almost collinear to φ(p) i.e.
Eq � Ep and q⊥ � Eq, and identify which are the specific diagrams that effectively give
the leading contribution in this limit. In order to do this analysis we need to distinguish
two cases: the first one in which the external particle is a gauge boson with longitudinal
polarization εφ(p) = εµ0 (p) and the other one in which it is not. By inspecting the Feynman
rules of the theory, we notice that the only ones that are not proportional to mW , and hence
power-like suppressed for E � mW , are those producing the emission of a gauge boson,
either from a scalar or from a gauge line. Among all the possible splittings these vertices
give rise to, direct calculation reveals that IR enhancement only emerge if the soft line is a
gauge field. Let us compute the splitting of a W boson with color index a and transversal

5“Color” refers here to the quantum number under the broken gauge group.
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Figure 3.4

polarization ( W a
λ (p), with λ 6= 0 ) into a gauge boson with color index b. Taking q → 0, we

find on amplitude

igεabcεµλ(p)ενλ′(q)
ηµνpρ − 2ηρµpν

(p− q)2 −m2 + iε
A
[
W c
ρ (p− q)

]
∼q→0 i

gεabc

2p · q

(
2ελ′(q) · p εµλ(p)A

[
W c
µ(p)

]
−
(((

((((
((((

imW ελ′ · ελ(p)A[πc(p)]
)
, (3.46)

where we have used the Ward identity of eq. (2.61). In the previous equation we have
cancelled the term proportional to the A[π] since it is mass suppressed and so, generally,
subleading. Therefore eq. (3.46) can be written as

−gfabc

2p · q
(
2ελ′(q) · pεµλ(p)A

[
W c
µ(p)

])
, (3.47)

where fabc ≡ iεabc is the hermitian generator of the group in the adjoint representation. For
external scalars, i.e. for the splitting hi → hjW , we have

hjhi

W a
µ

p p− q

q = − i2σ
a,i
j (2pµεµλ(q)) , (3.48)

where we are referring to the doublet parametrization of the scalars in eq. (2.49) Therefore,
we have seen that both for scalars both for transverse gauge bosons we obtained the universal
coupling of eq. (3.30).

The situation is slightly more involved for longitudinal external bosons. In particular,
the anomalous growth of the polarization vector with the energy does not easily allow us
to conclude that mW suppressed splitting amplitudes are irrelevant, which was the starting
point of the previous discussion. Also, the non mass-suppressed splittingW →WW is more
difficult to study, let us start from it. As in eq. (3.46), we have

igεabcεµ0 ε
ν
λ′

ηµνpρ − 2ηρµpν
(p− q)2 −m2 + iε

A
[
W c
ρ (p− q)

]
∼q→0 i

gεabc

2p · q
(
2ελ′ · p εµ0A

[
W c
µ(p)

]
− imW ε0 · ελ′A[πc(p)]

)
, (3.49)
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Figure 3.5

εa,µ0 (p)

εb,νλ′ (q)

p p− q
h

q

where we used the Slavnov Taylor identity of eq. (2.59) and the sum over c is understood.
Diagrammatically, the above equation can be written as

εµ,a0 (p)

εν,vλ′ (q)

p p− q

q ∼q→0 i
gεabc

2p · q

(
2εbλ′(q) · p× εc,µ0 (p)

p

−imW ελ′(q) · ε0(p)× εcπ(p)
p )

,

where the color index in the polarization vector in the diagrams is used to indicated the
color of the respectively external particle. This result should be combined, with the mass
suppressed splitting W →Wh, depicted in fig. 3.5. This gives

ig
mW δ

abε0(p) · ελ′
2p · q A[h(p)].

The expression above, despite of mW in the numerator, is not mass suppressed since
εµ0 ∼ pµ/mW . Therefore the full splitting to consider in the case of external longitudinal
polarization vector is:

i
g

2p · q
(
2εabcελ′ · p εµ0A

[
W c
µ(p)

]
− imW ε0 · ελ′

[
εabcA[πc(p)]− iδabA[h(p)]

])
. (3.50)

To conclude we have to note that, using the Equivalence Theorem in the previous equation,
we immediately obtain, the same rule of eq. (3.48). In fact, using that ε0 · A[W ] ' iA[π] in
eq. (3.50) and using that, at high energy, εµ0 ∼ pµ/mW we can rewrite eq. (3.50) as

−gελ
′ · p

2p · q
(
εabcA[πc(p)] + δabA[h(p)]

)
. (3.51)

At this point, it is straightforward to find that, using the fields representation eq. (2.49)
for the Goldstone, the previous expression corresponds to eq. (3.48). And this is, exactly,
eq. (3.30) for the case of a doublet of SU(2).

3.4 Inclusive cross-sections
In section 3.2 we computed how to dress an hard process by virtual double log correc-

tions to all order in perturbation theory and in sect. 3.3 we showed that those calculation
applies also to massive gauge theories. The result in eq. (3.39) shows that the exclusive
differential cross-section for a process (where we remember that with exclusive we mean
without the emission of additional real particles) depends on the IR cut-off µ, which is a
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totally unphysical parameter for massless gauge theories. In the case of SSB µ2 is promoted
to the physical parameter m2

W and so the gauge boson mass makes exclusive cross-section
predictable quantities. However our result shows that exclusive amplitudes go to zero for
E → ∞, meaning that the exclusive process becomes more and more improbable with the
increasing of E. Therefore exclusive quantities are not the best candidates to be compared
with high energy measurements. In order to attack this problem and to end up with an
useful quantity it is necessary to include in our predictions the probability of emission of an
arbitrary number of soft gauge bosons, as we have done in section 3.1 for QED. As already
known , from the celebrated KNL theorem [20, 17], this procedure for QCD (as for QED)
produces cross-sections free of infra-red divergences and so free of the dependences on µ.
This result is more involved for massive gauge theories because the cross-section are not
averaged over the color of the initial particles. Hence the KNL theorem cannot be applied
an thet large double log persist also in fully inclusive cross-section, as first found in Ref [8].

In the following, we are going to explain how to predict inclusive cross-section with two
different methods: first summing together real and soft emissions, then via the formalism of
the coherent states and of the overlapping matrix.

3.4.1 A diagrammatic approach
Let us consider the generic process, described in sect. 3.2, with Born amplitudeMα

B (P)
plus one real emission of a soft gauge boson with a color index a and momentum k. Thanks
to eq. (3.30), we have

Mα
B (P) −→Mα;a

1R (P, k) ∼Mα′

B

(
n∑
l=1

g
ε∗ · pl
k · pl

T a(l)
)α
α′

. (3.52)

In the previous equation, and in the rest of this section, we underline the indices we are
not summing over to avoid confusion. In the case of real emission double logs corrections
come from the integration over the phase space of the soft boson emitted. Let us consider,
therefore, the amplitude modulo-squared

|Mα,a
1R |

2 =Mα′

B

(
N∑
l=1

g
ε∗ · pl
k · pl

T a(l)
)α
α′

Mα′′∗
B

(
N∑
k=1

g
ε∗ · pk
k · pk

T a(k)
)α∗
α′′

. (3.53)

Next, we sum over the polarization of the soft bosons emitted, sum over their color a and
integrate over the phase space, in the region of softness and collinearity, obtaining the
following differential cross-section

σ
α
1R ≡

∑
a,pol

∫
µ2≤k2

⊥

d3k

(2π)32ωk
|Mα,a|2 =

∫
µ2≤k⊥

d3k

(2π)32ωk
Mα′

− n∑
l,k=1

g2 pk · pl
(k · pk)(k · pl)

 (T a(l))αα′ (T
a(k))α∗α′′M

α′′∗ ,

where a cut-off µ on the the transverse momentum of the soft particle has been used.
We can focus only on the factors with l 6= k because the ones in which l = k do not give

double logs contributions. Using that∫
µ2≤k⊥

d3k

(2π)32ωk
g2 pk · pl

(k · pk)(k · pl)
=
(
Wl(E2, µ2)

Cl
+ Wl(E2, µ2)

Ck

)
, (3.54)

and the total charge conservation of the gauge group, it follows that

σ
α
1R =Mα′

BM∗α
′′

B

∑
a,l

T
aαl

α′
l
T
aαl∗
α′′

Wl(E2, µ2)
Cl

 . (3.55)



3.4. Inclusive cross-sections 31

Figure 3.6: Primary radiation(left), secondary real radiation (center), secondary virtual
radiation (right)

Figure 3.7: Secondary emissions in an hard process with primary soft emission
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The group generators are chosen hermitian T aαiα′
i

= T
aα′i
αi , hence

σ
α
1R =Mα′Mα′′∗

(∑
l

T
aαl

α′
l
T
aα′′l
αl

Wl(E2, µ2)
Cl

)
= Aαα′(E

2, µ2)dσα
′

B (3.56)

Notice that in the previous we expected the fact that T aα
′
l

αl T
aαl

α′′
l

is diagonal6 in α′l and α′′l ,
in order to define ∑

l

Wl(E2, µ2)T aαlα′
l
T
aα′′l
αl ≡ Aαα′(E2, µ2)δα

′′

α′ . (3.57)

Let us, now, sum together the first order in the fine structure α double logs corrections
coming from one virtual emission (eq. (3.39)) and from one real emission (eq. (3.56)). The
first order inclusive cross section σα1 reads:

σα1 = (1 +Aαα′ + Bδαα′)σα
′

B . (3.58)

We now guess how to extend the previous result to all orders in perturbation theory. The
key statement we need to prove is the following: virtual and real double logs contributions
due to secondary radiation sum up to zero. To be more specific, we call primary radiation
the one emitted directly from an external leg of the hard process and secondary the radiation
emitted from the primary one, as described in fig. 3.6. Without loss of generality, let us
consider a hard process whose leg “j” has emitted a soft gauge boson with momentum “k”,
and let us compute virtual and real IR corrections for such a process. Differently from the
Abelian case, the presence of self-interactions obliges us to consider also secondary gauge
bosons. Using the result of eq. (3.44) at first order, we find that adding one virtual correction
to the single emission diagram lead to

σ
α,a
1V (P, k) = σ

α,a
B (P, k)×

(
1− 1

2

n∑
l=1

Wl(E2, µ2)− 1
2WA(k2

⊥, µ
2)
)2

, (3.59)

6It can be proved for the fundamental representation of SU(N) and it is also true for all the case of
interest in the following discussion.
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where the second term in the bracket comes from the secondary virtual emission from the
soft real boson, as in the central diagram of fig. 3.7. Analogously, we can generalize eq. (3.56)
to include one external real emission, obtaining

σ
α,a
1R (P, k) =

(
Aαα(E2, µ2)δāa′ + δαα′A

a

a′
(k2
⊥, µ

2)
)
σα
′,a
′

B (P, k) , (3.60)

where Aa
a′

(k2
⊥, µ

2) ≡ W (k2
⊥,µ

2)
CA

(∑
c T

(c)a
a′ T

(c)a
a′

)
. If now, we sum together virtual and real ra-

diation color index a and we sum together virtual and real radiation corrections of eq. (3.59)
and eq. (3.60), we readily get∑

R

σ
α,a
1R (P, k) + σ

α,a
1V (P, k) =

(
Bδαα′ −���

���WA(k2
⊥, µ

2) +���
���WA(k2
⊥, µ

2) +Aαα′
)∑

a

σα
′,a

B .

(3.61)

This result shows that double logs contributions cancel by summing over the color index of
the soft boson emitted. Since this scheme can be repeated for each uncolored bosons we
can conclude that, we can take into account only primary radiation in computing double log
corrections to inclusive cross-section.

Now we are ready to compute the inclusive cross-section for our process σα to all orders
in perturbation theory. We work in analogy to the QED case and so we built an infrared
evolution equation allowing to dress the exclusive cross section of eq. (3.39) of real emissions.
We start from a cross-section σ̄(E′2, µ2) with a threshold E′ for the emitted real soft particle,
supposing they are only primary radiation. Obviously σ̄(E′2, µ2) has no physical meaning,
since the presence of a threshold will make the cancellation of double logs coming from
secondary radiation false. At the end of the computation, therefore, we will take E′2 = E2,
obtaining a physical inclusive cross-section. The evolution equation is

∂σ̄α(E′2, µ2)
∂E′2

= K ′αα′ (E′2)σ̄α
′
(E′2, µ2) , (3.62)

where

K ′αα′ (E′2) = ∂Aαα′(E2, E′2)
∂ logE′2 (3.63)

By integrating the previous equation with the boundary that at E′ = µ we obtain the
exclusive of eq. (3.39), we get

σα = [exp (A+ B)]αα′ σ
α′

B . (3.64)

In sect. 3.4.3, we will see how this formula works with an explicit example.

3.4.2 The Coherent States Formalism
The starting point of this method is that, given an hard process{

{p1
I , α

1
I}, . . .

}
I
≡ {PI ,αI} −→

{
{p1
F , α

1
F }, . . .

}
≡ {PF ,αF } , (3.65)

where with {PI/F ,αI/F } we have denoted the set of momenta and color indexes of the
initial/final particles, then the S matrix relative for such a process can be factorized as

Sα,β (PF ,PI) = UFβ,β′
(
as, a

†
s

)
SHβ′,α′ (PF ,PI)UIα′,α

(
as, a

†
s

)
. (3.66)

The operators UI/F (as, a†s), called soft coherent state operators are functionals of the soft
emission operators as and a†s, involving gauge bosons with frequencies λ � ω � E.
Eq. (3.66) is considered to be universal (as explained in Ref. [27, 6]) and it is based on
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the separation of the interaction hamiltonian of the theory HI into an hard part, containing
short time interactions, and a soft one, containing long time interactions

HI(t) = HH(t) +HS(t) . (3.67)

As a consequences, also the Hilbert space of the theory can be factorized as H = HH ⊗Hs,
where for each hard particle state of HH , Hs contains an infinite set of “dangerous” states
[27], of gauge bosons which are soft with respect to the hard state. The as and a†s operator
of eq. (3.66), therefore, act on this Hs.

In the following, we will derive the form of the coherent states operators for the case
of QED, starting from the method of the asymptotic dyammics. The discussion for non
Abelian gauge theories is less transparent, there are a series of work [6, 5, 8, 7], providing
eq. (3.66) and the form of UI/F but we will only discuss qualitatively the general properties
of them, in order to make a comparison with our approach of sect. 3.4.1.

Let us discuss the set up of the asymptotic dynamics, which leads to the separation of
hard and soft interaction (3.66), following the original proposal of [19]. The canonical QED
interaction is

HI(t) = e

∫
d3x ψ̄(x, t)γµψ(x, t)Aµ(x, t) . (3.68)

The fields can be further defined as functionals of creation and annihilation operators as

ψ(x, t) =
∑
σ=±

∫
d3k

2ωk(2π)3

[
cσ(k)uσ(k)e−ik·x + d†σvσ(k)eik·x

]
k0=ωk

(3.69)

ψ̄(x, t) =
∑
σ=±

∫
d3p

2ωp(2π)3

[
cσ(p)ūσ(p)eip·x + d†σ v̄σ(p)e−ip·x

]
p0=ωp

(3.70)

Aµ(x, t) =
∫

d3q

2ωq(2π)3

[
Aµ(q)e−iq·x +Aµ †(q)eiq·x

]
q0=ωq

. (3.71)

A more useful way to rewrite the Hamiltonian (3.68) is through

HI(t) =
∫ ∞
λ

dν
(
h+(t)e−iνt + h−(t)eiνt

)
. (3.72)

This formula is simply obtained substituting the explicit expressions of the fields (3.69) and
then performing the Fourier transform with the respect to the time conjugate variable ν
(typically called transfer energy). The cut-off λ has been introduced, to account with IR
divergences.

The main point in writing HI(t) as eq. (3.72) is that, in this way, one can easily separate
short term interaction from the hard one just introducing a energy scale E

HI(t) =
∫ E

λ

dν
(
h+(t)e−iνt + h−(t)eiνt

)
+
∫ ∞
E

dν
(
h+(t)e−iνt + h−(t)eiνt

)
(3.73)

≡ HE
S (t) +HE

H(t) . (3.74)

Then the analytic expression of HE
S (t) is determined by the leading behaviour of (3.72) in

the limit |t| → ∞. Following the discussion of [19], we can note that (3.72) is an integral
over the momenta k, p, q of the fermions and photon (respectively), which are related by
the relation p = q + k. It is simple to observe that the terms in (3.72) can be splitted
in two cases. A first one containing two creation or annihilation operators of the charged
particles, a second one containing a creation and a annihilation operators for the fermions.
In both cases dependences on time is exp(±iνt). For the former ν = ωk + ωp ± ωq and it
is simply to observe that ∀q and ∀k this is different from zero. The latter case, instead, has
a dependences which is ν = ωk − ωp ± ωq that vanishes for all values of k when q is zero.
Therefore, we can conclude that 3.68, in the limit |t| → ∞, is dominated by

Hs(t) =
∫
dν
(
hs+(t)e−iνt + hs−(t)eiνt

)
, (3.75)
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where

hs+(t) = e

∫
d3k

2ωk(2π)3
d3p

2ωp(2π)3 p̂ ·A(k)ρ(p)δ(p̂ · k − ν) , (3.76)

hs−(t) = e

∫
d3k

2ωk(2π)3
d3p

2ωp(2π)3 p̂ ·A
µ †(k)ρ(p)δ(p̂ · k − ν) . (3.77)

and

p̂µ ≡ pµ

Ep
ρ(p) ≡

∑
σ

(
c†σ(p)cσ(p)− d†σ(p)dσ(p)

)
As the Hamiltonian, also the Hilbert space of the states has to be splitted into an hard
and soft part H ≡ HH ⊗Hs. The key feature of eq. (3.76) is that, since it makes photons
coupling with hard charged particles only via their momentum, it is diagonal in HH states
and it has a c-number commutators in HS .

Now, we have to solve the soft evolution equation for the soft Hamiltonian is

i
∂

∂t
Us(t,−∞) = HE

s (t)Us(t,−∞) . (3.78)

In doing this, we use the method of [6], with can be easily generalized to non-Abelian gauge
theories, as we will see later on. In particular the equation can be solved in perturbation
theory as

U (n)
s (t,±∞) =

∑
ηi

dνi . . . dνn
e−i(σnνn+...+σ1ν1)thσn(νn) · · ·hσ1(ν1)
(σnνn + . . .+ σ1ν1 ± ε) · · · (σ1ν1 ± iε)

, (3.79)

this from in general does not show a factorization structure, however in QED the operators
commute and so using the eikonal identity

∑
perm

1
a1 + . . .+ an

· · · 1
a1 + a2

1
a1

=
n∏
i=1

1
ai
, (3.80)

we get

Us(0,−∞) = Pν exp
[∫ E

λ

dν

ν
(hs+(ν)− hs−(ν))

]
. (3.81)

Or, using eq. (3.76)

Us(0,−∞) = Pω exp
[
ig

∫ E

λ

d3k

2ωk(2π)3
d3p

2ωp(2π)3 ρ(p) p

k · p
·Π(k)

]
, (3.82)

where

Πµ(k) ≡ −i
(
Aµ(k)−A†µ

)
. (3.83)

We are now ready to introduce the definition of choerent states of [6]. Ff the IN/OUT states
are generic hard n/m-particle states:

|hI〉 ≡ |p1, . . . , pn〉 ∈ HH , |hF 〉 ≡ |p1, . . . , pm〉 ∈ HH , (3.84)

then the IN/OUT coherent state operators is obtained evaluating eq. (3.82) on |h〉. With
the result

UEI/F (p1, . . . , pn/m) = e±iφc
n/m∏
i=1

exp
[∫ E

ν

d3q
pi ·
(
A(q−A†(q))

)
pi · q

]
, (3.85)
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where we have neglected an infinite unobservable phase and

φc =
∑
i<j

eiej
vij

log E
λ
, (3.86)

with vij the relative velocity. The SFI can be, therefore decomposed as

SFI = (UEF )†SHFIUEI . (3.87)

The case of non Abelian gauge theories is more involved. Restricting our analysis on
the leading contributions, it is proved in Ref. [6] that, as we argued before, the S matrix
element for a given hard process could be written in the form of eq. (3.66) as

Sα,β (PF ,PI) = UF,lβ,β′
(
as, a

†
s

)
SHβ′,α′ (PF ,PI)U

I,l
α′,α

(
as, a

†
s

)
, (3.88)

where UI,lα′,α
(
as, a

†
s

)
it is the leading choerent state operator. Now, this operator, even if it

acts on Hs, can change the hard state color set of indexes. Indeed, when an hard colored
particle emits a soft boson, it could change its color. There are other two fundamental
properties. First of all, the commutativity for any given color index[

UI/F,lα′,α ,U
I/F,l
β′,β

]
= 0 , (3.89)

then the factorization with respect to hard particles, it holds

UI/F,lα′,α (1, . . . , n) = Uα′1,α1(1) . . .Uα′1,α1(n) . (3.90)

As we are going to see, these properties would be fundamental in the next section.

3.4.3 Comparison of the two formalisms
We now use the methods of sect. 3.4.2 and sect. 3.4.1 to predict inclusive cross-section

in a special case, that will be useful later on in this thesis. In particular we consider a
process between an hard initial state of two particles which transform under the fundamental
representation and the anti-fundamental of SU(2), and a final state which is singlet of the
gauge group.

Let us start from the more clear diagrammatic approach of sec. 3.4.1. According to
eq. (3.56) we know that, for our process

Bii̇
i′ i̇′

=
(
−W1(E2, µ2)−W2(E2, µ2)

)
δii′δ

i̇
i̇′
, (3.91)

where the indexes i and i̇ live, respectively, in the fundamental and anti-fundamental repre-
sentation and are referred to our initial particle. In particular we refer to the two component
of the double/anti-doublet as i = ±/ i̇ = ±̇. For the matrix Ai1 i̇2

i′1 i̇
′
2
we have, according to

eq. (3.57),

Ai1 i̇2
i′1 i̇
′
2

= Ai1i′1δ
i̇2
i̇′2

+ δi̇1
i̇′1
Ai̇2
i̇′2

(3.92)

Let us compute explicitly the first factor of the right hand side of the previous equation.
The generator of the fundamental representation are

T 1i
i′ = 1

2

(
0 1
1 0

)
, T 3i

i′ = 1
2

(
0 −i
i 0

)
, T 3i

i′ = 1
2

(
1 0
0 −1

)
, (3.93)

and so we have that from eq. (3.57) we get∑
a

T a1
i′1
T
ai′′1
1 = −1

4

(
1 0
0 2

) ∑
a

T a2
i′1
T
ai′′1
2 = −1

4

(
2 0
0 1 .

)
. (3.94)
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Finally Ai1i′1 results

Ai1i′1 = W1(E2, µ2)
C1

1
4

(
1 2
2 1

)
, (3.95)

and the same result can be found for Ai̇1
i̇′1
. Now, it is straighforward to find Ai1 i̇2

i′1 i̇
′
2
, we add it

to B and apply the result of eq. (3.64). We have
σ++̇
I

σ+−̇
I

σ−+̇
I

σ−−̇I

 = exp

 α

16π log
(
E2

µ2

)
−4 2 2 0
2 −4 0 2
2 0 −4 2
0 2 2 −4




σ++̇
B

σ+−̇
B

σ−+̇
B

σ−−̇B

 , (3.96)

where the 4 × 4 matrix above is A + B. We can see, moreover, that since σ+−̇ ≡ σ−+̇ and
σ++̇ ≡ σ−−̇ , then we can restrict our analysis on the two independent components(

σ++
I

σ+−
I

)
= exp

(
− α

4π log
(
E2

µ2

)(
1 −1
−1 1

))(
σ++
B

σ+−
B

)
. (3.97)

The previous equation is clearly diagonalizable as follows(
σ++̇
I + σ+−̇

I

σ++̇
I − σ+−̇

−

)
= exp

(
− α

4π log
(
E2

µ2

)(
0 0
0 2

))(
σ++
B + σ+−̇

B

σ++
B − σ+−̇

B

)
. (3.98)

This new set of cross-sections, in the color space, is diagonal in the soft evolution, we get

σ++̇
I + σ+−̇

I = σ++̇
B + σ+−̇

B , σ++̇
I − σ+−̇

I = exp
(
− α

2π log
(
E2

µ2

))(
σ++̇
B − σ+−̇

B

)
. (3.99)

Finally, from the above equation

σ++̇
I = (σ++̇ + σ+−̇)B

2 + (σ++̇ − σ+−̇)B
2 exp

(
− α

2π log2(E2/m2
W )
)
, (3.100)

σ+−̇
I = (σ++̇ + σ+−̇)B

2 − (σ++̇ − σ+−̇)B
2 exp

(
− α

2π log2(E2/m2
W )
)
. (3.101)

In the case we will consider in chapter 4 it will be σ+−̇
B = 0

Let us prove prove eq. (3.99) with the formalism of Sec. 3.4.2. We have to introduce, the
so-called overlapping matrix and hard overlapping matrix

O ≡ S†S , OH ≡ S†HSH , (3.102)

where S is the Scattering matrix. Let us analyse the overlapping matrix as suggested
in Ref. [7], for our given process. The key idea is that, in the high energy limit, where
the gauge group is approximatively unbroken, the S-Matrix SFI ≡ Mi1 i̇2∗Mi1 i̇2 ≡ SI

(where I ≡
{
i1i̇2

}
) has two color indexes, in the SU(2) fundamental/anti-fundamental

representations, and no one for the final state, since we assume it is a singlet of the gauge
group. Therefore, the overlapping matrix has four color indexes

OI
′I
H ≡ S†I

′

H SIH (3.103)

where we leave open the possibility that I 6= I ′, while, obviously for physical differential
cross section we have I ≡ I ′. We can observe, now, that the overlap matrix of eq. (3.103) is
a tensor in the indexes of the gauge group and so we can decompose it as

OI
′I
H = C0δ

i1i
′
1δi2i

′
2 + C1t

a,i1i
′
1ta,i2i

′
2 . (3.104)
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Now, we have to dress the Hard matrix with soft interaction, essentially we include the soft
coherent state, according to eq. (3.66). We get

OII
′

= 〈0|S UI
′J†OJKH UKI |0〉S , (3.105)

where |0〉S is soft vacuum relative to the initial state. In order to go on, we need the
properties that, at leading order, the coherent state operators can be factorized in single
particle operators and so we get

UI
′I = U(i′1i1)U(i′2i2) . (3.106)

Therefore, without entering in detail, we find

OI
′I
s = C0δ

i1i
′
1δi2i

′
2 + C1 〈0|S

(
U†(1)taU(1)

)
i′1i1

(
U†(2)taU(2)

)
i′2i2
|0〉S (3.107)

= C0δ
i1i
′
1δi2i

′
2 + C1F (s,m2

W )ta,i1i
′
1ta,i2i

′
2 . (3.108)

where we have used that (
U†(1)taU(1)

)
i′1i1

= (UA)abtb , (3.109)

with (UA)cab the coherent state operator in the adjoin representation. The previous result
can be proved to be (see Ref. [5])

σ++̇
I = (σ++̇ + σ+−̇)H

2 + (σ++̇ − σ+−̇)H
2 exp

(
− α

2π log2(E2/m2
w)
)
, (3.110)

since FA(E2,m2
W ) = exp

(
−CA α

4π log2
(
E2

m2
W

))
and CA ≡ 2 is the Casimir representation.
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Chapter 4

NLO heavy singlet VBF
production

In this chapter we study the production of the singlet “S”, within the “singlet-extended”
Higgs-Kibble model (SEHK model) defined in the chapter 2, through the processW+W− →
SS. This process, dubbed “Vector Boson Fusion”(VBF) production, might take place at
a future high energy collider, where nearly on-shell initial state vector bosons are emitted
from the colliding beams in the so-called “Effective W” configuration [4]. It is expected that
this one would actually be the dominant production mode for S, given that all its couplings
to quarks, gluons and leptons are absent at tree level1. We consider the phenomenologically
interesting configuration in which the singlet is heavy, i.e. MS > 1 TeV � mW , and the
initialWW c.o.m. energy,

√
s, is of the order of twiceMS . In this configuration it is possible

to apply the Equivalence Theorem introduced in sect. 2.4, and immediately conclude that
the dominant production is the one initiated by longitudinally polarized (i.e., helicity equal
0) vector bosons. Hence we will focus on the W+

0 W
−
0 in what follows.

The process will be computed at Next-to-Leading Order (NLO) accuracy, i.e. at one loop
for the “exclusive” SS process and at tree-level for the extra emission processes SS +X. The
interest of this calculation is twofold. First, it shows explicitly the quantitative importance of
NLO contributions because of the double log enhancements discussed in the previous section.
Actually we will see that those enhances are too large to be computed in perturbation theory
above a certain threshold, and resummation is needed. This shows that all these effects will
have to be taken into account in phenomenological analysis. Second, by the explicit NLO
result we will be able to cross-check the high-energy theorems about massive gauge theories
we illustrated in the previous chapters. Namely we will verify the exclusive and inclusive
resummation results (though of course only at NLO), given in chapter 3. We will also verify
the validity of the Equivalent Gauge approach discussed in section 2.4.

The calculations presented in this chapter, though verified manually whenever possible,
have been performed by employing computer tools such as FeynArts, FormCalc
FeynRules and LoopTools. Let us briefly describe these tools and their application in the
present context. First of all we have implemented the model into the Mathematica package
FeynRules [2] in order to generate Feynman rules for the vertexes and the propagators (the
full list can be found in sect. A.1). Then, thanks to FeynArts [14], we have produced the
expressions for the amplitude, without the algebra simplification and the loop integration.
FormCalc is used to perform the numerator algebra and the loop integration. In particular
FormCalc is optimized to perform the Passarino-Veltman reduction of tensor integrals into
scalar ones, whose analytical values was obtained from Package X [22] and compared with
the literature2. Alternatively, when analytical expressions are too involved to be useful, we

1We don’t investigate here the actual detectability of the process, which might be challenging if S is
absolutely stable because of the Z2 symmetry, as in the SEHK model. One could either rely on same small
amount of Z2 breaking or on the detection of particles (e.g. additional vector bosons as in sect. 4.3) produced
in association with S.

2A brief review of the Passarino Veltman decomposition strategy, and the result concretely relevant for
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make use of LooopTools [13] for numerical evaluation. In particular we will need it for
the full one loop computation, in both the Equivalent Gauge and the standard formalism.
Following the convention of Appendix A, we work in the t’Hooft Feynman gauge (ξ = 1 and
m̃ = mW ) and in the MS renormalization scheme.

The rest of the chapter is organized as follows. We first, in sect. 4.1, present the ampu-
tated 1 Particle Irreducible (1PI) two point functions for the bosonic sector of the theory.
These are needed for the subsequent calculations and furthermore to verify the ST identity
in eq. (2.59), which underlies the formulation of the Equivalent Gauge. Next, in sect. 4.2,
we will consider exclusive production at one loop and compute all 1PI diagrams that appear
in the amplitude. The full expression is to large to be displayed, hence for each class of
diagrams we only report the divergent part and the leading terms in the mW /

√
s expansion

in Appendix C. The latter will allows us to verify the exclusive results of sect. 3.3. In this
section we further investigate the validity of the general discussion of sect. 3.3 by showing
that the double logs of each diagram actually match the general expectations. Tree level real
emissions are included in sect. 4.3. This will allow us to compute the inclusive cross-section
and verify eq. (3.56). Finally, the one loop computation is repeated by using the Equivalence
Gauge showing perfect agreement.

4.1 Self-energies and Slavnov-Taylor identities
First of all, we compute all the form factors appearing in the propagators of the fields of

the theory {W,π, S, h} at one loop. The form factors will be useful for the computation of
the next section. We moreover check at one loop the Slavnov-Taylor identities of eq. (2.59).

4.1.1 Transverse W, S and h

Let us start from the “physical” fields of the theory, namely the transverse W boson,
the singlet S and the Higgs boson. From those correlators we will obtain the mass and the
wave function renormalization factors, the physical mass and the residual (ZW , ZS , Zh) at
the propagator pole.

Transverse W

In order to find the one loop result of the ΠWW (p2) self energy, we have to compute all
the diagrams of fig. C.1 and then to extract the transverse part i.e. ΠT

WW of eq. (2.56). In
the following we report the full one-loop bare result, in terms of Passarino-Veltman scalar
integral, along with their divergent part

ΠT
WW (p2) = g2

576π2m2
hp

2

{
3g2m2

hA0
(
m2
h

) (
m2
h −m2

W + 7p2)+ 36λSm2
W p

2A0
(
M2
S

)
+[

p2 (9m2
h

(
20m2

W + 13p2)B0
(
p2,m2

W ,m
2
W

)
+ 6m4

h + 2m2
h

(
57m2

W + 2p2)− 108m4
W

)
−3m2

h

(
m4
h − 2m2

h

(
m2
W + p2)+m4

W + 10m2
W p

2 + p4)B0
(
p2,m2

h,m
2
W

)
−3A0

(
m2
W

) (
m4
h −m2

h

(
m2
W − 29p2)− 54m2

W p
2) ]} ,

(4.1)

ΠT
WW,D(p2) ≡ p2ΠT

WW,D1 + ΠT
WW,D2 = p2 19g2

n96π2ε
+
g2 (3m4

h + 7m2
hm

2
W + 18m4

W

)
+ 4λSM2

Sm
2
W

64π2m2
hε

.

(4.2)

our work, are reported in the Appendix B.
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In order to end up with finite quantities, we have to pursue into the renormalization
procedure, therefore, after the redefinition of eq. (A.9), we get(

A(p2)
)
D

= 0 =⇒ δZ3(m2
W − p2) + δm2

W + ΠT
WW,D(p2) = 0 , (4.3)

(4.4)

The counterterms δm2
W and δZ3 read

δZ3 = 1
ε

ΠT
WW,D1 = 19g2

96π2 , δm2
W = −

(
δZ3m

2
W + ΠT

WW,D2
)
. (4.5)

For the pole mass, we have that(
mpole
W

)2
= m̄2

W + ḡ2

576π2m̄2
hm̄

2
W

{(
3m̄2

h

(
99m̄4

WB0
(
m̄2
W , m̄

2
W , m̄

2
W

)
−(

m̄4
h − 4m̄2

hm̄
2
W + 12m̄4

W

)
B0
(
m̄2
W , m̄

2
h, m̄

2
W

) )
− 3A0

(
m̄2
W

) (
m̄4
h + 28m̄2

hm̄
2
W − 54m̄4

W

)
+2m̄2

W

(
3m̄4

h + 59m̄2
hm̄

2
W − 54m̄4

W

) )
+ 3ḡ2m̄2

hA0
(
m̄2
h

) (
m̄2
h + 6m̄2

W

)
+ 36λ̄Sm̄4

WA0
(
M̄2
S

)}
,

(4.6)

where all the scalar integrals, computed on the renormalized parameters, are understood
free of the divergent part. For what concern the residual at the pole,

√
ZW , we do not

report the analytical expression, since we will make use of it only numerically

ZW = ∂Π̄WW (p2)
∂p2

∣∣∣∣
p2=mpole

W

, (4.7)

where with Π̄WW we denotes the finite part computed with the renormalized parameters.

Singlet S

The tree-level mass of the scalar S consist of two contributions, its own mass plus a
factor coming from the spontaneous symmetry breakdown

M2
S = m2

s + 1
2λSv

2 .

At one loop, from the diagrams in fig. C.6 we get the two point function

ΠSS(p2) = λS
16π2g2m2

h

{
m2
W

(
4λSm2

hB0
(
p2,m2

h,M
2
S

)
− 9g2A0

(
m2
W

)
−2λSA0

(
M2
S

)
+ 6g2m2

W

)
− g2m2

hA0
(
m2
h

)}
, (4.8)

where the divergent part is

ΠD
SS = −1

ε

λS
(
g2 (m4

h + 9m4
W

)
+ 2λSm2

W

(
M2
S − 2m2

h

))
16π2g2m2

h

. (4.9)

Therefore δZS = 0 and

δM2
S = 1

ε

λS
(
g2 (m4

h + 9m4
W

)
+ 2λSm2

W

(
M2
S − 2m2

h

))
16π2g2m2

h

. (4.10)

For what concern the residual and the pole mass, we have

ZS = ∂Π̄SS(p2)
∂p2

∣∣∣∣
p2=(Mpole

S )2
, (4.11)

(
Mpole
S

)2
= −

λ̄S
(
−4λ̄Sm̄2

hm̄
2
WB0

(
M̄2
S , m̄

2
h, M̄

2
S

)
+ ḡ2 (m̄4

h + 3m̄4
W

)
+ 2λ̄SM̄2

Sm̄
2
W

)
16π2ḡ2m̄2

h

.

(4.12)
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Phisical Higgs h

In order to perform the same analysis for the physical Higgs, we have to compute the
diagrams in fig. C.2 with the result

Πhh(p2) = 1
128π2g2m2

W

{
3g4m4

hB0
(
p2,m2

W ,m
2
W

)
+ 9g4m4

hB0
(
p2,m2

h,m
2
h

)
−12g4m2

W p
2B0

(
p2,m2

W ,m
2
W

)
+ 36g4m4

WB0
(
p2,m2

W ,m
2
W

)
+ 16λ2

Sm
4
WB0

(
p2,M2

S ,M
2
S

)
+3g4m2

hA0
(
m2
W

)
+ 3g4m2

hA0
(
m2
h

)
+ 18g4m2

WA0
(
m2
W

)
+ 4g2λSm

2
WA0

(
M2
S

)
− 36g4m4

W

}
.

(4.13)

The divergent part is

Πhh,D(p2) = Πhh,D1p
2 + Πhh,D2 = −1

ε

3g2p2

32π2 + 1
ε

3g4m4
h − 3g4m2

hm
2
W − 4g2λSM

2
Sm

2
W + 8λ2

Sm
4
W

64π2g2m2
W

,

(4.14)

and so the counterterms are

δZ2,H = 1
ε

3g2

32π2 , δm2
h = δZ2,Hm

2
h −Πhh,D2 = 1

ε

−3g4 (m4
h − 3m2

hm
2
W

)
+ 4g2λSM

2
Sm

2
W − 8λ2

Sm
4
W

64π2g2m2
W

.

(4.15)

Finally for the pole mass, we get(
mpole
h

)2 = 1
128π2ḡ2m̄2

W

{
16λ̄2

Sm̄
4
WB0

(
m̄2
h, M̄

2
S , M̄

2
S

)
+ 3ḡ4 (m̄4

h + m̄2
hm̄

2
W − 6m̄4

W

)
+4ḡ2λ̄SM̄

2
Sm̄

2
W + 3ḡ4 ((m̄4

h − 4m̄2
hm̄

2
W + 12m̄4

W

)
B0
(
m̄2
h, m̄

2
W , m̄

2
W

)
+ 3m̄4

hB0
(
m̄2
h, m̄

2
h, m̄

2
h

))}
(4.16)

and

Zh = ∂Πhh(p2)
∂p2

∣∣∣∣
p2=(mpole

h
)2
. (4.17)

4.1.2 “Unphysical fields” and Slavnov-Taylor
We now turn to the calculation of the two-point functions for the longitudinal W (W0)

and Goldstone system. The corresponding form factors ΠL
WW , ΠWπ, Πππ, as defined in

eq. (2.53) will be needed in sect. 4.4, in order to perform the calculation in the Equivalent
Gauge.

Longitudinal W

Computing the diagrams in fig. C.1, we get

ΠL
WW (p2) = g2

64π2m2
hp

2

{
g2m2

hA0
(
m2
h

) (
−m2

h +m2
W + 3p2)+ 4λSm2

W p
2A0

(
M2
S

)
+[

4m2
W p

2 (2m2
hB0

(
p2,m2

W ,m
2
W

)
− 3m2

W

)
+A0

(
m2
W

) (
m4
h + 3p2 (m2

h + 6m2
W

)
−m2

hm
2
W

)
+m2

h

(
m4
h − 2m2

hm
2
W +m4

W − 4m2
W p

2)B0
(
p2,m2

h,m
2
W

) ]}
,

(4.18)

ΠL
WW,D(p2) ≡ ΠL

WW,D = 1
ε

19g2

96π2 + 1
ε

g2 (3m4
h + 7m2

hm
2
W + 18m4

W

)
+ 4λSM2

Sm
2
W

64π2m2
h

= ΠT
WW,D2 .

(4.19)
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In order to fix the divergent part, we have to impose that the renormalized two-point
function is finite, i.e.(

B(p2)− p2

ξ

)
D

= 0 =⇒ δZ3(m2
W − p2) + δm2

W + p2δξ + ΠL
WW,D(p2) = 0 , (4.20)

and then

δξ = δZ3 = 1
ε

19
96π2 g

2 . (4.21)

Golstones system

For the Πππ form factor the diagrams to consider are in fig. C.4 and the results is

Πππ = g2

64π2m2
W

{
− 2m2

hm
2
WB0

(
p2,m2

h,m
2
W

)
− 2m2

W p
2B0

(
p2,m2

h,m
2
W

)
+

m4
WB0

(
p2,m2

h,m
2
W

)
+m4

hB0
(
p2,m2

h,m
2
W

)
− 4m2

W p
2B0

(
p2,m2

W ,m
2
W

)
+A0

(
m2
h

) (
m2
W −m2

h

)
+A0

(
m2
W

) (
m2
h −m2

W

)}
,

with the divergent part

Πππ,D(p2) ≡ p2Πππ,D = −1
ε

3g2

32π2 p
2 .

For the counter terms, we have that(
p2F (p2)− ξm̃2)

D
−→ δZ2,H(p2 −m2

W )−m2
W δξ − δm̃2 + Πππ,D(p2) = 0 ,

and so

δm̃2 = −m2
W (δZ2,H + δξ) = −1

ε

7g2m2
W

24π2 . (4.22)

W − π mixed propagator

Beyond the tree level, in our model, a non-vanishing mixed W -π propagator appears.
Computing the diagrams of fig. C.5 we get

ΠWπ = g

128π2

{
g

mW p2

[
(2
(
m4
h − 2m2

hm
2
W +m4

W − 3m2
W p

2)B0
(
p2,m2

h,m
2
W

)
+A0

(
m2
h

) (
−2m2

h + 2m2
W + 3p2)+A0

(
m2
W

) (
2m2

h − 2m2
W + 3p2) ]

+4gmWB0
(
p2,m2

W ,m
2
W

)
+

6g2mW

(
3A0

(
m2
W

)
− 2m2

W

)
+ 4λSmWA0

(
M2
S

)
gm2

h

}
, (4.23)

with a divergence

ΠWπ,D = 1
ε

(
g2 (3m4

h +m2
hm

2
W + 18m4

W

)
+ 4λSM2

Sm
2
W

)
128π2m2

hmW
.

We can check that the counter-terms computed before make the mixed two point function
finite

(
C(p2)− m̃

)
D

= 0 −→ δm2
W

2mW
− δm̃2

2mW
+ ΠWπ,D(p2) . (4.24)
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Figure 4.1: W−0 (p1)W+
0 (p2) −→ S(p3)S(p4)

W+
0 S

W−0 S

p2

p1

p4

p3

Slavnov Taylor

We are now able to check at one-loop level the result of eq. (2.59), namely

B(p2)F (p2) = C(p2)2 .

At tree level it is trivially true and a one loop the relation we want explicitly to prove
becomes

m2
WΠππ(p2) + p2ΠL

WW (p2) = 2mWΠWπ(p2)p2 . (4.25)

By an explicit computation it is straightforward to prove that, in the light of the result
previously exposed, the RHS and the LHS of eq. (4.25) are the same.

4.2 W0W0 → SS at one loop
Let us move now to the specific process of W−0 (p1)W+

0 (p2) −→ S(p3)S(p4), schemat-
ically depicted in fig. 4.1. According to the LSZ reduction formula, the matrix element of
the process reads

M = ZWZSA , (4.26)

where ZS and ZW are the pole propagators residues for W and S, and A denotes the
Feynman amplitude.

At tree-level, ZW = ZS = 1 and the amplitude, corresponding to the diagram in fig. 4.2,
is simply

Mtree = g2v2λSε
L
1 · εL2

2 (s−m2
h) = g2v2λS

2 (s−m2
h)

(
s

2m2
W

− 1
)
. (4.27)

We are particularly interested in the high-regime behaviour of the process, i.e.

s ∼ |t| ∼ |u| ∼MS � mW ∼ mh , (4.28)

where s, t, u are the standard Mandelstam invariants

t ≡ (p1 − p3)2 , u ≡ (p1 − p4)2 , s ≡ (p1 + p2)2 . (4.29)

In this regime the tree level process is proportional to the coupling constant with no depen-
dence on the energy, namely

M = λS +O
(
mW√
s

)
. (4.30)
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Figure 4.2: Tree-level diagram for the process WW → SS
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p4

p3

p1 + p2

Let us switch to the one-loop calculation. At this order the amplitude in eq. (4.26) can
be written as

M1L =
(
Z1L
W + Z1L

S

)
Mtree +Mtree

(
mpole
W ,Mpole

S

)
+A1L , (4.31)

where, as indicated in the equations, the external particles masses are the poles ones. Wave
functions and masses have been computed in the previous section. The one loop Feynman
amplitude is conveniently expressed as

A1L =Γ1L
W0W0→SS + Γ1L

W0W0→hG
tree
hh (s)Γtreeh→SS (4.32)

+ΓtreeW0W0→hG
tree
hh (s)Γ1L

h→SS + ΓtreeW0W0→hG
1L
hh(s)Γtreeh→SS ,

where we are using the following notation:

• ΓW0W0→h one-particle irreducible diagrams for the process W0(p1)W0(p2) → h(p3)
with p2

1 = p2
2 = m2

W and the Higgs off-shell p2
3 = (p1 + p2)2 = s;

• ΓSS→h one-particle irreducible diagrams for the process S(p1)S(p2) → h(p3) with
p2

1 = p2
2 = M2

S and the Higgs off-shell p2
3 = (p1 + p2)2 = s;

• ΓW0W0→SS one-particle irreducible diagrams for the processW0(p1)W0(p2)→ S(p3)S(p4)
with p2

1 = p2
2 = m2

W and p2
3 = p2

4 = M2
S .

Each of these diagrams has been computed analytically using the computer tools previously
described. However the resulting expression are too involved to be useful. In what follows
we will only report the divergent part of the result and the leading terms in the high energy
expansion of eq. (4.28). The former will be needed for renormalization, the latter to verify
that the result matches with the one expected at the leading double logs order.

ΓW0W0→h

At tree-level, the process ΓtreeW0W0→h (schematically represented in fig. 4.3), present the
following amplitude

ΓtreeWW→h = gmW εL(p1) · εL(p2) = g
s

2mW
+O

(
s0) . (4.33)

At one loop we have a divergent part(
Γ1L,D
WW→h

)µν
=1
ε

ηµν
(
g3 (3m4

h + 17m2
hm

2
W + 18m4

W

)
+ 4gλSM2

Sm
2
W

)
128π2m2

hmW

(4.34)
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Figure 4.3: W−0 (p1)W+
0 (p2)→ h(p1 + p2)
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Figure 4.4: one-loop diagram giving the leading contribution to the process
W−0 (p1)W+

0 (p2)→ h(p1 + p2)
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To obtain a finite result, then, we perform the rescaling of eq. (A.9) and so we get

Z3
√
Z2,HΓDWW→h = 0→ ḡ

(
δgM̄W + δm2

W

2M̄W

)
+ Γ̄DWW→h = 0 ,

where Γ̄ is the vertex operator Γ computed with the renormalized parameters. We obtain

δg = 1
ε

g2

48π2 . (4.35)

For the present discussion we need the leading terms of the one loop amplitude at high
energy. The computation is presented in Appendix C and the result is the one of eq. (C.2)
which reads

Γ1L
W0W0→h = ΓtreeW0W0→SS

(
− α

8π log2
(

s

m2
W

)
+O

(
log
(

s

m2
W

)))
. (4.36)

Notice that the double logs terms of eq. (4.36) come only from the kind of diagrams reported
in fig. 4.4.

ΓSS→h
At tree level amplitude (depicted in fig. 4.5) is the following

ΓtreeSS→h = −2λS
mW

g
. (4.37)
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Figure 4.5: S(p1)S(p2)→ h(p1 + p2)
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At one loop the diagrams to consider are the ones reported in appendix C, and the result
reported in eq. (C.3), is found to be free of double logs. Here we report only the divergent
part, in order to find δλS counterterm

ΓDSS→h = 1
ε

λS
(
3g2 (m4

h −m2
hm

2
W − 6m4

W

)
+ 4λSm2

W

(
4m2

h −M2
S

))
64π2gm2

hmW
.

We impose
√
ZHZ2ΓSS→h to be finite

Γ̄DSS→h + 2λSmW

g
δλS −

2λSmW

g
δg + λSδm

2
W

mW g
= 0 ,

and then

δλS = −1
ε

3g2 (m2
h −m2

W

)
+ 8λSm2

W

64π2m2
W

.

ΓW0W0→SS

Now, we are going to compute the one loop one particle irreducible correction to the
Feynman amplitude of the process. The list of all the diagrams, with the relative values,
can be found in Appendix C. The result is eq. (C.4) with no divergent part. This was
expected in the light of the fact that we have not such a vertex operator in our tree level
Lagrangian in eq. (2.52). Taking the high-energy limit s� m2

W we can find that

Γ1L
W0W0→SS = ΓtreeW0W0→SS

(
− α

16π log2
(

s

m2
W

)
+O

(
log
(

s

m2
W

)))
, (4.38)

and this contribution can be identified coming from the diagram in fig. 4.6.
To summarize, in this section until now, we have computed the S-matrix element for

the process W−0 W
+
0 → SS at one-loop. The total result, according to the decomposition of

eq. (4.26), for the Feynman amplitude A1L at one loop, is in eq. (C.5). The complete result
will be used for the numerical calculation. Let us now concentrate on the leading double log
corrections, in order to compare the result with the theoretical predictions. From eq. (4.38)
and eq. (4.36) we can easily find

A1L =DL Atree
(
− 3α

16π log2
(

s

m2
W

))
, (4.39)

which shows that the double log terms, in each of the sets of diagrams contributing to
eq. (3.50), match the general result for the leading virtual correction derived in eq. 3.39.
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Figure 4.6: One loop diagram giving the leading contribution to ΓW0W0→SS
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Cross-section

In order to verify the agreement between the expected theoretical result and the one
loop one, we are going to compute the cross-section for the given process. We work in the
center of mass, where the momenta of the ingoing/outgoing particles are defined as follows

pµ1 = (Ep, 0, 0, p) , pµ2 = (Ep, 0, 0,−p) , E2
p = m2

W + p2 ,

pµ3 = (Ep′ , 0, p′ sin θ, p′ cos θ) , pµ3 = (Ep′ , 0,−p′ sin θ,−p′ cos θ) , E2
p′ = M2

S + p′2 .

The tree level cross-section is very trivial to compute and the result is the following.

σtree = 1
16πs

p′

p
|Mtree|2 , (4.40)

The one loop result is

σ1L ≡ 1
32πs

√
s
4 −M

2
S√

s
4 −m

2
W

∫ π

0
sin θdθ|Mtree +M1L|2 . (4.41)

In order to compute it we employ the software LoopTools to get the numerical values of
the Feynman-Integral and then we perform the numerical computation of the cross-section
above. The results is reported in chapter 5 (fig. 5.1 (a))and discussed there in some details In
the figure 5.1 (b) it is compared with the resummed expression which. according to eq. 3.39,
is

σexcl = σtree exp
(
−3α

8π log2
(

s

m2
W

))
. (4.42)

Let us discuss briefly the results. In both the figures of fig. 5.1, we report the chosen cross-
sections normalized with the tree level one. It can be noticed that, both the cross-sections
are remarkable different from the tree-level, and the gap increases with the energy. This
shows, as anticipated, a breakdown of the perturbation theory: a fixed order perturbative
expansion is not sufficient to obtain a useful result. We can notice, moreover, that both the
curves go down rapidly and, therefore, we can identify the exclusive cross-section as a not
good candidate for a physical observable.

4.3 W0W0 → SS + X

In order to end up with a cross-section with phenomenological relevance, we need to
consider the possible emission of additional particles. As the matter of fact, since the possi-
bility of non additional emissions becomes more and more improbable with the increasing of
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energy, as we stressed before, the exclusive cross section is high energy suppressed. We limit
our analysis, here, to the leading contribution to the Born cross section of our VBF process
plus the emission of an additional particle. Resummed formulas, allowing for an arbitrary
number of emission, were found in eq. (3.100). Notice that, because of symmetries, the only
additional particle to the process W0W0 → SS could be only an Higgs h or a W 3 boson.
Then, according to the discussion of chapter 3, we know that the cross-section with the
emission of a soft and collinear higgs is subleading with resect to the ones with an additional
W 3 and so the latter is the only case we are going to study explicitly.

We report in table 4.1 the three tree-level diagrams for the process and the respective
full amplitude and the amplitude in the limit of soft and collinear W 3 emitted.

In order to check the validity of eq. (3.64) at leading log, we need to compute the cross
section for the process. For simplicity, we are going to integrate only over the phase space
configurations, in which q is collinear and soft with respect to p1 and p2. It is immediate to
see that M1 W0W0→SSW 3 is high energy suppressed and after a straightforward computation
we find

dσ(1) =DL

∫
d3q

(2π)32ωq
(
M3 ∗

W0W0→SSW 3 M2 W0W0→SSW 3 + M2 ∗
W0W0→SSW 3 M3 W0W0→SSW 3

)
(4.49)

=DL λ
2
S

α

8π log
(

s

m2
W

)
(4.50)

times the 2-body phase-space factor (for the SS system), which we omitted from the previous
expression. By a simple integration we get

σ1 = σB ×
( α

8π

)
log
(

s

m2
W

)
. (4.51)

Now, remembering that

σinc,1L = σexc,1L + σ1 (4.52)

we find an evident matching with eq. (3.100) at one loop.
The result of eq. (4.52) is reported in fig. 5.1, for both the first order inclusive cross-

section (a) and the resummed one (b). Notice that, both the cross-section are very different
from the tree level amplitude, showing the necessity of a resummation. We can also note
that the resummed inclusive cross-section, with the increasing of the energy, level up to a
half of the Born one and do not go to zero (relative to the tree-level result) as the exclusive
one. The inclusive cross-section is, for sure, the most probable configuration that can would
observe in an experiment.

4.4 W0W0 → SS in the Equivalent Gauge
In this section we repeat the computation of the one loop exclusive amplitude within

the formalism of the Equivalent Gauge, introduced in sect. 2.4. The advantage of the
Equivalent Gauge is that the high energy power counting is manifest. The disadvantage
is that the number of diagrams to compute increase. Those relevant for our process are
depicted in fig. 4.7, leading to a scattering amplitude

M = ZWZSA , (4.53)

with

A ≡ ALWLWL→SS +mWAπWL→SS +mWAWLπ→SS +m2
WAππ→SS , (4.54)

where, as in sect. 4.2, we have defined

ALWLWL→SS ≡ ε
µ
L(p1)εµL(p2)A [Wµ(p1),Wν(p2), S(p3), S(p4)] ,

AWLπ→SS ≡ επε
µ
L(p2)A [Π(p1),Wµ(p2), S(p3), S(p4)] , (4.55)

AWLπ→SS ≡ επε
µ
L(p1)A [Wµ(p1),Π(p2), S(p3), S(p4)] .
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Table 4.1: Tree-level diagrams for the process W+
0 W

−
0 → SSW 3

ε0(p2)

ε0(p1)

ερ
λ

(q)

p2

p1

p1 + p2

h

p3

p4

q

M1
W0W0→SSW3 = −

g3λSv
2

2

{ 2 (ε0(p1) · p2) (ε0(p2) · ελ(q))(
s−m2

W

)(
(p3 + p4)2 −m2

W

)
−

2 (ε0(p2) · p1) (ε0(p1) · ελ(q)) + ε0(p1) · ε0(p2) (ελ(q) · p1 − ελ(q) · p2)(
s−m2

W

)(
(p3 + p4)2 −m2

W

) }
(4.43)

'q→0 −
g3λSv

2

2

{ 2 (ε0(p1) · p2) (ε0(p2) · ελ(q))(
s−m2

W

)(
s−m2

W

)
−

2 (ε0(p2) · p1) (ε0(p1) · ελ(q)) + ε0(p1) · ε0(p2) (ελ(q) · p1 − ελ(q) · p2)(
s−m2

W

)(
s−m2

W

) }
(4.44)

ε0(p2)

ε0(p1) ερ
λ

(q)

p2

p1

p1 − q

p3 + p4

p4

p3

q

M2
W0W0→SSW3 = −

g3λSv
2

2

{ 2ε0(p1) · qε0(p2) · ελ(q)− ε0(p1)ελ(q)
(
ε0(p2) · p1 + ε0(p1) · p2(

(p1 + p2 − q)2 −m2
W

)(
(p1 − q)2 −m2

W

)
+

2ε0(p1) · ε0(p2)ελ(q) · p1
)(

(p1 + p2 − q)2 −m2
W

)(
(p1 − q)2 −m2

W

)} (4.45)

'q→0 −
g3λSv

2

2
−2ε0(p1) · ε0(p2)ελ(q) · p1 + ε0(p1) · ελ(q)ε0(p2) · p1

(2p1 · q)
(
s−m2

W

) (4.46)

εµ0 (p2)

εν0 (p1)

ερ
λ

(q)

p2

p1

p2 − q

p3 + p4

p3

p4

q

M3
W0W0→SSW3 = −

g3λSv
2

2

{ 2ε0(p2) · qε0(p1) · ελ(q)− ε0(p2)ελ(q)
(
ε0(p1) · p2 + ε0(p2) · p1+(

(p2 + p1 − q)2 −m2
W

)(
(p2 − q)2 −m2

W

)
+

2ε0(p2) · ε0(p1)ελ(q) · p2
)(

(p2 + p1 − q)2 −m2
W

)(
(p2 − q)2 −m2

W

)} (4.47)

'q→0 −
g3λSv

2

2
−2ε0(p2) · ε0(p1)ελ(q) · p2 + ε0(p2) · ελ(q)ε0(p1) · p2

(2p2 · q)
(
s−m2

W

) (4.48)
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Figure 4.7: W0W0 → SS in the Equivalent Gauge
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The (modified) polarization vector εµL and the “Goldstone wave function” επ are defined in
sect. 2.4.

The tree-level process, in the Equivalent Gauge, is described by the diagrams of Fig 4.8.
whose values are

MW0W0→SS =

ALWLWL→SS︷ ︸︸ ︷(
λS

2m2
W

s−m2
h

εL(p1) · εL(p2)
)
−imW

AWLπ→SS︷ ︸︸ ︷(
−λS

1
s−m2

h

ε(p1) · (p1 + p2)επ
)

−imW

(
−λS

1
s−m2

h

ε(p2) · (p1 + p2)επ
)

︸ ︷︷ ︸
AπWL→SS

+
(
−λS

s

s−m2
h

)
ε2π︸ ︷︷ ︸

Aππ→SS

= λS
2M2

W

s−m2
h

(
s

2m2
W

− 1
)
,

(4.56)

where we have used that

εL(p1) · εL(p2) = 2(p− Ep)2

m2
W

, εL(p1/2) · p1/2 = −mW , εL(p1) · p2 = − (p− Ep)2

mW
= εL(p2) · p1 ,

and that, obviously, at tree level επ = −i.
The result of eq. (4.8) concedes with the one we have obtained in eq. (4.27) with the

standard formalism. The full one loop result, as we have seen, is to much involved. Therefore,
we limit our analytical computation to the leading terms in the high energy expansion. We
have, also, verified that the full Equivalent Gauge result is numerically identical to the one
derived in the previous section. At high energy, thanks to the properties of the polarization
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Figure 4.8: Tree-level diagrams for the process W0W0 → SS in the Equivalent Gauge
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vectors we employ in the Equivalent Gauge, the only non mass suppressed terms is the one
with the Goldstones, i.e. the amplitude Aππ→SS . At one loop this can be written as

A1L
ππ→SS = Γ1L

ππ→hG
tree
hh Γtreeh→SS + Γtreeππ→hG

1L
hhΓtreeh→SS + Γtreeππ→hG

tree
hh Γ1L

h→SS + Γ1L
ππ→SS ,

(4.57)

where a notation analogue to eq. (4.32) has been employed.
It is easy to see that

A1L
ππ→SS = Γ1L

ππ→SS +O
(
mW√
s

)
(4.58)

by, simply, power-couting analysis. In fact, we know that both Γππ→h and Γh→SS are mass
suppressed at tree level and that the propagators also vanish at high energy.

The diagrams to consider are, thus, only the ones of Fig. C.4 and, as eq. (4.2), we report,
along with the approximate result, the divergent part and the leading behaviour

Γππ→SS =DL −λS
3α
8π log2

(
s

m2
W

)
(4.59)

ΓDππ→SS =
λS
(
3g2m2

h −m2
W

)
+ 8λSm2

W

64π2m2
W

. (4.60)

A more detailed result, can be found in eq. (C.1). In order to complete the calculation we
need to compute the scalar wave function επ, defined in eq. (2.66). At one loop, this is given
by

επ = −i
(

1 + ΠL
WW (m2

W )
m2
W

+ ΠWπ(mW )
mW

)
, (4.61)

for bare quantities3 or explicitly

επ = 1 + 1
128π2m2

hm
2
W

g2

{[
3A0

(
m2
W

) (
m2
h + 6m2

W

)
−2m2

W

(
m2
hB0

(
m2
W ,m

2
h,m

2
W

)
− 6m2

hB0
(
m2
W ,m

2
W ,m

2
W

)
+ 6m2

W

) ]
+3g2m2

hA0
(
m2
h

)
+ 4λSm2

WA0
(
M2
S

)}
.

3For renormalized ones, instead, we have to consider
√
Z2√
Z3,H

ε̄π
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Therefore, at one loop we, finally, have

A1L
W0W0→SS = ε2πAtreeππ→SS +A1L

ππ +O
(
mW√
s

)
, (4.62)

and substituting all the factors we have back the result of eq. (C.5). The full computation
of eq. (4.54) also brings to the same result of eq. (4.26).
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Chapter 5

Conclusions

In this thesis we discussed the high energy properties of massive gauge theories, far above
their characteristic mass scale. After a general introduction, we focused on two main specific
topics: the Equivalence Theorem and the resummation of double logs of Sudakov type. We
discussed and examined these topics in two ways. First of all we reviewed the existing
literature on the subject trying to clarify the derivation of existing result. In particular
this led us, in sect. 3.4.1 to an alternative derivation of double logs resummation formulas
for inclusive cross-section. Second, we performed a concrete NLO calculation for a specific
process, in order to verify the validity of the general results.

The well-known Equivalence Theorem is discussed in its general formulation, presenting
it via the so-called “Equivalent Gauge”, a less-known reformulation of the standard com-
putation strategy for massive gauge theories. Verifyng the validity of this approach at one
loop level and at all order energy expansion, is one of the main original results of the present
work. For what concerns the other main topic, i.e. Sudakov double logs, we review in details
the existing literature and we give a generalization of the method of the infrared evolution
equation of Ref. [12], for double logs coming from virtual emission, to the case of real emis-
sion. In particular, for inclusive cross-section, we get the same result of Ref. [6] with a more
transparent and effective approach.

Concerning the explicit calculation, let us briefly summarize what we have found. We
started with the computation of the S-matrix element for the process W0W0 → SS at NLO,
within the singlet-extended Higgs-Kibble model (introduced in the thesis). By taking the
high energy limit of the result we have found that the leading one loop contributions to the
tree level, are the double logs of infrared nature we predicted on the basis of the general
formulas in the previous chapters. Furthermore, we computed the leading contribution to
W0W0 → SS + X production, due by the emission of a soft and collinear gauge bosons.
These corrections are significant as well as the ones due to virtual emissions and need to be
taken into account, at energyies above order 10 TeV in order to obtain accurate predictions.
Resummation further changes the result and need to be taken into account.

As a final summary for our work, we display in Fig. 5.1 all the predictions we have
obtained for the W0W0 → SS production cross-sections, normalized to the three level one.
Namely, we report on the left panel the one loop exclusive cross-section, together with the
NLO inclusive one. The resummed expressions, exclusive and inclusive, are reported in
the right panel. The figure displays a number of interesting features. We see a large and
growing-with-energy negative one-loop contribution to the exclusive cross-section, which
reduces it relative to the tree-level. These are the famous “negative Sudakov logs”. Second
we notice that the one loop result is rather close to the resummed exclusive expansion, even
if the two cross sections eventually depart at a very high energy because of the double log
exponentiation in the resummed formula. The behaviour of the inclusive cross-section is
also very interesting. Unlike the exclusive one, which goes to zero as

σexcl

σB
= exp

(
−3α

8π log2
(

s

m2
W

))
, (5.1)
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Figure 5.1: (a) Comparison beetween one loop exclusive (blue line), inclusive (orange line)
cross sections (b). Comparison beetween resummed exclusive (blue line), inclusive (or-
ange line) cross sections. The parameters chosen for both the plots are g = 0.65 , mW =
0.08TeV , mh = 0.125TeV , λS = 0.1 , MS =

√
s/3 , µ =

√
s .

relative to the three level, the inclusive one goes to a constant (as we saw in sect. 3.4.1)

σinc

σB
=

1 + exp
(
− α

2π log2
(

s
m2
W

))
2 . (5.2)

This means that at asymptotically high energy the exclusive process becomes rare, and
the vast majority of the SS production events come accompanied by the emission of soft
gauge bosons which are nearly collinear to the beam axis. On top of computing accurately
the inclusive cross-section as we did in this thesis, a accurate modelling of the soft vector
boson radiation will be needed for a concrete experimental analysis of the process. So-
called “Electroweak showering” techniques to QCD parton showering will have to be further
developed.This shows once again that Electroweak high energy physics is an intricate and
stimulating theoretical subject on which a lot of work will be needed in the forthcoming
years.



Appendix A

Feynman rules and
renormalization scheme

In all the computations performed in the thesis we adopted the t’Hooft Feynman gauge
(i.e. ξ = 1 and m̃ = mW ). Differently from eq. (2.48) we have worked in the following basis
for the gauge fields

Wµ ≡
1
2W

a
µσa = 1

2

(
W 3
µ W 2

µ − iW 1
µ

W 2
µ + iW 1

µ −W 3
µ

)
≡ 1

2

(
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

)
, (A.1)

and for the H field

ω+ = ω1 − iω2
√

2
, ω− = ω1 + iω2

√
2

, π+ = π1 − iπ2
√

2
, π− = π1 + iπ2

√
2

. (A.2)

For what concern the fields ω3 and π3, otherwise, we have used the same definition of
eq. (2.48).

A.1 Feynman Rules

Here, we list the full set of Feynman rules of the theory

Propagators

p

W±/3
= −iηµν

p2 −m2
W + iε

,

p

h
= i

p2 −m2
h + iε

,

p

ω±/3
= i

p2 −m2
W + iε

,

p

π±/3
= i

p2 −m2
W + iε

,

p

S
= i

p2 −M2
S + iε

.

(A.3)
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Ghost interactions

ω±/3

h

ω±/3

= − i2gmW

ω±

φ3

ω±

= ±1
2gmW

ω±

φ±

ωz

= ±1
2gmW

ωz

φ∓

ω±

= ±1
2gmW

ω±

W 3
µ

ω±

p = ±igpµ

ω±

W±µ

ω3

p = ∓igpµ

ω3

W∓µ

ω±

p = ∓igpµ

(A.4)

Scalar “S” interactions

h

Sh

S

= −iλS

π±

Sπ∓

S

= −ivλS

h

S

h

S

= −iλS

π3

Sπ3

S

= −iλS

(A.5)
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Gauge self-interactions

W+
µ

W−ρW+
ν

W−σ

=
ig2
(

2ηµνηρσ

− ηµρηνσ − ηµσηνρ
)

W+
µ

W 3
ρW−ν

W 3
σ

=
ig2
(
ηµρηνσ+

ηµσηνρ − 2ηµνηρσ
)

(A.6)

W+
µ

W 3
σ

W−ν

p

q

r

= −ig [ηµν(p− q)ρ + ηνρ(q − r)µ + ηρµ(r − p)ν ]

Gauge interactions

h

W
∓/3
µ

φ±/3

p

q

= 1
2g(pµ − qµ)

φ3

W∓µ

φ±

p

q

= 1
2g(pµ − qµ)

φ+

W 3
µ

φ−

p

q

= i

2g(pµ − qµ)

W
±/3
µ

h

W
∓/3
ν

= i

2g
2vηµν

φ±/3

W+
µφ∓/3

W−ν

= i

2g
2ηµν

φ±/3

W 3
µφ∓/3

W 3
ν

= i

2g
2ηµν

h

W
±/3
µh

W
∓/3
ν

= i

2g
2ηµν

(A.7)
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Higgs and Goldstone interactions

h

hh

h

= −i34
m2
h

m2
W

g2

φ3

φ3φ3

φ3

= −i34
m2
h

m2
W

g2

φ±

φ±φ∓

φ∓
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m2
h

m2
W
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φ3

hφ3
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= −i14
m2
h

m2
W

g2

φ±

hφ∓
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= −i14
m2
h

m2
W
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φ3φ∓
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W

g2

h

h

h

= −i3m
2
h

v

φ±/3

h

φ∓/3

= −im
2
h

v

(A.8)

A.2 Renormalization scheme
We adopt the MS renormalization scheme1 and we choose to redefine the fields and

independent parameters {Wµ,H, S,mW ,MS ,mh, g, λs, ξ,m} as

Wµ ≡
√
Z3W̄µ H ≡

√
Z2,HH̄ S ≡

√
Z2,SS̄

m2
W ≡ M̄2

W + δm2
W M2

S ≡ M̄2
S + δM2

S m2
h ≡ M̄2

h + δm2
h (A.9)

g ≡ Z−1
3 Z

− 1
2

∈,Hḡ (1 + δg) λs ≡ λ̄sZ−1
s Z−1

2,H (1 + δλs) ξ ≡ 1 + δξ m̃2 ≡ M̄2
W + δm̃2 ,

where we denoted with a bar the renormalized quantities. We underline that we have
redefined the whole bare scalar “S” mass (M2

S = m2
s + 2λs

g m2
W ).

1We have omitted the universal constant, which comes out from divergent integral in dimensional regu-
larization, already in the definition of the scalar integrals in Appendix B and so, in order to adopt the m̄S
scheme, we have to take care only of the divergent part



Appendix B

One-loop integrals

The explicit computations of chapter 4 lead us to deal with a quite heavy set of Feynman
integrals. Since all of the particles of our model are massive we don’t have to deal with true
infrared divergences. Some of the integrals we encountered, otherwise, present an ultraviolet
divergences. In order to handle with this we employ dimensional regularization [25], where
the dimensionality of space time becomes D = 4− 2ε and we will take ε → 0 at the end of
the computation. The generic integral we need to compute, therefore, generally takes the
form

I
µ1...µρ
N = (2πµ)4−D

iπ2

∫
d4l

lµ · · · lµρ
D1 . . . DN

, (B.1)

where

Dj = (l + qj)2 −m2
j , qj =

j∑
i=1

pi , (B.2)

and in our cases, N has a maximum value of 4 and we adopt the conventions of Ref. [11].
In particular we forget about the usual multiplicative factor, coming from dimensional reg-
ularization, in eq. (B.1). With this conventions we can forget to deal with finite terms in
the renormalization procedure in the MS scheme.

B.1 Passarino-Veltman tensor integral decomposition
The Passarino-Veltman [21] reduction is an efficient way allowing to express the generic

Feynman tensor integrals of eq. (B.1) as a sum of basic scalar integrals times some coefficients
which depends only on external kinematical quantities. We adopt now a convention similar
to the one of Passarino Veltman and we call the one, two, three and four point integrals A,
B, C and D as

A0(m2) = (2πµ)4−D

iπ2

∫
d4l

1
D

(B.3)

B0, B
µ, Bµν(p2,m2

1,m
2
2) = (2πµ)4−D

iπ2

∫
d4l

1, lµ, lµlν

D1D2
(B.4)

C0, C
µ, Cµν , Cµν(p2

1, p
,
2(p1 + p2)2,m2

1,m
2
2,m

2
3) = (2πµ)4−D

iπ2

∫
d4l

1, lµ, lµlν

D1D2D3
(B.5)

D0, . . . (p2
1, p

2
2, p

2
3, (p1 + p2 + p3)2, (p1 − p3)2, (p2 − p3)2,m2

1,m
2
2,m

2
3,m

2
4) (B.6)

= (2πµ)4−D

iπ2

∫
d4l

1, . . .
D1D2D3D4

In the next section we will give the values we need for such integrals in our model. We now
discuss the general decomposition.
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The idea of this decomposition is to write the tensor integrals as

Bµ(p2,m2
1,m

2
2) = pµB1(p2,m2

1,m
2
2) ,

Bµν(p2,m2
1,m

2
2) = ηµνB00(p2,m2

1,m
2
2) + pµpνB11(p,m1,m2)

Cµ(p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3) = p1µC1(p2

1, p
2
2, p

2
3,m

2
1,m

2
2,m

2
3) + p2µC2(p2

1, p
2
2, p

2
3,m

2
1,m

2
2,m

2
3)

Cµν(p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3) = ηµνC00(p2

1, p
2
2, p

2
3, j

2
1 ,m

2
2,m

2
3) +

2∑
i,j=1

Cijpi,µpi,µ, whereC21 = C12 .

(B.7)

The relation between tensor integrals and scalar integrals can be obtained by saturating
both side of eq. (B.7) with ηµν or the external momenta pµi . This procedure is implemented
in the computer tools FormCalc we adopted for the computation. Therefore, here, we
discuss in details only the case of the rank-one tensor triangle integral. For simplicity we set
the internal masses at zero (i.e. m1 = m2 = m3 = 0) and we drop the dependencies on the
Lorentz invariants of the case (p2

1, p
2
2, p − 32 = (p − 1 + p2)2,m2

1,m
2
2,m

2
3). Multipling both

side of

(2πµ)4−D

iπ2

∫
dDl

l · p1

l2(l + q2
1)(l + q2)2 = C1p

µ
1 + C2p

µ
2 (B.8)

with pµ1 , we get

(2πµ)4−D

iπ2

∫
dD

l · p1

l2(l + q1)2(l + q2)2 = C1p
2
1 + C2p1 · p2 . (B.9)

Now, we note that

l · p1 = 1
2
(
(l + q1)2 − l2 − p2

1
)

(B.10)

and so

p2
1C1 + p1 · p2C2 = 1

2
(
B0((p2 + p1)2, 0, 0)−B0(p2

2, 0, 0)− p2
1C0

)
. (B.11)

Analogously, multiplying for pµ2 , we get

p1 · p2C1 + p2
2C2 = 1

2
(
B0(p2

1, 0, 0)−B0(p2
2, 0, 0)− (2p1 · p2 + p2

2)C0
)
. (B.12)

Therefore the Passarino-Veltman coefficients can be written as

C1 = 1(
p2

1p
2
2 − (p1 · p2)2

) (
(
p2

2 + p1 · p2
)
B0((p1 + p2)2, 0, 0)− p2

2B0(p2
2, 0, 0)− p1 · p2B0(p2

1, 0, 0)

−
(
p2

1p
2
2 − 2 (p1 · p2)2 − p2

2 (p1 · p2)
)
C0) , (B.13)

C2 = 1(
p2

1p
2
2 − (p1 · p2)2

) (
(
p2

1 + p1 · p2
)
B0((p1 + p2)2, 0, 0) + p2

1B0(p2
1, 0, 0)− p1 · p2B0(p2

2, 0, 0)

−
(
p2

1p
2
2 + p2

1 (p1 · p2)
)
C0 . (B.14)

B.2 One-loop scalar integrals
Here, we list all the one-loop scalar integral we need in the analityc computations of ch. 4.

We report the full result of Refs. [11, 26] for bubbles and tadpoles. Instead for triangles and
boxes we give only an approximation in our kinematical region of interest.
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Tadpole
The full result for the tadpole integral is [11]

A0(m2) = m2
(

µ2

m2 − iε

)ε{
1 + 1

ε

}
+O(ε) . (B.15)

In the limit µ2 ∼ s� m2 it becomes

A2
0(m2) ' m2 log

( s

m2

)
. (B.16)

Bubble
The full result for the bubble integral is [11]

B0
(
p2,m2

1,m
2
2
)

= µ2ε

{
1
ε

+ 2− log(p2 − iε) +
2∑
i=1

[
γi log

(
γi − 1
γi

)
− log (γi − 1)

]}
+O(ε) ,

(B.17)

where

γ1,2 =
s−m2

2 +m2
1 ±

√
(p2 −m2

2 +m2
1)2 − 4s (m2

1 − iε)
2p2 . (B.18)

In the limit µ2 ∼ s� p2 ∼ m2 ∼ m2
2 it becomes [23]

B0
(
p2,m2

1,m
2
2
)
' log

( s

m2

)
. (B.19)

Triangle
In our computation, it comes out that the only triangle integrals which survive, in the

high energy limit s ∼ M2
S � m2

h, m2
W , are the ones of the form C0(p2

1, p
2
2, p

2
3 = (p1 +

p2)2,m2
0,m

2
1,m

2
2), where p2

3 � m2
0, m2

1, m2
2.1 [9]

C0
(
p2

1, p
2
2, p

2
3,m

2
0,m

2
1,m

2
2
)

= 1
p2

3

1
2 log2

(
−p2

3
m2

0

)
+
∑
l=1,2

IC(p2
l ,m

2
0,m

2
l )

 , (B.20)

where

IC(p2,m2
0,m

2) ≡ −
∫ 1

0

dx

x

(
1 + m2 −m2

0 − p2

m2
0 − iε

x+ p2

m2
0 − iε

x2
)
. (B.21)

The integral IC leads to large logarithms when the mass m2
0 is small compared to p2 and/or

p2 −m2.

Box
In the explicit computation, we have to match with the box scalar integrals, with the

configuration of masses (as depicted in fig. B.1)

D0 =
∫

d4q

(2π)4
1

D1D2D3D4
, (B.22)

1In fact, even if we encontuer integrals that depend on the M2
S mass, they turn out to be polinomially

suppressed in our diagrams (i.e. of the form C0/s).
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Figure B.1: Box integral relative to eq. (B.22)

p2
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q + p2
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q + p2 − p4M
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where

D1 = q2 −m2 , D2 = (q + p2)2 −m2 ,

D3 = (q + p2 − p4)2 −M2 , D4 = (q − p2)2 −m2 .

For analytical purposes we just need the leading behaviour in the asymptotic regime (s ∼
−t ∼ −u ∼ M2 � m2), where in our process M and m play the role of, respectively, MS

and mW .
This integral is clearly UV convergent, since it had a D = −4 grade of superficial diver-

gence and it is, also, free from IR divergences, since it has no massless propagators. In order
to find the behaviour of this D0 with the kinematical invariants in our regime of interest,
without performing the full integration, we can identify the three region giving the biggest
contribution as

A) q soft and almost collinear with respect to p1 and p2,

B) q soft and almost collinear with respect to p2 and p4,

C) q soft and almost collinear with respect to p1 and p3.

Let us start with the region (A), we switch to the Sudakov parametrization as in eq. (3.4)

q = up1 + vp2 + p⊥ (B.23)

where p⊥ is ortogonal to the plane defined by p1 and p2. In this coordinate we have that
region (A) corresponds to

q0 � min|su|, |sv| , |su|, |sv| � 1 . (B.24)

After a straightforward computation it follows that

I4 =A

(
1

M2
S − t

)
× I3 = 1

2s(M2
S − t)

log2
(

s

m2
W

)
+O

(
1

s(M2
S − t)

log2
(
s2

m2
W

))
(B.25)

We can follow a similar scheme for the region (B), we switch to coordinates

q = up2 + vp4 + p⊥ , (B.26)

and we integrate in

q0 � min|tu|, |tv| , |tu|, |tv| � 1 . (B.27)
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Figure B.2: Uncertainly between the exact value of theD0 and the predicted one of eq. (B.29)
with t = tmin (green line), t = tmax (orange line) and t = t̄ (blue line). The other parameters
of the plot are m = 0.08 and M =

√
s/3.
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The result is

I4 =B
1

s (M2
S − t) s

log2
(
M2
S − t

mWMS

)
(B.28)

Summing all the contributions2 we have

I4 ' IA + IB + IC = 1
2s (M2

S − t)

(
log2

(
s

m2
W

)
+ 4 log2

(
M2
S − t

mWMS

))
. (B.29)

In order to verify the validity of the previous result, we present a comparison between
eq. (B.29) and the numerical value for the D0. In the plot of fig. B.31, therefore, is reported
the value of the uncertainty between them

U = |I4 −D0|
|I4 +D0|

, (B.30)

with three different values of the Mandelstam invariant
{
tmin, t̄, tmax

}
, where

tmin/max = m2 +M2 − s

2 ± 2
√(s

4 −m
2
)(s

4 −M
2
)
, t̄ = tmax + tmin

2 . (B.31)

As we can see, there is good agreement between the exact and the leading result, and this
agreement, obviously, increase with the energy.

2For instance, it comes out that the full result of eq. (B.29) is equal to the divergent part of D0, computed
via the method of Ref. [10], with a IR cut-off m.
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Appendix C

Feynman diagrams and
analytical results

In this section we report the analytical result and the Feynman diagrams concerning the
explicit computation of chapter 3.

C.1 High energy expansion

In order to find the leading double logs and to verify the Equivalence theorem of sect. 2.4
up to O(s0), analytically, we have proceeded as following. Using the tools described in ch. 4,
we generate the Feynman diagrams we are looking for and then we compute the relative
amplitudes in terms of Passarino-Veltman scalar function. Then, using the asymptotic values
of ch. B for the Scalar integral, we drop out all the terms which are polynomial sub-leading
in our expansion (i.e. in our case as 1/sn, with n > 0). In order to find double logs, in
particular, we know that, in our fauna of scalar integral only the Scalar C0 could give us
such contribution (the double logs coming from the Box integral ar too much high-energy
suppressed to be leading.

In the following, therefore, we report the list of the amplitudes computed in ch 4.

Γππ→SS = 1
256π2

{
2λS
m2
W

[
4m2

W

(
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S ,m
2
W
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W
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+ g2s
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2
W ,m

2
W ,m
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h
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(
m2
W , S,m

2
W ,m
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2
W
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W

)
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(
S,m2
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2
h

)
+ g2 (5m2

h + 4m2
W
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− 8g2λS

(
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(
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2
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2
W

)
+ 2B0

(
m2
W ,m

2
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2
W

))}
+O

(
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s

)
(C.1)

Γ1L
WW→h = s

g
(
g2 (3A0

(
m2
W

) (
m2
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W

)
− 2m2

W

(
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(C.2)

+
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(
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h

)
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) )
256π2m2

hm
3
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}
+O

(
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C.2 Feynman diagrams
In the following, we report the list of all the Feynman diagrams computed and analysed

in the thesis.

Figure C.1: The 1-loop diagrams which contributes the ΠWW form-factor
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Figure C.2: The 1-loop diagrams which contributes the Πhh form-factor
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Figure C.3: 1-loop diagrams for Γπ+π−→SS

π

π

S

SS

S

S

π

π

S

Sπ

h

h

π

π

S

Sh

π

π

π

π

S

SV

S

S

π

π

S

SW3
π

π

π

π

S

SW

h

h

π

π

S

SW

π3

π3

π

π

S

S

S

S S

π

π

S

S

h

π S

π

π

S

S

S

S

S

π

π

S

S

h

π
S

π

π

S

SS

S

S

π

π

S

Sh

π
S

π

π

S

SS

S S

π

π

S

Sh

π S π

π

S

S

S

S

S

π

π

S

S

S

h

h

π

π

S

S

h

S

S

π

π

S

S

S

S

S

S

π

π

S

S

π

h

h

S

π

π

S

S

V

S

S

S

π

π

S

S

W

h

h

S

π

π

S

S

S

S

S

S

π

π

S

S

π

h

h

S

π

π

S

S

V

S

S

S

π

π

S

S

W

h

h

S π

π

S

S

S

S

π

π

S

S

h

h

π

π

S

S

π3

π3

π

π

S

S

π

π
π

π

S

S

S S

π

π

S

S

π S

π

π

S

SS S

π

π

S

Sπ S

Figure C.4: The 1-loop diagrams which contributes the Πππ form-factor
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Figure C.5: The 1-loop diagrams which contributes the ΠWπ form-factor
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Figure C.6: The 1-loop diagrams which contributes the ΠSS form-factor

S S

h

S S

π3

S S

π

S

Sh

h

S

Sh

π3

S

Sh

π

S

Sh

S

S

Sh

ω3

S

Sh

ω+

S

Sh

ω-

S

Sh

W3

S

Sh

W

S

S

h

S
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Table C.1: 1-loop diagrams for γ1L
W0W0→h
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